201
|
Jenum S, Grewal HMS, Hokey DA, Kenneth J, Vaz M, Doherty TM, Jahnsen FL, TB Trials Study Group. The frequencies of IFNγ+IL2+TNFα+ PPD-specific CD4+CD45RO+ T-cells correlate with the magnitude of the QuantiFERON® gold in-tube response in a prospective study of healthy indian adolescents. PLoS One 2014; 9:e101224. [PMID: 24992314 PMCID: PMC4081517 DOI: 10.1371/journal.pone.0101224] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2014] [Accepted: 06/04/2014] [Indexed: 11/19/2022] Open
Abstract
BACKGROUND QuantiFERON-TB Gold In-Tube (QFT) is an IFNγ-release assay used in the diagnosis of Mycobacterium tuberculosis (MTB) infection. The risk of TB progression increases with the magnitude of the MTB-specific IFNγ-response. QFT reversion, also associated with low Tuberculin Skin Test responses, may therefore represent a transient immune response with control of M. tuberculosis infection. However, studies at the single cell level have suggested that the quality (polyfunctionality) of the T-cell response is more important than the quantity of cytokines produced. OBJECTIVE To explore the quality and/or magnitude of mycobacteria-specific T-cell responses associated with QFT reversion and persistent QFT-positivity. METHODS Multi-color flowcytometry on prospectively collected peripheral blood mononuclear cells was applied to assess mycobacteria-specific T-cell responses in 42 QFT positive Indian adolescents of whom 21 became QFT negative (reverters) within one year. Ten QFT consistent negatives were also included as controls. RESULTS There was no difference in the qualitative PPD-specific CD4+ T-cell response between QFT consistent positives and reverters. However, compared with QFT consistent positives, reverters displayed lower absolute frequencies of polyfunctional (IFNγ+IL2+TNFα+) CD4+ T-cells at baseline, which were further reduced to the point where they were not different to QFT negative controls one year later. Moreover, absolute frequencies of these cells correlated well with the magnitude of the QFT-response. CONCLUSION Whereas specific polyfunctional CD4+ T-cells have been suggested to protect against TB progression, our data do not support that higher relative or absolute frequencies of PPD-specific polyfunctional CD4+ T-cells in peripheral blood can explain the reduced risk of TB progression observed in QFT reverters. On the contrary, absolute frequencies of these cells correlated with the QFT-response, suggesting that this readout reflects antigenic load.
Collapse
Affiliation(s)
- Synne Jenum
- Centre for Immune Regulation and Department of Pathology, Oslo University Hospital - Rikshospitalet and the University of Oslo, Oslo, Norway
- * E-mail:
| | - Harleen M. S. Grewal
- Department of Clinical Science, Faculty of Medicine and Dentistry, University of Bergen, Norway, and Department of Microbiology, Haukeland University Hospital, Bergen, Norway
| | | | - John Kenneth
- Division of Infectious Diseases, St. John’s Research Institute, Bangalore, India
| | - Mario Vaz
- Physiology and Health and Humanities, St. John’s Medical College and St. John’s Research Institute, Bangalore, India
| | | | - Frode Lars Jahnsen
- Centre for Immune Regulation and Department of Pathology, Oslo University Hospital - Rikshospitalet and the University of Oslo, Oslo, Norway
| | | |
Collapse
|
202
|
Isocitrate lyase mediates broad antibiotic tolerance in Mycobacterium tuberculosis. Nat Commun 2014; 5:4306. [PMID: 24978671 DOI: 10.1038/ncomms5306] [Citation(s) in RCA: 213] [Impact Index Per Article: 19.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2013] [Accepted: 06/05/2014] [Indexed: 01/09/2023] Open
Abstract
Mycobacterium tuberculosis (Mtb) is a persistent intracellular pathogen intrinsically tolerant to most antibiotics. However, the specific factors that mediate this tolerance remain incompletely defined. Here we apply metabolomic profiling to discover a common set of metabolic changes associated with the activities of three clinically used tuberculosis drugs, isoniazid, rifampicin and streptomycin. Despite targeting diverse cellular processes, all three drugs trigger activation of Mtb's isocitrate lyases (ICLs), metabolic enzymes commonly assumed to be involved in replenishing of tricarboxylic acid (TCA) cycle intermediates. We further show that ICL-deficient Mtb strains are significantly more susceptible than wild-type Mtb to all three antibiotics, and that this susceptibility can be chemically rescued when Mtb is co-incubated with an antioxidant. These results identify a previously undescribed role for Mtb's ICLs in antioxidant defense as a mechanism of antibiotic tolerance.
Collapse
|
203
|
Mayer-Barber KD, Andrade BB, Oland SD, Amaral EP, Barber DL, Gonzales J, Derrick SC, Shi R, Kumar NP, Wei W, Yuan X, Zhang G, Cai Y, Babu S, Catalfamo M, Salazar AM, Via LE, Barry CE, Sher A. Host-directed therapy of tuberculosis based on interleukin-1 and type I interferon crosstalk. Nature 2014; 511:99-103. [PMID: 24990750 DOI: 10.1038/nature13489] [Citation(s) in RCA: 590] [Impact Index Per Article: 53.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2013] [Accepted: 05/16/2014] [Indexed: 12/30/2022]
Abstract
Tuberculosis remains second only to HIV/AIDS as the leading cause of mortality worldwide due to a single infectious agent. Despite chemotherapy, the global tuberculosis epidemic has intensified because of HIV co-infection, the lack of an effective vaccine and the emergence of multi-drug-resistant bacteria. Alternative host-directed strategies could be exploited to improve treatment efficacy and outcome, contain drug-resistant strains and reduce disease severity and mortality. The innate inflammatory response elicited by Mycobacterium tuberculosis (Mtb) represents a logical host target. Here we demonstrate that interleukin-1 (IL-1) confers host resistance through the induction of eicosanoids that limit excessive type I interferon (IFN) production and foster bacterial containment. We further show that, in infected mice and patients, reduced IL-1 responses and/or excessive type I IFN induction are linked to an eicosanoid imbalance associated with disease exacerbation. Host-directed immunotherapy with clinically approved drugs that augment prostaglandin E2 levels in these settings prevented acute mortality of Mtb-infected mice. Thus, IL-1 and type I IFNs represent two major counter-regulatory classes of inflammatory cytokines that control the outcome of Mtb infection and are functionally linked via eicosanoids. Our findings establish proof of concept for host-directed treatment strategies that manipulate the host eicosanoid network and represent feasible alternatives to conventional chemotherapy.
Collapse
Affiliation(s)
- Katrin D Mayer-Barber
- Immunobiology Section, Laboratory of Parasitic Diseases (LPD), National Institute of Allergy and Infectious Diseases (NIAID), National Institutes of Health (NIH), Bethesda, Maryland 20892, USA
| | - Bruno B Andrade
- Immunobiology Section, Laboratory of Parasitic Diseases (LPD), National Institute of Allergy and Infectious Diseases (NIAID), National Institutes of Health (NIH), Bethesda, Maryland 20892, USA
| | - Sandra D Oland
- Immunobiology Section, Laboratory of Parasitic Diseases (LPD), National Institute of Allergy and Infectious Diseases (NIAID), National Institutes of Health (NIH), Bethesda, Maryland 20892, USA
| | - Eduardo P Amaral
- 1] Immunobiology Section, Laboratory of Parasitic Diseases (LPD), National Institute of Allergy and Infectious Diseases (NIAID), National Institutes of Health (NIH), Bethesda, Maryland 20892, USA [2] Department of Immunology, Biomedical Sciences Institutes, University of Sao Paulo, 05508-900 Sao Paulo, Brazil
| | - Daniel L Barber
- T Lymphocyte Biology Unit, LPD, NIAID, NIH, Bethesda, Maryland 20892, USA
| | - Jacqueline Gonzales
- Tuberculosis Research Section, Laboratory of Clinical Infectious Disease, NIAID, NIH, Bethesda, Maryland 20892, USA
| | - Steven C Derrick
- Center for Biologics Evaluation and Research, Food and Drug Administration, Bethesda, Maryland 20892, USA
| | - Ruiru Shi
- Henan Chest Hospital, 450003 Zhengzhou, China
| | - Nathella Pavan Kumar
- 1] NIH, International Center for Excellence in Research, 600 031 Chennai, India [2] National Institute for Research in Tuberculosis (NIRT), 600 031 Chennai, India
| | - Wang Wei
- Henan Chest Hospital, 450003 Zhengzhou, China
| | - Xing Yuan
- Henan Chest Hospital, 450003 Zhengzhou, China
| | - Guolong Zhang
- Sino-US International Research Center for Tuberculosis, and Henan Public Health Center, 450003 Zhengzhou, China
| | - Ying Cai
- Tuberculosis Research Section, Laboratory of Clinical Infectious Disease, NIAID, NIH, Bethesda, Maryland 20892, USA
| | - Subash Babu
- 1] NIH, International Center for Excellence in Research, 600 031 Chennai, India [2] Helminth Immunology Section, LPD, NIAID, NIH, Bethesda, Maryland 20892, USA
| | - Marta Catalfamo
- Clinical and Molecular Retrovirology Section, Laboratory of Immunoregulation, NIAID, NIH, Bethesda, Maryland 20892, USA
| | | | - Laura E Via
- Tuberculosis Research Section, Laboratory of Clinical Infectious Disease, NIAID, NIH, Bethesda, Maryland 20892, USA
| | - Clifton E Barry
- Tuberculosis Research Section, Laboratory of Clinical Infectious Disease, NIAID, NIH, Bethesda, Maryland 20892, USA
| | - Alan Sher
- Immunobiology Section, Laboratory of Parasitic Diseases (LPD), National Institute of Allergy and Infectious Diseases (NIAID), National Institutes of Health (NIH), Bethesda, Maryland 20892, USA
| |
Collapse
|
204
|
Parandhaman DK, Sharma P, Bisht D, Narayanan S. Proteome and phosphoproteome analysis of the serine/threonine protein kinase E mutant of Mycobacterium tuberculosis. Life Sci 2014; 109:116-26. [PMID: 24972353 DOI: 10.1016/j.lfs.2014.06.013] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2014] [Revised: 04/23/2014] [Accepted: 06/09/2014] [Indexed: 01/04/2023]
Abstract
AIMS Serine/threonine protein kinases (STPKs) have prominent roles in the survival mechanisms of Mycobacterium tuberculosis (M. tuberculosis). Previous studies from our laboratory underscored the role of PknE, an STPK in virulence, adaptation and the suppression of host cell apoptosis. In this study, two-dimensional gel electrophoresis was used to study the proteome and phosphoproteome profiles of wild type M. tuberculosis and its isogenic pknE deletion mutant (ΔpknE) during growth in Middlebrook 7H9 and nitric oxide stress. MAIN METHODS Wild-type M. tuberculosis and its isogenic pknE deletion mutant strain were grown in Middlebrook 7H9 as well as subjected to nitric oxide stress using sodium nitroprusside. Whole cell lysates were prepared and analyzed by 2D-gel electrophoresis. Phosphoproteomes were analyzed using phospho serine and phospho threonine antibodies after subjecting the 2D-gels to western blotting. Proteins of interest were identified using mass spectrometry. KEY FINDINGS Our analysis provides insights into the targets that impose pro-apoptotic as well as altered cellular phenotypes on ΔpknE, revealing novel substrates and functions for PknE. SIGNIFICANCE For the first time, our proteome and phosphoproteome data decipher the function of PknE in cell division, virulence, dormancy, suppression of sigma factor B and its regulated genes, suppression of two-component systems and in the metabolic activity of M. tuberculosis.
