201
|
Sharmiladevi P, Akhtar N, Haribabu V, Girigoswami K, Chattopadhyay S, Girigoswami A. Excitation Wavelength Independent Carbon-Decorated Ferrite Nanodots for Multimodal Diagnosis and Stimuli Responsive Therapy. ACS APPLIED BIO MATERIALS 2019; 2:1634-1642. [DOI: 10.1021/acsabm.9b00039] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Affiliation(s)
- Palani Sharmiladevi
- Faculty of Allied Health Sciences, Chettinad Academy of Research & Education (CARE), Chettinad Hospital and Research Institute (CHRI), Kelambakkam, Chennai 603 103, India
| | - Najim Akhtar
- Institute of Biophotonics, National Yang-Ming University, Taipei 112, Taiwan
| | - Viswanathan Haribabu
- Faculty of Allied Health Sciences, Chettinad Academy of Research & Education (CARE), Chettinad Hospital and Research Institute (CHRI), Kelambakkam, Chennai 603 103, India
| | - Koyeli Girigoswami
- Faculty of Allied Health Sciences, Chettinad Academy of Research & Education (CARE), Chettinad Hospital and Research Institute (CHRI), Kelambakkam, Chennai 603 103, India
| | | | - Agnishwar Girigoswami
- Faculty of Allied Health Sciences, Chettinad Academy of Research & Education (CARE), Chettinad Hospital and Research Institute (CHRI), Kelambakkam, Chennai 603 103, India
| |
Collapse
|
202
|
Lee SB, Li Y, Lee IK, Cho SJ, Kim SK, Lee SW, Lee J, Jeon YH. In vivo detection of sentinel lymph nodes with PEGylated crushed gold shell @ radioactive core nanoballs. J IND ENG CHEM 2019. [DOI: 10.1016/j.jiec.2018.10.016] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
|
203
|
Kalyane D, Raval N, Maheshwari R, Tambe V, Kalia K, Tekade RK. Employment of enhanced permeability and retention effect (EPR): Nanoparticle-based precision tools for targeting of therapeutic and diagnostic agent in cancer. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2019; 98:1252-1276. [PMID: 30813007 DOI: 10.1016/j.msec.2019.01.066] [Citation(s) in RCA: 533] [Impact Index Per Article: 88.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/29/2018] [Revised: 01/02/2019] [Accepted: 01/15/2019] [Indexed: 02/07/2023]
Abstract
In tumorous tissues, the absence of vasculature supportive tissues intimates the formation of leaky vessels and pores (100 nm to 2 μm in diameter) and the poor lymphatic system offers great opportunity to treat cancer and the phenomenon is known as Enhanced permeability and retention (EPR) effect. The trends in treating cancer by making use of EPR effect is increasing day by day and generate multitudes of possibility to design novel anticancer therapeutics. This review aimed to present various factors affecting the EPR effect along with important things to know about EPR effect such as tumor perfusion, lymphatic function, interstitial penetration, vascular permeability, nanoparticle retention etc. This manuscript expounds the current advances and cross-talks the developments made in the of EPR effect-based therapeutics in cancer therapy along with a transactional view of its current clinical and industrial aspects.
Collapse
Affiliation(s)
- Dnyaneshwar Kalyane
- National Institute of Pharmaceutical Education and Research (NIPER)-Ahmedabad, An Institute of National Importance, Government of India, Department of Pharmaceuticals, Ministry of Chemicals and Fertilizers, Palaj, Opposite Air Force Station, Gandhinagar, Gujarat 382355, India
| | - Nidhi Raval
- National Institute of Pharmaceutical Education and Research (NIPER)-Ahmedabad, An Institute of National Importance, Government of India, Department of Pharmaceuticals, Ministry of Chemicals and Fertilizers, Palaj, Opposite Air Force Station, Gandhinagar, Gujarat 382355, India
| | - Rahul Maheshwari
- National Institute of Pharmaceutical Education and Research (NIPER)-Ahmedabad, An Institute of National Importance, Government of India, Department of Pharmaceuticals, Ministry of Chemicals and Fertilizers, Palaj, Opposite Air Force Station, Gandhinagar, Gujarat 382355, India
| | - Vishakha Tambe
- National Institute of Pharmaceutical Education and Research (NIPER)-Ahmedabad, An Institute of National Importance, Government of India, Department of Pharmaceuticals, Ministry of Chemicals and Fertilizers, Palaj, Opposite Air Force Station, Gandhinagar, Gujarat 382355, India
| | - Kiran Kalia
- National Institute of Pharmaceutical Education and Research (NIPER)-Ahmedabad, An Institute of National Importance, Government of India, Department of Pharmaceuticals, Ministry of Chemicals and Fertilizers, Palaj, Opposite Air Force Station, Gandhinagar, Gujarat 382355, India
| | - Rakesh K Tekade
- National Institute of Pharmaceutical Education and Research (NIPER)-Ahmedabad, An Institute of National Importance, Government of India, Department of Pharmaceuticals, Ministry of Chemicals and Fertilizers, Palaj, Opposite Air Force Station, Gandhinagar, Gujarat 382355, India.
| |
Collapse
|
204
|
In-Cell NMR: Analysis of Protein-Small Molecule Interactions, Metabolic Processes, and Protein Phosphorylation. Int J Mol Sci 2019; 20:ijms20020378. [PMID: 30658393 PMCID: PMC6359726 DOI: 10.3390/ijms20020378] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2018] [Revised: 01/11/2019] [Accepted: 01/13/2019] [Indexed: 01/31/2023] Open
Abstract
Nuclear magnetic resonance (NMR) spectroscopy enables the non-invasive observation of biochemical processes, in living cells, at comparably high spectral and temporal resolution. Preferably, means of increasing the detection limit of this powerful analytical method need to be applied when observing cellular processes under physiological conditions, due to the low sensitivity inherent to the technique. In this review, a brief introduction to in-cell NMR, protein–small molecule interactions, posttranslational phosphorylation, and hyperpolarization NMR methods, used for the study of metabolites in cellulo, are presented. Recent examples of method development in all three fields are conceptually highlighted, and an outlook into future perspectives of this emerging area of NMR research is given.
Collapse
|
205
|
Magnetic targeting core/shell Fe 3O 4/Au nanoparticles for magnetic resonance/photoacoustic dual-modal imaging. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2019; 98:545-549. [PMID: 30813057 DOI: 10.1016/j.msec.2019.01.013] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/06/2018] [Revised: 12/28/2018] [Accepted: 01/03/2019] [Indexed: 10/27/2022]
Abstract
This study reports magnetic targeting guided magnetic (MR)/photoacoustic (PA) dual-modal imaging by core/shell Fe3O4/Au nanoparticles. In this work, MR imaging provides time-dependent tumor location, and PA imaging reveals high resolution vasculatures inside the tumor. It is noted that the synthesized Fe3O4/Au nanoparticles exhibited higher r2 value up to 329 mM-1 s-1 than previously reported T2 contrast agents. Furthermore, the Fe3O4/Au NPs are applied as a promising candidate for in vivo MR/PA imaging of tumors by intravenously injection into LNCaP tumor-beared mice. The MR/PA imaging results show a significantly enhanced MR/PA images in the tumor site. The prepared core/shell Fe3O4/Au nanoparticles will be widely applicable in multi-modal imaging.
Collapse
|
206
|
Miao T, Floreani RA, Liu G, Chen X. Nanotheranostics-Based Imaging for Cancer Treatment Monitoring. Bioanalysis 2019. [DOI: 10.1007/978-3-030-01775-0_16] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
|
207
|
|
208
|
Erich K, Reinle K, Müller T, Munteanu B, Sammour DA, Hinsenkamp I, Gutting T, Burgermeister E, Findeisen P, Ebert MP, Krijgsveld J, Hopf C. Spatial Distribution of Endogenous Tissue Protease Activity in Gastric Carcinoma Mapped by MALDI Mass Spectrometry Imaging. Mol Cell Proteomics 2019; 18:151-161. [PMID: 30293968 PMCID: PMC6317471 DOI: 10.1074/mcp.ra118.000980] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2018] [Revised: 09/23/2018] [Indexed: 12/30/2022] Open
Abstract
Aberrant protease activity has been implicated in the etiology of various prevalent diseases including neurodegeneration and cancer, in particular metastasis. Matrix-assisted laser desorption/ionization (MALDI) mass spectrometry imaging (MSI) has recently been established as a key technology for bioanalysis of multiple biomolecular classes such as proteins, lipids, and glycans. However, it has not yet been systematically explored for investigation of a tissue's endogenous protease activity. In this study, we demonstrate that different tissues, spray-coated with substance P as a tracer, digest this peptide with different time-course profiles. Furthermore, we reveal that distinct cleavage products originating from substance P are generated transiently and that proteolysis can be attenuated by protease inhibitors in a concentration-dependent manner. To show the translational potential of the method, we analyzed protease activity of gastric carcinoma in mice. Our MSI and quantitative proteomics results reveal differential distribution of protease activity - with strongest activity being observed in mouse tumor tissue, suggesting the general applicability of the workflow in animal pharmacology and clinical studies.
Collapse
Affiliation(s)
- Katrin Erich
- From the ‡Center for Mass Spectrometry and Optical Spectroscopy (CeMOS), Mannheim University of Applied Sciences, Paul-Wittsack Str. 10, 68163 Mannheim, Germany;; §Institute of Medical Technology, Heidelberg University and Mannheim University of Applied Sciences, Paul-Wittsack Str. 10, 68163 Mannheim, Germany
| | - Kevin Reinle
- From the ‡Center for Mass Spectrometry and Optical Spectroscopy (CeMOS), Mannheim University of Applied Sciences, Paul-Wittsack Str. 10, 68163 Mannheim, Germany
| | - Torsten Müller
- ¶German Cancer Research Center (DKFZ), Im Neuenheimer Feld 581, 69120 Heidelberg, Germany;; ‡‡Heidelberg University, Medical Faculty, Im Neuenheimer Feld 672, 69120 Heidelberg, Germany
| | - Bogdan Munteanu
- From the ‡Center for Mass Spectrometry and Optical Spectroscopy (CeMOS), Mannheim University of Applied Sciences, Paul-Wittsack Str. 10, 68163 Mannheim, Germany
| | - Denis A Sammour
- From the ‡Center for Mass Spectrometry and Optical Spectroscopy (CeMOS), Mannheim University of Applied Sciences, Paul-Wittsack Str. 10, 68163 Mannheim, Germany;; §Institute of Medical Technology, Heidelberg University and Mannheim University of Applied Sciences, Paul-Wittsack Str. 10, 68163 Mannheim, Germany
| | - Isabel Hinsenkamp
- ‖Department of Medicine II, Medical Faculty Mannheim, Heidelberg University, Theodor-Kutzer-Ufer 1-3, 68167 Mannheim, Germany
| | - Tobias Gutting
- ‖Department of Medicine II, Medical Faculty Mannheim, Heidelberg University, Theodor-Kutzer-Ufer 1-3, 68167 Mannheim, Germany
| | - Elke Burgermeister
- ‖Department of Medicine II, Medical Faculty Mannheim, Heidelberg University, Theodor-Kutzer-Ufer 1-3, 68167 Mannheim, Germany
| | - Peter Findeisen
- **Institute of Clinical Chemistry, University Medical Center Mannheim of Heidelberg University, Theodor-Kutzer-Ufer 1-3, 68167 Mannheim, Germany
| | - Matthias P Ebert
- ‖Department of Medicine II, Medical Faculty Mannheim, Heidelberg University, Theodor-Kutzer-Ufer 1-3, 68167 Mannheim, Germany
| | - Jeroen Krijgsveld
- ¶German Cancer Research Center (DKFZ), Im Neuenheimer Feld 581, 69120 Heidelberg, Germany;; ‡‡Heidelberg University, Medical Faculty, Im Neuenheimer Feld 672, 69120 Heidelberg, Germany
| | - Carsten Hopf
- From the ‡Center for Mass Spectrometry and Optical Spectroscopy (CeMOS), Mannheim University of Applied Sciences, Paul-Wittsack Str. 10, 68163 Mannheim, Germany;; §Institute of Medical Technology, Heidelberg University and Mannheim University of Applied Sciences, Paul-Wittsack Str. 10, 68163 Mannheim, Germany;.
| |
Collapse
|
209
|
Zhang CH, Wang H, Liu JW, Sheng YY, Chen J, Zhang P, Jiang JH. Amplified Split Aptamer Sensor Delivered Using Block Copolymer Nanoparticles for Small Molecule Imaging in Living Cells. ACS Sens 2018; 3:2526-2531. [PMID: 30468073 DOI: 10.1021/acssensors.8b00670] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
We develop a novel amplified split aptamer sensor for highly sensitive detection and imaging of small molecules in living cells by using cationic block copolymer nanoparticles (BCNs) with entrapped fluorescent conjugated polymer as a delivery agent. The design of a split aptamer as the initiator of hybridization chain reaction (HCR) affords the possibility of enhancing the signal-to-background ratio and thus allows high-contrast imaging for small molecules with relatively weak interactions with their aptamers. The novel design of using fluorescent cationic BCNs as the nanocarrier enables efficient and self-tracking transfection of DNA probes. Results reveal that BCNs exhibit high fluorescence brightness allowing direct tracking of the delivery location. The developed amplified split aptamer sensor is shown to have high sensitivity and selectivity for in vitro quantitative detection of adenosine triphosphate (ATP) with a detection limit of 30 nM. Live cell studies show that the sensor provides a "signal on" approach for specific, high-contrast imaging of ATP. The DNA sensor based HCR system may provide a new generally applicable platform for detection and imaging of low-abundance biomarkers.
