201
|
Khan I, Yasir M, Farman M, Kumosani T, AlBasri SF, Bajouh OS, Azhar EI. Evaluation of gut bacterial community composition and antimicrobial resistome in pregnant and non-pregnant women from Saudi population. Infect Drug Resist 2019; 12:1749-1761. [PMID: 31417292 PMCID: PMC6593780 DOI: 10.2147/idr.s200213] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2019] [Accepted: 05/01/2019] [Indexed: 12/11/2022] Open
Abstract
Background: Gut microbiota (GM) has recently been described as a functional reservoir of antimicrobial resistant genes (ARGs). However, the ARG-carrying bacterial species in the human gut has been poorly studied. This study, for the first time, is reporting bacterial communities' composition and antimicrobial resistome in the stool samples of pregnant and non-pregnant (NP) Saudi females. Methods: Gut bacterial community composition was analyzed by 16S amplicon sequencing and culturomics. High throughput MALDI-TOF technique was used for identification of the isolates from stool samples and evaluated for resistance against 13 antibiotics using the agar dilution method. Clinically important ARGs were PCR amplified from genomic DNA of the stool samples using gene-specific primers. Results: 16S amplicon sequencing revealed that GM of pregnant and NP women were predominantly comprised of phyla Firmicutes, Bacteroidetes, Proteobacteria, and Actinobacteria. Bacterial diversity decreased in pregnant groups, whereas phylum Bacteroidetes declined significantly (p<0.05) in the first trimester. We noticed a relatively high abundance of butyrate-producing bacteria (eg, Faecalibacterium spp. and Eubacterium spp.) in the gut of pregnant women, whereas Prevotella copri was found at significantly (p<0.01) higher abundance in NP women. Moreover, about 14,694 isolates were identified and classified into 132 distinct species. The majority of the species belonged to phyla Firmicutes and Proteobacteria. About 8,125 isolates exhibited resistance against antibiotics. Out of 73 resistant-species, Enterococcus was the most diverse genus and Escherichia coli was the highly prevalent bacterium. The majority of the isolates were resistant to antibiotics; trimethoprim/sulfamethoxazole, cycloserine, and cefixime. ARGs encoding resistance against aminoglycoside, macrolide, quinolone, β-lactam, and tetracycline antibiotics were predominantly found in genomic DNA of the stool samples. Conclusion: We conclude that pregnancy-associated GM modulations may help to sustain a healthy pregnancy, but a higher proportion of antibiotic resistance could be deleterious for both maternal and fetal health.
Collapse
Affiliation(s)
- Imran Khan
- Special Infectious Agents Unit, King Fahd Medical Research Center, King Abdulaziz University, Jeddah, Saudi Arabia.,Biochemistry Department, Faculty of Science; Special Infectious Agents Unit, King Fahd Medical Research Center, King Abdulaziz University, Jeddah, Saudi Arabia.,State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology Taipa, Macau, People's Republic of China
| | - Muhammad Yasir
- Special Infectious Agents Unit, King Fahd Medical Research Center, King Abdulaziz University, Jeddah, Saudi Arabia.,Medical Laboratory Technology Department, Faculty of Applied Medical Sciences, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Muhammad Farman
- Special Infectious Agents Unit, King Fahd Medical Research Center, King Abdulaziz University, Jeddah, Saudi Arabia.,Department of Biology, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Taha Kumosani
- Biochemistry Department, Faculty of Science; Production of Bio-products for Industrial Applications Research Group, and Experimental Biochemistry Unit, King Fahd Medical Research Center, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Samera F AlBasri
- Department of Obstetrics & Gynecology, King Abdul Aziz University Hospital, Jeddah, Saudi Arabia
| | - Osama S Bajouh
- Department of Obstetrics & Gynecology, King Abdul Aziz University Hospital, Jeddah, Saudi Arabia
| | - Esam I Azhar
- Special Infectious Agents Unit, King Fahd Medical Research Center, King Abdulaziz University, Jeddah, Saudi Arabia.,Medical Laboratory Technology Department, Faculty of Applied Medical Sciences, King Abdulaziz University, Jeddah, Saudi Arabia
| |
Collapse
|
202
|
Wang M, Wu B, Shah SN, Lu P, Lu Q. Aminoglycoside Enhances the Delivery of Antisense Morpholino Oligonucleotides In Vitro and in mdx Mice. MOLECULAR THERAPY. NUCLEIC ACIDS 2019; 16:663-674. [PMID: 31121478 PMCID: PMC6529765 DOI: 10.1016/j.omtn.2019.04.023] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/28/2019] [Revised: 04/23/2019] [Accepted: 04/23/2019] [Indexed: 01/16/2023]
Abstract
Antisense oligonucleotide (AO) therapy has been the specific treatment for Duchenne muscular dystrophy, with ongoing clinical trials. However, therapeutic applications of AOs remain limited, particularly because of the lack of efficient cellular delivery methods imperative for achieving efficacy. In this study, we investigated a few aminoglycosides (AGs) for their potential to improve the delivery of antisense phosphorodiamidate morpholino oligomer (PMO) both in vitro and in vivo. AGs had lower cytotoxicity compared with Endoporter, the currently most effective delivery reagent for PMO in vitro, and improved efficiency in PMO delivery 9- to 15-fold over PMO alone. Significant enhancement in systemic PMO-targeted dystrophin exon 23 skipping was observed in mdx mice, up to a 6-fold increase with AG3 (kanamycin) and AG7 (sisomicin) compared with PMO only. No muscle damage could be detected clearly with the test dosages. These results establish AGs as PMO delivery-enhancing agents for treating muscular dystrophy or other diseases.
Collapse
Affiliation(s)
- Mingxing Wang
- McColl-Lockwood Laboratory for Muscular Dystrophy Research, Department of Neurology, Cannon Research Center, Carolinas Medical Center, 1000 Blythe Blvd., Charlotte, NC 28203, USA.
| | - Bo Wu
- McColl-Lockwood Laboratory for Muscular Dystrophy Research, Department of Neurology, Cannon Research Center, Carolinas Medical Center, 1000 Blythe Blvd., Charlotte, NC 28203, USA
| | - Sapana N Shah
- McColl-Lockwood Laboratory for Muscular Dystrophy Research, Department of Neurology, Cannon Research Center, Carolinas Medical Center, 1000 Blythe Blvd., Charlotte, NC 28203, USA
| | - Peijuan Lu
- McColl-Lockwood Laboratory for Muscular Dystrophy Research, Department of Neurology, Cannon Research Center, Carolinas Medical Center, 1000 Blythe Blvd., Charlotte, NC 28203, USA
| | - Qilong Lu
- McColl-Lockwood Laboratory for Muscular Dystrophy Research, Department of Neurology, Cannon Research Center, Carolinas Medical Center, 1000 Blythe Blvd., Charlotte, NC 28203, USA
| |
Collapse
|
203
|
|
204
|
Heo S, Bae T, Lee JH, Jeong DW. Transfer of a lincomycin-resistant plasmid between coagulase-negative staphylococci during soybean fermentation and mouse intestine passage. FEMS Microbiol Lett 2019; 366:fnz113. [PMID: 31132119 DOI: 10.1093/femsle/fnz113] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2019] [Accepted: 05/24/2019] [Indexed: 12/28/2022] Open
Abstract
Staphylococcus equorum is a benign bacterium and the predominant species in high-salt fermented food. Some strains of S. equorum contain antibiotic-resistance plasmids, such as pSELNU1 that contains a lincosamide nucleotidyltransferase (lnuA) gene and confers resistance to lincomycin. Previously, we showed that pSELNU1 is transferred to other bacteria under laboratory growth conditions. However, it is not known if the plasmid can be transferred to other bacteria during food fermentation (in situ) or during passage through animal intestines (in vivo). In this study, we examined the in situ and in vivo transfer of pSELNU1 using Staphylococcus saprophyticus as a recipient. During soybean fermentation, pSELNU1 was transferred to S. saprophyticus at a rate of 1.9 × 10-5-5.6 × 10-6 per recipient in the presence of lincomycin. However, during passage through murine intestines, the plasmid was transferred at similar rates (1.3 × 10-5 per recipient) in the absence of lincomycin, indicating that the plasmid transfer is much more efficient under in vivo conditions. Based on these results, we conclude that it is prudent to examine food fermentation starter candidates for the presence of mobile genetic elements containing antibiotic resistance genes and to select candidates lacking these genes.
Collapse
Affiliation(s)
- Sojeong Heo
- Department of Food and Nutrition, Dongduk Women's University, 13-gil 60 Hwarang-ro, Seongbuk-gu, Seoul 02748, Republic of Korea
| | - Taeok Bae
- Department of Microbiology and Immunology, Indiana University School of Medicine-Northwest, 3400 Broadway, Gary, Indiana 46408, USA
| | - Jong-Hoon Lee
- Department of Food Science and Biotechnology, Kyonggi University, 154-42, Gwanggyosan-ro, Yeongtong-gu, Suwon 16227, Republic of Korea
| | - Do-Won Jeong
- Department of Food and Nutrition, Dongduk Women's University, 13-gil 60 Hwarang-ro, Seongbuk-gu, Seoul 02748, Republic of Korea
| |
Collapse
|
205
|
Evariste L, Barret M, Mottier A, Mouchet F, Gauthier L, Pinelli E. Gut microbiota of aquatic organisms: A key endpoint for ecotoxicological studies. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2019; 248:989-999. [PMID: 31091643 DOI: 10.1016/j.envpol.2019.02.101] [Citation(s) in RCA: 155] [Impact Index Per Article: 25.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/16/2018] [Revised: 01/31/2019] [Accepted: 02/28/2019] [Indexed: 06/09/2023]
Abstract
Gut microbial communities constitute a compartment of crucial importance in regulation of homeostasis of multiple host physiological functions as well as in resistance towards environmental pollutants. Many chemical contaminants were shown to constitute a major threat for gut bacteria. Changes in gut microbiome could lead to alteration of host health. The access to high-throughput sequencing platforms permitted a great expansion of this discipline in human health while data from ecotoxicological studies are scarce and particularly those related to aquatic pollution. The main purpose of this review is to summarize recent body of literature providing data obtained from microbial community surveys using high-throughput 16S rRNA sequencing technology applied to aquatic ecotoxicity. Effects of pesticides, PCBs, PBDEs, heavy metals, nanoparticles, PPCPs, microplastics and endocrine disruptors on gut microbial communities are presented and discussed. We pointed out difficulties and limits provided by actual methodologies. We also proposed ways to improve understanding of links between changes in gut bacterial communities and host fitness loss, along with further applications for this emerging discipline.
Collapse
Affiliation(s)
- Lauris Evariste
- EcoLab, Université de Toulouse, CNRS, INPT, UPS, Toulouse, France.
| | - Maialen Barret
- EcoLab, Université de Toulouse, CNRS, INPT, UPS, Toulouse, France
| | - Antoine Mottier
- EcoLab, Université de Toulouse, CNRS, INPT, UPS, Toulouse, France
| | - Florence Mouchet
- EcoLab, Université de Toulouse, CNRS, INPT, UPS, Toulouse, France
| | - Laury Gauthier
- EcoLab, Université de Toulouse, CNRS, INPT, UPS, Toulouse, France
| | - Eric Pinelli
- EcoLab, Université de Toulouse, CNRS, INPT, UPS, Toulouse, France
| |
Collapse
|
206
|
Buelow E, Bayjanov JR, Majoor E, Willems RJ, Bonten MJ, Schmitt H, van Schaik W. Limited influence of hospital wastewater on the microbiome and resistome of wastewater in a community sewerage system. FEMS Microbiol Ecol 2019; 94:4995906. [PMID: 29767712 DOI: 10.1093/femsec/fiy087] [Citation(s) in RCA: 58] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2017] [Accepted: 05/10/2018] [Indexed: 12/26/2022] Open
Abstract
Effluents from wastewater treatment plants (WWTPs) have been proposed to act as point sources of antibiotic-resistant bacteria (ARB) and antimicrobial resistance genes (ARGs) in the environment. Hospital sewage may contribute to the spread of ARB and ARGs as it contains the feces and urine of hospitalized patients, who are more frequently colonized with multi-drug resistant bacteria than the general population. However, whether hospital sewage noticeably contributes to the quantity and diversity of ARGs in the general sewerage system has not yet been determined.Here, we employed culture-independent techniques, namely 16S rRNA gene sequencing and nanolitre-scale quantitative PCRs, to assess the role of hospital effluent as a point source of ARGs in the sewerage system, through comparing microbiota composition and levels of ARGs in hospital sewage with WWTP influent with and without hospital sewage.Compared to other sites, hospital sewage was richest in human-associated bacteria and contained the highest relative levels of ARGs. Yet, the relative abundance of ARGs was comparable in the influent of WWTPs with and without hospital sewage, suggesting that hospitals do not contribute importantly to the quantity and diversity of ARGs in the investigated sewerage system.
Collapse
Affiliation(s)
- Elena Buelow
- Department of Medical Microbiology, University Medical Center Utrecht, Utrecht, The Netherlands.,Université Limoges, INSERM, CHU Limoges, UMR 1092, Limoges, France
| | - Jumamurat R Bayjanov
- Department of Medical Microbiology, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Eline Majoor
- Department of Medical Microbiology, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Rob Jl Willems
- Department of Medical Microbiology, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Marc Jm Bonten
- Department of Medical Microbiology, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Heike Schmitt
- Institute for Risk Assessment Sciences, Utrecht University, The Netherlands
| | - Willem van Schaik
- Department of Medical Microbiology, University Medical Center Utrecht, Utrecht, The Netherlands.,Institute of Microbiology and Infection, University of Birmingham, UK
| |
Collapse
|
207
|
Nie P, Li Z, Wang Y, Zhang Y, Zhao M, Luo J, Du S, Deng Z, Chen J, Wang Y, Chen S, Wang L. Gut microbiome interventions in human health and diseases. Med Res Rev 2019; 39:2286-2313. [PMID: 30994937 DOI: 10.1002/med.21584] [Citation(s) in RCA: 45] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2018] [Revised: 02/27/2019] [Accepted: 03/24/2019] [Indexed: 02/06/2023]
Abstract
Ongoing studies have determined that the gut microbiota is a major factor influencing both health and disease. Host genetic factors and environmental factors contribute to differences in gut microbiota composition and function. Intestinal dysbiosis is a cause or a contributory cause for diseases in multiple body systems, ranging from the digestive system to the immune, cardiovascular, respiratory, and even nervous system. Investigation of pathogenesis has identified specific species or strains, bacterial genes, and metabolites that play roles in certain diseases and represent potential drug targets. As research progresses, gut microbiome-based diagnosis and therapy are proposed and applied, which might lead to considerable progress in precision medicine. We further discuss the limitations of current studies and potential solutions.
