201
|
Roosenhoff R, van der Vries E, van der Linden A, van Amerongen G, Stittelaar KJ, Smits SL, Schutten M, Fouchier RAM. Influenza A/H3N2 virus infection in immunocompromised ferrets and emergence of antiviral resistance. PLoS One 2018; 13:e0200849. [PMID: 30024940 PMCID: PMC6053203 DOI: 10.1371/journal.pone.0200849] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2018] [Accepted: 06/28/2018] [Indexed: 12/13/2022] Open
Abstract
Influenza viruses can cause severe life threatening infections in high-risk patients, including young children, the elderly and patients with compromised immunity due to underlying medical conditions or immunosuppressive treatment. The impaired immunity of these patients causes prolonged virus infection and combined with antiviral treatment facilitates the emergence of viruses with resistance mutations. The diverse nature of their immune status makes them a challenging group to study the impact of influenza virus infection and the efficacy of antiviral therapy. Immunocompromised ferrets may represent a suitable animal model to assess influenza virus infection and antiviral treatment strategies in immunocompromised hosts. Here, ferrets were given a daily oral solution of mycophenolate mofetil, tacrolimus and prednisolone sodium phosphate to suppress their immune system. Groups of immunocompromised and immunocompetent ferrets were inoculated with an A/H3N2 influenza virus and were subsequently treated with Oseltamivir or left untreated. Quantitative real-time reverse transcription polymerase chain reaction (qRT-PCR) was performed on the throat and nose specimens to study virus replication during the course of infection. All immunocompromised ferrets had prolonged presence of viral RNA and a higher total amount of virus shedding compared to the immunocompetent ferrets. Although Oseltamivir reduced the total amount of virus shedding from the nose and throat of treated ferrets, it also resulted in the emergence of the neuraminidase R292K resistance substitution in all these animals, as determined by mutation specific RT-PCR and next-generation sequencing. No additional mutations that could be associated with the emergence of the R292K resistance mutation were detected. The immunocompromised ferret model can be used to study A/H3N2 virus shedding and is a promising model to study new antiviral strategies and the emergence of antiviral resistance in immunocompromised hosts.
Collapse
Affiliation(s)
| | - Erhard van der Vries
- Department of Infectious Diseases & Immunology, Division of Virology, Faculty of Veterinary Medicine, Utrecht University, Utrecht, Utrecht, The Netherlands
| | - Anne van der Linden
- Department of Viroscience, Erasmus MC, Rotterdam, Zuid- Holland, The Netherlands
| | | | | | - Saskia L. Smits
- Viroclinics Biosciences BV, Rotterdam, Zuid-Holland, The Netherlands
| | - Martin Schutten
- Clinical Virology and Diagnostics, Alkmaar, Noord-Holland, The Netherlands
| | - Ron A. M. Fouchier
- Department of Viroscience, Erasmus MC, Rotterdam, Zuid- Holland, The Netherlands
| |
Collapse
|
202
|
Knops E, Sierra S, Kalaghatgi P, Heger E, Kaiser R, Kalinina OV. Epistatic Interactions in NS5A of Hepatitis C Virus Suggest Drug Resistance Mechanisms. Genes (Basel) 2018; 9:E343. [PMID: 29986475 PMCID: PMC6071292 DOI: 10.3390/genes9070343] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2018] [Accepted: 06/29/2018] [Indexed: 02/06/2023] Open
Abstract
Hepatitis C virus (HCV) causes a major health burden and can be effectively treated by direct-acting antivirals (DAAs). The non-structural protein 5A (NS5A), which plays a role in the viral genome replication, is one of the DAAs’ targets. Resistance-associated viruses (RAVs) harbouring NS5A resistance-associated mutations (RAMs) have been described at baseline and after therapy failure. A mutation from glutamine to arginine at position 30 (Q30R) is a characteristic RAM for the HCV sub/genotype (GT) 1a, but arginine corresponds to the wild type in the GT-1b; still, GT-1b strains are susceptible to NS5A-inhibitors. In this study, we show that GT-1b strains with R30Q often display other specific NS5A substitutions, particularly in positions 24 and 34. We demonstrate that in GT-1b secondary substitutions usually happen after initial R30Q development in the phylogeny, and that the chemical properties of the corresponding amino acids serve to restore the positive charge in this region, acting as compensatory mutations. These findings may have implications for RAVs treatment.
