201
|
Keller KM, Krausert S, Gopisetty A, Luedtke D, Koster J, Schubert NA, Rodríguez A, van Hooff SR, Stichel D, Dolman MEM, Vassal G, Pfister SM, Caron HN, Stancato LF, Molenaar JJ, Jäger N, Kool M. Target Actionability Review: a systematic evaluation of replication stress as a therapeutic target for paediatric solid malignancies. Eur J Cancer 2021; 162:107-117. [PMID: 34963094 DOI: 10.1016/j.ejca.2021.11.030] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2021] [Revised: 10/29/2021] [Accepted: 11/30/2021] [Indexed: 11/03/2022]
Abstract
BACKGROUND Owing to the high numbers of paediatric cancer-related deaths, advances in therapeutic options for childhood cancer is a heavily studied field, especially over the past decade. Classical chemotherapy offers some therapeutic benefit but has proven long-term complications in survivors, and there is an urgent need to identify novel target-driven therapies. Replication stress is a major cause of genomic instability in cancer, triggering the stalling of the replication fork. Failure of molecular response by DNA damage checkpoints, DNA repair mechanisms and restarting the replication forks can exacerbate replication stress and initiate cell death pathways, thus presenting as a novel therapeutic target. To bridge the gap between preclinical evidence and clinical utility thereof, we apply the literature-driven systematic target actionability review methodology to published proof-of-concept (PoC) data related to the process of replication stress. METHODS A meticulous PubMed literature search was performed to gather replication stress-related articles (published between 2014 and 2021) across 16 different paediatric solid tumour types. Articles that fulfilled inclusion criteria were uploaded into the R2 informatics platform [r2.amc.nl] and assessed by critical appraisal. Key evidence based on nine pre-established PoC modules was summarised, and scores based on the quality and outcome of each study were assigned by two separate reviewers. Articles with discordant modules/scores were re-scored by a third independent reviewer, and a final consensus score was agreed upon by adjudication between all three reviewers. To visualise the final scores, an interactive heatmap summarising the evidence and scores associated with each PoC module across all, including paediatric tumour types, were generated. RESULTS AND CONCLUSIONS 145 publications related to targeting replication stress in paediatric tumours were systematically reviewed with an emphasis on DNA repair pathways and cell cycle checkpoint control. Although various targets in these pathways have been studied in these diseases to different extents, the results of this extensive literature search show that ATR, CHK1, PARP or WEE1 are the most promising targets using either single agents or in combination with chemotherapy or radiotherapy in neuroblastoma, osteosarcoma, high-grade glioma or medulloblastoma. Targeting these pathways in other paediatric malignancies may work as well, but here, the evidence was more limited. The evidence for other targets (such as ATM and DNA-PK) was also limited but showed promising results in some malignancies and requires more studies in other tumour types. Overall, we have created an extensive overview of targeting replication stress across 16 paediatric tumour types, which can be explored using the interactive heatmap on the R2 target actionability review platform [https://hgserver1.amc.nl/cgi-bin/r2/main.cgi?option=imi2_targetmap_v1].
Collapse
Affiliation(s)
- Kaylee M Keller
- Princess Máxima Center for Paediatric Oncology, Utrecht, the Netherlands
| | - Sonja Krausert
- Hopp Children's Cancer Center (KiTZ), Heidelberg, Germany; Division of Paediatric Neurooncology, German Cancer Research Center (DKFZ), German Cancer Consortium (DKTK), Heidelberg, Germany
| | - Apurva Gopisetty
- Hopp Children's Cancer Center (KiTZ), Heidelberg, Germany; Division of Paediatric Neurooncology, German Cancer Research Center (DKFZ), German Cancer Consortium (DKTK), Heidelberg, Germany
| | - Dan Luedtke
- Eli Lilly and Company, Indianapolis, IN, USA
| | - Jan Koster
- Department of Oncogenomics, Amsterdam University Medical Centre, Amsterdam, the Netherlands
| | - Nil A Schubert
- Princess Máxima Center for Paediatric Oncology, Utrecht, the Netherlands
| | | | - Sander R van Hooff
- Princess Máxima Center for Paediatric Oncology, Utrecht, the Netherlands
| | - Damian Stichel
- Clinical Cooperation Unit Neuropathology, German Cancer Consortium (DKTK), German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - M Emmy M Dolman
- Princess Máxima Center for Paediatric Oncology, Utrecht, the Netherlands; Children's Cancer Institute, Lowy Cancer Centre, UNSW Sydney, Kensington, NSW, Australia; School of Women's and Children's Health, Faculty of Medicine, UNSW Sydney, NSW Australia
| | - Gilles Vassal
- Department of Clinical Research, Gustave Roussy, Villejuif, France
| | - Stefan M Pfister
- Hopp Children's Cancer Center (KiTZ), Heidelberg, Germany; Division of Paediatric Neurooncology, German Cancer Research Center (DKFZ), German Cancer Consortium (DKTK), Heidelberg, Germany; Department of Hematology and Oncology, Heidelberg University Hospital, Heidelberg, Germany
| | | | | | - Jan J Molenaar
- Princess Máxima Center for Paediatric Oncology, Utrecht, the Netherlands
| | - Natalie Jäger
- Hopp Children's Cancer Center (KiTZ), Heidelberg, Germany; Division of Paediatric Neurooncology, German Cancer Research Center (DKFZ), German Cancer Consortium (DKTK), Heidelberg, Germany
| | - Marcel Kool
- Princess Máxima Center for Paediatric Oncology, Utrecht, the Netherlands; Hopp Children's Cancer Center (KiTZ), Heidelberg, Germany; Division of Paediatric Neurooncology, German Cancer Research Center (DKFZ), German Cancer Consortium (DKTK), Heidelberg, Germany.
| |
Collapse
|
202
|
Botrugno OA, Tonon G. Genomic Instability and Replicative Stress in Multiple Myeloma: The Final Curtain? Cancers (Basel) 2021; 14:cancers14010025. [PMID: 35008191 PMCID: PMC8750813 DOI: 10.3390/cancers14010025] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2021] [Revised: 12/18/2021] [Accepted: 12/20/2021] [Indexed: 12/02/2022] Open
Abstract
Simple Summary Genomic instability is recognized as a driving force in most cancers as well as in the haematological cancer multiple myeloma and remains among the leading cause of drug resistance. Several evidences suggest that replicative stress exerts a fundamental role in fuelling genomic instability. Notably, cancer cells rely on a single protein, ATR, to cope with the ensuing DNA damage. In this perspective, we provide an overview depicting how replicative stress represents an Achilles heel for multiple myeloma, which could be therapeutically exploited either alone or in combinatorial regimens to preferentially ablate tumor cells. Abstract Multiple Myeloma (MM) is a genetically complex and heterogeneous hematological cancer that remains incurable despite the introduction of novel therapies in the clinic. Sadly, despite efforts spanning several decades, genomic analysis has failed to identify shared genetic aberrations that could be targeted in this disease. Seeking alternative strategies, various efforts have attempted to target and exploit non-oncogene addictions of MM cells, including, for example, proteasome inhibitors. The surprising finding that MM cells present rampant genomic instability has ignited concerted efforts to understand its origin and exploit it for therapeutic purposes. A credible hypothesis, supported by several lines of evidence, suggests that at the root of this phenotype there is intense replicative stress. Here, we review the current understanding of the role of replicative stress in eliciting genomic instability in MM and how MM cells rely on a single protein, Ataxia Telangiectasia-mutated and Rad3-related protein, ATR, to control and survive the ensuing, potentially fatal DNA damage. From this perspective, replicative stress per se represents not only an opportunity for MM cells to increase their evolutionary pool by increasing their genomic heterogeneity, but also a vulnerability that could be leveraged for therapeutic purposes to selectively target MM tumor cells.
Collapse
Affiliation(s)
- Oronza A. Botrugno
- Functional Genomics of Cancer Unit, Experimental Oncology Division, IRCCS San Raffaele Scientific Institute, 20132 Milan, Italy
- Correspondence: (O.A.B.); (G.T.); Tel.: +39-02-2643-6661 (O.A.B.); +39-02-2643-5624 (G.T.); Fax: +39-02-2643-6352 (O.A.B. & G.T.)
| | - Giovanni Tonon
- Functional Genomics of Cancer Unit, Experimental Oncology Division, IRCCS San Raffaele Scientific Institute, 20132 Milan, Italy
- Center for Omics Sciences, IRCCS San Raffaele Scientific Institute, 20132 Milan, Italy
- Correspondence: (O.A.B.); (G.T.); Tel.: +39-02-2643-6661 (O.A.B.); +39-02-2643-5624 (G.T.); Fax: +39-02-2643-6352 (O.A.B. & G.T.)
| |
Collapse
|
203
|
Galati E, Bosio MC, Novarina D, Chiara M, Bernini GM, Mozzarelli AM, García-Rubio ML, Gómez-González B, Aguilera A, Carzaniga T, Todisco M, Bellini T, Nava GM, Frigè G, Sertic S, Horner DS, Baryshnikova A, Manzari C, D'Erchia AM, Pesole G, Brown GW, Muzi-Falconi M, Lazzaro F. VID22 counteracts G-quadruplex-induced genome instability. Nucleic Acids Res 2021; 49:12785-12804. [PMID: 34871443 PMCID: PMC8682794 DOI: 10.1093/nar/gkab1156] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2021] [Revised: 10/19/2021] [Accepted: 11/08/2021] [Indexed: 12/17/2022] Open
Abstract
Genome instability is a condition characterized by the accumulation of genetic alterations and is a hallmark of cancer cells. To uncover new genes and cellular pathways affecting endogenous DNA damage and genome integrity, we exploited a Synthetic Genetic Array (SGA)-based screen in yeast. Among the positive genes, we identified VID22, reported to be involved in DNA double-strand break repair. vid22Δ cells exhibit increased levels of endogenous DNA damage, chronic DNA damage response activation and accumulate DNA aberrations in sequences displaying high probabilities of forming G-quadruplexes (G4-DNA). If not resolved, these DNA secondary structures can block the progression of both DNA and RNA polymerases and correlate with chromosome fragile sites. Vid22 binds to and protects DNA at G4-containing regions both in vitro and in vivo. Loss of VID22 causes an increase in gross chromosomal rearrangement (GCR) events dependent on G-quadruplex forming sequences. Moreover, the absence of Vid22 causes defects in the correct maintenance of G4-DNA rich elements, such as telomeres and mtDNA, and hypersensitivity to the G4-stabilizing ligand TMPyP4. We thus propose that Vid22 is directly involved in genome integrity maintenance as a novel regulator of G4 metabolism.
Collapse
Affiliation(s)
- Elena Galati
- Department of Biosciences, Università degli Studi di Milano, Via Celoria 26, 20133 Milan, Italy
| | - Maria C Bosio
- Department of Biosciences, Università degli Studi di Milano, Via Celoria 26, 20133 Milan, Italy
| | - Daniele Novarina
- Department of Biosciences, Università degli Studi di Milano, Via Celoria 26, 20133 Milan, Italy
| | - Matteo Chiara
- Department of Biosciences, Università degli Studi di Milano, Via Celoria 26, 20133 Milan, Italy.,Istituto di Biomembrane, Bioenergetica e Biotecnologie Molecolari, Consiglio Nazionale delle Ricerche, Bari, Italy
| | - Giulia M Bernini
- Department of Biosciences, Università degli Studi di Milano, Via Celoria 26, 20133 Milan, Italy
| | - Alessandro M Mozzarelli
- Department of Biosciences, Università degli Studi di Milano, Via Celoria 26, 20133 Milan, Italy
| | - Maria L García-Rubio
- Centro Andaluz de Biología Molecular y Medicina Regenerativa-CABIMER, Universidad de Sevilla, Seville, Spain
| | - Belén Gómez-González
- Centro Andaluz de Biología Molecular y Medicina Regenerativa-CABIMER, Universidad de Sevilla, Seville, Spain
| | - Andrés Aguilera
- Centro Andaluz de Biología Molecular y Medicina Regenerativa-CABIMER, Universidad de Sevilla, Seville, Spain
| | - Thomas Carzaniga
- Dipartimento di Biotecnologie Mediche e Medicina Traslazionale, Università degli Studi di Milano, via Vanvitelli 32, 20129 Milan, Italy
| | - Marco Todisco
- Dipartimento di Biotecnologie Mediche e Medicina Traslazionale, Università degli Studi di Milano, via Vanvitelli 32, 20129 Milan, Italy
| | - Tommaso Bellini
- Dipartimento di Biotecnologie Mediche e Medicina Traslazionale, Università degli Studi di Milano, via Vanvitelli 32, 20129 Milan, Italy
| | - Giulia M Nava
- Department of Biosciences, Università degli Studi di Milano, Via Celoria 26, 20133 Milan, Italy
| | - Gianmaria Frigè
- Department of Experimental Oncology, IEO, European Institute of Oncology IRCCS, Via Adamello 16, 20139 Milan, Italy
| | - Sarah Sertic
- Department of Biosciences, Università degli Studi di Milano, Via Celoria 26, 20133 Milan, Italy
| | - David S Horner
- Department of Biosciences, Università degli Studi di Milano, Via Celoria 26, 20133 Milan, Italy.,Istituto di Biomembrane, Bioenergetica e Biotecnologie Molecolari, Consiglio Nazionale delle Ricerche, Bari, Italy
| | - Anastasia Baryshnikova
- Department of Molecular Genetics and Donnelly Centre, University of Toronto, Toronto, Canada
| | - Caterina Manzari
- Istituto di Biomembrane, Bioenergetica e Biotecnologie Molecolari, Consiglio Nazionale delle Ricerche, Bari, Italy
| | - Anna M D'Erchia
- Istituto di Biomembrane, Bioenergetica e Biotecnologie Molecolari, Consiglio Nazionale delle Ricerche, Bari, Italy.,Dipartimento di Bioscienze, Biotecnologie e Biofarmaceutica, Università di Bari 'A. Moro', Bari, Italy
| | - Graziano Pesole
- Istituto di Biomembrane, Bioenergetica e Biotecnologie Molecolari, Consiglio Nazionale delle Ricerche, Bari, Italy.,Dipartimento di Bioscienze, Biotecnologie e Biofarmaceutica, Università di Bari 'A. Moro', Bari, Italy
| | - Grant W Brown
- Department of Biochemistry and Donnelly Centre, University of Toronto, Ontario M5S 3E1, Toronto, Canada
| | - Marco Muzi-Falconi
- Department of Biosciences, Università degli Studi di Milano, Via Celoria 26, 20133 Milan, Italy
| | - Federico Lazzaro
- Department of Biosciences, Università degli Studi di Milano, Via Celoria 26, 20133 Milan, Italy
| |
Collapse
|
204
|
De Falco M, De Felice M. Take a Break to Repair: A Dip in the World of Double-Strand Break Repair Mechanisms Pointing the Gaze on Archaea. Int J Mol Sci 2021; 22:ijms222413296. [PMID: 34948099 PMCID: PMC8708640 DOI: 10.3390/ijms222413296] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2021] [Revised: 12/06/2021] [Accepted: 12/07/2021] [Indexed: 12/24/2022] Open
Abstract
All organisms have evolved many DNA repair pathways to counteract the different types of DNA damages. The detection of DNA damage leads to distinct cellular responses that bring about cell cycle arrest and the induction of DNA repair mechanisms. In particular, DNA double-strand breaks (DSBs) are extremely toxic for cell survival, that is why cells use specific mechanisms of DNA repair in order to maintain genome stability. The choice among the repair pathways is mainly linked to the cell cycle phases. Indeed, if it occurs in an inappropriate cellular context, it may cause genome rearrangements, giving rise to many types of human diseases, from developmental disorders to cancer. Here, we analyze the most recent remarks about the main pathways of DSB repair with the focus on homologous recombination. A thorough knowledge in DNA repair mechanisms is pivotal for identifying the most accurate treatments in human diseases.
Collapse
|
205
|
Homologous Recombination as a Fundamental Genome Surveillance Mechanism during DNA Replication. Genes (Basel) 2021; 12:genes12121960. [PMID: 34946909 PMCID: PMC8701046 DOI: 10.3390/genes12121960] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2021] [Revised: 12/06/2021] [Accepted: 12/07/2021] [Indexed: 12/28/2022] Open
Abstract
Accurate and complete genome replication is a fundamental cellular process for the proper transfer of genetic material to cell progenies, normal cell growth, and genome stability. However, a plethora of extrinsic and intrinsic factors challenge individual DNA replication forks and cause replication stress (RS), a hallmark of cancer. When challenged by RS, cells deploy an extensive range of mechanisms to safeguard replicating genomes and limit the burden of DNA damage. Prominent among those is homologous recombination (HR). Although fundamental to cell division, evidence suggests that cancer cells exploit and manipulate these RS responses to fuel their evolution and gain resistance to therapeutic interventions. In this review, we focused on recent insights into HR-mediated protection of stress-induced DNA replication intermediates, particularly the repair and protection of daughter strand gaps (DSGs) that arise from discontinuous replication across a damaged DNA template. Besides mechanistic underpinnings of this process, which markedly differ depending on the extent and duration of RS, we highlight the pathophysiological scenarios where DSG repair is naturally silenced. Finally, we discuss how such pathophysiological events fuel rampant mutagenesis, promoting cancer evolution, but also manifest in adaptative responses that can be targeted for cancer therapy.
Collapse
|
206
|
Feng W, Smith CM, Simpson DA, Gupta GP. Targeting Non-homologous and Alternative End Joining Repair to Enhance Cancer Radiosensitivity. Semin Radiat Oncol 2021; 32:29-41. [PMID: 34861993 DOI: 10.1016/j.semradonc.2021.09.007] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Many cancer therapies, including radiotherapy, induce DSBs as the major driving mechanism for inducing cancer cell death. Thus, modulating DSB repair has immense potential for radiosensitization, although such interventions must be carefully designed to be tumor selective to ensure that normal tissue toxicities are not also increased. Here, we review mechanisms of error-prone DSB repair through a highly efficient process called end joining. There are two major pathways of end-joining repair: non-homologous end joining (NHEJ) and alternative end joining (a-EJ), both of which can be selectively upregulated in cancer and thus represent attractive therapeutic targets for radiosensitization. These EJ pathways each have therapeutically targetable pioneer factors - DNA-dependent protein kinase catalytic subunit (DNA-PKcs) for NHEJ and DNA Polymerase Theta (Pol θ) for a-EJ. We summarize the current status of therapeutic targeting of NHEJ and a-EJ to enhance the effects of radiotherapy - focusing on challenges that must be overcome and opportunities that require further exploration. By leveraging preclinical insights into mechanisms of altered DSB repair programs in cancer, selective radiosensitization through NHEJ and/or a-EJ targeting remains a highly attractive avenue for ongoing and future clinical investigation.
