201
|
Oudmaijer CAJ, Berk KA, van der Louw EJTM, de Man R, van der Lelij AJ, Hoeijmakers JHJ, IJzermans J. KETOgenic diet therapy in patients with HEPatocellular adenoma: study protocol of a matched interventional cohort study. BMJ Open 2022; 12:e053559. [PMID: 35168973 PMCID: PMC8852750 DOI: 10.1136/bmjopen-2021-053559] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/05/2022] Open
Abstract
INTRODUCTION Hepatocellular adenoma (HCA) is an uncommon, solid and benign liver lesion, mainly occurring in women using oral contraceptives. Patients are advised to stop using oral contraceptives (OC) and, as overweight is frequently observed, dietary restrictions. Metabolic changes are assumed to play a role and it has been suggested that diet may help to reduce tumour size. A low-calorie ketogenic diet (LCKD) has been shown to induce weight loss and multiple metabolic changes, including the reduction of portal insulin concentrations, which downregulates hepatic growth hormone receptors. Weight reduction and an LCKD can potentially reduce the size of HCAs. METHODS AND ANALYSIS We designed a matched, interventional cohort study to determine the effect of an LCKD on the regression of HCA. The study population consists of female subjects with an HCA, 18-50 years of age, body mass index>25 kg/m2, who are entering a surveillance period including cessation of OC. A historical control group will be matched. The intervention consists of an LCKD (approximately 35 g carbohydrate/1500 kcal/day) for 3 months, followed by a less strict LCKD for 3 months (approximately 60 g carbohydrate/1500 kcal/day). Main study endpoint is the diameter of the HCA after 6 months, as compared with the historic control group. Secondary endpoints include adherence, quality of life, change in physical activity, liver fat content, body weight, body composition and resting energy expenditure. ETHICS AND DISSEMINATION The medical ethical committee has approved the study protocol, patient information files and consent procedure and other study-related documents and procedures. TRIAL REGISTRATION NUMBER NL75014.078.20; Pre-results. https://www.trialregister.nl/trial/9092.
Collapse
Affiliation(s)
- Christiaan Albert Johan Oudmaijer
- Erasmus MC Transplant Institute, Department of Surgery, Division of Hepatobiliary and Transplantation Surgery, Erasmus MC, Rotterdam, Zuid-Holland, The Netherlands
- Princess Maxima Center for Pediatric Oncology, Utrecht, The Netherlands
| | - Kirsten Anna Berk
- Department of Internal Medicine, Division of Dietetics, Erasmus MC, Rotterdam, Zuid-Holland, The Netherlands
| | | | - Rob de Man
- Department of Hepato-Gastroenterology, Erasmus MC, Rotterdam, Zuid-Holland, The Netherlands
| | - Aart-Jan van der Lelij
- Department of Internal Medicine, Division of Endocrinology, Erasmus MC, Rotterdam, Zuid-Holland, The Netherlands
| | - Jan Hendrik Jozef Hoeijmakers
- Princess Maxima Center for Pediatric Oncology, Utrecht, The Netherlands
- Erasmus MC Cancer Institute, Department of Molecular Genetics, Erasmus MC, Rotterdam, Zuid-Holland, The Netherlands
| | - Jan IJzermans
- Erasmus MC Transplant Institute, Department of Surgery, Division of Hepatobiliary and Transplantation Surgery, Erasmus MC, Rotterdam, Zuid-Holland, The Netherlands
| |
Collapse
|
202
|
Pak M, Bozkurt S, Pınarbaşı A, Öz Arslan D, Aksungar FB. Effects of Prolonged Intermittent Fasting Model on Energy Metabolism and Mitochondrial Functions in Neurons. Ann Neurosci 2022; 29:21-31. [PMID: 35875426 PMCID: PMC9305913 DOI: 10.1177/09727531211072303] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2021] [Accepted: 11/29/2021] [Indexed: 11/17/2022] Open
Abstract
Background: Calorie restriction (CR) during daily nutrition has been shown to affect the prognosis of many chronic diseases such as metabolic syndrome, diabetes, and aging. As an alternative nutrition model, prolonged intermittent fasting (PF) in humans is defined by the absence of food for more than 12 h. In our previous human studies, CR and PF models were compared and it was concluded that the two models might have differences in signal transduction mechanisms. We have investigated the effects of these models on neurons at the molecular level in this study. Methods: Neurons (SH-SY5Y) were incubated with normal medium (N), calorie-restricted medium (CR), fasting medium (PF), and glucose-free medium (G0) for 16 h. Simultaneously, ketone (beta-hydroxybutyrate; bOHB) was added to other experiment flasks containing the same media. Concentrations of lactate, lactate dehydrogenase (LDH), bOHB, and glucose were measured to demonstrate the changes in the energy metabolism together with the mitochondrial functions of cells. Citrate synthase activity and flow cytometric mitochondrial functions were investigated. Results: At the end of incubations, lactate and LDH levels were decreased and mitochondrial activity was increased in all ketone-added groups (P < .01) regardless of the glucose concentration in the environment. In the fasting model, these differences were more prominent. Conclusion: Our results demonstrated that neurons use ketones regardless of the amount of glucose, and bOHB-treated cells had positive changes in mitochondrial function. We conclude that the presence of bOHB might reverse neuron damage and that exogenous ketone treatment may be beneficial in the treatment of neurological diseases in the future.
Collapse
Affiliation(s)
- Meltem Pak
- Department of Medical Biochemistry, Acıbadem Mehmet Ali Aydınlar University School of Medicine, Istanbul, Turkey
| | - Süleyman Bozkurt
- Department of Biophysics, Acıbadem Mehmet Ali Aydınlar University School of Medicine, Istanbul, Turkey
| | - Arzu Pınarbaşı
- Department of Medical Biochemistry, Acıbadem Mehmet Ali Aydınlar University School of Medicine, Istanbul, Turkey
| | - Devrim Öz Arslan
- Department of Biophysics, Acıbadem Mehmet Ali Aydınlar University School of Medicine, Istanbul, Turkey
| | - Fehime Benli Aksungar
- Department of Medical Biochemistry, Acıbadem Mehmet Ali Aydınlar University School of Medicine, Istanbul, Turkey
| |
Collapse
|
203
|
Can dietary patterns prevent cognitive impairment and reduce Alzheimer's disease risk: exploring the underlying mechanisms of effects. Neurosci Biobehav Rev 2022; 135:104556. [PMID: 35122783 DOI: 10.1016/j.neubiorev.2022.104556] [Citation(s) in RCA: 40] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2021] [Revised: 01/29/2022] [Accepted: 01/30/2022] [Indexed: 02/07/2023]
Abstract
Alzheimer's disease (AD) is one of the fastest growing cognitive decline-related neurological diseases. To date, effective curative strategies have remained elusive. A growing body of evidence indicates that dietary patterns have significant effects on cognitive function and the risk of developing AD. Previous studies on the association between diet and AD risk have mainly focused on individual food components and specific nutrients, and the mechanisms responsible for the beneficial effects of dietary patterns on AD are not well understood. This article provides a comprehensive overview of the effects of dietary patterns, including the Mediterranean diet (MedDiet), dietary approaches to stop hypertension (DASH) diet, Mediterranean-DASH diet intervention for neurological delay (MIND), ketogenic diet, caloric restriction, intermittent fasting, methionine restriction, and low-protein and high-carbohydrate diet, on cognitive impairment and summarizes the underlying mechanisms by which dietary patterns attenuate cognitive impairment, especially highlighting the modulation of dietary patterns on cognitive impairment through gut microbiota. Furthermore, considering the variability in individual metabolic responses to dietary intake, we put forward a framework to develop personalized dietary patterns for people with cognitive disorders or AD based on individual gut microbiome compositions.
Collapse
|
204
|
Long-term intake of total energy and fat in relation to subjective cognitive decline. Eur J Epidemiol 2022; 37:133-146. [PMID: 34748116 PMCID: PMC8960333 DOI: 10.1007/s10654-021-00814-9] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2021] [Accepted: 10/11/2021] [Indexed: 02/03/2023]
Abstract
Diet is one of the modifiable risk factors for cognitive decline. However, human studies on total energy intake and cognitive function have remained limited and studies on fat intake and cognitive decline have been inconclusive. We aimed to examine prospectively the associations between long-term intakes of total energy and fat with subsequent subjective cognitive decline (SCD). A total of 49,493 women from the Nurses' Health Study and 27,842 men from the Health Professionals Follow-up Study were followed for over 20 years. Average dietary intake was calculated based on repeated food frequency questionnaires (SFFQs), and Poisson regression was used to evaluate associations. Higher total energy intake was significantly associated with greater odds of SCD in both cohorts. Comparing the highest with lowest quintiles of total energy intake, the pooled multivariable-adjusted ORs (95% CIs) for a 3-unit increment in SCD, corresponding to poor versus normal SCD, was 2.77 (2.53, 2.94). Each 500 kcal/day greater intake of total energy was associated with 48% higher odds of SCD. Intakes of both total fat and total carbohydrate appeared to contribute to the positive association between total energy intake and SCD although for the same percent of energy, the association was stronger for total fat. In conclusion, higher intakes of total energy, total fat, and total carbohydrate were adversely associated with SCD. Whether these associations are causal is unclear and deserves further investigation.
Collapse
|
205
|
Pinches JL, Pinches YL, Johnson JO, Haddad NC, Boueri MG, Oke LM, Haddad GE. Could “Cellular Exercise” be the Missing Ingredient in a Healthy Life? Diets, Caloric Restriction and Exercise-Induced Hormesis. Nutrition 2022; 99-100:111629. [DOI: 10.1016/j.nut.2022.111629] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2021] [Revised: 11/28/2021] [Accepted: 01/31/2022] [Indexed: 11/28/2022]
|
206
|
Gyanwali B, Lim ZX, Soh J, Lim C, Guan SP, Goh J, Maier AB, Kennedy BK. Alpha-Ketoglutarate dietary supplementation to improve health in humans. Trends Endocrinol Metab 2022; 33:136-146. [PMID: 34952764 DOI: 10.1016/j.tem.2021.11.003] [Citation(s) in RCA: 65] [Impact Index Per Article: 21.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Revised: 11/09/2021] [Accepted: 11/11/2021] [Indexed: 01/02/2023]
Abstract
Alpha-ketoglutarate (AKG) is an intermediate in the Krebs cycle involved in various metabolic and cellular pathways. As an antioxidant, AKG interferes in nitrogen and ammonia balance, and affects epigenetic and immune regulation. These pleiotropic functions of AKG suggest it may also extend human healthspan. Recent studies in worms and mice support this concept. A few studies published in the 1980s and 1990s in humans suggested the potential benefits of AKG in muscle growth, wound healing, and in promoting faster recovery after surgery. So far there are no recently published studies demonstrating the role of AKG in treating aging and age-related diseases; hence, further clinical studies are required to better understand the role of AKG in humans. This review will discuss the regulatory role of AKG in aging, as well as its potential therapeutic use in humans to treat age-related diseases.
Collapse
Affiliation(s)
- Bibek Gyanwali
- Healthy Longevity Translational Research Program, Yong Loo Lin School of Medicine, National University of Singapore, Singapore; Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| | - Zi Xiang Lim
- Healthy Longevity Translational Research Program, Yong Loo Lin School of Medicine, National University of Singapore, Singapore; Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| | - Janjira Soh
- Centre for Healthy Longevity, National University Health System, Singapore
| | - Clarissa Lim
- Healthy Longevity Translational Research Program, Yong Loo Lin School of Medicine, National University of Singapore, Singapore; Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| | - Shou Ping Guan
- Healthy Longevity Translational Research Program, Yong Loo Lin School of Medicine, National University of Singapore, Singapore; Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| | - Jorming Goh
- Healthy Longevity Translational Research Program, Yong Loo Lin School of Medicine, National University of Singapore, Singapore; Centre for Healthy Longevity, National University Health System, Singapore; Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| | - Andrea B Maier
- Healthy Longevity Translational Research Program, Yong Loo Lin School of Medicine, National University of Singapore, Singapore; Centre for Healthy Longevity, National University Health System, Singapore; Department of Medicine and Aged Care, @AgeMelbourne, The Royal Melbourne Hospital, The University of Melbourne, Parkville, Victoria, Australia; Department of Human Movement Sciences, @AgeAmsterdam, Faculty of Behavioural and Movement Sciences, Amsterdam Movement Sciences, Vrije Universiteit, Amsterdam, The Netherlands
| | - Brian K Kennedy
- Healthy Longevity Translational Research Program, Yong Loo Lin School of Medicine, National University of Singapore, Singapore; Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, Singapore; Centre for Healthy Longevity, National University Health System, Singapore; Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore; Singapore Institute of Clinical Sciences, A*STAR, Singapore.
| |
Collapse
|
207
|
Abstract
The stomach hormone, ghrelin, which is released during food restriction, provides a link between circulating energy state and adaptive brain function. The maintenance of such homeostatic systems is essential for an organism to survive and thrive, and accumulating evidence points to ghrelin being a key regulator of adult hippocampal neurogenesis and memory function. Aberrant neurogenesis is linked to cognitive decline in aging and neurodegeneration. Therefore, identifying endogenous metabolic factors that regulate new adult-born neuron formation is an important objective in understanding the link between nutritional status and CNS function. Here, we review current developments in our understanding of ghrelin's role in regulating neurogenesis and memory function.
Collapse
Affiliation(s)
- Jeffrey S Davies
- Molecular Neurobiology, Institute of Life Sciences, School of Medicine, Swansea University, Swansea, United Kingdom.
| |
Collapse
|
208
|
Oudmaijer CAJ, van den Boogaard WMC, Komninos DSJ, Verwaaijen EJ, van Santen HM, Lilien MR, Hoeijmakers JHJ, Wijnen MHW, van den Heuvel-Eibrink MM, Vermeij WP. Fasting Intervention for Children With Unilateral Renal Tumors to Reduce Toxicity. Front Pediatr 2022; 10:828615. [PMID: 35155309 PMCID: PMC8829466 DOI: 10.3389/fped.2022.828615] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/03/2021] [Accepted: 01/05/2022] [Indexed: 11/18/2022] Open
Abstract
Childhood renal tumors account for around 6% of all childhood cancers and 90% of these cases are Wilms tumor. In Europe, the SIOP-RTSG approach is considered standard of care and has resulted in five-year survival rates of over 90%. Efforts to decrease toxicity are now being pursued. Short-term fasting (STF), a short but strong reduction in calorie-intake, is associated with improved fitness, enhanced coping with acute physical stress and a lower risk of age-associated diseases. STF temporarily reduces growth to boost resilience, maintenance, and defense-mechanisms, by which toxic side-effects of (oxidative) damage and inflammation are largely prevented. Renal surgery for Wilms tumor carries a risk of acute kidney injury (AKI) and pediatric patients that had an episode of AKI are at increased risk for developing chronic renal disease. STF could mitigate surgery-induced stress and could further improve outcomes. We aim to investigate the effect of STF on renal function recovery after renal tumor surgery by conducting a single-center, prospective, randomized, non-blinded, intervention study. Children diagnosed with a unilateral renal tumor and opting for curative treatment are eligible for inclusion. The main study objective is to investigate the potential decrease in occurrence of AKI due to STF. Secondary objectives include renal function recovery, child's wellbeing, physical functioning, and feasibility of and adherence to STF in children with cancer.