Collapse
Affiliation(s)
- Dinesh Kumar Parandhaman
- Department of Immunology, National Institute for Research in Tuberculosis, Chennai,India; Department of Immunology, International Centre for Genetic Engineering and Biotechnology, Aruna Asif Ali Marg, New Delhi, 110067,India
| | - Prashant Sharma
- Department of Biochemistry, National JALMA Institute for Leprosy and other Mycobacterial Diseases, Tajganj, Agra,India
| | - Deepa Bisht
- Department of Biochemistry, National JALMA Institute for Leprosy and other Mycobacterial Diseases, Tajganj, Agra,India
| | - Sujatha Narayanan
- Department of Immunology, National Institute for Research in Tuberculosis, Chennai,India.
| |
Collapse
|
205
|
Hudock TA, Kaushal D. A novel microdissection approach to recovering mycobacterium tuberculosis specific transcripts from formalin fixed paraffin embedded lung granulomas. J Vis Exp 2014. [PMID: 24962586 DOI: 10.3791/51693] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022] Open
Abstract
Microdissection has been used for the examination of tissues at DNA, RNA, and protein levels for over a decade. Laser capture microscopy (LCM) is the most common microdissection technique used today. In this technique, a laser is used to focally melt a thermoplastic membrane that overlies a dehydrated tissue section(1). The tissue section composite is then lifted and separated from the membrane. Although this technique can be used successfully for tissue examination, it is time consuming and expensive. Furthermore, the successful completion of procedures using this technique requires the use of a laser, thus limiting its use. A new more affordable and practical microdissection approach called mesodissection is a possible solution to the pitfalls of LCM. This technique employs the MESO-1/MeSectr system to mill the desired tissue from a slide mounted tissue sample while concurrently dispensing and aspirating fluid to recover the desired tissue sample into a consumable mill bit. Before the dissection process begins, the user aligns the formalin fixed paraffin embedded (FFPE) slide with a hematoxylin and eosin stained (H&E) reference slide. Thereafter, the operator annotates the desired dissection area and proceeds to dissect the appropriate segment. The program generates an archived image of the dissection. The main advantage of mesodissection is the short duration needed to dissect a slide, taking an average of ten minutes from set up to sample generation in this experiment. Additionally, the system is significantly more cost effective and user friendly. A slight disadvantage is that it is not as precise as laser capture microscopy. In this article we demonstrate how mesodissection can be used to extract RNA from slides from FFPE granulomas caused by Mycobacterium tuberculosis (Mtb).
Collapse
Affiliation(s)
- Teresa A Hudock
- Bacteriology and Parasitology, Tulane National Primate Research Center;
| | - Deepak Kaushal
- Bacteriology and Parasitology, Tulane National Primate Research Center; Microbiology and Immunology, Tulane National Primate Research Center
| |
Collapse
|
206
|
Barreto ML, Pilger D, Pereira SM, Genser B, Cruz AA, Cunha SS, Sant'Anna C, Hijjar MA, Ichihara MY, Rodrigues LC. Causes of variation in BCG vaccine efficacy: examining evidence from the BCG REVAC cluster randomized trial to explore the masking and the blocking hypotheses. Vaccine 2014; 32:3759-64. [PMID: 24852722 DOI: 10.1016/j.vaccine.2014.05.042] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2014] [Revised: 04/30/2014] [Accepted: 05/07/2014] [Indexed: 11/25/2022]
Abstract
BCG protection varies and in some places (nearest the equator) is low or absent. Understanding this variation can inform the efforts to develop new vaccines against tuberculosis. Two main hypotheses are used to explain this variation: under masking, new vaccines are unlikely to increase protection; under blocking new vaccines have a greater potential to be effective when BCG is not. We conducted a cluster randomized trial to explored the masking and blocking hypotheses by studying BCG vaccine efficacy of neonatal vaccination and when administered for the first or a second (revaccination) time at school age in two sites (Manaus close and Salvador further south from the equator). Seven hundred and sixty three state schools were matched on socio economic characteristics of the neighborhood and 239,934 children were randomized to vaccine (BCG vaccination at school age) or control group. Protection by first BCG vaccination at school age was high in Salvador (34%, 95% CI 7-53%, p=0.017) but low in Manaus (8%, 95% CI t0 39-40%, p=0.686). For revaccination at school age, protection was modest in Salvador (19%, 95% CI 3-33%, p=0.022) and absent in Manaus (1%, 95% CI to 27-23%, p=0.932). Vaccine efficacy for neonatal vaccination was similar in Salvador (40%, 95% CI 22-54%, p<0.001) and Manaus (36%, 95% CI 11-53%, p=0.008). Variation in BCG efficacy was marked when vaccine was given at school age but absent at birth, which points towards blocking as the dominant mechanism. New tuberculosis vaccines that overcome or by pass this blocking effect could confer protection in situations where BCG is not protective.
Collapse
Affiliation(s)
- Mauricio L Barreto
- Instituto de Saúde Coletiva, Universidade Federal da Bahia, Salvador, Brazil
| | - Daniel Pilger
- London School of Hygiene and Tropical Medicine, London, England, United Kingdom; National Institute for Medical Research/Mwanza Interventions Trial Unit, Mwanza, Tanzania
| | - Susan M Pereira
- Instituto de Saúde Coletiva, Universidade Federal da Bahia, Salvador, Brazil
| | - Bernd Genser
- Instituto de Saúde Coletiva, Universidade Federal da Bahia, Salvador, Brazil; Mannheim Institute of Public Health, Social and Preventive Medicine, Medical Faculty Mannheim, University of Heidelberg, Germany
| | - Alvaro A Cruz
- School of Medicine, Universidade Federal da Bahia, Salvador, Brazil
| | - Sergio S Cunha
- Department of Social Medicine, Universidade Federal de Pernambuco, Recife, Brazil
| | - Clemax Sant'Anna
- School of Medicine, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Miguel A Hijjar
- National School of Public Health, FIOCRUZ, Rio de Janeiro, Brazil
| | - Maria Y Ichihara
- Instituto de Saúde Coletiva, Universidade Federal da Bahia, Salvador, Brazil
| | - Laura C Rodrigues
- London School of Hygiene and Tropical Medicine, London, England, United Kingdom.
| |
Collapse
|
207
|
Abstract
Treatment of tuberculosis (TB) remains challenging, with lengthy treatment durations and complex drug regimens that are toxic and difficult to administer. Similar to the vast majority of antibiotics, drugs for Mycobacterium tuberculosis are directed against microbial targets. Although more effective drugs that target the bacterium may lead to faster cure of patients, it is possible that a biological limit will be reached that can be overcome only by adopting a fundamentally new treatment approach. TB regimens might be improved by including agents that target host pathways. Recent work on host-pathogen interactions, host immunity, and host-directed interventions suggests that supplementing anti-TB therapy with host modulators may lead to shorter treatment times, a reduction in lung damage caused by the disease, and a lower risk of relapse or reinfection. We undertook this review to identify molecular pathways of the host that may be amenable to modulation by small molecules for the treatment of TB. Although several approaches to augmenting standard TB treatment have been proposed, only a few have been explored in detail or advanced to preclinical and clinical studies. Our review focuses on molecular targets and inhibitory small molecules that function within the macrophage or other myeloid cells, on host inflammatory pathways, or at the level of TB-induced lung pathology.