Collapse
Affiliation(s)
| | - Chelsea M Smith
- Lineberger Comprehensive Cancer Center; Pathobiology and Translational Science Graduate Program
| | | | - Gaorav P Gupta
- Lineberger Comprehensive Cancer Center; Pathobiology and Translational Science Graduate Program; Department of Radiation Oncology; Department of Biochemistry and Biophysics, University of North Carolina, Chapel Hill, NC.
| |
Collapse
|
207
|
Zampetidis CP, Galanos P, Angelopoulou A, Zhu Y, Polyzou A, Karamitros T, Kotsinas A, Lagopati N, Mourkioti I, Mirzazadeh R, Polyzos A, Garnerone S, Mizi A, Gusmao EG, Sofiadis K, Gál Z, Larsen DH, Pefani DE, Demaria M, Tsirigos A, Crosetto N, Maya-Mendoza A, Papaspyropoulos A, Evangelou K, Bartek J, Papantonis A, Gorgoulis VG. A recurrent chromosomal inversion suffices for driving escape from oncogene-induced senescence via subTAD reorganization. Mol Cell 2021; 81:4907-4923.e8. [PMID: 34793711 DOI: 10.1016/j.molcel.2021.10.017] [Citation(s) in RCA: 44] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2021] [Revised: 07/14/2021] [Accepted: 10/16/2021] [Indexed: 12/12/2022]
Abstract
Oncogene-induced senescence (OIS) is an inherent and important tumor suppressor mechanism. However, if not removed timely via immune surveillance, senescent cells also have detrimental effects. Although this has mostly been attributed to the senescence-associated secretory phenotype (SASP) of these cells, we recently proposed that "escape" from the senescent state is another unfavorable outcome. The mechanism underlying this phenomenon remains elusive. Here, we exploit genomic and functional data from a prototypical human epithelial cell model carrying an inducible CDC6 oncogene to identify an early-acquired recurrent chromosomal inversion that harbors a locus encoding the circadian transcription factor BHLHE40. This inversion alone suffices for BHLHE40 activation upon CDC6 induction and driving cell cycle re-entry of senescent cells, and malignant transformation. Ectopic overexpression of BHLHE40 prevented induction of CDC6-triggered senescence. We provide strong evidence in support of replication stress-induced genomic instability being a causative factor underlying "escape" from oncogene-induced senescence.
Collapse
Affiliation(s)
- Christos P Zampetidis
- Molecular Carcinogenesis Group, Department of Histology and Embryology, Faculty of Medicine, National Kapodistrian University of Athens, 11527 Athens, Greece
| | - Panagiotis Galanos
- Genome Integrity Group, Danish Cancer Society Research Center, 2100 Copenhagen, Denmark.
| | - Andriani Angelopoulou
- Molecular Carcinogenesis Group, Department of Histology and Embryology, Faculty of Medicine, National Kapodistrian University of Athens, 11527 Athens, Greece
| | - Yajie Zhu
- Translational Epigenetics Group, Institute of Pathology, University Medical Center Göttingen, 37075 Göttingen, Germany
| | - Aikaterini Polyzou
- Molecular Carcinogenesis Group, Department of Histology and Embryology, Faculty of Medicine, National Kapodistrian University of Athens, 11527 Athens, Greece
| | - Timokratis Karamitros
- Unit of Bioinformatics and Applied Genomics, Department of Microbiology, Hellenic Pasteur Institute, 11521 Athens, Greece
| | - Athanassios Kotsinas
- Molecular Carcinogenesis Group, Department of Histology and Embryology, Faculty of Medicine, National Kapodistrian University of Athens, 11527 Athens, Greece
| | - Nefeli Lagopati
- Molecular Carcinogenesis Group, Department of Histology and Embryology, Faculty of Medicine, National Kapodistrian University of Athens, 11527 Athens, Greece
| | - Ioanna Mourkioti
- Molecular Carcinogenesis Group, Department of Histology and Embryology, Faculty of Medicine, National Kapodistrian University of Athens, 11527 Athens, Greece
| | - Reza Mirzazadeh
- Science for Life Laboratory, Division of Genome Biology, Department of Medical Biochemistry and Biophysics, Karolinska Institute, 171 77 Solna, Stockholm, Sweden
| | - Alexandros Polyzos
- Sanford I. Weill Department of Medicine, Sandra and Edward Meyer Cancer Center, Weill Cornell Medicine, New York, NY 10065, USA
| | - Silvano Garnerone
- Science for Life Laboratory, Division of Genome Biology, Department of Medical Biochemistry and Biophysics, Karolinska Institute, 171 77 Solna, Stockholm, Sweden
| | - Athanasia Mizi
- Translational Epigenetics Group, Institute of Pathology, University Medical Center Göttingen, 37075 Göttingen, Germany
| | - Eduardo G Gusmao
- Translational Epigenetics Group, Institute of Pathology, University Medical Center Göttingen, 37075 Göttingen, Germany
| | - Konstantinos Sofiadis
- Translational Epigenetics Group, Institute of Pathology, University Medical Center Göttingen, 37075 Göttingen, Germany
| | - Zita Gál
- Nucleolar Stress and Disease Group, Danish Cancer Society Research Center, 2100 Copenhagen, Denmark
| | - Dorthe H Larsen
- Nucleolar Stress and Disease Group, Danish Cancer Society Research Center, 2100 Copenhagen, Denmark
| | | | - Marco Demaria
- University of Groningen (RUG), European Research Institute for the Biology of Aging (ERIBA), University Medical Center Groningen (UMCG), 9713 AV Groningen, the Netherlands
| | | | - Nicola Crosetto
- Science for Life Laboratory, Division of Genome Biology, Department of Medical Biochemistry and Biophysics, Karolinska Institute, 171 77 Solna, Stockholm, Sweden
| | - Apolinar Maya-Mendoza
- DNA Replication and Cancer Group, Danish Cancer Society Research Center, 2100 Copenhagen, Denmark
| | - Angelos Papaspyropoulos
- Molecular Carcinogenesis Group, Department of Histology and Embryology, Faculty of Medicine, National Kapodistrian University of Athens, 11527 Athens, Greece
| | - Konstantinos Evangelou
- Molecular Carcinogenesis Group, Department of Histology and Embryology, Faculty of Medicine, National Kapodistrian University of Athens, 11527 Athens, Greece
| | - Jiri Bartek
- Genome Integrity Group, Danish Cancer Society Research Center, 2100 Copenhagen, Denmark; Science for Life Laboratory, Division of Genome Biology, Department of Medical Biochemistry and Biophysics, Karolinska Institute, 171 77 Solna, Stockholm, Sweden.
| | - Argyris Papantonis
- Translational Epigenetics Group, Institute of Pathology, University Medical Center Göttingen, 37075 Göttingen, Germany; Center for Molecular Medicine Cologne (CMMC), University of Cologne, 50931 Cologne, Germany.
| | - Vassilis G Gorgoulis
- Molecular Carcinogenesis Group, Department of Histology and Embryology, Faculty of Medicine, National Kapodistrian University of Athens, 11527 Athens, Greece; Biomedical Research Foundation, Academy of Athens, 11527 Athens, Greece; Division of Cancer Sciences, School of Medical Sciences, Faculty of Biology, Medicine & Health, University of Manchester, M20 4GJ Manchester, UK; Center for New Biotechnologies and Precision Medicine, Medical School, National and Kapodistrian University of Athens, 11527 Athens, Greece; Faculty of Health and Medical Sciences, University of Surrey, Surrey GU2 7YH, UK.
| |
Collapse
|
208
|
Hume S, Grou CP, Lascaux P, D'Angiolella V, Legrand AJ, Ramadan K, Dianov GL. The NUCKS1-SKP2-p21/p27 axis controls S phase entry. Nat Commun 2021; 12:6959. [PMID: 34845229 PMCID: PMC8630071 DOI: 10.1038/s41467-021-27124-8] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2020] [Accepted: 11/02/2021] [Indexed: 11/13/2022] Open
Abstract
Efficient entry into S phase of the cell cycle is necessary for embryonic development and tissue homoeostasis. However, unscheduled S phase entry triggers DNA damage and promotes oncogenesis, underlining the requirement for strict control. Here, we identify the NUCKS1-SKP2-p21/p27 axis as a checkpoint pathway for the G1/S transition. In response to mitogenic stimulation, NUCKS1, a transcription factor, is recruited to chromatin to activate expression of SKP2, the F-box component of the SCFSKP2 ubiquitin ligase, leading to degradation of p21 and p27 and promoting progression into S phase. In contrast, DNA damage induces p53-dependent transcriptional repression of NUCKS1, leading to SKP2 downregulation, p21/p27 upregulation, and cell cycle arrest. We propose that the NUCKS1-SKP2-p21/p27 axis integrates mitogenic and DNA damage signalling to control S phase entry. The Cancer Genome Atlas (TCGA) data reveal that this mechanism is hijacked in many cancers, potentially allowing cancer cells to sustain uncontrolled proliferation.
Collapse
Affiliation(s)
- Samuel Hume
- Medical Research Council Oxford Institute for Radiation Oncology, Department of Oncology, University of Oxford, OX3 7DQ, Oxford, UK
| | - Claudia P Grou
- Medical Research Council Oxford Institute for Radiation Oncology, Department of Oncology, University of Oxford, OX3 7DQ, Oxford, UK
| | - Pauline Lascaux
- Medical Research Council Oxford Institute for Radiation Oncology, Department of Oncology, University of Oxford, OX3 7DQ, Oxford, UK
| | - Vincenzo D'Angiolella
- Medical Research Council Oxford Institute for Radiation Oncology, Department of Oncology, University of Oxford, OX3 7DQ, Oxford, UK
| | - Arnaud J Legrand
- Medical Research Council Oxford Institute for Radiation Oncology, Department of Oncology, University of Oxford, OX3 7DQ, Oxford, UK.
- Breast Cancer Now Toby Robins Research Centre, The Institute of Cancer Research, London, SW3 6JB, UK.
| | - Kristijan Ramadan
- Medical Research Council Oxford Institute for Radiation Oncology, Department of Oncology, University of Oxford, OX3 7DQ, Oxford, UK.
| | - Grigory L Dianov
- Medical Research Council Oxford Institute for Radiation Oncology, Department of Oncology, University of Oxford, OX3 7DQ, Oxford, UK.
- Institute of Cytology and Genetics, Siberian Branch of the Russian Academy of Sciences, Lavrentieva 10, 630090, Novosibirsk, Russia.
- Novosibirsk State University, Novosibirsk, Russian Federation, 630090, Russia.
| |
Collapse
|
209
|
Ahn AR, Kim KM, Jang KY, Moon WS, Ha GW, Lee MR, Chung MJ. Correlation of PIK3CA mutation with programmed death ligand-1 (PD-L1) expression and their clinicopathological significance in colorectal cancer. ANNALS OF TRANSLATIONAL MEDICINE 2021; 9:1406. [PMID: 34733958 PMCID: PMC8506770 DOI: 10.21037/atm-21-2315] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/06/2021] [Accepted: 07/25/2021] [Indexed: 12/24/2022]
Abstract
Background The prognostic significance of PIK3CA mutations in colorectal cancer (CRC) remains controversial. Recently, an association between programmed death ligand-1 (PD-L1) and PIK3CA mutations has been reported. The study presented here was conducted to investigate the effect of PIK3CA mutations on the prognosis of CRC patients and the association between PIK3CA mutations and PD-L1. Methods PIK3CA mutations were analyzed by targeted next-generation sequencing using formalin-fixed paraffin-embedded specimens from 224 primary CRC patients. PD-L1 expression was evaluated by immunohistochemical staining. Results PIK3CA mutations and PD-L1 expression were detected in 21.4% and 10.3% of CRC patients, respectively. PIK3CA mutations were significantly correlated with right-side colon cancer (P=0.011) and were correlated inversely with lymph node metastasis (P=0.026), distant metastasis (P=0.047), and high TNM stage (P=0.036). In univariate analysis, PIK3CA mutations were correlated with longer relapse-free survival in CRC patients. PD-L1 expression was correlated significantly with PIK3CA mutations (P<0.001). Conclusions PIK3CA mutations were associated with favorable prognostic factors, longer relapse-free survival, and expression of PD-L1. Further investigation is needed to identify whether PIK3CA mutations are a good prognostic factor. Additionally, further studies are needed to understand the mechanisms behind the correlation between PIK3CA mutations and PD-L1 expression.
Collapse
Affiliation(s)
- Ae Ri Ahn
- Departments of Pathology, Jeonbuk National University Medical School, Research Institute of Clinical Medicine of Jeonbuk National University, Biomedical Research Institute of Jeonbuk National University Hospital, and Research Institute for Endocrine Sciences, Jeonju, Republic of Korea
| | - Kyoung Min Kim
- Departments of Pathology, Jeonbuk National University Medical School, Research Institute of Clinical Medicine of Jeonbuk National University, Biomedical Research Institute of Jeonbuk National University Hospital, and Research Institute for Endocrine Sciences, Jeonju, Republic of Korea
| | - Kyu Yun Jang
- Departments of Pathology, Jeonbuk National University Medical School, Research Institute of Clinical Medicine of Jeonbuk National University, Biomedical Research Institute of Jeonbuk National University Hospital, and Research Institute for Endocrine Sciences, Jeonju, Republic of Korea
| | - Woo Sung Moon
- Departments of Pathology, Jeonbuk National University Medical School, Research Institute of Clinical Medicine of Jeonbuk National University, Biomedical Research Institute of Jeonbuk National University Hospital, and Research Institute for Endocrine Sciences, Jeonju, Republic of Korea
| | - Gi Won Ha
- Department of Surgery, Jeonbuk National University Medical School, Research Institute of Clinical Medicine of Jeonbuk National University, Biomedical Research Institute of Jeonbuk National University Hospital, and Research Institute for Endocrine Sciences, Jeonju, Republic of Korea
| | - Min Ro Lee
- Department of Surgery, Jeonbuk National University Medical School, Research Institute of Clinical Medicine of Jeonbuk National University, Biomedical Research Institute of Jeonbuk National University Hospital, and Research Institute for Endocrine Sciences, Jeonju, Republic of Korea
| | - Myoung Ja Chung
- Departments of Pathology, Jeonbuk National University Medical School, Research Institute of Clinical Medicine of Jeonbuk National University, Biomedical Research Institute of Jeonbuk National University Hospital, and Research Institute for Endocrine Sciences, Jeonju, Republic of Korea
| |
Collapse
|
210
|
The PTEN and ATM axis controls the G1/S cell cycle checkpoint and tumorigenesis in HER2-positive breast cancer. Cell Death Differ 2021; 28:3036-3051. [PMID: 34059798 PMCID: PMC8564521 DOI: 10.1038/s41418-021-00799-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2020] [Revised: 04/22/2021] [Accepted: 04/23/2021] [Indexed: 02/04/2023] Open
Abstract
The tumor suppressor PTEN is disrupted in a large proportion of cancers, including in HER2-positive breast cancer, where its loss is associated with resistance to therapy. Upon genotoxic stress, ataxia telangiectasia mutated (ATM) is activated and phosphorylates PTEN on residue 398. To elucidate the physiological role of this molecular event, we generated and analyzed knock-in mice expressing a mutant form of PTEN that cannot be phosphorylated by ATM (PTEN-398A). This mutation accelerated tumorigenesis in a model of HER2-positive breast cancer. Mammary tumors in bi-transgenic mice carrying MMTV-neu and Pten398A were characterized by DNA damage accumulation but reduced apoptosis. Mechanistically, phosphorylation of PTEN at position 398 is essential for the proper activation of the S phase checkpoint controlled by the PI3K-p27Kip1-CDK2 axis. Moreover, we linked these defects to the impaired ability of the PTEN-398A protein to relocalize to the plasma membrane in response to genotoxic stress. Altogether, our results uncover a novel role for ATM-dependent PTEN phosphorylation in the control of genomic stability, cell cycle progression, and tumorigenesis.
Collapse
|
211
|
McGrail DJ, Pilié PG, Dai H, Lam TNA, Liang Y, Voorwerk L, Kok M, Zhang XHF, Rosen JM, Heimberger AB, Peterson CB, Jonasch E, Lin SY. Replication stress response defects are associated with response to immune checkpoint blockade in nonhypermutated cancers. Sci Transl Med 2021; 13:eabe6201. [PMID: 34705519 DOI: 10.1126/scitranslmed.abe6201] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
[Figure: see text].
Collapse
Affiliation(s)
- Daniel J McGrail
- Department of Systems Biology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Patrick G Pilié
- Department of Genitourinary Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Hui Dai
- Department of Systems Biology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Truong Nguyen Anh Lam
- Department of Genitourinary Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Yulong Liang
- Department of Systems Biology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Leonie Voorwerk
- Division of Tumor Biology and Immunology, The Netherlands Cancer Institute, 1066 CX Amsterdam, Netherlands
| | - Marleen Kok
- Division of Tumor Biology and Immunology, The Netherlands Cancer Institute, 1066 CX Amsterdam, Netherlands.,Department of Medical Oncology, The Netherlands Cancer Institute, 1066 CX Amsterdam, Netherlands
| | - Xiang H-F Zhang
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX 77030, USA.,Dan L. Duncan Cancer Center, Baylor College of Medicine, Houston, TX 77030, USA.,Lester and Sue Smith Breast Center, Baylor College of Medicine, Houston, TX 77030, USA.,McNair Medical Institute, Baylor College of Medicine, Houston, TX 77030, USA
| | - Jeffrey M Rosen
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX 77030, USA.,Dan L. Duncan Cancer Center, Baylor College of Medicine, Houston, TX 77030, USA
| | - Amy B Heimberger
- Department of Neurological Surgery, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA.,Malnati Brain Tumor Institute of the Lurie Comprehensive Cancer Center, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
| | - Christine B Peterson
- Department of Biostatistics, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Eric Jonasch
- Department of Genitourinary Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Shiaw-Yih Lin
- Department of Systems Biology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| |
Collapse
|
212
|
Young A, Bu W, Jiang W, Ku A, Kapali J, Dhamne S, Qin L, Hilsenbeck SG, Du YCN, Li Y. Targeting the Pro-Survival Protein BCL-2 to Prevent Breast Cancer. Cancer Prev Res (Phila) 2021; 15:3-10. [PMID: 34667127 DOI: 10.1158/1940-6207.capr-21-0031] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2021] [Revised: 06/25/2021] [Accepted: 10/04/2021] [Indexed: 11/16/2022]
Abstract
Current chemopreventive strategies require 3-5 years of continuous treatment and have the concerns of significant side effects; therefore, new chemopreventive agents that require shorter and safer treatments are urgently needed. In this study, we developed a new murine model of breast cancer that mimics human breast cancer initiation and is ideal for testing the efficacy of chemopreventive therapeutics. In this model, introduction of lentivirus carrying a PIK3CA gene mutant commonly found in breast cancers infects a small number of the mammary cells, leading to atypia first and then to ductal carcinomas that are positive for both estrogen receptor and progesterone receptor. Venetoclax is a BH3 mimetic that blocks the anti-apoptotic protein BCL-2 and has efficacy in treating breast cancer. We found that venetoclax treatment of atypia-bearing mice delayed the progression to tumors, improved overall survival, and reduced pulmonary metastasis. Therefore, prophylactic treatment to inhibit the pro-survival protein BCL-2 may provide an alternative to the currently available regimens in breast cancer prevention.
Collapse
Affiliation(s)
- Adelaide Young
- Lester & Sue Smith Breast Center, Baylor College of Medicine, Houston, Texas
| | - Wen Bu
- Lester & Sue Smith Breast Center, Baylor College of Medicine, Houston, Texas
| | - Weiyu Jiang
- Lester & Sue Smith Breast Center, Baylor College of Medicine, Houston, Texas
| | - Amy Ku
- Lester & Sue Smith Breast Center, Baylor College of Medicine, Houston, Texas
| | - Jyoti Kapali
- Lester & Sue Smith Breast Center, Baylor College of Medicine, Houston, Texas
| | - Sagar Dhamne
- Department of Pathology & Immunology, Baylor College of Medicine, Houston, Texas
| | - Lan Qin
- Lester & Sue Smith Breast Center, Baylor College of Medicine, Houston, Texas
| | - Susan G Hilsenbeck
- Lester & Sue Smith Breast Center, Baylor College of Medicine, Houston, Texas
- Dan L Duncan Comprehensive Cancer Center, Baylor College of Medicine, Houston, Texas
| | - Yi-Chieh Nancy Du
- Department of Pathology and Laboratory Medicine, Weill Cornell Medicine, New York, New York
| | - Yi Li
- Lester & Sue Smith Breast Center, Baylor College of Medicine, Houston, Texas.