Collapse
Affiliation(s)
- Christiaan A. J. Oudmaijer
- Princess Máxima Center for Pediatric Oncology, Utrecht, Netherlands
- Oncode Institute, Utrecht, Netherlands
| | | | - Daphne S. J. Komninos
- Princess Máxima Center for Pediatric Oncology, Utrecht, Netherlands
- Oncode Institute, Utrecht, Netherlands
| | | | - Hanneke M. van Santen
- Princess Máxima Center for Pediatric Oncology, Utrecht, Netherlands
- Department of Pediatric Endocrinology, University Medical Center Utrecht, Wilhelmina Childrens Hospital, Utrecht, Netherlands
| | - Marc R. Lilien
- Department of Pediatric Nephrology, University Medical Center Utrecht, Wilhelmina Childrens Hospital, Utrecht, Netherlands
| | - Jan H. J. Hoeijmakers
- Princess Máxima Center for Pediatric Oncology, Utrecht, Netherlands
- Oncode Institute, Utrecht, Netherlands
- Department of Molecular Genetics, Erasmus MC Cancer Institute, Erasmus University Medical Center, Rotterdam, Netherlands
- Institute for Genome Stability in Aging and Disease, Cologne Excellence Cluster for Cellular Stress Responses in Aging-Associated Diseases (CECAD), University of Cologne, Cologne, Germany
| | | | | | - Wilbert P. Vermeij
- Princess Máxima Center for Pediatric Oncology, Utrecht, Netherlands
- Oncode Institute, Utrecht, Netherlands
| |
Collapse
|
209
|
Teissier T, Boulanger E, Cox LS. Interconnections between Inflammageing and Immunosenescence during Ageing. Cells 2022; 11:359. [PMID: 35159168 PMCID: PMC8834134 DOI: 10.3390/cells11030359] [Citation(s) in RCA: 131] [Impact Index Per Article: 43.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2021] [Revised: 01/13/2022] [Accepted: 01/15/2022] [Indexed: 02/04/2023] Open
Abstract
Acute inflammation is a physiological response to injury or infection, with a cascade of steps that ultimately lead to the recruitment of immune cells to clear invading pathogens and heal wounds. However, chronic inflammation arising from the continued presence of the initial trigger, or the dysfunction of signalling and/or effector pathways, is harmful to health. While successful ageing in older adults, including centenarians, is associated with low levels of inflammation, elevated inflammation increases the risk of poor health and death. Hence inflammation has been described as one of seven pillars of ageing. Age-associated sterile, chronic, and low-grade inflammation is commonly termed inflammageing-it is not simply a consequence of increasing chronological age, but is also a marker of biological ageing, multimorbidity, and mortality risk. While inflammageing was initially thought to be caused by "continuous antigenic load and stress", reports from the last two decades describe a much more complex phenomenon also involving cellular senescence and the ageing of the immune system. In this review, we explore some of the main sources and consequences of inflammageing in the context of immunosenescence and highlight potential interventions. In particular, we assess the contribution of cellular senescence to age-associated inflammation, identify patterns of pro- and anti-inflammatory markers characteristic of inflammageing, describe alterations in the ageing immune system that lead to elevated inflammation, and finally assess the ways that diet, exercise, and pharmacological interventions can reduce inflammageing and thus, improve later life health.
Collapse
Affiliation(s)
- Thibault Teissier
- Department of Biochemistry, University of Oxford, South Parks Road, Oxford OX1 3QU, UK;
| | - Eric Boulanger
- Univ. Lille, Inserm, CHU Lille, Institut Pasteur de Lille, U1167—RID-AGE—Facteurs de Risque et Déterminants Moléculaires des Maladies Liées au Vieillissement, F-59000 Lille, France;
| | - Lynne S. Cox
- Department of Biochemistry, University of Oxford, South Parks Road, Oxford OX1 3QU, UK;
| |
Collapse
|
210
|
Liao E, University of Sydney, Australia, Ghezzi L, Piccio L, Washington University, US, Washington University St Louis, US. Dietary restriction in multiple sclerosis: evidence from preclinical and clinical studies. ADVANCES IN CLINICAL NEUROSCIENCE & REHABILITATION 2022. [DOI: 10.47795/mcln8939] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Dietary restriction (DR) interventions, which encompass both chronic and intermittent reductions in energy intake, are emerging as potential therapeutic approaches for dampening neuroinflammation and demyelination in multiple sclerosis (MS). Mechanisms mediating the beneficial effects of DR include the regulation of pro- and anti-inflammatory signalling molecules and gut microbiome remodelling. This article summarises the preclinical evidence supporting the role of DR in attenuating disease in animal models of MS and the developing clinical evidence indicating the safety and feasibility of such DR interventions in people with MS (pwMS).
Collapse
|
211
|
Duan J, Xiang L, Yang Z, Chen L, Gu J, Lu K, Ma D, Zhao H, Yi B, Zhao H, Ning J. Methionine Restriction Prevents Lipopolysaccharide-Induced Acute Lung Injury via Modulating CSE/H 2S Pathway. Nutrients 2022; 14:322. [PMID: 35057502 PMCID: PMC8777780 DOI: 10.3390/nu14020322] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Revised: 12/31/2021] [Accepted: 01/08/2022] [Indexed: 12/15/2022] Open
Abstract
Acute lung injury (ALI) and acute respiratory distress syndrome (ARDS) result in high mortality, whereas effective treatments are limited. Methionine restriction (MR) has been reported to offer various benefits against multiple pathological processes of organ injuries. However, it remains unknown whether MR has any potential therapeutic value for ALI/ARDS. The current study was set to investigate the therapeutic potential of MR on lipopolysaccharide (LPS)-induced ALI and its underlying mechanisms. We found that MR attenuated LPS-induced pulmonary edema, hemorrhage, atelectasis, and alveolar epithelial cell injuries in mice. MR upregulated cystathionine-gamma-lyase (CSE) expression and enhanced the production of hydrogen sulfide (H2S). MR also inhibited the activation of Toll-like receptors 4 (TLR4)/NF-κB/NOD-like receptor protein 3 (NLRP3), then reduced IL-1β, IL-6, and TNF-α release and immune cell infiltration. Moreover, the protective effects of MR on LPS-induced ALI were abrogated by inhibiting CSE, whereas exogenous H2S treatment alone mimicked the protective effects of MR in Cse-/- mice after LPS administration. In conclusion, our findings showed that MR attenuated LPS-induced lung injury through CSE and H2S modulation. This work suggests that developing MR towards clinical use for ALI/ARDS patients may be a valuable strategy.
Collapse
Affiliation(s)
- Jiaxiang Duan
- Department of Anesthesia, Southwest Hospital, Third Military Medical University, Chongqing 400038, China; (J.D.); (Z.Y.); (J.G.); (K.L.)
| | - Lunli Xiang
- Department of Nephrology, Southwest Hospital, Third Military Medical University, Chongqing 400038, China;
| | - Zhen Yang
- Department of Anesthesia, Southwest Hospital, Third Military Medical University, Chongqing 400038, China; (J.D.); (Z.Y.); (J.G.); (K.L.)
| | - Li Chen
- Department of Breast and Thyroid Surgery, Southwest Hospital, Third Military Medical University, Chongqing 400038, China;
| | - Jianteng Gu
- Department of Anesthesia, Southwest Hospital, Third Military Medical University, Chongqing 400038, China; (J.D.); (Z.Y.); (J.G.); (K.L.)
| | - Kaizhi Lu
- Department of Anesthesia, Southwest Hospital, Third Military Medical University, Chongqing 400038, China; (J.D.); (Z.Y.); (J.G.); (K.L.)
| | - Daqing Ma
- Division of Anaesthetics, Pain Medicine and Intensive Care, Department of Surgery and Cancer, Faculty of Medicine, Imperial College London, Chelsea and Westminster Hospital, London SW10 9NH, UK; (D.M.); (H.Z.)
| | - Hailin Zhao
- Division of Anaesthetics, Pain Medicine and Intensive Care, Department of Surgery and Cancer, Faculty of Medicine, Imperial College London, Chelsea and Westminster Hospital, London SW10 9NH, UK; (D.M.); (H.Z.)
| | - Bin Yi
- Department of Anesthesia, Southwest Hospital, Third Military Medical University, Chongqing 400038, China; (J.D.); (Z.Y.); (J.G.); (K.L.)
| | - Hongwen Zhao
- Department of Nephrology, Southwest Hospital, Third Military Medical University, Chongqing 400038, China;
| | - Jiaolin Ning
- Department of Anesthesia, Southwest Hospital, Third Military Medical University, Chongqing 400038, China; (J.D.); (Z.Y.); (J.G.); (K.L.)
| |
Collapse
|
212
|
Hofer SJ, Carmona‐Gutierrez D, Mueller MI, Madeo F. The ups and downs of caloric restriction and fasting: from molecular effects to clinical application. EMBO Mol Med 2022; 14:e14418. [PMID: 34779138 PMCID: PMC8749464 DOI: 10.15252/emmm.202114418] [Citation(s) in RCA: 101] [Impact Index Per Article: 33.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2021] [Revised: 10/05/2021] [Accepted: 10/08/2021] [Indexed: 12/15/2022] Open
Abstract
Age-associated diseases are rising to pandemic proportions, exposing the need for efficient and low-cost methods to tackle these maladies at symptomatic, behavioral, metabolic, and physiological levels. While nutrition and health are closely intertwined, our limited understanding of how diet precisely influences disease often precludes the medical use of specific dietary interventions. Caloric restriction (CR) has approached clinical application as a powerful, yet simple, dietary modulation that extends both life- and healthspan in model organisms and ameliorates various diseases. However, due to psychological and social-behavioral limitations, CR may be challenging to implement into real life. Thus, CR-mimicking interventions have been developed, including intermittent fasting, time-restricted eating, and macronutrient modulation. Nonetheless, possible side effects of CR and alternatives thereof must be carefully considered. We summarize key concepts and differences in these dietary interventions in humans, discuss their molecular effects, and shed light on advantages and disadvantages.
Collapse
Affiliation(s)
- Sebastian J Hofer
- Institute of Molecular BiosciencesNAWI GrazUniversity of GrazGrazAustria
- BioHealth GrazGrazAustria
- BioTechMed GrazGrazAustria
| | | | - Melanie I Mueller
- Institute of Molecular BiosciencesNAWI GrazUniversity of GrazGrazAustria
| | - Frank Madeo
- Institute of Molecular BiosciencesNAWI GrazUniversity of GrazGrazAustria
- BioHealth GrazGrazAustria
- BioTechMed GrazGrazAustria
| |
Collapse
|
213
|
Phosphoglycolate phosphatase homologs act as glycerol-3-phosphate phosphatase to control stress and healthspan in C. elegans. Nat Commun 2022; 13:177. [PMID: 35017476 PMCID: PMC8752807 DOI: 10.1038/s41467-021-27803-6] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2021] [Accepted: 12/07/2021] [Indexed: 01/06/2023] Open
Abstract
Metabolic stress due to nutrient excess and lipid accumulation is at the root of many age-associated disorders and the identification of therapeutic targets that mimic the beneficial effects of calorie restriction has clinical importance. Here, using C. elegans as a model organism, we study the roles of a recently discovered enzyme at the heart of metabolism in mammalian cells, glycerol-3-phosphate phosphatase (G3PP) (gene name Pgp) that hydrolyzes glucose-derived glycerol-3-phosphate to glycerol. We identify three Pgp homologues in C. elegans (pgph) and demonstrate in vivo that their protein products have G3PP activity, essential for glycerol synthesis. We demonstrate that PGPH/G3PP regulates the adaptation to various stresses, in particular hyperosmolarity and glucotoxicity. Enhanced G3PP activity reduces fat accumulation, promotes healthy aging and acts as a calorie restriction mimetic at normal food intake without altering fertility. Thus, PGP/G3PP can be considered as a target for age-related metabolic disorders.
Collapse
|
214
|
Zhao Y, Liu YS. Longevity Factor FOXO3: A Key Regulator in Aging-Related Vascular Diseases. Front Cardiovasc Med 2022; 8:778674. [PMID: 35004893 PMCID: PMC8733402 DOI: 10.3389/fcvm.2021.778674] [Citation(s) in RCA: 41] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2021] [Accepted: 12/06/2021] [Indexed: 12/11/2022] Open
Abstract
Forkhead box O3 (FOXO3) has been proposed as a homeostasis regulator, capable of integrating multiple upstream signaling pathways that are sensitive to environmental changes and counteracting their adverse effects due to external changes, such as oxidative stress, metabolic stress and growth factor deprivation. FOXO3 polymorphisms are associated with extreme human longevity. Intriguingly, longevity-associated single nucleotide polymorphisms (SNPs) in human FOXO3 correlate with lower-than-average morbidity from cardiovascular diseases in long-lived people. Emerging evidence indicates that FOXO3 plays a critical role in vascular aging. FOXO3 inactivation is implicated in several aging-related vascular diseases. In experimental studies, FOXO3-engineered human ESC-derived vascular cells improve vascular homeostasis and delay vascular aging. The purpose of this review is to explore how FOXO3 regulates vascular aging and its crucial role in aging-related vascular diseases.