Collapse
|
208
|
Radusky L, Defelipe LA, Lanzarotti E, Luque J, Barril X, Marti MA, Turjanski AG. TuberQ: a Mycobacterium tuberculosis protein druggability database. DATABASE-THE JOURNAL OF BIOLOGICAL DATABASES AND CURATION 2014; 2014:bau035. [PMID: 24816183 PMCID: PMC4014675 DOI: 10.1093/database/bau035] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/14/2022]
Abstract
In 2012 an estimated 8.6 million people developed tuberculosis (TB) and 1.3 million died from the disease [including 320 000 deaths among human immunodeficiency virus (HIV)-positive people]. There is an urgent need for new anti-TB drugs owing to the following: the fact that current treatments have severe side effects, the increasing emergence of multidrug-resistant strains of Mycobacterium tuberculosis (Mtb), the negative drug-drug interactions with certain HIV (or other disease) treatments and the ineffectiveness against dormant Mtb. In this context we present here the TuberQ database, a novel resource for all researchers working in the field of drug development in TB. The main feature of TuberQ is to provide a druggability analysis of Mtb proteins in a consistent and effective manner, contributing to a better selection of potential drug targets for screening campaigns and the analysis of targets for structure-based drug design projects. The structural druggability analysis is combined with features related to the characteristics of putative inhibitor binding pockets and with functional and biological data of proteins. The structural analysis is performed on all available unique Mtb structures and high-quality structural homology-based models. This information is shown in an interactive manner, depicting the protein structure, the pockets and the associated characteristics for each protein. TuberQ also provides information about gene essentiality information, as determined from whole cell-based knockout experiments, and expression information obtained from microarray experiments done in different stress-related conditions. We hope that TuberQ will be a powerful tool for researchers working in TB and eventually will lead to the identification of novel putative targets and progresses in therapeutic activities. Database URL: http://tuberq.proteinq.com.ar/
Collapse
Affiliation(s)
- Leandro Radusky
- Departamento de Química Biológica, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Pabellón II, Buenos Aires C1428EHA, Argentina, INQUIMAE/UBA-CONICET, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Pabellón II, Buenos Aires C1428EHA, Argentina, Department of Physical Chemistry, Faculty of Pharmacy and Institute of Biomedicine (IBUB), University of Barcelona, Campus de l'Alimentació Torribera, Avgda. Prat de la Riba 171, Santa Coloma de Gramenet 08921, Spain, Department of Physical Chemistry, Faculty of Pharmacy and Institute of Biomedicine (IBUB), University of Barcelona, Avgda. Diagonal 643, Barcelona 08028, Spain and Catalan Institution for Research and Advanced Studies (ICREA), Passeig Lluís Companys 23, Barcelona 08010, Spain
| | | | | | | | | | | | | |
Collapse
|
209
|
Haoues M, Refai A, Mallavialle A, Barbouche MR, Laabidi N, Deckert M, Essafi M. Forkhead box O3 (FOXO3) transcription factor mediates apoptosis in BCG-infected macrophages. Cell Microbiol 2014; 16:1378-90. [PMID: 24712562 DOI: 10.1111/cmi.12298] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2013] [Revised: 03/08/2014] [Accepted: 03/25/2014] [Indexed: 01/10/2023]
Abstract
Enhanced apoptosis of BCG-infected macrophages has been shown to induce stronger dendritic cell-mediated cross-priming of T cells, leading to higher protection against tuberculosis (TB). Uncovering host effectors underlying BCG-induced apoptosis may then prove useful to improve BCG efficacy through priming macrophage apoptosis. Her we report that BCG-mediated apoptosis of human macrophages relies on FOXO3 transcription factor activation. BCG induced a significant apoptosis of THP1 (TDMs) and human monocytes (MDMs)-derived macrophages when a high moi was used, as shown by annexin V/7-AAD staining. BCG-induced apoptosis was associated with dephosphorylation of the prosurvival activated threonine kinase (Akt) and its target FOXO3. Cell fractionation and immunofluorescence microscopy showed translocation of FOXO3 to the nucleus in BCG-infected cells, concomitantly with an increase of FOXO3 transcriptional activity. Moreover, FOXO3 expression knock-down by small interfering RNA (siRNA) partially inhibited the BCG-induced apoptosis. Finally, real-time quantitative PCR (qRT-PCR) analysis of the expression profile of BCG-infected macrophages showed an upregulation of two pro-apoptotic targets of FOXO3, NOXA and p53 upregulated modulator of apoptosis (PUMA). Our results thus indicate that FOXO3 plays an important role in BCG-induced apoptosis of human macrophages and may represent a potential target to improve vaccine efficacy through enhanced apoptosis-mediated cross-priming of T cells.
Collapse
Affiliation(s)
- Meriam Haoues
- Institut Pasteur de Tunis, LTCII, LR11IPT02, Tunis, 1002, Tunisia; Université Tunis El Manar, Tunis, 1068, Tunisia
| | | | | | | | | | | | | |
Collapse
|
210
|
Chen YY, Chang JR, Huang WF, Hsu SC, Kuo SC, Sun JR, Dou HY. The pattern of cytokine production in vitro induced by ancient and modern Beijing Mycobacterium tuberculosis strains. PLoS One 2014; 9:e94296. [PMID: 24728339 PMCID: PMC3984122 DOI: 10.1371/journal.pone.0094296] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2013] [Accepted: 03/14/2014] [Indexed: 12/20/2022] Open
Abstract
It is unclear to what extent the host-responses elicited by Beijing versus non-Beijing strains of Mycobacterium tuberculosis (MTB) contribute to the predominance of modern Beijing strains in Taiwan and some other Asian countries. The purpose of this study was to compare the expression profiles of virulence-related genes in human monocyte-derived macrophages infected in vitro with Beijing (ancient and modern strains) and non-Beijing strains (EAI strains) of MTB that are epidemic in Taiwan. We found that modern Beijing strains induced lower levels of pro-inflammatory cytokines, whereas EAI strains induced higher levels. Notably, the most prevalent modern Beijing sub-lineage, possessing intact RD150 and RD142 chromosomal regions, induced very low levels of pro-inflammatory cytokines, especially interleukin-1β. Moreover, in an intracellular growth assay, the survival of the same modern Beijing strain in human monocyte-derived macrophages was significantly higher than that of an ancient Beijing strain and an EAI strain. Taken together, these results may explain why modern Beijing strains of MTB predominate in Taiwan.
Collapse
Affiliation(s)
- Yih-Yuan Chen
- National Institute of Infectious Diseases and Vaccinology, National Health Research Institutes, Zhunan, Miaoli, Taiwan
| | - Jia-Ru Chang
- National Institute of Infectious Diseases and Vaccinology, National Health Research Institutes, Zhunan, Miaoli, Taiwan
| | - Wei-Feng Huang
- National Institute of Infectious Diseases and Vaccinology, National Health Research Institutes, Zhunan, Miaoli, Taiwan
| | - Shu-Ching Hsu
- National Institute of Infectious Diseases and Vaccinology, National Health Research Institutes, Zhunan, Miaoli, Taiwan
| | - Shu-Chen Kuo
- National Institute of Infectious Diseases and Vaccinology, National Health Research Institutes, Zhunan, Miaoli, Taiwan
| | - Jun-Ren Sun
- Division of Clinical Pathology, Department of Pathology, Tri-Service General Hospital and National Defense Medical Center, Taipei, Taiwan
| | - Horng-Yunn Dou
- National Institute of Infectious Diseases and Vaccinology, National Health Research Institutes, Zhunan, Miaoli, Taiwan
- * E-mail:
| |
Collapse
|
211
|
Seshadri C, Thuong NTT, Yen NTB, Bang ND, Chau TTH, Thwaites GE, Dunstan SJ, Hawn TR. A polymorphism in human CD1A is associated with susceptibility to tuberculosis. Genes Immun 2014; 15:195-8. [PMID: 24500401 PMCID: PMC3998877 DOI: 10.1038/gene.2014.5] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2013] [Revised: 12/20/2013] [Accepted: 01/02/2014] [Indexed: 11/29/2022]
Abstract
CD1 proteins are antigen-presenting molecules that evolved to present lipids rather than peptides to T cells. However, unlike major histocompatibility complex genes, CD1 genes show low rates of polymorphism and have not been clearly associated with human disease. We report that an intronic polymorphism in CD1A (rs411089) is associated with susceptibility to tuberculosis in two cohorts of Vietnamese adults (combined cohort odds ratio 1.78; 95% confidence interval: 1.24-2.57; P=0.001). These data strengthen the hypothesis that CD1A-mediated lipid antigen presentation is important for controlling tuberculosis in humans.
Collapse
Affiliation(s)
- Chetan Seshadri
- Department of Medicine, Division of Allergy and Infectious Diseases, University of Washington, Seattle, Washington, USA
| | | | - Nguyen Thi Bich Yen
- Pham Ngoc Thach Hospital for Tuberculosis and Lung Disease, Ho Chi Minh City, Vietnam
| | - Nguyen Duc Bang
- Pham Ngoc Thach Hospital for Tuberculosis and Lung Disease, Ho Chi Minh City, Vietnam
| | | | - Guy E. Thwaites
- Oxford University Clinical Research Unit, Hospital for Tropical Diseases, Ho Chi Minh City, Vietnam
- Centre for Tropical Medicine, Nuffield Department of Clinical Medicine, Oxford University, Oxford, United Kingdom
| | - Sarah J. Dunstan
- Oxford University Clinical Research Unit, Hospital for Tropical Diseases, Ho Chi Minh City, Vietnam
- Centre for Tropical Medicine, Nuffield Department of Clinical Medicine, Oxford University, Oxford, United Kingdom
| | - Thomas R. Hawn
- Department of Medicine, Division of Allergy and Infectious Diseases, University of Washington, Seattle, Washington, USA
| |
Collapse
|
212
|
Eoh H, Rhee KY. Allostery and compartmentalization: old but not forgotten. Curr Opin Microbiol 2014; 18:23-9. [PMID: 24607642 PMCID: PMC5228163 DOI: 10.1016/j.mib.2014.01.007] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2013] [Revised: 01/27/2014] [Accepted: 01/30/2014] [Indexed: 11/16/2022]
Abstract
Homeostasis is an essential capability of all cells mediated by complex and diverse regulatory networks. Despite this complexity, many of the fundamental regulatory mechanisms used by cells have been evolutionarily conserved. It is thus somewhat surprising that the apparent physiologic significance of these mechanisms has been experimentally neglected. Here, we review 2 widely recognized regulatory mechanisms, allostery and compartmentalization, which exemplify this dissociation in our current understanding of the microbial pathogen, Mycobacterium tuberculosis.
