201
|
Han X, Liu Z, Zhao L, Wang F, Yu Y, Yang J, Chen R, Qin L. Microfluidic Cell Deformability Assay for Rapid and Efficient Kinase Screening with the CRISPR-Cas9 System. Angew Chem Int Ed Engl 2016. [DOI: 10.1002/ange.201601984] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Affiliation(s)
- Xin Han
- Department of Nanomedicine; Houston Methodist Research Institute; Houston TX 77030 USA
- Department of Cell and Developmental Biology; Weill Medical College of Cornell University; New York NY 10065 USA
| | - Zongbin Liu
- Department of Nanomedicine; Houston Methodist Research Institute; Houston TX 77030 USA
- Department of Cell and Developmental Biology; Weill Medical College of Cornell University; New York NY 10065 USA
| | - Li Zhao
- Department of Molecular and Human Genetics; Human Genome Sequencing Center; Baylor College of Medicine; Houston TX 77030 USA
| | - Feng Wang
- Department of Molecular and Human Genetics; Human Genome Sequencing Center; Baylor College of Medicine; Houston TX 77030 USA
| | - Yang Yu
- Department of Pediatrics; Baylor College of Medicine; Houston TX 77030 USA
| | - Jianhua Yang
- Department of Pediatrics; Baylor College of Medicine; Houston TX 77030 USA
| | - Rui Chen
- Department of Molecular and Human Genetics; Human Genome Sequencing Center; Baylor College of Medicine; Houston TX 77030 USA
| | - Lidong Qin
- Department of Nanomedicine; Houston Methodist Research Institute; Houston TX 77030 USA
- Department of Cell and Developmental Biology; Weill Medical College of Cornell University; New York NY 10065 USA
| |
Collapse
|
202
|
Derivation and application of pluripotent stem cells for regenerative medicine. SCIENCE CHINA-LIFE SCIENCES 2016; 59:576-83. [DOI: 10.1007/s11427-016-5066-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/30/2016] [Accepted: 04/20/2016] [Indexed: 01/21/2023]
|
203
|
Rapiteanu R, Davis LJ, Williamson JC, Timms RT, Paul Luzio J, Lehner PJ. A Genetic Screen Identifies a Critical Role for the WDR81-WDR91 Complex in the Trafficking and Degradation of Tetherin. Traffic 2016; 17:940-58. [PMID: 27126989 PMCID: PMC5025723 DOI: 10.1111/tra.12409] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2016] [Revised: 04/26/2016] [Accepted: 04/26/2016] [Indexed: 12/24/2022]
Abstract
Tetherin (BST2/CD317) is a viral restriction factor that anchors enveloped viruses to host cells and limits viral spread. The HIV‐1 Vpu accessory protein counteracts tetherin by decreasing its cell surface expression and targeting it for ubiquitin‐dependent endolysosomal degradation. Although the Vpu‐mediated downregulation of tetherin has been extensively studied, the molecular details are not completely elucidated. We therefore used a forward genetic screen in human haploid KBM7 cells to identify novel genes required for tetherin trafficking. Our screen identified WDR81 as a novel gene required for tetherin trafficking and degradation in both the presence and absence of Vpu. WDR81 is a BEACH‐domain containing protein that is also required for the degradation of EGF‐stimulated epidermal growth factor receptor (EGFR) and functions in a complex with the WDR91 protein. In the absence of WDR81 the endolysosomal compartment appears swollen, with enlarged early and late endosomes and reduced delivery of endocytosed dextran to cathepsin‐active lysosomes. Our data suggest a role for the WDR81‐WDR91 complex in the fusion of endolysosomal compartments and the absence of WDR81 leads to impaired receptor trafficking and degradation.
Collapse
Affiliation(s)
- Radu Rapiteanu
- Cambridge Institute for Medical Research, University of Cambridge School of Clinical Medicine, Wellcome Trust/MRC Building Biomedical Campus, Cambridge, CB2 0XY, UK
| | - Luther J Davis
- Departments of Medicine and Clinical Biochemistry, University of Cambridge School of Clinical Medicine, Wellcome Trust/MRC Building Biomedical Campus, Cambridge, CB2 0XY, UK
| | - James C Williamson
- Cambridge Institute for Medical Research, University of Cambridge School of Clinical Medicine, Wellcome Trust/MRC Building Biomedical Campus, Cambridge, CB2 0XY, UK
| | - Richard T Timms
- Cambridge Institute for Medical Research, University of Cambridge School of Clinical Medicine, Wellcome Trust/MRC Building Biomedical Campus, Cambridge, CB2 0XY, UK
| | - J Paul Luzio
- Departments of Medicine and Clinical Biochemistry, University of Cambridge School of Clinical Medicine, Wellcome Trust/MRC Building Biomedical Campus, Cambridge, CB2 0XY, UK
| | - Paul J Lehner
- Cambridge Institute for Medical Research, University of Cambridge School of Clinical Medicine, Wellcome Trust/MRC Building Biomedical Campus, Cambridge, CB2 0XY, UK
| |
Collapse
|
204
|
Making Bunyaviruses Talk: Interrogation Tactics to Identify Host Factors Required for Infection. Viruses 2016; 8:v8050130. [PMID: 27187446 PMCID: PMC4885085 DOI: 10.3390/v8050130] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2016] [Revised: 05/03/2016] [Accepted: 05/06/2016] [Indexed: 12/26/2022] Open
Abstract
The identification of host cellular genes that act as either proviral or antiviral factors has been aided by the development of an increasingly large number of high-throughput screening approaches. Here, we review recent advances in which these new technologies have been used to interrogate host genes for the ability to impact bunyavirus infection, both in terms of technical advances as well as a summary of biological insights gained from these studies.
Collapse
|
205
|
Kol M, Panatala R, Nordmann M, Swart L, van Suijlekom L, Cabukusta B, Hilderink A, Grabietz T, Mina JGM, Somerharju P, Korneev S, Tafesse FG, Holthuis JCM. Switching head group selectivity in mammalian sphingolipid biosynthesis by active-site engineering of sphingomyelin synthases. J Lipid Res 2016; 57:1273-85. [PMID: 27165857 DOI: 10.1194/jlr.m068692] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2016] [Indexed: 01/23/2023] Open
Abstract
SM is a fundamental component of mammalian cell membranes that contributes to mechanical stability, signaling, and sorting. Its production involves the transfer of phosphocholine from phosphatidylcholine onto ceramide, a reaction catalyzed by SM synthase (SMS) 1 in the Golgi and SMS2 at the plasma membrane. Mammalian cells also synthesize trace amounts of the SM analog ceramide phosphoethanolamine (CPE), but the physiological relevance of CPE production is unclear. Previous work revealed that SMS2 is a bifunctional enzyme producing both SM and CPE, whereas a closely related enzyme, sphingomyelin synthase-related protein (SMSr)/SAMD8, acts as a monofunctional CPE synthase in the endoplasmatic reticulum. Using domain swapping and site-directed mutagenesis on enzymes expressed in defined lipid environments, we here identified structural determinants that mediate head group selectivity of SMS family members. Notably, a single residue adjacent to the catalytic histidine in the third exoplasmic loop profoundly influenced enzyme specificity, with glutamic acid permitting SMS-catalyzed CPE production and aspartic acid confining the enzyme to produce SM. An exchange of exoplasmic residues with SMSr proved sufficient to convert SMS1 into a bulk CPE synthase. This allowed us to establish mammalian cells that produce CPE rather than SM as the principal phosphosphingolipid and provide a model of the molecular interactions that impart catalytic specificity among SMS enzymes.
Collapse
Affiliation(s)
- Matthijs Kol
- Molecular Cell Biology Division, Department of Biology/Chemistry, University of Osnabrück, 49076 Osnabrück, Germany Membrane Biochemistry & Biophysics, Bijvoet Center and Institute of Biomembranes, Utrecht University, 3584 CH Utrecht, The Netherlands
| | - Radhakrishnan Panatala
- Molecular Cell Biology Division, Department of Biology/Chemistry, University of Osnabrück, 49076 Osnabrück, Germany Membrane Biochemistry & Biophysics, Bijvoet Center and Institute of Biomembranes, Utrecht University, 3584 CH Utrecht, The Netherlands
| | - Mirjana Nordmann
- Molecular Cell Biology Division, Department of Biology/Chemistry, University of Osnabrück, 49076 Osnabrück, Germany
| | - Leoni Swart
- Membrane Biochemistry & Biophysics, Bijvoet Center and Institute of Biomembranes, Utrecht University, 3584 CH Utrecht, The Netherlands
| | - Leonie van Suijlekom
- Membrane Biochemistry & Biophysics, Bijvoet Center and Institute of Biomembranes, Utrecht University, 3584 CH Utrecht, The Netherlands
| | - Birol Cabukusta
- Molecular Cell Biology Division, Department of Biology/Chemistry, University of Osnabrück, 49076 Osnabrück, Germany
| | - Angelika Hilderink
- Molecular Cell Biology Division, Department of Biology/Chemistry, University of Osnabrück, 49076 Osnabrück, Germany
| | - Tanja Grabietz
- Molecular Cell Biology Division, Department of Biology/Chemistry, University of Osnabrück, 49076 Osnabrück, Germany
| | - John G M Mina
- Molecular Cell Biology Division, Department of Biology/Chemistry, University of Osnabrück, 49076 Osnabrück, Germany
| | - Pentti Somerharju
- Medical Biochemistry, Institute of Biomedicine, University of Helsinki, Helsinki 00014, Finland
| | - Sergei Korneev
- Molecular Cell Biology Division, Department of Biology/Chemistry, University of Osnabrück, 49076 Osnabrück, Germany
| | - Fikadu G Tafesse
- Molecular Microbiology & Immunology, Oregon Health & Science University, Portland, OR 97239
| | - Joost C M Holthuis
- Molecular Cell Biology Division, Department of Biology/Chemistry, University of Osnabrück, 49076 Osnabrück, Germany Membrane Biochemistry & Biophysics, Bijvoet Center and Institute of Biomembranes, Utrecht University, 3584 CH Utrecht, The Netherlands
| |
Collapse
|
206
|
Williams JM, Tsai B. Intracellular trafficking of bacterial toxins. Curr Opin Cell Biol 2016; 41:51-6. [PMID: 27084982 DOI: 10.1016/j.ceb.2016.03.019] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2016] [Revised: 03/23/2016] [Accepted: 03/24/2016] [Indexed: 11/18/2022]
Abstract
Bacterial toxins often translocate across a cellular membrane to gain access into the host cytosol, modifying cellular components in order to exert their toxic effects. To accomplish this feat, these toxins traffic to a membrane penetration site where they undergo conformational changes essential to eject the toxin's catalytic subunit into the cytosol. In this brief review, we highlight recent findings that elucidate both the trafficking pathways and membrane translocation mechanisms of toxins that cross the plasma, endosomal, or endoplasmic reticulum (ER) membrane. These findings not only illuminate the specific nature of the host-toxin interactions during entry, but should also provide additional therapeutic strategies to prevent or alleviate the bacterial toxin-induced diseases.
Collapse
Affiliation(s)
- Jeffrey M Williams
- Department of Cell and Developmental Biology, University of Michigan Medical School, 109 Zina Pitcher Place, Room 3043, Ann Arbor, MI 48109, United States
| | - Billy Tsai
- Department of Cell and Developmental Biology, University of Michigan Medical School, 109 Zina Pitcher Place, Room 3043, Ann Arbor, MI 48109, United States.
| |
Collapse
|
207
|
Genome-wide CRISPR screen reveals novel host factors required for Staphylococcus aureus α-hemolysin-mediated toxicity. Sci Rep 2016; 6:24242. [PMID: 27066838 PMCID: PMC4828653 DOI: 10.1038/srep24242] [Citation(s) in RCA: 62] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2015] [Accepted: 03/23/2016] [Indexed: 12/21/2022] Open
Abstract
Staphylococcus aureus causes a wide variety of infections and antibiotic resistant strains are a major problem in hospitals. One of the best studied virulence factors of S. aureus is the pore-forming toxin alpha hemolysin (αHL) whose mechanism of action is incompletely understood. We performed a genome-wide loss-of-function screen using CRISPR/Cas9 technology to identify host targets required for αHL susceptibility in human myeloid cells. We found gRNAs for ten genes enriched after intoxication with αHL and focused on the top five hits. Besides a disintegrin and metalloproteinase domain-containing protein 10 (ADAM10), the host receptor for αHL, we identified three proteins, Sys1 golgi trafficking protein (SYS1), ADP-ribosylation factor 1 (ARFRP1), and tetraspanin-14 (TSPAN14) which regulate the presentation of ADAM10 on the plasma membrane post-translationally. Interestingly, we also showed that cells lacking sphingomyelin synthase 1 (SGMS1) resist αHL intoxication, but have only a slightly reduced ADAM10 surface expression. SGMS1 regulates lipid raft formation, suggesting that αHL requires these membrane microdomains for attachment and cytotoxicity.