Collapse
Affiliation(s)
- Yan Zhao
- Department of Geriatrics, The Second Xiangya Hospital, Central South University, Changsha, China.,Institute of Aging and Age-Related Disease Research, Central South University, Changsha, China
| | - You-Shuo Liu
- Department of Geriatrics, The Second Xiangya Hospital, Central South University, Changsha, China.,Institute of Aging and Age-Related Disease Research, Central South University, Changsha, China
| |
Collapse
|
215
|
Oudmaijer CAJ, Minnee RC, Pol RA, van den Boogaard WMC, Komninos DSJ, van de Wetering J, van Heugten MH, Hoorn EJ, Sanders JSF, Hoeijmakers JHJ, Vermeij WP, IJzermans JNM. Fasting before living-kidney donation: effect on donor well-being and postoperative recovery: study protocol of a multicenter randomized controlled trial. Trials 2022; 23:18. [PMID: 34991694 PMCID: PMC8733810 DOI: 10.1186/s13063-021-05950-x] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Accepted: 12/17/2021] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND One of the main effectors on the quality of life of living-kidney donors is postoperative fatigue. Caloric restriction (CR) and short-term fasting (STF) are associated with improved fitness and increased resistance to acute stress. CR/STF increases the expression of cytoprotective genes, increases immunomodulation via increased anti-inflammatory cytokine production, and decreases the expression of pro-inflammatory markers. As such, nutritional preconditioning by CR or STF represents a non-invasive and cost-effective method that could mitigate the effects of acute surgery-induced stress and postoperative fatigue. To investigate whether preoperative STF contributes to a reduction in fatigue after living-kidney donation, a randomized clinical trial is indicated. METHODS We aim to determine whether 2.5 days of fasting reduces postoperative fatigue score in subjects undergoing living-kidney donation. In this randomized study, the intervention group will follow a preoperative fasting regime for 2.5 days with a low-dose laxative, while the control group will receive standard care. The main study endpoint is postoperative fatigue, 4 weeks after living-kidney donation. Secondary endpoints include the effect of preoperative fasting on postoperative hospital admission time, the feasibility of STF, and the postoperative recovery of donor and recipient kidney function. This study will provide us with knowledge of the feasibility of STF and confirm its effect on postoperative recovery. DISCUSSION Our study will provide clinically relevant information on the merits of caloric restriction for living-kidney donors and recipients. We expect to reduce the postoperative fatigue in living-kidney donors and improve the postoperative recovery of living-kidney recipients. It will provide evidence on the clinical merits and potential caveats of preoperative dietary interventions. TRIAL REGISTRATION Netherlands Trial Register NL9262 . EudraCT 2020-005445-16 . MEC Erasmus MC MEC-2020-0778. CCMO NL74623.078.21.
Collapse
Affiliation(s)
- C. A. J. Oudmaijer
- Erasmus MC Transplant Institute, Department of Surgery, Division of Hepatobiliary and Transplantation Surgery, Erasmus University Medical Center, Dr. Molewaterplein 40, RG-220, 3015 GD Rotterdam, the Netherlands
- Princess Máxima Center for Pediatric Oncology, Utrecht, The Netherlands
- Oncode Institute, Utrecht, The Netherlands
| | - R. C. Minnee
- Erasmus MC Transplant Institute, Department of Surgery, Division of Hepatobiliary and Transplantation Surgery, Erasmus University Medical Center, Dr. Molewaterplein 40, RG-220, 3015 GD Rotterdam, the Netherlands
| | - R. A. Pol
- Department of Transplantation Surgery, University Medical Center Groningen, Groningen, the Netherlands
| | - W. M. C. van den Boogaard
- Princess Máxima Center for Pediatric Oncology, Utrecht, The Netherlands
- Oncode Institute, Utrecht, The Netherlands
| | - D. S. J. Komninos
- Princess Máxima Center for Pediatric Oncology, Utrecht, The Netherlands
- Oncode Institute, Utrecht, The Netherlands
| | - J. van de Wetering
- Department of Internal Medicine, Division of Nephrology and Transplantation, Erasmus University Medical Center, Rotterdam, the Netherlands
| | - M. H. van Heugten
- Department of Internal Medicine, Division of Nephrology and Transplantation, Erasmus University Medical Center, Rotterdam, the Netherlands
| | - E. J. Hoorn
- Department of Internal Medicine, Division of Nephrology and Transplantation, Erasmus University Medical Center, Rotterdam, the Netherlands
| | - J. S. F. Sanders
- Department of Internal Medicine, Division of Nephrology and Transplantation, University Medical Center Groningen, Groningen, the Netherlands
| | - J. H. J. Hoeijmakers
- Princess Máxima Center for Pediatric Oncology, Utrecht, The Netherlands
- Oncode Institute, Utrecht, The Netherlands
- Erasmus MC Cancer Institute, Department of Molecular Genetics, Erasmus University Medical Center Rotterdam, Rotterdam, the Netherlands
- Institute for Genome Stability in Ageing and Disease, Medical Faculty, University of Cologne, Cologne, Germany
- Cologne Excellence Cluster for Cellular Stress Responses in Aging-Associated Diseases (CECAD), Centre for Molecular Medicine Cologne (CMMC), University of Cologne, Cologne, Germany
| | - W. P. Vermeij
- Princess Máxima Center for Pediatric Oncology, Utrecht, The Netherlands
- Oncode Institute, Utrecht, The Netherlands
| | - J. N. M. IJzermans
- Erasmus MC Transplant Institute, Department of Surgery, Division of Hepatobiliary and Transplantation Surgery, Erasmus University Medical Center, Dr. Molewaterplein 40, RG-220, 3015 GD Rotterdam, the Netherlands
| |
Collapse
|
216
|
Zhang G, Deighan A, Raj A, Robinson L, Donato HJ, Garland G, Leland M, Martin-McNulty B, Kolumam GA, Riegler J, Freund A, Wright KM, Churchill GA. Intermittent fasting and caloric restriction interact with genetics to shape physiological health in mice. Genetics 2022; 220:iyab157. [PMID: 34791228 PMCID: PMC8733459 DOI: 10.1093/genetics/iyab157] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2021] [Accepted: 08/10/2021] [Indexed: 11/20/2022] Open
Abstract
Dietary interventions can dramatically affect physiological health and organismal lifespan. The degree to which organismal health is improved depends upon genotype and the severity of dietary intervention, but neither the effects of these factors, nor their interaction, have been quantified in an outbred population. Moreover, it is not well understood what physiological changes occur shortly after dietary change and how these may affect the health of an adult population. In this article, we investigated the effect of 6-month exposure of either caloric restriction (CR) or intermittent fasting (IF) on a broad range of physiological traits in 960 1-year old Diversity Outbred mice. We found CR and IF affected distinct aspects of physiology and neither the magnitude nor the direction (beneficial or detrimental) of effects were concordant with the severity of the intervention. In addition to the effects of diet, genetic variation significantly affected 31 of 36 traits (heritabilities ranged from 0.04 to 0.65). We observed significant covariation between many traits that was due to both diet and genetics and quantified these effects with phenotypic and genetic correlations. We genetically mapped 16 diet-independent and 2 diet-dependent significant quantitative trait loci, both of which were associated with cardiac physiology. Collectively, these results demonstrate the degree to which diet and genetics interact to shape the physiological health of adult mice following 6 months of dietary intervention.
Collapse
Affiliation(s)
- Guozhu Zhang
- Calico Life Sciences LLC, South San Francisco, CA 94080, USA
| | | | - Anil Raj
- Calico Life Sciences LLC, South San Francisco, CA 94080, USA
| | | | | | | | | | | | | | | | - Adam Freund
- Calico Life Sciences LLC, South San Francisco, CA 94080, USA
| | - Kevin M Wright
- Calico Life Sciences LLC, South San Francisco, CA 94080, USA
| | | |
Collapse
|
217
|
Aon MA, Bernier M, de Cabo R. Unraveling Pathways of Health and Lifespan with Integrated Multiomics Approaches. Methods Mol Biol 2022; 2399:193-218. [PMID: 35604558 DOI: 10.1007/978-1-0716-1831-8_9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Distinct and shared pathways of health and lifespan can be untangled following a concerted approach led by experimental design and a rigorous analytical strategy where the confounding effects of diet and feeding regimens can be dissected. In this chapter, we use integrated analysis of multiomics (transcriptomics-metabolomics) data in liver from mice to gain insight into pathways associated with improved health and survival. We identify a unique metabolic hub involving glycine-serine-threonine metabolism at the core of lifespan, and a pattern of shared pathways related to improved health.
Collapse
Affiliation(s)
- Miguel A Aon
- Translational Gerontology Branch, National Institute on Aging, National Institutes of Health, Baltimore, MD, USA
- Laboratory of Cardiovascular Sciences, National Institute on Aging, National Institutes of Health, Baltimore, MD, USA
| | - Michel Bernier
- Translational Gerontology Branch, National Institute on Aging, National Institutes of Health, Baltimore, MD, USA
| | - Rafael de Cabo
- Translational Gerontology Branch, National Institute on Aging, National Institutes of Health, Baltimore, MD, USA.
| |
Collapse
|
218
|
Brown AP, Cai L, Laufer BI, Miller LA, LaSalle JM, Ji H. Long-term effects of wildfire smoke exposure during early life on the nasal epigenome in rhesus macaques. ENVIRONMENT INTERNATIONAL 2022; 158:106993. [PMID: 34991254 PMCID: PMC8852822 DOI: 10.1016/j.envint.2021.106993] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/14/2021] [Revised: 11/16/2021] [Accepted: 11/17/2021] [Indexed: 05/17/2023]
Abstract
BACKGROUND Wildfire smoke is responsible for around 20% of all particulate emissions in the U.S. and affects millions of people worldwide. Children are especially vulnerable, as ambient air pollution exposure during early childhood is associated with reduced lung function. Most studies, however, have focused on the short-term impacts of wildfire smoke exposures. We aimed to identify long-term baseline epigenetic changes associated with early-life exposure to wildfire smoke. We collected nasal epithelium samples for whole genome bisulfite sequencing (WGBS) from two groups of adult female rhesus macaques: one group born just before the 2008 California wildfire season and exposed to wildfire smoke during early-life (n = 8), and the other group born in 2009 with no wildfire smoke exposure during early-life (n = 14). RNA-sequencing was also performed on a subset of these samples. RESULTS We identified 3370 differentially methylated regions (DMRs) (difference in methylation ≥ 5%, empirical p < 0.05) and 1 differentially expressed gene (FLOT2) (FDR < 0.05, fold of change ≥ 1.2). The DMRs were annotated to genes significantly enriched for synaptogenesis signaling, protein kinase A signaling, and a variety of immune processes, and some DMRs significantly correlated with gene expression differences. DMRs were also significantly enriched within regions of bivalent chromatin (top odds ratio = 1.46, q-value < 3 × 10-6) that often silence key developmental genes while keeping them poised for activation in pluripotent cells. CONCLUSIONS These data suggest that early-life exposure to wildfire smoke leads to long-term changes in the methylome over genes impacting the nervous and immune systems. Follow-up studies will be required to test whether these changes influence transcription following an immune/respiratory challenge.
Collapse
Affiliation(s)
- Anthony P Brown
- California National Primate Research Center, Davis, CA 95616, USA
| | - Lucy Cai
- California National Primate Research Center, Davis, CA 95616, USA
| | - Benjamin I Laufer
- Department of Medical Microbiology and Immunology, MIND Institute, Genome Center, University of California, Davis, CA 95616, USA
| | - Lisa A Miller
- California National Primate Research Center, Davis, CA 95616, USA; Department of Anatomy, Physiology and Cell biology, School of Veterinary Medicine, University of California, Davis, CA 95616, USA
| | - Janine M LaSalle
- Department of Medical Microbiology and Immunology, MIND Institute, Genome Center, University of California, Davis, CA 95616, USA
| | - Hong Ji
- California National Primate Research Center, Davis, CA 95616, USA; Department of Anatomy, Physiology and Cell biology, School of Veterinary Medicine, University of California, Davis, CA 95616, USA.
| |
Collapse
|
219
|
Rubio-Tomás T, Rueda-Robles A, Plaza-Díaz J, Álvarez-Mercado AI. Nutrition and cellular senescence in obesity-related disorders. J Nutr Biochem 2022; 99:108861. [PMID: 34517097 DOI: 10.1016/j.jnutbio.2021.108861] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2020] [Revised: 05/29/2021] [Accepted: 08/10/2021] [Indexed: 02/06/2023]
Abstract
Adequate nutrition is vital for immune homeostasis. However, the incidence of obesity is increasing worldwide due to the adoption of the Western diet and a sedentary lifestyle. Obesity is associated with chronic inflammation which alters the function of adipose tissue, liver, pancreas, and the nervous system. Inflammation is related to cellular senescence, distinguished by irreversible cell cycle arrest. Senescent cells secrete the senescence-associated secretory phenotype (SASP) which contains pro-inflammatory factors. Targeting processes in senescence might have a salutary approach to obesity. The present review highlights the impact of an unhealthy diet on tissues affected by obesity, and the mechanisms that promote the consequent inflammation and senescence.
Collapse
Affiliation(s)
- Teresa Rubio-Tomás
- Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain; School of Medicine, University of Crete, Herakleion, Crete, Greece
| | - Ascensión Rueda-Robles
- Institute of Nutrition and Food Technology "José Mataix", Center of Biomedical Research, University of Granada, Armilla, Granada, Spain
| | - Julio Plaza-Díaz
- Children's Hospital of Eastern Ontario Research Institute, Ottawa, ON Canada; Department of Biochemistry and Molecular Biology II, School of Pharmacy, University of Granada, Granada, Spain; Instituto de Investigación Biosanitaria ibs.GRANADA, Complejo Hospitalario Universitario de Granada, Granada Spain.
| | - Ana I Álvarez-Mercado
- Institute of Nutrition and Food Technology "José Mataix", Center of Biomedical Research, University of Granada, Armilla, Granada, Spain; Department of Biochemistry and Molecular Biology II, School of Pharmacy, University of Granada, Granada, Spain; Instituto de Investigación Biosanitaria ibs.GRANADA, Complejo Hospitalario Universitario de Granada, Granada Spain.
| |
Collapse
|
220
|
Ao DZ, Xu Y, Sun X, Zhang W, Yuan Y. Alternate-Day High Fat-Normal Chow Diet Ameliorates HFD-Induced Obesity and Restores Intestinal Immunity. Diabetes Metab Syndr Obes 2022; 15:3843-3853. [PMID: 36530586 PMCID: PMC9756961 DOI: 10.2147/dmso.s392372] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/05/2022] [Accepted: 12/02/2022] [Indexed: 12/14/2022] Open
Abstract
PURPOSE To investigate the effect of alternating-day diet regimens on high-fat diet-induced metabolic disorders in mice. MATERIALS AND METHODS Eight-week-old C57BL/6J mice were fed with either a continuous normal chow diet (CD, n = 10), a continuous high-fat diet (HFD, n = 10), HFD alternating every 24 h with fasting (H-ADF, n = 20), or HFD alternating every 24 h with chow diet (H-ADC, n = 20) for 12 weeks. Weights were recorded weekly and oral glucose tolerance tests were performed 6 weeks after initiating the regimens. At the end of the study, blood samples were collected and serum insulin and lipids were measured; tissues were collected for histology and RNA-seq analysis. RESULTS HFD significantly increased body weight and fat percentage, while HFD alternating with fasting or CD did not significantly affect body weight and fat percentage. The glucose intolerance induced by HFD was also significantly ameliorated in these two diet intervention groups. HFD-induced elevation of total cholesterol, low-density lipoprotein and insulin were also reduced in H-ADF and H-ADC groups. Moreover, HFD-disturbed immunity, presented by Lysozyme C-1 (Lyz1) immunostaining and RNA-seq, was restored in both alternating-regimen groups, especially, with H-ADC. At the transcriptional level, some cell proliferation and lipid absorption pathways were down-regulated in both H-ADF and H-ADC groups compared to the continuous HFD group. CONCLUSION Alternating an HFD with a normal diet every 24 h effectively controls weight and prevents metabolic disorders and may act by affecting both fat absorption and intestinal immunity.