- Department of Molecular & Cellular Biology, Baylor College of Medicine, Houston, Texas
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, Texas
| |
Collapse
|
213
|
Hasebe K, Yamaguchi J, Kokuryo T, Yokoyama Y, Ochiai Y, Nagino M, Ebata T. Trefoil factor family 2 inhibits cholangiocarcinogenesis by regulating the PTEN pathway in mice. Carcinogenesis 2021; 42:1496-1505. [PMID: 34644378 DOI: 10.1093/carcin/bgab093] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2021] [Revised: 10/02/2021] [Accepted: 10/12/2021] [Indexed: 11/14/2022] Open
Abstract
Trefoil factor family 2 (TFF2) is one of three trefoil factor family proteins and is expressed abundantly in the gastrointestinal epithelium. Recent studies have shown that TFF2 acts as a tumor suppressor in gastric and pancreatic carcinogenesis; however, little is known about its function in cholangiocarcinogenesis. To investigate the function of TFF2 in cholangiocellular carcinoma (CCC), immunohistochemistry of surgically resected human CCC samples was performed. TFF2 expression was upregulated in the early stage and lost in the late stage of cholangiocarcinogenesis, suggesting the association of TFF2 and CCC. A TFF2 expression vector was then transfected into a CCC cell line (HuCCT1) in vitro, revealing that TFF2 functions as a tumor suppressor not only by inhibiting proliferation and invasion but also by promoting the apoptosis of cancer cells. In addition, PTEN signaling activity was downregulated by TFF2, suggesting an association between TFF2 and PTEN. Next, hepatic carcinogenesis model mice (KC; albumin-Cre/Lox-Stop-Lox KRAS G12D) were bred with TFF2-knockout mice to generate a TFF2-deficient mouse model (KC/TFF2 -/-). Although the incidence of hepatocellular carcinoma was not different between KC/TFF2 -/- mice and control mice, biliary intraepithelial neoplasm (BilIN), the precursor of CCC, was frequently found in the biliary epithelium of KC/TFF2 -/- mice. Immunohistochemistry revealed that BilIN samples from these mice did not express PTEN. In addition, two KC/TFF2 -/- mice developed CCC adjacent to BilIN, suggesting that TFF2 functions to inhibit the development of CCC in vivo. These results indicate that TFF2 acts as a tumor suppressor to inhibit the development of CCC by regulating PTEN activity.
Collapse
Affiliation(s)
- Keiji Hasebe
- Division of Surgical Oncology, Department of Surgery, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Junpei Yamaguchi
- Division of Surgical Oncology, Department of Surgery, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Toshio Kokuryo
- Division of Surgical Oncology, Department of Surgery, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Yukihiro Yokoyama
- Division of Surgical Oncology, Department of Surgery, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Yosuke Ochiai
- Division of Surgical Oncology, Department of Surgery, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Masato Nagino
- Division of Surgical Oncology, Department of Surgery, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Tomoki Ebata
- Division of Surgical Oncology, Department of Surgery, Nagoya University Graduate School of Medicine, Nagoya, Japan
| |
Collapse
|
214
|
BRCA1/Trp53 heterozygosity and replication stress drive esophageal cancer development in a mouse model. Proc Natl Acad Sci U S A 2021; 118:2108421118. [PMID: 34607954 PMCID: PMC8521688 DOI: 10.1073/pnas.2108421118] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/24/2021] [Indexed: 12/13/2022] Open
Abstract
BRCA1 germline mutations are associated with an increased risk of breast and ovarian cancer. Recent findings of others suggest that BRCA1 mutation carriers also bear an increased risk of esophageal and gastric cancer. Here, we employ a Brca1/Trp53 mouse model to show that unresolved replication stress (RS) in BRCA1 heterozygous cells drives esophageal tumorigenesis in a model of the human equivalent. This model employs 4-nitroquinoline-1-oxide (4NQO) as an RS-inducing agent. Upon drinking 4NQO-containing water, Brca1 heterozygous mice formed squamous cell carcinomas of the distal esophagus and forestomach at a much higher frequency and speed (∼90 to 120 d) than did wild-type (WT) mice, which remained largely tumor free. Their esophageal tissue, but not that of WT control mice, revealed evidence of overt RS as reflected by intracellular CHK1 phosphorylation and 53BP1 staining. These Brca1 mutant tumors also revealed higher genome mutation rates than those of control animals; the mutational signature SBS4, which is associated with tobacco-induced tumorigenesis; and a loss of Brca1 heterozygosity (LOH). This uniquely accelerated Brca1 tumor model is also relevant to human esophageal squamous cell carcinoma, an often lethal tumor.
Collapse
|
215
|
Venkatesan S, Angelova M, Puttick C, Zhai H, Caswell DR, Lu WT, Dietzen M, Galanos P, Evangelou K, Bellelli R, Lim EL, Watkins TB, Rowan A, Teixeira VH, Zhao Y, Chen H, Ngo B, Zalmas LP, Bakir MA, Hobor S, Gronroos E, Pennycuick A, Nigro E, Campbell BB, Brown WL, Akarca AU, Marafioti T, Wu MY, Howell M, Boulton SJ, Bertoli C, Fenton TR, de Bruin RA, Maya-Mendoza A, Santoni-Rugiu E, Hynds RE, Gorgoulis VG, Jamal-Hanjani M, McGranahan N, Harris RS, Janes SM, Bartkova J, Bakhoum SF, Bartek J, Kanu N, Swanton C. Induction of APOBEC3 Exacerbates DNA Replication Stress and Chromosomal Instability in Early Breast and Lung Cancer Evolution. Cancer Discov 2021; 11:2456-2473. [PMID: 33947663 PMCID: PMC8487921 DOI: 10.1158/2159-8290.cd-20-0725] [Citation(s) in RCA: 87] [Impact Index Per Article: 21.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2020] [Revised: 12/08/2020] [Accepted: 04/29/2021] [Indexed: 11/16/2022]
Abstract
APOBEC3 enzymes are cytosine deaminases implicated in cancer. Precisely when APOBEC3 expression is induced during cancer development remains to be defined. Here we show that specific APOBEC3 genes are upregulated in breast ductal carcinoma in situ, and in preinvasive lung cancer lesions coincident with cellular proliferation. We observe evidence of APOBEC3-mediated subclonal mutagenesis propagated from TRACERx preinvasive to invasive non-small cell lung cancer (NSCLC) lesions. We find that APOBEC3B exacerbates DNA replication stress and chromosomal instability through incomplete replication of genomic DNA, manifested by accumulation of mitotic ultrafine bridges and 53BP1 nuclear bodies in the G1 phase of the cell cycle. Analysis of TRACERx NSCLC clinical samples and mouse lung cancer models revealed APOBEC3B expression driving replication stress and chromosome missegregation. We propose that APOBEC3 is functionally implicated in the onset of chromosomal instability and somatic mutational heterogeneity in preinvasive disease, providing fuel for selection early in cancer evolution. SIGNIFICANCE: This study reveals the dynamics and drivers of APOBEC3 gene expression in preinvasive disease and the exacerbation of cellular diversity by APOBEC3B through DNA replication stress to promote chromosomal instability early in cancer evolution.This article is highlighted in the In This Issue feature, p. 2355.
Collapse
Affiliation(s)
- Subramanian Venkatesan
- Cancer Evolution and Genome Instability Laboratory, The Francis Crick Institute, London, United Kingdom
- Cancer Research UK Lung Cancer Centre of Excellence, UCL Cancer Institute, University College London, London, United Kingdom
| | - Mihaela Angelova
- Cancer Evolution and Genome Instability Laboratory, The Francis Crick Institute, London, United Kingdom
| | - Clare Puttick
- Cancer Evolution and Genome Instability Laboratory, The Francis Crick Institute, London, United Kingdom
| | - Haoran Zhai
- Cancer Research UK Lung Cancer Centre of Excellence, UCL Cancer Institute, University College London, London, United Kingdom
| | - Deborah R. Caswell
- Cancer Evolution and Genome Instability Laboratory, The Francis Crick Institute, London, United Kingdom
| | - Wei-Ting Lu
- Cancer Evolution and Genome Instability Laboratory, The Francis Crick Institute, London, United Kingdom
| | - Michelle Dietzen
- Cancer Evolution and Genome Instability Laboratory, The Francis Crick Institute, London, United Kingdom
- Cancer Research UK Lung Cancer Centre of Excellence, UCL Cancer Institute, University College London, London, United Kingdom
- Cancer Genome Evolution Research Group, UCL Cancer Institute, University College London, London, United Kingdom
| | - Panagiotis Galanos
- Genome Integrity Unit, Danish Cancer Society Research Center, Copenhagen, Denmark
| | - Konstantinos Evangelou
- Molecular Carcinogenesis Group, Department of Histology and Embryology, Medical School, National and Kapodistrian University of Athens, Athens, Greece
| | - Roberto Bellelli
- Centre for Cancer Cell and Molecular Biology, Barts Cancer Institute, Queen Mary University of London, London, United Kingdom
| | - Emilia L. Lim
- Cancer Evolution and Genome Instability Laboratory, The Francis Crick Institute, London, United Kingdom
- Cancer Research UK Lung Cancer Centre of Excellence, UCL Cancer Institute, University College London, London, United Kingdom
| | - Thomas B.K. Watkins
- Cancer Evolution and Genome Instability Laboratory, The Francis Crick Institute, London, United Kingdom
| | - Andrew Rowan
- Cancer Evolution and Genome Instability Laboratory, The Francis Crick Institute, London, United Kingdom
| | - Vitor H. Teixeira
- Lungs for Living Research Centre, UCL Respiratory, Division of Medicine, University College London, London, United Kingdom
| | - Yue Zhao
- Department of Thoracic Surgery, Fudan University Shanghai Cancer Center, Shanghai, China
- Institute of Thoracic Oncology, Fudan University, Shanghai, China
- State Key Laboratory of Genetic Engineering, School of Life Sciences, Fudan University, Shanghai, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Haiquan Chen
- Department of Thoracic Surgery, Fudan University Shanghai Cancer Center, Shanghai, China
- Institute of Thoracic Oncology, Fudan University, Shanghai, China
- State Key Laboratory of Genetic Engineering, School of Life Sciences, Fudan University, Shanghai, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Bryan Ngo
- Sandra and Edward Meyer Cancer Center, Weill Cornell Medicine, New York, New York, USA
| | | | - Maise Al Bakir
- Cancer Evolution and Genome Instability Laboratory, The Francis Crick Institute, London, United Kingdom
| | - Sebastijan Hobor
- Cancer Evolution and Genome Instability Laboratory, The Francis Crick Institute, London, United Kingdom
| | - Eva Gronroos
- Cancer Evolution and Genome Instability Laboratory, The Francis Crick Institute, London, United Kingdom
| | - Adam Pennycuick
- Lungs for Living Research Centre, UCL Respiratory, Division of Medicine, University College London, London, United Kingdom
| | - Ersilia Nigro
- Lungs for Living Research Centre, UCL Respiratory, Division of Medicine, University College London, London, United Kingdom
| | - Brittany B. Campbell
- Cancer Evolution and Genome Instability Laboratory, The Francis Crick Institute, London, United Kingdom
| | - William L. Brown
- Masonic Cancer Center, Minneapolis, USA; Institute for Molecular Virology, Minneapolis, USA; Center for Genome Engineering, Minneapolis, USA
- Department of Biochemistry, Molecular Biology and Biophysics, University of Minnesota, Minneapolis, USA
| | - Ayse U. Akarca
- Department of Histopathology, University College London, London, United Kingdom
| | - Teresa Marafioti
- Department of Histopathology, University College London, London, United Kingdom
| | - Mary Y. Wu
- High Throughput Screening Laboratory, The Francis Crick Institute, London, United Kingdom
| | - Michael Howell
- High Throughput Screening Laboratory, The Francis Crick Institute, London, United Kingdom
| | - Simon J. Boulton
- DSB Repair Metabolism Laboratory, The Francis Crick Institute, London, United Kingdom
| | - Cosetta Bertoli
- MRC Laboratory for Molecular Cell Biology, University College London, London, United Kingdom
| | - Tim R. Fenton
- School of Biosciences, University of Kent, Canterbury, United Kingdom
| | - Robertus A.M. de Bruin
- MRC Laboratory for Molecular Cell Biology, University College London, London, United Kingdom
| | | | - Eric Santoni-Rugiu
- Department of Pathology, Rigshospitalet, Copenhagen University Hospital, Copenhagen, Denmark
- Biotech Research & Innovation Centre (BRIC), University of Copenhagen, Copenhagen, Denmark
| | - Robert E. Hynds
- Cancer Evolution and Genome Instability Laboratory, The Francis Crick Institute, London, United Kingdom
- Cancer Research UK Lung Cancer Centre of Excellence, UCL Cancer Institute, University College London, London, United Kingdom
| | - Vassilis G. Gorgoulis
- Molecular Carcinogenesis Group, Department of Histology and Embryology, Medical School, National and Kapodistrian University of Athens, Athens, Greece
- Molecular and Clinical Cancer Sciences, Manchester Cancer Research Centre, Manchester Academic Health Sciences Centre, University of Manchester, Manchester, United Kingdom
- Biomedical Research Foundation, Academy of Athens, Athens, Greece
- Center for New Biotechnologies and Precision Medicine, Medical School, National and Kapodistrian University of Athens, Athens, Greece
| | - Mariam Jamal-Hanjani
- Cancer Research UK Lung Cancer Centre of Excellence, UCL Cancer Institute, University College London, London, United Kingdom
- Department of Medical Oncology, University College London Hospitals NHS Foundation Trust, London, United Kingdom
| | - Nicholas McGranahan
- Cancer Research UK Lung Cancer Centre of Excellence, UCL Cancer Institute, University College London, London, United Kingdom
- Cancer Genome Evolution Research Group, UCL Cancer Institute, University College London, London, United Kingdom
| | - Reuben S. Harris
- Masonic Cancer Center, Minneapolis, USA; Institute for Molecular Virology, Minneapolis, USA; Center for Genome Engineering, Minneapolis, USA
- Department of Biochemistry, Molecular Biology and Biophysics, University of Minnesota, Minneapolis, USA
- Howard Hughes Medical Institute, University of Minnesota, Minneapolis, USA
| | - Sam M. Janes
- Lungs for Living Research Centre, UCL Respiratory, Division of Medicine, University College London, London, United Kingdom
| | - Jirina Bartkova
- Genome Integrity Unit, Danish Cancer Society Research Center, Copenhagen, Denmark
- Division of Genome Biology, Department of Medical Biochemistry and Biophysics, Science for Life Laboratory, Karolinska Institute, Stockholm, Sweden
| | - Samuel F. Bakhoum
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, New York, USA
- Department of Radiation Oncology, Memorial Sloan Kettering Cancer Center, New York, New York, USA
| | - Jiri Bartek
- Genome Integrity Unit, Danish Cancer Society Research Center, Copenhagen, Denmark
- Division of Genome Biology, Department of Medical Biochemistry and Biophysics, Science for Life Laboratory, Karolinska Institute, Stockholm, Sweden
| | - Nnennaya Kanu
- Cancer Research UK Lung Cancer Centre of Excellence, UCL Cancer Institute, University College London, London, United Kingdom
| | - Charles Swanton
- Cancer Evolution and Genome Instability Laboratory, The Francis Crick Institute, London, United Kingdom
- Cancer Research UK Lung Cancer Centre of Excellence, UCL Cancer Institute, University College London, London, United Kingdom
- Department of Medical Oncology, University College London Hospitals NHS Foundation Trust, London, United Kingdom
| |
Collapse
|
216
|
Ou H, Hoffmann R, González‐López C, Doherty GJ, Korkola JE, Muñoz‐Espín D. Cellular senescence in cancer: from mechanisms to detection. Mol Oncol 2021; 15:2634-2671. [PMID: 32981205 PMCID: PMC8486596 DOI: 10.1002/1878-0261.12807] [Citation(s) in RCA: 100] [Impact Index Per Article: 25.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2020] [Revised: 08/25/2020] [Accepted: 09/22/2020] [Indexed: 01/10/2023] Open
Abstract
Senescence refers to a cellular state featuring a stable cell-cycle arrest triggered in response to stress. This response also involves other distinct morphological and intracellular changes including alterations in gene expression and epigenetic modifications, elevated macromolecular damage, metabolism deregulation and a complex pro-inflammatory secretory phenotype. The initial demonstration of oncogene-induced senescence in vitro established senescence as an important tumour-suppressive mechanism, in addition to apoptosis. Senescence not only halts the proliferation of premalignant cells but also facilitates the clearance of affected cells through immunosurveillance. Failure to clear senescent cells owing to deficient immunosurveillance may, however, lead to a state of chronic inflammation that nurtures a pro-tumorigenic microenvironment favouring cancer initiation, migration and metastasis. In addition, senescence is a response to post-therapy genotoxic stress. Therefore, tracking the emergence of senescent cells becomes pivotal to detect potential pro-tumorigenic events. Current protocols for the in vivo detection of senescence require the analysis of fixed or deep-frozen tissues, despite a significant clinical need for real-time bioimaging methods. Accuracy and efficiency of senescence detection are further hampered by a lack of universal and more specific senescence biomarkers. Recently, in an attempt to overcome these hurdles, an assortment of detection tools has been developed. These strategies all have significant potential for clinical utilisation and include flow cytometry combined with histo- or cytochemical approaches, nanoparticle-based targeted delivery of imaging contrast agents, OFF-ON fluorescent senoprobes, positron emission tomography senoprobes and analysis of circulating SASP factors, extracellular vesicles and cell-free nucleic acids isolated from plasma. Here, we highlight the occurrence of senescence in neoplasia and advanced tumours, assess the impact of senescence on tumorigenesis and discuss how the ongoing development of senescence detection tools might improve early detection of multiple cancers and response to therapy in the near future.
Collapse
Affiliation(s)
- Hui‐Ling Ou
- CRUK Cambridge Centre Early Detection ProgrammeDepartment of OncologyHutchison/MRC Research CentreUniversity of CambridgeUK
| | - Reuben Hoffmann
- Department of Biomedical EngineeringKnight Cancer InstituteOHSU Center for Spatial Systems BiomedicineOregon Health and Science UniversityPortlandORUSA
| | - Cristina González‐López
- CRUK Cambridge Centre Early Detection ProgrammeDepartment of OncologyHutchison/MRC Research CentreUniversity of CambridgeUK
| | - Gary J. Doherty
- Department of OncologyCambridge University Hospitals NHS Foundation TrustCambridge Biomedical CampusUK
| | - James E. Korkola
- Department of Biomedical EngineeringKnight Cancer InstituteOHSU Center for Spatial Systems BiomedicineOregon Health and Science UniversityPortlandORUSA
| | - Daniel Muñoz‐Espín
- CRUK Cambridge Centre Early Detection ProgrammeDepartment of OncologyHutchison/MRC Research CentreUniversity of CambridgeUK
| |
Collapse
|
217
|
Li Y, Liu H, Li T, Feng J, He Y, Chen L, Li C, Qiu X. Choroid Plexus Carcinomas With TP53 Germline Mutations: Management and Outcome. Front Oncol 2021; 11:751784. [PMID: 34660315 PMCID: PMC8514937 DOI: 10.3389/fonc.2021.751784] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2021] [Accepted: 08/30/2021] [Indexed: 11/22/2022] Open
Abstract
BACKGROUND Choroid plexus carcinomas (CPCs) are rare pediatric tumors commonly associated with Li-Fraumeni syndrome (LFS), which involves a germline mutation of the tumor suppressor gene TP53. MATERIALS AND METHODS We retrospectively analyzed the corresponding information of 12 cases, including the effects of surgery and radiotherapy and TP53 germline mutations, to analyse the management strategies. Kaplan-Meier curves and the log-rank test were used to evaluate the progression-free survival (PFS). RESULTS Twelve CPC patients were included, of which TP53 germline mutations were found in eight cases. All patients underwent surgical resection, and six patients received radiotherapy following with operation after initial diagnosis, one patient received radiotherapy following relapse. It was significantly different (P=0.012 and 0.028) that patients with TP53 germline mutation receiving the gross total resection (GTR) without radiotherapy showed survival advantages. Without TP53 germline mutations also showed survival advantages, but there is no statistical significance (P=0.063). CONCLUSIONS These findings provide evidence for the therapeutic strategy that radiotherapy should not be considered for patients with TP53 germline mutations.