Collapse
|
208
|
Shen H, McHale CM, Haider SI, Jung C, Zhang S, Smith MT, Zhang L. Identification of Genes That Modulate Susceptibility to Formaldehyde and Imatinib by Functional Genomic Screening in Human Haploid KBM7 Cells. Toxicol Sci 2016; 151:10-22. [PMID: 27008852 DOI: 10.1093/toxsci/kfw032] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Though current functional genomic screening systems are useful for investigating human susceptibility to chemical toxicity, they have limitations. Well-established, high-throughput yeast mutant screens identify only evolutionarily conserved processes. RNA interference can be applied in human cells but is limited by incomplete gene knockout and off-target effects. Human haploid cell screening is advantageous as it requires knockdown of only a single copy of each gene. A human haploid cell mutant library (KBM7-Mu), derived from a chronic myeloid leukemia (CML) patient, was recently developed and has been used to identify genes that modulate sensitivity to infectious agents and pharmaceutical drugs. Here, we sought to improve the KBM7-Mu screening process to enable efficient screening of environmental chemicals. We developed a semi-solid medium based screening approach that cultures individual mutant colonies from chemically resistant cells, faster (by 2-3 weeks) and with less labor than the original liquid medium-based approach. As proof of principle, we identified genetic mutants that confer resistance to the carcinogen formaldehyde (FA, 12 genes, 18 hits) and the CML chemotherapeutic agent imatinib (6 genes, 13 hits). Validation experiments conducted on KBM7 mutants lacking each of the 18 genes confirmed resistance of 6 FA mutants (CTC1, FCRLA, GOT1, LPR5, M1AP, and MAP2K5) and 1 imatinib-resistant mutant (LYRM9). Despite the improvements to the method, it remains technically challenging to limit false positive findings. Nonetheless, our findings demonstrate the broad applicability of this optimized haploid approach to screen toxic chemicals to identify novel susceptibility genes and gain insight into potential mechanisms of toxicity.
Collapse
Affiliation(s)
- Hua Shen
- Superfund Research Program, School of Public Health, University of California, Berkeley, California 94720
| | - Cliona M McHale
- Superfund Research Program, School of Public Health, University of California, Berkeley, California 94720
| | - Syed I Haider
- Superfund Research Program, School of Public Health, University of California, Berkeley, California 94720
| | - Cham Jung
- Superfund Research Program, School of Public Health, University of California, Berkeley, California 94720
| | - Susie Zhang
- Superfund Research Program, School of Public Health, University of California, Berkeley, California 94720
| | - Martyn T Smith
- Superfund Research Program, School of Public Health, University of California, Berkeley, California 94720
| | - Luoping Zhang
- Superfund Research Program, School of Public Health, University of California, Berkeley, California 94720
| |
Collapse
|
209
|
Russo BC, Stamm LM, Raaben M, Kim CM, Kahoud E, Robinson LR, Bose S, Queiroz AL, Herrera BB, Baxt LA, Mor-Vaknin N, Fu Y, Molina G, Markovitz DM, Whelan SP, Goldberg MB. Intermediate filaments enable pathogen docking to trigger type 3 effector translocation. Nat Microbiol 2016; 1:16025. [PMID: 27572444 PMCID: PMC5006386 DOI: 10.1038/nmicrobiol.2016.25] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2015] [Accepted: 02/03/2016] [Indexed: 12/31/2022]
Abstract
Type 3 secretion systems (T3SSs) of bacterial pathogens translocate bacterial effector proteins that mediate disease into the eukaryotic cytosol. Effectors traverse the plasma membrane through a translocon pore formed by T3SS proteins. In a genome-wide selection, we identified the intermediate filament vimentin as required for infection by the T3SS-dependent pathogen S. flexneri. We found that vimentin is required for efficient T3SS translocation of effectors by S. flexneri and other pathogens that use T3SS, Salmonella enterica serovar Typhimurium and Yersinia pseudotuberculosis. Vimentin and the intestinal epithelial intermediate filament keratin 18 interact with the C-terminus of the Shigella translocon pore protein IpaC. Vimentin and its interaction with IpaC are dispensable for pore formation, but are required for stable docking of S. flexneri to cells; moreover, stable docking triggers effector secretion. These findings establish that stable docking of the bacterium specifically requires intermediate filaments, is a process distinct from pore formation, and is a prerequisite for effector secretion.
Collapse
Affiliation(s)
- Brian C. Russo
- Division of Infectious Diseases, Department of Medicine, Massachusetts General Hospital, Boston, MA 02114, USA
- Department of Microbiology and Immunobiology, Harvard Medical School, Boston, MA 02115, USA
| | - Luisa M. Stamm
- Division of Infectious Diseases, Department of Medicine, Massachusetts General Hospital, Boston, MA 02114, USA
- Department of Microbiology and Immunobiology, Harvard Medical School, Boston, MA 02115, USA
| | - Matthijs Raaben
- Department of Microbiology and Immunobiology, Harvard Medical School, Boston, MA 02115, USA
| | - Caleb M. Kim
- Division of Infectious Diseases, Department of Medicine, Massachusetts General Hospital, Boston, MA 02114, USA
| | - Emily Kahoud
- Division of Infectious Diseases, Department of Medicine, Massachusetts General Hospital, Boston, MA 02114, USA
| | - Lindsey R. Robinson
- Department of Microbiology and Immunobiology, Harvard Medical School, Boston, MA 02115, USA
| | - Sayantan Bose
- Department of Microbiology and Immunobiology, Harvard Medical School, Boston, MA 02115, USA
| | - Ana L. Queiroz
- Division of Infectious Diseases, Department of Medicine, Massachusetts General Hospital, Boston, MA 02114, USA
| | - Bobby Brooke Herrera
- Division of Infectious Diseases, Department of Medicine, Massachusetts General Hospital, Boston, MA 02114, USA
| | - Leigh A. Baxt
- Division of Infectious Diseases, Department of Medicine, Massachusetts General Hospital, Boston, MA 02114, USA
- Department of Microbiology and Immunobiology, Harvard Medical School, Boston, MA 02115, USA
| | - Nirit Mor-Vaknin
- Division of Infectious Diseases, Department of Internal Medicine, University of Michigan Medical Center, Ann Arbor, MI 48109, USA
| | - Yang Fu
- Division of Infectious Diseases, Department of Medicine, Massachusetts General Hospital, Boston, MA 02114, USA
| | - Gabriel Molina
- Division of Infectious Diseases, Department of Medicine, Massachusetts General Hospital, Boston, MA 02114, USA
| | - David M. Markovitz
- Division of Infectious Diseases, Department of Internal Medicine, University of Michigan Medical Center, Ann Arbor, MI 48109, USA
| | - Sean P. Whelan
- Department of Microbiology and Immunobiology, Harvard Medical School, Boston, MA 02115, USA
| | - Marcia B. Goldberg
- Division of Infectious Diseases, Department of Medicine, Massachusetts General Hospital, Boston, MA 02114, USA
- Department of Microbiology and Immunobiology, Harvard Medical School, Boston, MA 02115, USA
| |
Collapse
|
210
|
Functional Genomic Strategies for Elucidating Human-Virus Interactions: Will CRISPR Knockout RNAi and Haploid Cells? Adv Virus Res 2016; 94:1-51. [PMID: 26997589 PMCID: PMC7112329 DOI: 10.1016/bs.aivir.2015.11.001] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Over the last several years a wealth of transformative human–virus interaction discoveries have been produced using loss-of-function functional genomics. These insights have greatly expanded our understanding of how human pathogenic viruses exploit our cells to replicate. Two technologies have been at the forefront of this genetic revolution, RNA interference (RNAi) and random retroviral insertional mutagenesis using haploid cell lines (haploid cell screening), with the former technology largely predominating. Now the cutting edge gene editing of the CRISPR/Cas9 system has also been harnessed for large-scale functional genomics and is poised to possibly displace these earlier methods. Here we compare and contrast these three screening approaches for elucidating host–virus interactions, outline their key strengths and weaknesses including a comparison of an arrayed multiple orthologous RNAi reagent screen to a pooled CRISPR/Cas9 human rhinovirus 14–human cell interaction screen, and recount some notable insights made possible by each. We conclude with a brief perspective on what might lie ahead for the fast evolving field of human–virus functional genomics.
Collapse
|
211
|
Timms RT, Tchasovnikarova IA, Lehner PJ. Position-effect variegation revisited: HUSHing up heterochromatin in human cells. Bioessays 2016; 38:333-43. [DOI: 10.1002/bies.201500184] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Affiliation(s)
- Richard T. Timms
- Department of Medicine, Cambridge Institute for Medical Research; Addenbrooke's Hospital; Cambridge UK
| | - Iva A. Tchasovnikarova
- Department of Medicine, Cambridge Institute for Medical Research; Addenbrooke's Hospital; Cambridge UK
| | - Paul J. Lehner
- Department of Medicine, Cambridge Institute for Medical Research; Addenbrooke's Hospital; Cambridge UK
| |
Collapse
|
212
|
Abstract
Enterovirus D68 (EV-D68) is an emerging pathogen that can cause severe respiratory disease and is associated with cases of paralysis, especially among children. Heretofore, information on host factor requirements for EV-D68 infection is scarce. Haploid genetic screening is a powerful tool to reveal factors involved in the entry of pathogens. We performed a genome-wide haploid screen with the EV-D68 prototype Fermon strain to obtain a comprehensive overview of cellular factors supporting EV-D68 infection. We identified and confirmed several genes involved in sialic acid (Sia) biosynthesis, transport, and conjugation to be essential for infection. Moreover, by using knockout cell lines and gene reconstitution, we showed that both α2,6- and α2,3-linked Sia can be used as functional cellular EV-D68 receptors. Importantly, the screen did not reveal a specific protein receptor, suggesting that EV-D68 can use multiple redundant sialylated receptors. Upon testing recent clinical strains, we identified strains that showed a similar Sia dependency, whereas others could infect cells lacking surface Sia, indicating they can use an alternative, nonsialylated receptor. Nevertheless, these Sia-independent strains were still able to bind Sia on human erythrocytes, raising the possibility that these viruses can use multiple receptors. Sequence comparison of Sia-dependent and Sia-independent EV-D68 strains showed that many changes occurred near the canyon that might allow alternative receptor binding. Collectively, our findings provide insights into the identity of the EV-D68 receptor and suggest the possible existence of Sia-independent viruses, which are essential for understanding tropism and disease.
Collapse
|
213
|
Shen S, Li J, Hilchey S, Shen X, Tu C, Qiu X, Ng A, Ghaemmaghami S, Wu H, Zand MS, Qu J. Ion-Current-Based Temporal Proteomic Profiling of Influenza-A-Virus-Infected Mouse Lungs Revealed Underlying Mechanisms of Altered Integrity of the Lung Microvascular Barrier. J Proteome Res 2016; 15:540-53. [PMID: 26650791 DOI: 10.1021/acs.jproteome.5b00927] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Investigation of influenza-A-virus (IAV)-infected lung proteomes will greatly promote our understanding on the virus-host crosstalk. Using a detergent-cocktail extraction and digestion procedure and a reproducible ion-current-based method, we performed the first comprehensive temporal analysis of mouse IAV infection. Mouse lung tissues at three time points post-inoculation were compared with controls (n = 4/group), and >1600 proteins were quantified without missing value in any animal. Significantly changed proteins were identified at 4 days (n = 144), 7 days (n = 695), and 10 days (n = 396) after infection, with low false altered protein rates (1.73-8.39%). Functional annotation revealed several key biological processes involved in the systemic host responses. Intriguingly, decreased levels of several cell junction proteins as well as increased levels of tissue metalloproteinase MMP9 were observed, reflecting the IAV-induced structural breakdown of lung epithelial barrier. Supporting evidence of MMP9 activation came from immunoassays examining the abundance and phosphorylation states of all MAPKs and several relevant molecules. Importantly, IAV-induced MMP gelatinase expression was suggested to be specific to MMP9, and p38 MAPK may contribute predominantly to MMP9 elevation. These findings help to resolve the long-lasting debate regarding the signaling pathways of IAV-induced MMP9 expression and shed light on the molecular mechanisms underlying pulmonary capillary-alveolar leak syndrome that can occur during influenza infection.
Collapse
Affiliation(s)
- Shichen Shen
- New York State Center of Excellence in Bioinformatics & Life Sciences , 701 Ellicott Street, Buffalo, New York 14203, United States.,Jacobs School of Medicine and Biomedical Sciences, SUNY at Buffalo , South Campus, Buffalo, New York 14214, United States
| | - Jun Li
- Department of Pharmaceutical Sciences, SUNY at Buffalo , South Campus, Buffalo, New York 14214, United States.,New York State Center of Excellence in Bioinformatics & Life Sciences , 701 Ellicott Street, Buffalo, New York 14203, United States
| | - Shannon Hilchey
- Division of Nephrology, University of Rochester Medical Center , 601 Elmwood Avenue, Rochester, New York 14642, United States
| | - Xiaomeng Shen
- New York State Center of Excellence in Bioinformatics & Life Sciences , 701 Ellicott Street, Buffalo, New York 14203, United States.,Jacobs School of Medicine and Biomedical Sciences, SUNY at Buffalo , South Campus, Buffalo, New York 14214, United States
| | - Chengjian Tu
- Department of Pharmaceutical Sciences, SUNY at Buffalo , South Campus, Buffalo, New York 14214, United States.,New York State Center of Excellence in Bioinformatics & Life Sciences , 701 Ellicott Street, Buffalo, New York 14203, United States
| | - Xing Qiu
- Department of Biostatistics and Computational Biology, University of Rochester , 265 Crittenden Boulevard, Rochester, New York 14642, United States
| | - Andrew Ng
- Jacobs School of Medicine and Biomedical Sciences, SUNY at Buffalo , South Campus, Buffalo, New York 14214, United States
| | - Sina Ghaemmaghami
- Department of Biology, University of Rochester , 402 Hutchison Hall, Rochester, New York 14627, United States
| | - Hulin Wu
- Department of Biostatistics, School of Public Health, University of Texas Health Science Center at Houston , 1200 Pressler Street, Houston, Texas 77030, United States
| | - Martin S Zand
- Division of Nephrology, University of Rochester Medical Center , 601 Elmwood Avenue, Rochester, New York 14642, United States
| | - Jun Qu
- Department of Pharmaceutical Sciences, SUNY at Buffalo , South Campus, Buffalo, New York 14214, United States.,New York State Center of Excellence in Bioinformatics & Life Sciences , 701 Ellicott Street, Buffalo, New York 14203, United States
| |
Collapse
|
214
|
Dixon SD, Huynh MM, Tamilselvam B, Spiegelman LM, Son SB, Eshraghi A, Blanke SR, Bradley KA. Distinct Roles for CdtA and CdtC during Intoxication by Cytolethal Distending Toxins. PLoS One 2015; 10:e0143977. [PMID: 26618479 PMCID: PMC4664275 DOI: 10.1371/journal.pone.0143977] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2015] [Accepted: 11/11/2015] [Indexed: 12/29/2022] Open
Abstract
Cytolethal distending toxins (CDTs) are heterotrimeric protein exotoxins produced by a diverse array of Gram-negative pathogens. The enzymatic subunit, CdtB, possesses DNase and phosphatidylinositol 3-4-5 trisphosphate phosphatase activities that induce host cell cycle arrest, cellular distension and apoptosis. To exert cyclomodulatory and cytotoxic effects CDTs must be taken up from the host cell surface and transported intracellularly in a manner that ultimately results in localization of CdtB to the nucleus. However, the molecular details and mechanism by which CDTs bind to host cells and exploit existing uptake and transport pathways to gain access to the nucleus are poorly understood. Here, we report that CdtA and CdtC subunits of CDTs derived from Haemophilus ducreyi (Hd-CDT) and enteropathogenic E. coli (Ec-CDT) are independently sufficient to support intoxication by their respective CdtB subunits. CdtA supported CdtB-mediated killing of T-cells and epithelial cells that was nearly as efficient as that observed with holotoxin. In contrast, the efficiency by which CdtC supported intoxication was dependent on the source of the toxin as well as the target cell type. Further, CdtC was found to alter the subcellular trafficking of Ec-CDT as determined by sensitivity to EGA, an inhibitor of endosomal trafficking, colocalization with markers of early and late endosomes, and the kinetics of DNA damage response. Finally, host cellular cholesterol was found to influence sensitivity to intoxication mediated by Ec-CdtA, revealing a role for cholesterol or cholesterol-rich membrane domains in intoxication mediated by this subunit. In summary, data presented here support a model in which CdtA and CdtC each bind distinct receptors on host cell surfaces that direct alternate intracellular uptake and/or trafficking pathways.