Collapse
Affiliation(s)
- Hyungjin Eoh
- Division of Infectious Diseases, Department of Medicine, Weill Cornell Medical College, New York, NY 10065, USA
| | - Kyu Y Rhee
- Division of Infectious Diseases, Department of Medicine, Weill Cornell Medical College, New York, NY 10065, USA; Department of Microbiology & Immunology, Weill Cornell Medical College, New York, NY 10065, USA.
| |
Collapse
|
213
|
Methylcitrate cycle defines the bactericidal essentiality of isocitrate lyase for survival of Mycobacterium tuberculosis on fatty acids. Proc Natl Acad Sci U S A 2014; 111:4976-81. [PMID: 24639517 DOI: 10.1073/pnas.1400390111] [Citation(s) in RCA: 122] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Few mutations attenuate Mycobacterium tuberculosis (Mtb) more profoundly than deletion of its isocitrate lyases (ICLs). However, the basis for this attenuation remains incompletely defined. Mtb's ICLs are catalytically bifunctional isocitrate and methylisocitrate lyases required for growth on even and odd chain fatty acids. Here, we report that Mtb's ICLs are essential for survival on both acetate and propionate because of its methylisocitrate lyase (MCL) activity. Lack of MCL activity converts Mtb's methylcitrate cycle into a "dead end" pathway that sequesters tricarboxylic acid (TCA) cycle intermediates into methylcitrate cycle intermediates, depletes gluconeogenic precursors, and results in defects of membrane potential and intrabacterial pH. Activation of an alternative vitamin B12-dependent pathway of propionate metabolism led to selective corrections of TCA cycle activity, membrane potential, and intrabacterial pH that specifically restored survival, but not growth, of ICL-deficient Mtb metabolizing acetate or propionate. These results thus resolve the biochemical basis of essentiality for Mtb's ICLs and survival on fatty acids.
Collapse
|
214
|
Abstract
Clinical trials of vaccines against Mycobacterium tuberculosis are well under way and results are starting to come in. Some of these results are not so encouraging, as exemplified by the latest Aeras-422 and MVA85A trials. Other than empirically determining whether a vaccine reduces the number of cases of active tuberculosis, which is a daunting prospect given the chronic nature of the disease, we have no way of assessing vaccine efficacy. Therefore, investigators seek to identify biomarkers that predict vaccine efficacy. Historically, focus has been on the production of interferon-γ by CD4(+) T cells, but this has not been a useful correlate of vaccine-induced protection. In this Opinion article, we discuss recent advances in our understanding of the immune control of M. tuberculosis and how this knowledge could be used for vaccine design and evaluation.
Collapse
|
215
|
Ramon-Garcia S, Vilcheze C, Lim LE, Ng C, Jacobs WR, Thompson CJ. Measurements of the in vitro anti-mycobacterial activity of ivermectin are method-dependent. J Antimicrob Chemother 2014; 69:1723-4. [DOI: 10.1093/jac/dku037] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
|
216
|
Dorhoi A, Iannaccone M, Maertzdorf J, Nouailles G, Weiner J, Kaufmann SHE. Reverse translation in tuberculosis: neutrophils provide clues for understanding development of active disease. Front Immunol 2014; 5:36. [PMID: 24550920 PMCID: PMC3913996 DOI: 10.3389/fimmu.2014.00036] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2013] [Accepted: 01/22/2014] [Indexed: 01/26/2023] Open
Abstract
Tuberculosis (TB) is a major health issue globally. Although typically the disease can be cured by chemotherapy in all age groups, and prevented in part in newborn by vaccination, general consensus exists that development of novel intervention measures requires better understanding of disease mechanisms. Human TB is characterized by polarity between host resistance as seen in 2 billion individuals with latent TB infection and susceptibility occurring in 9 million individuals who develop active TB disease every year. Experimental animal models often do not reflect this polarity adequately, calling for a reverse translational approach. Gene expression profiling has allowed identification of biomarkers that discriminate between latent infection and active disease. Functional analysis of most relevant markers in experimental animal models can help to better understand mechanisms driving disease progression. We have embarked on in-depth characterization of candidate markers of pathology and protection hereby harnessing mouse mutants with defined gene deficiencies. Analysis of mutants deficient in miR-223 expression and CXCL5 production allowed elucidation of relevant pathogenic mechanisms. Intriguingly, these deficiencies were linked to aberrant neutrophil activities. Our findings point to a detrimental potential of neutrophils in TB. Reciprocally, measures that control neutrophils should be leveraged for amelioration of TB in adjunct to chemotherapy.
Collapse
Affiliation(s)
- Anca Dorhoi
- Department of Immunology, Max Planck Institute for Infection Biology, Berlin, Germany
| | - Marco Iannaccone
- Department of Immunology, Max Planck Institute for Infection Biology, Berlin, Germany
| | - Jeroen Maertzdorf
- Department of Immunology, Max Planck Institute for Infection Biology, Berlin, Germany
| | - Geraldine Nouailles
- Department of Immunology, Max Planck Institute for Infection Biology, Berlin, Germany
| | - January Weiner
- Department of Immunology, Max Planck Institute for Infection Biology, Berlin, Germany
| | - Stefan H. E. Kaufmann
- Department of Immunology, Max Planck Institute for Infection Biology, Berlin, Germany
| |
Collapse
|
217
|
Uridine monophosphate kinase as potential target for tuberculosis: From target to lead identification. Interdiscip Sci 2014; 5:296-311. [DOI: 10.1007/s12539-013-0180-y] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2012] [Revised: 03/08/2013] [Accepted: 03/12/2013] [Indexed: 12/31/2022]
|
218
|
Yempala T, Sridevi JP, Yogeeswari P, Sriram D, Kantevari S. Rational design and synthesis of novel dibenzo[b,d]furan-1,2,3-triazole conjugates as potent inhibitors of Mycobacterium tuberculosis. Eur J Med Chem 2014; 71:160-7. [DOI: 10.1016/j.ejmech.2013.10.082] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2013] [Revised: 10/10/2013] [Accepted: 10/31/2013] [Indexed: 11/30/2022]
|
219
|
Satasia SP, Kalaria PN, Raval DK. Catalytic regioselective synthesis of pyrazole based pyrido[2,3-d]pyrimidine-diones and their biological evaluation. Org Biomol Chem 2014; 12:1751-8. [DOI: 10.1039/c3ob42132e] [Citation(s) in RCA: 59] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
220
|
Rational design, synthesis and antitubercular evaluation of novel 2-(trifluoromethyl)phenothiazine-[1,2,3]triazole hybrids. Bioorg Med Chem Lett 2014; 24:233-6. [DOI: 10.1016/j.bmcl.2013.11.031] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2013] [Revised: 10/29/2013] [Accepted: 11/14/2013] [Indexed: 12/20/2022]
|
221
|
Lu W, Lu B, Liu Q, Dong H, Shao Y, Jiang Y, Song H, Chen C, Li G, Xu W, Zhao X, Wan K, Zhu L. Genotypes of Mycobacterium tuberculosis isolates in rural China: using MIRU-VNTR and spoligotyping methods. ACTA ACUST UNITED AC 2013; 46:98-106. [PMID: 24359517 DOI: 10.3109/00365548.2013.858182] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
BACKGROUND The genotypes of Mycobacterium tuberculosis (MTB) have been found to be related to the risk of transmission and the development of drug resistance of this pathogen. Thus, exploring the molecular characteristics of MTB is helpful for understanding and controlling the spread of strains in areas with a high incidence of tuberculosis. METHODS We recruited 512 sputum smear-positive tuberculosis patients from 30 counties from 1 April to 30 June 2010; 503 MTB strains were isolated and 497 were successfully genotyped. We genotyped the strains based on a new 15-locus mycobacterial interspersed repetitive unit-variable number of tandem repeats (MIRU-VNTR) method in combination with spacer-oligonucleotide typing (spoligotyping) technology. RESULTS Based on spoligotyping, 487 strains displayed known patterns, and 10 were absent from the current global spoligotyping database (SpolDB4). The predominant spoligotypes belonged to the Beijing or Beijing-like family (81.1%). When we used the new 15-locus (MIRU-15) set for the MIRU-VNTR analysis, 388 different patterns were identified, including 46 clusters and 342 unique patterns. The combination of spoligotyping and MIRU-15 demonstrated a high discriminatory power. The proportion of clusters varied significantly between the Beijing and non-Beijing family strains, but no significant association was observed between multidrug resistance and Beijing family strains. CONCLUSIONS The present study demonstrated that the Beijing family strains are the most prevalent in rural China. Spoligotyping in combination with the new MIRU-15 technique is useful for the epidemiological analysis of MTB transmission and could be used as a first-line method for the large-scale genotyping of MTB.
Collapse
Affiliation(s)
- Wei Lu
- From the Department of Chronic Communicable Disease, Center for Disease Control and Prevention of Jiangsu Province , Nanjing
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
222
|
Okello M, Nishonov M, Singh P, Mishra S, Mangu N, Seo B, Gund M, Nair V. Approaches to the synthesis of a novel, anti-HIV active integrase inhibitor. Org Biomol Chem 2013; 11:7852-8. [PMID: 24100441 PMCID: PMC3846259 DOI: 10.1039/c3ob41728j] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The novel HIV-1 integrase inhibitor 1, discovered in our laboratory, exhibits potent anti-HIV activity against a diverse set of HIV-1 isolates and also against HIV-2 and SIV. In addition, this compound displays low cellular cytotoxicity and possesses a favorable in vitro drug interaction profile with respect to isozymes of cytochrome P450 (CYP) and uridine 5'-diphospho-glucuronosyltransferase (UGT). However, the total synthesis of this significant HIV integrase inhibitor has not been reported. This contribution describes an optimized, reproducible, multi-step, synthetic route to inhibitor 1. The yield for the separate steps averaged about 80%. The methodologies utilized in the synthesis were, among others, a palladium-catalyzed cross-coupling reaction, a crossed-Claisen condensation, and a hydrazino amide synthesis step. Successful alternative synthetic methodologies for some of the steps are also described.