Collapse
Affiliation(s)
- Elena Knops
- Institute of Virology, University of Cologne, 50935 Cologne, Germany.
| | - Saleta Sierra
- Institute of Virology, University of Cologne, 50935 Cologne, Germany.
- German Center for Infection Research (DZIF)-Cologne-Bonn Partner Site, 50935 Cologne, Germany.
| | - Prabhav Kalaghatgi
- Department of Computational Biology and Applied Algorithmics, Max Planck Institute for Informatics, 66123 Saarbrücken, Germany.
- German Center for Infection Research (DZIF)-Saarbrücken Partner Site, 66123 Saarbrücken, Germany.
| | - Eva Heger
- Institute of Virology, University of Cologne, 50935 Cologne, Germany.
| | - Rolf Kaiser
- Institute of Virology, University of Cologne, 50935 Cologne, Germany.
- German Center for Infection Research (DZIF)-Cologne-Bonn Partner Site, 50935 Cologne, Germany.
| | - Olga V Kalinina
- Department of Computational Biology and Applied Algorithmics, Max Planck Institute for Informatics, 66123 Saarbrücken, Germany.
| |
Collapse
|
203
|
Young SG, Kitchen A, Kayali G, Carrel M. Unlocking pandemic potential: prevalence and spatial patterns of key substitutions in avian influenza H5N1 in Egyptian isolates. BMC Infect Dis 2018; 18:314. [PMID: 29980172 PMCID: PMC6035396 DOI: 10.1186/s12879-018-3222-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2017] [Accepted: 06/28/2018] [Indexed: 11/10/2022] Open
Abstract
Background Avian influenza H5N1 has a high human case fatality rate, but is not yet well-adapted to human hosts. Amino acid substitutions currently circulating in avian populations may enhance viral fitness in, and thus viral adaptation to, human hosts. Substitutions which could increase the risk of a human pandemic (through changes to host specificity, virulence, replication ability, transmissibility, or drug susceptibility) are termed key substitutions (KS). Egypt represents the epicenter of human H5N1 infections, with more confirmed cases than any other country. To date, however, there have not been any spatial analyses of KS in Egypt. Methods Using 925 viral samples of H5N1 from Egypt, we aligned protein sequences and scanned for KS. We geocoded isolates using dasymetric mapping, then carried out geospatial hot spot analyses to identify spatial clusters of high KS detection rates. KS prevalence and spatial clusters were evaluated for all detected KS, as well as when stratified by phenotypic consequence. Results A total of 39 distinct KS were detected in the wild, including 17 not previously reported in Egypt. KS were detected in 874 samples (94.5%). Detection rates varied by viral protein with most KS observed in the surface hemagglutinin (HA) and neuraminidase (NA) proteins, as well as the interior non-structural 1 (NS1) protein. The most frequently detected KS were associated with increased viral binding to mammalian cells and virulence. Samples with high overall detection rates of KS exhibited statistically significant spatial clustering in two governorates in the northwestern Nile delta, Alexandria and Beheira. Conclusions KS provide a possible mechanism by which avian influenza H5N1 could evolve into a pandemic candidate. With numerous KS circulating in Egypt, and non-random spatial clustering of KS detection rates, these findings suggest the need for increased surveillance in these areas.
Collapse
Affiliation(s)
- Sean G Young
- Department of Environmental and Occupational Health, University of Arkansas for Medical Sciences, Little Rock, AR, USA.