Collapse
Affiliation(s)
- Chong-Hua Zhang
- State Key Laboratory of Chemo-Biosensing & Chemometrics, College of Chemistry & Chemical Engineering, Hunan University, Changsha 410082, China
- Key Laboratory of Theoretical Organic Chemistry and Functional Molecule of Ministry of Education, Hunan Provincial Key Laboratory of Controllable Preparation and Functional Application of Fine Polymers, Hunan Province College Key Laboratory of QSAR/QSPR, School of Chemistry and Chemical Engineering, Hunan Provincial Key Lab of Advanced Materials for New Energy Storage and Conversion, Hunan University of Science and Technology, Xiangtan, Hunan 411201, China
| | - Hong Wang
- Key Laboratory of Theoretical Organic Chemistry and Functional Molecule of Ministry of Education, Hunan Provincial Key Laboratory of Controllable Preparation and Functional Application of Fine Polymers, Hunan Province College Key Laboratory of QSAR/QSPR, School of Chemistry and Chemical Engineering, Hunan Provincial Key Lab of Advanced Materials for New Energy Storage and Conversion, Hunan University of Science and Technology, Xiangtan, Hunan 411201, China
| | - Jin-Wen Liu
- State Key Laboratory of Chemo-Biosensing & Chemometrics, College of Chemistry & Chemical Engineering, Hunan University, Changsha 410082, China
| | - Ying-Ying Sheng
- State Key Laboratory of Chemo-Biosensing & Chemometrics, College of Chemistry & Chemical Engineering, Hunan University, Changsha 410082, China
| | - Jian Chen
- Key Laboratory of Theoretical Organic Chemistry and Functional Molecule of Ministry of Education, Hunan Provincial Key Laboratory of Controllable Preparation and Functional Application of Fine Polymers, Hunan Province College Key Laboratory of QSAR/QSPR, School of Chemistry and Chemical Engineering, Hunan Provincial Key Lab of Advanced Materials for New Energy Storage and Conversion, Hunan University of Science and Technology, Xiangtan, Hunan 411201, China
| | - Peisheng Zhang
- State Key Laboratory of Chemo-Biosensing & Chemometrics, College of Chemistry & Chemical Engineering, Hunan University, Changsha 410082, China
- Key Laboratory of Theoretical Organic Chemistry and Functional Molecule of Ministry of Education, Hunan Provincial Key Laboratory of Controllable Preparation and Functional Application of Fine Polymers, Hunan Province College Key Laboratory of QSAR/QSPR, School of Chemistry and Chemical Engineering, Hunan Provincial Key Lab of Advanced Materials for New Energy Storage and Conversion, Hunan University of Science and Technology, Xiangtan, Hunan 411201, China
| | - Jian-Hui Jiang
- State Key Laboratory of Chemo-Biosensing & Chemometrics, College of Chemistry & Chemical Engineering, Hunan University, Changsha 410082, China
| |
Collapse
|
210
|
Li X, Yu S, Lee Y, Guo T, Kwon N, Lee D, Yeom SC, Cho Y, Kim G, Huang JD, Choi S, Nam KT, Yoon J. In Vivo Albumin Traps Photosensitizer Monomers from Self-Assembled Phthalocyanine Nanovesicles: A Facile and Switchable Theranostic Approach. J Am Chem Soc 2018; 141:1366-1372. [DOI: 10.1021/jacs.8b12167] [Citation(s) in RCA: 97] [Impact Index Per Article: 13.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Affiliation(s)
- Xingshu Li
- College of Chemistry, State Key Laboratory of Photocatalysis on Energy and Environment, Fujian Provincial Key Laboratory of Cancer Metastasis Chemoprevention and Chemotherapy, Fuzhou University, Fuzhou 350108, China
- Department of Chemistry and Nano Science, Ewha Womans University, Seoul 03760, Republic of Korea
| | - Sungsook Yu
- Severance Biomedical Science Institute, Brain Korea 21 PLUS Project for Medical Science, College of Medicine, Yonsei University, Seoul 03760, Republic of Korea
| | - Yoonji Lee
- College of Pharmacy and Graduate School of Pharmaceutical Sciences, Ewha Womans University, Seoul 03760, Republic of Korea
| | - Tian Guo
- Department of Chemistry and Nano Science, Ewha Womans University, Seoul 03760, Republic of Korea
| | - Nahyun Kwon
- Department of Chemistry and Nano Science, Ewha Womans University, Seoul 03760, Republic of Korea
| | - Dayoung Lee
- Department of Chemistry and Nano Science, Ewha Womans University, Seoul 03760, Republic of Korea
| | - Su Cheong Yeom
- Graduate School of International Agricultural Technology, Seoul National University, 1447 Pyeongchang-Ro, Daewha, Pyeongchang, Gangwon 25354, Republic of Korea
| | - Yejin Cho
- Severance Biomedical Science Institute, Brain Korea 21 PLUS Project for Medical Science, College of Medicine, Yonsei University, Seoul 03760, Republic of Korea
| | - Gyoungmi Kim
- Department of Chemistry and Nano Science, Ewha Womans University, Seoul 03760, Republic of Korea
| | - Jian-Dong Huang
- College of Chemistry, State Key Laboratory of Photocatalysis on Energy and Environment, Fujian Provincial Key Laboratory of Cancer Metastasis Chemoprevention and Chemotherapy, Fuzhou University, Fuzhou 350108, China
| | - Sun Choi
- College of Pharmacy and Graduate School of Pharmaceutical Sciences, Ewha Womans University, Seoul 03760, Republic of Korea
| | - Ki Taek Nam
- Severance Biomedical Science Institute, Brain Korea 21 PLUS Project for Medical Science, College of Medicine, Yonsei University, Seoul 03760, Republic of Korea
| | - Juyoung Yoon
- Department of Chemistry and Nano Science, Ewha Womans University, Seoul 03760, Republic of Korea
| |
Collapse
|
211
|
Chen H, Gu Z, An H, Chen C, Chen J, Cui R, Chen S, Chen W, Chen X, Chen X, Chen Z, Ding B, Dong Q, Fan Q, Fu T, Hou D, Jiang Q, Ke H, Jiang X, Liu G, Li S, Li T, Liu Z, Nie G, Ovais M, Pang D, Qiu N, Shen Y, Tian H, Wang C, Wang H, Wang Z, Xu H, Xu JF, Yang X, Zhu S, Zheng X, Zhang X, Zhao Y, Tan W, Zhang X, Zhao Y. Precise nanomedicine for intelligent therapy of cancer. Sci China Chem 2018. [DOI: 10.1007/s11426-018-9397-5] [Citation(s) in RCA: 290] [Impact Index Per Article: 41.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
|
212
|
Zhou Y, Jiang G, Wang W, Wei R, Chen X, Wang X, Wei J, Ma D, Li F, Xi L. A Novel Near-Infrared Fluorescent Probe TMTP1-PEG4-ICG for in Vivo Tumor Imaging. Bioconjug Chem 2018; 29:4119-4126. [PMID: 30475602 DOI: 10.1021/acs.bioconjchem.8b00756] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Molecular imaging agents are considered to be promising tracers for tumor imaging and guided therapy. TMTP1 was screened through the FliTrx bacterial peptide display system in our laboratory previously and shown to specifically target to primary tumors and metastatic foci. In this study, small peptide TMTP1 was designed to conjugate to a near-infrared fluorescent agent ICG derivative ICG-OSu through PEG4, forming the novel probe TMTP1-PEG4-ICG. It was successfully synthesized and certified. CCK-8 assay showed that it was nontoxic to normal cells and cancerous cells. Dynamics study indicated that the probe was cleared through the liver-intestine and kidney-bladder pathway. Tumor targeting capability of this probe in vitro was evaluated on 4T1, SiHa, HeLa, S12, and HaCaT cells by flow cytometry. In vivo imaging of 4T1 and HeLa tumor-bearing mice further identified the tumor homing ability. As we had expected, the probe showed excellent affinity to cancer cells not only in vitro but also in vivo, whether in murine tumor or humanized tumor. In conclusion, TMTP1-PEG4-ICG demonstrated ideal imaging effects on tumor-bearing mice model, providing new opportunities for tumor diagnostic or guiding resection.
Collapse
Affiliation(s)
- Ying Zhou
- Department of Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College , Huazhong University of Science and Technology , Wuhan , 430030 , People's Republic of China
| | - Guiying Jiang
- Department of Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College , Huazhong University of Science and Technology , Wuhan , 430030 , People's Republic of China
| | - Wei Wang
- Department of Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College , Huazhong University of Science and Technology , Wuhan , 430030 , People's Republic of China
| | - Rui Wei
- Department of Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College , Huazhong University of Science and Technology , Wuhan , 430030 , People's Republic of China
| | - Xi Chen
- Department of Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College , Huazhong University of Science and Technology , Wuhan , 430030 , People's Republic of China
| | - Xueqian Wang
- Department of Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College , Huazhong University of Science and Technology , Wuhan , 430030 , People's Republic of China
| | - Juncheng Wei
- Department of Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College , Huazhong University of Science and Technology , Wuhan , 430030 , People's Republic of China
| | - Ding Ma
- Department of Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College , Huazhong University of Science and Technology , Wuhan , 430030 , People's Republic of China
| | - Fei Li
- Department of Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College , Huazhong University of Science and Technology , Wuhan , 430030 , People's Republic of China
| | - Ling Xi
- Department of Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College , Huazhong University of Science and Technology , Wuhan , 430030 , People's Republic of China
| |
Collapse
|
213
|
Nguyen HVT, Detappe A, Gallagher NM, Zhang H, Harvey P, Yan C, Mathieu C, Golder MR, Jiang Y, Ottaviani MF, Jasanoff A, Rajca A, Ghobrial I, Ghoroghchian PP, Johnson JA. Triply Loaded Nitroxide Brush-Arm Star Polymers Enable Metal-Free Millimetric Tumor Detection by Magnetic Resonance Imaging. ACS NANO 2018; 12:11343-11354. [PMID: 30387988 PMCID: PMC6320246 DOI: 10.1021/acsnano.8b06160] [Citation(s) in RCA: 57] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/02/2023]
Abstract
Nitroxides occupy a privileged position among plausible metal-free magnetic resonance imaging (MRI) contrast agents (CAs) due to their inherently low-toxicity profiles; nevertheless, their translational development has been hindered by a lack of appropriate contrast sensitivity. Nanostructured materials with high nitroxide densities, where each individual nitroxide within a macromolecular construct contributes to the image contrast, could address this limitation, but the synthesis of such materials remains challenging. Here, we report a modular and scalable synthetic approach to nitroxide-based brush-arm star polymer (BASP) organic radical CAs (ORCAs) with high nitroxide loadings. The optimized ∼30 nm diameter "BASP-ORCA3" displays outstanding T2 sensitivity with a very high molecular transverse relaxivity ( r2 > 1000 mM-1 s-1). BASP-ORCA3 further exhibits excellent stability in vivo, no acute toxicity, and highly desirable pharmacokinetic and biodistribution profiles for longitudinal detection of tumors by MRI. When injected intravenously into mice bearing subcutaneous plasmacytomas, BASP-ORCA3 affords distinct in vivo visualization of tumors on translationally relevant time scales. Leveraging its high sensitivity, BASP-ORCA3 enables efficient mapping of tumor necrosis, which is an important biomarker to predict therapeutic outcomes. Moreover, BASP-ORCA3 allows for detection of millimetric tumor implants in a disseminated murine model of advanced-stage human ovarian cancer that possess genetic, histological, and vascular characteristics that are similar to those seen in patients. This work establishes BASP-ORCA3 as a promising metal-free spin contrast agent for MRI.