Collapse
Affiliation(s)
- Shandee D. Dixon
- Department of Microbiology, Immunology, and Molecular Genetics, University of California Los Angeles, Los Angeles, California, United States of America
| | - Melanie M. Huynh
- Department of Microbiology, Immunology, and Molecular Genetics, University of California Los Angeles, Los Angeles, California, United States of America
| | - Batcha Tamilselvam
- Department of Microbiology, Institute for Genomic Biology, University of Illinois Urbana, Urbana, Illinois, United States of America
| | - Lindsey M. Spiegelman
- Department of Microbiology, Immunology, and Molecular Genetics, University of California Los Angeles, Los Angeles, California, United States of America
| | - Sophia B. Son
- Department of Microbiology, Institute for Genomic Biology, University of Illinois Urbana, Urbana, Illinois, United States of America
| | - Aria Eshraghi
- Department of Microbiology, Immunology, and Molecular Genetics, University of California Los Angeles, Los Angeles, California, United States of America
| | - Steven R. Blanke
- Department of Microbiology, Institute for Genomic Biology, University of Illinois Urbana, Urbana, Illinois, United States of America
| | - Kenneth A. Bradley
- Department of Microbiology, Immunology, and Molecular Genetics, University of California Los Angeles, Los Angeles, California, United States of America
- California NanoSystems Institute, University of California Los Angeles, Los Angeles, California, United States of America
- * E-mail:
| |
Collapse
|
215
|
Wang T, Birsoy K, Hughes NW, Krupczak KM, Post Y, Wei JJ, Lander ES, Sabatini DM. Identification and characterization of essential genes in the human genome. Science 2015; 350:1096-101. [PMID: 26472758 PMCID: PMC4662922 DOI: 10.1126/science.aac7041] [Citation(s) in RCA: 1173] [Impact Index Per Article: 117.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2014] [Accepted: 10/01/2015] [Indexed: 12/13/2022]
Abstract
Large-scale genetic analysis of lethal phenotypes has elucidated the molecular underpinnings of many biological processes. Using the bacterial clustered regularly interspaced short palindromic repeats (CRISPR) system, we constructed a genome-wide single-guide RNA library to screen for genes required for proliferation and survival in a human cancer cell line. Our screen revealed the set of cell-essential genes, which was validated with an orthogonal gene-trap-based screen and comparison with yeast gene knockouts. This set is enriched for genes that encode components of fundamental pathways, are expressed at high levels, and contain few inactivating polymorphisms in the human population. We also uncovered a large group of uncharacterized genes involved in RNA processing, a number of whose products localize to the nucleolus. Last, screens in additional cell lines showed a high degree of overlap in gene essentiality but also revealed differences specific to each cell line and cancer type that reflect the developmental origin, oncogenic drivers, paralogous gene expression pattern, and chromosomal structure of each line. These results demonstrate the power of CRISPR-based screens and suggest a general strategy for identifying liabilities in cancer cells.
Collapse
Affiliation(s)
- Tim Wang
- Department of Biology, Massachusetts Institute of Technology, Cambridge MA 02139, USA. Whitehead Institute for Biomedical Research, 9 Cambridge Center, Cambridge, MA 02142, USA. Broad Institute of MIT and Harvard, 7 Cambridge Center, Cambridge, MA 02142, USA. David H. Koch Institute for Integrative Cancer Research at MIT, Cambridge, MA 02139, USA
| | - Kıvanç Birsoy
- Department of Biology, Massachusetts Institute of Technology, Cambridge MA 02139, USA. Whitehead Institute for Biomedical Research, 9 Cambridge Center, Cambridge, MA 02142, USA. Broad Institute of MIT and Harvard, 7 Cambridge Center, Cambridge, MA 02142, USA. David H. Koch Institute for Integrative Cancer Research at MIT, Cambridge, MA 02139, USA
| | - Nicholas W Hughes
- Broad Institute of MIT and Harvard, 7 Cambridge Center, Cambridge, MA 02142, USA
| | - Kevin M Krupczak
- Whitehead Institute for Biomedical Research, 9 Cambridge Center, Cambridge, MA 02142, USA. Broad Institute of MIT and Harvard, 7 Cambridge Center, Cambridge, MA 02142, USA. David H. Koch Institute for Integrative Cancer Research at MIT, Cambridge, MA 02139, USA
| | - Yorick Post
- Whitehead Institute for Biomedical Research, 9 Cambridge Center, Cambridge, MA 02142, USA. Broad Institute of MIT and Harvard, 7 Cambridge Center, Cambridge, MA 02142, USA. David H. Koch Institute for Integrative Cancer Research at MIT, Cambridge, MA 02139, USA
| | - Jenny J Wei
- Department of Biology, Massachusetts Institute of Technology, Cambridge MA 02139, USA. Whitehead Institute for Biomedical Research, 9 Cambridge Center, Cambridge, MA 02142, USA
| | - Eric S Lander
- Department of Biology, Massachusetts Institute of Technology, Cambridge MA 02139, USA. Broad Institute of MIT and Harvard, 7 Cambridge Center, Cambridge, MA 02142, USA. Department of Systems Biology, Harvard Medical School, Boston, MA 02115, USA.
| | - David M Sabatini
- Department of Biology, Massachusetts Institute of Technology, Cambridge MA 02139, USA. Whitehead Institute for Biomedical Research, 9 Cambridge Center, Cambridge, MA 02142, USA. Broad Institute of MIT and Harvard, 7 Cambridge Center, Cambridge, MA 02142, USA. David H. Koch Institute for Integrative Cancer Research at MIT, Cambridge, MA 02139, USA. Howard Hughes Medical Institute, Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02139, USA.
| |
Collapse
|
216
|
Tobita T, Guzman-Lepe J, Collin de l'Hortet A. From hacking the human genome to editing organs. Organogenesis 2015; 11:173-82. [PMID: 26588350 DOI: 10.1080/15476278.2015.1120047] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
In the recent decades, human genome engineering has been one of the major interesting research subjects, essentially because it raises new possibilities for personalized medicine and biotechnologies. With the development of engineered nucleases such as the Zinc Finger Nucleases (ZFNs), the Transcription activator-like effector nucleases (TALENs) and more recently the Clustered Regularly Interspaced short Palindromic Repeats (CRISPR), the field of human genome edition has evolved very rapidly. Every new genetic tool is broadening the scope of applications on human tissues, even before we can completely master each of these tools. In this review, we will present the recent advances regarding human genome edition tools, we will discuss the numerous implications they have in research and medicine, and we will mention the limits and concerns about such technologies.
Collapse
Affiliation(s)
- Takamasa Tobita
- a Department of Pathology ; University of Pittsburgh ; Pittsburgh ; PA USA
| | - Jorge Guzman-Lepe
- a Department of Pathology ; University of Pittsburgh ; Pittsburgh ; PA USA
| | | |
Collapse
|
217
|
A Haploid Genetic Screen Identifies Heparan Sulfate Proteoglycans Supporting Rift Valley Fever Virus Infection. J Virol 2015; 90:1414-23. [PMID: 26581979 DOI: 10.1128/jvi.02055-15] [Citation(s) in RCA: 89] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2015] [Accepted: 11/10/2015] [Indexed: 01/13/2023] Open
Abstract
UNLABELLED Rift Valley fever virus (RVFV) causes recurrent insect-borne epizootics throughout the African continent, and infection of humans can lead to a lethal hemorrhagic fever syndrome. Deep mutagenesis of haploid human cells was used to identify host factors required for RVFV infection. This screen identified a suite of enzymes involved in glycosaminoglycan (GAG) biogenesis and transport, including several components of the cis-oligomeric Golgi (COG) complex, one of the central components of Golgi complex trafficking. In addition, disruption of PTAR1 led to RVFV resistance as well as reduced heparan sulfate surface levels, consistent with recent observations that PTAR1-deficient cells exhibit altered Golgi complex morphology and glycosylation defects. A variety of biochemical and genetic approaches were utilized to show that both pathogenic and attenuated RVFV strains require GAGs for efficient infection on some, but not all, cell types, with the block to infection being at the level of virion attachment. Examination of other members of the Bunyaviridae family for GAG-dependent infection suggested that the interaction with GAGs is not universal among bunyaviruses, indicating that these viruses, as well as RVFV on certain cell types, employ additional unidentified virion attachment factors and/or receptors. IMPORTANCE Rift Valley fever virus (RVFV) is an emerging pathogen that can cause severe disease in humans and animals. Epizootics among livestock populations lead to high mortality rates and can be economically devastating. Human epidemics of Rift Valley fever, often initiated by contact with infected animals, are characterized by a febrile disease that sometimes leads to encephalitis or hemorrhagic fever. The global burden of the pathogen is increasing because it has recently disseminated beyond Africa, which is of particular concern because the virus can be transmitted by widely distributed mosquito species. There are no FDA-licensed vaccines or antiviral agents with activity against RVFV, and details of its life cycle and interaction with host cells are not well characterized. We used the power of genetic screening in human cells and found that RVFV utilizes glycosaminoglycans to attach to host cells. This furthers our understanding of the virus and informs the development of antiviral therapeutics.
Collapse
|
218
|
Functional genomics to uncover drug mechanism of action. Nat Chem Biol 2015; 11:942-8. [PMID: 26575241 DOI: 10.1038/nchembio.1963] [Citation(s) in RCA: 57] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2015] [Accepted: 10/15/2015] [Indexed: 02/06/2023]
Abstract
The upswing in US Food and Drug Administration and European Medicines Agency drug approvals in 2014 may have marked an end to the dry spell that has troubled the pharmaceutical industry over the past decade. Regardless, the attrition rate of drugs in late clinical phases remains high, and a lack of target validation has been highlighted as an explanation. This has led to a resurgence in appreciation of phenotypic drug screens, as these may be more likely to yield compounds with relevant modes of action. However, cell-based screening approaches do not directly reveal cellular targets, and hence target deconvolution and a detailed understanding of drug action are needed for efficient lead optimization and biomarker development. Here, recently developed functional genomics technologies that address this need are reviewed. The approaches pioneered in model organisms, particularly in yeast, and more recently adapted to mammalian systems are discussed. Finally, areas of particular interest and directions for future tool development are highlighted.