Collapse
Affiliation(s)
- Maurice Okello
- Center for Drug Discovery and College of Pharmacy, University of Georgia, Athens, GA 30602, USA.
| | | | | | | | | | | | | | | |
Collapse
|
223
|
Deng YH, He HY, Zhang FJ. Immunogenicity and protective efficacy conferred by a novel recombinant Mycobacterium bovis bacillus Calmette-Guérin strain expressing interleukin-12p70 of human cytokine and Ag85A of Mycobacterium tuberculosis fusion protein. Scand J Immunol 2013; 78:497-506. [PMID: 24283772 DOI: 10.1111/sji.12116] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2013] [Accepted: 09/13/2013] [Indexed: 11/27/2022]
Abstract
Mycobacterium bovis bacillus Calmette-Guérin (BCG) immunization provides protection against tuberculosis (TB) in infants, but the antituberculosis protective immunity wanes gradually after initial immunization and lasts less than 15 years. Therefore, more efficacious vaccines are urgently needed. In this study, we constructed a new tuberculosis vaccine of recombinant BCG strain (rBCG-IA), which could express IL-12p70 of human cytokine and Ag85A of M. tuberculosis fusion protein, and investigated its immunogenicity in BALB/c mice by measuring antibody titres, proliferation rate of splenocytes, ratios of CD4(+) T and CD8(+) T cells stimulated by specific antigens and levels of IFN-γ production in antigen-stimulated splenocyte cultures. Meanwhile, we evaluated its protective efficacy against M. tuberculosis H37Rv infection through detecting lung histopathology, organ bacterial loads and lung acid-fast stain. Immunogenicity experiments illustrated that from 2nd to 8th week after immunization, the rBCG-IA vaccine was able to induce the highest level of antibody titres, proliferation rate of splenocytes and IFN-γ production among groups and gained improved ratio of CD4(+) T and CD8(+) T cells from 6th to 8th week after vaccination. And from 2nd to 8th week after M. tuberculosis H37Rv infection, the score of pathology and bacterial loads in the rBCG-IA group were obviously lower than that in rBCG-I group, rBCG-A group or control group (PBST group), but similar to that in BCG group. This study suggested that rBCG-IA was able to elicit stronger humoral and cellular immune responses, but could only confer similar protective efficacy compared with its parental BCG vaccine.
Collapse
Affiliation(s)
- Y H Deng
- Department of Human Anatomy, Medical College, Kunming University of Science and Technology, Kunming, China
| | | | | |
Collapse
|
224
|
Behr MA, Waters WR. Is tuberculosis a lymphatic disease with a pulmonary portal? THE LANCET. INFECTIOUS DISEASES 2013; 14:250-5. [PMID: 24268591 DOI: 10.1016/s1473-3099(13)70253-6] [Citation(s) in RCA: 70] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Tuberculosis most commonly presents as a pulmonary disease, in which infection, persistence, and induction of transmissible pathology all occur in the lungs. If viewed as a pulmonary disease, enlarged lymph nodes represent reactive adenitis, and extrapulmonary forms of tuberculosis (including lymphatic tuberculosis) are not transmissible, hence representing an evolutionary dead-end for the pathogen. In an alternative theory, Mycobacterium tuberculosis passes asymptomatically through the lungs and rapidly establishes a chronic lymphatic infection. After a period of weeks to decades secondary lung pathology develops, ultimately allowing transmission to occur. Evidence that supports this lymphatic model includes historical descriptions of human tuberculosis from the preantibiotic era, analogy with other mycobacterial infections, observations of tuberculosis in non-human hosts, and experimental models of tuberculosis disease. At a fundamental level, a lymphocentric model proposes that spread of organisms outside the lung parenchyma is essential to induce adaptive immunity, which is crucial for the generation of transmissible pathology. Furthermore, a lymphatic model could explain why the lesion associated with primary infection (Ghon focus) is anatomically separated from the most common site of reactivation disease (the apex). More practically, an alternative perspective that classes tuberculosis as a lymphatic disease might affect strategies for preclinical and clinical assessment of novel diagnostics, drugs, and vaccines.
Collapse
Affiliation(s)
- Marcel A Behr
- McGill International Tuberculosis Centre, McGill University, Montreal, QC, Canada.
| | - W Ray Waters
- Bovine Tuberculosis Research Project, National Animal Disease Center, Ames, IA, USA
| |
Collapse
|
225
|
An elucidation of neutrophil functions against Mycobacterium tuberculosis infection. Clin Dev Immunol 2013; 2013:959650. [PMID: 24312131 PMCID: PMC3838815 DOI: 10.1155/2013/959650] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2013] [Accepted: 10/01/2013] [Indexed: 11/17/2022]
Abstract
We characterized the functions of neutrophils in response to Mycobacterium tuberculosis (M. tb) infection, with particular reference to glutathione (GSH). We examined the effects of GSH in improving the ability of neutrophils to control intracellular M. tb infection. Our findings indicate that increasing the intracellular levels of GSH with a liposomal formulation of GSH (L-GSH) resulted in reduction in the levels of free radicals and increased acidification of M. tb containing phagosomes leading to the inhibition in the growth of M. tb. This inhibitory mechanism is dependent on the presence of TNF-α and IL-6. Our studies demonstrate a novel regulatory mechanism adapted by the neutrophils to control M. tb infection.
Collapse
|
226
|
Gupta N, Vyas VK, Patel B, Ghate M. Predictive 3D-QSAR and HQSAR model generation of isocitrate lyase (ICL) inhibitors by various alignment methods combined with docking study. Med Chem Res 2013. [DOI: 10.1007/s00044-013-0865-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
227
|
Foster B, Bagci U, Dey B, Luna B, Bishai W, Jain S, Mollura DJ. Segmentation of PET images for computer-aided functional quantification of tuberculosis in small animal models. IEEE Trans Biomed Eng 2013; 61:711-24. [PMID: 24235292 DOI: 10.1109/tbme.2013.2288258] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
Pulmonary infections often cause spatially diffuse and multi-focal radiotracer uptake in positron emission tomography (PET) images, which makes accurate quantification of the disease extent challenging. Image segmentation plays a vital role in quantifying uptake due to the distributed nature of immuno-pathology and associated metabolic activities in pulmonary infection, specifically tuberculosis (TB). For this task, thresholding-based segmentation methods may be better suited over other methods; however, performance of the thresholding-based methods depend on the selection of thresholding parameters, which are often suboptimal. Several optimal thresholding techniques have been proposed in the literature, but there is currently no consensus on how to determine the optimal threshold for precise identification of spatially diffuse and multi-focal radiotracer uptake. In this study, we propose a method to select optimal thresholding levels by utilizing a novel intensity affinity metric within the affinity propagation clustering framework. We tested the proposed method against 70 longitudinal PET images of rabbits infected with TB. The overall dice similarity coefficient between the segmentation from the proposed method and two expert segmentations was found to be 91.25 ±8.01% with a sensitivity of 88.80 ±12.59% and a specificity of 96.01 ±9.20%. High accuracy and heightened efficiency of our proposed method, as compared to other PET image segmentation methods, were reported with various quantification metrics.
Collapse
|
228
|
Haug M, Awuh JA, Steigedal M, Frengen Kojen J, Marstad A, Nordrum IS, Halaas Ø, Flo TH. Dynamics of immune effector mechanisms during infection with Mycobacterium avium in C57BL/6 mice. Immunology 2013; 140:232-43. [PMID: 23746054 DOI: 10.1111/imm.12131] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2013] [Revised: 05/10/2013] [Accepted: 06/03/2013] [Indexed: 12/22/2022] Open
Abstract
Opportunistic infections with non-tuberculous mycobacteria such as Mycobacterium avium are receiving renewed attention because of increased incidence and difficulties in treatment. As for other mycobacterial infections, a still poorly understood collaboration of different immune effector mechanisms is required to confer protective immunity. Here we have characterized the interplay of innate and adaptive immune effector mechanisms contributing to containment in a mouse infection model using virulent M. avium strain 104 in C57BL/6 mice. M. avium caused chronic infection in mice, as shown by sustained organ bacterial load. In the liver, bacteria were contained in granuloma-like structures that could be defined morphologically by expression of the antibacterial innate effector protein Lipocalin 2 in the adjoining hepatocytes and infiltrating neutrophils, possibly contributing to containment. Circulatory anti-mycobacterial antibodies steadily increased throughout infection and were primarily of the IgM isotype. Highest levels of interferon-γ were found in infected liver, spleen and serum of mice approximately 2 weeks post infection and coincided with a halt in organ bacterial growth. In contrast, expression of tumour necrosis factor was surprisingly low in spleen compared with liver. We did not detect interleukin-17 in infected organs or M. avium-specific T helper 17 cells, suggesting a minor role for T helper 17 cells in this model. A transient and relative decrease in regulatory T cell numbers was seen in spleens. This detailed characterization of M. avium infection in C57BL/6 mice may provide a basis for future studies aimed at gaining better insight into mechanisms leading to containment of infections with non-tuberculous mycobacteria.