Collapse
Affiliation(s)
- Pengqing Nie
- Key Laboratory of Combinatorial Biosynthesis and Drug Discovery Ministry of Education, School of Pharmaceutical Sciences, Wuhan University, Wuhan, Hubei, China.,Department of Neurosurgery, Taihe Hospital, Hubei University of Medicine, Shiyan, Hubei, China.,Department of Neurosurgery, Zhongnan Hospital, Wuhan University, Wuhan, Hubei, China
| | - Zhiqiang Li
- Department of Neurosurgery, Zhongnan Hospital, Wuhan University, Wuhan, Hubei, China
| | - Yimeng Wang
- Key Laboratory of Combinatorial Biosynthesis and Drug Discovery Ministry of Education, School of Pharmaceutical Sciences, Wuhan University, Wuhan, Hubei, China.,Department of Neurosurgery, Zhongnan Hospital, Wuhan University, Wuhan, Hubei, China
| | - Yubing Zhang
- Key Laboratory of Combinatorial Biosynthesis and Drug Discovery Ministry of Education, School of Pharmaceutical Sciences, Wuhan University, Wuhan, Hubei, China.,Department of Neurosurgery, Zhongnan Hospital, Wuhan University, Wuhan, Hubei, China
| | - Mengna Zhao
- Key Laboratory of Combinatorial Biosynthesis and Drug Discovery Ministry of Education, School of Pharmaceutical Sciences, Wuhan University, Wuhan, Hubei, China.,Department of Neurosurgery, Zhongnan Hospital, Wuhan University, Wuhan, Hubei, China
| | - Jie Luo
- Department of Neurosurgery, Taihe Hospital, Hubei University of Medicine, Shiyan, Hubei, China
| | - Shiming Du
- Department of Neurosurgery, Taihe Hospital, Hubei University of Medicine, Shiyan, Hubei, China
| | - Zixin Deng
- Key Laboratory of Combinatorial Biosynthesis and Drug Discovery Ministry of Education, School of Pharmaceutical Sciences, Wuhan University, Wuhan, Hubei, China
| | - Jincao Chen
- Department of Neurosurgery, Zhongnan Hospital, Wuhan University, Wuhan, Hubei, China
| | - Yunfu Wang
- Department of Neurosurgery, Taihe Hospital, Hubei University of Medicine, Shiyan, Hubei, China
| | - Shi Chen
- Key Laboratory of Combinatorial Biosynthesis and Drug Discovery Ministry of Education, School of Pharmaceutical Sciences, Wuhan University, Wuhan, Hubei, China.,Department of Neurosurgery, Taihe Hospital, Hubei University of Medicine, Shiyan, Hubei, China.,Department of Neurosurgery, Zhongnan Hospital, Wuhan University, Wuhan, Hubei, China
| | - Lianrong Wang
- Key Laboratory of Combinatorial Biosynthesis and Drug Discovery Ministry of Education, School of Pharmaceutical Sciences, Wuhan University, Wuhan, Hubei, China.,Department of Neurosurgery, Taihe Hospital, Hubei University of Medicine, Shiyan, Hubei, China.,Department of Neurosurgery, Zhongnan Hospital, Wuhan University, Wuhan, Hubei, China
| |
Collapse
|
208
|
Bhagirath AY, Li Y, Patidar R, Yerex K, Ma X, Kumar A, Duan K. Two Component Regulatory Systems and Antibiotic Resistance in Gram-Negative Pathogens. Int J Mol Sci 2019; 20:E1781. [PMID: 30974906 PMCID: PMC6480566 DOI: 10.3390/ijms20071781] [Citation(s) in RCA: 101] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2019] [Revised: 04/05/2019] [Accepted: 04/08/2019] [Indexed: 12/17/2022] Open
Abstract
Gram-negative pathogens such as Klebsiella pneumoniae, Acinetobacter baumannii, and Pseudomonas aeruginosa are the leading cause of nosocomial infections throughout the world. One commonality shared among these pathogens is their ubiquitous presence, robust host-colonization and most importantly, resistance to antibiotics. A significant number of two-component systems (TCSs) exist in these pathogens, which are involved in regulation of gene expression in response to environmental signals such as antibiotic exposure. While the development of antimicrobial resistance is a complex phenomenon, it has been shown that TCSs are involved in sensing antibiotics and regulating genes associated with antibiotic resistance. In this review, we aim to interpret current knowledge about the signaling mechanisms of TCSs in these three pathogenic bacteria. We further attempt to answer questions about the role of TCSs in antimicrobial resistance. We will also briefly discuss how specific two-component systems present in K. pneumoniae, A. baumannii, and P. aeruginosa may serve as potential therapeutic targets.
Collapse
Affiliation(s)
- Anjali Y Bhagirath
- Department of Oral Biology, Rady Faculty of Health Sciences, University of Manitoba, 780 Bannatyne Ave, Winnipeg, MB R3E 0J9, Canada.
| | - Yanqi Li
- Department of Oral Biology, Rady Faculty of Health Sciences, University of Manitoba, 780 Bannatyne Ave, Winnipeg, MB R3E 0J9, Canada.
| | - Rakesh Patidar
- Department of Microbiology, Faculty of Sciences, University of Manitoba, Winnipeg, MB R3E 0J9, Canada.
| | - Katherine Yerex
- Department of Oral Biology, Rady Faculty of Health Sciences, University of Manitoba, 780 Bannatyne Ave, Winnipeg, MB R3E 0J9, Canada.
| | - Xiaoxue Ma
- Department of Oral Biology, Rady Faculty of Health Sciences, University of Manitoba, 780 Bannatyne Ave, Winnipeg, MB R3E 0J9, Canada.
| | - Ayush Kumar
- Department of Microbiology, Faculty of Sciences, University of Manitoba, Winnipeg, MB R3E 0J9, Canada.
| | - Kangmin Duan
- Department of Oral Biology, Rady Faculty of Health Sciences, University of Manitoba, 780 Bannatyne Ave, Winnipeg, MB R3E 0J9, Canada.
- Department of Medical Microbiology & Infectious Diseases, Rady Faculty of Health Sciences, University of Manitoba, 780 Bannatyne Ave, Winnipeg, MB R3E 0J9, Canada.
| |
Collapse
|
209
|
Jacob JJ, Veeraraghavan B, Vasudevan K. Metagenomic next-generation sequencing in clinical microbiology. Indian J Med Microbiol 2019; 37:133-140. [PMID: 31745012 DOI: 10.4103/ijmm.ijmm_19_401] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- Jobin John Jacob
- Department of Clinical Microbiology, Christian Medical College, Vellore - 632 004, Tamil Nadu, India
| | - Balaji Veeraraghavan
- Department of Clinical Microbiology, Christian Medical College, Vellore - 632 004, Tamil Nadu, India
| | - Karthick Vasudevan
- Department of Clinical Microbiology, Christian Medical College, Vellore - 632 004, Tamil Nadu, India
| |
Collapse
|
210
|
Berglund F, Österlund T, Boulund F, Marathe NP, Larsson DGJ, Kristiansson E. Identification and reconstruction of novel antibiotic resistance genes from metagenomes. MICROBIOME 2019; 7:52. [PMID: 30935407 PMCID: PMC6444489 DOI: 10.1186/s40168-019-0670-1] [Citation(s) in RCA: 64] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/23/2018] [Accepted: 03/21/2019] [Indexed: 05/23/2023]
Abstract
BACKGROUND Environmental and commensal bacteria maintain a diverse and largely unknown collection of antibiotic resistance genes (ARGs) that, over time, may be mobilized and transferred to pathogens. Metagenomics enables cultivation-independent characterization of bacterial communities but the resulting data is noisy and highly fragmented, severely hampering the identification of previously undescribed ARGs. We have therefore developed fARGene, a method for identification and reconstruction of ARGs directly from shotgun metagenomic data. RESULTS fARGene uses optimized gene models and can therefore with high accuracy identify previously uncharacterized resistance genes, even if their sequence similarity to known ARGs is low. By performing the analysis directly on the metagenomic fragments, fARGene also circumvents the need for a high-quality assembly. To demonstrate the applicability of fARGene, we reconstructed β-lactamases from five billion metagenomic reads, resulting in 221 ARGs, of which 58 were previously not reported. Based on 38 ARGs reconstructed by fARGene, experimental verification showed that 81% provided a resistance phenotype in Escherichia coli. Compared to other methods for detecting ARGs in metagenomic data, fARGene has superior sensitivity and the ability to reconstruct previously unknown genes directly from the sequence reads. CONCLUSIONS We conclude that fARGene provides an efficient and reliable way to explore the unknown resistome in bacterial communities. The method is applicable to any type of ARGs and is freely available via GitHub under the MIT license.
Collapse
Affiliation(s)
- Fanny Berglund
- Department of Mathematical Sciences, Chalmers University of Technology, Gothenburg, Sweden
- Centre for Antibiotic Resistance Research (CARe), University of Gothenburg, Gothenburg, Sweden
| | - Tobias Österlund
- Department of Mathematical Sciences, Chalmers University of Technology, Gothenburg, Sweden
- Centre for Antibiotic Resistance Research (CARe), University of Gothenburg, Gothenburg, Sweden
| | - Fredrik Boulund
- Center for Translational Microbiome Research (CTMR), Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, Stockholm, Sweden
| | - Nachiket P Marathe
- Centre for Antibiotic Resistance Research (CARe), University of Gothenburg, Gothenburg, Sweden
- Department of Infectious Diseases, Institute of Biomedicine, the Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
- Institute of Marine Research (IMR), Bergen, Norway
| | - D G Joakim Larsson
- Centre for Antibiotic Resistance Research (CARe), University of Gothenburg, Gothenburg, Sweden
- Department of Infectious Diseases, Institute of Biomedicine, the Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Erik Kristiansson
- Department of Mathematical Sciences, Chalmers University of Technology, Gothenburg, Sweden.
- Centre for Antibiotic Resistance Research (CARe), University of Gothenburg, Gothenburg, Sweden.
| |
Collapse
|
211
|
Xia Y, Zhu Y, Li Q, Lu J. Human gut resistome can be country-specific. PeerJ 2019; 7:e6389. [PMID: 30923648 PMCID: PMC6431545 DOI: 10.7717/peerj.6389] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2018] [Accepted: 01/04/2019] [Indexed: 12/31/2022] Open
Abstract
The emergence and spread of antibiotic resistance have become emerging threats to human health. The human gut is a large reservoir for antibiotic resistance genes. The gut resistome may be influenced by many factors, but the consumption of antibiotics at both individual and country level should be one of the most significant factors. Previous studies have suggested that the gut resistome of different populations may vary, but lack quantitative characterization supported with relatively large datasets. In this study, we filled the gap by analyzing a large gut resistome dataset of 1,267 human gut samples of America, China, Denmark, and Spain. We built a stacking machine-learning model to determine whether the gut resistome can act as the sole feature to identify the nationality of an individual reliably. It turned out that the machine learning method could successfully identify American, Chinese, Danish, and Spanish populations with F1 score of 0.964, 0.987, 0.971, and 0.986, respectively. Our finding does highlight the significant differences in the composition of the gut resistome among different nationalities. Our study should be valuable for policy-makers to look into the influences of country-specific factors of the human gut resistome.
Collapse
Affiliation(s)
- Yao Xia
- Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, China
- Kunming College of Life Science, University of Chinese Academy of Sciences, Kunming, China
| | - Yanshan Zhu
- School of Public Health, Sun Yat-sen University, Guangzhou, China
| | - Qier Li
- School of Mathematics, Sun Yat-sen University, Guangzhou, China
| | - Jiahai Lu
- School of Public Health, Sun Yat-sen University, Guangzhou, China
- One Health Center of Excellence for Research & Training, Sun Yat-Sen University, Guangzhou, China
- Key Laboratory for Tropical Disease Control of Ministry of Education, Sun Yat-Sen University, Guangzhou, China
| |
Collapse
|
212
|
Bacanlı M, Başaran N. Importance of antibiotic residues in animal food. Food Chem Toxicol 2019; 125:462-466. [DOI: 10.1016/j.fct.2019.01.033] [Citation(s) in RCA: 311] [Impact Index Per Article: 51.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2018] [Revised: 01/25/2019] [Accepted: 01/28/2019] [Indexed: 01/25/2023]
|
213
|
Kintses B, Méhi O, Ari E, Számel M, Györkei Á, Jangir PK, Nagy I, Pál F, Fekete G, Tengölics R, Nyerges Á, Likó I, Bálint A, Molnár T, Bálint B, Vásárhelyi BM, Bustamante M, Papp B, Pál C. Phylogenetic barriers to horizontal transfer of antimicrobial peptide resistance genes in the human gut microbiota. Nat Microbiol 2019; 4:447-458. [PMID: 30559406 PMCID: PMC6387620 DOI: 10.1038/s41564-018-0313-5] [Citation(s) in RCA: 69] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2018] [Accepted: 10/30/2018] [Indexed: 01/10/2023]
Abstract
The human gut microbiota has adapted to the presence of antimicrobial peptides (AMPs), which are ancient components of immune defence. Despite its medical importance, it has remained unclear whether AMP resistance genes in the gut microbiome are available for genetic exchange between bacterial species. Here, we show that AMP resistance and antibiotic resistance genes differ in their mobilization patterns and functional compatibilities with new bacterial hosts. First, whereas AMP resistance genes are widespread in the gut microbiome, their rate of horizontal transfer is lower than that of antibiotic resistance genes. Second, gut microbiota culturing and functional metagenomics have revealed that AMP resistance genes originating from phylogenetically distant bacteria have only a limited potential to confer resistance in Escherichia coli, an intrinsically susceptible species. Taken together, functional compatibility with the new bacterial host emerges as a key factor limiting the genetic exchange of AMP resistance genes. Finally, our results suggest that AMPs induce highly specific changes in the composition of the human microbiota, with implications for disease risks.