Collapse
Affiliation(s)
- Drake Z Ao
- The Affiliated High School of Peking University, Beijing, 100086, People’s Republic of China
| | - Yihua Xu
- Institute of Molecular Medicine, College of Future Technology, Peking University, Beijing, 100871, People’s Republic of China
| | - Xueting Sun
- Institute of Molecular Medicine, College of Future Technology, Peking University, Beijing, 100871, People’s Republic of China
| | - Weibo Zhang
- The Affiliated High School of Peking University, Beijing, 100086, People’s Republic of China
- Weibo Zhang, The Affiliated High School of Peking University, Beijing, 100086, People’s Republic of China, Email
| | - Ye Yuan
- Institute of Molecular Medicine, College of Future Technology, Peking University, Beijing, 100871, People’s Republic of China
- Correspondence: Ye Yuan, Institute of Molecular Medicine, College of Future Technology, Peking University, Beijing, 100871, People’s Republic of China, Email
| |
Collapse
|
221
|
Desaka N, Ota C, Nishikawa H, Yasuda K, Ishii N, Bito T, Kishinaga Y, Naito Y, Higashimura Y. Streptococcus thermophilus extends lifespan through activation of DAF-16-mediated antioxidant pathway in Caenorhabditis elegans. J Clin Biochem Nutr 2022; 70:7-13. [PMID: 35068675 PMCID: PMC8764109 DOI: 10.3164/jcbn.21-56] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2021] [Accepted: 05/13/2021] [Indexed: 11/22/2022] Open
Affiliation(s)
- Natsumi Desaka
- Department of Food Science, Ishikawa Prefectural University
| | - Chinatsu Ota
- United Graduate School of Agricultural Sciences, Tottori University
| | | | - Kayo Yasuda
- Department of Health Management, Tokai University Undergraduate School of Health Studies
| | - Naoaki Ishii
- Department of Health Management, Tokai University Undergraduate School of Health Studies
| | - Tomohiro Bito
- United Graduate School of Agricultural Sciences, Tottori University
| | - Yukio Kishinaga
- Research and Development Group, Mill Souhonsha Company Limited
| | - Yuji Naito
- Department of Human Immunology and Nutrition Science, Kyoto Prefectural University of Medicine
| | | |
Collapse
|
222
|
Karabulutoglu M, Finnon R, Cruz-Garcia L, Hill MA, Badie C. Oxidative Stress and X-ray Exposure Levels-Dependent Survival and Metabolic Changes in Murine HSPCs. Antioxidants (Basel) 2021; 11:11. [PMID: 35052515 PMCID: PMC8772903 DOI: 10.3390/antiox11010011] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2021] [Revised: 12/10/2021] [Accepted: 12/16/2021] [Indexed: 12/24/2022] Open
Abstract
Haematopoietic bone marrow cells are amongst the most sensitive to ionizing radiation (IR), initially resulting in cell death or genotoxicity that may later lead to leukaemia development, most frequently Acute Myeloid Leukaemia (AML). The target cells for radiation-induced Acute Myeloid Leukaemia (rAML) are believed to lie in the haematopoietic stem and progenitor cell (HSPC) compartment. Using the inbred strain CBA/Ca as a murine model of rAML, progress has been made in understanding the underlying mechanisms, characterisation of target cell population and responses to IR. Complex regulatory systems maintain haematopoietic homeostasis which may act to modulate the risk of rAML. However, little is currently known about the role of metabolic factors and diet in these regulatory systems and modification of the risk of AML development. This study characterises cellular proliferative and clonogenic potential as well as metabolic changes within murine HSPCs under oxidative stress and X-ray exposure. Ambient oxygen (normoxia; 20.8% O2) levels were found to increase irradiated HSPC-stress, stimulating proliferative activity compared to low oxygen (3% O2) levels. IR exposure has a negative influence on the proliferative capability of HSPCs in a dose-dependent manner (0-2 Gy) and this is more pronounced under a normoxic state. One Gy x-irradiated HSPCs cultured under normoxic conditions displayed a significant increase in oxygen consumption compared to those cultured under low O2 conditions and to unirradiated HSPCs. Furthermore, mitochondrial analyses revealed a significant increase in mitochondrial DNA (mtDNA) content, mitochondrial mass and membrane potential in a dose-dependent manner under normoxic conditions. Our results demonstrate that both IR and normoxia act as stressors for HSPCs, leading to significant metabolic deregulation and mitochondrial dysfunctionality which may affect long term risks such as leukaemia.
Collapse
Affiliation(s)
- Melis Karabulutoglu
- Cancer Mechanisms and Biomarkers Group, Radiation Effects Department, Radiation, Chemical and Environmental Hazards Directorate (RCE, Formally CRCE), UK Health Security Agency (Formerly Public Health England), Chilton, Didcot, Oxon OX11 0RQ, UK; (R.F.); (L.C.-G.)
- MRC Oxford Institute for Radiation Oncology, Department of Oncology, University of Oxford, Oxford OX3 7DQ, UK;
| | - Rosemary Finnon
- Cancer Mechanisms and Biomarkers Group, Radiation Effects Department, Radiation, Chemical and Environmental Hazards Directorate (RCE, Formally CRCE), UK Health Security Agency (Formerly Public Health England), Chilton, Didcot, Oxon OX11 0RQ, UK; (R.F.); (L.C.-G.)
| | - Lourdes Cruz-Garcia
- Cancer Mechanisms and Biomarkers Group, Radiation Effects Department, Radiation, Chemical and Environmental Hazards Directorate (RCE, Formally CRCE), UK Health Security Agency (Formerly Public Health England), Chilton, Didcot, Oxon OX11 0RQ, UK; (R.F.); (L.C.-G.)
| | - Mark A. Hill
- MRC Oxford Institute for Radiation Oncology, Department of Oncology, University of Oxford, Oxford OX3 7DQ, UK;
| | - Christophe Badie
- Cancer Mechanisms and Biomarkers Group, Radiation Effects Department, Radiation, Chemical and Environmental Hazards Directorate (RCE, Formally CRCE), UK Health Security Agency (Formerly Public Health England), Chilton, Didcot, Oxon OX11 0RQ, UK; (R.F.); (L.C.-G.)
| |
Collapse
|
223
|
Immune Memory in Aging: a Wide Perspective Covering Microbiota, Brain, Metabolism, and Epigenetics. Clin Rev Allergy Immunol 2021; 63:499-529. [PMID: 34910283 PMCID: PMC8671603 DOI: 10.1007/s12016-021-08905-x] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/24/2021] [Indexed: 11/06/2022]
Abstract
Non-specific innate and antigen-specific adaptive immunological memories are vital evolutionary adaptations that confer long-lasting protection against a wide range of pathogens. Adaptive memory is established by memory T and B lymphocytes following the recognition of an antigen. On the other hand, innate immune memory, also called trained immunity, is imprinted in innate cells such as macrophages and natural killer cells through epigenetic and metabolic reprogramming. However, these mechanisms of memory generation and maintenance are compromised as organisms age. Almost all immune cell types, both mature cells and their progenitors, go through age-related changes concerning numbers and functions. The aging immune system renders the elderly highly susceptible to infections and incapable of mounting a proper immune response upon vaccinations. Besides the increased infectious burden, older individuals also have heightened risks of metabolic and neurodegenerative diseases, which have an immunological component. This review discusses how immune function, particularly the establishment and maintenance of innate and adaptive immunological memory, regulates and is regulated by epigenetics, metabolic processes, gut microbiota, and the central nervous system throughout life, with a focus on old age. We explain in-depth how epigenetics and cellular metabolism impact immune cell function and contribute or resist the aging process. Microbiota is intimately linked with the immune system of the human host, and therefore, plays an important role in immunological memory during both homeostasis and aging. The brain, which is not an immune-isolated organ despite former opinion, interacts with the peripheral immune cells, and the aging of both systems influences the health of each other. With all these in mind, we aimed to present a comprehensive view of the aging immune system and its consequences, especially in terms of immunological memory. The review also details the mechanisms of promising anti-aging interventions and highlights a few, namely, caloric restriction, physical exercise, metformin, and resveratrol, that impact multiple facets of the aging process, including the regulation of innate and adaptive immune memory. We propose that understanding aging as a complex phenomenon, with the immune system at the center role interacting with all the other tissues and systems, would allow for more effective anti-aging strategies.
Collapse
|
224
|
Baruteau J, Cunningham SC, Yilmaz BS, Perocheau DP, Eaglestone S, Burke D, Thrasher AJ, Waddington SN, Lisowski L, Alexander IE, Gissen P. Safety and efficacy of an engineered hepatotropic AAV gene therapy for ornithine transcarbamylase deficiency in cynomolgus monkeys. Mol Ther Methods Clin Dev 2021; 23:135-146. [PMID: 34703837 PMCID: PMC8517016 DOI: 10.1016/j.omtm.2021.09.005] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2021] [Accepted: 09/08/2021] [Indexed: 12/31/2022]
Abstract
X-linked inherited ornithine transcarbamylase deficiency (OTCD) is the most common disorder affecting the liver-based urea cycle, a pathway enabling detoxification of nitrogen waste and endogenous arginine biosynthesis. Patients develop acute hyperammonemia leading to neurological sequelae or death despite the best-accepted therapy based on ammonia scavengers and protein-restricted diet. Liver transplantation is curative but associated with procedure-related complications and lifelong immunosuppression. Adeno-associated viral (AAV) vectors have demonstrated safety and clinical benefits in a rapidly growing number of clinical trials for inherited metabolic liver diseases. Engineered AAV capsids have shown promising enhanced liver tropism. Here, we conducted a good-laboratory practice-compliant investigational new drug-enabling study to assess the safety of intravenous liver-tropic AAVLK03 gene transfer of a human codon-optimized OTC gene. Juvenile cynomolgus monkeys received vehicle and a low and high dose of vector (2 × 1012 and 2 × 1013 vector genome (vg)/kg, respectively) and were monitored for 26 weeks for in-life safety with sequential liver biopsies at 1 and 13 weeks post-vector administration. Upon completion of monitoring, animals were euthanized to study vector biodistribution, immune responses, and histopathology. The product was well tolerated with no adverse clinical events, predominant hepatic biodistribution, and sustained supra-physiological OTC overexpression. This study supports the clinical deployment of intravenous AAVLK03 for severe OTCD.
Collapse
Affiliation(s)
- Julien Baruteau
- Genetics and Genomic Medicine Department, Great Ormond Street Institute of Child Health, University College London, London WC1N 1EH, UK
- National Institute of Health Research, Great Ormond Street Biomedical Research Centre, London WC1N 1EH, UK
- Metabolic Medicine Department, Great Ormond Street Hospital for Children NHS Foundation Trust, London WC1N 3JH, UK
| | - Sharon C. Cunningham
- Gene Therapy Research Unit, Children’s Medical Research Institute and Children’s Hospital at Westmead, Faculty of Medicine and Health, The University of Sydney, Sydney, Australia
| | - Berna Seker Yilmaz
- Genetics and Genomic Medicine Department, Great Ormond Street Institute of Child Health, University College London, London WC1N 1EH, UK
- Department of Pediatric Metabolic Medicine, Mersin University, Mersin 33110, Turkey
| | - Dany P. Perocheau
- Genetics and Genomic Medicine Department, Great Ormond Street Institute of Child Health, University College London, London WC1N 1EH, UK
| | - Simon Eaglestone
- Translational Research Office, University College London, London, UK
| | - Derek Burke
- Enzyme Unit, NIHR BRC, Great Ormond Street Hospital Foundation Trust and UCL Great Ormond Street Institute of Child Health, London, UK
| | - Adrian J. Thrasher
- Molecular & Cellular Immunology, Great Ormond Street Institute of Child Health, University College London, London WC1N 1EH, UK
| | - Simon N. Waddington
- Gene Transfer Technology Group, Institute for Women’s Health, University College London, 86-96 Chenies Mews, London, UK
- MRC Antiviral Gene Therapy Research Unit, Faculty of Health Sciences, University of the Witswatersrand, Johannesburg, South Africa
| | - Leszek Lisowski
- Translational Vectorology Unit, Children’s Medical Research Institute, The University of Sydney, Westmead, NSW, Australia
- Military Institute of Medicine, Laboratory of Molecular Oncology and Innovative Therapies, Warsaw, Poland
| | - Ian E. Alexander
- Gene Therapy Research Unit, Children’s Medical Research Institute and Children’s Hospital at Westmead, Faculty of Medicine and Health, The University of Sydney, Sydney, Australia
- Discipline of Child and Adolescent Health, Sydney Medical School, Faculty of Medicine and Health, The University of Sydney, Westmead, NSW 2145, Australia
| | - Paul Gissen
- Genetics and Genomic Medicine Department, Great Ormond Street Institute of Child Health, University College London, London WC1N 1EH, UK
- National Institute of Health Research, Great Ormond Street Biomedical Research Centre, London WC1N 1EH, UK
- Metabolic Medicine Department, Great Ormond Street Hospital for Children NHS Foundation Trust, London WC1N 3JH, UK
| |
Collapse
|
225
|
Carosi JM, Fourrier C, Bensalem J, Sargeant TJ. The mTOR-lysosome axis at the centre of ageing. FEBS Open Bio 2021; 12:739-757. [PMID: 34878722 PMCID: PMC8972043 DOI: 10.1002/2211-5463.13347] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Revised: 11/23/2021] [Accepted: 12/07/2021] [Indexed: 01/10/2023] Open
Abstract
Age‐related diseases represent some of the largest unmet clinical needs of our time. While treatment of specific disease‐related signs has had some success (for example, the effect of statin drugs on slowing progression of atherosclerosis), slowing biological ageing itself represents a target that could significantly increase health span and reduce the prevalence of multiple age‐related diseases. Mechanistic target of rapamycin complex 1 (mTORC1) is known to control fundamental processes in ageing: inhibiting this signalling complex slows biological ageing, reduces age‐related disease pathology and increases lifespan in model organisms. How mTORC1 inhibition achieves this is still subject to ongoing research. However, one mechanism by which mTORC1 inhibition is thought to slow ageing is by activating the autophagy–lysosome pathway. In this review, we examine the special bidirectional relationship between mTORC1 and the lysosome. In cells, mTORC1 is located on lysosomes. From this advantageous position, it directly controls the autophagy–lysosome pathway. However, the lysosome also controls mTORC1 activity in numerous ways, creating a special two‐way relationship. We then explore specific examples of how inhibition of mTORC1 and activation of the autophagy–lysosome pathway slow the molecular hallmarks of ageing. This body of literature demonstrates that the autophagy–lysosome pathway represents an excellent target for treatments that seek to slow biological ageing and increase health span in humans.