Collapse
Affiliation(s)
- Yanong Li
- Department of Radiation Oncology, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Hailong Liu
- Department of Radiation Oncology, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Tandy Li
- Departments of Pharmacy, New York Presbyterian Lower Manhattan Hospital, New York, NY, United States
| | - Jin Feng
- Department of Radiation Oncology, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Yanjiao He
- Department of Pathology, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Li Chen
- Department of Radiation Oncology, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Chunde Li
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Xiaoguang Qiu
- Department of Radiation Oncology, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| |
Collapse
|
218
|
Singh R, Rajput M, Singh RP. Simulated microgravity triggers DNA damage and mitochondria-mediated apoptosis through ROS generation in human promyelocytic leukemic cells. Mitochondrion 2021; 61:114-124. [PMID: 34571251 DOI: 10.1016/j.mito.2021.09.006] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2021] [Revised: 09/06/2021] [Accepted: 09/22/2021] [Indexed: 12/11/2022]
Abstract
The weightlessness or microgravity, a physical factor in space, may adversely affect the health of the space travellers or astronauts. The knowledge about the effect of microgravity on human cancer cells is very limited and poorly understood. Here, we employed rotary cell culture system (RCCS) to induce simulated microgravity (SMG) and examined its effects on human promyelocytic leukemic HL-60 cells. These cells were grown in normal gravity condition (1g) for control purpose. The 72 h exposure of cells to SMG decreased cell proliferation and viability which were accompanied by the reduced expression of PCNA and phosphorylated ERK1/2 and AKT proteins. SMG increased the DNA damage as well as the expression of DNA damage sensing proteins including ATM, ATR, Chk1, Chk2 and γH2A.X. The expression of AP1, XRCC1 and APEX1 regulating BER, XPC regulating NER and MLH1 and PMS2 regulating MMR were downregulated. However, SMG increased the expression of Ku70/80, DNA-PK and Rad51, regulating NHEJ and HR. SMG induced apoptosis and increased the levels of cleaved-poly-(ADP-ribose) polymerase and cleaved-caspase-3. An increase in Bax/Bcl-2 ratio and dissipation of mitochondrial membrane potential were also observed. SMG enhanced reactive oxygen species (ROS) formation which led to the enhanced DNA damage and apoptotic cell death. Overall, SMG induced ROS, DNA damage and differential expression of DNA repair genes, and altered the overall DNA repair capacity which may activate ATM/ATR-Chk1/2 and Ku70/80 and DNA-PK-mediated apoptotic cell death.
Collapse
Affiliation(s)
- Ragini Singh
- Cancer Biology Laboratory, School of Life Sciences, Jawaharlal Nehru University, New Delhi, India
| | - Mohit Rajput
- Cancer Biology Laboratory, School of Life Sciences, Jawaharlal Nehru University, New Delhi, India
| | - Rana P Singh
- Cancer Biology Laboratory, School of Life Sciences, Jawaharlal Nehru University, New Delhi, India; Special Centre for Systems Medicine, Jawaharlal Nehru University, New Delhi, India.
| |
Collapse
|
219
|
Lee SY, Kim JJ, Miller KM. Bromodomain proteins: protectors against endogenous DNA damage and facilitators of genome integrity. Exp Mol Med 2021; 53:1268-1277. [PMID: 34548613 PMCID: PMC8492697 DOI: 10.1038/s12276-021-00673-0] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Accepted: 07/13/2021] [Indexed: 12/11/2022] Open
Abstract
Endogenous DNA damage is a major contributor to mutations, which are drivers of cancer development. Bromodomain (BRD) proteins are well-established participants in chromatin-based DNA damage response (DDR) pathways, which maintain genome integrity from cell-intrinsic and extrinsic DNA-damaging sources. BRD proteins are most well-studied as regulators of transcription, but emerging evidence has revealed their importance in other DNA-templated processes, including DNA repair and replication. How BRD proteins mechanistically protect cells from endogenous DNA damage through their participation in these pathways remains an active area of investigation. Here, we review several recent studies establishing BRD proteins as key influencers of endogenous DNA damage, including DNA–RNA hybrid (R-loops) formation during transcription and participation in replication stress responses. As endogenous DNA damage is known to contribute to several human diseases, including neurodegeneration, immunodeficiencies, cancer, and aging, the ability of BRD proteins to suppress DNA damage and mutations is likely to provide new insights into the involvement of BRD proteins in these diseases. Although many studies have focused on BRD proteins in transcription, evidence indicates that BRD proteins have emergent functions in DNA repair and genome stability and are participants in the etiology and treatment of diseases involving endogenous DNA damage. Bromodomain (BRD) proteins, known to regulate gene expression, switching particular genes on and off, also play key roles in repairing DNA damage, and studying them may help identify treatments for various diseases, including cancer. DNA damage can occur during normal cellular metabolism, for example, during copying DNA and gene expression. DNA damage is implicated in tumor formation as well as in neurodegeneration, immunodeficiency, and aging. Seo Yun Lee and colleagues at The University of Texas at Austin, USA, have reviewed new results showing how BRD proteins function in repairing DNA damage. They report that when DNA is damaged during copying in BRD-deficient cells, tumors can result. They also report that defects in BRD proteins are often present in cancers. Studying how BRD proteins function in both healthy and diseased cells could help to identify new therapies.
Collapse
Affiliation(s)
- Seo Yun Lee
- Department of Molecular Biosciences, The University of Texas at Austin, Austin, TX, USA
| | - Jae Jin Kim
- Department of Molecular Biosciences, The University of Texas at Austin, Austin, TX, USA. .,Department of Life Science and Multidisciplinary Genome Institute, Hallym University, Chuncheon, Korea.
| | - Kyle M Miller
- Department of Molecular Biosciences, The University of Texas at Austin, Austin, TX, USA. .,Livestrong Cancer Institutes, Dell Medical School, The University of Texas at Austin, Austin, TX, USA.
| |
Collapse
|
220
|
Brabletz S, Schuhwerk H, Brabletz T, Stemmler MP. Dynamic EMT: a multi-tool for tumor progression. EMBO J 2021; 40:e108647. [PMID: 34459003 PMCID: PMC8441439 DOI: 10.15252/embj.2021108647] [Citation(s) in RCA: 424] [Impact Index Per Article: 106.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2021] [Revised: 06/14/2021] [Accepted: 06/29/2021] [Indexed: 12/20/2022] Open
Abstract
The process of epithelial-mesenchymal transition (EMT) is fundamental for embryonic morphogenesis. Cells undergoing it lose epithelial characteristics and integrity, acquire mesenchymal features, and become motile. In cancer, this program is hijacked to confer essential changes in morphology and motility that fuel invasion. In addition, EMT is increasingly understood to orchestrate a large variety of complementary cancer features, such as tumor cell stemness, tumorigenicity, resistance to therapy and adaptation to changes in the microenvironment. In this review, we summarize recent findings related to these various classical and non-classical functions, and introduce EMT as a true tumorigenic multi-tool, involved in many aspects of cancer. We suggest that therapeutic targeting of the EMT process will-if acknowledging these complexities-be a possibility to concurrently interfere with tumor progression on many levels.
Collapse
Affiliation(s)
- Simone Brabletz
- Department of Experimental Medicine 1Nikolaus‐Fiebiger Center for Molecular MedicineFriedrich‐Alexander University of Erlangen‐NürnbergErlangenGermany
| | - Harald Schuhwerk
- Department of Experimental Medicine 1Nikolaus‐Fiebiger Center for Molecular MedicineFriedrich‐Alexander University of Erlangen‐NürnbergErlangenGermany
| | - Thomas Brabletz
- Department of Experimental Medicine 1Nikolaus‐Fiebiger Center for Molecular MedicineFriedrich‐Alexander University of Erlangen‐NürnbergErlangenGermany
| | - Marc P. Stemmler
- Department of Experimental Medicine 1Nikolaus‐Fiebiger Center for Molecular MedicineFriedrich‐Alexander University of Erlangen‐NürnbergErlangenGermany
| |
Collapse
|
221
|
Stromberg BR, Singh M, Torres AE, Burrows AC, Pal D, Insinna C, Rhee Y, Dickson AS, Westlake CJ, Summers MK. The deubiquitinating enzyme USP37 enhances CHK1 activity to promote the cellular response to replication stress. J Biol Chem 2021; 297:101184. [PMID: 34509474 PMCID: PMC8487067 DOI: 10.1016/j.jbc.2021.101184] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2021] [Revised: 08/29/2021] [Accepted: 09/07/2021] [Indexed: 12/24/2022] Open
Abstract
The deubiquitinating enzyme USP37 is known to contribute to timely onset of S phase and progression of mitosis. However, it is not clear if USP37 is required beyond S-phase entry despite expression and activity of USP37 peaking within S phase. We have utilized flow cytometry and microscopy to analyze populations of replicating cells labeled with thymidine analogs and monitored mitotic entry in synchronized cells to determine that USP37-depleted cells exhibited altered S-phase kinetics. Further analysis revealed that cells depleted of USP37 harbored increased levels of the replication stress and DNA damage markers γH2AX and 53BP1 in response to perturbed replication. Depletion of USP37 also reduced cellular proliferation and led to increased sensitivity to agents that induce replication stress. Underlying the increased sensitivity, we found that the checkpoint kinase 1 is destabilized in the absence of USP37, attenuating its function. We further demonstrated that USP37 deubiquitinates checkpoint kinase 1, promoting its stability. Together, our results establish that USP37 is required beyond S-phase entry to promote the efficiency and fidelity of replication. These data further define the role of USP37 in the regulation of cell proliferation and contribute to an evolving understanding of USP37 as a multifaceted regulator of genome stability.
Collapse
Affiliation(s)
- Benjamin R Stromberg
- Department of Radiation Oncology, Arthur G James Comprehensive Cancer Center and Richard L. Solove Research Institute, The Ohio State University, Columbus, Ohio, USA; Biomedical Sciences Graduate Program, The Ohio State University, Columbus, Ohio, USA
| | - Mayank Singh
- Department of Radiation Oncology, Arthur G James Comprehensive Cancer Center and Richard L. Solove Research Institute, The Ohio State University, Columbus, Ohio, USA
| | - Adrian E Torres
- Department of Radiation Oncology, Arthur G James Comprehensive Cancer Center and Richard L. Solove Research Institute, The Ohio State University, Columbus, Ohio, USA
| | - Amy C Burrows
- Department of Cancer Biology, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio, USA
| | - Debjani Pal
- Department of Radiation Oncology, Arthur G James Comprehensive Cancer Center and Richard L. Solove Research Institute, The Ohio State University, Columbus, Ohio, USA
| | - Christine Insinna
- NCI-Frederick National Laboratory, Laboratory of Cellular and Developmental Signaling, Frederick, Maryland, USA
| | - Yosup Rhee
- Department of Radiation Oncology, Arthur G James Comprehensive Cancer Center and Richard L. Solove Research Institute, The Ohio State University, Columbus, Ohio, USA
| | - Andrew S Dickson
- Department of Cancer Biology, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio, USA
| | - Christopher J Westlake
- NCI-Frederick National Laboratory, Laboratory of Cellular and Developmental Signaling, Frederick, Maryland, USA
| | - Matthew K Summers
- Department of Radiation Oncology, Arthur G James Comprehensive Cancer Center and Richard L. Solove Research Institute, The Ohio State University, Columbus, Ohio, USA.
| |
Collapse
|
222
|
Li J, Zhou J, Zhang J, Xiao Z, Wang W, Chen H, Lin L, Yang Q. DNA repair genes are associated with tumor tissue differentiation and immune environment in lung adenocarcinoma: a bioinformatics analysis based on big data. J Thorac Dis 2021; 13:4464-4475. [PMID: 34422373 PMCID: PMC8339776 DOI: 10.21037/jtd-21-949] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2021] [Accepted: 07/02/2021] [Indexed: 12/25/2022]
Abstract
Background Lung adenocarcinoma (LUAD) is the most common type of lung cancer. DNA repair genes (DRGs) is important in lung cancer. The relationship between the immune environment and the expression levels of DRGs in LUAD remains unclear. The purpose of this study is to assess the relationship between DRGs and the immune environment and clinical characteristics of LUAD. Methods Data of 169 LUAD cases were obtained from cbioportal. The RNA-seq data came from the The Cancer Genome Atlas (TCGA) database. We collected DRGs from the Reactom database (KW0037, Reactom.org). The 302 genes expressed in each sample were analyzed by hierarchical clustering and grouped using the Gene Cluster 3.0 program. The Java Treeview program was used to generate heat maps of cluster indications and tumor staging patterns. GraphPad Prism 8 was used to draw survival curves and compare overall survival (OS). For single genes, an OS difference analysis between low and high expression populations was performed in GraphPad Prism 8. Results Matrix clustering showed no difference in the prognosis of the two clusters. The comparison of subgroups showed that Subcluster 1 (SC1) had the best prognosis, and Subcluster 2 (SC2) had the worst. There was a significant difference in tumor grades between Cluster 1 and Cluster 2 (P=0.01). There were significant differences in smoking status, histological grade and adenocarcinoma subtype among subgroups. In Subcluster 3 (SC3), the proportion of poorly differentiated cases was highest. Immunological index analysis showed that there were significant differences between Cluster 1 and Cluster 2 in interferon, macrophages, monocytes, neutrophils, natural killer (NK) cells, and T cells. Tumor purity, interferon, macrophages, monocytes, neutrophils, NK cells, T cells, translation, and proliferation all showed significant differences between subgroups. In SC2, the proliferation index increased (0.082 vs. 0.070); the protein translation index decreased (0.134 vs. 0.137); and the interferon level increased (0.099 vs. 0.097). In SC3, the proliferation index decreased (0.076 vs. 0.071); the protein translation index decreased (0.140 vs. 0.136); and the level of neutrophils increased (0.083 vs. 0.086). Conclusions The differences of DRGs in LUAD are related to tissue differentiation and immune indicators but not to prognosis.
Collapse
Affiliation(s)
- Jiayin Li
- Cancer Center, The First Affiliated Hospital to Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Jingxu Zhou
- Cancer Center, The First Affiliated Hospital to Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Jing Zhang
- Cancer Center, The First Affiliated Hospital to Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Zhiwei Xiao
- Cancer Center, The First Affiliated Hospital to Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Wenping Wang
- Cancer Center, The First Affiliated Hospital to Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Hanrui Chen
- Cancer Center, The First Affiliated Hospital to Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Lizhu Lin
- Cancer Center, The First Affiliated Hospital to Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Qiuye Yang
- Department of Medical Technologic, The First Affiliated Hospital to Guangzhou University of Chinese Medicine, Guangzhou, China
| |
Collapse
|
223
|
Alomar ML, Yañuk JG, Angel SO, Gonzalez MM, Cabrerizo FM. In vitro Effect of Harmine Alkaloid and Its N-Methyl Derivatives Against Toxoplasma gondii. Front Microbiol 2021; 12:716534. [PMID: 34421876 PMCID: PMC8375385 DOI: 10.3389/fmicb.2021.716534] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2021] [Accepted: 07/07/2021] [Indexed: 11/22/2022] Open
Abstract
Toxoplasmosis is one of the most prevalent and neglected zoonotic global diseases caused by Toxoplasma gondii. The current pharmacological treatments show clinical limitations, and therefore, the search for new drugs is an urgent need in order to eradicate this infection. Due to their intrinsic biological activities, β-carboline (βC) alkaloids might represent a good alternative that deserves further investigations. In this context, the in vitro anti-T. gondii activity of three βCs, harmine (1), 2-methyl-harminium (2), and 9-methyl-harmine (3), was evaluated herein. Briefly, the three alkaloids exerted direct effects on the parasite invasion and/or replication capability. Replication rates of intracellular treated tachyzoites were also affected in a dose-dependent manner, at noncytotoxic concentrations for host cells. Additionally, cell cycle analysis revealed that both methyl-derivatives 2 and 3 induce parasite arrest in S/M phases. Compound 3 showed the highest irreversible parasite growth inhibition, with a half maximal inhibitory concentration (IC50) value of 1.8 ± 0.2 μM and a selectivity index (SI) of 17.2 at 4 days post infection. Due to high replication rates, tachyzoites are frequently subjected to DNA double-strand breaks (DSBs). This highly toxic lesion triggers a series of DNA damage response reactions, starting with a kinase cascade that phosphorylates a large number of substrates, including the histone H2A.X to lead the early DSB marker γH2A.X. Western blot studies showed that basal expression of γH2A.X was reduced in the presence of 3. Interestingly, the typical increase in γH2A.X levels produced by camptothecin (CPT), a drug that generates DSB, was not observed when CPT was co-administered with 3. These findings suggest that 3 might disrupt Toxoplasma DNA damage response.
Collapse
Affiliation(s)
- Maria L Alomar
- Laboratorio de Fotoquímica y Fotobiología Molecular, Instituto Tecnológico de Chascomús (INTECH), Universidad Nacional de San Martín (UNSAM) - Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Chascomús, Argentina
| | - Juan G Yañuk
- Laboratorio de Fotoquímica y Fotobiología Molecular, Instituto Tecnológico de Chascomús (INTECH), Universidad Nacional de San Martín (UNSAM) - Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Chascomús, Argentina
| | - Sergio O Angel
- Laboratorio de Parasitología Molecular, INTECH, UNSAM - CONICET, Chascomús, Argentina
| | - M Micaela Gonzalez
- Laboratorio de Fotoquímica y Fotobiología Molecular, Instituto Tecnológico de Chascomús (INTECH), Universidad Nacional de San Martín (UNSAM) - Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Chascomús, Argentina
| | - Franco M Cabrerizo
- Laboratorio de Fotoquímica y Fotobiología Molecular, Instituto Tecnológico de Chascomús (INTECH), Universidad Nacional de San Martín (UNSAM) - Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Chascomús, Argentina
| |
Collapse
|
224
|
Wang A, Hai R. Noncoding RNAs Serve as the Deadliest Universal Regulators of all Cancers. Cancer Genomics Proteomics 2021; 18:43-52. [PMID: 33419895 DOI: 10.21873/cgp.20240] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2020] [Revised: 10/08/2020] [Accepted: 10/20/2020] [Indexed: 01/10/2023] Open
Abstract
Numerous cancer drivers have been identified, but they are specific to a given cancer type and condition; universal cancer drivers and universal cancer mechanisms still remain largely unclear. Here, we identified the deadliest universal drivers for all cancers via developing algorithms to analyze massive RNAseqs and clinical data from The Cancer Genome Atlas (TCGA). In general, noncoding RNAs primarily serve as the most important inducers and suppressors for all types of cancers. In particular, pseudogenes are primary inducers, and specifically the antisense RNA RP11-335K5.2 serves as the most universal cancerous driver, independently of the cancer type and condition. Therefore, noncoding RNAs, instead of proteins as conventionally thought, primarily drive cancer, which establishes a novel field for future cancer research and therapy.