Collapse
Affiliation(s)
- Markus Haug
- Department of Cancer Research and Molecular Medicine, Centre of Molecular Inflammation Research, NTNU, Trondheim; St Olav's Hospital, Trondheim
| | | | | | | | | | | | | | | |
Collapse
|
229
|
MicroRNA-155 promotes autophagy to eliminate intracellular mycobacteria by targeting Rheb. PLoS Pathog 2013; 9:e1003697. [PMID: 24130493 PMCID: PMC3795043 DOI: 10.1371/journal.ppat.1003697] [Citation(s) in RCA: 208] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2012] [Accepted: 08/26/2013] [Indexed: 02/07/2023] Open
Abstract
Mycobacterium tuberculosis is a hard-to-eradicate intracellular pathogen that infects one-third of the global population. It can live within macrophages owning to its ability to arrest phagolysosome biogenesis. Autophagy has recently been identified as an effective way to control the intracellular mycobacteria by enhancing phagosome maturation. In the present study, we demonstrate a novel role of miR-155 in regulating the autophagy-mediated anti-mycobacterial response. Both in vivo and in vitro studies showed that miR-155 expression was significantly enhanced after mycobacterial infection. Forced expression of miR-155 accelerated the autophagic response in macrophages, thus promoting the maturation of mycobacterial phagosomes and decreasing the survival rate of intracellular mycobacteria, while transfection with miR-155 inhibitor increased mycobacterial survival. However, macrophage-mediated mycobacterial phagocytosis was not affected after miR-155 overexpression or inhibition. Furthermore, blocking autophagy with specific inhibitor 3-methyladenine or silencing of autophagy related gene 7 (Atg7) reduced the ability of miR-155 to promote autophagy and mycobacterial elimination. More importantly, our study demonstrated that miR-155 bound to the 3′-untranslated region of Ras homologue enriched in brain (Rheb), a negative regulator of autophagy, accelerated the process of autophagy and sequential killing of intracellular mycobacteria by suppressing Rheb expression. Our results reveal a novel role of miR-155 in regulating autophagy-mediated mycobacterial elimination by targeting Rheb, and provide potential targets for clinical treatment. microRNA-155 (miR-155) plays an essential role in regulating the host immune response by post-transcriptionally repressing the expression of target genes. However, little is known regarding its activity in modulating autophagy, an important host defense mechanism against intracellular bacterial infection. Mycobacterium tuberculosis is a hard-to-eradicate intracellular pathogen that infects approximately one-third of the global population, and causes 1.5 million deaths annually. The present study explores a novel role of miR-155 in the host response against mycobacterial infection. Our data demonstrates that mycobacterial infection triggers the expression of miR-155, and the induction of miR-155 in turn activates autophagy by targeting Rheb, a negative regulator of autophagy. miR-155-promoted autophagy accelerates the maturation of the mycobacterial phagosome, thus decreasing the survival of intracellular mycobacteria in macrophages. These findings contribute to a better understanding of the host defense mechanisms against mycobacterial infection, providing useful information for development of potential therapeutic interventions against tuberculosis.
Collapse
|
230
|
Du Q, Dai G, Long Q, Yu X, Dong L, Huang H, Xie J. Mycobacterium tuberculosis rrs A1401G mutation correlates with high-level resistance to kanamycin, amikacin, and capreomycin in clinical isolates from mainland China. Diagn Microbiol Infect Dis 2013; 77:138-42. [DOI: 10.1016/j.diagmicrobio.2013.06.031] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2013] [Revised: 05/29/2013] [Accepted: 06/23/2013] [Indexed: 10/26/2022]
|
231
|
Oksanen KE, Halfpenny NJ, Sherwood E, Harjula SKE, Hammarén MM, Ahava MJ, Pajula ET, Lahtinen MJ, Parikka M, Rämet M. An adult zebrafish model for preclinical tuberculosis vaccine development. Vaccine 2013; 31:5202-9. [DOI: 10.1016/j.vaccine.2013.08.093] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2013] [Revised: 08/16/2013] [Accepted: 08/28/2013] [Indexed: 10/26/2022]
|
232
|
Yempala T, Sridevi JP, Yogeeswari P, Sriram D, Kantevari S. Design, synthesis and antitubercular evaluation of novel 2-substituted-3H-benzofuro benzofurans via palladium–copper catalysed Sonagashira coupling reaction. Bioorg Med Chem Lett 2013; 23:5393-6. [DOI: 10.1016/j.bmcl.2013.07.048] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2013] [Revised: 07/19/2013] [Accepted: 07/23/2013] [Indexed: 11/29/2022]
|
233
|
Prigozhin DM, Mavrici D, Huizar JP, Vansell HJ, Alber T. Structural and biochemical analyses of Mycobacterium tuberculosis N-acetylmuramyl-L-alanine amidase Rv3717 point to a role in peptidoglycan fragment recycling. J Biol Chem 2013; 288:31549-55. [PMID: 24019530 DOI: 10.1074/jbc.m113.510792] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Peptidoglycan hydrolases are key enzymes in bacterial cell wall homeostasis. Understanding the substrate specificity and biochemical activity of peptidoglycan hydrolases in Mycobacterium tuberculosis is of special interest as it can aid in the development of new cell wall targeting therapeutics. In this study, we report biochemical and structural characterization of the mycobacterial N-acetylmuramyl-L-alanine amidase, Rv3717. The crystal structure of Rv3717 in complex with a dipeptide product shows that, compared with previously characterized peptidoglycan amidases, the enzyme contains an extra disulfide-bonded β-hairpin adjacent to the active site. The structure of two intermediates in assembly reveal that Zn(2+) binding rearranges active site residues, and disulfide formation promotes folding of the β-hairpin. Although Zn(2+) is required for hydrolysis of muramyl dipeptide, disulfide oxidation is not required for activity on this substrate. The orientation of the product in the active site suggests a role for a conserved glutamate (Glu-200) in catalysis; mutation of this residue abolishes activity. The product binds at the head of a closed tunnel, and the enzyme showed no activity on polymerized peptidoglycan. These results point to a potential role for Rv3717 in peptidoglycan fragment recycling.
Collapse
Affiliation(s)
- Daniil M Prigozhin
- From the Department of Molecular and Cell Biology, University of California, Berkeley, California 94720-3220
| | | | | | | | | |
Collapse
|
234
|
Wolf TM, Sreevatsan S, Travis D, Mugisha L, Singer RS. The risk of tuberculosis transmission to free-ranging great apes. Am J Primatol 2013; 76:2-13. [DOI: 10.1002/ajp.22197] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2012] [Revised: 07/25/2013] [Accepted: 07/29/2013] [Indexed: 01/07/2023]
Affiliation(s)
- Tiffany M. Wolf
- Department of Veterinary and Biomedical Sciences; College of Veterinary Medicine; University of Minnesota; St. Paul Minnesota
- Minnesota Zoological Gardens; Apple Valley Minnesota
| | - Srinand Sreevatsan
- Department of Veterinary Population Medicine; College of Veterinary Medicine; University of Minnesota; St. Paul Minnesota
| | - Dominic Travis
- Department of Veterinary Population Medicine; College of Veterinary Medicine; University of Minnesota; St. Paul Minnesota
| | - Lawrence Mugisha
- College of Veterinary Medicine; Animal Resources and Biosecurity; Makerere University; Kampala Uganda
- Conservation and Ecosystem Health Alliance (CEHA); Kampala Uganda
| | - Randall S. Singer
- Department of Veterinary and Biomedical Sciences; College of Veterinary Medicine; University of Minnesota; St. Paul Minnesota
| |
Collapse
|
235
|
Dartois V, Barry CE. A medicinal chemists' guide to the unique difficulties of lead optimization for tuberculosis. Bioorg Med Chem Lett 2013; 23:4741-50. [PMID: 23910985 PMCID: PMC3789655 DOI: 10.1016/j.bmcl.2013.07.006] [Citation(s) in RCA: 88] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2013] [Revised: 06/27/2013] [Accepted: 07/03/2013] [Indexed: 10/26/2022]
Abstract
Tuberculosis is a bacterial disease that predominantly affects the lungs and results in extensive tissue pathology. This pathology contributes to the complexity of drug development as it presents discrete microenvironments within which the bacterium resides, often under conditions where replication is limited and intrinsic drug susceptibility is low. This consolidated pathology also results in impaired vascularization that limits access of potential lead molecules to the site of infection. Translating these considerations into a target-product profile to guide lead optimization programs involves implementing unique in vitro and in vivo assays to maximize the likelihood of developing clinically meaningful candidates.
Collapse
Affiliation(s)
- Véronique Dartois
- Public Health Research Institute, New Jersey Medical School, Newark, NJ, United States
| | | |
Collapse
|
236
|
Singh M, Kumar P, Yadav S, Gautam R, Sharma N, Karthikeyan S. The crystal structure reveals the molecular mechanism of bifunctional 3,4-dihydroxy-2-butanone 4-phosphate synthase/GTP cyclohydrolase II (Rv1415) fromMycobacterium tuberculosis. ACTA CRYSTALLOGRAPHICA SECTION D: BIOLOGICAL CRYSTALLOGRAPHY 2013; 69:1633-44. [DOI: 10.1107/s0907444913011402] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/04/2013] [Accepted: 04/26/2013] [Indexed: 11/10/2022]
|
237
|
Orme IM. A new unifying theory of the pathogenesis of tuberculosis. Tuberculosis (Edinb) 2013; 94:8-14. [PMID: 24157189 DOI: 10.1016/j.tube.2013.07.004] [Citation(s) in RCA: 89] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2013] [Revised: 07/24/2013] [Accepted: 07/29/2013] [Indexed: 10/26/2022]
Abstract
It is set in stone that Mycobacterium tuberculosis is a facultative intracellular bacterial parasite. This axiom drives our knowledge of the host response, the way we design vaccines against the organism by generating protective T cells, and to a lesser extent, the way we try to target anti-microbial drugs. The purpose of this article is to commit total heresy. I believe that M. tuberculosis can equally well be regarded as an extracellular pathogen and may in fact spend a large percentage of its human lung "life-cycle" in this environment. It is of course intracellular as well, but this may well be little more than a brief interlude after infection of a new host during which the bacterium must replicate to increase its chances of transmission and physiologically adapt prior to moving back to an extracellular phase. As a result, by focusing almost completely on just the intracellular phase, we may be making serious strategic errors in the way we try to intervene in this pathogenic process. It is my opinion that when a TB bacillus enters the lungs and starts to reside inside an alveolar macrophage, its central driving force is to switch on a process leading to lung necrosis, since it is only by this process that the local lung tissue can be destroyed and the bacillus can be exhaled and transmitted. I present here a new model of the pathogenesis of the disease that attempts to unify the pathogenic process of infection, disease, persistence [rather than latency], and reactivation.
Collapse
Affiliation(s)
- Ian M Orme
- Department of Microbiology, Immunology and Pathology, Colorado State University, Fort Collins, CO 80523, USA.
| |
Collapse
|
238
|
Abstract
Syphilis, cholera and TB have re-emerged and now affect the health of countless humans globally. In this article, we review current information concerning the biology and epidemiology of these bacterial diseases with the goal of developing a better understanding of factors that have led to their resurgence and that threaten to compromise their control. The impact of microbial and environmental change notwithstanding, the main factors common to the re-emergence of syphilis, cholera and TB are human demographics and behavior. This information is critical to developing targeted strategies aimed at preventing and controlling these potentially deadly infectious diseases.