Collapse
Affiliation(s)
- Julian M Carosi
- Lysosomal Health in Ageing, Hopwood Centre for Neurobiology, Lifelong Health Theme, SAHMRI, Adelaide, Australia
| | - Célia Fourrier
- Lysosomal Health in Ageing, Hopwood Centre for Neurobiology, Lifelong Health Theme, SAHMRI, Adelaide, Australia
| | - Julien Bensalem
- Lysosomal Health in Ageing, Hopwood Centre for Neurobiology, Lifelong Health Theme, SAHMRI, Adelaide, Australia
| | - Timothy J Sargeant
- Lysosomal Health in Ageing, Hopwood Centre for Neurobiology, Lifelong Health Theme, SAHMRI, Adelaide, Australia
| |
Collapse
|
226
|
Nutritional reprogramming of mouse liver proteome is dampened by metformin, resveratrol, and rapamycin. Cell Metab 2021; 33:2367-2379.e4. [PMID: 34767745 DOI: 10.1016/j.cmet.2021.10.016] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/19/2021] [Revised: 08/17/2021] [Accepted: 10/26/2021] [Indexed: 12/12/2022]
Abstract
Nutrient sensing pathways influence metabolic health and aging, offering the possibility that diet might be used therapeutically, alone or with drugs targeting these pathways. We used the Geometric Framework for Nutrition to study interactive and comparative effects of diet and drugs on the hepatic proteome in mice across 40 dietary treatments differing in macronutrient ratios, energy density, and drug treatment (metformin, rapamycin, resveratrol). There was a strong negative correlation between dietary energy and the spliceosome and a strong positive correlation between dietary protein and mitochondria, generating oxidative stress at high protein intake. Metformin, rapamycin, and resveratrol had lesser effects than and dampened responses to diet. Rapamycin and metformin reduced mitochondrial responses to dietary protein while the effects of carbohydrates and fat were downregulated by resveratrol. Dietary composition has a powerful impact on the hepatic proteome, not just on metabolic pathways but fundamental processes such as mitochondrial function and RNA splicing.
Collapse
|
227
|
Kluever V, Fornasiero EF. Principles of brain aging: Status and challenges of modeling human molecular changes in mice. Ageing Res Rev 2021; 72:101465. [PMID: 34555542 DOI: 10.1016/j.arr.2021.101465] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Revised: 09/13/2021] [Accepted: 09/16/2021] [Indexed: 01/22/2023]
Abstract
Due to the extension of human life expectancy, the prevalence of cognitive impairment is rising in the older portion of society. Developing new strategies to delay or attenuate cognitive decline is vital. For this purpose, it is imperative to understand the cellular and molecular events at the basis of brain aging. While several organs are directly accessible to molecular analysis through biopsies, the brain constitutes a notable exception. Most of the molecular studies are performed on postmortem tissues, where cell death and tissue damage have already occurred. Hence, the study of the molecular aspects of cognitive decline largely relies on animal models and in particular on small mammals such as mice. What have we learned from these models? Do these animals recapitulate the changes observed in humans? What should we expect from future mouse studies? In this review we answer these questions by summarizing the state of the research that has addressed cognitive decline in mice from several perspectives, including genetic manipulation and omics strategies. We conclude that, while extremely valuable, mouse models have limitations that can be addressed by the optimal design of future studies and by ensuring that results are cross-validated in the human context.
Collapse
|
228
|
Gou N, Ji H, Wu W, Zhong M, Zhang B. Transcriptional response to cold and fasting acclimation in Onychostoma macrolepis during the overwintering stage. COMPARATIVE BIOCHEMISTRY AND PHYSIOLOGY. PART D, GENOMICS & PROTEOMICS 2021; 40:100901. [PMID: 34418784 DOI: 10.1016/j.cbd.2021.100901] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/04/2021] [Revised: 08/10/2021] [Accepted: 08/10/2021] [Indexed: 06/13/2023]
Abstract
In this study, we investigated the transcriptome responses of the liver of Onychostoma macrolepis in by RNA sequencing. The sampling process involved three groups: 1G (0 week, 10 °C), 2G (12 weeks, 0 °C) and 3G (24 weeks, 10 °C). The body weight, viscera index, hepatopancreas index and intraperitoneal fat index of O. macrolepis showed a decreasing trend with the prolonging of overwintering time. The crude fat contents of whole fish, muscle and liver in O. macrolepis after overwintering were significantly lower than those of the fish before overwintering (p < 0.05). In 1G versus 2G group, 2G versus 3G group and 1G versus 3G group, the differently expressed genes (DEGs) were 4630, 3976 and 2311, respectively. These results indicated that different stages of overwintering period had significant effects on gene expression of O. macrolepis, and the influence degree gradually decreased with the extension of overwintering period. The results of Gene ontology (GO) enrichment showed that these DEGs were mainly related to metabolism and immunity, and most of them were down-regulated. In this study, the KEGG pathway classification results showed that signal transduction was the most representative. In addition, KOG enrichment results showed that many DEGs associated with lipid transport and metabolism were down-regulated during the overwintering period. These observations suggested that slowing metabolism and delaying immunity may be the strategies for overwintering adaptation of O. macrolepis.
Collapse
Affiliation(s)
- Nina Gou
- College of Animal Science and Technology, Northwest A&F University, Yangling 712100, China; Shaanxi Institute of Zoology, Xi'an 710032, China
| | - Hong Ji
- College of Animal Science and Technology, Northwest A&F University, Yangling 712100, China.
| | - Wenyi Wu
- College of Animal Science and Technology, Northwest A&F University, Yangling 712100, China
| | - Mingzhi Zhong
- College of Animal Science and Technology, Northwest A&F University, Yangling 712100, China
| | - Binxin Zhang
- College of Animal Science and Technology, Northwest A&F University, Yangling 712100, China
| |
Collapse
|
229
|
Gialluisi A, Santoro A, Tirozzi A, Cerletti C, Donati MB, de Gaetano G, Franceschi C, Iacoviello L. Epidemiological and genetic overlap among biological aging clocks: New challenges in biogerontology. Ageing Res Rev 2021; 72:101502. [PMID: 34700008 DOI: 10.1016/j.arr.2021.101502] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2021] [Revised: 10/18/2021] [Accepted: 10/20/2021] [Indexed: 01/09/2023]
Abstract
Estimators of biological age (BA) - defined as the hypothetical underlying age of an organism - have attracted more and more attention in the last years, especially after the advent of new algorithms based on machine learning and genetic markers. While different aging clocks reportedly predict mortality in the general population, very little is known on their overlap. Here we review the evidence reported so far to support the existence of a partial overlap among different BA acceleration estimators, both from an epidemiological and a genetic perspective. On the epidemiological side, we review evidence supporting shared and independent influence on mortality risk of different aging clocks - including telomere length, brain, blood and epigenetic aging - and provide an overview of how an important exposure like diet may affect the different aging systems. On the genetic side, we apply linkage disequilibrium score regression analyses to support the existence of partly shared genomic overlap among these aging clocks. Through multivariate analysis of published genetic associations with these clocks, we also identified the most associated variants, genes, and pathways, which may affect common mechanisms underlying biological aging of different systems within the body. Based on our analyses, the most implicated pathways were involved in inflammation, lipid and carbohydrate metabolism, suggesting them as potential molecular targets for future anti-aging interventions. Overall, this review is meant as a contribution to the knowledge on the overlap of aging clocks, trying to clarify their shared biological basis and epidemiological implications.
Collapse
Affiliation(s)
| | - Aurelia Santoro
- Department of Experimental, Diagnostic and Specialty Medicine, University of Bologna, Bologna, Italy; Alma Mater Research Institute on Global Challenges and Climate Change (Alma Climate), University of Bologna, Bologna 40126, Italy
| | - Alfonsina Tirozzi
- Department of Epidemiology and Prevention, IRCCS NEUROMED, Pozzilli, Italy
| | - Chiara Cerletti
- Department of Epidemiology and Prevention, IRCCS NEUROMED, Pozzilli, Italy
| | | | | | - Claudio Franceschi
- Department of Experimental, Diagnostic and Specialty Medicine, University of Bologna, Bologna, Italy; Laboratory of Systems Medicine of Healthy Aging and Department of Applied Mathematics, Lobachevsky University, Nizhny Novgorod, Russia
| | - Licia Iacoviello
- Department of Epidemiology and Prevention, IRCCS NEUROMED, Pozzilli, Italy; Department of Medicine and Surgery, University of Insubria, Varese, Italy
| |
Collapse
|
230
|
Satoh K. Sirtuin-7 as a Novel Therapeutic Target in Vascular Smooth Muscle Cell Proliferation and Remodeling. Circ J 2021; 85:2241-2242. [PMID: 33762514 DOI: 10.1253/circj.cj-21-0137] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Kimio Satoh
- Department of Cardiovascular Medicine, Tohoku University Graduate School of Medicine
| |
Collapse
|
231
|
Abstract
Caloric restriction has been known for nearly a century to extend life span and delay age-associated pathology in laboratory animals. More recently, alternative “antiaging” diet modalities have been described that provide new mechanistic insights and potential clinical applications. These include intermittent fasting, fasting-mimicking diets, ketogenic diets, time-restricted feeding, protein restriction, and dietary restriction of specific amino acids. Despite mainstream popularization of some of these diets, many questions remain about their efficacy outside of a laboratory setting. Studies of these interventions support at least partially overlapping mechanisms of action and provide insights into what appear to be highly conserved mechanisms of biological aging.
Collapse
Affiliation(s)
- Mitchell B Lee
- Department of Laboratory Medicine and Pathology, University of Washington, Seattle, WA 98195-7470, USA
| | - Cristal M Hill
- Pennington Biomedical Research Center, Baton Rouge, LA 70808, USA
| | - Alessandro Bitto
- Department of Laboratory Medicine and Pathology, University of Washington, Seattle, WA 98195-7470, USA
| | - Matt Kaeberlein
- Department of Laboratory Medicine and Pathology, University of Washington, Seattle, WA 98195-7470, USA
| |
Collapse
|
232
|
Herman AB, Occean JR, Sen P. Epigenetic dysregulation in cardiovascular aging and disease. THE JOURNAL OF CARDIOVASCULAR AGING 2021; 1. [PMID: 34790973 PMCID: PMC8594871 DOI: 10.20517/jca.2021.16] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Cardiovascular disease (CVD) is the leading cause of mortality and morbidity for all sexes, racial and ethnic groups. Age, and its associated physiological and pathological consequences, exacerbate CVD incidence and progression, while modulation of biological age with interventions track with cardiovascular health. Despite the strong link between aging and CVD, surprisingly few studies have directly investigated heart failure and vascular dysfunction in aged models and subjects. Nevertheless, strong correlations have been found between heart disease, atherosclerosis, hypertension, fibrosis, and regeneration efficiency with senescent cell burden and its proinflammatory sequelae. In agreement, senotherapeutics have had success in reducing the detrimental effects in experimental models of cardiovascular aging and disease. Aside from senotherapeutics, cellular reprogramming strategies targeting epigenetic enzymes remain an unexplored yet viable option for reversing or delaying CVD. Epigenetic alterations comprising local and global changes in DNA and histone modifications, transcription factor binding, disorganization of the nuclear lamina, and misfolding of the genome are hallmarks of aging. Limited studies in the aging cardiovascular system of murine models or human patient samples have identified strong correlations between the epigenome, age, and senescence. Here, we compile the findings in published studies linking epigenetic changes to CVD and identify clear themes of epigenetic deregulation during aging. Pending direct investigation of these general mechanisms in aged tissues, this review predicts that future work will establish epigenetic rejuvenation as a potent method to delay CVD.
Collapse
Affiliation(s)
- Allison B Herman
- Laboratory of Genetics and Genomics, National Institute on Aging, NIH, Baltimore, MD 21224, USA
| | - James R Occean
- Laboratory of Genetics and Genomics, National Institute on Aging, NIH, Baltimore, MD 21224, USA
| | - Payel Sen
- Laboratory of Genetics and Genomics, National Institute on Aging, NIH, Baltimore, MD 21224, USA
| |
Collapse
|
233
|
Circ-SIRT1 inhibits cardiac hypertrophy via activating SIRT1 to promote autophagy. Cell Death Dis 2021; 12:1069. [PMID: 34759275 PMCID: PMC8580993 DOI: 10.1038/s41419-021-04059-y] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2020] [Revised: 07/20/2021] [Accepted: 07/26/2021] [Indexed: 12/18/2022]
Abstract
Mounting studies have substantiated that abrogating autophagy contributes to cardiac hypertrophy (CH). Sirtuin 1 (SIRT1) has been reported to support autophagy and inhibit CH. However, the upstream regulation mechanism behind the regulation of SIRT1 level in CH remains unclear. Circular RNAs (circRNAs) are vital modulators in diverse human diseases including CH. This study intended to investigate the regulatory mechanism of circRNA on SIRT1 expression in CH. CH model was established by angiotensin II (Ang II) fusion or transverse aortic constriction (TAC) surgery and Ang II treatment on hiPSC-CMs and H9c2 cells in vitro. Our results showed that circ-SIRT1 (hsa_circ_0093884) expression was downregulated in Ang II-treated hiPSC-CMs, and confirmed that its conserved mouse homolog circ-Sirt1 (mmu_circ_0002354) was expressed at low levels in Ang II-treated H9c2 cells and TAC-induced mice model. Functionally, circ-SIRT1/circ-Sirt1 attenuated Ang II-induced CH and induced autophagy in hiPSC-CMs and H9c2 cardiomyocytes. Mechanistically, circ-SIRT1 could upregulate its host gene SIRT1 at the post-transcriptional level by sponging miR-3681-3p/miR-5195-3p and stabilized SIRT1 protein at the post-translational level by recruiting USP22 to induce deubiquitination on SIRT1 protein. Further, SIRT1 knockdown could rescue the effect of circ-SIRT1 upregulation on Ang II-induced CH and autophagy in vitro and in vivo. In conclusion, we first uncovered that circ-SIRT1 restrains CH via activating SIRT1 to promote autophagy, indicating circ-SIRT1 as a promising target to alleviate CH.