Collapse
Affiliation(s)
- Anyou Wang
- The Institute for Integrative Genome Biology, University of California at Riverside, Riverside, CA, U.S.A.;
| | - Rong Hai
- The Institute for Integrative Genome Biology, University of California at Riverside, Riverside, CA, U.S.A.,Department of Microbiology and Plant Pathology, University of California at Riverside, Riverside, CA, U.S.A
| |
Collapse
|
225
|
Stead ER, Bjedov I. Balancing DNA repair to prevent ageing and cancer. Exp Cell Res 2021; 405:112679. [PMID: 34102225 PMCID: PMC8361780 DOI: 10.1016/j.yexcr.2021.112679] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2020] [Revised: 04/25/2021] [Accepted: 04/29/2021] [Indexed: 02/06/2023]
Abstract
DNA damage is a constant stressor to the cell. Persistent damage to the DNA over time results in an increased risk of mutation and an accumulation of mutations with age. Loss of efficient DNA damage repair can lead to accelerated ageing phenotypes or an increased cancer risk, and the trade-off between cancer susceptibility and longevity is often driven by the cell's response to DNA damage. High levels of mutations in DNA repair mutants often leads to excessive cell death and stem cell exhaustion which may promote premature ageing. Stem cells themselves have distinct characteristics that enable them to retain low mutation rates. However, when mutations do arise, stem cell clonal expansion can also contribute to age-related tissue dysfunction as well as heightened cancer risk. In this review, we will highlight increasing DNA damage and mutation accumulation as hallmarks common to both ageing and cancer. We will propose that anti-ageing interventions might be cancer preventative and discuss the mechanisms through which they may act.
Collapse
Affiliation(s)
- Eleanor Rachel Stead
- UCL Cancer Institute, Paul O'Gorman Building, University College London, 72 Huntley Street London, London WC1E 6DD, UK
| | - Ivana Bjedov
- UCL Cancer Institute, Paul O'Gorman Building, University College London, 72 Huntley Street London, London WC1E 6DD, UK; University College London, Department of Medical Physics and Biomedical Engineering, Malet Place Engineering Building, Gower Street, London WC1E 6BT, UK.
| |
Collapse
|
226
|
A transcription-based mechanism for oncogenic β-catenin-induced lethality in BRCA1/2-deficient cells. Nat Commun 2021; 12:4919. [PMID: 34389725 PMCID: PMC8363664 DOI: 10.1038/s41467-021-25215-0] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2020] [Accepted: 07/20/2021] [Indexed: 12/12/2022] Open
Abstract
BRCA1 or BRCA2 germline mutations predispose to breast, ovarian and other cancers. High-throughput sequencing of tumour genomes revealed that oncogene amplification and BRCA1/2 mutations are mutually exclusive in cancer, however the molecular mechanism underlying this incompatibility remains unknown. Here, we report that activation of β-catenin, an oncogene of the WNT signalling pathway, inhibits proliferation of BRCA1/2-deficient cells. RNA-seq analyses revealed β-catenin-induced discrete transcriptome alterations in BRCA2-deficient cells, including suppression of CDKN1A gene encoding the CDK inhibitor p21. This accelerates G1/S transition, triggering illegitimate origin firing and DNA damage. In addition, β-catenin activation accelerates replication fork progression in BRCA2-deficient cells, which is critically dependent on p21 downregulation. Importantly, we find that upregulated p21 expression is essential for the survival of BRCA2-deficient cells and tumours. Thus, our work demonstrates that β-catenin toxicity in cancer cells with compromised BRCA1/2 function is driven by transcriptional alterations that cause aberrant replication and inflict DNA damage. Germline mutations in BRCA1 or BRCA2 tumour suppressor genes predispose to different cancers, as does oncogene activation. Here the authors reveal that aberrant transcription of specific genes triggered by activation of the oncogene β-catenin causes replication failure and cell death in the context of BRCA1/2 deficiency.
Collapse
|
227
|
Guha S, Bhaumik SR. Transcription-coupled DNA double-strand break repair. DNA Repair (Amst) 2021; 109:103211. [PMID: 34883263 DOI: 10.1016/j.dnarep.2021.103211] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2021] [Revised: 08/11/2021] [Accepted: 08/11/2021] [Indexed: 12/20/2022]
Abstract
The genomic DNA is constantly under attack by cellular and/or environmental factors. Fortunately, the cell is armed to safeguard its genome by various mechanisms such as nucleotide excision, base excision, mismatch and DNA double-strand break repairs. While these processes maintain the integrity of the genome throughout, DNA repair occurs preferentially faster at the transcriptionally active genes. Such transcription-coupled repair phenomenon plays important roles to maintain active genome integrity, failure of which would interfere with transcription, leading to an altered gene expression (and hence cellular pathologies/diseases). Among the various DNA damages, DNA double-strand breaks are quite toxic to the cells. If DNA double-strand break occurs at the active gene, it would interfere with transcription/gene expression, thus threatening cellular viability. Such DNA double-strand breaks are found to be repaired faster at the active gene in comparison to its inactive state or the inactive gene, thus supporting the existence of a new phenomenon of transcription-coupled DNA double-strand break repair. Here, we describe the advances of this repair process.
Collapse
Affiliation(s)
- Shalini Guha
- Department of Biochemistry and Molecular Biology, Southern Illinois University School of Medicine, Carbondale, IL, 62901, USA
| | - Sukesh R Bhaumik
- Department of Biochemistry and Molecular Biology, Southern Illinois University School of Medicine, Carbondale, IL, 62901, USA.
| |
Collapse
|
228
|
Belyaeva AG, Kudrin VS, Koshlan IV, Koshlan NA, Isakova MD, Bogdanova YV, Timoshenko GN, Krasavin EA, Blokhina TM, Yashkina EI, Osipov AN, Nosovsky AN, Perevezentsev AA, Shtemberg AS. Effects of combined exposure to modeled radiation and gravitation factors of the interplanetary flight: Monkeys' cognitive functions and the content of monoamines and their metabolites; cytogenetic changes in peripheral blood lymphocytes. LIFE SCIENCES IN SPACE RESEARCH 2021; 30:45-54. [PMID: 34281664 DOI: 10.1016/j.lssr.2021.05.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/03/2021] [Revised: 04/23/2021] [Accepted: 05/24/2021] [Indexed: 06/13/2023]
Abstract
In a study on primates (Macaca mulatta), neurobiological and radiobiological effects have been studied of the synchronous combined action of 7-day antiorthostatic hypokinesia and exposure of the monkeys' head first to γ-rays during 24 h and then to accelerated 12C ions. The neurobiological effects were evaluated by the cognitive functions which model the basic elements of operator activity and the concentration of monoamines and their metabolites in peripheral blood. The radiobiological effects were evaluated by the chromosomal aberration and DNA double-strand break (DSB) yield in peripheral blood lymphocytes. The results of the cognitive function research show that the typological features of the animals' higher nervous activity are the prevailing factor that determines changes in these functions. The monkey of the strong balanced type effectively retained its cognitive functions after the exposures, while in the weak unbalanced type animals these functions were impaired. These changes went along with a decrease in the concentration of monoamines and their metabolites and an increase in the DNA DSB and chromosomal aberration yield in lymphocytes.
Collapse
Affiliation(s)
- Alexandra G Belyaeva
- Institute of Biomedical Problems of the Russian Academy of Sciences (RAS), 123007, Moscow, Russian Federation.
| | - Vladimir S Kudrin
- Institute of Biomedical Problems of the Russian Academy of Sciences (RAS), 123007, Moscow, Russian Federation; Zakusov Institute of Pharmacology, 125315, Moscow, Russian Federation.
| | - Igor V Koshlan
- Joint Institute for Nuclear Research 141980, Dubna, Moscow Oblast, Russian Federation; Dubna State University, 141982, Dubna, Moscow Oblast, Russian Federation.
| | - Nataliya A Koshlan
- Joint Institute for Nuclear Research 141980, Dubna, Moscow Oblast, Russian Federation.
| | - Mariya D Isakova
- Joint Institute for Nuclear Research 141980, Dubna, Moscow Oblast, Russian Federation; Dubna State University, 141982, Dubna, Moscow Oblast, Russian Federation.
| | - Yulia V Bogdanova
- Joint Institute for Nuclear Research 141980, Dubna, Moscow Oblast, Russian Federation.
| | - Gennady N Timoshenko
- Joint Institute for Nuclear Research 141980, Dubna, Moscow Oblast, Russian Federation; Dubna State University, 141982, Dubna, Moscow Oblast, Russian Federation.
| | - Evgeny A Krasavin
- Joint Institute for Nuclear Research 141980, Dubna, Moscow Oblast, Russian Federation; Dubna State University, 141982, Dubna, Moscow Oblast, Russian Federation.
| | - Taisia M Blokhina
- State Research Center - Burnasyan Federal Medical Biophysical Center of Federal Medical Biological Agency (SRC-FMBC), 123098, Moscow, Russian Federation; Semenov Institute of Chemical Physics, Russian Academy of Sciences, 119991 Moscow, Russian Federation; School of Biological and Medical Physics, Moscow Institute of Physics and Technology, 141700 Dolgoprudny, Moscow Region, Russian Federation.
| | - Elizaveta I Yashkina
- State Research Center - Burnasyan Federal Medical Biophysical Center of Federal Medical Biological Agency (SRC-FMBC), 123098, Moscow, Russian Federation
| | - Andreyan N Osipov
- State Research Center - Burnasyan Federal Medical Biophysical Center of Federal Medical Biological Agency (SRC-FMBC), 123098, Moscow, Russian Federation; Semenov Institute of Chemical Physics, Russian Academy of Sciences, 119991 Moscow, Russian Federation; School of Biological and Medical Physics, Moscow Institute of Physics and Technology, 141700 Dolgoprudny, Moscow Region, Russian Federation.
| | - Andrey N Nosovsky
- Institute of Biomedical Problems of the Russian Academy of Sciences (RAS), 123007, Moscow, Russian Federation.
| | - Alexandr A Perevezentsev
- Institute of Biomedical Problems of the Russian Academy of Sciences (RAS), 123007, Moscow, Russian Federation.
| | - Andrey S Shtemberg
- Institute of Biomedical Problems of the Russian Academy of Sciences (RAS), 123007, Moscow, Russian Federation.
| |
Collapse
|
229
|
Otero-Albiol D, Carnero A. Cellular senescence or stemness: hypoxia flips the coin. JOURNAL OF EXPERIMENTAL & CLINICAL CANCER RESEARCH : CR 2021; 40:243. [PMID: 34325734 PMCID: PMC8323321 DOI: 10.1186/s13046-021-02035-0] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/20/2021] [Accepted: 07/05/2021] [Indexed: 01/10/2023]
Abstract
Cellular senescence is a complex physiological state whose main feature is proliferative arrest. Cellular senescence can be considered the reverse of cell immortalization and continuous tumor growth. However, cellular senescence has many physiological functions beyond being a putative tumor suppressive trait. It remains unknown whether low levels of oxygen or hypoxia, which is a feature of every tissue in the organism, modulate cellular senescence, altering its capacity to suppress the limitation of proliferation. It has been observed that the lifespan of mammalian primary cells is increased under low oxygen conditions. Additionally, hypoxia promotes self-renewal and pluripotency maintenance in adult and embryonic stem cells (ESCs), induced pluripotent stem cells (iPSCs) and cancer stem cells (CSCs). In this study, we discuss the role of hypoxia facilitating senescence bypass during malignant transformation and acquisition of stemness properties, which all contribute to tumor development and cancer disease aggressiveness.
Collapse
Affiliation(s)
- Daniel Otero-Albiol
- Instituto de Biomedicina de Sevilla, IBIS, Hospital Universitario Virgen del Rocío, Universidad de Sevilla, Consejo Superior de Investigaciones Científicas, Avda. Manuel Siurot s/n, 41013, Seville, Spain.,CIBER de CANCER, Instituto de Salud Carlos III (ISCIII), Madrid, Spain
| | - Amancio Carnero
- Instituto de Biomedicina de Sevilla, IBIS, Hospital Universitario Virgen del Rocío, Universidad de Sevilla, Consejo Superior de Investigaciones Científicas, Avda. Manuel Siurot s/n, 41013, Seville, Spain. .,CIBER de CANCER, Instituto de Salud Carlos III (ISCIII), Madrid, Spain.
| |
Collapse
|
230
|
Trakala M, Aggarwal M, Sniffen C, Zasadil L, Carroll A, Ma D, Su XA, Wangsa D, Meyer A, Sieben CJ, Zhong J, Hsu PH, Paradis G, Ried T, Holland A, Van Deursen J, Amon A. Clonal selection of stable aneuploidies in progenitor cells drives high-prevalence tumorigenesis. Genes Dev 2021; 35:1079-1092. [PMID: 34266888 PMCID: PMC8336892 DOI: 10.1101/gad.348341.121] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2021] [Accepted: 06/04/2021] [Indexed: 12/16/2022]
Abstract
In this study Trakala et al. investigated how chromosome gains and losses, which are a frequent feature of human cancers, can overcome the detrimental effects of aneuploidy. They developed a novel mouse model that enables unprecedented levels of chromosome missegregation in the adult animal and their results show that the initial detrimental effects of random missegregation are outweighed by clonal selection, which is dependent on chromosomal location and the nature of specific genes and is sufficient to drive cancer. Chromosome gains and losses are a frequent feature of human cancers. However, how these aberrations can outweigh the detrimental effects of aneuploidy remains unclear. An initial comparison of existing chromosomal instability (CIN) mouse models suggests that aneuploidy accumulates to low levels in these animals. We therefore developed a novel mouse model that enables unprecedented levels of chromosome missegregation in the adult animal. At the earliest stages of T-cell development, cells with random chromosome gains and/or losses are selected against, but CIN eventually results in the expansion of progenitors with clonal chromosomal imbalances. Clonal selection leads to the development of T-cell lymphomas with stereotypic karyotypes in which chromosome 15, containing the Myc oncogene, is gained with high prevalence. Expressing human MYC from chromosome 6 (MYCChr6) is sufficient to change the karyotype of these lymphomas to include universal chromosome 6 gains. Interestingly, while chromosome 15 is still gained in MYCChr6 tumors after genetic ablation of the endogenous Myc locus, this chromosome is not efficiently gained after deletion of one copy of Rad21, suggesting a synergistic effect of both MYC and RAD21 in driving chromosome 15 gains. Our results show that the initial detrimental effects of random missegregation are outbalanced by clonal selection, which is dictated by the chromosomal location and nature of certain genes and is sufficient to drive cancer with high prevalence.
Collapse
Affiliation(s)
- Marianna Trakala
- David H. Koch Institute for Integrative Cancer Research, Howard Hughes Medical Institute, Massachusetts Institute of Technology, Cambridge, Massachusetts 02142, USA
| | - Muskaan Aggarwal
- David H. Koch Institute for Integrative Cancer Research, Howard Hughes Medical Institute, Massachusetts Institute of Technology, Cambridge, Massachusetts 02142, USA
| | - Courtney Sniffen
- David H. Koch Institute for Integrative Cancer Research, Howard Hughes Medical Institute, Massachusetts Institute of Technology, Cambridge, Massachusetts 02142, USA
| | - Lauren Zasadil
- David H. Koch Institute for Integrative Cancer Research, Howard Hughes Medical Institute, Massachusetts Institute of Technology, Cambridge, Massachusetts 02142, USA
| | - Allison Carroll
- David H. Koch Institute for Integrative Cancer Research, Howard Hughes Medical Institute, Massachusetts Institute of Technology, Cambridge, Massachusetts 02142, USA
| | - Duanduan Ma
- David H. Koch Institute for Integrative Cancer Research, Howard Hughes Medical Institute, Massachusetts Institute of Technology, Cambridge, Massachusetts 02142, USA
| | - Xiaofeng A Su
- David H. Koch Institute for Integrative Cancer Research, Howard Hughes Medical Institute, Massachusetts Institute of Technology, Cambridge, Massachusetts 02142, USA
| | - Darawalee Wangsa
- Genetics Branch National Cancer Institute, National Institutes of Health, Bethesda, Maryland 20892, USA
| | - Ashleigh Meyer
- David H. Koch Institute for Integrative Cancer Research, Howard Hughes Medical Institute, Massachusetts Institute of Technology, Cambridge, Massachusetts 02142, USA
| | - Cynthia J Sieben
- Department of Pediatric and Adolescent Medicine, Mayo Clinic, Rochester, Minnesota 55905, USA
| | - Jian Zhong
- Department of Pediatric and Adolescent Medicine, Mayo Clinic, Rochester, Minnesota 55905, USA
| | - Pei-Hsin Hsu
- David H. Koch Institute for Integrative Cancer Research, Howard Hughes Medical Institute, Massachusetts Institute of Technology, Cambridge, Massachusetts 02142, USA
| | - Glenn Paradis
- David H. Koch Institute for Integrative Cancer Research, Howard Hughes Medical Institute, Massachusetts Institute of Technology, Cambridge, Massachusetts 02142, USA
| | - Thomas Ried
- Genetics Branch National Cancer Institute, National Institutes of Health, Bethesda, Maryland 20892, USA
| | - Andrew Holland
- Department of Molecular Biology and Genetics, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205, USA
| | - Jan Van Deursen
- Department of Pediatric and Adolescent Medicine, Mayo Clinic, Rochester, Minnesota 55905, USA
| | - Angelika Amon
- David H. Koch Institute for Integrative Cancer Research, Howard Hughes Medical Institute, Massachusetts Institute of Technology, Cambridge, Massachusetts 02142, USA
| |
Collapse
|
231
|
Ju MK, Shin KJ, Lee JR, Khim KW, A Lee E, Ra JS, Kim BG, Jo HS, Yoon JH, Kim TM, Myung K, Choi JH, Kim H, Chae YC. NSMF promotes the replication stress-induced DNA damage response for genome maintenance. Nucleic Acids Res 2021; 49:5605-5622. [PMID: 33963872 PMCID: PMC8191778 DOI: 10.1093/nar/gkab311] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2020] [Revised: 04/14/2021] [Accepted: 04/16/2021] [Indexed: 11/14/2022] Open
Abstract
Proper activation of DNA repair pathways in response to DNA replication stress is critical for maintaining genomic integrity. Due to the complex nature of the replication fork (RF), problems at the RF require multiple proteins, some of which remain unidentified, for resolution. In this study, we identified the N-methyl-D-aspartate receptor synaptonuclear signaling and neuronal migration factor (NSMF) as a key replication stress response factor that is important for ataxia telangiectasia and Rad3-related protein (ATR) activation. NSMF localizes rapidly to stalled RFs and acts as a scaffold to modulate replication protein A (RPA) complex formation with cell division cycle 5-like (CDC5L) and ATR/ATR-interacting protein (ATRIP). Depletion of NSMF compromised phosphorylation and ubiquitination of RPA2 and the ATR signaling cascade, resulting in genomic instability at RFs under DNA replication stress. Consistently, NSMF knockout mice exhibited increased genomic instability and hypersensitivity to genotoxic stress. NSMF deficiency in human and mouse cells also caused increased chromosomal instability. Collectively, these findings demonstrate that NSMF regulates the ATR pathway and the replication stress response network for genome maintenance and cell survival.