Collapse
Affiliation(s)
- Bálint Kintses
- Synthetic and Systems Biology Unit, Institute of Biochemistry, Biological Research Centre of the Hungarian Academy of Sciences, Szeged, Hungary.
| | - Orsolya Méhi
- Synthetic and Systems Biology Unit, Institute of Biochemistry, Biological Research Centre of the Hungarian Academy of Sciences, Szeged, Hungary
| | - Eszter Ari
- Synthetic and Systems Biology Unit, Institute of Biochemistry, Biological Research Centre of the Hungarian Academy of Sciences, Szeged, Hungary
- Department of Genetics, Eötvös Loránd University, Budapest, Hungary
| | - Mónika Számel
- Synthetic and Systems Biology Unit, Institute of Biochemistry, Biological Research Centre of the Hungarian Academy of Sciences, Szeged, Hungary
- Doctoral School in Biology, Faculty of Science and Informatics, University of Szeged, Szeged, Hungary
| | - Ádám Györkei
- Synthetic and Systems Biology Unit, Institute of Biochemistry, Biological Research Centre of the Hungarian Academy of Sciences, Szeged, Hungary
| | - Pramod K Jangir
- Synthetic and Systems Biology Unit, Institute of Biochemistry, Biological Research Centre of the Hungarian Academy of Sciences, Szeged, Hungary
- Doctoral School in Biology, Faculty of Science and Informatics, University of Szeged, Szeged, Hungary
| | - István Nagy
- SeqOmics Biotechnology Ltd, Mórahalom, Hungary
- Sequencing Platform, Institute of Biochemistry, Biological Research Centre of the Hungarian Academy of Sciences, Szeged, Hungary
| | - Ferenc Pál
- Synthetic and Systems Biology Unit, Institute of Biochemistry, Biological Research Centre of the Hungarian Academy of Sciences, Szeged, Hungary
| | - Gergely Fekete
- Synthetic and Systems Biology Unit, Institute of Biochemistry, Biological Research Centre of the Hungarian Academy of Sciences, Szeged, Hungary
| | - Roland Tengölics
- Synthetic and Systems Biology Unit, Institute of Biochemistry, Biological Research Centre of the Hungarian Academy of Sciences, Szeged, Hungary
| | - Ákos Nyerges
- Synthetic and Systems Biology Unit, Institute of Biochemistry, Biological Research Centre of the Hungarian Academy of Sciences, Szeged, Hungary
- Doctoral School in Biology, Faculty of Science and Informatics, University of Szeged, Szeged, Hungary
| | - István Likó
- Hereditary Endocrine Tumors Research Group, Hungarian Academy of Sciences and Semmelweis University, Budapest, Hungary
| | - Anita Bálint
- 1st Department of Internal Medicine, Albert Szent-Györgyi Health Centre, University of Szeged, Szeged, Hungary
| | - Tamás Molnár
- 1st Department of Internal Medicine, Albert Szent-Györgyi Health Centre, University of Szeged, Szeged, Hungary
| | | | | | | | - Balázs Papp
- Synthetic and Systems Biology Unit, Institute of Biochemistry, Biological Research Centre of the Hungarian Academy of Sciences, Szeged, Hungary.
| | - Csaba Pál
- Synthetic and Systems Biology Unit, Institute of Biochemistry, Biological Research Centre of the Hungarian Academy of Sciences, Szeged, Hungary.
| |
Collapse
|
214
|
Allemann A, Kraemer JG, Korten I, Ramsey K, Casaulta C, Wüthrich D, Ramette A, Endimiani A, Latzin P, Hilty M. Nasal Resistome Development in Infants With Cystic Fibrosis in the First Year of Life. Front Microbiol 2019; 10:212. [PMID: 30863369 PMCID: PMC6399209 DOI: 10.3389/fmicb.2019.00212] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2018] [Accepted: 01/24/2019] [Indexed: 12/20/2022] Open
Abstract
Polymicrobial infections of the respiratory tract due to antibiotic resistant bacteria are a great concern in patients with cystic fibrosis (CF). We therefore aimed at establishing a functional metagenomic method to analyze the nasal resistome in infants with CF within the first year of life. We included samples from patients before antibiotic treatment, which allowed obtaining information regarding natural status of the resistome. In total, we analyzed 130 nasal swabs from 26 infants with CF and screened for β-lactams (ampicillin, amoxicillin-clavulanic acid, and cefuroxime) and other classes of antibiotic resistances (tetracycline, chloramphenicol and trimethoprim-sulfamethoxazole). For 69 swabs (53% of total), we found at least one non-susceptible phenotype. Analyses of the inserts recovered from non-susceptible clones by nanopore MinION sequencing revealed a large reservoir of resistance genes including mobile elements within the antibiotic naïve samples. Comparing the data of the resistome with the microbiota composition showed that the bacterial phyla and operational taxonomic units (OTUs) of the microbiota rather than the antibiotic treatment were associated with the majority of non-susceptible phenotypes in the resistome. Future studies will reveal if characterization of the resistome can help in clinical decision-making in patients with CF.
Collapse
Affiliation(s)
- Aurélie Allemann
- Institute for Infectious Diseases, University of Bern, Bern, Switzerland.,Graduate School for Cellular and Biomedical Sciences, University of Bern, Bern, Switzerland
| | - Julia G Kraemer
- Institute for Infectious Diseases, University of Bern, Bern, Switzerland.,Institute for Work and Health (IST), University of Lausanne and University of Geneva, Epalinges, Switzerland
| | - Insa Korten
- Graduate School for Cellular and Biomedical Sciences, University of Bern, Bern, Switzerland.,Division of Respiratory Medicine, Department of Paediatrics, Inselspital, University of Bern, Bern, Switzerland
| | - Kathryn Ramsey
- Division of Respiratory Medicine, Department of Paediatrics, Inselspital, University of Bern, Bern, Switzerland
| | - Carmen Casaulta
- Division of Respiratory Medicine, Department of Paediatrics, Inselspital, University of Bern, Bern, Switzerland
| | | | - Daniel Wüthrich
- Applied Microbiology Research Unit, Department of Biomedicine, University of Basel, Basel, Switzerland.,Division of Clinical Microbiology, University Hospital Basel, Basel, Switzerland
| | - Alban Ramette
- Institute for Infectious Diseases, University of Bern, Bern, Switzerland
| | - Andrea Endimiani
- Institute for Infectious Diseases, University of Bern, Bern, Switzerland
| | - Philipp Latzin
- Division of Respiratory Medicine, Department of Paediatrics, Inselspital, University of Bern, Bern, Switzerland
| | - Markus Hilty
- Institute for Infectious Diseases, University of Bern, Bern, Switzerland
| |
Collapse
|
215
|
Microbiome as a tool and a target in the effort to address antimicrobial resistance. Proc Natl Acad Sci U S A 2019; 115:12902-12910. [PMID: 30559176 DOI: 10.1073/pnas.1717163115] [Citation(s) in RCA: 62] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Reciprocal, intimate relationships between the human microbiome and the host immune system are shaped by past microbial encounters and prepare the host for future ones. Antibiotics and other antimicrobials leave their mark on both the microbiome and host immunity. Antimicrobials alter the structure of the microbiota, expand the host-specific pool of antimicrobial-resistance genes and organisms, degrade the protective effects of the microbiota against invasion by pathogens, and may impair vaccine efficacy. Through these effects on the microbiome they may affect immune responses. Vaccines that exert protective or therapeutic effects against pathogens may reduce the use of antimicrobials, the development and spread of antimicrobial resistance, and the harmful impacts of these drugs on the microbiome. Other strategies involving manipulation of the microbiome to deplete antibiotic-resistant organisms or to enhance immune responses to vaccines may prove valuable in addressing antimicrobial resistance as well. This article describes the intersections of immunity, microbiome and antimicrobial exposure, and the use of vaccines and other alternative strategies for the control and management of antimicrobial resistance.
Collapse
|
216
|
Nelson MM, Waldron CL, Bracht JR. Rapid molecular detection of macrolide resistance. BMC Infect Dis 2019; 19:144. [PMID: 30755177 PMCID: PMC6373131 DOI: 10.1186/s12879-019-3762-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2018] [Accepted: 01/30/2019] [Indexed: 12/23/2022] Open
Abstract
BACKGROUND Emerging antimicrobial resistance is a significant threat to human health. However, methods for rapidly diagnosing antimicrobial resistance generally require multi-day culture-based assays. Macrolide efflux gene A, mef(A), provides resistance against erythromycin and azithromycin and is known to be laterally transferred among a wide range of bacterial species. METHODS We use Recombinase Polymerase Assay (RPA) to detect the antimicrobial resistance gene mef(A) from raw lysates without nucleic acid purification. To validate these results we performed broth dilution assays to assess antimicrobial resistance to erythromycin and ampicillin (a negative control). RESULTS We validate the detection of mef(A) in raw lysates of Streptococcus pyogenes, S. pneumoniae, S. salivarius, and Enterococcus faecium bacterial lysates within 7-10 min of assay time. We show that detection of mef(A) accurately predicts real antimicrobial resistance assessed by traditional culture methods, and that the assay is robust to high levels of spiked-in non-specific nucleic acid contaminant. The assay was unaffected by single-nucleotide polymorphisms within divergent mef(A) gene sequences, strengthening its utility as a robust diagnostic tool. CONCLUSIONS This finding opens the door to implementation of rapid genomic diagnostics in a clinical setting, while providing researchers a rapid, cost-effective tool to track antibiotic resistance in both pathogens and commensal strains.
Collapse
Affiliation(s)
- Megan M. Nelson
- Department of Biology, American University, Washington, DC 20016 USA
| | | | - John R. Bracht
- Department of Biology, American University, Washington, DC 20016 USA
| |
Collapse
|
217
|
Gatica J, Jurkevitch E, Cytryn E. Comparative Metagenomics and Network Analyses Provide Novel Insights Into the Scope and Distribution of β-Lactamase Homologs in the Environment. Front Microbiol 2019; 10:146. [PMID: 30804916 PMCID: PMC6378392 DOI: 10.3389/fmicb.2019.00146] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2018] [Accepted: 01/21/2019] [Indexed: 11/13/2022] Open
Abstract
The β-lactams are the largest group of clinically applied antibiotics, and resistance to these is primarily associated with β-lactamases. There is increasing understanding that these enzymes are ubiquitous in natural environments and henceforth, elucidating the global diversity, distribution, and mobility of β-lactamase-encoding genes is crucial for holistically understanding resistance to these antibiotics. In this study, we screened 232 shotgun metagenomes from ten different environments against a custom-designed β-lactamase database, and subsequently analyzed β-lactamase homologs with a suite of bioinformatic platforms including cluster and network analyses. Three interrelated β-lactamase clusters encompassed all of the human and bovine feces metagenomes, while β-lactamases from soil, freshwater, glacier, marine, and wastewater grouped within a separate "environmental" cluster that displayed high levels of inter-network connectivity. Interestingly, almost no connectivity occurred between the "feces" and "environmental" clusters. We attributed this in part to the divergence in microbial community composition (dominance of Bacteroidetes and Firmicutes vs. Proteobacteria, respectively). The β-lactamase diversity in the "environmental" cluster was significantly higher than in human and bovine feces microbiomes. Several class A, B, C, and D β-lactamase homologs (bla CTX-M, bla KPC, bla GES) were ubiquitous in the "environmental" cluster, whereas bovine and human feces metagenomes were dominated by class A (primarily cfxA) β-lactamases. Collectively, this study highlights the ubiquitous presence and broad diversity of β-lactamase gene precursors in non-clinical environments. Furthermore, it suggests that horizontal transfer of β-lactamases to human-associated bacteria may be more plausible from animals than from terrestrial and aquatic microbes, seemingly due to phylogenetic similarities.
Collapse
Affiliation(s)
- Joao Gatica
- Institute of Soil, Water and Environmental Sciences, Volcani Center, Agricultural Research Organization, Rishon LeZion, Israel.,The Department of Soil and Water Sciences, The Robert H. Smith Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem, Rehovot, Israel
| | - Edouard Jurkevitch
- Department of Plant Pathology and Microbiology, The Robert H. Smith Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem, Rehovot, Israel
| | - Eddie Cytryn
- Institute of Soil, Water and Environmental Sciences, Volcani Center, Agricultural Research Organization, Rishon LeZion, Israel
| |
Collapse
|
218
|
Uribe RV, van der Helm E, Misiakou MA, Lee SW, Kol S, Sommer MOA. Discovery and Characterization of Cas9 Inhibitors Disseminated across Seven Bacterial Phyla. Cell Host Microbe 2019; 25:233-241.e5. [PMID: 30737174 DOI: 10.1016/j.chom.2019.01.003] [Citation(s) in RCA: 48] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2018] [Revised: 08/24/2018] [Accepted: 01/02/2019] [Indexed: 01/07/2023]
Abstract
CRISPR-Cas systems in bacteria and archaea provide immunity against bacteriophages and plasmids. To overcome CRISPR immunity, phages have acquired anti-CRISPR genes that reduce CRISPR-Cas activity. Using a synthetic genetic circuit, we developed a high-throughput approach to discover anti-CRISPR genes from metagenomic libraries based on their functional activity rather than sequence homology or genetic context. We identified 11 DNA fragments from soil, animal, and human metagenomes that circumvent Streptococcus pyogenes Cas9 activity in our selection strain. Further in vivo and in vitro characterization of a subset of these hits validated the activity of four anti-CRISPRs. Notably, homologs of some of these anti-CRISPRs were detected in seven different phyla, namely Firmicutes, Proteobacteria, Bacteroidetes, Actinobacteria, Cyanobacteria, Spirochaetes, and Balneolaeota, and have high sequence identity suggesting recent horizontal gene transfer. Thus, anti-CRISPRs against type II-A CRISPR-Cas systems are widely distributed across bacterial phyla, suggesting a more complex ecological role than previously appreciated.