Collapse
|
219
|
Gowen BG, Chim B, Marceau CD, Greene TT, Burr P, Gonzalez JR, Hesser CR, Dietzen PA, Russell T, Iannello A, Coscoy L, Sentman CL, Carette JE, Muljo SA, Raulet DH. A forward genetic screen reveals novel independent regulators of ULBP1, an activating ligand for natural killer cells. eLife 2015; 4. [PMID: 26565589 PMCID: PMC4629278 DOI: 10.7554/elife.08474] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2015] [Accepted: 08/28/2015] [Indexed: 02/07/2023] Open
Abstract
Recognition and elimination of tumor cells by the immune system is crucial for limiting tumor growth. Natural killer (NK) cells become activated when the receptor NKG2D is engaged by ligands that are frequently upregulated in primary tumors and on cancer cell lines. However, the molecular mechanisms driving NKG2D ligand expression on tumor cells are not well defined. Using a forward genetic screen in a tumor-derived human cell line, we identified several novel factors supporting expression of the NKG2D ligand ULBP1. Our results show stepwise contributions of independent pathways working at multiple stages of ULBP1 biogenesis. Deeper investigation of selected hits from the screen showed that the transcription factor ATF4 drives ULBP1 gene expression in cancer cell lines, while the RNA-binding protein RBM4 supports ULBP1 expression by suppressing a novel alternatively spliced isoform of ULBP1 mRNA. These findings offer insight into the stress pathways that alert the immune system to danger. DOI:http://dx.doi.org/10.7554/eLife.08474.001 Cancer is caused by a series of mutations that result in uncontrolled cell growth and division. Yet, the body's immune system can often detect and destroy abnormal cells before they cause tumors and disease. Natural killer cells are part of the immune system and have receptors on their surface that allow them to tell the difference between healthy host cells and host cells that are stressed or abnormal. Some of these receptors activate the natural killer cells when they bind to their target molecules. Other receptors have the opposite effect and inhibit the natural killer cells. Activation occurs when the signaling from the activating receptors is stronger than the signals from the inhibitory receptors. One of the well-studied activating receptors recognizes a number of proteins and molecules that are produced by abnormal or tumor cells, including a protein called ULBP1. This protein is absent from the surface of healthy cells but is found in abundance on tumor cells. However, it is still not clear what drives tumor cells to produce ULBP1 (or other molecules) that are recognized by natural killer cell receptors. Now, Gowen et al. report on a genetic screen that has revealed numerous genes that regulate the levels of ULBP1 in human cells. Many of these genes had independent effects that when added together accounted for most of the ULBP1 present on the cell surface. Gowen et al. then explored some of the ‘regulators’ encoded by these genes in more detail. One called ATF4, which had previously been linked to stress responses, was shown to increase the expression of the gene for ULBP1 in cancer cells. Another regulator called RBM4 instead acted in a different way and at a later stage in ULBP1 production. All together, these findings offer insight into the stress pathways that alert the immune system to abnormal cells. The next challenge will be investigating how these pathways might be exploited for cancer immunotherapy. DOI:http://dx.doi.org/10.7554/eLife.08474.002
Collapse
Affiliation(s)
- Benjamin G Gowen
- Department of Molecular and Cell Biology, Cancer Research Laboratory, University of California, Berkeley, Berkeley, United States
| | - Bryan Chim
- Laboratory of Immunology, National Institute of Allergy and Infectious Diseases, Bethesda, United States
| | - Caleb D Marceau
- Department of Microbiology and Immunology, Stanford University School of Medicine, Stanford, United States
| | - Trever T Greene
- Department of Molecular and Cell Biology, Cancer Research Laboratory, University of California, Berkeley, Berkeley, United States
| | - Patrick Burr
- Laboratory of Immunology, National Institute of Allergy and Infectious Diseases, Bethesda, United States
| | - Jeanmarie R Gonzalez
- Department of Molecular and Cell Biology, Cancer Research Laboratory, University of California, Berkeley, Berkeley, United States
| | - Charles R Hesser
- Department of Molecular and Cell Biology, Cancer Research Laboratory, University of California, Berkeley, Berkeley, United States
| | - Peter A Dietzen
- Department of Molecular and Cell Biology, Cancer Research Laboratory, University of California, Berkeley, Berkeley, United States
| | - Teal Russell
- Department of Molecular and Cell Biology, Cancer Research Laboratory, University of California, Berkeley, Berkeley, United States
| | - Alexandre Iannello
- Department of Molecular and Cell Biology, Cancer Research Laboratory, University of California, Berkeley, Berkeley, United States
| | - Laurent Coscoy
- Department of Molecular and Cell Biology, Cancer Research Laboratory, University of California, Berkeley, Berkeley, United States
| | - Charles L Sentman
- Center for Synthetic Immunity, Department of Microbiology and Immunology, Dartmouth Geisel School of Medicine, Lebanon, United States
| | - Jan E Carette
- Department of Microbiology and Immunology, Stanford University School of Medicine, Stanford, United States
| | - Stefan A Muljo
- Laboratory of Immunology, National Institute of Allergy and Infectious Diseases, Bethesda, United States
| | - David H Raulet
- Department of Molecular and Cell Biology, Cancer Research Laboratory, University of California, Berkeley, Berkeley, United States
| |
Collapse
|
220
|
Sialic acid-dependent cell entry of human enterovirus D68. Nat Commun 2015; 6:8865. [PMID: 26563423 PMCID: PMC4660200 DOI: 10.1038/ncomms9865] [Citation(s) in RCA: 89] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2015] [Accepted: 10/09/2015] [Indexed: 01/30/2023] Open
Abstract
Human enterovirus D68 (EV-D68) is a causative agent of childhood respiratory diseases and has now emerged as a global public health threat. Nevertheless, knowledge of the tissue tropism and pathogenesis of EV-D68 has been hindered by a lack of studies on the receptor-mediated EV-D68 entry into host cells. Here we demonstrate that cell surface sialic acid is essential for EV-D68 to bind to and infect susceptible cells. Crystal structures of EV-D68 in complex with sialylated glycan receptor analogues show that they bind into the ‘canyon' on the virus surface. The sialic acid receptor induces a cascade of conformational changes in the virus to eject a fatty-acid-like molecule that regulates the stability of the virus. Thus, virus binding to a sialic acid receptor and to immunoglobulin-like receptors used by most other enteroviruses share a conserved mechanism for priming viral uncoating and facilitating cell entry. The human enterovirus D68 (EV-D68) is a causative agent of childhood respiratory infections, but despite its prevalence the exact mechanism mediating its cell entry have not been fully established. Here, the authors show how EV-D68 binds to sialic acid on the cell surface to initiate infection.
Collapse
|
221
|
Recombinase-based conditional and reversible gene regulation via XTR alleles. Nat Commun 2015; 6:8783. [PMID: 26537451 PMCID: PMC4635517 DOI: 10.1038/ncomms9783] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2015] [Accepted: 09/30/2015] [Indexed: 01/28/2023] Open
Abstract
Synthetic biological tools that enable precise regulation of gene function within in vivo systems have enormous potential to discern gene function in diverse physiological settings. Here we report the development and characterization of a synthetic gene switch that, when targeted in the mouse germline, enables conditional inactivation, reports gene expression and allows inducible restoration of the targeted gene. Gene inactivation and reporter expression is achieved through Cre-mediated stable inversion of an integrated gene-trap reporter, whereas inducible gene restoration is afforded by Flp-dependent deletion of the inverted gene trap. We validate our approach by targeting the p53 and Rb genes and establishing cell line and in vivo cancer model systems, to study the impact of p53 or Rb inactivation and restoration. We term this allele system XTR, to denote each of the allelic states and the associated expression patterns of the targeted gene: eXpressed (XTR), Trapped (TR) and Restored (R).
Collapse
|
222
|
The ever-emerging complexity of α-toxin's interaction with host cells. Proc Natl Acad Sci U S A 2015; 112:14123-4. [PMID: 26542682 DOI: 10.1073/pnas.1519766112] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
|
223
|
Planells-Cases R, Lutter D, Guyader C, Gerhards NM, Ullrich F, Elger DA, Kucukosmanoglu A, Xu G, Voss FK, Reincke SM, Stauber T, Blomen VA, Vis DJ, Wessels LF, Brummelkamp TR, Borst P, Rottenberg S, Jentsch TJ. Subunit composition of VRAC channels determines substrate specificity and cellular resistance to Pt-based anti-cancer drugs. EMBO J 2015; 34:2993-3008. [PMID: 26530471 PMCID: PMC4687416 DOI: 10.15252/embj.201592409] [Citation(s) in RCA: 187] [Impact Index Per Article: 18.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2015] [Accepted: 10/05/2015] [Indexed: 11/25/2022] Open
Abstract
Although platinum‐based drugs are widely used chemotherapeutics for cancer treatment, the determinants of tumor cell responsiveness remain poorly understood. We show that the loss of subunits LRRC8A and LRRC8D of the heteromeric LRRC8 volume‐regulated anion channels (VRACs) increased resistance to clinically relevant cisplatin/carboplatin concentrations. Under isotonic conditions, about 50% of cisplatin uptake depended on LRRC8A and LRRC8D, but neither on LRRC8C nor on LRRC8E. Cell swelling strongly enhanced LRRC8‐dependent cisplatin uptake, bolstering the notion that cisplatin enters cells through VRAC. LRRC8A disruption also suppressed drug‐induced apoptosis independently from drug uptake, possibly by impairing VRAC‐dependent apoptotic cell volume decrease. Hence, by mediating cisplatin uptake and facilitating apoptosis, VRAC plays a dual role in the cellular drug response. Incorporation of the LRRC8D subunit into VRAC substantially increased its permeability for cisplatin and the cellular osmolyte taurine, indicating that LRRC8 proteins form the channel pore. Our work suggests that LRRC8D‐containing VRACs are crucial for cell volume regulation by an important organic osmolyte and may influence cisplatin/carboplatin responsiveness of tumors.
Collapse
Affiliation(s)
- Rosa Planells-Cases
- Leibniz-Institut für Molekulare Pharmakologie (FMP) Max-Delbrück-Centrum für Molekulare Medizin (MDC), Berlin, Germany
| | - Darius Lutter
- Leibniz-Institut für Molekulare Pharmakologie (FMP) Max-Delbrück-Centrum für Molekulare Medizin (MDC), Berlin, Germany
| | - Charlotte Guyader
- Division of Molecular Oncology, The Netherlands Cancer Institute, Amsterdam, The Netherlands
| | - Nora M Gerhards
- Institute of Animal Pathology, Vetsuisse Faculty, University of Bern, Bern, Switzerland
| | - Florian Ullrich
- Leibniz-Institut für Molekulare Pharmakologie (FMP) Max-Delbrück-Centrum für Molekulare Medizin (MDC), Berlin, Germany
| | - Deborah A Elger
- Leibniz-Institut für Molekulare Pharmakologie (FMP) Max-Delbrück-Centrum für Molekulare Medizin (MDC), Berlin, Germany
| | - Asli Kucukosmanoglu
- Division of Molecular Pathology, The Netherlands Cancer Institute, Amsterdam, The Netherlands
| | - Guotai Xu
- Division of Molecular Pathology, The Netherlands Cancer Institute, Amsterdam, The Netherlands
| | - Felizia K Voss
- Leibniz-Institut für Molekulare Pharmakologie (FMP) Max-Delbrück-Centrum für Molekulare Medizin (MDC), Berlin, Germany
| | - S Momsen Reincke
- Leibniz-Institut für Molekulare Pharmakologie (FMP) Max-Delbrück-Centrum für Molekulare Medizin (MDC), Berlin, Germany
| | - Tobias Stauber
- Leibniz-Institut für Molekulare Pharmakologie (FMP) Max-Delbrück-Centrum für Molekulare Medizin (MDC), Berlin, Germany
| | - Vincent A Blomen
- Division of Biochemistry, The Netherlands Cancer Institute, Amsterdam, The Netherlands
| | - Daniel J Vis
- Division of Molecular Carcinogenesis, The Netherlands Cancer Institute, Amsterdam, The Netherlands
| | - Lodewyk F Wessels
- Division of Molecular Carcinogenesis, The Netherlands Cancer Institute, Amsterdam, The Netherlands
| | - Thijn R Brummelkamp
- Division of Biochemistry, The Netherlands Cancer Institute, Amsterdam, The Netherlands
| | - Piet Borst
- Division of Molecular Oncology, The Netherlands Cancer Institute, Amsterdam, The Netherlands
| | - Sven Rottenberg
- Institute of Animal Pathology, Vetsuisse Faculty, University of Bern, Bern, Switzerland Division of Molecular Pathology, The Netherlands Cancer Institute, Amsterdam, The Netherlands
| | - Thomas J Jentsch
- Leibniz-Institut für Molekulare Pharmakologie (FMP) Max-Delbrück-Centrum für Molekulare Medizin (MDC), Berlin, Germany NeuroCure Cluster of Excellence, Charité Universitätsmedizin, Berlin, Germany
| |
Collapse
|
224
|
César-Razquin A, Snijder B, Frappier-Brinton T, Isserlin R, Gyimesi G, Bai X, Reithmeier RA, Hepworth D, Hediger MA, Edwards AM, Superti-Furga G. A Call for Systematic Research on Solute Carriers. Cell 2015; 162:478-87. [PMID: 26232220 DOI: 10.1016/j.cell.2015.07.022] [Citation(s) in RCA: 415] [Impact Index Per Article: 41.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2015] [Indexed: 01/10/2023]
Abstract
Solute carrier (SLC) membrane transport proteins control essential physiological functions, including nutrient uptake, ion transport, and waste removal. SLCs interact with several important drugs, and a quarter of the more than 400 SLC genes are associated with human diseases. Yet, compared to other gene families of similar stature, SLCs are relatively understudied. The time is right for a systematic attack on SLC structure, specificity, and function, taking into account kinship and expression, as well as the dependencies that arise from the common metabolic space.
Collapse
Affiliation(s)
- Adrián César-Razquin
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, 1090 Vienna, Austria
| | - Berend Snijder
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, 1090 Vienna, Austria
| | | | - Ruth Isserlin
- The Donnelly Centre, University of Toronto, Toronto, Ontario, M5S 3E1, Canada
| | - Gergely Gyimesi
- Institute of Biochemistry and Molecular Medicine and Swiss National Center of Competence in Research, NCCR TransCure, University of Bern, 3012 Bern, Switzerland
| | - Xiaoyun Bai
- Department of Biochemistry, University of Toronto, Toronto, Ontario, M5S 1A8 Canada
| | | | - David Hepworth
- Worldwide Medicinal Chemistry, Pfizer Worldwide Research and Development, Cambridge, MA 02139, USA
| | - Matthias A Hediger
- Institute of Biochemistry and Molecular Medicine and Swiss National Center of Competence in Research, NCCR TransCure, University of Bern, 3012 Bern, Switzerland.
| | - Aled M Edwards
- Structural Genomics Consortium, University of Toronto, Toronto, Ontario M5G 1L7, Canada.
| | - Giulio Superti-Furga
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, 1090 Vienna, Austria; Center for Physiology and Pharmacology, Medical University of Vienna, 1090 Vienna, Austria.
| |
Collapse
|
225
|
The adherens junctions control susceptibility to Staphylococcus aureus α-toxin. Proc Natl Acad Sci U S A 2015; 112:14337-42. [PMID: 26489655 DOI: 10.1073/pnas.1510265112] [Citation(s) in RCA: 63] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Staphylococcus aureus is both a transient skin colonizer and a formidable human pathogen, ranking among the leading causes of skin and soft tissue infections as well as severe pneumonia. The secreted bacterial α-toxin is essential for S. aureus virulence in these epithelial diseases. To discover host cellular factors required for α-toxin cytotoxicity, we conducted a genetic screen using mutagenized haploid human cells. Our screen identified a cytoplasmic member of the adherens junctions, plekstrin-homology domain containing protein 7 (PLEKHA7), as the second most significantly enriched gene after the known α-toxin receptor, a disintegrin and metalloprotease 10 (ADAM10). Here we report a new, unexpected role for PLEKHA7 and several components of cellular adherens junctions in controlling susceptibility to S. aureus α-toxin. We find that despite being injured by α-toxin pore formation, PLEKHA7 knockout cells recover after intoxication. By infecting PLEKHA7(-/-) mice with methicillin-resistant S. aureus USA300 LAC strain, we demonstrate that this junctional protein controls disease severity in both skin infection and lethal S. aureus pneumonia. Our results suggest that adherens junctions actively control cellular responses to a potent pore-forming bacterial toxin and identify PLEKHA7 as a potential nonessential host target to reduce S. aureus virulence during epithelial infections.