Collapse
|
234
|
Shirai T, Uemichi K, Hidaka Y, Kitaoka Y, Takemasa T. Effect of lactate administration on mouse skeletal muscle under calorie restriction. Curr Res Physiol 2021; 4:202-208. [PMID: 34746839 PMCID: PMC8562144 DOI: 10.1016/j.crphys.2021.09.001] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2021] [Revised: 08/25/2021] [Accepted: 09/03/2021] [Indexed: 12/18/2022] Open
Abstract
Calorie restriction (CR) involves a reductions of calorie intake without altering the nutritional balance, and has many beneficial effects, such as improving oxidative metabolism and extending lifespan. However, CR decreases in skeletal muscle mass and fat mass in correlation with the reduction in food intake. Lactate is known to have potential as a signaling molecule rather than a metabolite during exercise. In this study, we examined the effects of the combination of caloric restriction and lactate administration on skeletal muscle adaptation in order to elucidate a novel role of lactate. We first demonstrated that daily lactate administration (equivalent to 1 g/kg of body weight) for 2 weeks suppressed CR-induced muscle atrophy by activating mammalian/mechanistic target of rapamycin (mTOR) signaling, a muscle protein synthesis pathway, and inhibited autophagy-induced muscle degradation. Next, we found that lactate administration under calorie restriction enhanced mitochondrial enzyme activity (citrate synthase and succinate dehydrogenase) and the expression of oxidative phosphorylation (OXPHOS) protein expression. Our results suggest that lactate administration under caloric restriction not only suppresses muscle atrophy but also improves mitochondrial function.
Collapse
Affiliation(s)
- Takanaga Shirai
- Graduate School of Comprehensive Human Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, 305-8574, Ibaraki, Japan.,Faculty of Health and Sport Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, 305-8577, Ibaraki, Japan.,Research Fellow of Japan Society for Promotion Science, Japan
| | - Kazuki Uemichi
- Graduate School of Comprehensive Human Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, 305-8574, Ibaraki, Japan
| | - Yuki Hidaka
- School of Physical Education, Health and Sport Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, 305-8574, Ibaraki, Japan
| | - Yu Kitaoka
- Department of Human Sciences, Kanagawa University, 3-27-1 Rokkakubashi, Kanagawa-ku, Yokohama-shi, Kanagawa, 221-8686 Japan
| | - Tohru Takemasa
- Faculty of Health and Sport Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, 305-8577, Ibaraki, Japan
| |
Collapse
|
235
|
Chao CC, Shen PW, Tzeng TY, Kung HJ, Tsai TF, Wong YH. Human iPSC-Derived Neurons as A Platform for Deciphering the Mechanisms behind Brain Aging. Biomedicines 2021; 9:1635. [PMID: 34829864 PMCID: PMC8615703 DOI: 10.3390/biomedicines9111635] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2021] [Revised: 11/04/2021] [Accepted: 11/05/2021] [Indexed: 12/21/2022] Open
Abstract
With an increased life expectancy among humans, aging has recently emerged as a major focus in biomedical research. The lack of in vitro aging models-especially for neurological disorders, where access to human brain tissues is limited-has hampered the progress in studies on human brain aging and various age-associated neurodegenerative diseases at the cellular and molecular level. In this review, we provide an overview of age-related changes in the transcriptome, in signaling pathways, and in relation to epigenetic factors that occur in senescent neurons. Moreover, we explore the current cell models used to study neuronal aging in vitro, including immortalized cell lines, primary neuronal culture, neurons directly converted from fibroblasts (Fib-iNs), and iPSC-derived neurons (iPSC-iNs); we also discuss the advantages and limitations of these models. In addition, the key phenotypes associated with cellular senescence that have been observed by these models are compared. Finally, we focus on the potential of combining human iPSC-iNs with genome editing technology in order to further our understanding of brain aging and neurodegenerative diseases, and discuss the future directions and challenges in the field.
Collapse
Affiliation(s)
- Chuan-Chuan Chao
- Aging and Health Research Center, National Yang Ming Chiao Tung University, Taipei 112, Taiwan; (C.-C.C.); (T.-F.T.)
- Department of Neurology, School of Medicine, National Yang Ming Chiao Tung University, Taipei 112, Taiwan
| | - Po-Wen Shen
- Program in Molecular Medicine, National Yang Ming Chiao Tung University and Academia Sinica, Taipei 112, Taiwan;
- Ph.D. Program for Cancer Biology and Drug Discovery, College of Medical Science and Technology, Taipei Medical University, Taipei 110, Taiwan
| | - Tsai-Yu Tzeng
- Cancer Progression Research Center, National Yang Ming Chiao Tung University, Taipei 112, Taiwan;
| | - Hsing-Jien Kung
- Institute of Molecular and Genomic Medicine, National Health Research Institutes, Zhunan, Miaoli 350, Taiwan;
- Research Center of Cancer Translational Medicine, Taipei Medical University, Taipei 110, Taiwan
- Department of Biochemistry and Molecular Medicine, Comprehensive Cancer Center, University of California at Davis, Sacramento, CA 95817, USA
| | - Ting-Fen Tsai
- Aging and Health Research Center, National Yang Ming Chiao Tung University, Taipei 112, Taiwan; (C.-C.C.); (T.-F.T.)
- Institute of Molecular and Genomic Medicine, National Health Research Institutes, Zhunan, Miaoli 350, Taiwan;
- Department of Life Sciences and Institute of Genome Sciences, National Yang Ming Chiao Tung University, Taipei 112, Taiwan
| | - Yu-Hui Wong
- Department of Life Sciences and Institute of Genome Sciences, National Yang Ming Chiao Tung University, Taipei 112, Taiwan
- Brain Research Center, National Yang Ming Chiao Tung University, Taipei 112, Taiwan
| |
Collapse
|
236
|
Wilson KA, Chamoli M, Hilsabeck TA, Pandey M, Bansal S, Chawla G, Kapahi P. Evaluating the beneficial effects of dietary restrictions: A framework for precision nutrigeroscience. Cell Metab 2021; 33:2142-2173. [PMID: 34555343 PMCID: PMC8845500 DOI: 10.1016/j.cmet.2021.08.018] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/12/2021] [Revised: 08/17/2021] [Accepted: 08/30/2021] [Indexed: 12/12/2022]
Abstract
Dietary restriction (DR) has long been viewed as the most robust nongenetic means to extend lifespan and healthspan. Many aging-associated mechanisms are nutrient responsive, but despite the ubiquitous functions of these pathways, the benefits of DR often vary among individuals and even among tissues within an individual, challenging the aging research field. Furthermore, it is often assumed that lifespan interventions like DR will also extend healthspan, which is thus often ignored in aging studies. In this review, we provide an overview of DR as an intervention and discuss the mechanisms by which it affects lifespan and various healthspan measures. We also review studies that demonstrate exceptions to the standing paradigm of DR being beneficial, thus raising new questions that future studies must address. We detail critical factors for the proposed field of precision nutrigeroscience, which would utilize individualized treatments and predict outcomes using biomarkers based on genotype, sex, tissue, and age.
Collapse
Affiliation(s)
| | - Manish Chamoli
- The Buck Institute for Research on Aging, Novato, CA 94945, USA
| | - Tyler A Hilsabeck
- The Buck Institute for Research on Aging, Novato, CA 94945, USA; Leonard Davis School of Gerontology, University of Southern California, Los Angeles, CA 90089, USA
| | - Manish Pandey
- Regional Centre for Biotechnology, Faridabad, Haryana 121001, India
| | - Sakshi Bansal
- Regional Centre for Biotechnology, Faridabad, Haryana 121001, India
| | - Geetanjali Chawla
- Regional Centre for Biotechnology, Faridabad, Haryana 121001, India.
| | - Pankaj Kapahi
- The Buck Institute for Research on Aging, Novato, CA 94945, USA; Leonard Davis School of Gerontology, University of Southern California, Los Angeles, CA 90089, USA.
| |
Collapse
|
237
|
Clifton KK, Ma CX, Fontana L, Peterson LL. Intermittent fasting in the prevention and treatment of cancer. CA Cancer J Clin 2021; 71:527-546. [PMID: 34383300 DOI: 10.3322/caac.21694] [Citation(s) in RCA: 77] [Impact Index Per Article: 19.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/07/2021] [Revised: 07/06/2021] [Accepted: 07/09/2021] [Indexed: 12/15/2022] Open
Abstract
Chronic caloric restriction (CR) has powerful anticarcinogenic actions in both preclinical and clinical studies but may be difficult to sustain. As an alternative to CR, there has been growing interest in intermittent fasting (IF) in both the scientific and lay community as a result of promising study results, mainly in experimental animal models. According to a survey by the International Food Information Council Foundation, IF has become the most popular diet in the last year, and patients with cancer are seeking advice from oncologists about its beneficial effects for cancer prevention and treatment. However, as discussed in this review, results from IF studies in rodents are controversial and suggest potential detrimental effects in certain oncologic conditions. The effects of IF on human cancer incidence and prognosis remain unknown because of a lack of high-quality randomized clinical trials. Preliminary studies suggest that prolonged fasting in some patients who have cancer is safe and potentially capable of decreasing chemotherapy-related toxicity and tumor growth. However, because additional trials are needed to elucidate the risks and benefits of fasting for patients with cancer, the authors would not currently recommend patients undergoing active cancer treatment partake in IF outside the context of a clinical trial. IF may be considered in adults seeking cancer-prevention benefits through means of weight management, but whether IF itself affects cancer-related metabolic and molecular pathways remains unanswered.
Collapse
Affiliation(s)
- Katherine K Clifton
- School of Medicine, Division of Medical Oncology, Washington University in St Louis, St Louis, Missouri
| | - Cynthia X Ma
- School of Medicine, Division of Medical Oncology, Washington University in St Louis, St Louis, Missouri
| | - Luigi Fontana
- Charles Perkins Center, Faculty of Medicine and Health, University of Sydney, Sydney, New South Wales, Australia
- Department of Endocrinology, Royal Prince Alfred Hospital, Sydney, New South Wales, Australia
- Department of Clinical and Experimental Sciences, Brescia University, Brescia, Italy
| | - Lindsay L Peterson
- School of Medicine, Division of Medical Oncology, Washington University in St Louis, St Louis, Missouri
| |
Collapse
|
238
|
Arnsten AFT, Datta D, Preuss TM. Studies of aging nonhuman primates illuminate the etiology of early-stage Alzheimer's-like neuropathology: An evolutionary perspective. Am J Primatol 2021; 83:e23254. [PMID: 33960505 PMCID: PMC8550995 DOI: 10.1002/ajp.23254] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2020] [Revised: 03/02/2021] [Accepted: 03/04/2021] [Indexed: 11/17/2022]
Abstract
Tau pathology in Alzheimer's disease (AD) preferentially afflicts the limbic and recently enlarged association cortices, causing a progression of mnemonic and cognitive deficits. Although genetic mouse models have helped reveal mechanisms underlying the rare, autosomal-dominant forms of AD, the etiology of the more common, sporadic form of AD remains unknown, and is challenging to study in mice due to their limited association cortex and lifespan. It is also difficult to study in human brains, as early-stage tau phosphorylation can degrade postmortem. In contrast, rhesus monkeys have extensive association cortices, are long-lived, and can undergo perfusion fixation to capture early-stage tau phosphorylation in situ. Most importantly, rhesus monkeys naturally develop amyloid plaques, neurofibrillary tangles comprised of hyperphosphorylated tau, synaptic loss, and cognitive deficits with advancing age, and thus can be used to identify the early molecular events that initiate and propel neuropathology in the aging association cortices. Studies to date suggest that the particular molecular signaling events needed for higher cognition-for example, high levels of calcium to maintain persistent neuronal firing- lead to tau phosphorylation and inflammation when dysregulated with advancing age. The expression of NMDAR-NR2B (GluN2B)-the subunit that fluxes high levels of calcium-increases over the cortical hierarchy and with the expansion of association cortex in primate evolution, consistent with patterns of tau pathology. In the rhesus monkey dorsolateral prefrontal cortex, spines contain NMDAR-NR2B and the molecular machinery to magnify internal calcium release near the synapse, as well as phosphodiesterases, mGluR3, and calbindin to regulate calcium signaling. Loss of regulation with inflammation and/or aging appears to be a key factor in initiating tau pathology. The vast expansion in the numbers of these synapses over primate evolution is consistent with the degree of tau pathology seen across species: marmoset < rhesus monkey < chimpanzee < human, culminating in the vast neurodegeneration seen in humans with AD.