Collapse
Affiliation(s)
- Ruben V Uribe
- Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Lyngby 2800, Denmark
| | - Eric van der Helm
- Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Lyngby 2800, Denmark
| | - Maria-Anna Misiakou
- Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Lyngby 2800, Denmark
| | - Sang-Woo Lee
- Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Lyngby 2800, Denmark
| | - Stefan Kol
- Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Lyngby 2800, Denmark
| | - Morten O A Sommer
- Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Lyngby 2800, Denmark.
| |
Collapse
|
219
|
Li J, Rettedal EA, van der Helm E, Ellabaan M, Panagiotou G, Sommer MOA. Antibiotic Treatment Drives the Diversification of the Human Gut Resistome. GENOMICS, PROTEOMICS & BIOINFORMATICS 2019; 17:39-51. [PMID: 31026582 PMCID: PMC6520913 DOI: 10.1016/j.gpb.2018.12.003] [Citation(s) in RCA: 48] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/03/2018] [Revised: 10/10/2018] [Accepted: 12/17/2018] [Indexed: 01/13/2023]
Abstract
Despite the documented antibiotic-induced disruption of the gut microbiota, the impact of antibiotic intake on strain-level dynamics, evolution of resistance genes, and factors influencing resistance dissemination potential remains poorly understood. To address this gap we analyzed public metagenomic datasets from 24 antibiotic treated subjects and controls, combined with an in-depth prospective functional study with two subjects investigating the bacterial community dynamics based on cultivation-dependent and independent methods. We observed that short-term antibiotic treatment shifted and diversified the resistome composition, increased the average copy number of antibiotic resistance genes, and altered the dominant strain genotypes in an individual-specific manner. More than 30% of the resistance genes underwent strong differentiation at the single nucleotide level during antibiotic treatment. We found that the increased potential for horizontal gene transfer, due to antibiotic administration, was ∼3-fold stronger in the differentiated resistance genes than the non-differentiated ones. This study highlights how antibiotic treatment has individualized impacts on the resistome and strain level composition, and drives the adaptive evolution of the gut microbiota.
Collapse
Affiliation(s)
- Jun Li
- Department of Infectious Diseases and Public Health, Colleague of Veterinary Medicine and Life Sciences, City University of Hong Kong, Hong Kong Special Administrative Region, China; School of Data Science, City University of Hong Kong, Hong Kong Special Administrative Region, China
| | | | - Eric van der Helm
- Novo Nordisk Foundation Center for Biosustainability, DK-2900 Hørsholm, Denmark
| | - Mostafa Ellabaan
- Novo Nordisk Foundation Center for Biosustainability, DK-2900 Hørsholm, Denmark
| | - Gianni Panagiotou
- Systems Biology and Bioinformatics Unit, Leibniz Institute for Natural Product Research and Infection Biology - Hans Knöll Institute, 07745 Jena, Germany; Systems Biology and Bioinformatics Group, School of Biological Sciences, Faculty of Sciences, The University of Hong Kong, Hong Kong Special Administrative Region, China; Department of Microbiology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong Special Administrative Region, China.
| | - Morten O A Sommer
- Novo Nordisk Foundation Center for Biosustainability, DK-2900 Hørsholm, Denmark.
| |
Collapse
|
220
|
Su Y, Wang J, Xia H, Xie B. Comparative network analysis revealing the mechanisms of antibiotic resistance genes removal by leachate recirculation under different hydraulic loadings. THE SCIENCE OF THE TOTAL ENVIRONMENT 2019; 649:318-326. [PMID: 30176445 DOI: 10.1016/j.scitotenv.2018.08.361] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/27/2018] [Revised: 08/25/2018] [Accepted: 08/25/2018] [Indexed: 06/08/2023]
Abstract
The wide dissemination of antibiotic resistance is a pervasive global health threat, and landfill leachate has been an important hotspot of antibiotic resistance genes (ARGs). This study aimed to investigate the removal performance and mechanism of ARGs from leachate under different hydraulic loadings. ARGs removal efficiencies were dependent on hydraulic loadings and ARGs types other than operating time, and reactors operated with hydraulic loadings of 25 and 50 L·m-3·d-1 exhibited greater removal potential than 100 L·m-3·d-1. ARGs removal patterns varied from different subtypes, for genes sul2, tetQ, aadA1 and blaCTX-M were eliminated from both leachate and refuse, and tetM, ermB, mefA, and strB were removed from leachate but enriched in refuse. Under different hydraulic loadings, bacterial communities shift shaped ARGs fates in leachate, but refuse had more stable antibiotic resistome and community structure. The topology comparison analysis of co-occurrence network suggested a closer hosting relationship between ARGs and genera in refuse than leachate. Furthermore, taxonomic category of host bacteria other than diversity of host genera determined the ARGs removal, and the ARGs harbored in phyla Cyanobacteria, Tenericutes and Acidobacteria were more likely to be removed. These findings can potentially foster the understanding of ARGs removal mechanism in biological treatment processes under different operating conditions.
Collapse
Affiliation(s)
- Yinglong Su
- Key Laboratory for Urban and Ecological Restoration of Shanghai, School of Ecology and Environmental Sciences, East China Normal University, Shanghai 200241, China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, China
| | - Jiaxin Wang
- Key Laboratory for Urban and Ecological Restoration of Shanghai, School of Ecology and Environmental Sciences, East China Normal University, Shanghai 200241, China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, China
| | - Huipeng Xia
- Key Laboratory for Urban and Ecological Restoration of Shanghai, School of Ecology and Environmental Sciences, East China Normal University, Shanghai 200241, China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, China
| | - Bing Xie
- Key Laboratory for Urban and Ecological Restoration of Shanghai, School of Ecology and Environmental Sciences, East China Normal University, Shanghai 200241, China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, China.
| |
Collapse
|
221
|
Lamoureux C, Guilloux CA, Beauruelle C, Jolivet-Gougeon A, Héry-Arnaud G. Anaerobes in cystic fibrosis patients' airways. Crit Rev Microbiol 2019; 45:103-117. [PMID: 30663924 DOI: 10.1080/1040841x.2018.1549019] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
Anaerobes are known to constitute an important part of the airway microbiota in both healthy subjects and cystic fibrosis (CF) patients. Studies on the potential role of anaerobic bacteria in CF and thus their involvement in CF pathophysiology have reported contradictory results, and the question is still not elucidated. The aim of this study was to summarize anaerobe diversity in the airway microbiota and its potential role in CF, to provide an overview of the state of knowledge on anaerobe antibiotic resistances (resistome), and to investigate the detectable metabolites produced by anaerobes in CF airways (metabolome). This review emphasizes key metabolites produced by strict anaerobic bacteria (sphingolipids, fermentation-induced metabolites and metabolites involved in quorum-sensing), which may be essential for the better understanding of lung disease pathophysiology in CF.
Collapse
Affiliation(s)
- Claudie Lamoureux
- a Univ Brest , INSERM, EFS , UMR 1078, GGB, F-29200 Brest , France.,b Unité de Bactériologie, Pôle de Biologie-Pathologie , Centre Hospitalier Régional et Universitaire de Brest, Hôpital de la Cavale Blanche, Boulevard Tanguy Prigent , Brest , France
| | | | - Clémence Beauruelle
- a Univ Brest , INSERM, EFS , UMR 1078, GGB, F-29200 Brest , France.,b Unité de Bactériologie, Pôle de Biologie-Pathologie , Centre Hospitalier Régional et Universitaire de Brest, Hôpital de la Cavale Blanche, Boulevard Tanguy Prigent , Brest , France
| | | | - Geneviève Héry-Arnaud
- a Univ Brest , INSERM, EFS , UMR 1078, GGB, F-29200 Brest , France.,b Unité de Bactériologie, Pôle de Biologie-Pathologie , Centre Hospitalier Régional et Universitaire de Brest, Hôpital de la Cavale Blanche, Boulevard Tanguy Prigent , Brest , France
| |
Collapse
|
222
|
Dual-barcoded shotgun expression library sequencing for high-throughput characterization of functional traits in bacteria. Nat Commun 2019; 10:308. [PMID: 30659179 PMCID: PMC6338753 DOI: 10.1038/s41467-018-08177-8] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2018] [Accepted: 12/19/2018] [Indexed: 12/20/2022] Open
Abstract
A major challenge in genomics is the knowledge gap between sequence and its encoded function. Gain-of-function methods based on gene overexpression are attractive avenues for phenotype-based functional screens, but are not easily applied in high-throughput across many experimental conditions. Here, we present Dual Barcoded Shotgun Expression Library Sequencing (Dub-seq), a method that uses random DNA barcodes to greatly increase experimental throughput. As a demonstration of this approach, we construct a Dub-seq library with Escherichia coli genomic DNA, performed 155 genome-wide fitness assays in 52 experimental conditions, and identified overexpression phenotypes for 813 genes. We show that Dub-seq data is reproducible, accurately recapitulates known biology, and identifies hundreds of novel gain-of-function phenotypes for E. coli genes, a subset of which we verified with assays of individual strains. Dub-seq provides complementary information to loss-of-function approaches and will facilitate rapid and systematic functional characterization of microbial genomes. Gain of function methods based on gene overexpression are not easily applied to high-throughput screening across different experimental conditions. Here, the authors present Dub-seq, which separates overexpression library characterization from functional screening and uses random DNA barcodes to increase the experimental throughput.
Collapse
|
223
|
Versluis D, de J. Bello González T, Zoetendal EG, van Passel MWJ, Smidt H. High throughput cultivation-based screening on porous aluminum oxide chips allows targeted isolation of antibiotic resistant human gut bacteria. PLoS One 2019; 14:e0210970. [PMID: 30653573 PMCID: PMC6336267 DOI: 10.1371/journal.pone.0210970] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2018] [Accepted: 01/05/2019] [Indexed: 12/16/2022] Open
Abstract
The emergence of bacterial pathogens that are resistant to clinical antibiotics poses an increasing risk to human health. An important reservoir from which bacterial pathogens can acquire resistance is the human gut microbiota. However, thus far, a substantial fraction of the gut microbiota remains uncultivated and has been little-studied with respect to its resistance reservoir-function. Here, we aimed to isolate yet uncultivated resistant gut bacteria by a targeted approach. Therefore, faecal samples from 20 intensive care patients who had received the prophylactic antibiotic treatment selective digestive decontamination (SDD), i.e. tobramycin, polymyxin E, amphotericin B and cefotaxime, were inoculated anaerobically on porous aluminium oxide chips placed on top of poor and rich agar media, including media supplemented with the SDD antibiotics. Biomass growing on the chips was analysed by 16S rRNA gene amplicon sequencing, showing large inter-individual differences in bacterial cultivability, and enrichment of a range of taxonomically diverse operational taxonomic units (OTUs). Furthermore, growth of Ruminococcaceae (2 OTUs), Enterobacteriaceae (6 OTUs) and Lachnospiraceae (4 OTUs) was significantly inhibited by the SDD antibiotics. Strains belonging to 16 OTUs were candidates for cultivation to pure culture as they shared ≤95% sequence identity with the closest type strain and had a relative abundance of ≥2%. Six of these OTUs were detected on media containing SDD antibiotics, and as such were prime candidates to be studied regarding antibiotic resistance. One of these six OTUs was obtained in pure culture using targeted isolation. This novel strain was resistant to the antibiotics metrodinazole and imipenem. It was initially classified as member of the Ruminococcaceae, though later it was found to share 99% nucleotide identity with the recently published Sellimonas intestinalis BR72T. In conclusion, we show that high-throughput cultivation-based screening of microbial communities can guide targeted isolation of bacteria that serve as reservoirs of antibiotic resistance.
Collapse
Affiliation(s)
- Dennis Versluis
- Laboratory of Microbiology, Wageningen University & Research, Wageningen, the Netherlands
| | | | - Erwin G. Zoetendal
- Laboratory of Microbiology, Wageningen University & Research, Wageningen, the Netherlands
| | - Mark W. J. van Passel
- Laboratory of Microbiology, Wageningen University & Research, Wageningen, the Netherlands
- Center for Infectious Disease Control, National Institute for Public Health and the Environment, Bilthoven, the Netherlands
| | - Hauke Smidt
- Laboratory of Microbiology, Wageningen University & Research, Wageningen, the Netherlands
| |
Collapse
|
224
|
Chen QL, An XL, Zheng BX, Ma YB, Su JQ. Long-term organic fertilization increased antibiotic resistome in phyllosphere of maize. THE SCIENCE OF THE TOTAL ENVIRONMENT 2018; 645:1230-1237. [PMID: 30248848 DOI: 10.1016/j.scitotenv.2018.07.260] [Citation(s) in RCA: 97] [Impact Index Per Article: 13.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/25/2018] [Revised: 07/18/2018] [Accepted: 07/18/2018] [Indexed: 06/08/2023]
Abstract
Phyllosphere contains various microorganisms that may harbor diverse antibiotic resistance genes (ARGs). However, we know little about the composition of antibiotic resistome and the factors influencing the diversity and abundance of ARGs in the phyllosphere. In this study, 16S rRNA gene amplicon sequencing and high-throughput quantitative PCR approaches were employed to investigate the effects of long-term (over 10 years) organic fertilization on the phyllosphere bacterial communities and antibiotic resistome. Proteobacteria, Bacteroidetes, Actinobacteria and Firmicutes dominated in the phyllosphere bacterial communities. Long-term application of sewage sludge and chicken manure altered the phyllosphere bacterial community composition, with a remarkable decrease in bacterial alpha-diversity. A total of 124 unique ARGs were detected in the phyllosphere. The application of sewage sludge and chicken manure significantly increased the abundance of ARGs, with a maximum 2638-fold enrichment. Variation partitioning analysis (VPA) together with network analysis indicated that the profile of ARGs is strongly correlated with bacterial community compositions. These results improve the knowledge about the diversity of plant-associated antibiotic resistome and factors influencing the profile of ARGs in the phyllosphere.