Collapse
|
226
|
Blomen VA, Májek P, Jae LT, Bigenzahn JW, Nieuwenhuis J, Staring J, Sacco R, van Diemen FR, Olk N, Stukalov A, Marceau C, Janssen H, Carette JE, Bennett KL, Colinge J, Superti-Furga G, Brummelkamp TR. Gene essentiality and synthetic lethality in haploid human cells. Science 2015; 350:1092-6. [PMID: 26472760 DOI: 10.1126/science.aac7557] [Citation(s) in RCA: 618] [Impact Index Per Article: 61.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2014] [Accepted: 10/01/2015] [Indexed: 12/11/2022]
Abstract
Although the genes essential for life have been identified in less complex model organisms, their elucidation in human cells has been hindered by technical barriers. We used extensive mutagenesis in haploid human cells to identify approximately 2000 genes required for optimal fitness under culture conditions. To study the principles of genetic interactions in human cells, we created a synthetic lethality network focused on the secretory pathway based exclusively on mutations. This revealed a genetic cross-talk governing Golgi homeostasis, an additional subunit of the human oligosaccharyltransferase complex, and a phosphatidylinositol 4-kinase β adaptor hijacked by viruses. The synthetic lethality map parallels observations made in yeast and projects a route forward to reveal genetic networks in diverse aspects of human cell biology.
Collapse
Affiliation(s)
- Vincent A Blomen
- Netherlands Cancer Institute, Plesmanlaan 121, 1066 CX, Amsterdam, Netherlands
| | - Peter Májek
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, 1090 Vienna, Austria
| | - Lucas T Jae
- Netherlands Cancer Institute, Plesmanlaan 121, 1066 CX, Amsterdam, Netherlands
| | - Johannes W Bigenzahn
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, 1090 Vienna, Austria
| | - Joppe Nieuwenhuis
- Netherlands Cancer Institute, Plesmanlaan 121, 1066 CX, Amsterdam, Netherlands
| | - Jacqueline Staring
- Netherlands Cancer Institute, Plesmanlaan 121, 1066 CX, Amsterdam, Netherlands
| | - Roberto Sacco
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, 1090 Vienna, Austria
| | - Ferdy R van Diemen
- Netherlands Cancer Institute, Plesmanlaan 121, 1066 CX, Amsterdam, Netherlands
| | - Nadine Olk
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, 1090 Vienna, Austria
| | - Alexey Stukalov
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, 1090 Vienna, Austria
| | - Caleb Marceau
- Department of Microbiology and Immunology, Stanford University School of Medicine, 299 Campus Drive, Stanford, CA 94305, USA
| | - Hans Janssen
- Netherlands Cancer Institute, Plesmanlaan 121, 1066 CX, Amsterdam, Netherlands
| | - Jan E Carette
- Department of Microbiology and Immunology, Stanford University School of Medicine, 299 Campus Drive, Stanford, CA 94305, USA
| | - Keiryn L Bennett
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, 1090 Vienna, Austria
| | - Jacques Colinge
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, 1090 Vienna, Austria. University of Montpellier, Institut de Recherche en Cancérologie de Montpellier Inserm U1194, Institut régional du Cancer Montpellier, 34000 Montpellier, France.
| | - Giulio Superti-Furga
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, 1090 Vienna, Austria. Center for Physiology and Pharmacology, Medical University of Vienna, Vienna, Austria.
| | - Thijn R Brummelkamp
- Netherlands Cancer Institute, Plesmanlaan 121, 1066 CX, Amsterdam, Netherlands. CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, 1090 Vienna, Austria. Cancer Genomics Center (CGC.nl), Plesmanlaan 121, 1066CX, Amsterdam, Netherlands.
| |
Collapse
|
227
|
Genome Editing Using Mammalian Haploid Cells. Int J Mol Sci 2015; 16:23604-14. [PMID: 26437403 PMCID: PMC4632716 DOI: 10.3390/ijms161023604] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2015] [Revised: 09/14/2015] [Accepted: 09/28/2015] [Indexed: 12/20/2022] Open
Abstract
Haploid cells are useful for studying gene functions because disruption of a single allele can cause loss-of-function phenotypes. Recent success in generating haploid embryonic stem cells (ESCs) in mice, rats, and monkeys provides a new platform for simple genetic manipulation of the mammalian genome. Use of haploid ESCs enhances the genome-editing potential of the CRISPR/Cas system. For example, CRISPR/Cas was used in haploid ESCs to generate multiple knockouts and large deletions at high efficiency. In addition, genome-wide screening is facilitated by haploid cell lines containing gene knockout libraries.
Collapse
|
228
|
A diphtheria toxin resistance marker for in vitro and in vivo selection of stably transduced human cells. Sci Rep 2015; 5:14721. [PMID: 26420058 PMCID: PMC4588510 DOI: 10.1038/srep14721] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2015] [Accepted: 09/02/2015] [Indexed: 12/13/2022] Open
Abstract
We developed a selectable marker rendering human cells resistant to Diphtheria Toxin (DT). The marker (DTR) consists of a primary microRNA sequence engineered to downregulate the ubiquitous DPH2 gene, a key enzyme for the biosynthesis of the DT target diphthamide. DTR expression in human cells invariably rendered them resistant to DT in vitro, without altering basal cell growth. DTR-based selection efficiency and stability were comparable to those of established drug-resistance markers. As mice are insensitive to DT, DTR-based selection can be also applied in vivo. Direct injection of a GFP-DTR lentiviral vector into human cancer cell-line xenografts and patient-derived tumorgrafts implanted in mice, followed by systemic DT administration, yielded tumors entirely composed of permanently transduced cells and detectable by imaging systems. This approach enabled high-efficiency in vivo selection of xenografted human tumor tissues expressing ectopic transgenes, a hitherto unmet need for functional and morphological studies in laboratory animals.
Collapse
|
229
|
Douam F, Gaska JM, Winer BY, Ding Q, von Schaewen M, Ploss A. Genetic Dissection of the Host Tropism of Human-Tropic Pathogens. Annu Rev Genet 2015; 49:21-45. [PMID: 26407032 DOI: 10.1146/annurev-genet-112414-054823] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Infectious diseases are the second leading cause of death worldwide. Although the host multitropism of some pathogens has rendered their manipulation possible in animal models, the human-restricted tropism of numerous viruses, bacteria, fungi, and parasites has seriously hampered our understanding of these pathogens. Hence, uncovering the genetic basis underlying the narrow tropism of such pathogens is critical for understanding their mechanisms of infection and pathogenesis. Moreover, such genetic dissection is essential for the generation of permissive animal models that can serve as critical tools for the development of therapeutics or vaccines against challenging human pathogens. In this review, we describe different experimental approaches utilized to uncover the genetic foundation regulating pathogen host tropism as well as their relevance for studying the tropism of several important human pathogens. Finally, we discuss the current and future uses of this knowledge for generating genetically modified animal models permissive for these pathogens.
Collapse
Affiliation(s)
- Florian Douam
- Department of Molecular Biology, Princeton University, Princeton, New Jersey 08544; , , , , ,
| | - Jenna M Gaska
- Department of Molecular Biology, Princeton University, Princeton, New Jersey 08544; , , , , ,
| | - Benjamin Y Winer
- Department of Molecular Biology, Princeton University, Princeton, New Jersey 08544; , , , , ,
| | - Qiang Ding
- Department of Molecular Biology, Princeton University, Princeton, New Jersey 08544; , , , , ,
| | - Markus von Schaewen
- Department of Molecular Biology, Princeton University, Princeton, New Jersey 08544; , , , , ,
| | - Alexander Ploss
- Department of Molecular Biology, Princeton University, Princeton, New Jersey 08544; , , , , ,
| |
Collapse
|
230
|
Rong Y, Nakamura S, Hirata T, Motooka D, Liu YS, He ZA, Gao XD, Maeda Y, Kinoshita T, Fujita M. Genome-Wide Screening of Genes Required for Glycosylphosphatidylinositol Biosynthesis. PLoS One 2015; 10:e0138553. [PMID: 26383639 PMCID: PMC4575048 DOI: 10.1371/journal.pone.0138553] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2015] [Accepted: 09/01/2015] [Indexed: 01/16/2023] Open
Abstract
Glycosylphosphatidylinositol (GPI) is synthesized and transferred to proteins in the endoplasmic reticulum (ER). GPI-anchored proteins are then transported from the ER to the plasma membrane through the Golgi apparatus. To date, at least 17 steps have been identified to be required for the GPI biosynthetic pathway. Here, we aimed to establish a comprehensive screening method to identify genes involved in GPI biosynthesis using mammalian haploid screens. Human haploid cells were mutagenized by the integration of gene trap vectors into the genome. Mutagenized cells were then treated with a bacterial pore-forming toxin, aerolysin, which binds to GPI-anchored proteins for targeting to the cell membrane. Cells that showed low surface expression of CD59, a GPI-anchored protein, were further enriched for. Gene trap insertion sites in the non-selected population and in the enriched population were determined by deep sequencing. This screening enriched 23 gene regions among the 26 known GPI biosynthetic genes, which when mutated are expected to decrease the surface expression of GPI-anchored proteins. Our results indicate that the forward genetic approach using haploid cells is a useful and powerful technique to identify factors involved in phenotypes of interest.
Collapse
Affiliation(s)
- Yao Rong
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, Jiangsu, 214122, China
| | - Shota Nakamura
- Research Institute for Microbial Diseases, Osaka University, Suita, Osaka, 565–0871, Japan
| | - Tetsuya Hirata
- Research Institute for Microbial Diseases, Osaka University, Suita, Osaka, 565–0871, Japan
- WPI Immunology Frontier Research Center, Osaka University, Suita, Osaka, 565–0871, Japan
| | - Daisuke Motooka
- Research Institute for Microbial Diseases, Osaka University, Suita, Osaka, 565–0871, Japan
| | - Yi-Shi Liu
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, Jiangsu, 214122, China
| | - Zeng-An He
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, Jiangsu, 214122, China
| | - Xiao-Dong Gao
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, Jiangsu, 214122, China
- * E-mail: (XDG); (MF)
| | - Yusuke Maeda
- Research Institute for Microbial Diseases, Osaka University, Suita, Osaka, 565–0871, Japan
- WPI Immunology Frontier Research Center, Osaka University, Suita, Osaka, 565–0871, Japan
| | - Taroh Kinoshita
- Research Institute for Microbial Diseases, Osaka University, Suita, Osaka, 565–0871, Japan
- WPI Immunology Frontier Research Center, Osaka University, Suita, Osaka, 565–0871, Japan
| | - Morihisa Fujita
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, Jiangsu, 214122, China
- * E-mail: (XDG); (MF)
| |
Collapse
|
231
|
Shenker BJ, Boesze-Battaglia K, Scuron MD, Walker LP, Zekavat A, Dlakić M. The toxicity of the Aggregatibacter actinomycetemcomitans cytolethal distending toxin correlates with its phosphatidylinositol-3,4,5-triphosphate phosphatase activity. Cell Microbiol 2015; 18:223-43. [PMID: 26247396 DOI: 10.1111/cmi.12497] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2015] [Revised: 07/22/2015] [Accepted: 07/26/2015] [Indexed: 12/22/2022]
Abstract
The Aggregatibacter actinomycetemcomitans cytolethal distending toxin (Cdt) induces G2 arrest and apoptosis in lymphocytes and other cell types. We have shown that the active subunit, CdtB, exhibits phosphatidylinositol-3,4,5-triphosphate (PIP3) phosphatase activity, leading us to propose that Cdt toxicity is the result of PIP3 depletion and perturbation of phosphatidylinositol-3-kinase (PI-3K)/PIP3/Akt signalling. To further explore this relationship, we have focused our analysis on identifying residues that comprise the catalytic pocket and are critical to substrate binding rather than catalysis. In this context, we have generated several CdtB mutants and demonstrate that, in each instance, the ability of the toxin to induce cell cycle arrest correlates with retention of phosphatase activity. We have also assessed the effect of Cdt on downstream components of the PI-3K signalling pathway. In addition to depletion of intracellular concentrations of PIP3, toxin-treated lymphocytes exhibit decreases in pAkt and pGSK3β. Further analysis indicates that toxin-treated cells exhibit a concomitant loss in Akt activity and increase in GSK3β kinase activity consistent with observed changes in their phosphorylation status. We demonstrate that cell susceptibility to Cdt is dependent upon dephosphorylation and concomitant activation of GSK3β. Finally, we demonstrate that, in addition to lymphocytes, HeLa cells exposed to a CdtB mutant that retains phosphatase activity and not DNase activity undergo G2 arrest in the absence of H2AX phosphorylation. Our results provide further insight into the mode of action by which Cdt may function as an immunotoxin and induce cell cycle arrest in target cells such as lymphocytes.