Collapse
Affiliation(s)
- Hung V.-T. Nguyen
- Department of Chemistry, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, Massachusetts 02139, United States
- Department of Medical Oncology, Dana-Farber Cancer Institute, 450 Brookline Avenue, Boston, Massachusetts 02215, United States
- Harvard Medical School, 25 Shattuck Street, Boston, Massachusetts 02115, United States
| | - Alexandre Detappe
- David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, Massachusetts 02139, United States
- Department of Medical Oncology, Dana-Farber Cancer Institute, 450 Brookline Avenue, Boston, Massachusetts 02215, United States
- Harvard Medical School, 25 Shattuck Street, Boston, Massachusetts 02115, United States
| | - Nolan M. Gallagher
- Department of Chemistry, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, Massachusetts 02139, United States
| | - Hui Zhang
- Department of Chemistry, University of Nebraska, Lincoln, Nebraska 68588, United States
| | - Peter Harvey
- Department of Biological Engineering, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, Massachusetts 02139, United States
| | - Changcun Yan
- Department of Chemistry, University of Nebraska, Lincoln, Nebraska 68588, United States
| | - Clelia Mathieu
- Department of Medical Oncology, Dana-Farber Cancer Institute, 450 Brookline Avenue, Boston, Massachusetts 02215, United States
| | - Matthew R. Golder
- Department of Chemistry, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, Massachusetts 02139, United States
| | - Yivan Jiang
- Department of Chemistry, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, Massachusetts 02139, United States
| | | | - Alan Jasanoff
- Department of Biological Engineering, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, Massachusetts 02139, United States
- Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, Massachusetts 02139, United States
- Department of Nuclear Science and Engineering Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, Massachusetts 02139, United States
| | - Andrzej Rajca
- Department of Chemistry, University of Nebraska, Lincoln, Nebraska 68588, United States
| | - Irene Ghobrial
- Department of Medical Oncology, Dana-Farber Cancer Institute, 450 Brookline Avenue, Boston, Massachusetts 02215, United States
- Harvard Medical School, 25 Shattuck Street, Boston, Massachusetts 02115, United States
| | - P. Peter Ghoroghchian
- David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, Massachusetts 02139, United States
- Department of Medical Oncology, Dana-Farber Cancer Institute, 450 Brookline Avenue, Boston, Massachusetts 02215, United States
- Harvard Medical School, 25 Shattuck Street, Boston, Massachusetts 02115, United States
| | - Jeremiah A. Johnson
- Department of Chemistry, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, Massachusetts 02139, United States
- David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, Massachusetts 02139, United States
| |
Collapse
|
214
|
Meng Q, Wang Z, Cui J, Cui Q, Dong J, Zhang Q, Li S. Design, Synthesis, and Biological Evaluation of Cytochrome P450 1B1 Targeted Molecular Imaging Probes for Colorectal Tumor Detection. J Med Chem 2018; 61:10901-10909. [DOI: 10.1021/acs.jmedchem.8b01633] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Affiliation(s)
- Qingqing Meng
- School of Pharmacy, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China
| | - Zengtao Wang
- School of Pharmacy, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China
| | - Jiahua Cui
- School of Pharmacy, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China
| | - Qing Cui
- School of Pharmacy, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China
| | - Jinyun Dong
- School of Pharmacy, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China
| | - Qijing Zhang
- School of Pharmacy, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China
| | - Shaoshun Li
- School of Pharmacy, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China
| |
Collapse
|
215
|
Bae SM, Bae DJ, Do EJ, Oh G, Yoo SW, Lee GJ, Chae JS, Yun Y, Kim S, Kim KH, Chung E, Kim JK, Hwang SW, Park SH, Yang DH, Ye BD, Byeon JS, Yang SK, Joo J, Kim SY, Myung SJ. Multi-Spectral Fluorescence Imaging of Colon Dysplasia InVivo Using a Multi-Spectral Endoscopy System. Transl Oncol 2018; 12:226-235. [PMID: 30419540 PMCID: PMC6231290 DOI: 10.1016/j.tranon.2018.10.006] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2018] [Revised: 10/07/2018] [Accepted: 10/11/2018] [Indexed: 12/19/2022] Open
Abstract
BACKGROUND AND STUDY AIM: To develop a molecular imaging endoscopic system that eliminates tissue autofluorescence and distinguishes multiple fluorescent markers specifically on the cancerous lesions. METHODS: Newly developed multi-spectral fluorescence endoscope device has the potential to eliminate signal interference due to autofluorescence and multiplex fluorophores in fluorescent probes. The multiplexing capability of the multi-spectral endoscope device was demonstrated in the phantom studies and multi-spectral imaging with endoscopy and macroscopy was performed to analyze fluorescence signals after administration of fluorescent probe that targets cancer in the colon. Because of the limitations in the clinical application using rigid-type small animal endoscope, we developed a flexible channel insert-type fluorescence endoscope, which was validated on the colonoscopy of dummy and porcine model. RESULTS: We measured multiple fluorescent signals simultaneously, and the fluorescence spectra were unmixed to separate the fluorescent signals of each probe, in which multiple fluorescent probes clearly revealed spectral deconvolution at the specific targeting area in the mouse colon. The positive area of fluorescence signal for each probe over the whole polyp was segmented with analyzing software, and showed distinctive patterns and significantly distinguishable values: 0.46 ± 0.04, 0.39 ± 0.08 and 0.73 ± 0.12 for HMRG, CET-553 and TRA-675 probes, respectively. The spectral unmixing was finally demonstrated in the dummy and porcine model, corroborating the targeted multi-spectral fluorescence imaging of colon dysplasia. CONCLUSION: The multi-spectral endoscopy system may allow endoscopists to clearly identify cancerous lesion that has different patterns of various target expression using multiple fluorescent probes.
Collapse
Affiliation(s)
- Sang Mun Bae
- Asan Institute for Life Sciences, Asan Medical Center, University of Ulsan College of Medicine, Seoul 138-736, South Korea; Department of Medicine, University of Ulsan College of Medicine, Seoul 138-736, South Korea
| | - Dong-Jun Bae
- Asan Institute for Life Sciences, Asan Medical Center, University of Ulsan College of Medicine, Seoul 138-736, South Korea
| | - Eun-Ju Do
- Asan Institute for Life Sciences, Asan Medical Center, University of Ulsan College of Medicine, Seoul 138-736, South Korea
| | - Gyungseok Oh
- School of Mechanical Engineering, Gwangju Institute of Science and Technology, Gwangju 61005, South Korea
| | - Su Woong Yoo
- Department of Biomedical Science and Engineering, Institute of Integrated Technology (IIT), Gwangju, Institute of Science and Technology, Gwangju 61005, South Korea
| | - Gil-Je Lee
- Discovery and Analytic Solution, PerkinElmer Korea, Seoul 08380, South Korea
| | - Ji Soo Chae
- Discovery and Analytic Solution, PerkinElmer Korea, Seoul 08380, South Korea
| | - Youngkuk Yun
- Discovery and Analytic Solution, PerkinElmer Korea, Seoul 08380, South Korea
| | - Sungjee Kim
- Department of Chemistry, Pohang University of Science and Technology, Pohang 790-784, South Korea
| | - Ki Hean Kim
- Department of Mechanical Engineering, Pohang University of Science and Technology, Pohang 790-784, South Korea
| | - Euiheon Chung
- School of Mechanical Engineering, Gwangju Institute of Science and Technology, Gwangju 61005, South Korea; Department of Biomedical Science and Engineering, Institute of Integrated Technology (IIT), Gwangju, Institute of Science and Technology, Gwangju 61005, South Korea
| | - Jun Ki Kim
- Biomedical Engineering Research Center, Asan Institute for Life Sciences, Asan Medical Center, University of Ulsan College of Medicine, Seoul 138-736, South Korea
| | - Sung Wook Hwang
- Department of Gastroenterology, Asan Medical Center, University of Ulsan College of Medicine, Seoul 138-736, South Korea
| | - Sang Hyoung Park
- Department of Gastroenterology, Asan Medical Center, University of Ulsan College of Medicine, Seoul 138-736, South Korea
| | - Dong-Hoon Yang
- Department of Gastroenterology, Asan Medical Center, University of Ulsan College of Medicine, Seoul 138-736, South Korea
| | - Byong Duk Ye
- Department of Gastroenterology, Asan Medical Center, University of Ulsan College of Medicine, Seoul 138-736, South Korea
| | - Jeong-Sik Byeon
- Department of Gastroenterology, Asan Medical Center, University of Ulsan College of Medicine, Seoul 138-736, South Korea
| | - Suk-Kyun Yang
- Department of Gastroenterology, Asan Medical Center, University of Ulsan College of Medicine, Seoul 138-736, South Korea
| | - Jinmyoung Joo
- Biomedical Engineering Research Center, Asan Institute for Life Sciences, Asan Medical Center, University of Ulsan College of Medicine, Seoul 138-736, South Korea; Department of Gastroenterology and Convergence Medicine, University of Ulsan College of Medicine, Seoul 138-736, South Korea
| | - Sang-Yeob Kim
- Asan Institute for Life Sciences, Asan Medical Center, University of Ulsan College of Medicine, Seoul 138-736, South Korea; Department of Gastroenterology and Convergence Medicine, University of Ulsan College of Medicine, Seoul 138-736, South Korea.
| | - Seung-Jae Myung
- Asan Institute for Life Sciences, Asan Medical Center, University of Ulsan College of Medicine, Seoul 138-736, South Korea; Department of Gastroenterology, Asan Medical Center, University of Ulsan College of Medicine, Seoul 138-736, South Korea; Department of Gastroenterology and Convergence Medicine, University of Ulsan College of Medicine, Seoul 138-736, South Korea.
| |
Collapse
|
216
|
Duan Y, Liu B. Recent Advances of Optical Imaging in the Second Near-Infrared Window. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2018; 30:e1802394. [PMID: 30182451 DOI: 10.1002/adma.201802394] [Citation(s) in RCA: 419] [Impact Index Per Article: 59.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/15/2018] [Revised: 05/19/2018] [Indexed: 05/20/2023]
Abstract
The near-infrared window between 1000 and 1700 nm, commonly termed the "second near-infrared (NIR-II) window," has quickly emerged as a highly attractive optical region for biological imaging. In contrast to conventional imaging in the visible region between 400 and 700 nm, as well as in the first NIR (NIR-I) window between 700 and 900 nm, NIR-II biological imaging offers numerous merits, including higher spatial resolution, deeper penetration depth, and lower optical absorption and scattering from biological substrates with minimal tissue autofluorescence. Noninvasive imaging techniques, specifically NIR-II fluorescence and photoacoustic (PA) imaging, have embodied the attractiveness of NIR-II optical imaging, with several NIR-II contrast agents demonstrating superior performance to the clinically approved NIR-I agents. Consequently, NIR-II biological imaging has been increasingly explored due to its tremendous potential for preclinical studies and clinical utility. Herein, the progress of optical imaging in the NIR-II window is reported. Starting with highlighting the importance of biological imaging in the NIR-II spectral region, the emergence and latest development of various NIR-II fluorescence and PA imaging probes and their applications are then discussed. Perspectives on the promises and challenges facing this nascent yet exciting field are then given.