Collapse
Affiliation(s)
- Lola V Stamm
- Department of Epidemiology, Gillings School of Global Public Health, The University of North Carolina at Chapel Hill, Chapel Hill, NC, USA.
| | | |
Collapse
|
239
|
Cilfone NA, Perry CR, Kirschner DE, Linderman JJ. Multi-scale modeling predicts a balance of tumor necrosis factor-α and interleukin-10 controls the granuloma environment during Mycobacterium tuberculosis infection. PLoS One 2013; 8:e68680. [PMID: 23869227 PMCID: PMC3711807 DOI: 10.1371/journal.pone.0068680] [Citation(s) in RCA: 93] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2013] [Accepted: 06/03/2013] [Indexed: 01/11/2023] Open
Abstract
Interleukin-10 (IL-10) and tumor necrosis factor-α (TNF-α) are key anti- and pro-inflammatory mediators elicited during the host immune response to Mycobacterium tuberculosis (Mtb). Understanding the opposing effects of these mediators is difficult due to the complexity of processes acting across different spatial (molecular, cellular, and tissue) and temporal (seconds to years) scales. We take an in silico approach and use multi-scale agent based modeling of the immune response to Mtb, including molecular scale details for both TNF-α and IL-10. Our model predicts that IL-10 is necessary to modulate macrophage activation levels and to prevent host-induced tissue damage in a granuloma, an aggregate of cells that forms in response to Mtb. We show that TNF-α and IL-10 parameters related to synthesis, signaling, and spatial distribution processes control concentrations of TNF-α and IL-10 in a granuloma and determine infection outcome in the long-term. We devise an overall measure of granuloma function based on three metrics - total bacterial load, macrophage activation levels, and apoptosis of resting macrophages - and use this metric to demonstrate a balance of TNF-α and IL-10 concentrations is essential to Mtb infection control, within a single granuloma, with minimal host-induced tissue damage. Our findings suggest that a balance of TNF-α and IL-10 defines a granuloma environment that may be beneficial for both host and pathogen, but perturbing the balance could be used as a novel therapeutic strategy to modulate infection outcomes.
Collapse
Affiliation(s)
- Nicholas A. Cilfone
- Department of Chemical Engineering, University of Michigan, Ann Arbor, Michigan, United States of America
| | - Cory R. Perry
- Department of Microbiology and Immunology, University of Michigan Medical School, Ann Arbor, Michigan, United States of America
| | - Denise E. Kirschner
- Department of Microbiology and Immunology, University of Michigan Medical School, Ann Arbor, Michigan, United States of America
- * E-mail: (DEK); (JJL)
| | - Jennifer J. Linderman
- Department of Chemical Engineering, University of Michigan, Ann Arbor, Michigan, United States of America
- * E-mail: (DEK); (JJL)
| |
Collapse
|
240
|
Roza DLD, Caccia-Bava MDCGG, Martinez EZ. Spatio-temporal patterns of tuberculosis incidence in Ribeirão Preto, State of São Paulo, southeast Brazil, and their relationship with social vulnerability: a Bayesian analysis. Rev Soc Bras Med Trop 2013; 45:607-15. [PMID: 23152345 DOI: 10.1590/s0037-86822012000500013] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2011] [Accepted: 02/07/2012] [Indexed: 11/22/2022] Open
Abstract
INTRODUCTION The purpose of this ecological study was to evaluate the urban spatial and temporal distribution of tuberculosis (TB) in Ribeirão Preto, State of São Paulo, southeast Brazil, between 2006 and 2009 and to evaluate its relationship with factors of social vulnerability such as income and education level. METHODS We evaluated data from TBWeb, an electronic notification system for TB cases. Measures of social vulnerability were obtained from the SEADE Foundation, and information about the number of inhabitants, education and income of the households were obtained from Brazilian Institute of Geography and Statistics. Statistical analyses were conducted by a Bayesian regression model assuming a Poisson distribution for the observed new cases of TB in each area. A conditional autoregressive structure was used for the spatial covariance structure. RESULTS The Bayesian model confirmed the spatial heterogeneity of TB distribution in Ribeirão Preto, identifying areas with elevated risk and the effects of social vulnerability on the disease. We demonstrated that the rate of TB was correlated with the measures of income, education and social vulnerability. However, we observed areas with low vulnerability and high education and income, but with high estimated TB rates. CONCLUSIONS The study identified areas with different risks for TB, given that the public health system deals with the characteristics of each region individually and prioritizes those that present a higher propensity to risk of TB. Complex relationships may exist between TB incidence and a wide range of environmental and intrinsic factors, which need to be studied in future research.
Collapse
Affiliation(s)
- Daiane Leite da Roza
- Departamento de Medicina Social, Universidade de São Paulo, Ribeirão Preto, SP, Brasil
| | | | | |
Collapse
|
241
|
Subbian S, Tsenova L, Yang G, O'Brien P, Parsons S, Peixoto B, Taylor L, Fallows D, Kaplan G. Chronic pulmonary cavitary tuberculosis in rabbits: a failed host immune response. Open Biol 2013; 1:110016. [PMID: 22645653 PMCID: PMC3352086 DOI: 10.1098/rsob.110016] [Citation(s) in RCA: 82] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2011] [Accepted: 11/17/2011] [Indexed: 01/05/2023] Open
Abstract
The molecular determinants of the immune response to Mycobacterium tuberculosis HN878 infection in a rabbit model of pulmonary cavitary tuberculosis were studied. Aerosol infection of rabbits resulted in a highly differentially expressed global transcriptome in the lungs at 2 weeks, which dropped at 4 weeks and then gradually increased. While IFNγ was progressively upregulated throughout the infection, several other genes in the IFNγ network were not. T-cell activation network genes were gradually upregulated and maximally induced at 12 weeks. Similarly, the IL4 and B-cell activation networks were progressively upregulated, many reaching high levels between 12 and 16 weeks. Delayed peak expression of genes associated with macrophage activation and Th1 type immunity was noted. Although spleen CD4(+) and CD8(+) T cells showed maximal tuberculosis antigen-specific activation by 8 weeks, macrophage activation in lungs, lymph nodes and spleen did not peak until 12 weeks. In the lungs, infecting bacilli grew exponentially up to 4 weeks, followed by a steady-state high bacillary load to 12 weeks that moderately increased during cavitation at 16 weeks. Thus, the outcome of HN878 infection of rabbits was determined early during infection by a suboptimal activation of innate immunity and delayed T-cell activation.
Collapse
Affiliation(s)
- Selvakumar Subbian
- Laboratory of Mycobacterial Immunity and Pathogenesis, The Public Health Research Institute (PHRI) Center at the University of Medicine and Dentistry of New Jersey (UMDNJ) , Newark, NJ 07103, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
242
|
Okello MO, Mishra S, Nishonov M, Mankowski MK, Russell JD, Wei J, Hogan PA, Ptak RG, Nair V. A novel anti-HIV active integrase inhibitor with a favorable in vitro cytochrome P450 and uridine 5'-diphospho-glucuronosyltransferase metabolism profile. Antiviral Res 2013; 98:365-72. [PMID: 23602851 PMCID: PMC3677213 DOI: 10.1016/j.antiviral.2013.04.005] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2013] [Revised: 04/03/2013] [Accepted: 04/04/2013] [Indexed: 10/26/2022]
Abstract
Research efforts on the human immunodeficiency virus (HIV) integrase have resulted in two approved drugs. However, co-infection of HIV with Mycobacterium tuberculosis and other microbial and viral agents has introduced added complications to this pandemic, requiring favorable drug-drug interaction profiles for antiviral therapeutics targeting HIV. Cytochrome P450 (CYP) and uridine 5'-diphospho-glucuronosyltransferase (UGT) are pivotal determining factors in the occurrence of adverse drug-drug interactions. For this reason, it is important that anti-HIV agents, such as integrase inhibitors, possess favorable profiles with respect to CYP and UGT. We have discovered a novel HIV integrase inhibitor (compound 1) that exhibits low nM antiviral activity against a diverse set of HIV-1 isolates, and against HIV-2 and the simian immunodeficiency virus (SIV). Compound 1 displays low in vitro cytotoxicity and its resistance and related drug susceptibility profiles are favorable. Data from in vitro studies revealed that compound 1 was not a substrate for UGT isoforms and that it was not an inhibitor or activator of key CYP isozymes.
Collapse
Affiliation(s)
- Maurice O. Okello
- The Center for Drug Discovery and the College of Pharmacy University of Georgia, Athens, GA 30602, USA
| | - Sanjay Mishra
- The Center for Drug Discovery and the College of Pharmacy University of Georgia, Athens, GA 30602, USA
| | - Malik Nishonov
- The Center for Drug Discovery and the College of Pharmacy University of Georgia, Athens, GA 30602, USA
| | - Marie K. Mankowski
- Infectious Disease Research Department, Southern Research Institute, Frederick, MD 21701, USA
| | - Julie D. Russell
- Infectious Disease Research Department, Southern Research Institute, Frederick, MD 21701, USA
| | - Jiayi Wei
- Infectious Disease Research Department, Southern Research Institute, Frederick, MD 21701, USA
| | - Priscilla A. Hogan
- Infectious Disease Research Department, Southern Research Institute, Frederick, MD 21701, USA
| | - Roger G. Ptak
- Infectious Disease Research Department, Southern Research Institute, Frederick, MD 21701, USA
| | - Vasu Nair
- The Center for Drug Discovery and the College of Pharmacy University of Georgia, Athens, GA 30602, USA
| |
Collapse
|
243
|
Dalmia N, Ramsay AJ. Prime-boost approaches to tuberculosis vaccine development. Expert Rev Vaccines 2013; 11:1221-33. [PMID: 23176655 DOI: 10.1586/erv.12.94] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
Four individuals die from active TB disease each minute, while at least 2 billion are latently infected and at risk for disease reactivation. BCG, the only licensed TB vaccine, is effective in preventing childhood forms of TB; however its poor efficacy in adults, emerging drug-resistant TB strains and tedious chemotherapy regimes, warrant the development of novel prophylactic measures. Designing safe and effective vaccines against TB will require novel approaches on several levels, including the administration of rationally selected mycobacterial antigens in efficient delivery vehicles via optimal immunization routes. Given the primary site of disease manifestation in the lungs, development of mucosal immunization strategies to generate protective immune responses both locally, and in the circulation, may be important for effective TB prophylaxis. This review focuses on prime-boost immunization strategies currently under investigation and highlights the potential of mucosal delivery and rational vaccine design based on systems biology.