Collapse
Affiliation(s)
- Qing-Lin Chen
- Key Laboratory of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China
| | - Xin-Li An
- Key Laboratory of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China
| | - Bang-Xiao Zheng
- Key Laboratory of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yi-Bing Ma
- Ministry of Agriculture Key Laboratory of Plant Nutrition and Nutrient Cycling, Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Jian-Qiang Su
- Key Laboratory of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China.
| |
Collapse
|
225
|
Domínguez-Pérez RA, De la Torre-Luna R, Ahumada-Cantillano M, Vázquez-Garcidueñas MS, Pérez-Serrano RM, Martínez-Martínez RE, Guillén-Nepita AL. Detection of the antimicrobial resistance genes blaTEM-1, cfxA, tetQ, tetM, tetW and ermC in endodontic infections of a Mexican population. J Glob Antimicrob Resist 2018; 15:20-24. [DOI: 10.1016/j.jgar.2018.05.011] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2018] [Revised: 05/12/2018] [Accepted: 05/15/2018] [Indexed: 12/28/2022] Open
|
226
|
|
227
|
Ruppé E, Ghozlane A, Tap J, Pons N, Alvarez AS, Maziers N, Cuesta T, Hernando-Amado S, Clares I, Martínez JL, Coque TM, Baquero F, Lanza VF, Máiz L, Goulenok T, de Lastours V, Amor N, Fantin B, Wieder I, Andremont A, van Schaik W, Rogers M, Zhang X, Willems RJL, de Brevern AG, Batto JM, Blottière HM, Léonard P, Léjard V, Letur A, Levenez F, Weiszer K, Haimet F, Doré J, Kennedy SP, Ehrlich SD. Prediction of the intestinal resistome by a three-dimensional structure-based method. Nat Microbiol 2018; 4:112-123. [PMID: 30478291 DOI: 10.1038/s41564-018-0292-6] [Citation(s) in RCA: 115] [Impact Index Per Article: 16.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2017] [Accepted: 10/11/2018] [Indexed: 12/21/2022]
Abstract
The intestinal microbiota is considered to be a major reservoir of antibiotic resistance determinants (ARDs) that could potentially be transferred to bacterial pathogens via mobile genetic elements. Yet, this assumption is poorly supported by empirical evidence due to the distant homologies between known ARDs (mostly from culturable bacteria) and ARDs from the intestinal microbiota. Consequently, an accurate census of intestinal ARDs (that is, the intestinal resistome) has not yet been fully determined. For this purpose, we developed and validated an annotation method (called pairwise comparative modelling) on the basis of a three-dimensional structure (homology comparative modelling), leading to the prediction of 6,095 ARDs in a catalogue of 3.9 million proteins from the human intestinal microbiota. We found that the majority of predicted ARDs (pdARDs) were distantly related to known ARDs (mean amino acid identity 29.8%) and found little evidence supporting their transfer between species. According to the composition of their resistome, we were able to cluster subjects from the MetaHIT cohort (n = 663) into six resistotypes that were connected to the previously described enterotypes. Finally, we found that the relative abundance of pdARDs was positively associated with gene richness, but not when subjects were exposed to antibiotics. Altogether, our results indicate that the majority of intestinal microbiota ARDs can be considered intrinsic to the dominant commensal microbiota and that these genes are rarely shared with bacterial pathogens.
Collapse
Affiliation(s)
- Etienne Ruppé
- MGP MetaGénoPolis, INRA, Université Paris-Saclay, Jouy en Josas, France. .,IAME, UMR 1137, INSERM, Paris Diderot University, Sorbonne Paris Cité, Paris, France.
| | - Amine Ghozlane
- MGP MetaGénoPolis, INRA, Université Paris-Saclay, Jouy en Josas, France.,Institut Pasteur - Bioinformatics and Biostatistics Hub - C3BI, USR 3756 IP CNRS, Paris, France.,Institut Pasteur - Biomics - CITECH, Paris, France
| | - Julien Tap
- MGP MetaGénoPolis, INRA, Université Paris-Saclay, Jouy en Josas, France.,Danone Nutricia Research, Palaiseau, France
| | - Nicolas Pons
- MGP MetaGénoPolis, INRA, Université Paris-Saclay, Jouy en Josas, France
| | | | - Nicolas Maziers
- MGP MetaGénoPolis, INRA, Université Paris-Saclay, Jouy en Josas, France
| | | | | | - Irene Clares
- Centro Nacional de Biotecnología, CSIC, Madrid, Spain
| | | | - Teresa M Coque
- Servicio de Microbiología Instituto, Ramón y Cajal de Investigación Sanitaria, Madrid, Spain.,CIBER en Epidemiología y Salud Pública, Madrid, Spain.,Unidad de Resistencia a Antibióticos y Virulencia Bacteriana, Madrid, Spain
| | - Fernando Baquero
- Servicio de Microbiología Instituto, Ramón y Cajal de Investigación Sanitaria, Madrid, Spain.,CIBER en Epidemiología y Salud Pública, Madrid, Spain.,Unidad de Resistencia a Antibióticos y Virulencia Bacteriana, Madrid, Spain
| | - Val F Lanza
- Servicio de Microbiología Instituto, Ramón y Cajal de Investigación Sanitaria, Madrid, Spain.,CIBER en Epidemiología y Salud Pública, Madrid, Spain
| | - Luis Máiz
- Unit for Cystic Fibrosis, Ramon y Cajal University Hospital, Madrid, Spain
| | - Tiphaine Goulenok
- Internal Medicine Department, Beaujon Hospital, AP-HP, Clichy, France
| | - Victoire de Lastours
- IAME, UMR 1137, INSERM, Paris Diderot University, Sorbonne Paris Cité, Paris, France.,Internal Medicine Department, Beaujon Hospital, AP-HP, Clichy, France
| | - Nawal Amor
- Internal Medicine Department, Beaujon Hospital, AP-HP, Clichy, France
| | - Bruno Fantin
- IAME, UMR 1137, INSERM, Paris Diderot University, Sorbonne Paris Cité, Paris, France.,Internal Medicine Department, Beaujon Hospital, AP-HP, Clichy, France
| | - Ingrid Wieder
- Bacteriology Laboratory, Bichat-Claude Bernard Hospital, AP-HP, Paris, France
| | - Antoine Andremont
- IAME, UMR 1137, INSERM, Paris Diderot University, Sorbonne Paris Cité, Paris, France.,Bacteriology Laboratory, Bichat-Claude Bernard Hospital, AP-HP, Paris, France
| | - Willem van Schaik
- Department of Medical Microbiology, University Medical Center Utrecht, Utrecht, the Netherlands.,Institute of Microbiology and Infection, University of Birmingham, Edgbaston, Birmingham, UK
| | - Malbert Rogers
- Department of Medical Microbiology, University Medical Center Utrecht, Utrecht, the Netherlands
| | - Xinglin Zhang
- Department of Medical Microbiology, University Medical Center Utrecht, Utrecht, the Netherlands
| | - Rob J L Willems
- Department of Medical Microbiology, University Medical Center Utrecht, Utrecht, the Netherlands
| | - Alexandre G de Brevern
- INSERM UMR_S 1134, Paris Diderot University, Sorbonne Paris Cité, Université de la Réunion, Université des Antilles, INTS, GR-Ex, Paris, France
| | - Jean-Michel Batto
- MGP MetaGénoPolis, INRA, Université Paris-Saclay, Jouy en Josas, France
| | - Hervé M Blottière
- MGP MetaGénoPolis, INRA, Université Paris-Saclay, Jouy en Josas, France
| | - Pierre Léonard
- MGP MetaGénoPolis, INRA, Université Paris-Saclay, Jouy en Josas, France
| | - Véronique Léjard
- MGP MetaGénoPolis, INRA, Université Paris-Saclay, Jouy en Josas, France
| | - Aline Letur
- MGP MetaGénoPolis, INRA, Université Paris-Saclay, Jouy en Josas, France
| | - Florence Levenez
- MGP MetaGénoPolis, INRA, Université Paris-Saclay, Jouy en Josas, France
| | - Kevin Weiszer
- MGP MetaGénoPolis, INRA, Université Paris-Saclay, Jouy en Josas, France
| | - Florence Haimet
- MGP MetaGénoPolis, INRA, Université Paris-Saclay, Jouy en Josas, France
| | - Joël Doré
- MGP MetaGénoPolis, INRA, Université Paris-Saclay, Jouy en Josas, France
| | - Sean P Kennedy
- MGP MetaGénoPolis, INRA, Université Paris-Saclay, Jouy en Josas, France.,Institut Pasteur - Biomics - CITECH, Paris, France
| | - S Dusko Ehrlich
- MGP MetaGénoPolis, INRA, Université Paris-Saclay, Jouy en Josas, France.,Centre of Host Microbiome Interactions, King's College, London, UK
| |
Collapse
|
228
|
Nogueira T, David PHC, Pothier J. Antibiotics as both friends and foes of the human gut microbiome: The microbial community approach. Drug Dev Res 2018; 80:86-97. [PMID: 30370682 DOI: 10.1002/ddr.21466] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2018] [Revised: 08/14/2018] [Accepted: 08/15/2018] [Indexed: 12/28/2022]
Abstract
The exposure of the human gut to antibiotics can have a great impact on human health. Antibiotics pertain to the preservation of human health and are useful tools for fighting bacterial infections. They can be used for curing infections and can play a critical role in immunocompromised or chronic patients, or in fighting childhood severe malnutrition. Yet, the genomic and phylogenetic diversity of the human gut changes under antibiotic exposure. Antibiotics can also have severe side effects on human gut health, due to the spreading of potential antibiotic resistance genetic traits and to their correlation with virulence of some bacterial pathogens. They can shape, and even disrupt, the composition and functioning diversity of the human gut microbiome. Traditionally bacterial antibiotic resistances have been evaluated at clone or population level. However, the understanding of these two apparently disparate perspectives as both friends and foes may come from the study of microbiomes as a whole and from the evaluation of both positive and negative effects of antibiotics on microbial community dynamics and diversity. In this review we present some metagenomic tools and databases that enable the studying of antibiotic resistance in human gut metagenomes, promoting the development of personalized medicine strategies, new antimicrobial therapy protocols and patient follow-up.
Collapse
Affiliation(s)
- Teresa Nogueira
- cE3c - Centro de Ecologia, Evolução e Alterações Ambientais, Faculdade de Ciências, Universidade de Lisboa, Lisbon, Portugal
| | - Pedro H C David
- cE3c - Centro de Ecologia, Evolução e Alterações Ambientais, Faculdade de Ciências, Universidade de Lisboa, Lisbon, Portugal
| | - Joël Pothier
- Institut de Systématique, Evolution, Biodiversité (ISYEB), Sorbonne Université, Muséum National d'Histoire naturelle, CNRS, EPHE, CP, Paris, France
| |
Collapse
|
229
|
Lim MY, Cho Y, Rho M. Diverse Distribution of Resistomes in the Human and Environmental Microbiomes. Curr Genomics 2018; 19:701-711. [PMID: 30532649 PMCID: PMC6225452 DOI: 10.2174/1389202919666180911130845] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2017] [Revised: 04/14/2018] [Accepted: 09/03/2018] [Indexed: 11/22/2022] Open
Abstract
The routine therapeutic use of antibiotics has caused resistance genes to be disseminated across microbial populations. In particular, bacterial strains having antibiotic resistance genes are frequently observed in the human microbiome. Moreover, multidrug-resistant pathogens are now widely spread, threatening public health. Such genes are transferred and spread among bacteria even in different environments. Advances in high throughput sequencing technology and computational algorithms have accelerated investigation into antibiotic resistance genes of bacteria. Such studies have revealed that the antibiotic resistance genes are located close to the mobility-associated genes, which promotes their dissemination. An increasing level of information on genomic sequences of resistome should expedite research on drug-resistance in our body and environment, thereby contributing to the development of public health policy. In this review, the high prevalence of antibiotic resistance genes and their exchange in the human and environmental microbiome is discussed with respect to the genomic contents. The relationships among diverse resistomes, related bacterial species, and the antibiotics are reviewed. In addition, recent advances in bioinformatics approaches to investigate such relationships are discussed.
Collapse
Affiliation(s)
- Mi Young Lim
- 1Research Group of Healthcare, Korea Food Research Institute, Jeollabuk-do 55365, South Korea; 2Department of Computer Science and Engineering, Hanyang University, Seoul133-791, South Korea; 3Department of Biomedical Informatics, Hanyang University, Seoul133-791, South Korea
| | - Youna Cho
- 1Research Group of Healthcare, Korea Food Research Institute, Jeollabuk-do 55365, South Korea; 2Department of Computer Science and Engineering, Hanyang University, Seoul133-791, South Korea; 3Department of Biomedical Informatics, Hanyang University, Seoul133-791, South Korea
| | - Mina Rho
- 1Research Group of Healthcare, Korea Food Research Institute, Jeollabuk-do 55365, South Korea; 2Department of Computer Science and Engineering, Hanyang University, Seoul133-791, South Korea; 3Department of Biomedical Informatics, Hanyang University, Seoul133-791, South Korea
| |
Collapse
|
230
|
Abstract
Infants are vulnerable to an array of infectious diseases, and as the gut microbiome may serve as a reservoir of AMR for pathogens, reducing the levels of AMR in infants is important to infant health. This study demonstrates that high levels of Bifidobacterium are associated with reduced levels of AMR in early life and suggests that probiotic interventions to increase infant Bifidobacterium levels have the potential to reduce AMR in infants. However, this effect is not sustained at year 2 of age in Bangladeshi infants, underscoring the need for more detailed studies of the biogeography and timing of infant AMR acquisition. Bifidobacterium species are important commensals capable of dominating the infant gut microbiome, in part by producing acids that suppress growth of other taxa. Bifidobacterium species are less prone to possessing antimicrobial resistance (AMR) genes (ARGs) than other taxa that may colonize infants. Given that AMR is a growing public health crisis and ARGs are present in the gut microbiome of humans from early life, this study examines the correlation between a Bifidobacterium-dominated infant gut microbiome and AMR levels, measured by a culture-independent metagenomic approach both in early life and as infants become toddlers. In general, Bifidobacterium dominance is associated with a significant reduction in AMR in a Bangladeshi cohort, both in the number of acquired AMR genes present and in the abundance of AMR genes. However, by year 2, Bangladeshi infants had no significant differences in AMR related to their early-life Bifidobacterium levels. A generalized linear model including all infants in a previously published Swedish cohort found a significant negative association between log-transformed total AMR and Bifidobacterium levels, thus confirming the relationship between Bifidobacterium levels and AMR. In both cohorts, there was no change between early-life and later-life AMR abundance in high-Bifidobacterium infants but a significant reduction in AMR abundance in low-Bifidobacterium infants. These results support the hypothesis that early Bifidobacterium dominance of the infant gut microbiome may help reduce colonization by taxa containing ARGs. IMPORTANCE Infants are vulnerable to an array of infectious diseases, and as the gut microbiome may serve as a reservoir of AMR for pathogens, reducing the levels of AMR in infants is important to infant health. This study demonstrates that high levels of Bifidobacterium are associated with reduced levels of AMR in early life and suggests that probiotic interventions to increase infant Bifidobacterium levels have the potential to reduce AMR in infants. However, this effect is not sustained at year 2 of age in Bangladeshi infants, underscoring the need for more detailed studies of the biogeography and timing of infant AMR acquisition.