Collapse
Affiliation(s)
- Yukun Duan
- Department of Chemical and Biomolecular Engineering, National University of Singapore, Singapore, 4 Engineering Drive 4, Singapore, 117585, Singapore
| | - Bin Liu
- Department of Chemical and Biomolecular Engineering, National University of Singapore, Singapore, 4 Engineering Drive 4, Singapore, 117585, Singapore
| |
Collapse
|
217
|
Ahmed S, Strand S, Weinmann-Menke J, Urbansky L, Galle PR, Neumann H. Molecular endoscopic imaging in cancer. Dig Endosc 2018; 30:719-729. [PMID: 29846982 DOI: 10.1111/den.13199] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/20/2018] [Accepted: 05/21/2018] [Indexed: 12/14/2022]
Abstract
Cancer is one of the major causes of death in both the USA and Europe. Molecular imaging is a novel field that is revolutionizing cancer management. It is based on the molecular signature of cells in order to study the human body both in normal and diseased conditions. The emergence of molecular imaging has been driven by the difficulties associated with cancer detection, particularly early-stage premalignant lesions which are often unnoticed as a result of minimal or no structural changes. Endoscopic surveillance is the standard method for early-stage cancer detection. In addition to recent major advancements in endoscopic instruments, significant progress has been achieved in the exploration of highly specific molecular probes and the combination of both will permit significant improvement of patient care. In this review, we provide an outline of the current status of endoscopic imaging and focus on recent applications of molecular imaging in gastrointestinal, hepatic and other cancers in the context of detection, targeted therapy and personalized medicine. As new imaging agents have the potential to broadly expand our cancer diagnostic capability, we will also present an overview of the main types of optical molecular probes with their pros and cons. We conclude by discussing the challenges and future prospects of the field.
Collapse
Affiliation(s)
- Shakil Ahmed
- Department of Interdisciplinary Endoscopy, I. Medical Clinic and Polyclinic, University Hospital Mainz, Mainz, Germany
| | - Susanne Strand
- Department of Interdisciplinary Endoscopy, I. Medical Clinic and Polyclinic, University Hospital Mainz, Mainz, Germany
| | - Julia Weinmann-Menke
- Department of Interdisciplinary Endoscopy, I. Medical Clinic and Polyclinic, University Hospital Mainz, Mainz, Germany
| | - Lana Urbansky
- Department of Interdisciplinary Endoscopy, I. Medical Clinic and Polyclinic, University Hospital Mainz, Mainz, Germany
| | - Peter R Galle
- Department of Interdisciplinary Endoscopy, I. Medical Clinic and Polyclinic, University Hospital Mainz, Mainz, Germany
| | - Helmut Neumann
- Department of Interdisciplinary Endoscopy, I. Medical Clinic and Polyclinic, University Hospital Mainz, Mainz, Germany
| |
Collapse
|
218
|
SPECT Imaging of Treatment-Related Tumor Necrosis Using Technetium-99m-Labeled Rhein. Mol Imaging Biol 2018; 21:660-668. [DOI: 10.1007/s11307-018-1285-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
|
219
|
Lin R, Huang J, Wang L, Li Y, Lipowska M, Wu H, Yang J, Mao H. Bevacizumab and near infrared probe conjugated iron oxide nanoparticles for vascular endothelial growth factor targeted MR and optical imaging. Biomater Sci 2018; 6:1517-1525. [PMID: 29652061 DOI: 10.1039/c8bm00225h] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Vascular endothelial growth factor (VEGF) plays a pivotal role in the cascade of development and progression of cancers. Targeting this cancer hallmark is a logical strategy for imaging based cancer detection and monitoring the anti-angiogenesis treatment. Using Bevacizumab (Avastin®), which is a recombinant humanized monoclonal antibody directly against VEGF and an angiogenesis inhibitor, as a targeting ligand, a multimodal VEGF targeted molecular imaging probe was developed by conjugating near infrared dye (NIR830) labeled bevacizumab to magnetic iron oxide nanoparticles (IONP) for optical and magnetic resonance (MR) imaging of cancers over-expressing VEGF. The targeting effect of NIR830-bevacizumab-IONPs on VEGF over-expressing cells was investigated by receptor mediated cell uptake experiments and a blocking assay using VEGF over-expressing 4T1 breast cancer cells. Systemic administration of VEGF-targeted NIR830-bevacizumab-IONPs into mice bearing 4T1 breast tumors resulted in higher accumulation of targeting IONPs in tumors compared to non-targeted IONPs. Quantitative analysis of T2-weighted MRI at 48 h post-injection revealed that the averaged percentage of signal intensity change in tumors treated with NIR830-bevacizumab-IONPs was 52.4 ± 11.0% compared to 26.9 ± 12.4% in controls treated with non-targeted IONPs. The results demonstrated the feasibility and efficacy of NIR830-bevacizumab-IONPs as a VEGF targeting dual-modality molecular imaging probe that can be potentially used for imaging of cancers with VEGF over-expression and delivery of bevacizumab for imaging guided anti-cancer treatment.
Collapse
Affiliation(s)
- Run Lin
- Department of Radiology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong 510080, China
| | | | | | | | | | | | | | | |
Collapse
|
220
|
Chee RKW, Li Y, Zhang W, Campbell RE, Zemp RJ. In vivo photoacoustic difference-spectra imaging of bacteria using photoswitchable chromoproteins. JOURNAL OF BIOMEDICAL OPTICS 2018; 23:1-11. [PMID: 30334395 DOI: 10.1117/1.jbo.23.10.106006] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/01/2018] [Accepted: 09/17/2018] [Indexed: 06/08/2023]
Abstract
Photoacoustic (PA) imaging offers great promise for deep molecular imaging of optical reporters but has difficulties in imaging multiple molecular probes simultaneously in a strong blood background. Photoswitchable chromoproteins like BphP1 have recently allowed for sensitive PA detection by reducing high-blood background signals but lack multiplexing capabilities. We propose a method known as difference-spectra demixing for multiplexing multiple photoswitchable chromoproteins and introduce a second photoswitchable chromoprotein, sGPC2. sGPC2 has a far-red and orange state with peaks at 700 and 630 nm, respectively. It is roughly one-tenth the size of BphP1 and photoswitches four times as fast (2.4% per mJ / cm2). We simultaneously image Escherichia coli expressing sGPC2 and BphP1 injected in mice in vivo. Difference-spectra demixing obtained successful multiplexed images of photoswitchable molecular probes, resulting in a 21.6-fold increase in contrast-to-noise ratio in vivo over traditional PA imaging and an 8% to 40% reduction in erroneously demixed signals in comparison with traditional spectral demixing. PA imaging and characterization were conducted using a custom-built photoswitching PA imaging system.
Collapse
Affiliation(s)
- Ryan K W Chee
- University of Alberta, Department of Electrical and Computer Engineering, Edmonton, Canada
| | - Yan Li
- University of Alberta, Department of Chemistry, Edmonton, Canada
| | - Wei Zhang
- University of Alberta, Department of Chemistry, Edmonton, Canada
| | | | - Roger J Zemp
- University of Alberta, Department of Electrical and Computer Engineering, Edmonton, Canada
| |
Collapse
|
221
|
Qi J, Chen C, Ding D, Tang BZ. Aggregation-Induced Emission Luminogens: Union Is Strength, Gathering Illuminates Healthcare. Adv Healthc Mater 2018; 7:e1800477. [PMID: 29969201 DOI: 10.1002/adhm.201800477] [Citation(s) in RCA: 89] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2018] [Revised: 06/06/2018] [Indexed: 12/13/2022]
Abstract
The rapid development of healthcare techniques encourages the emergence of new molecular imaging agents and modalities. Fluorescence imaging that enables precise monitoring and detection of biological processes/diseases is extensively investigated as this imaging technique has strengths in terms of high sensitivity, excellent temporal resolution, low cost, and good safety. Aggregation-induced emission luminogens (AIEgens) have recently emerged as a new class of emitters that possess several notable features, such as high brightness, large Stokes shift, marked photostability, good biocompatibility, and so on. So far, AIEgens are widely explored and exhibit superb performance in the area of biomedicine and life sciences. Herein, this review summarizes and discusses the recent investigations of AIEgens for in vivo diagnosis and therapy including long-term tracking, 3D angiography, multimodality imaging, disease theranostics, and activatable sensing. Collectively, these results reveal that AIEgens are of great promise for in vivo biomedical applications. It is hoped that this review will lead to new insights into the development of advanced healthcare materials.
Collapse
Affiliation(s)
- Ji Qi
- Department of Chemistry; Hong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration and Reconstruction; Division of Life Science; State Key Laboratory of Molecular Neuroscience; Institute for Advanced Study, and Institute of Molecular Functional Materials; The Hong Kong University of Science and Technology; Clear Water Bay Kowloon Hong Kong China
| | - Chao Chen
- State Key Laboratory of Medicinal Chemical Biology; Key Laboratory of Bioactive Materials; Ministry of Education, and College of Life Sciences; Nankai University; Tianjin 300071 China
| | - Dan Ding
- State Key Laboratory of Medicinal Chemical Biology; Key Laboratory of Bioactive Materials; Ministry of Education, and College of Life Sciences; Nankai University; Tianjin 300071 China
| | - Ben Zhong Tang
- Department of Chemistry; Hong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration and Reconstruction; Division of Life Science; State Key Laboratory of Molecular Neuroscience; Institute for Advanced Study, and Institute of Molecular Functional Materials; The Hong Kong University of Science and Technology; Clear Water Bay Kowloon Hong Kong China
- NSFC Center for Luminescence from Molecular Aggregates; SCUT-HKUST Joint Research Institute; State Key Laboratory of Luminescent Materials and Devices; South China University of Technology; Guangzhou 510640 China
| |
Collapse
|
222
|
Luo Z, An R, Ye D. Recent Advances in the Development of Optical Imaging Probes for γ-Glutamyltranspeptidase. Chembiochem 2018; 20:474-487. [PMID: 30062708 DOI: 10.1002/cbic.201800370] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2018] [Indexed: 12/11/2022]
Abstract
γ-Glutamyltranspeptidase (GGT) is a cell-membrane-bound protease that participates in cellular glutathione and cysteine homeostasis, which are closely related to many physiological and pathological processes. The accurate measurement of GGT activity is useful for the early diagnosis of diseases. In the past few years, many efforts have been made to build optical imaging probes for the detection of GGT activity both in vitro and in vivo. In this Minireview, recent advances in the development of various optical imaging probes for GGT, including activatable fluorescence probes, ratiometric fluorescence probes, and activatable bioluminescence probes, are summarized. This review starts from the instruction of the GGT enzyme and its biological functions, followed by a discussion of activatable fluorescence probes that show off-on fluorescence in response to GGT. GGT-activatable two-photon fluorescence imaging probes with improved imaging depth and spatial resolution are also discussed. Ratiometric fluorescence probes capable of accurately reporting on GGT levels through a self-calibration mechanism are discussed, followed by describing GGT-activatable bioluminescence probes that can offer a high signal-to-background ratio to detect GGT in living mice. Finally, current challenges and further perspectives for the development of molecular imaging probes for GGT are addressed.
Collapse
Affiliation(s)
- Zhiliang Luo
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, P.R. China
| | - Ruibing An
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, P.R. China
| | - Deju Ye
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, P.R. China
| |
Collapse
|
223
|
Sadeghipour N, Davis SC, Tichauer KM. Quantifying cancer cell receptors with paired-agent fluorescent imaging: a novel method to account for tissue optical property effects. PROCEEDINGS OF SPIE--THE INTERNATIONAL SOCIETY FOR OPTICAL ENGINEERING 2018; 10497. [PMID: 30220772 DOI: 10.1117/12.2290631] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/14/2022]
Abstract
Dynamic fluorescence imaging approaches can be used to estimate the concentration of cell surface receptors in vivo. Kinetic models are used to generate the final estimation by taking the targeted imaging agent concentration as a function of time. However, tissue absorption and scattering properties cause the final readout signal to be on a different scale than the real fluorescent agent concentration. In paired-agent imaging approaches, simultaneous injection of a suitable control imaging agent with a targeted one can account for non-specific uptake and retention of the targeted agent. Additionally, the signal from the control agent can be a normalizing factor to correct for tissue optical property differences. In this study, the kinetic model used for paired-agent imaging analysis (i.e., simplified reference tissue model) is modified and tested in simulation and experimental data in a way that accounts for the scaling correction within the kinetic model fit to the data to ultimately extract an estimate of the targeted biomarker concentration.