Collapse
Affiliation(s)
- Min Kyung Ju
- Department of Life Sciences, Ulsan National University of Science and Technology (UNIST), Ulsan 44919, Republic of Korea
| | - Kyeong Jin Shin
- Department of Life Sciences, Ulsan National University of Science and Technology (UNIST), Ulsan 44919, Republic of Korea
| | - Joo Rak Lee
- Department of Life Sciences, Ulsan National University of Science and Technology (UNIST), Ulsan 44919, Republic of Korea
| | - Keon Woo Khim
- Department of Life Sciences, Ulsan National University of Science and Technology (UNIST), Ulsan 44919, Republic of Korea
| | - Eun A Lee
- Center for Genomic Integrity Institute for Basic Science (IBS), UNIST, Ulsan 44919, Republic of Korea
| | - Jae Sun Ra
- Center for Genomic Integrity Institute for Basic Science (IBS), UNIST, Ulsan 44919, Republic of Korea
| | - Byung-Gyu Kim
- Center for Genomic Integrity Institute for Basic Science (IBS), UNIST, Ulsan 44919, Republic of Korea
| | - Han-Seul Jo
- Neurodegenerative Diseases Research Group, Korea Brain Research Institute, Daegu 41062, Republic of Korea
| | - Jong Hyuk Yoon
- Neurodegenerative Diseases Research Group, Korea Brain Research Institute, Daegu 41062, Republic of Korea
| | - Tae Moon Kim
- Center for Genomic Integrity Institute for Basic Science (IBS), UNIST, Ulsan 44919, Republic of Korea
| | - Kyungjae Myung
- Center for Genomic Integrity Institute for Basic Science (IBS), UNIST, Ulsan 44919, Republic of Korea.,Department of Biomedical Engineering, Ulsan National University of Science and Technology (UNIST), Ulsan 44919, Republic of Korea
| | - Jang Hyun Choi
- Department of Life Sciences, Ulsan National University of Science and Technology (UNIST), Ulsan 44919, Republic of Korea
| | - Hongtae Kim
- Department of Life Sciences, Ulsan National University of Science and Technology (UNIST), Ulsan 44919, Republic of Korea.,Center for Genomic Integrity Institute for Basic Science (IBS), UNIST, Ulsan 44919, Republic of Korea
| | - Young Chan Chae
- Department of Life Sciences, Ulsan National University of Science and Technology (UNIST), Ulsan 44919, Republic of Korea
| |
Collapse
|
232
|
Zhou H, Wang Y, Wang Q, Li L, Hu Y, Wu Y, Gautam M, Li L. R-loops mediate transcription-associated formation of human rDNA secondary constrictions. J Cell Biochem 2021; 122:1517-1533. [PMID: 34224593 DOI: 10.1002/jcb.30074] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2020] [Revised: 04/28/2021] [Accepted: 06/10/2021] [Indexed: 11/07/2022]
Abstract
The ribosomal gene DNA (rDNA) often forms secondary constrictions in the chromosome; however, the molecular mechanism involved remains poorly understood. Here, we report that occurrence of rDNA constriction was increased in the chromosomes in human cancer cell lines compared with normal cells and that decondensed rDNA was significantly enhanced after partial inhibition of rDNA transcription. rDNA transcription was found during the S phase when replication occurred, and thus, DNA replication inhibitors caused constriction formation through hindering rDNA transcription. Inhibition of ataxia ATR (telangiectasia-mutated and RAD3-related) induced rDNA constriction formation. Replication stress or transcription inhibition increased R-loop formation. Topoisomerase I and RNase H1 suppressed secondary constriction formation. These data demonstrate that transcription stress causes the accumulation of stable R-loops (RNA-DNA hybrid) and subsequent constriction formation in the chromosomes.
Collapse
Affiliation(s)
- Hong Zhou
- Department of Genetics, College of Life Sciences, Wuhan University, Wuhan, China.,Department of Physiology, School of Basic medicine, Huazhong University of Science and Technology, Wuhan, China
| | - Yapei Wang
- Department of Genetics, College of Life Sciences, Wuhan University, Wuhan, China.,Department of Gynecology and Obstetrics, The Central Hospital of Wuhan, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Qing Wang
- Department of Genetics, College of Life Sciences, Wuhan University, Wuhan, China
| | - Le Li
- Department of Genetics, College of Life Sciences, Wuhan University, Wuhan, China
| | - Yan Hu
- Department of Genetics, College of Life Sciences, Wuhan University, Wuhan, China
| | - Yequn Wu
- Department of Genetics, College of Life Sciences, Wuhan University, Wuhan, China
| | - Mayank Gautam
- Department of Genetics, College of Life Sciences, Wuhan University, Wuhan, China
| | - Lijia Li
- Department of Genetics, College of Life Sciences, Wuhan University, Wuhan, China
| |
Collapse
|
233
|
El-Nachef L, Al-Choboq J, Restier-Verlet J, Granzotto A, Berthel E, Sonzogni L, Ferlazzo ML, Bouchet A, Leblond P, Combemale P, Pinson S, Bourguignon M, Foray N. Human Radiosensitivity and Radiosusceptibility: What Are the Differences? Int J Mol Sci 2021; 22:7158. [PMID: 34281212 PMCID: PMC8267933 DOI: 10.3390/ijms22137158] [Citation(s) in RCA: 43] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2021] [Revised: 06/25/2021] [Accepted: 06/28/2021] [Indexed: 12/27/2022] Open
Abstract
The individual response to ionizing radiation (IR) raises a number of medical, scientific, and societal issues. While the term "radiosensitivity" was used by the pioneers at the beginning of the 20st century to describe only the radiation-induced adverse tissue reactions related to cell death, a confusion emerged in the literature from the 1930s, as "radiosensitivity" was indifferently used to describe the toxic, cancerous, or aging effect of IR. In parallel, the predisposition to radiation-induced adverse tissue reactions (radiosensitivity), notably observed after radiotherapy appears to be caused by different mechanisms than those linked to predisposition to radiation-induced cancer (radiosusceptibility). This review aims to document these differences in order to better estimate the different radiation-induced risks. It reveals that there are very few syndromes associated with the loss of biological functions involved directly in DNA damage recognition and repair as their role is absolutely necessary for cell viability. By contrast, some cytoplasmic proteins whose functions are independent of genome surveillance may also act as phosphorylation substrates of the ATM protein to regulate the molecular response to IR. The role of the ATM protein may help classify the genetic syndromes associated with radiosensitivity and/or radiosusceptibility.
Collapse
Affiliation(s)
- Laura El-Nachef
- Inserm, U1296 unit, Radiation: Defense, Health and Environment, Centre Léon-Bérard, 28, rue Laennec, 69008 Lyon, France; (L.E.-N.); (J.A.-C.); Juliette.Restier-- (J.R.-V.); (A.G.); (E.B.); (L.S.); (M.L.F.); (A.B.); (M.B.)
| | - Joelle Al-Choboq
- Inserm, U1296 unit, Radiation: Defense, Health and Environment, Centre Léon-Bérard, 28, rue Laennec, 69008 Lyon, France; (L.E.-N.); (J.A.-C.); Juliette.Restier-- (J.R.-V.); (A.G.); (E.B.); (L.S.); (M.L.F.); (A.B.); (M.B.)
| | - Juliette Restier-Verlet
- Inserm, U1296 unit, Radiation: Defense, Health and Environment, Centre Léon-Bérard, 28, rue Laennec, 69008 Lyon, France; (L.E.-N.); (J.A.-C.); Juliette.Restier-- (J.R.-V.); (A.G.); (E.B.); (L.S.); (M.L.F.); (A.B.); (M.B.)
| | - Adeline Granzotto
- Inserm, U1296 unit, Radiation: Defense, Health and Environment, Centre Léon-Bérard, 28, rue Laennec, 69008 Lyon, France; (L.E.-N.); (J.A.-C.); Juliette.Restier-- (J.R.-V.); (A.G.); (E.B.); (L.S.); (M.L.F.); (A.B.); (M.B.)
| | - Elise Berthel
- Inserm, U1296 unit, Radiation: Defense, Health and Environment, Centre Léon-Bérard, 28, rue Laennec, 69008 Lyon, France; (L.E.-N.); (J.A.-C.); Juliette.Restier-- (J.R.-V.); (A.G.); (E.B.); (L.S.); (M.L.F.); (A.B.); (M.B.)
- Neolys Diagnostics, 67960 Entzheim, France
| | - Laurène Sonzogni
- Inserm, U1296 unit, Radiation: Defense, Health and Environment, Centre Léon-Bérard, 28, rue Laennec, 69008 Lyon, France; (L.E.-N.); (J.A.-C.); Juliette.Restier-- (J.R.-V.); (A.G.); (E.B.); (L.S.); (M.L.F.); (A.B.); (M.B.)
| | - Mélanie L. Ferlazzo
- Inserm, U1296 unit, Radiation: Defense, Health and Environment, Centre Léon-Bérard, 28, rue Laennec, 69008 Lyon, France; (L.E.-N.); (J.A.-C.); Juliette.Restier-- (J.R.-V.); (A.G.); (E.B.); (L.S.); (M.L.F.); (A.B.); (M.B.)
| | - Audrey Bouchet
- Inserm, U1296 unit, Radiation: Defense, Health and Environment, Centre Léon-Bérard, 28, rue Laennec, 69008 Lyon, France; (L.E.-N.); (J.A.-C.); Juliette.Restier-- (J.R.-V.); (A.G.); (E.B.); (L.S.); (M.L.F.); (A.B.); (M.B.)
| | - Pierre Leblond
- Centre Léon-Bérard, 28, rue Laennec, 69008 Lyon, France; (P.L.); (P.C.)
| | - Patrick Combemale
- Centre Léon-Bérard, 28, rue Laennec, 69008 Lyon, France; (P.L.); (P.C.)
| | - Stéphane Pinson
- Hospices Civils de Lyon, Quai des Célestins, 69002 Lyon, France;
| | - Michel Bourguignon
- Inserm, U1296 unit, Radiation: Defense, Health and Environment, Centre Léon-Bérard, 28, rue Laennec, 69008 Lyon, France; (L.E.-N.); (J.A.-C.); Juliette.Restier-- (J.R.-V.); (A.G.); (E.B.); (L.S.); (M.L.F.); (A.B.); (M.B.)
- Université Paris Saclay Versailles St Quentin en Yvelines, 78035 Versailles, France
| | - Nicolas Foray
- Inserm, U1296 unit, Radiation: Defense, Health and Environment, Centre Léon-Bérard, 28, rue Laennec, 69008 Lyon, France; (L.E.-N.); (J.A.-C.); Juliette.Restier-- (J.R.-V.); (A.G.); (E.B.); (L.S.); (M.L.F.); (A.B.); (M.B.)
| |
Collapse
|
234
|
The SWI/SNF chromatin remodeling complex helps resolve R-loop-mediated transcription-replication conflicts. Nat Genet 2021; 53:1050-1063. [PMID: 33986538 DOI: 10.1038/s41588-021-00867-2] [Citation(s) in RCA: 93] [Impact Index Per Article: 23.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2020] [Accepted: 04/06/2021] [Indexed: 02/03/2023]
Abstract
ATP-dependent chromatin remodelers are commonly mutated in human cancer. Mammalian SWI/SNF complexes comprise three conserved multisubunit chromatin remodelers (cBAF, ncBAF and PBAF) that share the BRG1 (also known as SMARCA4) subunit responsible for the main ATPase activity. BRG1 is the most frequently mutated Snf2-like ATPase in cancer. In the present study, we have investigated the role of SWI/SNF in genome instability, a hallmark of cancer cells, given its role in transcription, DNA replication and DNA-damage repair. We show that depletion of BRG1 increases R-loops and R-loop-dependent DNA breaks, as well as transcription-replication (T-R) conflicts. BRG1 colocalizes with R-loops and replication fork blocks, as determined by FANCD2 foci, with BRG1 depletion being epistatic to FANCD2 silencing. Our study, extended to other components of SWI/SNF, uncovers a key role of the SWI/SNF complex, in particular cBAF, in helping resolve R-loop-mediated T-R conflicts, thus, unveiling a new mechanism by which chromatin remodeling protects genome integrity.
Collapse
|
235
|
The human nucleoporin Tpr protects cells from RNA-mediated replication stress. Nat Commun 2021; 12:3937. [PMID: 34168151 PMCID: PMC8225803 DOI: 10.1038/s41467-021-24224-3] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2020] [Accepted: 06/04/2021] [Indexed: 12/24/2022] Open
Abstract
Although human nucleoporin Tpr is frequently deregulated in cancer, its roles are poorly understood. Here we show that Tpr depletion generates transcription-dependent replication stress, DNA breaks, and genomic instability. DNA fiber assays and electron microscopy visualization of replication intermediates show that Tpr deficient cells exhibit slow and asymmetric replication forks under replication stress. Tpr deficiency evokes enhanced levels of DNA-RNA hybrids. Additionally, complementary proteomic strategies identify a network of Tpr-interacting proteins mediating RNA processing, such as MATR3 and SUGP2, and functional experiments confirm that their depletion trigger cellular phenotypes shared with Tpr deficiency. Mechanistic studies reveal the interplay of Tpr with GANP, a component of the TREX-2 complex. The Tpr-GANP interaction is supported by their shared protein level alterations in a cohort of ovarian carcinomas. Our results reveal links between nucleoporins, DNA transcription and replication, and the existence of a network physically connecting replication forks with transcription, splicing, and mRNA export machinery.
Collapse
|
236
|
Lezaja A, Panagopoulos A, Wen Y, Carvalho E, Imhof R, Altmeyer M. RPA shields inherited DNA lesions for post-mitotic DNA synthesis. Nat Commun 2021; 12:3827. [PMID: 34158486 PMCID: PMC8219667 DOI: 10.1038/s41467-021-23806-5] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2020] [Accepted: 05/11/2021] [Indexed: 02/05/2023] Open
Abstract
The paradigm that checkpoints halt cell cycle progression for genome repair has been challenged by the recent discovery of heritable DNA lesions escaping checkpoint control. How such inherited lesions affect genome function and integrity is not well understood. Here, we identify a new class of heritable DNA lesions, which is marked by replication protein A (RPA), a protein primarily known for shielding single-stranded DNA in S/G2. We demonstrate that post-mitotic RPA foci occur at low frequency during unperturbed cell cycle progression, originate from the previous cell cycle, and are exacerbated upon replication stress. RPA-marked inherited ssDNA lesions are found at telomeres, particularly of ALT-positive cancer cells. We reveal that RPA protects these replication remnants in G1 to allow for post-mitotic DNA synthesis (post-MiDAS). Given that ALT-positive cancer cells exhibit high levels of replication stress and telomere fragility, targeting post-MiDAS might be a new therapeutic opportunity.
Collapse
Affiliation(s)
- Aleksandra Lezaja
- grid.7400.30000 0004 1937 0650Department of Molecular Mechanisms of Disease, University of Zurich, Zurich, Switzerland
| | - Andreas Panagopoulos
- grid.7400.30000 0004 1937 0650Department of Molecular Mechanisms of Disease, University of Zurich, Zurich, Switzerland
| | - Yanlin Wen
- grid.7400.30000 0004 1937 0650Department of Molecular Mechanisms of Disease, University of Zurich, Zurich, Switzerland
| | - Edison Carvalho
- grid.7400.30000 0004 1937 0650Department of Molecular Mechanisms of Disease, University of Zurich, Zurich, Switzerland
| | - Ralph Imhof
- grid.7400.30000 0004 1937 0650Department of Molecular Mechanisms of Disease, University of Zurich, Zurich, Switzerland
| | - Matthias Altmeyer
- grid.7400.30000 0004 1937 0650Department of Molecular Mechanisms of Disease, University of Zurich, Zurich, Switzerland
| |
Collapse
|
237
|
Regulatory and Functional Involvement of Long Non-Coding RNAs in DNA Double-Strand Break Repair Mechanisms. Cells 2021; 10:cells10061506. [PMID: 34203749 PMCID: PMC8232683 DOI: 10.3390/cells10061506] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2021] [Revised: 06/09/2021] [Accepted: 06/10/2021] [Indexed: 12/12/2022] Open
Abstract
Protection of genome integrity is vital for all living organisms, particularly when DNA double-strand breaks (DSBs) occur. Eukaryotes have developed two main pathways, namely Non-Homologous End Joining (NHEJ) and Homologous Recombination (HR), to repair DSBs. While most of the current research is focused on the role of key protein players in the functional regulation of DSB repair pathways, accumulating evidence has uncovered a novel class of regulating factors termed non-coding RNAs. Non-coding RNAs have been found to hold a pivotal role in the activation of DSB repair mechanisms, thereby safeguarding genomic stability. In particular, long non-coding RNAs (lncRNAs) have begun to emerge as new players with vast therapeutic potential. This review summarizes important advances in the field of lncRNAs, including characterization of recently identified lncRNAs, and their implication in DSB repair pathways in the context of tumorigenesis.
Collapse
|
238
|
Halliwell JA, Gravells P, Bryant HE. DNA Fiber Assay for the Analysis of DNA Replication Progression in Human Pluripotent Stem Cells. ACTA ACUST UNITED AC 2021; 54:e115. [PMID: 32584505 DOI: 10.1002/cpsc.115] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Human pluripotent stem cells (PSC) acquire recurrent chromosomal instabilities during prolonged in vitro culture that threaten to preclude their use in cell-based regenerative medicine. The rapid proliferation of pluripotent cells leads to constitutive replication stress, hindering the progression of DNA replication forks and in some cases leading to replication-fork collapse. Failure to overcome replication stress can result in incomplete genome duplication, which, if left to persist into the subsequent mitosis, can result in structural and numerical chromosomal instability. We have recently applied the DNA fiber assay to the study of replication stress in human PSC and found that, in comparison to somatic cells states, these cells display features of DNA replication stress that include slower replication fork speeds, evidence of stalled forks, and replication initiation from dormant replication origins. These findings have expanded on previous work demonstrating that extensive DNA damage in human PSC is replication associated. In this capacity, the DNA fiber assay has enabled the development of an advanced nucleoside-enriched culture medium that increases replication fork progression and decreases DNA damage and mitotic errors in human PSC cultures. The DNA fiber assay allows for the study of replication fork dynamics at single-molecule resolution. The assay relies on cells incorporating nucleotide analogs into nascent DNA during replication, which are then measured to monitor several replication parameters. Here we provide an optimized protocol for the fiber assay intended for use with human PSC, and describe the methods employed to analyze replication fork parameters. © 2020 Wiley Periodicals LLC. Basic Protocol 1: DNA fiber labeling Basic Protocol 2: DNA fiber spreading Basic Protocol 3: Immunostaining Support Protocol 1: Microscopy/data acquisition Support Protocol 2: Data analysis.