Collapse
|
231
|
Wastewater treatment plant resistomes are shaped by bacterial composition, genetic exchange, and upregulated expression in the effluent microbiomes. ISME JOURNAL 2018; 13:346-360. [PMID: 30250051 DOI: 10.1038/s41396-018-0277-8] [Citation(s) in RCA: 259] [Impact Index Per Article: 37.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/28/2018] [Revised: 08/19/2018] [Accepted: 08/26/2018] [Indexed: 01/22/2023]
Abstract
Wastewater treatment plants (WWTPs) are implicated as hotspots for the dissemination of antibacterial resistance into the environment. However, the in situ processes governing removal, persistence, and evolution of resistance genes during wastewater treatment remain poorly understood. Here, we used quantitative metagenomic and metatranscriptomic approaches to achieve a broad-spectrum view of the flow and expression of genes related to antibacterial resistance to over 20 classes of antibiotics, 65 biocides, and 22 metals. All compartments of 12 WWTPs share persistent resistance genes with detectable transcriptional activities that were comparatively higher in the secondary effluent, where mobility genes also show higher relative abundance and expression ratios. The richness and abundance of resistance genes vary greatly across metagenomes from different treatment compartments, and their relative and absolute abundances correlate with bacterial community composition and biomass concentration. No strong drivers of resistome composition could be identified among the chemical stressors analyzed, although the sub-inhibitory concentration (hundreds of ng/L) of macrolide antibiotics in wastewater correlates with macrolide and vancomycin resistance genes. Contig-based analysis shows considerable co-localization between resistance and mobility genes and implies a history of substantial horizontal resistance transfer involving human bacterial pathogens. Based on these findings, we propose future inclusion of mobility incidence (M%) and host pathogenicity of antibiotic resistance genes in their quantitative health risk ranking models with an ultimate goal to assess the biological significance of wastewater resistomes with regard to disease control in humans or domestic livestock.
Collapse
|
232
|
Chang CY, Yan X, Crnovcic I, Annaval T, Chang C, Nocek B, Rudolf JD, Yang D, Hindra, Babnigg G, Joachimiak A, Phillips GN, Shen B. Resistance to Enediyne Antitumor Antibiotics by Sequestration. Cell Chem Biol 2018; 25:1075-1085.e4. [PMID: 29937405 PMCID: PMC6208323 DOI: 10.1016/j.chembiol.2018.05.012] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2018] [Revised: 05/04/2018] [Accepted: 05/16/2018] [Indexed: 10/28/2022]
Abstract
The enediynes, microbial natural products with extraordinary cytotoxicities, have been translated into clinical drugs. Two self-resistance mechanisms are known in the enediyne producers-apoproteins for the nine-membered enediynes and self-sacrifice proteins for the ten-membered enediyne calicheamicin. Here we show that: (1) tnmS1, tnmS2, and tnmS3 encode tiancimycin (TNM) resistance in its producer Streptomyces sp. CB03234, (2) tnmS1, tnmS2, and tnmS3 homologs are found in all anthraquinone-fused enediyne producers, (3) TnmS1, TnmS2, and TnmS3 share a similar β barrel-like structure, bind TNMs with nanomolar KD values, and confer resistance by sequestration, and (4) TnmS1, TnmS2, and TnmS3 homologs are widespread in nature, including in the human microbiome. These findings unveil an unprecedented resistance mechanism for the enediynes. Mechanisms of self-resistance in producers serve as models to predict and combat future drug resistance in clinical settings. Enediyne-based chemotherapies should now consider the fact that the human microbiome harbors genes encoding enediyne resistance.
Collapse
Affiliation(s)
- Chin-Yuan Chang
- Department of Chemistry, The Scripps Research Institute, Jupiter, FL 33458, USA
| | - Xiaohui Yan
- Department of Chemistry, The Scripps Research Institute, Jupiter, FL 33458, USA
| | - Ivana Crnovcic
- Department of Chemistry, The Scripps Research Institute, Jupiter, FL 33458, USA
| | - Thibault Annaval
- Department of Chemistry, The Scripps Research Institute, Jupiter, FL 33458, USA
| | - Changsoo Chang
- Structural Biology Center, Biosciences Division, Argonne National Laboratory, Argonne, IL 60439, USA; Midwest Center for Structural Genomics, Biosciences Division, Argonne National Laboratory, Argonne, IL 60439, USA
| | - Boguslaw Nocek
- Structural Biology Center, Biosciences Division, Argonne National Laboratory, Argonne, IL 60439, USA; Midwest Center for Structural Genomics, Biosciences Division, Argonne National Laboratory, Argonne, IL 60439, USA
| | - Jeffrey D Rudolf
- Department of Chemistry, The Scripps Research Institute, Jupiter, FL 33458, USA
| | - Dong Yang
- Department of Chemistry, The Scripps Research Institute, Jupiter, FL 33458, USA
| | - Hindra
- Department of Chemistry, The Scripps Research Institute, Jupiter, FL 33458, USA
| | - Gyorgy Babnigg
- Midwest Center for Structural Genomics, Biosciences Division, Argonne National Laboratory, Argonne, IL 60439, USA; Center for Structural Genomics of Infectious Diseases, University of Chicago, Chicago, IL 60637, USA
| | - Andrzej Joachimiak
- Structural Biology Center, Biosciences Division, Argonne National Laboratory, Argonne, IL 60439, USA; Midwest Center for Structural Genomics, Biosciences Division, Argonne National Laboratory, Argonne, IL 60439, USA; Center for Structural Genomics of Infectious Diseases, University of Chicago, Chicago, IL 60637, USA
| | - George N Phillips
- BioSciences at Rice and Department of Chemistry, Rice University, Houston, TX 77251, USA
| | - Ben Shen
- Department of Chemistry, The Scripps Research Institute, Jupiter, FL 33458, USA; Department of Molecular Medicine, The Scripps Research Institute, Jupiter, FL 33458, USA; Natural Products Library Initiative at The Scripps Research Institute, The Scripps Research Institute, Jupiter, FL 33458, USA.
| |
Collapse
|
233
|
O'Toole RF, Gautam SS. The host microbiome and impact of tuberculosis chemotherapy. Tuberculosis (Edinb) 2018; 113:26-29. [PMID: 30514510 DOI: 10.1016/j.tube.2018.08.015] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2018] [Revised: 08/28/2018] [Accepted: 08/30/2018] [Indexed: 01/15/2023]
Abstract
The treatment of Mycobacterium tuberculosis infection is often viewed in isolation from other human microbial symbionts. Understandably, the clinical priority is eliminating active or latent tuberculosis (TB) in patients. With the increasing resolution of molecular biology technologies, it is becoming apparent that antibiotic treatment can perturb the homeostasis of the host microbiome. For example, dysbiosis of the gut microbiota has been associated with an increased risk of the development of asthma, obesity and diabetes. Therefore, fundamental questions include: Does TB chemotherapy cause disruption of the human microbiome and adverse effects in patients; and are there signature taxa of dysbiosis following TB treatment. In this review, we examine recent research on the detection of changes in the microbiome during antibiotic administration and discuss specific findings that relate to the impact of anti-tubercular chemotherapy.
Collapse
Affiliation(s)
- Ronan F O'Toole
- School of Medicine, College of Health and Medicine, University of Tasmania, Hobart, Australia; Department of Clinical Microbiology, School of Medicine, Trinity College Dublin, Ireland.
| | - Sanjay S Gautam
- School of Medicine, College of Health and Medicine, University of Tasmania, Hobart, Australia
| |
Collapse
|
234
|
Thi Quynh Nhi L, Thanh Tuyen H, Duc Trung P, Do Hoang Nhu T, Duy PT, Hao CT, Thi Thanh Nhan N, Vi LL, Thi Diem Tuyet H, Thi Thuy Tien T, Van Vinh Chau N, Khanh Lam P, Thwaites G, Baker S. Excess body weight and age associated with the carriage of fluoroquinolone and third-generation cephalosporin resistance genes in commensal Escherichia coli from a cohort of urban Vietnamese children. J Med Microbiol 2018; 67:1457-1466. [PMID: 30113307 DOI: 10.1099/jmm.0.000820] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
PURPOSE Antimicrobial-resistant bacterial infections in low- and middle-income countries (LMICs) are a well-established global health issue. We aimed to assess the prevalence of and epidemiological factors associated with the carriage of ciprofloxacin- and ceftriaxone-resistant Escherichia coli and associated resistance genes in a cohort of 498 healthy children residing in urban Vietnam. METHODOLOGY We cultured rectal swabs onto MacConkey agar supplemented with resistant concentrations of ciprofloxacin and ceftriaxone. Additionally, we screened meta-E. coli populations by conventional PCR to detect plasmid-mediated quinolone resistance (PMQR)- and extended-spectrum β-lactamase (ESBL)-encoding genes. We measured the associations between phenotypic/genotypic resistance and demographic characteristics using logistic regression.Results/Key findings. Ciprofloxacin- and ceftriaxone-resistant E. coli were cultured from the faecal samples of 67.7 % (337/498) and 80.3 % (400/498) of children, respectively. The prevalence of any associated resistance marker in the individual samples was 86.7 % (432/498) for PMQR genes and 90.6 % (451/498) for β-lactamase genes. Overweight children were significantly more likely to carry qnr genes than children with lower weight-for-height z-scores [odds ratios (OR): 1.24; 95 % confidence interval (CI): 10.5-1.48 for each unit increase in weight for height; P=0.01]. Additionally, younger children were significantly more likely to carry ESBL CTX-M genes than older children (OR: 0.97, 95 % CI: 0.94-0.99 for each additional year, P=0.01). CONCLUSION The carriage of genotypic and phenotypic antimicrobial resistance is highly prevalent among E. coli in healthy children in the community in Vietnam. Future investigations on the carriage of antimicrobial resistant organisms in LMICs should focus on the progression of carriage from birth and structure of the microbiome in obesity.
Collapse
Affiliation(s)
- Le Thi Quynh Nhi
- 1The Hospital for Tropical Diseases, Wellcome Trust Major Overseas Programme, Oxford University Clinical Research Unit, Ho Chi Minh City, Vietnam
- 2University of Medicine and Pharmacy, Ho Chi Minh City, Vietnam
| | - Ha Thanh Tuyen
- 1The Hospital for Tropical Diseases, Wellcome Trust Major Overseas Programme, Oxford University Clinical Research Unit, Ho Chi Minh City, Vietnam
| | - Pham Duc Trung
- 1The Hospital for Tropical Diseases, Wellcome Trust Major Overseas Programme, Oxford University Clinical Research Unit, Ho Chi Minh City, Vietnam
| | - Tran Do Hoang Nhu
- 1The Hospital for Tropical Diseases, Wellcome Trust Major Overseas Programme, Oxford University Clinical Research Unit, Ho Chi Minh City, Vietnam
| | - Pham Thanh Duy
- 1The Hospital for Tropical Diseases, Wellcome Trust Major Overseas Programme, Oxford University Clinical Research Unit, Ho Chi Minh City, Vietnam
| | - Chung The Hao
- 1The Hospital for Tropical Diseases, Wellcome Trust Major Overseas Programme, Oxford University Clinical Research Unit, Ho Chi Minh City, Vietnam
| | - Nguyen Thi Thanh Nhan
- 1The Hospital for Tropical Diseases, Wellcome Trust Major Overseas Programme, Oxford University Clinical Research Unit, Ho Chi Minh City, Vietnam
| | - Lu Lan Vi
- 3The Hospital for Tropical Diseases, Ho Chi Minh City, Vietnam
| | | | | | | | - Phung Khanh Lam
- 1The Hospital for Tropical Diseases, Wellcome Trust Major Overseas Programme, Oxford University Clinical Research Unit, Ho Chi Minh City, Vietnam
| | - Guy Thwaites
- 1The Hospital for Tropical Diseases, Wellcome Trust Major Overseas Programme, Oxford University Clinical Research Unit, Ho Chi Minh City, Vietnam
- 5Centre for Tropical Medicine, Nuffield Department of Clinical Medicine, Oxford University, Oxford, UK
| | - Stephen Baker
- 1The Hospital for Tropical Diseases, Wellcome Trust Major Overseas Programme, Oxford University Clinical Research Unit, Ho Chi Minh City, Vietnam
- 6The Department of Medicine, University of Cambridge, Cambridge, UK
- 5Centre for Tropical Medicine, Nuffield Department of Clinical Medicine, Oxford University, Oxford, UK
| |
Collapse
|
235
|
A Population-Based Surveillance Study of Shared Genotypes of Escherichia coli Isolates from Retail Meat and Suspected Cases of Urinary Tract Infections. mSphere 2018; 3:3/4/e00179-18. [PMID: 30111626 PMCID: PMC6094058 DOI: 10.1128/msphere.00179-18] [Citation(s) in RCA: 62] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Community-acquired urinary tract infection caused by Escherichia coli is one of the most common infectious diseases in the United States, affecting approximately seven million women and costing approximately 11.6 billion dollars annually. In addition, antibiotic resistance among E. coli bacteria causing urinary tract infection continues to increase, which greatly complicates treatment. Identifying sources of uropathogenic E. coli and implementing prevention measures are essential. However, the reservoirs of uropathogenic E. coli have not been well defined. This study demonstrated that poultry sold in retail stores may serve as one possible source of uropathogenic E. coli. This finding adds to a growing body of evidence that suggests that urinary tract infection may be a food-borne disease. More research in this area can lead to the development of preventive strategies to control this common and costly infectious disease. There is increasing evidence that retail food may serve as a source of Escherichia coli that causes community-acquired urinary tract infections, but the impact of this source in a community is not known. We conducted a prospective, population-based study in one community to examine the frequency of recovery of uropathogenic E. coli genotypes from retail meat samples. We analyzed E. coli isolates from consecutively collected urine samples of patients suspected to have urinary tract infections (UTIs) at a university-affiliated health service and retail meat samples from the same geographic region. We genotyped all E. coli isolates by multilocus sequence typing (MLST) and tested them for antimicrobial susceptibility. From 2016 to 2017, we cultured 233 E. coli isolates from 230 (21%) of 1,087 urine samples and 177 E. coli isolates from 120 (28%) of 427 retail meat samples. Urine samples contained 61 sequence types (STs), and meat samples had 95 STs; 12 STs (ST10, ST38, ST69, ST80, ST88, ST101, ST117, ST131, ST569, ST906, ST1844, and ST2562) were common to both. Thirty-five (81%) of 43 meat isolates among the 12 STs were from poultry. Among 94 isolates in the 12 STs, 26 (60%) of 43 retail meat isolates and 15 (29%) of 51 human isolates were pan-susceptible (P < 0.005). We found that 21% of E. coli isolates from suspected cases of UTIs belonged to STs found in poultry. Poultry may serve as a possible reservoir of uropathogenic E. coli (UPEC). Additional studies are needed to demonstrate transmission pathways of these UPEC genotypes and their food sources. IMPORTANCE Community-acquired urinary tract infection caused by Escherichia coli is one of the most common infectious diseases in the United States, affecting approximately seven million women and costing approximately 11.6 billion dollars annually. In addition, antibiotic resistance among E. coli bacteria causing urinary tract infection continues to increase, which greatly complicates treatment. Identifying sources of uropathogenic E. coli and implementing prevention measures are essential. However, the reservoirs of uropathogenic E. coli have not been well defined. This study demonstrated that poultry sold in retail stores may serve as one possible source of uropathogenic E. coli. This finding adds to a growing body of evidence that suggests that urinary tract infection may be a food-borne disease. More research in this area can lead to the development of preventive strategies to control this common and costly infectious disease.