Collapse
Affiliation(s)
- Negar Sadeghipour
- Department of Biomedical Engineering, Illinois Institute of Technology, 3255 S Dearborn St., Chicago, IL USA 60616
| | - Scott C Davis
- Thayer School of Engineering, Dartmouth College, 14 Engineering Dr., Hanover, NH USA 03755-8001
| | - Kenneth M Tichauer
- Department of Biomedical Engineering, Illinois Institute of Technology, 3255 S Dearborn St., Chicago, IL USA 60616
| |
Collapse
|
224
|
Jo A, Sung J, Lee S, Nam H, Lee HW, Park J, Kim HM, Kim E, Park SB. Near-IR Fluorescent Tracer for Glucose-Uptake Monitoring in Live Cells. Bioconjug Chem 2018; 29:3394-3401. [DOI: 10.1021/acs.bioconjchem.8b00558] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
| | | | - Sanghee Lee
- Center for Neuro-Medicine, Brain Science Institute, Korea Institute of Science and Technology, Seoul, 02792, Korea
| | | | | | - Jongmin Park
- Center for Systems Biology, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts 02114, United States
| | | | | | | |
Collapse
|
225
|
|
226
|
Duan LY, Wang YJ, Liu JW, Wang YM, Li N, Jiang JH. Tumor-selective catalytic nanosystem for activatable theranostics. Chem Commun (Camb) 2018; 54:8214-8217. [PMID: 29979458 DOI: 10.1039/c8cc03922d] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
A novel tumor-selective catalytic nanosystem that enables efficient chemodynamic therapy (CDT) and activatable fluorescence imaging in H2O2-rich tumor microenvironments has been developed.
Collapse
Affiliation(s)
- Lu-Ying Duan
- Institute of Chemical Biology and Nanomedicine, State Key Laboratory of Chemo/Bio-Sensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, P. R. China.
| | | | | | | | | | | |
Collapse
|
227
|
Zhang X, Wang B, Xia Y, Zhao S, Tian Z, Ning P, Wang Z. In Vivo and in Situ Activated Aggregation-Induced Emission Probes for Sensitive Tumor Imaging Using Tetraphenylethene-Functionalized Trimethincyanines-Encapsulated Liposomes. ACS APPLIED MATERIALS & INTERFACES 2018; 10:25146-25153. [PMID: 29984571 DOI: 10.1021/acsami.8b07727] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
The design and exploration of fluorescent probes with high-sensitivity and low-background are essential for noninvasive optical molecular imaging. The in vivo and in situ activated aggregation-induced emission (AIE) probes were found to be ideal for achieving higher signal-to-background ratios for tumor detections. We herein developed novel tetraphenylethene-encapsulated liposomes (TPE-LPs) constructed by loading TPE-trimethincyanine into liposomes for the first time, and the probes were applied to tumor bioimaging in vivo. TPE-functionalized trimethincyanines were synthesized with a new and efficient one-pot reaction. In TPE-LPs, TPE-functionalized bicarboxylic acids benzoindole trimethinecyanine (TPE-BICOOH) fluorophores were found to be well dispersed in lipid bilayers (with non-restricted rotation) during the blood circulation, and then aggregated (with restriction of intramolecular rotation) upon liposome rupture in the tumor tissue, achieving a low-background and high-target signal for tumor imaging. The in situ activated AIE probes not only had great accumulation at the tumor site after intravenous injection in 4T1 tumor-bearing mice but also demonstrated excellent signal-to-background ratios, as well as low cytotoxicity and excellent biocompatibility. The proposed strategy is believed to be a simple and powerful tool for the sensitive detection of tumors.
Collapse
Affiliation(s)
- Xianghan Zhang
- Engineering Research Center of Molecular-Imaging and Neuro-Imaging of Ministry of Education, School of Life Science and Technology , Xidian University , Xi'an , Shaanxi 710026 , China
| | - Bo Wang
- Engineering Research Center of Molecular-Imaging and Neuro-Imaging of Ministry of Education, School of Life Science and Technology , Xidian University , Xi'an , Shaanxi 710026 , China
| | - Yuqiong Xia
- Engineering Research Center of Molecular-Imaging and Neuro-Imaging of Ministry of Education, School of Life Science and Technology , Xidian University , Xi'an , Shaanxi 710026 , China
| | - Sumei Zhao
- Engineering Research Center of Molecular-Imaging and Neuro-Imaging of Ministry of Education, School of Life Science and Technology , Xidian University , Xi'an , Shaanxi 710026 , China
| | - Zuhong Tian
- Institute of Digestive Diseases, Xijing Hospital , Fourth Military Medical University , Xi'an , Shaanxi 710032 , China
| | - Pengbo Ning
- Engineering Research Center of Molecular-Imaging and Neuro-Imaging of Ministry of Education, School of Life Science and Technology , Xidian University , Xi'an , Shaanxi 710026 , China
| | - Zhongliang Wang
- Engineering Research Center of Molecular-Imaging and Neuro-Imaging of Ministry of Education, School of Life Science and Technology , Xidian University , Xi'an , Shaanxi 710026 , China
| |
Collapse
|
228
|
Dual T 1 and T 2 weighted magnetic resonance imaging based on Gd 3+ loaded bioinspired melanin dots. NANOMEDICINE-NANOTECHNOLOGY BIOLOGY AND MEDICINE 2018; 14:1743-1752. [DOI: 10.1016/j.nano.2018.04.012] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/25/2018] [Revised: 04/08/2018] [Accepted: 04/12/2018] [Indexed: 12/19/2022]
|
229
|
Kidd BE, Gesiorski JL, Gemeinhardt ME, Shchepin RV, Kovtunov KV, Koptyug IV, Chekmenev EY, Goodson BM. Facile Removal of Homogeneous SABRE Catalysts for Purifying Hyperpolarized Metronidazole, a Potential Hypoxia Sensor. THE JOURNAL OF PHYSICAL CHEMISTRY. C, NANOMATERIALS AND INTERFACES 2018; 122:16848-16852. [PMID: 30559921 PMCID: PMC6294139 DOI: 10.1021/acs.jpcc.8b05758] [Citation(s) in RCA: 65] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
We report a simple and effective method to remove IrIMes homogeneous polarization transfer catalysts from solutions where NMR Signal Amplification By Reversible Exchange (SABRE) has been performed, while leaving intact the substrate's hyperpolarized state. Following microTesla SABRE hyperpolarization of 15N spins in metronidazole, addition of SiO2 microparticles functionalized with 3-mercaptopropyl or 2-mercaptoethyl ethyl sulfide moieties provides removal of the catalyst from solution well within the hyperpolarization decay time at 0.3 T (T 1>3 mins)-and enabling transfer to 9.4 T for detection of enhanced 15N signals in the absence of catalyst within the NMR-detection region. Successful catalyst removal from solution is supported by the inability to "re-hyperpolarize" 15N spins in subsequent attempts, as well as by 1H NMR and ICP-MS. Record-high 15N nuclear polarization of up to ~34% was achieved, corresponding to >100,000-fold enhancement at 9.4 T, and approximately 5/6th of the 15N hyperpolarization is retained after ~20-second-long purification procedure. Taken together, these results help pave the way for future studies involving in vivo molecular imaging using agents hyperpolarized via rapid and inexpensive parahydrogen-based methods.
Collapse
Affiliation(s)
- Bryce E. Kidd
- Department of Chemistry and Biochemistry, Southern Illinois University, Carbondale, Illinois 62901 United States
| | - Jonathan L. Gesiorski
- Department of Chemistry and Biochemistry, Southern Illinois University, Carbondale, Illinois 62901 United States
| | - Max E. Gemeinhardt
- Department of Chemistry and Biochemistry, Southern Illinois University, Carbondale, Illinois 62901 United States
| | - Roman V. Shchepin
- Vanderbilt University Institute of Imaging Science (VUIIS), Department of Radiology and Radiological Sciences, Vanderbilt University Medical Center, Nashville, Tennessee 37232-2310 United States
| | - Kirill V. Kovtunov
- International Tomography Center SB RAS, Novosibirsk 630090, Russia
- Novosibirsk State University, Novosibirsk 630090, Russia
| | - Igor V. Koptyug
- International Tomography Center SB RAS, Novosibirsk 630090, Russia
- Novosibirsk State University, Novosibirsk 630090, Russia
| | - Eduard Y. Chekmenev
- Vanderbilt University Institute of Imaging Science (VUIIS), Department of Radiology and Radiological Sciences, Vanderbilt University Medical Center, Nashville, Tennessee 37232-2310 United States
- Integrative Biosciences (Ibio), Department of Chemistry, Wayne State University, Karmanos Cancer Institute (KCI), Detroit, Michigan 48202 United States
- Russian Academy of Sciences, Moscow, Leninskiy Prospekt 14, 119991, Russia
- Corresponding Authors: ,
| | - Boyd M. Goodson
- Department of Chemistry and Biochemistry, Southern Illinois University, Carbondale, Illinois 62901 United States
- Materials Technology Center, Southern Illinois University, Carbondale, Illinois 62901 United States
- Corresponding Authors: ,
| |
Collapse
|
230
|
Kidd BE, Mashni JA, Limbach MN, Shi F, Chekmenev EY, Hou Y, Goodson BM. Toward Cleavable Metabolic/pH Sensing "Double Agents" Hyperpolarized by NMR Signal Amplification by Reversible Exchange. Chemistry 2018; 24:10641-10645. [PMID: 29800491 PMCID: PMC6097920 DOI: 10.1002/chem.201802622] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2018] [Indexed: 11/05/2022]
Abstract
We show the simultaneous generation of hyperpolarized 13 C-labeled acetate and 15 N-labeled imidazole following spin-relay of hyperpolarization and hydrolysis of the acetyl moiety on 1-13 C-15 N2 -acetylimidazole. Using SABRE-SHEATH (Signal Amplification by Reversible Exchange in SHield Enables Alignment Transfer to Heteronuclei), transfer of spin order occurs from parahydrogen to acetylimidazole 15 N atoms and the acetyl 13 C site (≈263-fold enhancement), giving rise to relatively long hyperpolarization lifetimes at 0.3 T (T1 ≈52 s and ≈149 s for 13 C and 15 N, respectively). Immediately following polarization transfer, the 13 C-labeled acetyl group is hydrolytically cleaved to produce hyperpolarized 13 C-acetate/acetic acid (≈140-fold enhancement) and 15 N-imidazole (≈180-fold enhancement), the former with a 13 C T1 of ≈14 s at 0.3 T. Straightforward synthetic routes, efficient spin-relay of SABRE hyperpolarization, and facile bond cleavage open a door to the cheap and rapid generation of long-lived hyperpolarized states within a wide range of molecular targets, including biologically relevant carboxylic acid derivatives, for metabolic and pH imaging.