| | - Andrew Kitchen
- Department of Anthropology, University of Iowa, Iowa City, IA, USA
| | - Ghazi Kayali
- Department of Epidemiology, Human Genetics, and Environmental Sciences, University of Texas Health Sciences Center, Houston, TX, USA.,Department of Scientific Research, Human Link, Hazmieh, Lebanon
| | - Margaret Carrel
- Department of Geographical and Sustainability Sciences, University of Iowa, Iowa City, IA, USA.,Department of Epidemiology, University of Iowa, Iowa City, IA, USA
| |
Collapse
|
204
|
Kinetic, Thermodynamic, and Structural Analysis of Drug Resistance Mutations in Neuraminidase from the 2009 Pandemic Influenza Virus. Viruses 2018; 10:v10070339. [PMID: 29933553 PMCID: PMC6071225 DOI: 10.3390/v10070339] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2018] [Revised: 06/14/2018] [Accepted: 06/19/2018] [Indexed: 12/25/2022] Open
Abstract
Neuraminidase is the main target for current influenza drugs. Reduced susceptibility to oseltamivir, the most widely prescribed neuraminidase inhibitor, has been repeatedly reported. The resistance substitutions I223V and S247N, alone or in combination with the major oseltamivir-resistance mutation H275Y, have been observed in 2009 pandemic H1N1 viruses. We overexpressed and purified the ectodomain of wild-type neuraminidase from the A/California/07/2009 (H1N1) influenza virus, as well as variants containing H275Y, I223V, and S247N single mutations and H275Y/I223V and H275Y/S247N double mutations. We performed enzymological and thermodynamic analyses and structurally examined the resistance mechanism. Our results reveal that the I223V or S247N substitution alone confers only a moderate reduction in oseltamivir affinity. In contrast, the major oseltamivir resistance mutation H275Y causes a significant decrease in the enzyme’s ability to bind this drug. Combination of H275Y with an I223V or S247N mutation results in extreme impairment of oseltamivir’s inhibition potency. Our structural analyses revealed that the H275Y substitution has a major effect on the oseltamivir binding pose within the active site while the influence of other studied mutations is much less prominent. Our crystal structures also helped explain the augmenting effect on resistance of combining H275Y with both substitutions.
Collapse
|
205
|
Storz JF. Compensatory mutations and epistasis for protein function. Curr Opin Struct Biol 2018; 50:18-25. [PMID: 29100081 PMCID: PMC5936477 DOI: 10.1016/j.sbi.2017.10.009] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2017] [Revised: 10/05/2017] [Accepted: 10/12/2017] [Indexed: 01/09/2023]
Abstract
Adaptive protein evolution may be facilitated by neutral amino acid mutations that confer no benefit when they first arise but which potentiate subsequent function-altering mutations via direct or indirect structural mechanisms. Theoretical and empirical results indicate that such compensatory interactions (intramolecular epistasis) can exert a strong influence on trajectories of protein evolution. For this reason, assessing the form and prevalence of intramolecular epistasis and characterizing biophysical mechanisms of compensatory interaction are important research goals at the nexus of structural biology and molecular evolution. Here I review recent insights derived from protein-engineering studies, and I describe an approach for identifying and characterizing mechanisms of epistasis that integrates experimental data on structure-function relationships with analyses of comparative sequence data.
Collapse
Affiliation(s)
- Jay F Storz
- University of Nebraska, School of Biological Sciences, Lincoln, NE 68588-0114, United States.
| |
Collapse
|
206
|
How single mutations affect viral escape from broad and narrow antibodies to H1 influenza hemagglutinin. Nat Commun 2018; 9:1386. [PMID: 29643370 PMCID: PMC5895760 DOI: 10.1038/s41467-018-03665-3] [Citation(s) in RCA: 118] [Impact Index Per Article: 16.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2018] [Accepted: 02/28/2018] [Indexed: 01/19/2023] Open
Abstract
Influenza virus can escape most antibodies with single mutations. However, rare antibodies broadly neutralize many viral strains. It is unclear how easily influenza virus might escape such antibodies if there was strong pressure to do so. Here, we map all single amino-acid mutations that increase resistance to broad antibodies to H1 hemagglutinin. Our approach not only identifies antigenic mutations but also quantifies their effect sizes. All antibodies select mutations, but the effect sizes vary widely. The virus can escape a broad antibody to hemagglutinin's receptor-binding site the same way it escapes narrow strain-specific antibodies: via single mutations with huge effects. In contrast, broad antibodies to hemagglutinin's stalk only select mutations with small effects. Therefore, among the antibodies we examine, breadth is an imperfect indicator of the potential for viral escape via single mutations. Antibodies targeting the H1 hemagglutinin stalk are quantifiably harder to escape than the other antibodies tested here.