Collapse
Affiliation(s)
- Amy F. T. Arnsten
- Department of NeuroscienceYale Medical SchoolNew HavenConnecticutUSA
| | - Dibyadeep Datta
- Department of NeuroscienceYale Medical SchoolNew HavenConnecticutUSA
| | - Todd M. Preuss
- Division of Neuropharmacology and Neurologic Diseases, Department of Pathology, Yerkes National Primate Research CenterEmory UniversityAtlantaGeorgiaUSA
| |
Collapse
|
239
|
Chaudron Y, Pifferi F, Aujard F. Overview of age-related changes in psychomotor and cognitive functions in a prosimian primate, the gray mouse lemur (Microcebus murinus): Recent advances in risk factors and antiaging interventions. Am J Primatol 2021; 83:e23337. [PMID: 34706117 DOI: 10.1002/ajp.23337] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2021] [Revised: 09/23/2021] [Accepted: 09/25/2021] [Indexed: 01/13/2023]
Abstract
Aging is not homogeneous in humans and the determinants leading to differences between subjects are not fully understood. Impaired glucose homeostasis is a major risk factor for cognitive decline in middle-aged humans, pointing at the existence of early markers of unhealthy aging. The gray mouse lemur (Microcebus murinus), a small lemuriform Malagasy primate, shows relatively slow aging with decreased psychomotor capacities at middle-age (around 5-year old). In some cases (∼10%), it spontaneously leads to pathological aging. In this case, some age-related deficits, such as severe cognitive decline, brain atrophy, amyloidosis, and glucoregulatory imbalance are congruent with what is observed in humans. In the present review, we inventory the changes occurring in psychomotor and cognitive functions during healthy and pathological aging in mouse lemur. It includes a summary of the cerebral, metabolic, and cellular alterations that occur during aging and their relation to cognitive decline. As nutrition is one of the major nonpharmacological antiaging strategies with major potential effects on cognitive performances, we also discuss its role in brain functions and cognitive decline in this species. We show that the overall approach of aging studies in the gray mouse lemur offers promising ways of investigation for understanding, prevention, and treatments of pathological aging in humans.
Collapse
Affiliation(s)
- Yohann Chaudron
- UMR CNRS/MNHN 7179, Mécanismes Adaptatifs et Evolution, Brunoy, France
| | - Fabien Pifferi
- UMR CNRS/MNHN 7179, Mécanismes Adaptatifs et Evolution, Brunoy, France
| | - Fabienne Aujard
- UMR CNRS/MNHN 7179, Mécanismes Adaptatifs et Evolution, Brunoy, France
| |
Collapse
|
240
|
Effects of aging on protein expression in mice brain microvessels: ROS scavengers, mRNA/protein stability, glycolytic enzymes, mitochondrial complexes, and basement membrane components. GeroScience 2021; 44:371-388. [PMID: 34708300 PMCID: PMC8811117 DOI: 10.1007/s11357-021-00468-1] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Accepted: 09/23/2021] [Indexed: 12/25/2022] Open
Abstract
Differentially expressed (DE) proteins in the cortical microvessels (MVs) of young, middle-aged, and old male and female mice were evaluated using discovery-based proteomics analysis (> 4,200 quantified proteins/group). Most DE proteins (> 90%) showed no significant differences between the sexes; however, some significant DE proteins showing sexual differences in MVs decreased from young (8.3%), to middle-aged (3.7%), to old (0.5%) mice. Therefore, we combined male and female data for age-dependent comparisons but noted sex differences for examination. Key proteins involved in the oxidative stress response, mRNA or protein stability, basement membrane (BM) composition, aerobic glycolysis, and mitochondrial function were significantly altered with aging. Relative abundance of superoxide dismutase-1/-2, catalase and thioredoxin were reduced with aging. Proteins participating in either mRNA degradation or pre-mRNA splicing were significantly increased in old mice MVs, whereas protein stabilizing proteins decreased. Glycolytic proteins were not affected in middle age, but the relative abundance of these proteins decreased in MVs of old mice. Although most of the 41 examined proteins composing mitochondrial complexes I–V were reduced in old mice, six of these proteins showed a significant reduction in middle-aged mice, but the relative abundance increased in fourteen proteins. Nidogen, collagen, and laminin family members as well as perlecan showed differing patterns during aging, indicating BM reorganization starting in middle age. We suggest that increased oxidative stress during aging leads to adverse protein profile changes of brain cortical MVs that affect mRNA/protein stability, BM integrity, and ATP synthesis capacity.
Collapse
|
241
|
Wolf AM. Rodent diet aids and the fallacy of caloric restriction. Mech Ageing Dev 2021; 200:111584. [PMID: 34673082 DOI: 10.1016/j.mad.2021.111584] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2021] [Revised: 10/01/2021] [Accepted: 10/05/2021] [Indexed: 12/14/2022]
Abstract
Understanding the molecular mechanisms of normal aging is a prerequisite to significantly improving human health span. Caloric restriction (CR) can delay aging and has served as a yardstick to evaluate interventions extending life span. However, mice given unlimited access to food suffer severe obesity. Health gains from CR depend on control mice being sufficiently overweight and less obese mouse strains benefit far less from CR. Pharmacologic interventions that increase life span, including resveratrol, rapamycin, nicotinamide mononucleotide and metformin, also reduce body weight. In primates, CR does not delay aging unless the control group is eating enough to suffer from obesity-related disease. Human survival is optimal at a body mass index achievable without CR, and the above interventions are merely diet aids that shouldn't slow aging in healthy weight individuals. CR in humans of optimal weight can safely be declared useless, since there is overwhelming evidence that hunger, underweight and starvation reduce fitness, survival, and quality of life. Against an obese control, CR does, however, truly delay aging through a mechanism laid out in the following tumor suppression theory of aging.
Collapse
Affiliation(s)
- Alexander M Wolf
- Laboratory for Morphological and Biomolecular Imaging, Faculty of Medicine, Nippon Medical School, Japan.
| |
Collapse
|
242
|
Use of a short-term nutritional supplementation for transcriptional profiling of liver tissues in sheep. Small Rumin Res 2021. [DOI: 10.1016/j.smallrumres.2021.106464] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
243
|
Horvath S, Zoller JA, Haghani A, Lu AT, Raj K, Jasinska AJ, Mattison JA, Salmon AB. DNA methylation age analysis of rapamycin in common marmosets. GeroScience 2021; 43:2413-2425. [PMID: 34482522 PMCID: PMC8599537 DOI: 10.1007/s11357-021-00438-7] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2021] [Accepted: 08/09/2021] [Indexed: 01/10/2023] Open
Abstract
Human DNA methylation data have previously been used to develop highly accurate biomarkers of aging ("epigenetic clocks"). Subsequent studies demonstrate that similar epigenetic clocks can also be developed for mice and many other mammals. Here, we describe epigenetic clocks for common marmosets (Callithrix jacchus) based on novel DNA methylation data generated from highly conserved mammalian CpGs that were profiled using a custom Infinium array (HorvathMammalMethylChip40). From these, we developed and present here two epigenetic clocks for marmosets that are applicable to whole blood samples. We find that the human-marmoset clock for relative age exhibits moderately high age correlations in two other non-human primate species: vervet monkeys and rhesus macaques. In a separate cohort of marmosets, we tested whether intervention with rapamycin, a drug shown to extend lifespan in mice, would alter the epigenetic age of marmosets, as measured by the marmoset epigenetic clocks. These clocks did not detect significant effects of rapamycin on the epigenetic age of marmoset blood. The common marmoset stands out from other mammals in that it is not possible to build accurate estimators of sex based on DNA methylation data: the accuracy of a random forest predictor of sex (66%) was substantially lower than that observed for other mammals (which is close to 100%). Overall, the epigenetic clocks developed here for the common marmoset are expected to be useful for age estimation of wild-born animals and for anti-aging studies in this species.
Collapse
Affiliation(s)
- Steve Horvath
- Department of Human Genetics, David Geffen School of Medicine, University of California, Los Angeles, Gonda Building, 695 Charles Young Drive South, Los Angeles, CA USA
- Department of Biostatistics, Fielding School of Public Health, University of California, Los Angeles, Los Angeles, CA 90095 USA
| | - Joseph A. Zoller
- Department of Biostatistics, Fielding School of Public Health, University of California, Los Angeles, Los Angeles, CA 90095 USA
| | - Amin Haghani
- Department of Human Genetics, David Geffen School of Medicine, University of California, Los Angeles, Gonda Building, 695 Charles Young Drive South, Los Angeles, CA USA
| | - Ake T. Lu
- Department of Human Genetics, David Geffen School of Medicine, University of California, Los Angeles, Gonda Building, 695 Charles Young Drive South, Los Angeles, CA USA
| | - Ken Raj
- Radiation Effects Department, Centre for Radiation, Chemical and Environmental Hazards, Public Health England, Chilton, Didcot, UK
| | - Anna J. Jasinska
- Center for Neurobehavioral Genetics, Semel Institute for Neuroscience and Human Behavior, Department of Psychiatry and Biobehavioral Sciences, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA USA
| | - Julie A. Mattison
- Translational Gerontology Branch, National Institute on Aging Intramural Research Program, National Institutes of Health, Dickerson, MD USA
| | - Adam B. Salmon
- The Sam and Ann Barshop Institute for Longevity and Aging Studies, and Department of Molecular Medicine, UT Health San Antonio, and the Geriatric Research Education and Clinical Center, South Texas Veterans Healthcare System, San Antonio, TX USA
| |
Collapse
|
244
|
Horvath S, Zoller JA, Haghani A, Jasinska AJ, Raj K, Breeze CE, Ernst J, Vaughan KL, Mattison JA. Epigenetic clock and methylation studies in the rhesus macaque. GeroScience 2021; 43:2441-2453. [PMID: 34487267 PMCID: PMC8599607 DOI: 10.1007/s11357-021-00429-8] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2021] [Accepted: 08/01/2021] [Indexed: 11/28/2022] Open
Abstract
Methylation levels at specific CpG positions in the genome have been used to develop accurate estimators of chronological age in humans, mice, and other species. Although epigenetic clocks are generally species-specific, the principles underpinning them appear to be conserved at least across the mammalian class. This is exemplified by the successful development of epigenetic clocks for mice and several other mammalian species. Here, we describe epigenetic clocks for the rhesus macaque (Macaca mulatta), the most widely used nonhuman primate in biological research. Using a custom methylation array (HorvathMammalMethylChip40), we profiled n = 281 tissue samples (blood, skin, adipose, kidney, liver, lung, muscle, and cerebral cortex). From these data, we generated five epigenetic clocks for macaques. These clocks differ with regard to applicability to different tissue types (pan-tissue, blood, skin), species (macaque only or both humans and macaques), and measure of age (chronological age versus relative age). Additionally, the age-based human-macaque clock exhibits a high age correlation (R = 0.89) with the vervet monkey (Chlorocebus sabaeus), another Old World species. Four CpGs within the KLF14 promoter were consistently altered with age in four tissues (adipose, blood, cerebral cortex, skin). Future studies will be needed to evaluate whether these epigenetic clocks predict age-related conditions in the rhesus macaque.
Collapse
Affiliation(s)
- Steve Horvath
- Department of Human Genetics, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA USA
- Department of Biostatistics, Fielding School of Public Health, University of California, Los Angeles, Los Angeles, CA USA
| | - Joseph A. Zoller
- Department of Biostatistics, Fielding School of Public Health, University of California, Los Angeles, Los Angeles, CA USA
| | - Amin Haghani
- Department of Human Genetics, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA USA
| | - Anna J. Jasinska
- Center for Neurobehavioral Genetics, Semel Institute for Neuroscience and Human Behavior, Department of Psychiatry and Biobehavioral Sciences, David Geffen School of Medicine, University of California, Los Angeles, CA Los Angeles, USA
| | - Ken Raj
- Radiation Effects Department, Centre for Radiation, Chemical and Environmental Hazards, Public Health England, Chilton, , Didcot, UK
| | | | - Jason Ernst
- Department of Biological Chemistry, University of California, Los Angeles, Los Angeles, CA 90095 USA
| | - Kelli L. Vaughan
- Translational Gerontology Branch, National Institute on Aging Intramural Research Program, National Institutes of Health, 16701 Elmer School Rd., MD 20842 Dickerson, USA
| | - Julie A. Mattison
- Translational Gerontology Branch, National Institute on Aging Intramural Research Program, National Institutes of Health, 16701 Elmer School Rd., MD 20842 Dickerson, USA
| |
Collapse
|
245
|
Pak HH, Haws SA, Green CL, Koller M, Lavarias MT, Richardson NE, Yang SE, Dumas SN, Sonsalla M, Bray L, Johnson M, Barnes S, Darley-Usmar V, Zhang J, Yen CLE, Denu JM, Lamming DW. Fasting drives the metabolic, molecular and geroprotective effects of a calorie-restricted diet in mice. Nat Metab 2021; 3:1327-1341. [PMID: 34663973 PMCID: PMC8544824 DOI: 10.1038/s42255-021-00466-9] [Citation(s) in RCA: 99] [Impact Index Per Article: 24.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/24/2021] [Accepted: 08/30/2021] [Indexed: 02/07/2023]
Abstract
Calorie restriction (CR) promotes healthy ageing in diverse species. Recently, it has been shown that fasting for a portion of each day has metabolic benefits and promotes lifespan. These findings complicate the interpretation of rodent CR studies, in which animals typically eat only once per day and rapidly consume their food, which collaterally imposes fasting. Here we show that a prolonged fast is necessary for key metabolic, molecular and geroprotective effects of a CR diet. Using a series of feeding regimens, we dissect the effects of calories and fasting, and proceed to demonstrate that fasting alone recapitulates many of the physiological and molecular effects of CR. Our results shed new light on how both when and how much we eat regulate metabolic health and longevity, and demonstrate that daily prolonged fasting, and not solely reduced caloric intake, is likely responsible for the metabolic and geroprotective benefits of a CR diet.