Collapse
Affiliation(s)
- Bryce E Kidd
- Department of Chemistry and Biochemistry, Southern Illinois University, Carbondale, IL, 62901, USA
| | - Jamil A Mashni
- Department of Chemistry and Biochemistry, Southern Illinois University, Carbondale, IL, 62901, USA
| | - Miranda N Limbach
- Department of Chemistry and Biochemistry, Southern Illinois University, Carbondale, IL, 62901, USA
| | - Fan Shi
- Department of Chemistry and Biochemistry, Southern Illinois University, Carbondale, IL, 62901, USA
| | - Eduard Y Chekmenev
- Department of Chemistry, Integrative Biosciences (Ibio), Wayne State University, Karmanos Cancer Institute (KCI), Detroit, MI, 48202, USA
- Russian Academy of Sciences, Leninskiy Prospekt 14, 119991, Moscow, Russia
| | - Yuqing Hou
- Department of Chemistry and Biochemistry, Southern Illinois University, Carbondale, IL, 62901, USA
| | - Boyd M Goodson
- Department of Chemistry and Biochemistry, Southern Illinois University, Carbondale, IL, 62901, USA
| |
Collapse
|
231
|
Ibrahim AB, Alaraby Salem M, Fasih TW, Brown A, Sakr TM. Radioiodinated doxorubicin as a new tumor imaging model: preparation, biological evaluation, docking and molecular dynamics. J Radioanal Nucl Chem 2018. [DOI: 10.1007/s10967-018-6013-z] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
232
|
Bae SM, Park SJ, Choi M, Song M, Cho YE, Do EJ, Ryu YM, Park S, Lee BH, Lee SW, Hwang SW, Park SH, Yang DH, Ye BD, Byeon JS, Yang SK, Joo J, Kim SY, Myung SJ. PSP1, a Phosphatidylserine-Recognizing Peptide, Is Useful for Visualizing Radiation-Induced Apoptosis in Colorectal Cancer In Vitro and In Vivo. Transl Oncol 2018; 11:1044-1052. [PMID: 29982102 PMCID: PMC6034579 DOI: 10.1016/j.tranon.2018.06.008] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2018] [Revised: 06/12/2018] [Accepted: 06/15/2018] [Indexed: 02/07/2023] Open
Abstract
Accurate and timely visualization of apoptotic status in response to radiation is necessary for deciding whether to continue radiation or change to another mode of treatment. This is especially critical in patients with colorectal cancer, which requires a delicate combination of surgery, radiation, and chemotherapy in order to achieve optimal outcome. In this study, we investigated the potential of phosphatidylserine-recognizing peptide 1 (PSP1) as an apoptosis-targeting probe, which identifies phosphatidylserine on cell surfaces. We first screened colon cancer cell lines for their sensitivity to radiation and selected two cell lines: HCT116 and HT29. Cell binding assay using fluorescence-activated cell sorting and optical imaging showed that HCT116 cells had better binding to PSP1 than HT29 cells. Thus, mouse xenograft model using HCT116 cells was generated and was topically irradiated with either single or fractionated dose of radiation followed by systemic administration of PSP1 for subsequent molecular optical imaging. We confirmed that the PSP1 probe was selectively bound to apoptosis-induced tumor in a radiation dose-dependent manner. We also observed that fractionated radiation regimen, which is recently being used in clinical situation, was more effective in inducing tumor apoptosis than corresponding single-dose radiation treatment. We then evaluated the correlation between tumor targeting of PSP1 and suppression effect of tumor development and found that tumor volume and fluorescence intensity were correlated before (correlation coefficient r2 = 0.534) and after (r2 = 0.848) radiation therapy. Our study shows that PSP1 peptide is an efficient index probe for deciding "go or no-go" for radiation therapy in colorectal cancer.
Collapse
Affiliation(s)
- Sang Mun Bae
- Asan Institute for Life Science, Asan Medical Center, University of Ulsan College of medicine, Seoul, Republic of Korea
| | - Soo Jung Park
- Asan Institute for Life Science, Asan Medical Center, University of Ulsan College of medicine, Seoul, Republic of Korea; Department of Internal Medicine and Institute of Gastroenterology, Yonsei University College of medicine, Seoul, Republic of Korea
| | - Myoungeun Choi
- Department of Dermatology, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Republic of Korea
| | - Miyeoun Song
- Department of Life and Nanopharmaceutical Science, Kyung Hee University, Seoul, Republic of Korea
| | - Young Eun Cho
- Asan Institute for Life Science, Asan Medical Center, University of Ulsan College of medicine, Seoul, Republic of Korea
| | - Eun-Ju Do
- Asan Institute for Life Science, Asan Medical Center, University of Ulsan College of medicine, Seoul, Republic of Korea
| | - Yeon-Mi Ryu
- Asan Institute for Life Science, Asan Medical Center, University of Ulsan College of medicine, Seoul, Republic of Korea
| | - Sunha Park
- Asan Institute for Life Science, Asan Medical Center, University of Ulsan College of medicine, Seoul, Republic of Korea
| | - Byung-Heon Lee
- Department of Biochemistry and Cell Biology, Kyungpook National University School of Medicine, Daegu, Republic of Korea
| | - Sang-Wook Lee
- Department of Radiation Oncology, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Republic of Korea
| | - Sung Wook Hwang
- Department of Gastroenterology, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Republic of Korea
| | - Sang Hyoung Park
- Department of Gastroenterology, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Republic of Korea
| | - Dong-Hoon Yang
- Department of Gastroenterology, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Republic of Korea
| | - Byong Duk Ye
- Department of Gastroenterology, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Republic of Korea
| | - Jeong-Sik Byeon
- Department of Gastroenterology, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Republic of Korea
| | - Suk-Kyun Yang
- Department of Gastroenterology, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Republic of Korea
| | - Jinmyoung Joo
- Biomedical Engineering Research Center, Asan Institute for Life Sciences, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Republic of Korea; Department of Convergence Medicine, University of Ulsan College of Medicine, Seoul, Republic of Korea
| | - Sang-Yeob Kim
- Asan Institute for Life Science, Asan Medical Center, University of Ulsan College of medicine, Seoul, Republic of Korea; Department of Convergence Medicine, University of Ulsan College of Medicine, Seoul, Republic of Korea.
| | - Seung-Jae Myung
- Asan Institute for Life Science, Asan Medical Center, University of Ulsan College of medicine, Seoul, Republic of Korea; Department of Gastroenterology, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Republic of Korea; Department of Convergence Medicine, University of Ulsan College of Medicine, Seoul, Republic of Korea.
| |
Collapse
|
233
|
Analytical methods for investigating in vivo fate of nanoliposomes: A review. J Pharm Anal 2018; 8:219-225. [PMID: 30140485 PMCID: PMC6104150 DOI: 10.1016/j.jpha.2018.07.002] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2018] [Revised: 06/18/2018] [Accepted: 07/04/2018] [Indexed: 11/25/2022] Open
Abstract
Nanoliposomes are considered to be the most successful nanoparticle drug delivery system, but their fate in vivo has not been fully understood due to lack of reliable bioanalytical methods, which seriously limits the development of liposomal drugs. Hence, an overview of currently used bioanalytical methods is imperative to lay the groundwork for the need of developing a bioanalytical method for liposome measurements in vivo. Currently, major analytical methods for nanoliposomes measurement in vivo include fluorescence labeling, radiolabeling, magnetic resonance imaging (MRI), mass spectrometry and computed tomography. In this review, these bioanalytical methods are summarized, and the advantages and disadvantages of each are discussed. We provide insights into the applicability and limitations of these analytical methods in the application of nanoliposomes measurement in vivo, and highlight the recent development of instrumental analysis techniques. The review is devoted to providing a comprehensive overview of the investigation of nanoliposomes design and associated fate in vivo, promoting the development of bioanalytical techniques for nanoliposomes measurement, and understanding the pharmacokinetic behavior, effectiveness and potential toxicity of nanoliposomes in vivo.
Collapse
|
234
|
Xu Y, Tian M, Zhang H, Xiao Y, Hong X, Sun Y. Recent development on peptide-based probes for multifunctional biomedical imaging. CHINESE CHEM LETT 2018. [DOI: 10.1016/j.cclet.2018.03.032] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
|
235
|
Gao Y, Zhou Y, Liu F, Luo J. Enhancing in vivo renal ischemia assessment by high-dynamic-range fluorescence molecular imaging. JOURNAL OF BIOMEDICAL OPTICS 2018; 23:1-9. [PMID: 30022642 DOI: 10.1117/1.jbo.23.7.076009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/07/2018] [Accepted: 06/29/2018] [Indexed: 06/08/2023]
Abstract
Fluorescence imaging has been used to evaluate the physiological features of renal ischemia in animal model. However, the fluorophore distribution details of the ischemia model could not be fully represented due to the limited dynamic range of the charged-couple device. A high-dynamic-range (HDR) strategy was adopted in renal ischemia fluorescence imaging, both ex vivo and in vivo. The HDR strategy successfully combined ischemia relevant biological features that could only be captured with different exposure times, and then presented these features in the HDR results. The HDR results effectively highlighted the renal ischemic areas with relatively better perfusion and diminished the saturation that resulted from long exposure time. The relative fluorescence intensities of the ischemic kidneys and the image entropy values were significantly higher in the HDR images than in the original images, therefore enhancing the visualization of the renal ischemia model. The results suggest that HDR could serve as a postprocessing strategy to enhance the assessment of in vivo renal ischemia, and HDR fluorescence molecular imaging could be a valuable imaging tool for future studies of clinical ischemia detection and evaluation.
Collapse
Affiliation(s)
- Yang Gao
- Tsinghua University, School of Medicine, Department of Biomedical Engineering, Beijing, China
| | - Yuan Zhou
- Tsinghua University, School of Medicine, Department of Biomedical Engineering, Beijing, China
| | - Fei Liu
- Beijing Jiaotong University, School of Computer and Information Technology, Beijing, China
| | - Jianwen Luo
- Tsinghua University, School of Medicine, Department of Biomedical Engineering, Beijing, China
- Tsinghua University, Center for Biomedical Imaging Research, Beijing, China
| |
Collapse
|
236
|
Liebov B, Arroyo AD, Rubtsova NI, Osharovich SA, Delikatny EJ, Popov AV. Nonprotecting Group Synthesis of a Phospholipase C Activatable Probe with an Azo-Free Quencher. ACS OMEGA 2018; 3:6867-6873. [PMID: 29978148 PMCID: PMC6026834 DOI: 10.1021/acsomega.8b00635] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/03/2018] [Accepted: 06/18/2018] [Indexed: 06/08/2023]
Abstract
The near-infrared fluorescent activatable smart probe Pyro-phosphatidylethanolamine (PtdEtn)-QSY was synthesized and observed to selectively fluoresce in the presence of phosphatidylcholine-specific phospholipase C (PC-PLC). PC-PLC is an important biological target as it is known to be upregulated in a variety of cancers, including triple negative breast cancer. Pyro-PtdEtn-QSY features a QSY21 quenching moiety instead of the Black Hole Quencher-3 (BHQ-3) used previously because the latter contains an azo bond, which could lead to biological instability.
Collapse
|
237
|
|
238
|
Wu M, Shu J. Multimodal Molecular Imaging: Current Status and Future Directions. CONTRAST MEDIA & MOLECULAR IMAGING 2018; 2018:1382183. [PMID: 29967571 PMCID: PMC6008764 DOI: 10.1155/2018/1382183] [Citation(s) in RCA: 72] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 01/17/2018] [Revised: 04/11/2018] [Accepted: 05/10/2018] [Indexed: 12/12/2022]
Abstract
Molecular imaging has emerged at the end of the last century as an interdisciplinary method involving in vivo imaging and molecular biology aiming at identifying living biological processes at a cellular and molecular level in a noninvasive manner. It has a profound role in determining disease changes and facilitating drug research and development, thus creating new medical modalities to monitor human health. At present, a variety of different molecular imaging techniques have their advantages, disadvantages, and limitations. In order to overcome these shortcomings, researchers combine two or more detection techniques to create a new imaging mode, such as multimodal molecular imaging, to obtain a better result and more information regarding monitoring, diagnosis, and treatment. In this review, we first describe the classic molecular imaging technology and its key advantages, and then, we offer some of the latest multimodal molecular imaging modes. Finally, we summarize the great challenges, the future development, and the great potential in this field.
Collapse
Affiliation(s)
- Min Wu
- Department of Radiology, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan, China
| | - Jian Shu
- Department of Radiology, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan, China
| |
Collapse
|
239
|
Ding F, Zhan Y, Lu X, Sun Y. Recent advances in near-infrared II fluorophores for multifunctional biomedical imaging. Chem Sci 2018; 9:4370-4380. [PMID: 29896378 PMCID: PMC5961444 DOI: 10.1039/c8sc01153b] [Citation(s) in RCA: 341] [Impact Index Per Article: 48.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2018] [Accepted: 04/19/2018] [Indexed: 12/19/2022] Open
Abstract
In recent years, owing to unsatisfactory clinical imaging clarity and depths in the living body for early diagnosis and prognosis, novel imaging modalities with high bioimaging performance have been actively explored. The remarkable headway made in the second near-infrared region (NIR-II, 1000-1700 nm) has promoted the development of biomedical imaging significantly. NIR-II fluorescence imaging possesses a number of merits which prevail over the traditional and NIR-I (400-900 nm) imaging modalities in fundamental research, such as reduced photon scattering, as well as auto-fluorescence and improved penetration depth. Functional probes for instant and precise feedback of in vivo information are at the core of this modality for superb imaging. Herein, we review the recently developed fluorophores including carbon nanotubes, organic small molecules, quantum dots, conjugated polymers and rare-earth-doped materials to present superior and multifunctionality of biomedical imaging in the NIR-II regions (1000-1700 nm).