Collapse
|
207
|
Deecke L, Dobrovolny HM. Intermittent treatment of severe influenza. J Theor Biol 2018; 442:129-138. [PMID: 29355540 DOI: 10.1016/j.jtbi.2018.01.012] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2017] [Revised: 12/30/2017] [Accepted: 01/15/2018] [Indexed: 12/17/2022]
Abstract
Severe, long-lasting influenza infections are often caused by new strains of the virus. The long duration of these infections leads to an increased opportunity for the emergence of drug resistant mutants. This is particularly problematic since for new strains there is often no vaccine, so drug treatment is the first line of defense. One strategy for trying to minimize drug resistance is to apply drugs periodically. During treatment phases the wild-type virus decreases, but resistant virus might increase; when there is no treatment, wild-type virus will hopefully out-compete the resistant virus, driving down the number of resistant virus. A stochastic model of severe influenza is combined with a model of drug resistance to simulate long-lasting infections and intermittent treatment with two types of antivirals: neuraminidase inhibitors, which block release of virions; and adamantanes, which block replication of virions. Each drug's ability to reduce emergence of drug resistant mutants is investigated. We find that cell regeneration is required for successful implementation of intermittent treatment and that the optimal cycling parameters change with regeneration rate.
Collapse
Affiliation(s)
- Lucas Deecke
- Institut für Theoretische Physik, Universität zu Köln, Cologne, Germany
| | - Hana M Dobrovolny
- Department of Physics & Astronomy, Texas Christian University, Fort Worth, TX, USA.
| |
Collapse
|
208
|
Pervasive contingency and entrenchment in a billion years of Hsp90 evolution. Proc Natl Acad Sci U S A 2018; 115:4453-4458. [PMID: 29626131 DOI: 10.1073/pnas.1718133115] [Citation(s) in RCA: 66] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
Interactions among mutations within a protein have the potential to make molecular evolution contingent and irreversible, but the extent to which epistasis actually shaped historical evolutionary trajectories is unclear. To address this question, we experimentally measured how the fitness effects of historical sequence substitutions changed during the billion-year evolutionary history of the heat shock protein 90 (Hsp90) ATPase domain beginning from a deep eukaryotic ancestor to modern Saccharomyces cerevisiae We found a pervasive influence of epistasis. Of 98 derived amino acid states that evolved along this lineage, about half compromise fitness when introduced into the reconstructed ancestral Hsp90. And the vast majority of ancestral states reduce fitness when introduced into the extant S. cerevisiae Hsp90. Overall, more than 75% of historical substitutions were contingent on permissive substitutions that rendered the derived state nondeleterious, became entrenched by subsequent restrictive substitutions that made the ancestral state deleterious, or both. This epistasis was primarily caused by specific interactions among sites rather than a general effect on the protein's tolerance to mutation. Our results show that epistasis continually opened and closed windows of mutational opportunity over evolutionary timescales, producing histories and biological states that reflect the transient internal constraints imposed by the protein's fleeting sequence states.