Collapse
Affiliation(s)
- Jason A Halliwell
- The Centre for Stem Cell Biology, University of Sheffield, Department of Biomedical Science, Sheffield, United Kingdom
| | - Polly Gravells
- Academic Unit of Molecular Oncology, Sheffield Institute for Nucleic Acids (SInFoNiA), Department of Oncology and Metabolism, University of Sheffield, Sheffield, United Kingdom
| | - Helen E Bryant
- Academic Unit of Molecular Oncology, Sheffield Institute for Nucleic Acids (SInFoNiA), Department of Oncology and Metabolism, University of Sheffield, Sheffield, United Kingdom
| |
Collapse
|
239
|
Mu R, Liu H, Luo S, Patz EF, Glass C, Su L, Du M, Christiani DC, Jin L, Wei Q. Genetic variants of CHEK1, PRIM2 and CDK6 in the mitotic phase-related pathway are associated with nonsmall cell lung cancer survival. Int J Cancer 2021; 149:1302-1312. [PMID: 34058013 DOI: 10.1002/ijc.33702] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2021] [Revised: 05/04/2021] [Accepted: 05/14/2021] [Indexed: 12/25/2022]
Abstract
The mitotic phase is a vital step in cell division and may be involved in cancer progression, but it remains unclear whether genetic variants in mitotic phase-related pathways genes impact the survival of these patients. Here, we investigated associations between 31 032 single nucleotide polymorphisms (SNPs) in 368 mitotic phase-related pathway genes and overall survival (OS) of patients with nonsmall cell lung cancer (NSCLC). We assessed the associations in a discovery data set of 1185 NSCLC patients from the Prostate, Lung, Colorectal and Ovarian (PLCO) Cancer Screening Trial and validated the findings in another data set of 984 patients from the Harvard Lung Cancer Susceptibility Study. As a result, we identified three independent SNPs (ie, CHEK1 rs76744140 T>C, PRIM2 rs6939623 G>T and CDK6 rs113181986 G>C) to be significantly associated with NSCLC OS with an adjusted hazard ratio of 1.29 (95% confidence interval = 1.11-1.49, P = 8.26 × 10-4 ), 1.26 (1.12-1.42, 1.10 × 10-4 ) and 0.73 (0.63-0.86, 1.63 × 10-4 ), respectively. Moreover, the number of combined unfavorable genotypes of these three SNPs was significantly associated with NSCLC OS and disease-specific survival in the PLCO data set (Ptrend < .0001 and .0003, respectively). Further expression quantitative trait loci analysis showed that the rs76744140C allele predicted CHEK1 mRNA expression levels in normal lung tissues and that rs113181986C allele predicted CDK6 mRNA expression levels in whole blood tissues. Additional analyses indicated CHEK1, PRIM2 and CDK6 may impact NSCLC survival. Taken together, these findings suggested that these genetic variants may be prognostic biomarkers of patients with NSCLC.
Collapse
Affiliation(s)
- Rui Mu
- Department of Stomatology, Jinling Hospital, The First School of Clinical Medicine, Southern Medical University, Nanjing, China.,Duke Cancer Institute, Duke University Medical Center, Durham, North Carolina, USA.,Department of Population Health Sciences, Duke University School of Medicine, Durham, North Carolina, USA
| | - Hongliang Liu
- Duke Cancer Institute, Duke University Medical Center, Durham, North Carolina, USA.,Department of Population Health Sciences, Duke University School of Medicine, Durham, North Carolina, USA
| | - Sheng Luo
- Department of Biostatistics and Bioinformatics, Duke University School of Medicine, Durham, North Carolina, USA
| | - Edward F Patz
- Duke Cancer Institute, Duke University Medical Center, Durham, North Carolina, USA.,Department of Radiology, Pharmacology and Cancer Biology, Duke University Medical Center, Durham, North Carolina, USA
| | - Carolyn Glass
- Duke Cancer Institute, Duke University Medical Center, Durham, North Carolina, USA.,Department of Pathology, Duke University School of Medicine, Durham, North Carolina, USA
| | - Li Su
- Department of Environmental Health and Epidemiology, Harvard School of Public Health, Boston, Massachusetts, USA
| | - Mulong Du
- Department of Environmental Health and Epidemiology, Harvard School of Public Health, Boston, Massachusetts, USA.,Department of Biostatistics, Centre for Global Health, School of Public Health, Nanjing Medical University, Nanjing, China
| | - David C Christiani
- Department of Environmental Health and Epidemiology, Harvard School of Public Health, Boston, Massachusetts, USA.,Department of Medicine, Massachusetts General Hospital, Boston, Massachusetts, USA
| | - Lei Jin
- Department of Stomatology, Jinling Hospital, The First School of Clinical Medicine, Southern Medical University, Nanjing, China
| | - Qingyi Wei
- Duke Cancer Institute, Duke University Medical Center, Durham, North Carolina, USA.,Department of Population Health Sciences, Duke University School of Medicine, Durham, North Carolina, USA.,Department of Biostatistics and Bioinformatics, Duke University School of Medicine, Durham, North Carolina, USA.,Duke Global Health Institute, Duke University Medical Center, Durham, North Carolina, USA
| |
Collapse
|
240
|
Lulli M, Del Coco L, Mello T, Sukowati C, Madiai S, Gragnani L, Forte P, Fanizzi FP, Mazzocca A, Rombouts K, Galli A, Carloni V. DNA Damage Response Protein CHK2 Regulates Metabolism in Liver Cancer. Cancer Res 2021; 81:2861-2873. [PMID: 33762357 DOI: 10.1158/0008-5472.can-20-3134] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2020] [Revised: 02/15/2021] [Accepted: 03/22/2021] [Indexed: 11/16/2022]
Abstract
Defective mitosis with chromosome missegregation can have a dramatic effect on genome integrity by causing DNA damage, activation of the DNA damage response (DDR), and chromosomal instability. Although this is an energy-dependent process, mechanisms linking DDR to cellular metabolism are unknown. Here we show that checkpoint kinase 2 (CHK2), a central effector of DDR, regulates cellular energy production by affecting glycolysis and mitochondrial functions. Patients with hepatocellular carcinoma (HCC) had increased CHK2 mRNA in blood, which was associated with elevated tricarboxylic acid cycle (TCA) metabolites. CHK2 controlled expression of succinate dehydrogenase (SDH) and intervened with mitochondrial functions. DNA damage and CHK2 promoted SDH activity marked by increased succinate oxidation through the TCA cycle; this was confirmed in a transgenic model of HCC with elevated DNA damage. Mitochondrial analysis identified CHK2-controlled expression of SDH as key in sustaining reactive oxygen species production. Cells with DNA damage and elevated CHK2 relied significantly on glycolysis for ATP production due to dysfunctional mitochondria, which was abolished by CHK2 knockdown. This represents a vulnerability created by the DNA damage response that could be exploited for development of new therapies. SIGNIFICANCE: This study uncovers a link between a central effector of DNA damage response, CHK2, and cellular metabolism, revealing potential therapeutic strategies for targeting hepatocellular carcinoma.
Collapse
Affiliation(s)
- Matteo Lulli
- Department of Experimental and Clinical Biomedical Sciences "Mario Serio", General Pathology Unit, University of Florence, Florence, Italy
| | - Laura Del Coco
- Dipartimento di Scienze e Tecnologie Biologiche ed Ambientali, University of Salento, Lecce, Italy
| | - Tommaso Mello
- Department of Experimental and Clinical Biomedical Sciences "Mario Serio", Gastroenterology Unit, University of Florence, Florence, Italy
| | - Caecilia Sukowati
- Fondazione Italiana Fegato, AREA Science Park, Trieste, Italy, Laboratory of Molecular Biology and DNA repair, Department of Medicine (DAME), University of Udine, Udine, Italy
| | - Stefania Madiai
- Department of Experimental and Clinical Medicine, University of Florence, Florence, Italy
| | - Laura Gragnani
- Department of Experimental and Clinical Medicine, University of Florence, Florence, Italy
| | - Paolo Forte
- Department of Experimental and Clinical Biomedical Sciences "Mario Serio", Gastroenterology Unit, University of Florence, Florence, Italy
| | - Francesco Paolo Fanizzi
- Dipartimento di Scienze e Tecnologie Biologiche ed Ambientali, University of Salento, Lecce, Italy
- Consorzio Interuniversitario di Ricerca in Chimica dei Metalli nei Sistemi Biologici (CIRCMSB), Bari, Italy
| | - Antonio Mazzocca
- Interdisciplinary Department of Medicine, University of Bari, School of Medicine, Bari, Italy
| | - Krista Rombouts
- University College London (UCL) Institute for Liver & Digestive Health, London, United Kingdom
| | - Andrea Galli
- Department of Experimental and Clinical Biomedical Sciences "Mario Serio", Gastroenterology Unit, University of Florence, Florence, Italy
| | - Vinicio Carloni
- Department of Experimental and Clinical Medicine, University of Florence, Florence, Italy.
| |
Collapse
|
241
|
Arai H, Elliott A, Xiu J, Wang J, Battaglin F, Kawanishi N, Soni S, Zhang W, Millstein J, Sohal D, Goldberg RM, Hall MJ, Scott AJ, Khushman M, Hwang JJ, Lou E, Weinberg BA, Marshall JL, Lockhart AC, Stafford P, Zhang J, Moretto R, Cremolini C, Korn WM, Lenz HJ. The Landscape of Alterations in DNA Damage Response Pathways in Colorectal Cancer. Clin Cancer Res 2021; 27:3234-3242. [PMID: 33766816 PMCID: PMC12047448 DOI: 10.1158/1078-0432.ccr-20-3635] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2020] [Revised: 01/13/2021] [Accepted: 03/22/2021] [Indexed: 11/16/2022]
Abstract
PURPOSE Defective DNA damage response (DDR) is a hallmark of cancer leading to genomic instability and is associated with chemosensitivity. Although the mismatch repair system has been extensively studied, the clinical implications of other mechanisms associated with DDR alterations in patients with colorectal cancer remain unclear. This study aimed to understand DDR pathways alterations and their association with common clinical features in patients with colorectal cancer. EXPERIMENTAL DESIGN Next-generation sequencing and whole-transcriptome sequencing were conducted using formalin-fixed paraffin-embedded samples submitted to a commercial Clinical Laboratory Improvement Amendments-certified laboratory. Samples with pathogenic or presumed pathogenic mutations in 29 specific DDR-related genes were considered as DDR-mutant (DDR-MT) and the remaining samples as DDR-wild type (DDR-WT). RESULTS Of 9,321 patients with colorectal cancer, 1,290 (13.8%) were DDR-MT. The frequency of DDR-MT was significantly higher in microsatellite instability-high (MSI-H) cases than in microsatellite stable cases (76.4% vs. 9.5%). The DDR-MT genotype was higher in the right-sided, RAS-wild, BRAF-mutant, and CMS1 subgroups. However, these associations were primarily confounded by the distribution of MSI status. Compared with the DDR-WT tumors, the DDR-MT tumors had a higher mutational burden and gene expression levels in the immune-related pathway, which were independent of MSI status. CONCLUSIONS We characterized a distinct subgroup of patients with colorectal cancer with tumors harboring mutations in the DDR-related genes. These patients more commonly had MSI-H tumors and exhibited an activated immune signature regardless of their tumor's MSI status. These findings warrant further investigations to develop personalized treatment strategies in this significant subgroup of patients with colorectal cancer.
Collapse
Affiliation(s)
- Hiroyuki Arai
- Division of Medical Oncology, Norris Comprehensive Cancer Center, University of Southern California, Los Angeles, California
| | - Andrew Elliott
- Clinical and Translational Research, Medical Affairs, Caris Life Sciences, Phoenix, Arizona
| | - Joanne Xiu
- Clinical and Translational Research, Medical Affairs, Caris Life Sciences, Phoenix, Arizona
| | - Jingyuan Wang
- Division of Medical Oncology, Norris Comprehensive Cancer Center, University of Southern California, Los Angeles, California
| | - Francesca Battaglin
- Division of Medical Oncology, Norris Comprehensive Cancer Center, University of Southern California, Los Angeles, California
| | - Natsuko Kawanishi
- Division of Medical Oncology, Norris Comprehensive Cancer Center, University of Southern California, Los Angeles, California
| | - Shivani Soni
- Division of Medical Oncology, Norris Comprehensive Cancer Center, University of Southern California, Los Angeles, California
| | - Wu Zhang
- Division of Medical Oncology, Norris Comprehensive Cancer Center, University of Southern California, Los Angeles, California
| | - Joshua Millstein
- Department of Preventive Medicine, Norris Comprehensive Cancer Center, University of Southern California, Los Angeles, California
| | - Davendra Sohal
- Division of Hematology/Oncology, University of Cincinnati, Cincinnati, Ohio
| | | | - Michael J Hall
- Department of Clinical Genetics, Fox Chase Cancer Center, Philadelphia, Pennsylvania
| | - Aaron J Scott
- Department of Medicine, University of Arizona Cancer Center, Tucson, Arizona
| | - Moh'd Khushman
- Medical Oncology, Mitchell Cancer Institute, The University of South Alabama, Mobile, Alabama
| | - Jimmy J Hwang
- Department of Solid Tumor Oncology, GI Medical Oncology, Levine Cancer Institute, Charlotte, North Carolina
| | - Emil Lou
- Division of Hematology, Oncology and Transplantation, University of Minnesota, Minneapolis, Minnesota
| | - Benjamin A Weinberg
- Ruesch Center for the Cure of Gastrointestinal Cancers, Lombardi Comprehensive Cancer Center, Georgetown University, Washington, DC
| | - John L Marshall
- Ruesch Center for the Cure of Gastrointestinal Cancers, Lombardi Comprehensive Cancer Center, Georgetown University, Washington, DC
| | - Albert C Lockhart
- Department of Medicine, Division of Oncology, University of Miami, Miller School of Medicine, Miami, Florida
| | - Phillip Stafford
- Department of Bioinformatics, Caris Life Sciences, Phoenix, Arizona
| | - Jian Zhang
- Department of Bioinformatics, Caris Life Sciences, Phoenix, Arizona
| | - Roberto Moretto
- Unit of Medical Oncology 2, Azienda Ospedaliero-Universitaria Pisana, Pisa, Italy
| | - Chiara Cremolini
- Department of Translational Research and New Technologies in Medicine and Surgery, University of Pisa, Pisa, Italy
| | | | - Heinz-Josef Lenz
- Division of Medical Oncology, Norris Comprehensive Cancer Center, University of Southern California, Los Angeles, California.
| |
Collapse
|
242
|
Manolakou T, Verginis P, Boumpas DT. DNA Damage Response in the Adaptive Arm of the Immune System: Implications for Autoimmunity. Int J Mol Sci 2021; 22:5842. [PMID: 34072535 PMCID: PMC8198144 DOI: 10.3390/ijms22115842] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2021] [Revised: 05/24/2021] [Accepted: 05/25/2021] [Indexed: 12/25/2022] Open
Abstract
In complex environments, cells have developed molecular responses to confront threats against the genome and achieve the maintenance of genomic stability assuring the transfer of undamaged DNA to their progeny. DNA damage response (DDR) mechanisms may be activated upon genotoxic or environmental agents, such as cytotoxic drugs or ultraviolet (UV) light, and during physiological processes requiring DNA transactions, to restore DNA alterations that may cause cellular malfunction and affect viability. In addition to the DDR, multicellular organisms have evolved specialized immune cells to respond and defend against infections. Both adaptive and innate immune cells are subjected to DDR processes, either as a prerequisite to the immune response, or as a result of random endogenous and exogenous insults. Aberrant DDR activities have been extensively studied in the immune cells of the innate arm, but not in adaptive immune cells. Here, we discuss how the aberrant DDR may lead to autoimmunity, with emphasis on the adaptive immune cells and the potential of therapeutic targeting.
Collapse
Affiliation(s)
- Theodora Manolakou
- Center for Clinical, Experimental Surgery and Translational Research, Biomedical Research Foundation of the Academy of Athens, 115 27 Athens, Greece;
- School of Medicine, National and Kapodistrian University of Athens, 115 27 Athens, Greece
| | - Panayotis Verginis
- Institute of Molecular Biology and Biotechnology, Foundation for Research and Technology, 700 13 Heraklion, Greece;
- Laboratory of Immune Regulation and Tolerance, Division of Basic Sciences, University of Crete Medical School, 700 13 Heraklion, Greece
| | - Dimitrios T. Boumpas
- Center for Clinical, Experimental Surgery and Translational Research, Biomedical Research Foundation of the Academy of Athens, 115 27 Athens, Greece;
- Joint Rheumatology Program, 4th Department of Internal Medicine, Attikon University Hospital, National and Kapodistrian University of Athens Medical School, 124 62 Athens, Greece
| |
Collapse
|
243
|
Xie M, Park D, Sica GL, Deng X. Bcl2-induced DNA replication stress promotes lung carcinogenesis in response to space radiation. Carcinogenesis 2021; 41:1565-1575. [PMID: 32157295 DOI: 10.1093/carcin/bgaa021] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2019] [Revised: 02/18/2020] [Accepted: 03/05/2020] [Indexed: 11/12/2022] Open
Abstract
Space radiation is characterized by high-linear energy transfer (LET) ionizing radiation. The relationships between the early biological effects of space radiation and the probability of cancer in humans are poorly understood. Bcl2 not only functions as a potent antiapoptotic molecule but also as an oncogenic protein that induces DNA replication stress. To test the role and mechanism of Bcl2 in high-LET space radiation-induced lung carcinogenesis, we created lung-targeting Bcl2 transgenic C57BL/6 mice using the CC10 promoter to drive Bcl2 expression selectively in lung tissues. Intriguingly, lung-targeting transgenic Bcl2 inhibits ribonucleotide reductase activity, reduces dNTP pool size and retards DNA replication fork progression in mouse bronchial epithelial cells. After exposure of mice to space radiation derived from 56iron, 28silicon or protons, the incidence of lung cancer was significantly higher in lung-targeting Bcl2 transgenic mice than in wild-type mice, indicating that Bcl2-induced DNA replication stress promotes lung carcinogenesis in response to space radiation. The findings provide some evidence for the relative effectiveness of space radiation and Bcl-2 at inducing lung cancer in mice.
Collapse
Affiliation(s)
- Maohua Xie
- Department of Radiation Oncology, Emory University School of Medicine and Winship Cancer Institute of Emory University, Atlanta, GA, USA
| | - Dongkyoo Park
- Department of Radiation Oncology, Emory University School of Medicine and Winship Cancer Institute of Emory University, Atlanta, GA, USA
| | - Gabriel L Sica
- Department of Pathology and Laboratory Medicine, Emory University School of Medicine and Winship Cancer Institute of Emory University, Atlanta, GA, USA
| | - Xingming Deng
- Department of Radiation Oncology, Emory University School of Medicine and Winship Cancer Institute of Emory University, Atlanta, GA, USA
| |
Collapse
|
244
|
Chang YC, Oram MK, Bielinsky AK. SUMO-Targeted Ubiquitin Ligases and Their Functions in Maintaining Genome Stability. Int J Mol Sci 2021; 22:ijms22105391. [PMID: 34065507 PMCID: PMC8161396 DOI: 10.3390/ijms22105391] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2021] [Revised: 05/14/2021] [Accepted: 05/16/2021] [Indexed: 02/06/2023] Open
Abstract
Small ubiquitin-like modifier (SUMO)-targeted E3 ubiquitin ligases (STUbLs) are specialized enzymes that recognize SUMOylated proteins and attach ubiquitin to them. They therefore connect the cellular SUMOylation and ubiquitination circuits. STUbLs participate in diverse molecular processes that span cell cycle regulated events, including DNA repair, replication, mitosis, and transcription. They operate during unperturbed conditions and in response to challenges, such as genotoxic stress. These E3 ubiquitin ligases modify their target substrates by catalyzing ubiquitin chains that form different linkages, resulting in proteolytic or non-proteolytic outcomes. Often, STUbLs function in compartmentalized environments, such as the nuclear envelope or kinetochore, and actively aid in nuclear relocalization of damaged DNA and stalled replication forks to promote DNA repair or fork restart. Furthermore, STUbLs reside in the same vicinity as SUMO proteases and deubiquitinases (DUBs), providing spatiotemporal control of their targets. In this review, we focus on the molecular mechanisms by which STUbLs help to maintain genome stability across different species.