Collapse
Affiliation(s)
- Feng Ding
- Key Laboratory of Pesticides and Chemical Biology , Ministry of Education , International Joint Research Center for Intelligent Biosensor Technology and Health , Hubei International Scientific and Technological Cooperation Base of Pesticide and Green Synthesis , Chemical Biology Center , College of Chemistry , Central China Normal University , Wuhan 430079 , China .
| | - Yibei Zhan
- School of Chemistry and Chemical Engineering , Hubei Polytechnic University , Hubei 435003 , China
| | - Xiaoju Lu
- School of Chemistry and Chemical Engineering , Hubei Polytechnic University , Hubei 435003 , China
| | - Yao Sun
- Key Laboratory of Pesticides and Chemical Biology , Ministry of Education , International Joint Research Center for Intelligent Biosensor Technology and Health , Hubei International Scientific and Technological Cooperation Base of Pesticide and Green Synthesis , Chemical Biology Center , College of Chemistry , Central China Normal University , Wuhan 430079 , China .
| |
Collapse
|
240
|
Soldevilla-Gallardo I, Villaseñor-Navarro Y, Medina-Ornelas SS, Villarreal-Garza C, Bargalló-Rocha E, Caro-Sánchez CH, Gallardo-Alvarado LN, Hernández-Ramírez R, Arela-Quispe LM, García-Pérez FO. Positron emission mammography in the evaluation of interim response to neoadjuvant chemotherapy in patients with locally advanced breast cancer. Cancer Treat Res Commun 2018; 16:24-31. [PMID: 31298999 DOI: 10.1016/j.ctarc.2018.05.001] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2017] [Revised: 04/22/2018] [Accepted: 05/07/2018] [Indexed: 11/28/2022]
Abstract
Neoadjuvant chemotherapy (NAC) has an important role in patients with locally advanced cancers, treating distant micrometastases, downstaging tumors, improving operability, and sometimes allowing breast-conserving surgery to take place. We studied the association between two Positron Emission Mammography with 18F-FDG (18F-FDG-PEM) semi-quantitative parameters in 108 patients and correlated with pathologic response in each of the following breast cancer subtype: Triple negative breast cancer (TPN), HER2-positive, and ER-positive/HER2-negative cancers. AIM Examine the association between two Positron Emission Mammography (PEM) semi-quantitative parameters: PUVmax (maximum uptake value) and LTB (lesion to background) baseline and the end of NAC with pathologic response in each breast cancer subtype. METHODS 108 patients, 71 with invasive ductal carcinoma and 37 with infiltrating lobular carcinoma were evaluate with 18F-FDG-PEM scans baseline and after end of NAC. We assessed the impact of 2 PEM semi-quantitative parameters for molecular subtype correlated with pathologic response according Miller-Payne grade (MPG). RESULTS After NAC, an overall reduction of 2 PEM semi-quantitative parameters was found. Neither breast cancer subtypes nor Ki67 modified chemotherapy responses. Compared to PUVmax, an overall increase of LTB was found in baseline condition, independent of the expressed immunophenotype. Post-treatment values of PUVmax revealed a significant reduction compared to baseline values (4.8 ± 0.26 vs. 1.9 ± 0.18; p < 0.001) and LTB exhibited a significant decay after the first course of NACT (15.8 ± 1.36 vs. 5.5 ± 0.49; p < 0.001). Using the Kruskal-Wallis H test which showed no correlation between the different molecular subtypes and the MPG and PUVmax and LTB (p = 0.52), but if a correlation was found between the response rate by MPG and both semiquantitative parameters (p = 0.05). CONCLUSION 2 PEM semi-quantitative parameters demonstrated a statically significant correlation and equivalence across the different breast cancer subtypes correlated with pathologic response according to MPG. PEM did not allow for prediction of NAC response in terms of breast cancer biomarkers, it is not discarded that this technology might be helpful for individual treatment stratification in breast cancer.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | - Liz M Arela-Quispe
- Nuclear Medicine Department, Instituto Nacional de Cancerología, Mexico City, Mexico
| | | |
Collapse
|
241
|
Kenry, Liu B. Recent Advances in Biodegradable Conducting Polymers and Their Biomedical Applications. Biomacromolecules 2018; 19:1783-1803. [DOI: 10.1021/acs.biomac.8b00275] [Citation(s) in RCA: 115] [Impact Index Per Article: 16.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Affiliation(s)
- Kenry
- Department of Chemical and Biomolecular Engineering, National University of Singapore, 4 Engineering Drive 4, 117585 Singapore
| | - Bin Liu
- Department of Chemical and Biomolecular Engineering, National University of Singapore, 4 Engineering Drive 4, 117585 Singapore
| |
Collapse
|
242
|
Binuclear gadolinium(III) complex based on DTPA and 1,3-bis(4-aminophenyl)adamantane as a high-relaxivity MRI contrast agent. Polyhedron 2018. [DOI: 10.1016/j.poly.2018.01.032] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
243
|
Huang X, Song J, Yung BC, Huang X, Xiong Y, Chen X. Ratiometric optical nanoprobes enable accurate molecular detection and imaging. Chem Soc Rev 2018; 47:2873-2920. [PMID: 29568836 PMCID: PMC5926823 DOI: 10.1039/c7cs00612h] [Citation(s) in RCA: 481] [Impact Index Per Article: 68.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Exploring and understanding biological and pathological changes are of great significance for early diagnosis and therapy of diseases. Optical sensing and imaging approaches have experienced major progress in this field. Particularly, an emergence of various functional optical nanoprobes has provided enhanced sensitivity, specificity, targeting ability, as well as multiplexing and multimodal capabilities due to improvements in their intrinsic physicochemical and optical properties. However, one of the biggest challenges of conventional optical nanoprobes is their absolute intensity-dependent signal readout, which causes inaccurate sensing and imaging results due to the presence of various analyte-independent factors that can cause fluctuations in their absolute signal intensity. Ratiometric measurements provide built-in self-calibration for signal correction, enabling more sensitive and reliable detection. Optimizing nanoprobe designs with ratiometric strategies can surmount many of the limitations encountered by traditional optical nanoprobes. This review first elaborates upon existing optical nanoprobes that exploit ratiometric measurements for improved sensing and imaging, including fluorescence, surface enhanced Raman scattering (SERS), and photoacoustic nanoprobes. Next, a thorough discussion is provided on design strategies for these nanoprobes, and their potential biomedical applications for targeting specific biomolecule populations (e.g. cancer biomarkers and small molecules with physiological relevance), for imaging the tumor microenvironment (e.g. pH, reactive oxygen species, hypoxia, enzyme and metal ions), as well as for intraoperative image guidance of tumor-resection procedures.
Collapse
Affiliation(s)
- Xiaolin Huang
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang 330047, P. R. China. and Laboratory of Molecular Imaging and Nanomedicine (LOMIN), National Institute of Biomedical Imaging and Bioengineering (NIBIB), National Institutes of Health (NIH), Bethesda, Maryland 20892, USA.
| | - Jibin Song
- Laboratory of Molecular Imaging and Nanomedicine (LOMIN), National Institute of Biomedical Imaging and Bioengineering (NIBIB), National Institutes of Health (NIH), Bethesda, Maryland 20892, USA. and MOE Key Laboratory for Analytical Science of Food Safety and Biology, College of Chemistry, Fuzhou University, Fuzhou 350108, P. R. China
| | - Bryant C Yung
- Laboratory of Molecular Imaging and Nanomedicine (LOMIN), National Institute of Biomedical Imaging and Bioengineering (NIBIB), National Institutes of Health (NIH), Bethesda, Maryland 20892, USA.
| | - Xiaohua Huang
- Department of Chemistry, University of Memphis, 213 Smith Chemistry Bldg., Memphis, TN 38152, USA
| | - Yonghua Xiong
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang 330047, P. R. China.
| | - Xiaoyuan Chen
- Laboratory of Molecular Imaging and Nanomedicine (LOMIN), National Institute of Biomedical Imaging and Bioengineering (NIBIB), National Institutes of Health (NIH), Bethesda, Maryland 20892, USA.
| |
Collapse
|
244
|
Lee SB, Kumar D, Li Y, Lee IK, Cho SJ, Kim SK, Lee SW, Jeong SY, Lee J, Jeon YH. PEGylated crushed gold shell-radiolabeled core nanoballs for in vivo tumor imaging with dual positron emission tomography and Cerenkov luminescent imaging. J Nanobiotechnology 2018; 16:41. [PMID: 29669544 PMCID: PMC5907375 DOI: 10.1186/s12951-018-0366-x] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2017] [Accepted: 04/07/2018] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Radioactive isotope-labeled gold nanomaterials have potential biomedical applications. Here, we report the synthesis and characterization of PEGylated crushed gold shell-radioactive iodide-124-labeled gold core nanoballs (PEG-124I-Au@AuCBs) for in vivo tumor imaging applications through combined positron emission tomography and Cerenkov luminescent imaging (PET/CLI). RESULTS PEG-124I-Au@AuCBs showed high stability and sensitivity in various pH solutions, serum, and in vivo conditions and were not toxic to tested cells. Combined PET/CLI clearly revealed tumor lesions at 1 h after injection of particles, and both signals remained visible in tumor lesions at 24 h, consistent with the biodistribution results. CONCLUSION Taken together, the data provided strong evidence for the application of PEG-124I-Au@AuCBs as promising imaging agents in nuclear medicine imaging of various biological systems, particularly in cancer diagnosis.
Collapse
Affiliation(s)
- Sang Bong Lee
- New Drug Development Center, Daegu-Gyeongbuk Medical Innovation Foundation, Daegu, South Korea
| | - Dinesh Kumar
- Department of Bionanosystem Engineering, Graduate School, Chonbuk National University, Jeonju, Republic of Korea
| | - Yinghua Li
- Department of Pathology, Chemon Co. Ltd, 240, Nampyeong-Ro, Yangji-Myeon, Cheoin-Gu, Yongin-Si, Gyeonggi-Do, 17162, Republic of Korea
| | - In-Kyu Lee
- Department of Internal Medicine, Kyungpook National University School of Medicine, Deagu, 700-721, South Korea
| | - Sung Jin Cho
- New Drug Development Center, Daegu-Gyeongbuk Medical Innovation Foundation, Daegu, South Korea.,Leading-Edge Research Center for Drug Discovery and Development for Diabetes and Metabolic Disease, Kyungpook National University Hospital, Daegu, 702-210, South Korea
| | - Sang Kyoon Kim
- Laboratory Animal Center, Daegu-Gyeongbuk Medical Innovation Foundation, Daegu, 360-4, South Korea
| | - Sang-Woo Lee
- Department of Nuclear Medicine, Kyungpook National University Hospital, Daegu, 702-210, South Korea.,Leading-Edge Research Center for Drug Discovery and Development for Diabetes and Metabolic Disease, Kyungpook National University Hospital, Daegu, 702-210, South Korea
| | - Shin Young Jeong
- Department of Nuclear Medicine, Kyungpook National University Hospital, Daegu, 702-210, South Korea
| | - Jaetae Lee
- Department of Nuclear Medicine, Kyungpook National University Hospital, Daegu, 702-210, South Korea.
| | - Yong Hyun Jeon
- Laboratory Animal Center, Daegu-Gyeongbuk Medical Innovation Foundation, Daegu, 360-4, South Korea. .,Leading-Edge Research Center for Drug Discovery and Development for Diabetes and Metabolic Disease, Kyungpook National University Hospital, Daegu, 702-210, South Korea.
| |
Collapse
|
245
|
Henry KE, Ulaner GA, Lewis JS. Human Epidermal Growth Factor Receptor 2-Targeted PET/Single- Photon Emission Computed Tomography Imaging of Breast Cancer: Noninvasive Measurement of a Biomarker Integral to Tumor Treatment and Prognosis. PET Clin 2018; 12:269-288. [PMID: 28576166 DOI: 10.1016/j.cpet.2017.02.001] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Increased human epidermal growth factor receptor 2 (HER2) expression is a hallmark of aggressive breast cancer. Imaging modalities have the potential to diagnose HER2-positive breast cancer and detect distant metastases. The heterogeneity of HER2 expression between primary and metastatic disease sites limits the value of tumor biopsies. Molecular imaging is a noninvasive tool to assess HER2-positive primary lesions and metastases. Radiolabeled antibodies, antibody fragments, and affibody molecules devise a reliable and quantitative method for detecting HER2-positive cancer using PET. HER2-targeted PET imaging is a valuable clinical tool with respect to both the care and maintenance of patients with breast cancer.