Collapse
|
209
|
van Buuren N, Tellinghuisen TL, Richardson CD, Kirkegaard K. Transmission genetics of drug-resistant hepatitis C virus. eLife 2018; 7:32579. [PMID: 29589830 PMCID: PMC5916564 DOI: 10.7554/elife.32579] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2017] [Accepted: 03/22/2018] [Indexed: 12/11/2022] Open
Abstract
Antiviral development is plagued by drug resistance and genetic barriers to resistance are needed. For HIV and hepatitis C virus (HCV), combination therapy has proved life-saving. The targets of direct-acting antivirals for HCV infection are NS3/4A protease, NS5A phosphoprotein and NS5B polymerase. Differential visualization of drug-resistant and -susceptible RNA genomes within cells revealed that resistant variants of NS3/4A protease and NS5A phosphoprotein are cis-dominant, ensuring their direct selection from complex environments. Confocal microscopy revealed that RNA replication complexes are genome-specific, rationalizing the non-interaction of wild-type and variant products. No HCV antivirals yet display the dominance of drug susceptibility shown for capsid proteins of other viruses. However, effective inhibitors of HCV polymerase exact such high fitness costs for drug resistance that stable genome selection is not observed. Barriers to drug resistance vary with target biochemistry and detailed analysis of these barriers should lead to the use of fewer drugs. Viruses are simple organisms that consist of genetic information and a few types of proteins. They cannot replicate on their own, and instead hijack the molecular machinery of a host cell to produce more of themselves. Inside an infected cell, the genetic information of the virus is replicated and ‘read’ to create viral proteins. These components are then assembled to form a new generation of viruses. During this process, genetic errors may occur that lead to modifications in the viral proteins, and help the virus become resistant to treatment. For instance, a viral protein that used to be targeted by a drug can change slightly and not be recognized anymore. Currently, the most efficient way to fight drug resistance is to use combination therapy, where several drugs are given at the same time. This strategy is successful, for example to treat infections with the hepatitis C virus, but it is also expensive, especially for developing countries. An alternative approach is dominant-drug targeting, which exploits the fact that both drug-resistant and drug-susceptible viruses are ‘born’ in the same cell. There, the susceptible viruses can overwhelm and ‘mask’ the benefits of the resistant ones. For example, proteins from resistant strains, which are no longer detected by a treatment, can bind to proteins from susceptible viruses; drugs will still be able to recognize these resulting viral structures. The proteins that operate in such ways are potential dominant-drug targets. However, resistant and susceptible strains can also cohabit without any contacts if their proteins do not interact with each other. Now, van Buuren et al. screen several viral proteins, including one called NS5A, to test whether a dominant drug target exists for the hepatitis C virus. Only a few molecules of a drug that targets NS5A can stop the virus from growing. In theory, drug-bound NS5A proteins could block their non-drug-bound neighbors, but when these drugs have been used on their own, resistance quickly emerged. Experiments showed that NS5A is not a dominant drug target because the drug-resistant and drug-susceptible proteins do not mix. Unless ‘forced’ in the laboratory, NS5A proteins only bind to the ones produced by the same strain of virus. This explains why resistant viruses quickly take over when NS5A drugs are the sole treatment. However, other hepatitis C proteins, such as the HCV core protein, are known to mix during the assembly of the virus, and thus are likely be dominant drug targets.
Collapse
Affiliation(s)
- Nicholas van Buuren
- Department of Genetics, Stanford University School of Medicine, Stanford, United States
| | | | | | - Karla Kirkegaard
- Department of Genetics, Stanford University School of Medicine, Stanford, United States
| |
Collapse
|
210
|
Yamabe M, Kaihatsu K, Ebara Y. Sialyllactose-Modified Three-Way Junction DNA as Binding Inhibitor of Influenza Virus Hemagglutinin. Bioconjug Chem 2018; 29:1490-1494. [PMID: 29566328 DOI: 10.1021/acs.bioconjchem.8b00045] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Sialic acid present on the cell surface is recognized by hemagglutinin (HA) on the influenza virus in the first step of infection. Therefore, a compound that can efficiently interfere with the interaction between sialic acid and HA might inhibit infection and allow detection of the influenza virus. We focused on the spatial arrangement of sialic acid binding sites on HA and developed 2,3-sialyllactose (2,3-SL)-modified three-way junction (3WJ) DNA molecules with a topology similar to that of sialic acid binding sites. 3WJ DNA with three 2,3-SL residues on each DNA strand showed (8.0 × 104)-fold higher binding affinity for influenza virus A/Puerto Rico/08/34 (H1N1) compared to the 2,3-SL. This result indicated that the glycocluster effect due to clustering on one DNA arm and optimal spatial arrangement of the 3WJ DNA improved the weak interactions between a sialic acid and its binding site on HA. This 3WJ DNA compound has possible application as an inhibitor of influenza infection and for virus sensing.