Collapse
Affiliation(s)
- Heidi H Pak
- Department of Medicine, University of Wisconsin-Madison, Madison, WI, USA
- William S. Middleton Memorial Veterans Hospital, Madison, WI, USA
- Interdisciplinary Graduate Program in Nutritional Sciences, University of Wisconsin-Madison, Madison, WI, USA
| | - Spencer A Haws
- Interdisciplinary Graduate Program in Nutritional Sciences, University of Wisconsin-Madison, Madison, WI, USA
- Department of Biomolecular Chemistry, University of Wisconsin-Madison, Madison, WI, USA
- Wisconsin Institute for Discovery, Madison, WI, USA
| | - Cara L Green
- Department of Medicine, University of Wisconsin-Madison, Madison, WI, USA
- William S. Middleton Memorial Veterans Hospital, Madison, WI, USA
| | - Mikaela Koller
- Department of Medicine, University of Wisconsin-Madison, Madison, WI, USA
- William S. Middleton Memorial Veterans Hospital, Madison, WI, USA
| | - Mitchell T Lavarias
- Interdisciplinary Graduate Program in Nutritional Sciences, University of Wisconsin-Madison, Madison, WI, USA
- Department of Nutritional Sciences, University of Wisconsin-Madison, Madison, WI, USA
| | - Nicole E Richardson
- Department of Medicine, University of Wisconsin-Madison, Madison, WI, USA
- William S. Middleton Memorial Veterans Hospital, Madison, WI, USA
- Endocrinology and Reproductive Physiology Graduate Training Program, University of Wisconsin-Madison, Madison, WI, USA
| | - Shany E Yang
- Department of Medicine, University of Wisconsin-Madison, Madison, WI, USA
- William S. Middleton Memorial Veterans Hospital, Madison, WI, USA
| | - Sabrina N Dumas
- Department of Medicine, University of Wisconsin-Madison, Madison, WI, USA
- William S. Middleton Memorial Veterans Hospital, Madison, WI, USA
| | - Michelle Sonsalla
- Department of Medicine, University of Wisconsin-Madison, Madison, WI, USA
- William S. Middleton Memorial Veterans Hospital, Madison, WI, USA
| | - Lindsey Bray
- Department of Medicine, University of Wisconsin-Madison, Madison, WI, USA
- William S. Middleton Memorial Veterans Hospital, Madison, WI, USA
| | - Michelle Johnson
- Nathan Shock Center of Excellence in the Basic Biology of Aging, Department of Pathology, University of Alabama, Birmingham, Birmingham, AL, USA
| | - Stephen Barnes
- Department of Pharmacology, University of Alabama, Birmingham, Birmingham, AL, USA
| | - Victor Darley-Usmar
- Nathan Shock Center of Excellence in the Basic Biology of Aging, Department of Pathology, University of Alabama, Birmingham, Birmingham, AL, USA
| | - Jianhua Zhang
- Nathan Shock Center of Excellence in the Basic Biology of Aging, Department of Pathology, University of Alabama, Birmingham, Birmingham, AL, USA
| | - Chi-Liang Eric Yen
- Interdisciplinary Graduate Program in Nutritional Sciences, University of Wisconsin-Madison, Madison, WI, USA
- Department of Nutritional Sciences, University of Wisconsin-Madison, Madison, WI, USA
| | - John M Denu
- Interdisciplinary Graduate Program in Nutritional Sciences, University of Wisconsin-Madison, Madison, WI, USA
- Department of Biomolecular Chemistry, University of Wisconsin-Madison, Madison, WI, USA
- Wisconsin Institute for Discovery, Madison, WI, USA
| | - Dudley W Lamming
- Department of Medicine, University of Wisconsin-Madison, Madison, WI, USA.
- William S. Middleton Memorial Veterans Hospital, Madison, WI, USA.
- Interdisciplinary Graduate Program in Nutritional Sciences, University of Wisconsin-Madison, Madison, WI, USA.
- Endocrinology and Reproductive Physiology Graduate Training Program, University of Wisconsin-Madison, Madison, WI, USA.
| |
Collapse
|
246
|
Castro-Fuentes R, Castro-Hernández J, Socas-Pérez R. [Geroscience in times of global pandemic by COVID-19]. Rev Esp Geriatr Gerontol 2021; 56:323-325. [PMID: 34565647 PMCID: PMC8358080 DOI: 10.1016/j.regg.2021.08.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2020] [Revised: 07/28/2021] [Accepted: 08/03/2021] [Indexed: 11/19/2022]
Affiliation(s)
- Rafael Castro-Fuentes
- Departamento de Ciencias Médicas Básicas, Área de Fisiología, Universidad de La Laguna, Tenerife, España.
| | - Javier Castro-Hernández
- Departamento de Ciencias Médicas Básicas, Área de Anatomía y Embriología Humana, Universidad de La Laguna, Tenerife, España; Laboratorio de Reumatología, Complejo Hospitalario Universitario de Canarias (CHUC), Tenerife, España
| | - Rosario Socas-Pérez
- Servicio de Rehabilitación, Complejo Hospitalario Universitario de Canarias (CHUC), Tenerife, España
| |
Collapse
|
247
|
Colman K, Andrews RN, Atkins H, Boulineau T, Bradley A, Braendli-Baiocco A, Capobianco R, Caudell D, Cline M, Doi T, Ernst R, van Esch E, Everitt J, Fant P, Gruebbel MM, Mecklenburg L, Miller AD, Nikula KJ, Satake S, Schwartz J, Sharma A, Shimoi A, Sobry C, Taylor I, Vemireddi V, Vidal J, Wood C, Vahle JL. International Harmonization of Nomenclature and Diagnostic Criteria (INHAND): Non-proliferative and Proliferative Lesions of the Non-human Primate ( M. fascicularis). J Toxicol Pathol 2021; 34:1S-182S. [PMID: 34712008 PMCID: PMC8544165 DOI: 10.1293/tox.34.1s] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
The INHAND (International Harmonization of Nomenclature and Diagnostic Criteria for Lesions Project (www.toxpath.org/inhand.asp) is a joint initiative of the Societies of Toxicologic Pathology from Europe (ESTP), Great Britain (BSTP), Japan (JSTP) and North America (STP) to develop an internationally accepted nomenclature for proliferative and nonproliferative lesions in laboratory animals. The purpose of this publication is to provide a standardized nomenclature for classifying microscopic lesions observed in most tissues and organs from the nonhuman primate used in nonclinical safety studies. Some of the lesions are illustrated by color photomicrographs. The standardized nomenclature presented in this document is also available electronically on the internet (http://www.goreni.org/). Sources of material included histopathology databases from government, academia, and industrial laboratories throughout the world. Content includes spontaneous lesions as well as lesions induced by exposure to test materials. Relevant infectious and parasitic lesions are included as well. A widely accepted and utilized international harmonization of nomenclature for lesions in laboratory animals will provide a common language among regulatory and scientific research organizations in different countries and increase and enrich international exchanges of information among toxicologists and pathologists.
Collapse
Affiliation(s)
- Karyn Colman
- Novartis Institutes for BioMedical Research, Cambridge, MA,
USA
| | - Rachel N. Andrews
- Wake Forest School of Medicine, Department of Radiation
Oncology, Winston-Salem, NC, USA
| | - Hannah Atkins
- Penn State College of Medicine, Department of Comparative
Medicine, Hershey, PA, USA
| | | | - Alys Bradley
- Charles River Laboratories Edinburgh Ltd., Tranent,
Scotland, UK
| | - Annamaria Braendli-Baiocco
- Roche Pharma Research and Early Development, Pharmaceutical
Sciences, Roche Innovation Center Basel, Switzerland
| | - Raffaella Capobianco
- Janssen Research & Development, a Division of Janssen
Pharmaceutica NV, Beerse, Belgium
| | - David Caudell
- Department of Pathology, Section on Comparative Medicine,
Wake Forest School of Medicine, Winston-Salem, NC, USA
| | - Mark Cline
- Department of Pathology, Section on Comparative Medicine,
Wake Forest School of Medicine, Winston-Salem, NC, USA
| | - Takuya Doi
- LSIM Safety Institute Corporation, Ibaraki, Japan
| | | | | | - Jeffrey Everitt
- Department of Pathology, Duke University School of
Medicine, Durham, NC, USA
| | | | | | | | - Andew D. Miller
- Cornell University College of Veterinary Medicine, Ithaca,
NY, USA
| | | | - Shigeru Satake
- Shin Nippon Biomedical Laboratories, Ltd., Kagoshima and
Tokyo, Japan
| | | | - Alok Sharma
- Covance Laboratories, Inc., Madison, WI, USA
| | | | | | | | | | | | - Charles Wood
- Boehringer Ingelheim Pharmaceuticals, Inc., Ridgefield, CT,
USA
| | | |
Collapse
|
248
|
Soberanes-Gutiérrez CV, León-Ramírez C, Sánchez-Segura L, Cordero-Martínez E, Vega-Arreguín JC, Ruiz-Herrera J. Cell death in Ustilago maydis: comparison with other fungi and the effect of metformin and curcumin on its chronological lifespan. FEMS Yeast Res 2021; 20:5908381. [PMID: 32945857 DOI: 10.1093/femsyr/foaa051] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2019] [Accepted: 09/14/2020] [Indexed: 12/11/2022] Open
Abstract
Ustilago maydis is a Basidiomycota fungus, in which very little is known about its mechanisms of cell survival and death. To date, only the role of metacaspase1, acetate and hydrogen peroxide as inducers of cell death has been investigated. In the present work, we analyzed the lifespan of U. maydis compared with other species like Sporisorium reilianum, Saccharomyces cerevisiae and Yarrowia lipolytica, and we observed that U. maydis has a minor lifespan. We probe the addition of low concentrations metformin and curcumin to the culture media, and we observed that both prolonged the lifespan of U. maydis, a result observed for the first time in a phytopathogen fungus. However, higher concentrations of curcumin were toxic for the cells, and interestingly induced the yeast-to-mycelium dimorphic transition. The positive effect of metformin and curcumin appears to be related to an inhibition of the mechanistic Target of Rapamycin (mTOR) pathway, increase expression of autophagy genes and reducing of reactive oxygen species. These data indicate that U. maydis may be a eukaryotic model organism to elucidate the molecular mechanism underlying apoptotic and necrosis pathways, and the lifespan increase caused by metformin and curcumin.
Collapse
Affiliation(s)
- Cinthia V Soberanes-Gutiérrez
- Laboratorio de Ciencias Agrogenómicas, de la Escuela Nacional de Estudios Superiores Unidad León, Universidad Nacional Autónoma de México, Blv. UNAM 2011, Col. Predio el Saucillo y El Potrero, Comunidad de Los Tepetates, 37684, León Gto., México.,Departamento de Ingeniería Genética, Unidad Irapuato, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, Km. 9.6 Libramiento Norte Carr. Irapuato-León 36824 Irapuato Gto., México
| | - Claudia León-Ramírez
- Departamento de Ingeniería Genética, Unidad Irapuato, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, Km. 9.6 Libramiento Norte Carr. Irapuato-León 36824 Irapuato Gto., México
| | - Lino Sánchez-Segura
- Departamento de Ingeniería Genética, Unidad Irapuato, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, Km. 9.6 Libramiento Norte Carr. Irapuato-León 36824 Irapuato Gto., México
| | - Emmanuel Cordero-Martínez
- Laboratorio de Ciencias Agrogenómicas, de la Escuela Nacional de Estudios Superiores Unidad León, Universidad Nacional Autónoma de México, Blv. UNAM 2011, Col. Predio el Saucillo y El Potrero, Comunidad de Los Tepetates, 37684, León Gto., México
| | - Julio C Vega-Arreguín
- Laboratorio de Ciencias Agrogenómicas, de la Escuela Nacional de Estudios Superiores Unidad León, Universidad Nacional Autónoma de México, Blv. UNAM 2011, Col. Predio el Saucillo y El Potrero, Comunidad de Los Tepetates, 37684, León Gto., México
| | - José Ruiz-Herrera
- Departamento de Ingeniería Genética, Unidad Irapuato, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, Km. 9.6 Libramiento Norte Carr. Irapuato-León 36824 Irapuato Gto., México
| |
Collapse
|
249
|
Kadharusman MM, Antarianto RD, Hardiany NS. A Review of the Impact of Calorie Restriction on Stem Cell Potency. Malays J Med Sci 2021; 28:5-13. [PMID: 34512126 PMCID: PMC8407795 DOI: 10.21315/mjms2021.28.4.2] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2020] [Accepted: 11/15/2020] [Indexed: 12/29/2022] Open
Abstract
Calorie restriction (CR) prolongs lifespan in various species and also minimises pathologies caused by aging. One of the characteristics seen in age-related pathologies is stem cell exhaustion. Here, we review the various impacts of CR on mammalian health mediated through stem cell potency in various tissues. This study comprised of a literature search through NCBI, Science Direct, Google Scholar and PubMed, focusing on the impact of CR on pluripotency. In the skeletal muscle, CR acts as an anti-inflammatory agent and increases the presence of satellite cells endogenously to improve regeneration, thus causing a metabolic shift to oxidation to meet oxygen demand. In the intestinal epithelium, CR suppresses the mechanistic target of rapamycin complex 1 (mTORC1) signalling in Paneth cells to shift the stem cell equilibrium towards self-renewal at the cost of differentiation. In haematopoiesis, CR prevents deterioration or maintains the function of haematopoietic stem cells (HSCs) depending on the genetic variation of the mice. In skin and hair follicles, CR increases the thickness of the epidermis and hair growth and improves hair retention through stem cells. CR mediates the proliferation and self-renewal of stem cells in various tissues, thus increasing its regenerative ability.
Collapse
Affiliation(s)
| | | | - Novi Silvia Hardiany
- Department of Biochemistry and Molecular Biology, Faculty of Medicine, Universitas Indonesia, Jakarta, Indonesia
| |
Collapse
|
250
|
Salvadori G, Mirisola MG, Longo VD. Intermittent and Periodic Fasting, Hormones, and Cancer Prevention. Cancers (Basel) 2021; 13:cancers13184587. [PMID: 34572814 PMCID: PMC8472354 DOI: 10.3390/cancers13184587] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Accepted: 09/09/2021] [Indexed: 12/25/2022] Open
Abstract
The restriction of proteins, amino acids or sugars can have profound effects on the levels of hormones and factors including growth hormone, IGF-1 and insulin. In turn, these can regulate intracellular signaling pathways as well as cellular damage and aging, but also multisystem regeneration. Both intermittent (IF) and periodic fasting (PF) have been shown to have both acute and long-term effects on these hormones. Here, we review the effects of nutrients and fasting on hormones and genes established to affect aging and cancer. We describe the link between dietary interventions and genetic pathways affecting the levels of these hormones and focus on the mechanisms responsible for the cancer preventive effects. We propose that IF and PF can reduce tumor incidence both by delaying aging and preventing DNA damage and immunosenescence and also by killing damaged, pre-cancerous and cancer cells.
Collapse
Affiliation(s)
- Giulia Salvadori
- Department of Oncology and Hemato-Oncology, University of Milan, 20122 Milan, Italy;
- IFOM, FIRC Institute of Molecular Oncology, 20139 Milan, Italy
| | - Mario Giuseppe Mirisola
- Department of Surgical, Oncological, and Oral Sciences, University of Palermo, 90127 Palermo, Italy;
| | - Valter D. Longo
- IFOM, FIRC Institute of Molecular Oncology, 20139 Milan, Italy
- Department of Biological Sciences, Longevity Institute, Leonard Davis School of Gerontology, University of Southern California, Los Angeles, CA 90089, USA
- Correspondence:
| |
Collapse
|