Collapse
|
245
|
Ando K, Nakagawara A. Acceleration or Brakes: Which Is Rational for Cell Cycle-Targeting Neuroblastoma Therapy? Biomolecules 2021; 11:biom11050750. [PMID: 34069817 PMCID: PMC8157238 DOI: 10.3390/biom11050750] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2021] [Revised: 05/09/2021] [Accepted: 05/12/2021] [Indexed: 11/27/2022] Open
Abstract
Unrestrained proliferation is a common feature of malignant neoplasms. Targeting the cell cycle is a therapeutic strategy to prevent unlimited cell division. Recently developed rationales for these selective inhibitors can be subdivided into two categories with antithetical functionality. One applies a “brake” to the cell cycle to halt cell proliferation, such as with inhibitors of cell cycle kinases. The other “accelerates” the cell cycle to initiate replication/mitotic catastrophe, such as with inhibitors of cell cycle checkpoint kinases. The fate of cell cycle progression or arrest is tightly regulated by the presence of tolerable or excessive DNA damage, respectively. This suggests that there is compatibility between inhibitors of DNA repair kinases, such as PARP inhibitors, and inhibitors of cell cycle checkpoint kinases. In the present review, we explore alterations to the cell cycle that are concomitant with altered DNA damage repair machinery in unfavorable neuroblastomas, with respect to their unique genomic and molecular features. We highlight the vulnerabilities of these alterations that are attributable to the features of each. Based on the assessment, we offer possible therapeutic approaches for personalized medicine, which are seemingly antithetical, but both are promising strategies for targeting the altered cell cycle in unfavorable neuroblastomas.
Collapse
Affiliation(s)
- Kiyohiro Ando
- Research Institute for Clinical Oncology, Saitama Cancer Center, 818 Komuro, Ina, Saitama 362-0806, Japan
- Correspondence: (K.A.); (A.N.); Tel.: +81-48-722-1111 (K.A.); +81-942-50-8829 (A.N.)
| | - Akira Nakagawara
- Saga International Carbon Particle Beam Radiation Cancer Therapy Center, Saga HIMAT Foundation, 3049 Harakoga-Machi, Saga 841-0071, Japan
- Correspondence: (K.A.); (A.N.); Tel.: +81-48-722-1111 (K.A.); +81-942-50-8829 (A.N.)
| |
Collapse
|
246
|
Cyclooxygenase-2 induces neoplastic transformation by inhibiting p53-dependent oncogene-induced senescence. Sci Rep 2021; 11:9853. [PMID: 33972599 PMCID: PMC8110573 DOI: 10.1038/s41598-021-89220-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2020] [Accepted: 04/06/2021] [Indexed: 12/24/2022] Open
Abstract
Much in vivo evidence indicates that cyclooxygenase-2 (COX-2) is deeply involved in tumorigenesis. Although it has been proposed that COX-2-derived pro-inflammatory prostanoids mediate the tumorigenic activity of COX-2, the tumorigenic mechanisms of COX-2 are not yet fully understood. Here, we investigated the mechanism by which COX-2 causes transformation from normal cells to malignant cells by using normal murine or human cells. We found that COX-2 inhibits the pro-senescent function of p53 under oncogenic RAS activation, by which it prevents oncogene-induced senescence (OIS) and induces neoplastic transformation. We also found that COX-2 physically interacts with p53 in the nucleus under oncogenic RAS activation, and that this COX-2-p53 interaction rather than the catalytic activity is involved in the COX-2-mediated inhibition of the pro-senescent function of p53 and OIS, and induction of neoplastic transformation. These findings strongly suggest that the oncogenic property of COX-2 is closely related to its ability to inactivate p53 under strong mitogenic signals, and that aberrant activation of the COX-2/a mitogenic oncogene combination can be a potent driving force for tumorigenesis. This study might contribute to our understanding of the molecular basis for the tumorigenic activity of COX-2 and the development of novel anti-tumor drugs targeting COX-2-p53 interactions.
Collapse
|
247
|
Klotz-Noack K, Klinger B, Rivera M, Bublitz N, Uhlitz F, Riemer P, Lüthen M, Sell T, Kasack K, Gastl B, Ispasanie SSS, Simon T, Janssen N, Schwab M, Zuber J, Horst D, Blüthgen N, Schäfer R, Morkel M, Sers C. SFPQ Depletion Is Synthetically Lethal with BRAF V600E in Colorectal Cancer Cells. Cell Rep 2021; 32:108184. [PMID: 32966782 DOI: 10.1016/j.celrep.2020.108184] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2019] [Revised: 04/28/2020] [Accepted: 09/02/2020] [Indexed: 12/21/2022] Open
Abstract
Oncoproteins such as the BRAFV600E kinase endow cancer cells with malignant properties, but they also create unique vulnerabilities. Targeting of BRAFV600E-driven cytoplasmic signaling networks has proved ineffective, as patients regularly relapse with reactivation of the targeted pathways. We identify the nuclear protein SFPQ to be synthetically lethal with BRAFV600E in a loss-of-function shRNA screen. SFPQ depletion decreases proliferation and specifically induces S-phase arrest and apoptosis in BRAFV600E-driven colorectal and melanoma cells. Mechanistically, SFPQ loss in BRAF-mutant cancer cells triggers the Chk1-dependent replication checkpoint, results in decreased numbers and reduced activities of replication factories, and increases collision between replication and transcription. We find that BRAFV600E-mutant cancer cells and organoids are sensitive to combinations of Chk1 inhibitors and chemically induced replication stress, pointing toward future therapeutic approaches exploiting nuclear vulnerabilities induced by BRAFV600E.
Collapse
Affiliation(s)
- Kathleen Klotz-Noack
- Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health. Laboratory of Molecular Tumor Pathology and Systems Biology, Institute of Pathology, 10117 Berlin, Germany; German Cancer Consortium (DKTK), Partner Site Berlin and German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Bertram Klinger
- Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health. Laboratory of Molecular Tumor Pathology and Systems Biology, Institute of Pathology, 10117 Berlin, Germany; IRI Life Sciences & Institute of Theoretical Biology, Humboldt-Universität zu Berlin, 10115 Berlin, Germany
| | - Maria Rivera
- EPO Experimentelle Pharmakologie und Onkologie Berlin-Buch GmbH, Robert-Rössle-Str. 10, 13125 Berlin, Germany
| | - Natalie Bublitz
- Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health. Laboratory of Molecular Tumor Pathology and Systems Biology, Institute of Pathology, 10117 Berlin, Germany; German Cancer Consortium (DKTK), Partner Site Berlin and German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Florian Uhlitz
- Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health. Laboratory of Molecular Tumor Pathology and Systems Biology, Institute of Pathology, 10117 Berlin, Germany; IRI Life Sciences & Institute of Theoretical Biology, Humboldt-Universität zu Berlin, 10115 Berlin, Germany
| | - Pamela Riemer
- Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health. Laboratory of Molecular Tumor Pathology and Systems Biology, Institute of Pathology, 10117 Berlin, Germany
| | - Mareen Lüthen
- Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health. Laboratory of Molecular Tumor Pathology and Systems Biology, Institute of Pathology, 10117 Berlin, Germany; German Cancer Consortium (DKTK), Partner Site Berlin and German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Thomas Sell
- Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health. Laboratory of Molecular Tumor Pathology and Systems Biology, Institute of Pathology, 10117 Berlin, Germany; IRI Life Sciences & Institute of Theoretical Biology, Humboldt-Universität zu Berlin, 10115 Berlin, Germany
| | - Katharina Kasack
- Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health. Laboratory of Molecular Tumor Pathology and Systems Biology, Institute of Pathology, 10117 Berlin, Germany; German Cancer Consortium (DKTK), Partner Site Berlin and German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Bastian Gastl
- Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health. Laboratory of Molecular Tumor Pathology and Systems Biology, Institute of Pathology, 10117 Berlin, Germany
| | - Sylvia S S Ispasanie
- Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health. Laboratory of Molecular Tumor Pathology and Systems Biology, Institute of Pathology, 10117 Berlin, Germany
| | - Tincy Simon
- Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health. Laboratory of Molecular Tumor Pathology and Systems Biology, Institute of Pathology, 10117 Berlin, Germany
| | - Nicole Janssen
- Dr. Margarete Fischer-Bosch - Institute of Clinical Pharmacology, Auerbachstraße 112, 70376 Stuttgart, Germany; University of Tuebingen, 72074 Tuebingen, Germany
| | - Matthias Schwab
- Dr. Margarete Fischer-Bosch - Institute of Clinical Pharmacology, Auerbachstraße 112, 70376 Stuttgart, Germany; Departments of Clinical Pharmacology, Pharmacy and Biochemistry, University of Tuebingen, Auf der Morgenstelle 8, 72074 Tuebingen, Germany; German Cancer Consortium (DKTK), Partner Site Tuebingen and German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Johannes Zuber
- Research Institute of Molecular Pathology (IMP), Vienna BioCenter (VBC), 1030 Vienna, Austria; Medical University of Vienna, VBC, 1030 Vienna, Austria
| | - David Horst
- Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health. Laboratory of Molecular Tumor Pathology and Systems Biology, Institute of Pathology, 10117 Berlin, Germany; German Cancer Consortium (DKTK), Partner Site Berlin and German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Nils Blüthgen
- Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health. Laboratory of Molecular Tumor Pathology and Systems Biology, Institute of Pathology, 10117 Berlin, Germany; IRI Life Sciences & Institute of Theoretical Biology, Humboldt-Universität zu Berlin, 10115 Berlin, Germany; German Cancer Consortium (DKTK), Partner Site Berlin and German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Reinhold Schäfer
- Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health. Laboratory of Molecular Tumor Pathology and Systems Biology, Institute of Pathology, 10117 Berlin, Germany; German Cancer Consortium (DKTK), Partner Site Berlin and German Cancer Research Center (DKFZ), Heidelberg, Germany; Charité Comprehensive Cancer Center, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Chariteplatz 1, 10117 Berlin, Germany
| | - Markus Morkel
- Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health. Laboratory of Molecular Tumor Pathology and Systems Biology, Institute of Pathology, 10117 Berlin, Germany; German Cancer Consortium (DKTK), Partner Site Berlin and German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Christine Sers
- Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health. Laboratory of Molecular Tumor Pathology and Systems Biology, Institute of Pathology, 10117 Berlin, Germany; German Cancer Consortium (DKTK), Partner Site Berlin and German Cancer Research Center (DKFZ), Heidelberg, Germany.
| |
Collapse
|
248
|
Segura-Bayona S, Villamor-Payà M, Attolini CSO, Koenig LM, Sanchiz-Calvo M, Boulton SJ, Stracker TH. Tousled-Like Kinases Suppress Innate Immune Signaling Triggered by Alternative Lengthening of Telomeres. Cell Rep 2021; 32:107983. [PMID: 32755577 PMCID: PMC7408502 DOI: 10.1016/j.celrep.2020.107983] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2020] [Revised: 06/30/2020] [Accepted: 07/09/2020] [Indexed: 12/11/2022] Open
Abstract
The Tousled-like kinases 1 and 2 (TLK1/2) control histone deposition through the ASF1 histone chaperone and influence cell cycle progression and genome maintenance, yet the mechanisms underlying TLK-mediated genome stability remain uncertain. Here, we show that TLK loss results in severe chromatin decompaction and altered genome accessibility, particularly affecting heterochromatic regions. Failure to maintain heterochromatin increases spurious transcription of repetitive elements and induces features of alternative lengthening of telomeres (ALT). TLK depletion culminates in a cGAS-STING-TBK1-mediated innate immune response that is independent of replication-stress signaling and attenuated by the depletion of factors required to produce extra-telomeric DNA. Analysis of human cancers reveals that chromosomal instability correlates with high TLK2 and low STING levels in many cohorts. Based on these findings, we propose that high TLK levels contribute to immune evasion in chromosomally unstable and ALT+ cancers. TLK-deficient cells have increased accessibility at heterochromatin regions TLK1/2 suppress spurious transcription and telomere hyper-recombination Extra-telomeric DNA generated upon TLK loss promotes innate immune signaling cGAS-STING-TBK1 signaling in TLK-deficient cells is independent of replication stress
Collapse
Affiliation(s)
- Sandra Segura-Bayona
- Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology, Barcelona 08028, Spain; The Francis Crick Institute, 1 Midland Road, London NW1 1AT, UK.
| | - Marina Villamor-Payà
- Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology, Barcelona 08028, Spain
| | - Camille Stephan-Otto Attolini
- Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology, Barcelona 08028, Spain
| | - Lars M Koenig
- Division of Clinical Pharmacology, University Hospital, LMU Munich, 80337 Munich, Germany
| | - Maria Sanchiz-Calvo
- Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology, Barcelona 08028, Spain
| | - Simon J Boulton
- The Francis Crick Institute, 1 Midland Road, London NW1 1AT, UK
| | - Travis H Stracker
- Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology, Barcelona 08028, Spain.
| |
Collapse
|
249
|
van Schendel R, Romeijn R, Buijs H, Tijsterman M. Preservation of lagging strand integrity at sites of stalled replication by Pol α-primase and 9-1-1 complex. SCIENCE ADVANCES 2021; 7:eabf2278. [PMID: 34138739 PMCID: PMC8133754 DOI: 10.1126/sciadv.abf2278] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/12/2020] [Accepted: 03/31/2021] [Indexed: 05/03/2023]
Abstract
During genome duplication, the replication fork encounters a plethora of obstacles in the form of damaged bases, DNA-cross-linked proteins, and secondary structures. How cells protect DNA integrity at sites of stalled replication is currently unknown. Here, by engineering "primase deserts" into the Caenorhabditis elegans genome close to replication-impeding G-quadruplexes, we show that de novo DNA synthesis downstream of the blocked fork suppresses DNA loss. We next identify the pol α-primase complex to limit deletion mutagenesis, a conclusion substantiated by whole-genome analysis of animals carrying mutated POLA2/DIV-1. We subsequently identify a new role for the 9-1-1 checkpoint clamp in protecting Okazaki fragments from resection by EXO1. Together, our results provide a mechanistic model for controlling the fate of replication intermediates at sites of stalled replication.
Collapse
Affiliation(s)
- Robin van Schendel
- Department of Human Genetics, Leiden University Medical Center, Einthovenweg 20, 2333 ZC Leiden, Netherlands
| | - Ron Romeijn
- Department of Human Genetics, Leiden University Medical Center, Einthovenweg 20, 2333 ZC Leiden, Netherlands
| | - Helena Buijs
- Department of Human Genetics, Leiden University Medical Center, Einthovenweg 20, 2333 ZC Leiden, Netherlands
| | - Marcel Tijsterman
- Department of Human Genetics, Leiden University Medical Center, Einthovenweg 20, 2333 ZC Leiden, Netherlands.
- Institute of Biology Leiden, Leiden University, Sylviusweg 72, 2333 BE Leiden, Netherlands
| |
Collapse
|
250
|
Iwai K, Nambu T, Kashima Y, Yu J, Eng K, Miyamoto K, Kakoi K, Gotou M, Takeuchi T, Kogame A, Sappal J, Murai S, Haeno H, Kageyama SI, Kurasawa O, Niu H, Kannan K, Ohashi A. A CDC7 inhibitor sensitizes DNA-damaging chemotherapies by suppressing homologous recombination repair to delay DNA damage recovery. SCIENCE ADVANCES 2021; 7:7/21/eabf0197. [PMID: 34020950 PMCID: PMC8139593 DOI: 10.1126/sciadv.abf0197] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/28/2020] [Accepted: 04/01/2021] [Indexed: 05/10/2023]
Abstract
Cell division cycle 7 (CDC7), a serine/threonine kinase, plays important roles in DNA replication. We developed a highly specific CDC7 inhibitor, TAK-931, as a clinical cancer therapeutic agent. This study aimed to identify the potential combination partners of TAK-931 for guiding its clinical development strategies. Unbiased high-throughput chemical screening revealed that the highest synergistic antiproliferative effects observed were the combinations of DNA-damaging agents with TAK-931. Functional phosphoproteomic analysis demonstrated that TAK-931 suppressed homologous recombination repair activity, delayed recovery from double-strand breaks, and led to accumulation of DNA damages in the combination. Whole-genome small interfering RNA library screening identified sensitivity-modulating molecules, which propose the experimentally predicted target cancer types for the combination, including pancreatic, esophageal, ovarian, and breast cancers. The efficacy of combination therapy in these cancer types was preclinically confirmed in the corresponding primary-derived xenograft models. Thus, our findings would be helpful to guide the future clinical strategies for TAK-931.
Collapse
Affiliation(s)
- Kenichi Iwai
- Oncology Drug Discovery Unit, Takeda Pharmaceutical Company Limited, Fujisawa, Japan
| | - Tadahiro Nambu
- Oncology Drug Discovery Unit, Takeda Pharmaceutical Company Limited, Fujisawa, Japan
| | - Yukie Kashima
- Division of Translational Genomics, Exploratory Oncology Research and Clinical Trial Center, National Cancer Center, Kashiwa, Japan
- Division of Translational Informatics, Exploratory Oncology Research and Clinical Trial Center, National Cancer Center, Kashiwa, Japan
| | - Jie Yu
- Oncology Drug Discovery Unit, Millennium Pharmaceuticals Inc., Cambridge, MA, USA, a wholly owned subsidiary of Takeda Pharmaceutical Company Limited
| | - Kurt Eng
- Oncology Drug Discovery Unit, Millennium Pharmaceuticals Inc., Cambridge, MA, USA, a wholly owned subsidiary of Takeda Pharmaceutical Company Limited
| | - Kazumasa Miyamoto
- Integrated Research Laboratory, Takeda Pharmaceutical Company Limited, Fujisawa, Japan
| | - Kazuyo Kakoi
- Oncology Drug Discovery Unit, Takeda Pharmaceutical Company Limited, Fujisawa, Japan
| | - Masamitsu Gotou
- Integrated Research Laboratory, Takeda Pharmaceutical Company Limited, Fujisawa, Japan
| | - Toshiyuki Takeuchi
- DMPK Research Laboratories, Takeda Pharmaceutical Company Limited, Fujisawa, Japan
| | - Akifumi Kogame
- DMPK Research Laboratories, Takeda Pharmaceutical Company Limited, Fujisawa, Japan
| | - Jessica Sappal
- Oncology Drug Discovery Unit, Millennium Pharmaceuticals Inc., Cambridge, MA, USA, a wholly owned subsidiary of Takeda Pharmaceutical Company Limited
| | - Saomi Murai
- Integrated Biology Oncology, Axcelead Drug Discovery Partners Inc., Fujisawa, Japan
| | - Hiroshi Haeno
- Division of Translational Genomics, Exploratory Oncology Research and Clinical Trial Center, National Cancer Center, Kashiwa, Japan
| | - Shun-Ichiro Kageyama
- Division of Translational Informatics, Exploratory Oncology Research and Clinical Trial Center, National Cancer Center, Kashiwa, Japan
| | - Osamu Kurasawa
- Oncology Drug Discovery Unit, Takeda Pharmaceutical Company Limited, Fujisawa, Japan
| | - Huifeng Niu
- Oncology Translational Science, Millennium Pharmaceuticals Inc., Cambridge, MA, USA, a wholly owned subsidiary of Takeda Pharmaceutical Company Limited
| | - Karuppiah Kannan
- Oncology Drug Discovery Unit, Millennium Pharmaceuticals Inc., Cambridge, MA, USA, a wholly owned subsidiary of Takeda Pharmaceutical Company Limited
- Oncology Therapeutic Area Unit, Millennium Pharmaceuticals Inc., Cambridge, MA, USA, a wholly owned subsidiary of Takeda Pharmaceutical Company Limited
| | - Akihiro Ohashi
- Oncology Drug Discovery Unit, Takeda Pharmaceutical Company Limited, Fujisawa, Japan.
- Division of Translational Genomics, Exploratory Oncology Research and Clinical Trial Center, National Cancer Center, Kashiwa, Japan
- Oncology Drug Discovery Unit, Millennium Pharmaceuticals Inc., Cambridge, MA, USA, a wholly owned subsidiary of Takeda Pharmaceutical Company Limited
| |
Collapse
|