Collapse
Affiliation(s)
- Miyuki Yamabe
- Graduate School of Human Development and Environment , Kobe University , 3-11 Tsurukabuto , Kobe , Hyogo 657-8501 , Japan
| | - Kunihiro Kaihatsu
- Department of Organic Fine Chemicals, The Institute of Scientific and Industrial Research , Osaka University , 8-1 Mihogaoka , Ibaraki , Osaka 567-0047 , Japan
| | - Yasuhito Ebara
- Graduate School of Human Development and Environment , Kobe University , 3-11 Tsurukabuto , Kobe , Hyogo 657-8501 , Japan
| |
Collapse
|
211
|
Abstract
The rapid global evolution of influenza virus begins with mutations that arise de novo in individual infections, but little is known about how evolution occurs within hosts. We review recent progress in understanding how and why influenza viruses evolve within human hosts. Advances in deep sequencing make it possible to measure within-host genetic diversity in both acute and chronic influenza infections. Factors like antigenic selection, antiviral treatment, tissue specificity, spatial structure, and multiplicity of infection may affect how influenza viruses evolve within human hosts. Studies of within-host evolution can contribute to our understanding of the evolutionary and epidemiological factors that shape influenza virus's global evolution.
Collapse
Affiliation(s)
- Katherine S Xue
- Department of Genome Sciences, University of Washington, Seattle, WA, USA; Division of Basic Sciences and Computational Biology Program, Fred Hutchinson Cancer Research Center, Seattle, WA, USA
| | - Louise H Moncla
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Research Center, Seattle, WA, USA
| | - Trevor Bedford
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Research Center, Seattle, WA, USA
| | - Jesse D Bloom
- Department of Genome Sciences, University of Washington, Seattle, WA, USA; Division of Basic Sciences and Computational Biology Program, Fred Hutchinson Cancer Research Center, Seattle, WA, USA.
| |
Collapse
|
212
|
Nagai E, Iwai M, Koketsu R, Sogabe R, Morimoto R, Suzuki Y, Ohta Y, Okuno Y, Ohshima A, Enomoto T, Isegawa Y. Inhibition of influenza virus replication by adlay tea. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2018; 98:1899-1905. [PMID: 28902408 DOI: 10.1002/jsfa.8671] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/04/2017] [Revised: 09/02/2017] [Accepted: 09/04/2017] [Indexed: 06/07/2023]
Abstract
BACKGROUND The present study was conducted aiming to examine the antiviral activity of adlay tea and its components against influenza viruses. We further aimed to clarify the mechanism by which these components regulate virus replication. RESULTS Adlay tea at a concentration suitable for drinking inhibited the multiplication of influenza viruses. Moreover, our results suggest that individual components of the tea had antiviral activities against the influenza A/PR/8/34 virus. Adlay tea inhibited multiplication of the H1N1, H3N2 and B types of influenza virus, including oseltamivir-resistant viruses. In addition, adlay tea inhibited influenza infection during the periods of virus adsorption to the cell and virus replication. Adlay tea did not suppress hemagglutination inhibition or cell fusion, although it slightly inhibited virus binding to Malin Darby canine kidney cells. Furthermore, our findings suggest that the antiviral compounds included in adlay tea were ingredients other than polyphenols and that there were several types of effective compounds in adlay tea inhibiting several steps of viral replication. CONCLUSION The results of the present study demonstrate that adlay tea had antiviral effects against influenza viruses. Our findings with respect to adlay tea suggest that the polyphenols might have a small influence on its antiviral activity and that other ingredients might have more influence. © 2017 Society of Chemical Industry.