Collapse
|
236
|
Shin JH, Eom H, Song WJ, Rho M. Integrative metagenomic and biochemical studies on rifamycin ADP-ribosyltransferases discovered in the sediment microbiome. Sci Rep 2018; 8:12143. [PMID: 30108275 PMCID: PMC6092378 DOI: 10.1038/s41598-018-30547-x] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2018] [Accepted: 07/30/2018] [Indexed: 11/23/2022] Open
Abstract
Antibiotic resistance is a serious and growing threat to human health. The environmental microbiome is a rich reservoir of resistomes, offering opportunities to discover new antibiotic resistance genes. Here we demonstrate an integrative approach of utilizing gene sequence and protein structural information to characterize unidentified genes that are responsible for the resistance to the action of rifamycin antibiotic rifampin, a first-line antimicrobial agent to treat tuberculosis. Biochemical characterization of four environmental metagenomic proteins indicates that they are adenosine diphosphate (ADP)-ribosyltransferases and effective in the development of resistance to FDA-approved rifamycins. Our analysis suggests that even a single residue with low sequence conservation plays an important role in regulating the degrees of antibiotic resistance. In addition to advancing our understanding of antibiotic resistomes, this work demonstrates the importance of an integrative approach to discover new metagenomic genes and decipher their biochemical functions.
Collapse
Affiliation(s)
- Jae Hong Shin
- Department of Computer Science and Engineering, Hanyang University, Seoul, Korea
| | - Hyunuk Eom
- Department of Chemistry, Seoul National University, Seoul, 08826, Korea
| | - Woon Ju Song
- Department of Chemistry, Seoul National University, Seoul, 08826, Korea.
| | - Mina Rho
- Department of Computer Science and Engineering, Hanyang University, Seoul, Korea.
- Department of Biomedical Informatics, Hanyang University, Seoul, Korea.
| |
Collapse
|
237
|
Abundance and diversity of the faecal resistome in slaughter pigs and broilers in nine European countries. Nat Microbiol 2018; 3:898-908. [DOI: 10.1038/s41564-018-0192-9] [Citation(s) in RCA: 214] [Impact Index Per Article: 30.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2017] [Revised: 05/30/2018] [Accepted: 06/08/2018] [Indexed: 11/08/2022]
|
238
|
Evolution of Plasmid-Mediated Antibiotic Resistance in the Clinical Context. Trends Microbiol 2018; 26:978-985. [PMID: 30049587 DOI: 10.1016/j.tim.2018.06.007] [Citation(s) in RCA: 254] [Impact Index Per Article: 36.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2018] [Revised: 06/11/2018] [Accepted: 06/27/2018] [Indexed: 12/29/2022]
Abstract
Antibiotic-resistant infections are an urgent problem in clinical settings because they sharply increase mortality risk in critically ill patients. The horizontal spread of antibiotic resistance genes among bacteria is driven by bacterial plasmids, promoting the evolution of resistance. Crucially, particular associations exist between resistance plasmids and bacterial clones that become especially successful in clinical settings. However, the factors underlying the success of these associations remain unknown. Recent in vitro evidence reveals (i) that plasmids produce fitness costs in bacteria, and (ii) that these costs are alleviated over time through compensatory mutations. I argue that plasmid-imposed costs and subsequent compensatory adaptation may determine the success of associations between plasmids and bacteria in clinical settings, shaping the in vivo evolution of antibiotic resistance.
Collapse
|
239
|
The evolving interface between synthetic biology and functional metagenomics. Nat Chem Biol 2018; 14:752-759. [DOI: 10.1038/s41589-018-0100-x] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2017] [Accepted: 06/13/2018] [Indexed: 12/15/2022]
|
240
|
Bengtsson-Palme J. The diversity of uncharacterized antibiotic resistance genes can be predicted from known gene variants-but not always. MICROBIOME 2018; 6:125. [PMID: 29981578 PMCID: PMC6035801 DOI: 10.1186/s40168-018-0508-2] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/21/2018] [Accepted: 06/25/2018] [Indexed: 05/21/2023]
Abstract
BACKGROUND Antibiotic resistance is considered one of the most urgent threats to modern healthcare, and the role of the environment in resistance development is increasingly recognized. It is often assumed that the abundance and diversity of known resistance genes are representative also for the non-characterized fraction of the resistome in a given environment, but this assumption has not been verified. In this study, this hypothesis is tested, using the resistance gene profiles of 1109 metagenomes from various environments. RESULTS This study shows that the diversity and abundance of known antibiotic resistance genes can generally predict the diversity and abundance of undescribed resistance genes. However, the extent of this predictability is dependent on the type of environment investigated. Furthermore, it is shown that carefully selected small sets of resistance genes can describe total resistance gene diversity remarkably well. CONCLUSIONS The results of this study suggest that knowledge gained from large-scale quantifications of known resistance genes can be utilized as a proxy for unknown resistance factors. This is important for current and proposed monitoring efforts for environmental antibiotic resistance and has implications for the design of risk ranking strategies and the choices of measures and methods for describing resistance gene abundance and diversity in the environment.
Collapse
Affiliation(s)
- Johan Bengtsson-Palme
- Wisconsin Institute for Discovery, University of Wisconsin-Madison, 330 North Orchard Street, Madison, WI, 53715, USA.
- Centre for Antibiotic Resistance research (CARe) at University of Gothenburg, Gothenburg, Sweden.
- Department of Infectious Diseases, Institute of Biomedicine, The Sahlgrenska Academy, University of Gothenburg, Guldhedsgatan 10, SE-413 46, Gothenburg, Sweden.
| |
Collapse
|
241
|
Impact of the Use and Type of Antibiotics on Acute Graft-versus-Host Disease. Biol Blood Marrow Transplant 2018; 24:2178-2183. [PMID: 30417828 DOI: 10.1016/j.bbmt.2018.06.031] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2018] [Accepted: 06/26/2018] [Indexed: 01/23/2023]
Abstract
The intestinal microbiota plays an important role in the pathogenesis of acute graft-versus-host disease (aGVHD). During the course of hematopoietic stem cell transplantation (HSCT), the intestinal microbiota is influenced by the use of broad-spectrum antibiotics. However, the impact of the use and type of antibiotics on the microbiota composition and, subsequently, the onset of aGVHD remain poorly understood. We hypothesized that the use and type of antibiotics had an impact on the occurrence of aGVHD. We assessed 275 patients who underwent their first allogeneic HSCT between January 2005 and June 2015 at Kyoto University Hospital. We monitored the 6 most frequently administered antibiotics (fourth-generation cephalosporins, glycopeptides, piperacillin-tazobactam, carbapenems, aminoglycosides, and quinolones) administered between days -14 and +14 relative to HSCT and its duration. The primary endpoint was the cumulative incidence of grades II to IV aGVHD. The cumulative incidence of aGVHD was significantly higher in patients administered fourth-generation cephalosporins than in patients not receiving fourth-generation cephalosporins (grades II to IV: hazard ratio, 1.98; 95% confidence interval, 1.19 to 3.29; P = .0087; grades III to IV: hazard ratio, 8.03; 95% confidence interval, 1.07 to 60.51; P = .043). In contrast, there was no significant association between administration of other antibiotics and aGVHD incidence. As for organ-specific aGVHD, the cumulative incidence of gut aGVHD was significantly higher in patients who received fourth-generation cephalosporins than in those who did not (31% versus 16%, P = .018). In conclusion, we demonstrated that the administration of fourth-generation cephalosporins had a strong impact on the development of aGVHD.
Collapse
|
242
|
Paul C, Bayrychenko Z, Junier T, Filippidou S, Beck K, Bueche M, Greub G, Bürgmann H, Junier P. Dissemination of antibiotic resistance genes associated with the sporobiota in sediments impacted by wastewater. PeerJ 2018; 6:e4989. [PMID: 29942682 PMCID: PMC6015491 DOI: 10.7717/peerj.4989] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2018] [Accepted: 05/27/2018] [Indexed: 12/14/2022] Open
Abstract
Aquatic ecosystems serve as a dissemination pathway and a reservoir of both antibiotic resistant bacteria (ARB) and antibiotic resistance genes (ARG). In this study, we investigate the role of the bacterial sporobiota to act as a vector for ARG dispersal in aquatic ecosystems. The sporobiota was operationally defined as the resilient fraction of the bacterial community withstanding a harsh extraction treatment eliminating the easily lysed fraction of the total bacterial community. The sporobiota has been identified as a critical component of the human microbiome, and therefore potentially a key element in the dissemination of ARG in human-impacted environments. A region of Lake Geneva in which the accumulation of ARG in the sediments has been previously linked to the deposition of treated wastewater was selected to investigate the dissemination of tet(W) and sul1, two genes conferring resistance to tetracycline and sulfonamide, respectively. Analysis of the abundance of these ARG within the sporobiome (collection of genes of the sporobiota) and correlation with community composition and environmental parameters demonstrated that ARG can spread across the environment with the sporobiota being the dispersal vector. A highly abundant OTU affiliated with the genus Clostridium was identified as a potential specific vector for the dissemination of tet(W), due to a strong correlation with tet(W) frequency (ARG copy numbers/ng DNA). The high dispersal rate, long-term survival, and potential reactivation of the sporobiota constitute a serious concern in terms of dissemination and persistence of ARG in the environment.
Collapse
Affiliation(s)
- Christophe Paul
- Institute of Biology, Laboratory of Microbiology, University of Neuchatel, Neuchâtel, NE, Switzerland
| | - Zhanna Bayrychenko
- Institute of Biology, Laboratory of Microbiology, University of Neuchatel, Neuchâtel, NE, Switzerland
| | - Thomas Junier
- Vital-IT, Swiss Institute of Bioinformatics, Lausanne, Switzerland
| | - Sevasti Filippidou
- Institute of Biology, Laboratory of Microbiology, University of Neuchatel, Neuchâtel, NE, Switzerland
| | - Karin Beck
- Eawag, Swiss Federal Institute of Aquatic Science and Technology, Kastanienbaum, Switzerland
| | - Matthieu Bueche
- Institute of Biology, Laboratory of Microbiology, University of Neuchatel, Neuchâtel, NE, Switzerland
| | - Gilbert Greub
- Institute of Microbiology, University Hospital Center, University of Lausanne, Lausanne, Switzerland
| | - Helmut Bürgmann
- Eawag, Swiss Federal Institute of Aquatic Science and Technology, Kastanienbaum, Switzerland
| | - Pilar Junier
- Institute of Biology, Laboratory of Microbiology, University of Neuchatel, Neuchâtel, NE, Switzerland
| |
Collapse
|
243
|
Characterization of Wild and Captive Baboon Gut Microbiota and Their Antibiotic Resistomes. mSystems 2018; 3:mSystems00016-18. [PMID: 29963641 PMCID: PMC6020475 DOI: 10.1128/msystems.00016-18] [Citation(s) in RCA: 45] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2018] [Accepted: 06/01/2018] [Indexed: 01/10/2023] Open
Abstract
Antibiotic exposure results in acute and persistent shifts in the composition and function of microbial communities associated with vertebrate hosts. However, little is known about the state of these communities in the era before the widespread introduction of antibiotics into clinical and agricultural practice. We characterized the fecal microbiota and antibiotic resistomes of wild and captive baboon populations to understand the effect of human exposure and to understand how the primate microbiota may have been altered during the antibiotic era. We used culture-independent and bioinformatics methods to identify functional resistance genes in the guts of wild and captive baboons and show that exposure to humans is associated with changes in microbiota composition and resistome expansion compared to wild baboon groups. Our results suggest that captivity and lifestyle changes associated with human contact can lead to marked changes in the ecology of primate gut communities. Environmental microbes have harbored the capacity for antibiotic production for millions of years, spanning the evolution of humans and other vertebrates. However, the industrial-scale use of antibiotics in clinical and agricultural practice over the past century has led to a substantial increase in exposure of these agents to human and environmental microbiota. This perturbation is predicted to alter the ecology of microbial communities and to promote the evolution and transfer of antibiotic resistance (AR) genes. We studied wild and captive baboon populations to understand the effects of exposure to humans and human activities (e.g., antibiotic therapy) on the composition of the primate fecal microbiota and the antibiotic-resistant genes that it collectively harbors (the “resistome”). Using a culture-independent metagenomic approach, we identified functional antibiotic resistance genes in the gut microbiota of wild and captive baboon groups and saw marked variation in microbiota architecture and resistomes across habitats and lifeways. Our results support the view that antibiotic resistance is an ancient feature of gut microbial communities and that sharing habitats with humans may have important effects on the structure and function of the primate microbiota. IMPORTANCE Antibiotic exposure results in acute and persistent shifts in the composition and function of microbial communities associated with vertebrate hosts. However, little is known about the state of these communities in the era before the widespread introduction of antibiotics into clinical and agricultural practice. We characterized the fecal microbiota and antibiotic resistomes of wild and captive baboon populations to understand the effect of human exposure and to understand how the primate microbiota may have been altered during the antibiotic era. We used culture-independent and bioinformatics methods to identify functional resistance genes in the guts of wild and captive baboons and show that exposure to humans is associated with changes in microbiota composition and resistome expansion compared to wild baboon groups. Our results suggest that captivity and lifestyle changes associated with human contact can lead to marked changes in the ecology of primate gut communities.