Collapse
Affiliation(s)
- Bruce J Shenker
- Department of Pathology, University of Pennsylvania School of Dental Medicine, Philadelphia, PA, USA
| | - Kathleen Boesze-Battaglia
- Department of Biochemistry, University of Pennsylvania School of Dental Medicine, Philadelphia, PA, USA
| | - Monika Damek Scuron
- Department of Pathology, University of Pennsylvania School of Dental Medicine, Philadelphia, PA, USA
| | - Lisa P Walker
- Department of Pathology, University of Pennsylvania School of Dental Medicine, Philadelphia, PA, USA
| | - Ali Zekavat
- Department of Pathology, University of Pennsylvania School of Dental Medicine, Philadelphia, PA, USA
| | - Mensur Dlakić
- Department of Microbiology and Immunology, Montana State University, Bozeman, MT, USA
| |
Collapse
|
232
|
Wade M. High-Throughput Silencing Using the CRISPR-Cas9 System: A Review of the Benefits and Challenges. JOURNAL OF BIOMOLECULAR SCREENING 2015; 20:1027-39. [PMID: 26001564 DOI: 10.1177/1087057115587916] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/20/2015] [Accepted: 04/29/2015] [Indexed: 12/13/2022]
Abstract
The clustered regularly interspaced short palindromic repeats (CRISPR)/Cas system has been seized upon with a fervor enjoyed previously by small interfering RNA (siRNA) and short hairpin RNA (shRNA) technologies and has enormous potential for high-throughput functional genomics studies. The decision to use this approach must be balanced with respect to adoption of existing platforms versus awaiting the development of more "mature" next-generation systems. Here, experience from siRNA and shRNA screening plays an important role, as issues such as targeting efficiency, pooling strategies, and off-target effects with those technologies are already framing debates in the CRISPR field. CRISPR/Cas can be exploited not only to knockout genes but also to up- or down-regulate gene transcription-in some cases in a multiplex fashion. This provides a powerful tool for studying the interaction among multiple signaling cascades in the same genetic background. Furthermore, the documented success of CRISPR/Cas-mediated gene correction (or the corollary, introduction of disease-specific mutations) provides proof of concept for the rapid generation of isogenic cell lines for high-throughput screening. In this review, the advantages and limitations of CRISPR/Cas are discussed and current and future applications are highlighted. It is envisaged that complementarities between CRISPR, siRNA, and shRNA will ensure that all three technologies remain critical to the success of future functional genomics projects.
Collapse
Affiliation(s)
- Mark Wade
- Screening Unit, Center for Genomic Science of IIT@SEMM, Istituto Italiano di Tecnologia, Milan, Italy
| |
Collapse
|
233
|
Tsvetkov P, Mendillo ML, Zhao J, Carette JE, Merrill PH, Cikes D, Varadarajan M, van Diemen FR, Penninger JM, Goldberg AL, Brummelkamp TR, Santagata S, Lindquist S. Compromising the 19S proteasome complex protects cells from reduced flux through the proteasome. eLife 2015; 4. [PMID: 26327695 PMCID: PMC4551903 DOI: 10.7554/elife.08467] [Citation(s) in RCA: 59] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2015] [Accepted: 07/29/2015] [Indexed: 12/11/2022] Open
Abstract
Proteasomes are central regulators of protein homeostasis in eukaryotes. Proteasome function is vulnerable to environmental insults, cellular protein imbalance and targeted pharmaceuticals. Yet, mechanisms that cells deploy to counteract inhibition of this central regulator are little understood. To find such mechanisms, we reduced flux through the proteasome to the point of toxicity with specific inhibitors and performed genome-wide screens for mutations that allowed cells to survive. Counter to expectation, reducing expression of individual subunits of the proteasome's 19S regulatory complex increased survival. Strong 19S reduction was cytotoxic but modest reduction protected cells from inhibitors. Protection was accompanied by an increased ratio of 20S to 26S proteasomes, preservation of protein degradation capacity and reduced proteotoxic stress. While compromise of 19S function can have a fitness cost under basal conditions, it provided a powerful survival advantage when proteasome function was impaired. This means of rebalancing proteostasis is conserved from yeast to humans.
Collapse
Affiliation(s)
- Peter Tsvetkov
- Whitehead Institute for Biomedical Research, Cambridge, United States
| | - Marc L Mendillo
- Department of Biology, Howard Hughes Medical Institute, Massachusetts Institute of Technology, Cambridge, United States
| | - Jinghui Zhao
- Department of Cell Biology, Harvard Medical School, Boston, United States
| | - Jan E Carette
- Department of Microbiology and Immunology, Stanford University School of Medicine, Stanford, United States
| | - Parker H Merrill
- Department of Pathology, Brigham and Women's Hospital, Harvard Medical School, Boston, United States
| | - Domagoj Cikes
- Institute of Molecular Biotechnology of the Austrian Academy of Sciences, Vienna, Austria
| | | | - Ferdy R van Diemen
- Department of Biochemistry, Netherlands Cancer Institute, Amsterdam, Netherlands
| | - Josef M Penninger
- Institute of Molecular Biotechnology of the Austrian Academy of Sciences, Vienna, Austria
| | - Alfred L Goldberg
- Department of Cell Biology, Harvard Medical School, Boston, United States
| | - Thijn R Brummelkamp
- Department of Biochemistry, Netherlands Cancer Institute, Amsterdam, Netherlands
| | - Sandro Santagata
- Whitehead Institute for Biomedical Research, Cambridge, United States
| | - Susan Lindquist
- Whitehead Institute for Biomedical Research, Cambridge, United States
| |
Collapse
|
234
|
Abstract
Deciphering the many interactions that occur between a virus and host cell over the course of infection is paramount to understanding mechanisms of pathogenesis and to the future development of antiviral therapies. Over the past decade, researchers have started to understand these complicated relationships through the development of methodologies, including advances in RNA interference, proteomics, and the development of genetic tools such as haploid cell lines, allowing high-throughput screening to identify critical contact points between virus and host. These advances have produced a wealth of data regarding host factors hijacked by viruses to promote infection, as well as antiviral factors responsible for subverting viral infection. This review highlights findings from virus-host screens and discusses our thoughts on the direction of screening strategies moving forward.
Collapse
Affiliation(s)
- Holly Ramage
- Department of Microbiology, University of Pennsylvania School of Medicine, Philadelphia, Pennsylvania 19104; ,
| | - Sara Cherry
- Department of Microbiology, University of Pennsylvania School of Medicine, Philadelphia, Pennsylvania 19104; ,
| |
Collapse
|
235
|
Application of human haploid cell genetic screening model in identifying the genes required for resistance to environmental toxicants: Chlorpyrifos as a case study. J Pharmacol Toxicol Methods 2015; 76:76-82. [PMID: 26299976 DOI: 10.1016/j.vascn.2015.08.154] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2015] [Revised: 07/20/2015] [Accepted: 08/16/2015] [Indexed: 11/23/2022]
Abstract
INTRODUCTION High-throughput loss-of-function genetic screening tools in yeast or other model systems except in mammalian cells have been implemented to study human susceptibility to chemical toxicity. Here, we employed a newly developed human haploid cell (KBM7)-based mutagenic screening model (KBM7-mu cells) and examined its applicability in identifying genes whose absence allows cells to survive and proliferate in the presence of chemicals. METHODS KBM7-mu cells were exposed to 200 μM Chlorpyrifos (CPF), a widely used organophosphate pesticide, a dose causing approximately 50% death of cells after 48h of treatment. After a 2-3 week period of continuous CPF exposure, survived single cell colonies were recovered and used for further analysis. DNA isolated from these cells was amplified using Splinkerette PCR with specific designed primers, and sequenced to determine the genomic locations with virus insertion and identify genes affected by the insertion. Quantitative realtime reverse transcription PCR (qRT-PCR) was used to confirm the knockdown of transcription of identified target genes. RESULTS We identified total 9 human genes in which the cells carrying these genes conferred the resistance to CPF, including AGPAT6, AIG1, ATP8B2, BIK, DCAF12, FNBP4, LAT2, MZF1-AS1 and PPTC7. MZF1-AS1 is an antisense RNA and not included in the further analysis. qRT-PCR results showed that the expression of 6 genes was either significantly reduced or completely lost. There were no changes in the expression of DCAF12 and AGPAT6 genes between the KBM7-mu and the control KBM7 cells. DISCUSSION The KBM7-mu genetic screening system can be modified and applied to identify novel susceptibility genes in response to environmental toxicants, which could provide valuable insights into potential mechanisms of toxicity.
Collapse
|
236
|
Subcellular quantitative proteomic analysis reveals host proteins involved in human cytomegalovirus infection. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2015; 1854:967-78. [DOI: 10.1016/j.bbapap.2015.04.016] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/30/2014] [Revised: 03/19/2015] [Accepted: 04/15/2015] [Indexed: 12/17/2022]
|
237
|
Monfort A, Di Minin G, Postlmayr A, Freimann R, Arieti F, Thore S, Wutz A. Identification of Spen as a Crucial Factor for Xist Function through Forward Genetic Screening in Haploid Embryonic Stem Cells. Cell Rep 2015; 12:554-61. [PMID: 26190100 PMCID: PMC4530576 DOI: 10.1016/j.celrep.2015.06.067] [Citation(s) in RCA: 183] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2015] [Revised: 05/22/2015] [Accepted: 06/23/2015] [Indexed: 01/21/2023] Open
Abstract
In mammals, the noncoding Xist RNA triggers transcriptional silencing of one of the two X chromosomes in female cells. Here, we report a genetic screen for silencing factors in X chromosome inactivation using haploid mouse embryonic stem cells (ESCs) that carry an engineered selectable reporter system. This system was able to identify several candidate factors that are genetically required for chromosomal repression by Xist. Among the list of candidates, we identify the RNA-binding protein Spen, the homolog of split ends. Independent validation through gene deletion in ESCs confirms that Spen is required for gene repression by Xist. However, Spen is not required for Xist RNA localization and the recruitment of chromatin modifications, including Polycomb protein Ezh2. The identification of Spen opens avenues for further investigation into the gene-silencing pathway of Xist and shows the usefulness of haploid ESCs for genetic screening of epigenetic pathways.
Collapse
Affiliation(s)
- Asun Monfort
- Institute of Molecular Health Sciences, Swiss Federal Institute of Technology, ETH Hönggerberg, Otto-Stern-Weg 7, 8093 Zurich, Switzerland
| | - Giulio Di Minin
- Institute of Molecular Health Sciences, Swiss Federal Institute of Technology, ETH Hönggerberg, Otto-Stern-Weg 7, 8093 Zurich, Switzerland
| | - Andreas Postlmayr
- Institute of Molecular Health Sciences, Swiss Federal Institute of Technology, ETH Hönggerberg, Otto-Stern-Weg 7, 8093 Zurich, Switzerland
| | - Remo Freimann
- Institute of Molecular Health Sciences, Swiss Federal Institute of Technology, ETH Hönggerberg, Otto-Stern-Weg 7, 8093 Zurich, Switzerland
| | - Fabiana Arieti
- CEITEC-Central European Institute of Technology, Masaryk University, Kamenice 753/5, Brno 62500, Czech Republic
| | - Stéphane Thore
- University of Bordeaux, European Institute for Chemistry and Biology (IECB), ARNA Laboratory, Bordeaux 33000, France; Institut National de la Sante et de la Recherche Medicale, INSERM, U869, ARNA Laboratory, Bordeaux 33000, France
| | - Anton Wutz
- Institute of Molecular Health Sciences, Swiss Federal Institute of Technology, ETH Hönggerberg, Otto-Stern-Weg 7, 8093 Zurich, Switzerland.
| |
Collapse
|
238
|
Affiliation(s)
- Thijn R Brummelkamp
- Division of Biochemistry and Division of Gene Regulation, Netherlands Cancer Institute, 1066 CX Amsterdam, Netherlands.
| | - Bas van Steensel
- Department of Cell Biology, Erasmus University Medical Center, 3015 GE Rotterdam, Netherlands
| |
Collapse
|
239
|
Dixon SJ, Winter GE, Musavi LS, Lee ED, Snijder B, Rebsamen M, Superti-Furga G, Stockwell BR. Human Haploid Cell Genetics Reveals Roles for Lipid Metabolism Genes in Nonapoptotic Cell Death. ACS Chem Biol 2015; 10:1604-9. [PMID: 25965523 PMCID: PMC4509420 DOI: 10.1021/acschembio.5b00245] [Citation(s) in RCA: 749] [Impact Index Per Article: 74.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2015] [Accepted: 05/12/2015] [Indexed: 02/07/2023]
Abstract
Little is known about the regulation of nonapoptotic cell death. Using massive insertional mutagenesis of haploid KBM7 cells we identified nine genes involved in small-molecule-induced nonapoptotic cell death, including mediators of fatty acid metabolism (ACSL4) and lipid remodeling (LPCAT3) in ferroptosis. One novel compound, CIL56, triggered cell death dependent upon the rate-limiting de novo lipid synthetic enzyme ACC1. These results provide insight into the genetic regulation of cell death and highlight the central role of lipid metabolism in nonapoptotic cell death.