Collapse
Affiliation(s)
- Emiko Nagai
- Department of Food Sciences and Nutrition, Mukogawa Women's University, Nishinomiya, Hyogo, Japan
- Department of Food Science, Ishikawa Prefectural University, Nonoichi, Ishikawa, Japan
| | - Miwa Iwai
- Department of Food Sciences and Nutrition, Mukogawa Women's University, Nishinomiya, Hyogo, Japan
| | - Ritsuko Koketsu
- Research Foundation for Microbial Diseases of Osaka University, Suita, Osaka, Japan
| | - Riho Sogabe
- Department of Food Sciences and Nutrition, Mukogawa Women's University, Nishinomiya, Hyogo, Japan
| | - Ryosuke Morimoto
- Department of Food Sciences and Nutrition, Mukogawa Women's University, Nishinomiya, Hyogo, Japan
| | - Yuri Suzuki
- Department of Food Sciences and Nutrition, Mukogawa Women's University, Nishinomiya, Hyogo, Japan
| | | | - Yoshinobu Okuno
- Research Foundation for Microbial Diseases of Osaka University, Suita, Osaka, Japan
| | - Atsushi Ohshima
- Genomics Program, Nagahamabio Institute of Bio-Science and Technology, Nagahama, Shiga, Japan
| | - Toshiki Enomoto
- Department of Food Science, Ishikawa Prefectural University, Nonoichi, Ishikawa, Japan
| | - Yuji Isegawa
- Department of Food Sciences and Nutrition, Mukogawa Women's University, Nishinomiya, Hyogo, Japan
| |
Collapse
|
213
|
Colombo C, Podlipnik Č, Lo Presti L, Niikura M, Bennet AJ, Bernardi A. Design and synthesis of constrained bicyclic molecules as candidate inhibitors of influenza A neuraminidase. PLoS One 2018; 13:e0193623. [PMID: 29489903 PMCID: PMC5831633 DOI: 10.1371/journal.pone.0193623] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2017] [Accepted: 02/14/2018] [Indexed: 11/19/2022] Open
Abstract
The rise of drug-resistant influenza A virus strains motivates the development of new antiviral drugs, with different structural motifs and substitution. Recently, we explored the use of a bicyclic (bicyclo[3.1.0]hexane) analogue of sialic acid that was designed to mimic the conformation adopted during enzymatic cleavage within the neuraminidase (NA; sialidase) active site. Given that our first series of compounds were at least four orders of magnitude less active than available drugs, we hypothesized that the new carbon skeleton did not elicit the same interactions as the cyclohexene frameworks used previously. Herein, we tried to address this critical point with the aid of molecular modeling and we proposed new structures with different functionalization, such as the introduction of free ammonium and guanidinium groups and ether side chains other than the 3-pentyl side chain, the characteristic side chain in Oseltamivir. A highly simplified synthetic route was developed, starting from the cyclopropanation of cyclopentenone and followed by an aziridination and further functionalization of the five-member ring. This allowed the efficient preparation of a small library of new bicyclic ligands that were characterized by enzyme inhibition assays against influenza A neuraminidases N1, its H274Y mutant, and N2. The results show that none of the new structural variants synthesized, including those containing guanidinium groups rather than free ammonium ions, displayed activity against influenza A neuraminidases at concentrations less than 2 mM. We conclude that the choice and positioning of functional groups on the bicyclo[3.1.0]hexyl system still need to be properly tuned for producing complementary interactions within the catalytic site.
Collapse
Affiliation(s)
- Cinzia Colombo
- Università degli Studi di Milano, Dipartimento di Chimica, Milano, Italy
- Department of Chemistry, Simon Fraser University, Burnaby, British Columbia, Canada
- * E-mail:
| | - Črtomir Podlipnik
- University of Ljubljana, Faculty of Chemistry and Chemical Technology, Ljubljana, Slovenia
| | - Leonardo Lo Presti
- Università degli Studi di Milano, Dipartimento di Chimica, Milano, Italy
| | - Masahiro Niikura
- Faculty of Health Sciences, Simon Fraser University, Burnaby, British Columbia, Canada
| | - Andrew J. Bennet
- Department of Chemistry, Simon Fraser University, Burnaby, British Columbia, Canada
| | - Anna Bernardi
- Università degli Studi di Milano, Dipartimento di Chimica, Milano, Italy
| |
Collapse
|
214
|
Temporally Varying Relative Risks for Infectious Diseases: Implications for Infectious Disease Control. Epidemiology 2018; 28:136-144. [PMID: 27748685 DOI: 10.1097/ede.0000000000000571] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Risks for disease in some population groups relative to others (relative risks) are usually considered to be consistent over time, although they are often modified by other, nontemporal factors. For infectious diseases, in which overall incidence often varies substantially over time, the patterns of temporal changes in relative risks can inform our understanding of basic epidemiologic questions. For example, recent studies suggest that temporal changes in relative risks of infection over the course of an epidemic cycle can both be used to identify population groups that drive infectious disease outbreaks, and help elucidate differences in the effect of vaccination against infection (that is relevant to transmission control) compared with its effect against disease episodes (that reflects individual protection). Patterns of change in the age groups affected over the course of seasonal outbreaks can provide clues to the types of pathogens that could be responsible for diseases for which an infectious cause is suspected. Changing apparent efficacy of vaccines during trials may provide clues to the vaccine's mode of action and/or indicate risk heterogeneity in the trial population. Declining importance of unusual behavioral risk factors may be a signal of increased local transmission of an infection. We review these developments and the related public health implications.