Collapse
Affiliation(s)
- Neha Dalmia
- Department of Microbiology, Immunology, and Parasitology, Louisiana State University Health Sciences Center, 1901 Perdido Street, New Orleans, LA 70112, USA
| | | |
Collapse
|
244
|
Tan S, Sukumar N, Abramovitch RB, Parish T, Russell DG. Mycobacterium tuberculosis responds to chloride and pH as synergistic cues to the immune status of its host cell. PLoS Pathog 2013; 9:e1003282. [PMID: 23592993 PMCID: PMC3616970 DOI: 10.1371/journal.ppat.1003282] [Citation(s) in RCA: 113] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2012] [Accepted: 02/15/2013] [Indexed: 11/19/2022] Open
Abstract
The ability of Mycobacterium tuberculosis (Mtb) to thrive in its phagosomal niche is critical for its establishment of a chronic infection. This requires that Mtb senses and responds to intraphagosomal signals such as pH. We hypothesized that Mtb would respond to additional intraphagosomal factors that correlate with maturation. Here, we demonstrate that [Cl⁻] and pH correlate inversely with phagosome maturation, and identify Cl⁻ as a novel environmental cue for Mtb. Mtb responds to Cl⁻ and pH synergistically, in part through the activity of the two-component regulator phoPR. Following identification of promoters responsive to Cl⁻ and pH, we generated a reporter Mtb strain that detected immune-mediated changes in the phagosomal environment during infection in a mouse model. Our study establishes Cl⁻ and pH as linked environmental cues for Mtb, and illustrates the utility of reporter bacterial strains for the study of Mtb-host interactions in vivo.
Collapse
Affiliation(s)
- Shumin Tan
- Cornell University, College of Veterinary Medicine, Department of Microbiology and Immunology, Ithaca, New York, United States of America
| | - Neelima Sukumar
- Cornell University, College of Veterinary Medicine, Department of Microbiology and Immunology, Ithaca, New York, United States of America
| | - Robert B. Abramovitch
- Cornell University, College of Veterinary Medicine, Department of Microbiology and Immunology, Ithaca, New York, United States of America
| | - Tanya Parish
- Infectious Disease Research Institute, and Department of Global Health, University of Washington School of Medicine, Seattle, Washington United States of America
| | - David G. Russell
- Cornell University, College of Veterinary Medicine, Department of Microbiology and Immunology, Ithaca, New York, United States of America
- * E-mail:
| |
Collapse
|
245
|
Multifunctional essentiality of succinate metabolism in adaptation to hypoxia in Mycobacterium tuberculosis. Proc Natl Acad Sci U S A 2013; 110:6554-9. [PMID: 23576728 DOI: 10.1073/pnas.1219375110] [Citation(s) in RCA: 215] [Impact Index Per Article: 17.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Mycobacterium tuberculosis is a chronic, facultative intracellular pathogen that spends the majority of its decades-long life cycle in a non- or slowly replicating state. However, the bacterium remains poised to resume replicating so that it can transmit itself to a new host. Knowledge of the metabolic adaptations used to facilitate entry into and exit from nonreplicative states remains incomplete. Here, we apply (13)C-based metabolomic profiling to characterize the activity of M. tuberculosis tricarboxylic acid cycle during adaptation to and recovery from hypoxia, a physiologically relevant condition associated with nonreplication. We show that, as M. tuberculosis adapts to hypoxia, it slows and remodels its tricarboxylic acid cycle to increase production of succinate, which is used to flexibly sustain membrane potential, ATP synthesis, and anaplerosis, in response to varying degrees of O2 limitation and the presence or absence of the alternate electron acceptor nitrate. This remodeling is mediated by the bifunctional enzyme isocitrate lyase acting in a noncanonical role distinct from fatty acid catabolism. Isocitrate lyase-dependent production of succinate affords M. tuberculosis with a unique and bioenergetically efficient metabolic means of entry into and exit from hypoxia-induced quiescence.
Collapse
|
246
|
Schön T, Lerm M, Stendahl O. Shortening the 'short-course' therapy- insights into host immunity may contribute to new treatment strategies for tuberculosis. J Intern Med 2013; 273:368-82. [PMID: 23331325 DOI: 10.1111/joim.12031] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
Achieving global control of tuberculosis (TB) is a great challenge considering the current increase in multidrug resistance and mortality rate. Considerable efforts are therefore being made to develop new effective vaccines, more effective and rapid diagnostic tools as well as new drugs. Shortening the duration of TB treatment with revised regimens and modes of delivery of existing drugs, as well as development of new antimicrobial agents and optimization of the host response with adjuvant immunotherapy could have a profound impact on TB cure rates. Recent data show that chronic worm infection and deficiencies in micronutrients such as vitamin D and arginine are potential areas of intervention to optimize host immunity. Nutritional supplementation to enhance nitric oxide production and vitamin D-mediated effector functions as well as the treatment of worm infection to reduce immunosuppressive effects of regulatory T (Treg) lymphocytes may be more suitable and accessible strategies for highly endemic areas than adjuvant cytokine therapy. In this review, we focus mainly on immune control of human TB, and discuss how current treatment strategies, including immunotherapy and nutritional supplementation, could be optimized to enhance the host response leading to more effective treatment.
Collapse
Affiliation(s)
- T Schön
- Department of Infectious Diseases, Kalmar County Hospital, Kalmar, Sweden
| | | | | |
Collapse
|
247
|
Postexposure subunit vaccination against chronic enteric mycobacterial infection in a natural host. Infect Immun 2013; 81:1990-5. [PMID: 23509147 DOI: 10.1128/iai.01121-12] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
The control of chronic bacterial diseases with high prevalence in areas of endemicity would strongly benefit from availability of postexposure vaccines. The development of these vaccines against mycobacterial infections, such as (para)tuberculosis, is hampered by lack of experience in natural hosts. Paratuberculosis in cattle is both a mycobacterial disease of worldwide importance and a natural host model for mycobacterial infections in general. The present study showed beneficial effects of therapeutic heat shock protein 70 (Hsp70) vaccination in cattle with naturally acquired chronic infection with Mycobacterium avium subsp. paratuberculosis. Vaccination-induced protection was associated with antibody responses, rather than with induction of specific T helper 1 cells. Targeted therapeutic postexposure vaccination complementary to selective use of antibiotics could be an effective approach for control of chronic mycobacterial infections.
Collapse
|
248
|
Ocampo M, Patarroyo MA, Vanegas M, Alba MP, Patarroyo ME. Functional, biochemical and 3D studies ofMycobacterium tuberculosisprotein peptides for an effective anti-tuberculosis vaccine. Crit Rev Microbiol 2013; 40:117-45. [DOI: 10.3109/1040841x.2013.763221] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
|
249
|
Synthesis and biological evaluation of new 13-n-nonylprotoberberine derivatives as antitubercular agents. Acta Pharm Sin B 2013. [DOI: 10.1016/j.apsb.2012.12.004] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
|
250
|
Deng YH, He HY, Zhang BS. Evaluation of protective efficacy conferred by a recombinant Mycobacterium bovis BCG expressing a fusion protein of Ag85A-ESAT-6. JOURNAL OF MICROBIOLOGY, IMMUNOLOGY, AND INFECTION = WEI MIAN YU GAN RAN ZA ZHI 2013; 47:48-56. [PMID: 23357605 DOI: 10.1016/j.jmii.2012.11.005] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/09/2012] [Revised: 11/01/2012] [Accepted: 11/27/2012] [Indexed: 11/26/2022]
Abstract
BACKGROUND We previously constructed a recombinant bacille Calmette-Guérin (rBCG-AE) strain that could express a fused Ag85A-ESAT-6 protein. That study suggested that the rBCG-AE strain was able to induce a higher titer of antibody and elicit a more long-lived and stronger Th1-type cellular immune responses than the parental BCG strain, the rBCG-A strain (i.e., expressing Ag85A), or the rBCG-E strain (i.e., expressing ESAT-6). METHODS In the current study, we further investigated the strain's protective efficacy against Mycobacterium tuberculosis H37Rv infection in BALB/c mice through evaluating organ bacterial loads, lung histopathology, lung immunohistochemistry, and net weight gain or loss by using conventional BCG, rBCG-A, and rBCG-E as the controls. RESULTS From the 3rd to 9th weeks after the challenge infection, the bacterial counts were significantly lower in tissues (e.g., spleen and lung tissues) in the mice immunized with rBCG-AE than in the control group, but were higher than the counts in the BCG group. The pathological damage in the lung tissues of the rBCG-AE group gradually improved from the 6th to 9th weeks after being infected with M. tuberculosis H37Rv, but the score of pathological changes in the rBCG-AE group was obviously higher than the score in the BCG group. There was no difference in the percentage of IFN-γ and iNOS positive cells in the lung tissues of the rBCG-AE and BCG groups. CONCLUSION The results suggest that rBCG-AE can not promote protective efficacy against M. tuberculosis H37Rv infection, compared to the BCG vaccine.
Collapse
Affiliation(s)
- Yi-Hao Deng
- Department of Human Anatomy, College of Preclinical Medicine, Dali University, Dali 671000, China.
| | - Hong-Yun He
- Department of Human Anatomy, College of Preclinical Medicine, Dali University, Dali 671000, China
| | - Ben-Si Zhang
- Department of Human Anatomy, College of Preclinical Medicine, Dali University, Dali 671000, China
| |
Collapse
|