Collapse
Affiliation(s)
- Scott J. Dixon
- Department of Biological
Sciences, Department of Chemistry, and Howard Hughes Medical Institute, Columbia University, 550 West 120th Street, Northwest Corner Building, MC 4846, New York, New York 10027, United States
- Department
of Biology, Stanford University, 337 Campus Drive, Stanford, California 94305, United States
| | - Georg E. Winter
- CeMM
Research Center for Molecular Medicine of the Austrian Academy of Sciences, Lazarettgasse 14, 1090 Vienna, Austria
| | - Leila S. Musavi
- Department of Biological
Sciences, Department of Chemistry, and Howard Hughes Medical Institute, Columbia University, 550 West 120th Street, Northwest Corner Building, MC 4846, New York, New York 10027, United States
| | - Eric D. Lee
- Department of Biological
Sciences, Department of Chemistry, and Howard Hughes Medical Institute, Columbia University, 550 West 120th Street, Northwest Corner Building, MC 4846, New York, New York 10027, United States
| | - Berend Snijder
- CeMM
Research Center for Molecular Medicine of the Austrian Academy of Sciences, Lazarettgasse 14, 1090 Vienna, Austria
| | - Manuele Rebsamen
- CeMM
Research Center for Molecular Medicine of the Austrian Academy of Sciences, Lazarettgasse 14, 1090 Vienna, Austria
| | - Giulio Superti-Furga
- CeMM
Research Center for Molecular Medicine of the Austrian Academy of Sciences, Lazarettgasse 14, 1090 Vienna, Austria
| | - Brent R. Stockwell
- Department of Biological
Sciences, Department of Chemistry, and Howard Hughes Medical Institute, Columbia University, 550 West 120th Street, Northwest Corner Building, MC 4846, New York, New York 10027, United States
| |
Collapse
|
240
|
Lin F, Liu Q, Yuan Y, Hong Y. Development of retroviral vectors for insertional mutagenesis in medaka haploid cells. Gene 2015; 573:296-302. [PMID: 26192464 DOI: 10.1016/j.gene.2015.07.059] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2015] [Revised: 07/02/2015] [Accepted: 07/16/2015] [Indexed: 01/14/2023]
Abstract
Insertional mutagenesis (IM) by retrovirus (RV) is a high-throughput approach for interrogating gene functions in model species. Haploid cell provides a unique system for genetic screening by IM and prosperous progress has been achieved in mammal cells. However, little was known in lower vertebrate cells. Here, we report development of retroviral vectors (rvSAchCVgfp, rvSAchCVpf and rvSAchSTpf) and establishment of IM library in medaka haploid cells. Each vector contains a modified gene trapping (GT) cassette, which could extend the mutated cell population including GT insertions not in-frame or in weakly expressed genes. Virus titration determined by flow cytometry showed that rvSAchSTpf possessed the highest supernatant virus titer (1.5×10(5)TU/ml) in medaka haploid cell, while rvSAchCVpf produced the lowest titer (2.8×10(4)TU/ml). However, quantification of proviral DNAs in transduced cells by droplet digital PCR (ddPCR) demonstrated that the "real titer" may be similar among the three vectors. Furthermore, an IM library was established by FACS of haploid cells transduced with rvSAchCVgfp at a MOI of 0.1. A single copy RV integration in the majority of cells was confirmed by ddPCR in the library. Notably, there was a significant decrease of haploid cell percentage after FACS, suggesting potential trapping for survival/growth essential genes. Our results demonstrated successful development of retroviral vectors for IM in medaka haploid cells, serving for haploid genetic screening of host factors for virus infection and genes underlying certain cellular processes in fish model.
Collapse
Affiliation(s)
- Fan Lin
- Department of Biological Sciences, National University of Singapore, Singapore
| | - Qizhi Liu
- Department of Biological Sciences, National University of Singapore, Singapore
| | - Yongming Yuan
- Department of Biological Sciences, National University of Singapore, Singapore
| | - Yunhan Hong
- Department of Biological Sciences, National University of Singapore, Singapore.
| |
Collapse
|
241
|
Parnas O, Jovanovic M, Eisenhaure TM, Herbst RH, Dixit A, Ye CJ, Przybylski D, Platt RJ, Tirosh I, Sanjana NE, Shalem O, Satija R, Raychowdhury R, Mertins P, Carr SA, Zhang F, Hacohen N, Regev A. A Genome-wide CRISPR Screen in Primary Immune Cells to Dissect Regulatory Networks. Cell 2015; 162:675-86. [PMID: 26189680 DOI: 10.1016/j.cell.2015.06.059] [Citation(s) in RCA: 347] [Impact Index Per Article: 34.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2015] [Revised: 04/25/2015] [Accepted: 05/22/2015] [Indexed: 01/01/2023]
Abstract
Finding the components of cellular circuits and determining their functions systematically remains a major challenge in mammalian cells. Here, we introduced genome-wide pooled CRISPR-Cas9 libraries into dendritic cells (DCs) to identify genes that control the induction of tumor necrosis factor (Tnf) by bacterial lipopolysaccharide (LPS), a key process in the host response to pathogens, mediated by the Tlr4 pathway. We found many of the known regulators of Tlr4 signaling, as well as dozens of previously unknown candidates that we validated. By measuring protein markers and mRNA profiles in DCs that are deficient in known or candidate genes, we classified the genes into three functional modules with distinct effects on the canonical responses to LPS and highlighted functions for the PAF complex and oligosaccharyltransferase (OST) complex. Our findings uncover new facets of innate immune circuits in primary cells and provide a genetic approach for dissection of mammalian cell circuits.
Collapse
Affiliation(s)
- Oren Parnas
- Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Marko Jovanovic
- Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Thomas M Eisenhaure
- Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA; Center for Immunology and Inflammatory Diseases, Massachusetts General Hospital, Charlestown, MA 02129, USA
| | - Rebecca H Herbst
- Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA; Department of Systems Biology, Harvard Medical School, Boston, MA 02114, USA
| | - Atray Dixit
- Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA; Harvard-MIT Division of Health Sciences and Technology, Cambridge, MA 02139, USA
| | - Chun Jimmie Ye
- Institute for Human Genetics, Department of Epidemiology and Biostatistics, Department of Bioengineering and Therapeutic Sciences, University of California, San Francisco, San Francisco, CA 94143, USA
| | | | - Randall J Platt
- Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA; McGovern Institute for Brain Research, Massachusetts Institute of Technology, Cambridge, MA 02139, USA; Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA 02139, USA; Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Itay Tirosh
- Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Neville E Sanjana
- Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA; McGovern Institute for Brain Research, Massachusetts Institute of Technology, Cambridge, MA 02139, USA; Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA; Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Ophir Shalem
- Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA; McGovern Institute for Brain Research, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Rahul Satija
- New York Genome Center, New York, NY 10013, USA; New York University, Center for Genomics and Systems Biology, New York, NY 10012, USA
| | | | - Philipp Mertins
- Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Steven A Carr
- Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Feng Zhang
- Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA; McGovern Institute for Brain Research, Massachusetts Institute of Technology, Cambridge, MA 02139, USA; Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA 02139, USA; Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA; Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Nir Hacohen
- Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA; Center for Immunology and Inflammatory Diseases, Massachusetts General Hospital, Charlestown, MA 02129, USA; Department of Medicine, Harvard Medical School, Boston MA 02114.
| | - Aviv Regev
- Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA; Department of Biology, Howard Hughes Medical Institute, Massachusetts Institute of Technology, Cambridge, MA 02140, USA.
| |
Collapse
|
242
|
Wrzesiński T, Szelag M, Cieślikowski WA, Ida A, Giles R, Zodro E, Szumska J, Poźniak J, Kwias Z, Bluyssen HAR, Wesoly J. Expression of pre-selected TMEMs with predicted ER localization as potential classifiers of ccRCC tumors. BMC Cancer 2015; 15:518. [PMID: 26169495 PMCID: PMC5015219 DOI: 10.1186/s12885-015-1530-4] [Citation(s) in RCA: 78] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2014] [Accepted: 07/01/2015] [Indexed: 11/24/2022] Open
Abstract
Background VHL inactivation is the most established molecular characteristic of clear cell renal cell carcinoma (ccRCC), with only a few additional genes implicated in development of this kidney tumor. In recently published ccRCC gene expression meta-analysis study we identified a number of deregulated genes with limited information available concerning their biological role, represented by gene transcripts belonging to transmembrane proteins family (TMEMs). TMEMs are predicted to be components of cellular membranes, such as mitochondrial membranes, ER, lysosomes and Golgi apparatus. Interestingly, the function of majority of TMEMs remains unclear. Here, we analyzed expression of ten TMEM genes in the context of ccRCC progression and development, and characterized these proteins bioinformatically. Methods The expression of ten TMEMs (RTP3, SLC35G2, TMEM30B, TMEM45A, TMEM45B, TMEM61, TMEM72, TMEM116, TMEM207 and TMEM213) was measured by qPCR. T-test, Pearson correlation, univariate and multivariate logistic and Cox regression were used in statistical analysis. The topology of studied proteins was predicted with Metaserver, together with PSORTII, Pfam and Localizome tools. Results We observed significant deregulation of expression of 10 analyzed TMEMs in ccRCC tumors. Cluster analysis of expression data suggested the down-regulation of all tested TMEMs to be a descriptor of the most advanced tumors. Logistic and Cox regression potentially linked TMEM expression to clinical parameters such as: metastasis, Fuhrman grade and overall survival. Topology predictions classified majority of analyzed TMEMs as type 3 and type 1 transmembrane proteins, with predicted localization mainly in ER. Conclusions The massive down-regulation of expression of TMEM family members suggests their importance in the pathogenesis of ccRCC and the bioinformatic analysis of TMEM topology implies a significant involvement of ER proteins in ccRCC pathology. Electronic supplementary material The online version of this article (doi:10.1186/s12885-015-1530-4) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Tomasz Wrzesiński
- Laboratory of High Throughput Technologies, Institute of Molecular Biology and Biotechnology, Faculty of Biology, Adam Mickiewicz University, Umultowska 89, 61-614, Poznan, Poland.
| | - Malgorzata Szelag
- Department of Human Molecular Genetics, Institute of Molecular Biology and Biotechnology, Faculty of Biology, Adam Mickiewicz University, Umultowska 89, 61-614, Poznan, Poland.
| | - Wojciech A Cieślikowski
- Department of Urology and Urological Oncology, Poznan University of Medical Sciences, Szwajcarska 3, 61-285, Poznan, Poland.
| | - Agnieszka Ida
- Department of Urology and Urological Oncology, Poznan University of Medical Sciences, Szwajcarska 3, 61-285, Poznan, Poland.
| | - Rachel Giles
- Department of Nephrology and Hypertension, University Medical Center, Postbus 85500, 3508 GA, Utrecht, Netherlands.
| | - Elżbieta Zodro
- Laboratory of High Throughput Technologies, Institute of Molecular Biology and Biotechnology, Faculty of Biology, Adam Mickiewicz University, Umultowska 89, 61-614, Poznan, Poland.
| | - Joanna Szumska
- Laboratory of High Throughput Technologies, Institute of Molecular Biology and Biotechnology, Faculty of Biology, Adam Mickiewicz University, Umultowska 89, 61-614, Poznan, Poland.
| | - Joanna Poźniak
- Laboratory of High Throughput Technologies, Institute of Molecular Biology and Biotechnology, Faculty of Biology, Adam Mickiewicz University, Umultowska 89, 61-614, Poznan, Poland.
| | - Zbigniew Kwias
- Department of Urology and Urological Oncology, Poznan University of Medical Sciences, Szwajcarska 3, 61-285, Poznan, Poland.
| | - Hans A R Bluyssen
- Department of Human Molecular Genetics, Institute of Molecular Biology and Biotechnology, Faculty of Biology, Adam Mickiewicz University, Umultowska 89, 61-614, Poznan, Poland.
| | - Joanna Wesoly
- Laboratory of High Throughput Technologies, Institute of Molecular Biology and Biotechnology, Faculty of Biology, Adam Mickiewicz University, Umultowska 89, 61-614, Poznan, Poland.
| |
Collapse
|
243
|
D'Astolfo DS, Pagliero RJ, Pras A, Karthaus WR, Clevers H, Prasad V, Lebbink RJ, Rehmann H, Geijsen N. Efficient intracellular delivery of native proteins. Cell 2015; 161:674-690. [PMID: 25910214 DOI: 10.1016/j.cell.2015.03.028] [Citation(s) in RCA: 272] [Impact Index Per Article: 27.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2014] [Revised: 12/19/2014] [Accepted: 03/12/2015] [Indexed: 11/29/2022]
Abstract
Modulation of protein function is used to intervene in cellular processes but is often done indirectly by means of introducing DNA or mRNA encoding the effector protein. Thus far, direct intracellular delivery of proteins has remained challenging. We developed a method termed iTOP, for induced transduction by osmocytosis and propanebetaine, in which a combination of NaCl hypertonicity-induced macropinocytosis and a transduction compound (propanebetaine) induces the highly efficient transduction of proteins into a wide variety of primary cells. We demonstrate that iTOP is a useful tool in systems in which transient cell manipulation drives permanent cellular changes. As an example, we demonstrate that iTOP can mediate the delivery of recombinant Cas9 protein and short guide RNA, driving efficient gene targeting in a non-integrative manner.