Collapse
|
244
|
Bengtsson-Palme J, Larsson DGJ, Kristiansson E. Using metagenomics to investigate human and environmental resistomes. J Antimicrob Chemother 2018; 72:2690-2703. [PMID: 28673041 DOI: 10.1093/jac/dkx199] [Citation(s) in RCA: 67] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Antibiotic resistance is a global health concern declared by the WHO as one of the largest threats to modern healthcare. In recent years, metagenomic DNA sequencing has started to be applied as a tool to study antibiotic resistance in different environments, including the human microbiota. However, a multitude of methods exist for metagenomic data analysis, and not all methods are suitable for the investigation of resistance genes, particularly if the desired outcome is an assessment of risks to human health. In this review, we outline the current state of methods for sequence handling, mapping to databases of resistance genes, statistical analysis and metagenomic assembly. In addition, we provide an overview of important considerations related to the analysis of resistance genes, and recommend some of the currently used tools and methods that are best equipped to inform research and clinical practice related to antibiotic resistance.
Collapse
Affiliation(s)
- Johan Bengtsson-Palme
- Department of Infectious Diseases, Institute of Biomedicine, The Sahlgrenska Academy, University of Gothenburg, Guldhedsgatan 10, SE-41346, Gothenburg, Sweden.,Centre for Antibiotic Resistance Research (CARe) at University of Gothenburg, Box 440, SE-40530, Gothenburg, Sweden
| | - D G Joakim Larsson
- Department of Infectious Diseases, Institute of Biomedicine, The Sahlgrenska Academy, University of Gothenburg, Guldhedsgatan 10, SE-41346, Gothenburg, Sweden.,Centre for Antibiotic Resistance Research (CARe) at University of Gothenburg, Box 440, SE-40530, Gothenburg, Sweden
| | - Erik Kristiansson
- Centre for Antibiotic Resistance Research (CARe) at University of Gothenburg, Box 440, SE-40530, Gothenburg, Sweden.,Department of Mathematical Sciences, Chalmers University of Technology, SE-41296, Gothenburg, Sweden
| |
Collapse
|
245
|
Mahfouz N, Caucci S, Achatz E, Semmler T, Guenther S, Berendonk TU, Schroeder M. High genomic diversity of multi-drug resistant wastewater Escherichia coli. Sci Rep 2018; 8:8928. [PMID: 29895899 PMCID: PMC5997705 DOI: 10.1038/s41598-018-27292-6] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2017] [Accepted: 05/18/2018] [Indexed: 12/13/2022] Open
Abstract
Wastewater treatment plants play an important role in the emergence of antibiotic resistance. They provide a hot spot for exchange of resistance within and between species. Here, we analyse and quantify the genomic diversity of the indicator Escherichia coli in a German wastewater treatment plant and we relate it to isolates’ antibiotic resistance. Our results show a surprisingly large pan-genome, which mirrors how rich an environment a treatment plant is. We link the genomic analysis to a phenotypic resistance screen and pinpoint genomic hot spots, which correlate with a resistance phenotype. Besides well-known resistance genes, this forward genomics approach generates many novel genes, which correlated with resistance and which are partly completely unknown. A surprising overall finding of our analyses is that we do not see any difference in resistance and pan genome size between isolates taken from the inflow of the treatment plant and from the outflow. This means that while treatment plants reduce the amount of bacteria released into the environment, they do not reduce the potential for antibiotic resistance of these bacteria.
Collapse
Affiliation(s)
| | - Serena Caucci
- Institute for Hydrobiology, TU Dresden, Dresden, Germany.,United Nations University Institute for Integrated Management of Material Fluxes and of Resources, Dresden, Germany
| | | | - Torsten Semmler
- Institute of Microbiology und Epizootics, FU, Berlin, Germany
| | - Sebastian Guenther
- Institute of Microbiology und Epizootics, FU, Berlin, Germany.,Institut für Pharmazie Pharmazeutische Biologie, Ernst-Moritz-Arndt-Universität Greifswald, Greifswald, Germany
| | | | | |
Collapse
|
246
|
Pursey E, Sünderhauf D, Gaze WH, Westra ER, van Houte S. CRISPR-Cas antimicrobials: Challenges and future prospects. PLoS Pathog 2018; 14:e1006990. [PMID: 29902258 PMCID: PMC6001953 DOI: 10.1371/journal.ppat.1006990] [Citation(s) in RCA: 80] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Affiliation(s)
- Elizabeth Pursey
- Environment and Sustainability Institute, Centre for Ecology and Conservation, University of Exeter, Biosciences, Penryn, Cornwall, United Kingdom
- European Centre for Environment and Human Health, University of Exeter Medical School, Knowledge Spa, Royal Cornwall Hospital, Truro, Cornwall, United Kingdom
| | - David Sünderhauf
- Environment and Sustainability Institute, Centre for Ecology and Conservation, University of Exeter, Biosciences, Penryn, Cornwall, United Kingdom
- European Centre for Environment and Human Health, University of Exeter Medical School, Knowledge Spa, Royal Cornwall Hospital, Truro, Cornwall, United Kingdom
| | - William H. Gaze
- European Centre for Environment and Human Health, University of Exeter Medical School, Knowledge Spa, Royal Cornwall Hospital, Truro, Cornwall, United Kingdom
| | - Edze R. Westra
- Environment and Sustainability Institute, Centre for Ecology and Conservation, University of Exeter, Biosciences, Penryn, Cornwall, United Kingdom
| | - Stineke van Houte
- Environment and Sustainability Institute, Centre for Ecology and Conservation, University of Exeter, Biosciences, Penryn, Cornwall, United Kingdom
| |
Collapse
|
247
|
Diarrheagenic Escherichia coli and Acute Gastroenteritis in Children in Davidson County, Tennessee, United States: A Case-control Study. Pediatr Infect Dis J 2018; 37:543-548. [PMID: 29341983 PMCID: PMC5962020 DOI: 10.1097/inf.0000000000001908] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
BACKGROUND Diarrheagenic Escherichia coli (DEC) is an important cause of acute gastroenteritis in children; however, there is limited information available on the epidemiology, phylogenetics, serotyping and antibiotic susceptibility of DEC in children in the United States. The aim of this study was to determine the molecular epidemiology of DEC among children with and without acute gastroenteritis in Davidson County, Tennessee. METHODS This prospective, frequency matched, case-control study recruited subjects 15 days to 17 years of age and detected DEC with polymerase chain reaction from stool samples. Additional testing was done to define phylogenetics and antibiotics resistance. RESULTS Among 1267 participants, 857 cases and 410 controls, 5.5% were positive for at least one subtype of DEC. Enteroaggregative E. coli [n = 32 (45%)] was the most common subtype followed by enteropathogenic E. coli (EPEC) [n = 30 (43%)], Shiga toxin-producing E. coli [n = 4 (6%)] and diffusely adherent E. coli [n = 4 (6%)]. No significant difference in prevalence of DEC was found between cases (5%) and controls (7%) [odds ratio: 0.66 (95% confidence interval: 0.4-1.07)], and results were similar when data were stratified by subtypes and adjusted for age, sex, race and ethnicity. Substantial diversity was found among DEC isolates in terms of phylotypes and serotypes, and a large proportion was resistant to, at least, one antibiotic. CONCLUSIONS Enteroaggregative E. coli and enteropathogenic E. coli were frequently found in both cases and controls in this study population. DNA-based methods for detection of these subtypes need further investigation to help differentiate between pathogenic and colonizing strains.
Collapse
|
248
|
Wilkinson EM, Ilhan ZE, Herbst-Kralovetz MM. Microbiota–drug interactions: Impact on metabolism and efficacy of therapeutics. Maturitas 2018; 112:53-63. [DOI: 10.1016/j.maturitas.2018.03.012] [Citation(s) in RCA: 58] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2018] [Revised: 03/23/2018] [Accepted: 03/29/2018] [Indexed: 02/06/2023]
|
249
|
Kim MJ, Ku S, Kim SY, Lee HH, Jin H, Kang S, Li R, Johnston TV, Park MS, Ji GE. Safety Evaluations of Bifidobacterium bifidum BGN4 and Bifidobacterium longum BORI. Int J Mol Sci 2018; 19:ijms19051422. [PMID: 29747442 PMCID: PMC5983828 DOI: 10.3390/ijms19051422] [Citation(s) in RCA: 82] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2018] [Revised: 04/30/2018] [Accepted: 05/02/2018] [Indexed: 12/24/2022] Open
Abstract
Over the past decade, a variety of lactic acid bacteria have been commercially available to and steadily used by consumers. However, recent studies have shown that some lactic acid bacteria produce toxic substances and display properties of virulence. To establish safety guidelines for lactic acid bacteria, the Food and Agriculture Organization of the United Nations (FAO)/World Health Organization (WHO) has suggested that lactic acid bacteria be characterized and proven safe for consumers’ health via multiple experiments (e.g., antibiotic resistance, metabolic activity, toxin production, hemolytic activity, infectivity in immune-compromised animal species, human side effects, and adverse-outcome analyses). Among the lactic acid bacteria, Bifidobacterium and Lactobacillus species are probiotic strains that are most commonly commercially produced and actively studied. Bifidobacterium bifidum BGN4 and Bifidobacterium longum BORI have been used in global functional food markets (e.g., China, Germany, Jordan, Korea, Lithuania, New Zealand, Poland, Singapore, Thailand, Turkey, and Vietnam) as nutraceutical ingredients for decades, without any adverse events. However, given that the safety of some newly screened probiotic species has recently been debated, it is crucial that the consumer safety of each commercially utilized strain be confirmed. Accordingly, this paper details a safety assessment of B. bifidum BGN4 and B. longum BORI via the assessment of ammonia production, hemolysis of blood cells, biogenic amine production, antimicrobial susceptibility pattern, antibiotic resistance gene transferability, PCR data on antibiotic resistance genes, mucin degradation, genome stability, and possession of virulence factors. These probiotic strains showed neither hemolytic activity nor mucin degradation activity, and they did not produce ammonia or biogenic amines (i.e., cadaverine, histamine or tyramine). B. bifidum BGN4 and B. longum BORI produced a small amount of putrescine, commonly found in living cells, at levels similar to or lower than that found in other foods (e.g., spinach, ketchup, green pea, sauerkraut, and sausage). B. bifidum BGN4 showed higher resistance to gentamicin than the European Food Safety Authority (EFSA) cut-off. However, this paper shows the gentamicin resistance of B. bifidum BGN4 was not transferred via conjugation with L. acidophilus ATCC 4356, the latter of which is highly susceptible to gentamicin. The entire genomic sequence of B. bifidum BGN4 has been published in GenBank (accession no.: CP001361.1), documenting the lack of retention of plasmids capable of transferring an antibiotic-resistant gene. Moreover, there was little genetic mutation between the first and 25th generations of B. bifidum BGN4. Tetracycline-resistant genes are prevalent among B. longum strains; B. longum BORI has a tet(W) gene on its chromosome DNA and has also shown resistance to tetracycline. However, this research shows that its tetracycline resistance was not transferred via conjugation with L. fermentum AGBG1, the latter of which is highly sensitive to tetracycline. These findings support the continuous use of B. bifidum BGN4 and B. longum BORI as probiotics, both of which have been reported as safe by several clinical studies, and have been used in food supplements for many years.
Collapse
Affiliation(s)
- Min Jeong Kim
- Research Center, BIFIDO Co., Ltd., Hongcheon 25117, Korea.
| | - Seockmo Ku
- Fermentation Science Program, School of Agribusiness and Agriscience, College of Basic and Applied Sciences, Middle Tennessee State University, Murfreesboro, TN 37132, USA.
| | - Sun Young Kim
- Research Center, BIFIDO Co., Ltd., Hongcheon 25117, Korea.
| | - Hyun Ha Lee
- Research Center, BIFIDO Co., Ltd., Hongcheon 25117, Korea.
| | - Hui Jin
- Department of Food and Nutrition, College of Human Ecology, Seoul National University, Seoul 08826, Korea.
| | - Sini Kang
- Department of Food and Nutrition, College of Human Ecology, Seoul National University, Seoul 08826, Korea.
| | - Rui Li
- Department of Food and Nutrition, College of Human Ecology, Seoul National University, Seoul 08826, Korea.
| | - Tony V Johnston
- Fermentation Science Program, School of Agribusiness and Agriscience, College of Basic and Applied Sciences, Middle Tennessee State University, Murfreesboro, TN 37132, USA.
| | - Myeong Soo Park
- Department of Hotel Culinary Arts, Yeonsung University, Anyang 14001, Korea.
| | - Geun Eog Ji
- Research Center, BIFIDO Co., Ltd., Hongcheon 25117, Korea.
- Department of Food and Nutrition, College of Human Ecology, Seoul National University, Seoul 08826, Korea.
| |
Collapse
|
250
|
Plasmid-mediated colistin resistance in animals: current status and future directions. Anim Health Res Rev 2018; 18:136-152. [DOI: 10.1017/s1466252317000111] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
AbstractColistin, a peptide antibiotic belonging to the polymyxin family, is one of the last effective drugs for the treatment of multidrug resistant Gram-negative infections. Recent discovery of a novel mobile colistin resistance gene,mcr-1, from people and food animals has caused a significant public health concern and drawn worldwide attention. Extensive usage of colistin in food animals has been proposed as a major driving force for the emergence and transmission ofmcr-1; thus, there is a worldwide trend to limit colistin usage in animal production. However, despite lack of colistin usage in food animals in the USA,mcr-1-positiveEscherichia coliisolates were still isolated from swine. In this paper, we provided an overview of colistin usage and epidemiology ofmcr-1in food animals, and summarized the current status of mechanistic and evolutionary studies of the plasmid-mediated colistin resistance. Based on published information, we further discussed several non-colistin usage risk factors that may contribute to the persistence, transmission, and emergence of colistin resistance in an animal production system. Filling the knowledge gaps identified in this review is critical for risk assessment and risk management of colistin resistance, which will facilitate proactive and effective strategies to mitigate colistin resistance in future animal production systems.
Collapse
|