Collapse
Affiliation(s)
- Kelly E Henry
- Department of Radiology, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA.
| | - Gary A Ulaner
- Department of Radiology, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA; Department of Radiology, Weill Cornell Medical College, New York, NY 10065, USA
| | - Jason S Lewis
- Department of Radiology, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA; Program in Molecular Pharmacology and Chemistry, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| |
Collapse
|
246
|
A human endogenous protein exerts multi-role biomimetic chemistry in synthesis of paramagnetic gold nanostructures for tumor bimodal imaging. Biomaterials 2018; 161:256-269. [DOI: 10.1016/j.biomaterials.2018.01.050] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2017] [Revised: 01/18/2018] [Accepted: 01/27/2018] [Indexed: 11/20/2022]
|
247
|
Dai Y, Chen X, Yin J, Wang G, Wang B, Zhan Y, Nie Y, Wu K, Liang J. Investigation of the influence of sampling schemes on quantitative dynamic fluorescence imaging. BIOMEDICAL OPTICS EXPRESS 2018; 9:1859-1870. [PMID: 29675325 PMCID: PMC5905930 DOI: 10.1364/boe.9.001859] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/07/2017] [Revised: 02/22/2018] [Accepted: 03/18/2018] [Indexed: 05/08/2023]
Abstract
Dynamic optical data from a series of sampling intervals can be used for quantitative analysis to obtain meaningful kinetic parameters of probe in vivo. The sampling schemes may affect the quantification results of dynamic fluorescence imaging. Here, we investigate the influence of different sampling schemes on the quantification of binding potential (BP) with theoretically simulated and experimentally measured data. Three groups of sampling schemes are investigated including the sampling starting point, sampling sparsity, and sampling uniformity. In the investigation of the influence of the sampling starting point, we further summarize two cases by considering the missing timing sequence between the probe injection and sampling starting time. Results show that the mean value of BP exhibits an obvious growth trend with an increase in the delay of the sampling starting point, and has a strong correlation with the sampling sparsity. The growth trend is much more obvious if throwing the missing timing sequence. The standard deviation of BP is inversely related to the sampling sparsity, and independent of the sampling uniformity and the delay of sampling starting time. Moreover, the mean value of BP obtained by uniform sampling is significantly higher than that by using the non-uniform sampling. Our results collectively suggest that a suitable sampling scheme can help compartmental modeling of dynamic fluorescence imaging provide more accurate results and simpler operations.
Collapse
Affiliation(s)
- Yunpeng Dai
- Engineering Research Center of Molecular and Neuro Imaging of Ministry of Education & School of Life Science and Technology, Xidian University, Xi'an, Shaanxi 710071, China
- These authors contributed equally to this work
| | - Xueli Chen
- Engineering Research Center of Molecular and Neuro Imaging of Ministry of Education & School of Life Science and Technology, Xidian University, Xi'an, Shaanxi 710071, China
- These authors contributed equally to this work
| | - Jipeng Yin
- State Key Laboratory of Cancer Biology and Xijing Hospital of Digestive Diseases, Xijing Hospital, Fourth Military Medical University, Xi'an 710032, China
- These authors contributed equally to this work
| | - Guodong Wang
- State Key Laboratory of Cancer Biology and Xijing Hospital of Digestive Diseases, Xijing Hospital, Fourth Military Medical University, Xi'an 710032, China
| | - Bo Wang
- Engineering Research Center of Molecular and Neuro Imaging of Ministry of Education & School of Life Science and Technology, Xidian University, Xi'an, Shaanxi 710071, China
| | - Yonghua Zhan
- Engineering Research Center of Molecular and Neuro Imaging of Ministry of Education & School of Life Science and Technology, Xidian University, Xi'an, Shaanxi 710071, China
| | - Yongzhan Nie
- State Key Laboratory of Cancer Biology and Xijing Hospital of Digestive Diseases, Xijing Hospital, Fourth Military Medical University, Xi'an 710032, China
| | - Kaichun Wu
- State Key Laboratory of Cancer Biology and Xijing Hospital of Digestive Diseases, Xijing Hospital, Fourth Military Medical University, Xi'an 710032, China
| | - Jimin Liang
- Engineering Research Center of Molecular and Neuro Imaging of Ministry of Education & School of Life Science and Technology, Xidian University, Xi'an, Shaanxi 710071, China
| |
Collapse
|
248
|
Chen X, Zhou H, Li X, Duan N, Hu S, Liu Y, Yue Y, Song L, Zhang Y, Li D, Wang Z. Plectin-1 Targeted Dual-modality Nanoparticles for Pancreatic Cancer Imaging. EBioMedicine 2018; 30:129-137. [PMID: 29574092 PMCID: PMC5952251 DOI: 10.1016/j.ebiom.2018.03.008] [Citation(s) in RCA: 43] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2018] [Revised: 03/09/2018] [Accepted: 03/09/2018] [Indexed: 01/17/2023] Open
Abstract
Background Biomarker-targeted molecular imaging holds promise for early detection of pancreatic cancer. The aim of this study was to design and evaluate a plectin-1 targeted multi-functional nanoparticle probe for pancreatic cancer imaging. Methods 1,2-Distearoyl-sn-glycero-3-phosphoethanolamine-N-amino(polyethylene glycol) (DSPE-PEG-NH2)-modified superparamagnetic iron oxide (Fe3O4) nanoparticles (SPION) were conjugated with plectin-1 antibody and/or Cy7 to create the multi-functional targeted nanoparticle targeted probe (Plectin-SPION-Cy7) or non-targeted probe (SPION-Cy7). Pancreatic carcinoma cell lines expressing plectin-1 were cultured with the targeted or control probes and then were imaged using confocal laser scanning microscopy and magnetic resonance imaging (MRI). Accumulations of the nanoparticles in pancreatic tumor xenografted mice were determined by MRI and fluorescence imaging. Results In vitro optical imaging and MRI showed that the targeted nanoparticles were highly accumulated in MIAPaCa2 and XPA-1 carcinoma cells but not in non-carcinoma MIN6 cells, which was further confirmed by Prussian blue staining. In vivo MRI showed a significant T2 signal reduction. Prussian blue staining further confirmed that the plectin-1 targeted nanoparticles were highly accumulated in the tumor mass but not in normal pancreatic tissues, or in the liver and kidney, and few nanoparticles were observed in the tumors of mice injected with SPION-Cy7. Conclusions Our data demonstrate that plectin-1 targeted fluorescence and MR dual-functional nanoparticle can visualize pancreatic cancer, and it has great potential to be used with various imaging devices for pancreatic cancer detection. We designed a plectin-1 targeted dual-modality nanoparticle (Plectin-SPION-Cy7). The targeted nanoparticles were highly accumulated in carcinoma cells but not in non-carcinoma cells. Plectin-1 targeted dual-functional nanoparticle has great potential in pancreatic cancer detection.
Molecular-based radiographic tests hold the promise to help precisely identifying pancreatic malignant lesions and their precursors at early stages. Previous studies showed that plectin-1 highly expressed in pancreatic ductal adenocarcinoma but not in non-carcinoma tissues. In the current study, we designed a plectin-1 targeted dual-modality nanoparticle (Plectin-SPION-Cy7). In vitro and in vivo data both indicated that plectin-1 targeted nanoparticles were highly accumulated in carcinoma cells/tissues but not in non-carcinoma cells/tissues. These results show that plectin-1 targeted fluorescence and MR dual-functional nanoparticle is useful for pancreatic cancer detection.
Collapse
Affiliation(s)
- Xiao Chen
- Department of Radiology, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing 210029, China; Division of Nephrology, Zhongshan Hospital Fudan University, Shanghai 200032, China
| | - Hao Zhou
- Department of Radiology, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing 210029, China
| | - Xiaoshuang Li
- Department of Radiology, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing 210029, China
| | - Na Duan
- Department of Radiology, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing 210029, China
| | - Shouyou Hu
- Department of Oncology, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing 210029, China
| | - Yongkang Liu
- Department of Radiology, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing 210029, China
| | - Yali Yue
- Department of Radiology, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing 210029, China
| | - Lina Song
- Department of Radiology, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing 210029, China
| | - Yifen Zhang
- Department of Pathology, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing 210029, China
| | - Donghui Li
- Department of Gastrointestinal Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Zhongqiu Wang
- Department of Radiology, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing 210029, China.
| |
Collapse
|
249
|
Dudani JS, Warren AD, Bhatia SN. Harnessing Protease Activity to Improve Cancer Care. ANNUAL REVIEW OF CANCER BIOLOGY-SERIES 2018. [DOI: 10.1146/annurev-cancerbio-030617-050549] [Citation(s) in RCA: 50] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Jaideep S. Dudani
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA;, ,
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA
| | - Andrew D. Warren
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA;, ,
- Harvard–MIT Division of Health Sciences and Technology, Institute for Medical Engineering and Science, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA
| | - Sangeeta N. Bhatia
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA;, ,
- Harvard–MIT Division of Health Sciences and Technology, Institute for Medical Engineering and Science, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA
- Department of Electrical Engineering and Computer Science, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA
- Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts 02115, USA
- Broad Institute of Massachusetts Institute of Technology and Harvard, Cambridge, Massachusetts 02139, USA
| |
Collapse
|
250
|
Noh I, Lee D, Kim H, Jeong C, Lee Y, Ahn J, Hyun H, Park J, Kim Y. Enhanced Photodynamic Cancer Treatment by Mitochondria-Targeting and Brominated Near-Infrared Fluorophores. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2018; 5:1700481. [PMID: 29593951 PMCID: PMC5867131 DOI: 10.1002/advs.201700481] [Citation(s) in RCA: 96] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/14/2017] [Revised: 10/25/2017] [Indexed: 05/21/2023]
Abstract
A noninvasive and selective therapy, photodynamic therapy (PDT) is widely researched in clinical fields; however, the lower efficiency of PDT can induce unexpected side effects. Mitochondria are extensively researched as target sites to maximize PDT effects because they play crucial roles in metabolism and can be used as cancer markers due to their high transmembrane potential. Here, a mitochondria targeting photodynamic therapeutic agent (MitDt) is developed. This photosensitizer is synthesized from heptamethine cyanine dyes, which are conjugated or modified as follows. The heptamethine meso-position is conjugated with a triphenylphosphonium derivative for mitochondrial targeting, the N-alkyl side chain is modified for regulation of charge balance and solubility, and the indolenine groups are brominated to enhance reactive oxygen species generation (ROS) after laser irradiation. The synthesized MitDt increases the cancer uptake efficiency due to the lipo-cationic properties of the triphenylphosphonium, and the PDT effects of MitDt are amplified after laser irradiation because mitochondria are susceptible to ROS, the response to which triggers an apoptotic anticancer effect. Consequently, these hypotheses are demonstrated by in vitro and in vivo studies, and the results indicate strong potential for use of MitDts as efficient single-molecule-based PDT agents for cancer treatment.
Collapse
Affiliation(s)
- Ilkoo Noh
- Department of Chemical and Biomolecular EngineeringKorea Advanced Institute of Science and Technology (KAIST)Daejeon305‐701South Korea
| | - DaeYong Lee
- Department of Chemical and Biomolecular EngineeringKorea Advanced Institute of Science and Technology (KAIST)Daejeon305‐701South Korea
| | - Heegon Kim
- Department of Bio and Brain EngineeringKorea Advanced Institute of Science and Technology (KAIST)Daejeon305‐701South Korea
| | - Chan‐Uk Jeong
- Department of Chemical and Biomolecular EngineeringKorea Advanced Institute of Science and Technology (KAIST)Daejeon305‐701South Korea
| | - Yunsoo Lee
- Department of Bio and Brain EngineeringKorea Advanced Institute of Science and Technology (KAIST)Daejeon305‐701South Korea
| | - Jung‐Oh Ahn
- Korea Research Institute of Bioscience and Biotechnology52 Eoeun‐dongDaejon305‐333South Korea
| | - Hoon Hyun
- Department of Biomedical SciencesChonnam National University Medical SchoolGwangju501‐746South Korea
| | - Ji‐Ho Park
- Department of Bio and Brain EngineeringKorea Advanced Institute of Science and Technology (KAIST)Daejeon305‐701South Korea
| | - Yeu‐Chun Kim
- Department of Chemical and Biomolecular EngineeringKorea Advanced Institute of Science and Technology (KAIST)Daejeon305‐701South Korea
| |
Collapse
|