Collapse
Affiliation(s)
- Diego S D'Astolfo
- KNAW-Hubrecht Institute, Uppsalalaan 8, 3584 CT Utrecht, the Netherlands; University Medical Center Utrecht, Heidelberglaan 100, 3584 CX Utrecht, the Netherlands
| | - Romina J Pagliero
- University Medical Center Utrecht, Heidelberglaan 100, 3584 CX Utrecht, the Netherlands
| | - Anita Pras
- KNAW-Hubrecht Institute, Uppsalalaan 8, 3584 CT Utrecht, the Netherlands
| | - Wouter R Karthaus
- KNAW-Hubrecht Institute, Uppsalalaan 8, 3584 CT Utrecht, the Netherlands; University Medical Center Utrecht, Heidelberglaan 100, 3584 CX Utrecht, the Netherlands
| | - Hans Clevers
- KNAW-Hubrecht Institute, Uppsalalaan 8, 3584 CT Utrecht, the Netherlands; University Medical Center Utrecht, Heidelberglaan 100, 3584 CX Utrecht, the Netherlands
| | - Vikram Prasad
- Department of Molecular Genetics, Biochemistry, and Microbiology, University of Cincinnati College of Medicine, Cincinnati, OH 45267, USA
| | - Robert Jan Lebbink
- University Medical Center Utrecht, Heidelberglaan 100, 3584 CX Utrecht, the Netherlands
| | - Holger Rehmann
- University Medical Center Utrecht, Heidelberglaan 100, 3584 CX Utrecht, the Netherlands
| | - Niels Geijsen
- KNAW-Hubrecht Institute, Uppsalalaan 8, 3584 CT Utrecht, the Netherlands; University Medical Center Utrecht, Heidelberglaan 100, 3584 CX Utrecht, the Netherlands; Department of Clinical Sciences of Companion Animals, Faculty of Veterinary Medicine, Utrecht University, Yalelaan 108, 3584 CM Utrecht, the Netherlands.
| |
Collapse
|
244
|
Abstract
Viruses have evolved intricate mechanisms to gain entry into the host cell. Identification of host proteins that serve as viral receptors has enabled insights into virus particle internalization, host and tissue tropism, and viral pathogenesis. In this review we discuss the most commonly employed methods for virus receptor discovery, specifically highlighting the use of forward genetic screens in human haploid cells. The ability to generate true knockout alleles at high saturation provides a sensitive means to study virus-host interactions. To illustrate the power of such haploid genetic screens, we highlight the discovery of the lysosomal proteins NPC1 and LAMP1 as intracellular receptors for Ebola virus and Lassa virus, respectively. From these studies emerges the notion that receptor usage by these viruses is highly dynamic, involving a programmed switch from cell surface receptor to intracellular receptor. Broad application of genetic knockout approaches will chart functional landscapes of receptors and endocytic pathways hijacked by viruses.
Collapse
Affiliation(s)
- Sirika Pillay
- Department of Microbiology and Immunology, Stanford University School of Medicine, Stanford, California 94305; ,
| | - Jan E Carette
- Department of Microbiology and Immunology, Stanford University School of Medicine, Stanford, California 94305; ,
| |
Collapse
|
245
|
Jae LT, Brummelkamp TR. Emerging intracellular receptors for hemorrhagic fever viruses. Trends Microbiol 2015; 23:392-400. [PMID: 26004032 DOI: 10.1016/j.tim.2015.04.006] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2015] [Revised: 04/10/2015] [Accepted: 04/21/2015] [Indexed: 01/05/2023]
Abstract
Ebola virus and Lassa virus belong to different virus families that can cause viral hemorrhagic fever, a life-threatening disease in humans with limited treatment options. To infect a target cell, Ebola and Lassa viruses engage receptors at the cell surface and are subsequently shuttled into the endosomal compartment. Upon arrival in late endosomes/lysosomes, the viruses trigger membrane fusion to release their genome into the cytoplasm. Although contact sites at the cell surface were recognized for Ebola virus and Lassa virus, it was postulated that Ebola virus requires a critical receptor inside the cell. Recent screens for host factors identified such internal receptors for both viruses: Niemann-Pick disease type C1 protein (NPC1) for Ebola virus and lysosome-associated membrane protein 1 (LAMP1) for Lassa virus. A cellular trigger is needed to permit binding of the viral envelope protein to these intracellular receptors. This 'receptor switch' represents a previously unnoticed step in virus entry with implications for host-pathogen interactions and viral tropism.
Collapse
Affiliation(s)
- Lucas T Jae
- Netherlands Cancer Institute, Plesmanlaan 121, Amsterdam, CX, 1066 The Netherlands
| | - Thijn R Brummelkamp
- Netherlands Cancer Institute, Plesmanlaan 121, Amsterdam, CX, 1066 The Netherlands.
| |
Collapse
|
246
|
Haploid Genetic Screen Reveals a Profound and Direct Dependence on Cholesterol for Hantavirus Membrane Fusion. mBio 2015; 6:e00801. [PMID: 26126854 PMCID: PMC4488941 DOI: 10.1128/mbio.00801-15] [Citation(s) in RCA: 96] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
UNLABELLED Hantaviruses cause hemorrhagic fever with renal syndrome (HFRS) in the Old World and a highly fatal hantavirus cardiopulmonary syndrome (HCPS) in the New World. No vaccines or antiviral therapies are currently available to prevent or treat hantavirus disease, and gaps in our understanding of how hantaviruses enter cells challenge the search for therapeutics. We performed a haploid genetic screen in human cells to identify host factors required for entry by Andes virus, a highly virulent New World hantavirus. We found that multiple genes involved in cholesterol sensing, regulation, and biosynthesis, including key components of the sterol response element-binding protein (SREBP) pathway, are critical for Andes virus entry. Genetic or pharmacological disruption of the membrane-bound transcription factor peptidase/site-1 protease (MBTPS1/S1P), an SREBP control element, dramatically reduced infection by virulent hantaviruses of both the Old World and New World clades but not by rhabdoviruses or alphaviruses, indicating that this pathway is broadly, but selectively, required by hantaviruses. These results could be fully explained as arising from the modest depletion of cellular membrane cholesterol that accompanied S1P disruption. Mechanistic studies of cells and with protein-free liposomes suggested that high levels of cholesterol are specifically needed for hantavirus membrane fusion. Taken together, our results indicate that the profound dependence on target membrane cholesterol is a fundamental, and unusual, biophysical property of hantavirus glycoprotein-membrane interactions during entry. IMPORTANCE Although hantaviruses cause important human diseases worldwide, no specific antiviral treatments are available. One of the major obstacles to the development of new therapies is a lack of understanding of how hantaviruses hijack our own host factors to enter cells. Here, we identified multiple cellular genes that control the levels of cholesterol in cellular membranes to be important for hantavirus entry. Our findings suggest that high concentrations of cholesterol in cellular membranes are required at a specific step in the entry process-fusion between viral and cellular membranes-that allows escape of the hantavirus genome into the host cell cytoplasm to initiate infection. Our findings uncover a fundamental feature of the hantavirus infection mechanism and point to cholesterol-lowering drugs as a potential new treatment of hantaviral infections.
Collapse
|
247
|
Abstract
Most animal genomes are diploid, and mammalian development depends on specific adaptations that have evolved secondary to diploidy. Genomic imprinting and dosage compensation restrict haploid development to early embryos. Recently, haploid mammalian development has been reinvestigated since the establishment of haploid embryonic stem cells (ESCs) from mouse embryos. Haploid cells possess one copy of each gene, facilitating the generation of loss-of-function mutations in a single step. Recessive mutations can then be assessed in forward genetic screens. Applications of haploid mammalian cell systems in screens have been illustrated in several recent publications. Haploid ESCs are characterized by a wide developmental potential and can contribute to chimeric embryos and mice. Different strategies for introducing genetic modifications from haploid ESCs into the mouse germline have been further developed. Haploid ESCs therefore introduce new possibilities in mammalian genetics and could offer an unprecedented tool for genome exploration in the future.
Collapse
Affiliation(s)
- Anton Wutz
- Institute of Molecular Health Sciences, Swiss Federal Institute of Technology, ETH Zürich, Hönggerberg, 8049 Zürich, Switzerland;
| |
Collapse
|
248
|
Davis EM, Kim J, Menasche BL, Sheppard J, Liu X, Tan AC, Shen J. Comparative Haploid Genetic Screens Reveal Divergent Pathways in the Biogenesis and Trafficking of Glycophosphatidylinositol-Anchored Proteins. Cell Rep 2015; 11:1727-36. [PMID: 26074080 DOI: 10.1016/j.celrep.2015.05.026] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2015] [Revised: 04/17/2015] [Accepted: 05/11/2015] [Indexed: 11/30/2022] Open
Abstract
Glycophosphatidylinositol-anchored proteins (GPI-APs) play essential roles in physiology, but their biogenesis and trafficking have not been systematically characterized. Here, we took advantage of the recently available haploid genetics approach to dissect GPI-AP pathways in human cells using prion protein (PrP) and CD59 as model molecules. Our screens recovered a large number of common and unexpectedly specialized factors in the GPI-AP pathways. PIGN, PGAP2, and PIGF, which encode GPI anchor-modifying enzymes, were selectively isolated in the CD59 screen, suggesting that GPI anchor composition significantly influences the biogenesis of GPI-APs in a substrate-dependent manner. SEC62 and SEC63, which encode components of the ER-targeting machinery, were selectively recovered in the PrP screen, indicating that they do not constitute a universal route for the biogenesis of mammalian GPI-APs. Together, these comparative haploid genetic screens demonstrate that, despite their similarity in overall architecture and subcellular localization, GPI-APs follow markedly distinct biosynthetic and trafficking pathways.
Collapse
Affiliation(s)
- Eric M Davis
- Department of Molecular, Cellular, and Developmental Biology, University of Colorado at Boulder, Boulder, CO 80309, USA
| | - Jihye Kim
- Department of Medicine, University of Colorado School of Medicine, Aurora, CO 80045, USA
| | - Bridget L Menasche
- Department of Molecular, Cellular, and Developmental Biology, University of Colorado at Boulder, Boulder, CO 80309, USA
| | - Jacob Sheppard
- Department of Molecular, Cellular, and Developmental Biology, University of Colorado at Boulder, Boulder, CO 80309, USA
| | - Xuedong Liu
- Department of Chemistry and Biochemistry, University of Colorado at Boulder, Boulder, CO 80309, USA
| | - Aik-Choon Tan
- Department of Medicine, University of Colorado School of Medicine, Aurora, CO 80045, USA
| | - Jingshi Shen
- Department of Molecular, Cellular, and Developmental Biology, University of Colorado at Boulder, Boulder, CO 80309, USA.
| |
Collapse
|
249
|
Kimura Y, Oda M, Nakatani T, Sekita Y, Monfort A, Wutz A, Mochizuki H, Nakano T. CRISPR/Cas9-mediated reporter knock-in in mouse haploid embryonic stem cells. Sci Rep 2015; 5:10710. [PMID: 26039937 PMCID: PMC4454075 DOI: 10.1038/srep10710] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2015] [Accepted: 04/29/2015] [Indexed: 12/26/2022] Open
Abstract
Mouse parthenogenetic haploid embryonic stem cells (ESCs) are pluripotent cells generated from chemically activated oocytes. Haploid ESCs provide an opportunity to study the effect of genetic alterations because of their hemizygotic characteristics. However, their further application for the selection of unique phenotypes remains limited since ideal reporters to monitor biological processes such as cell differentiation are missing. Here, we report the application of CRISPR/Cas9-mediated knock-in of a reporter cassette, which does not disrupt endogenous target genes in mouse haploid ESCs. We first validated the system by inserting the P2A-Venus reporter cassette into the housekeeping gene locus. In addition to the conventional strategy using the Cas9 nuclease, we employed the Cas9 nickase and truncated sgRNAs to reduce off-target mutagenesis. These strategies induce targeted insertions with an efficiency that correlated with sgRNA guiding activity. We also engineered the neural marker gene Sox1 locus and verified the precise insertion of the P2A-Venus reporter cassette and its functionality by monitoring neural differentiation. Our data demonstrate the successful application of the CRISPR/Cas9-mediated knock-in system for establishing haploid knock-in ESC lines carrying gene specific reporters. Genetically modified haploid ESCs have potential for applications in forward genetic screening of developmental pathways.
Collapse
Affiliation(s)
- Yasuyoshi Kimura
- Department of Pathology
- Department of Neurology, Graduate School of Medicine
| | - Masaaki Oda
- Department of Pathology
- Graduate School of Frontier Biosciences, Osaka University, Osaka, Japan
| | | | - Yoichi Sekita
- Department of Pathology
- Department of Biosciences, Kitasato University School of Science, Kanagawa, Japan
| | - Asun Monfort
- Institute of Molecular Health Sciences, Swiss Federal Institute of Technology, ETH Zürich, Hönggerberg, 8049 Zürich, Switzerland
| | - Anton Wutz
- Institute of Molecular Health Sciences, Swiss Federal Institute of Technology, ETH Zürich, Hönggerberg, 8049 Zürich, Switzerland
| | | | - Toru Nakano
- Department of Pathology
- Graduate School of Frontier Biosciences, Osaka University, Osaka, Japan
- JST, CREST.
| |
Collapse
|
250
|
Boulant S, Stanifer M, Lozach PY. Dynamics of virus-receptor interactions in virus binding, signaling, and endocytosis. Viruses 2015; 7:2794-815. [PMID: 26043381 PMCID: PMC4488714 DOI: 10.3390/v7062747] [Citation(s) in RCA: 130] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2015] [Revised: 05/21/2015] [Accepted: 05/27/2015] [Indexed: 02/06/2023] Open
Abstract
During viral infection the first challenge that viruses have to overcome is gaining access to the intracellular compartment. The infection process starts when the virus contacts the surface of the host cell. A complex series of events ensues, including diffusion at the host cell membrane surface, binding to receptors, signaling, internalization, and delivery of the genetic information. The focus of this review is on the very initial steps of virus entry, from receptor binding to particle uptake into the host cell. We will discuss how viruses find their receptor, move to sub-membranous regions permissive for entry, and how they hijack the receptor-mediated signaling pathway to promote their internalization.
Collapse
Affiliation(s)
- Steeve Boulant
- CellNetworks-Cluster of Excellence and Department of Infectious Diseases, Virology, University Hospital Heidelberg, 69120 Heidelberg, Germany.
- Schaller research group at CellNetworks and DKFZ (German cancer research center), 69120 Heidelberg, Germany.
| | - Megan Stanifer
- CellNetworks-Cluster of Excellence and Department of Infectious Diseases, Virology, University Hospital Heidelberg, 69120 Heidelberg, Germany.
- Schaller research group at CellNetworks and DKFZ (German cancer research center), 69120 Heidelberg, Germany.
| | - Pierre-Yves Lozach
- CellNetworks-Cluster of Excellence and Department of Infectious Diseases, Virology, University Hospital Heidelberg, 69120 Heidelberg, Germany.
| |
Collapse
|