Collapse
|
215
|
Tandel K, Sharma S, Dash PK, Parida M. Oseltamivir-resistant influenza A(H1N1)pdm09 virus associated with high case fatality, India 2015. J Med Virol 2018; 90:836-843. [PMID: 29288584 DOI: 10.1002/jmv.25013] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2017] [Accepted: 11/23/2017] [Indexed: 12/16/2022]
Abstract
Influenza A viruses has been associated with severe global pandemics of high morbidity and mortality with devastating impact on human health and global economy. India witnessed a major outbreak of influenza A(H1N1)pdm09 in 2015. This study comprises detailed investigation of cases died of influenza A(H1N1)pdm09 virus infection during explosive outbreak of 2015, in central part of India. To find out presence of drug resistant virus among patients who died of influenza A(H1N1)pdm09 virus infection and to find out presence of other mutations contributing to the morbidity and mortality. Twenty-two patients having confirmed influenza A(H1N1)pdm09 infection and subsequently died of this infection along with 20 non fatal cases with influenza A(H1N1)pdm09 infection were included in the study. Samples were investigated through RT-PCR/RFLP analysis, followed by nucleotide cycle sequencing of whole NA gene for detection of H275Y amino acid substitution in NA gene responsible for oseltamivir drug resistance. Out of 22 fatal cases, 6 (27.27%) were found to harbor oseltamivir resistant virus strains, whereas the H275Y mutation was not observed among the 20 non fatal cases. Amino acid substitution analysis of complete NA gene revealed V241I, N369K, N386K substitution in all strains playing synergistic role in oseltamivir drug resistance. High morbidity and mortality associated with influenza A(H1N1)pdm09 viruses can be explained by presence of drug resistant strains circulating in this outbreak. Presence of Oseltamivir resistant influenza A(H1N1)pdm09 viruses is a cause of great concern and warrants continuous screening for the circulation of drug resistant strains.
Collapse
Affiliation(s)
- Kundan Tandel
- Division of Virology, Defence R&D Establishment (DRDE), Gwalior, MP, India
| | - Shashi Sharma
- Division of Virology, Defence R&D Establishment (DRDE), Gwalior, MP, India
| | - Paban Kumar Dash
- Division of Virology, Defence R&D Establishment (DRDE), Gwalior, MP, India
| | - ManMohan Parida
- Division of Virology, Defence R&D Establishment (DRDE), Gwalior, MP, India
| |
Collapse
|
216
|
Morris DH, Gostic KM, Pompei S, Bedford T, Łuksza M, Neher RA, Grenfell BT, Lässig M, McCauley JW. Predictive Modeling of Influenza Shows the Promise of Applied Evolutionary Biology. Trends Microbiol 2018; 26:102-118. [PMID: 29097090 PMCID: PMC5830126 DOI: 10.1016/j.tim.2017.09.004] [Citation(s) in RCA: 79] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2017] [Revised: 09/06/2017] [Accepted: 09/19/2017] [Indexed: 01/16/2023]
Abstract
Seasonal influenza is controlled through vaccination campaigns. Evolution of influenza virus antigens means that vaccines must be updated to match novel strains, and vaccine effectiveness depends on the ability of scientists to predict nearly a year in advance which influenza variants will dominate in upcoming seasons. In this review, we highlight a promising new surveillance tool: predictive models. Based on data-sharing and close collaboration between the World Health Organization and academic scientists, these models use surveillance data to make quantitative predictions regarding influenza evolution. Predictive models demonstrate the potential of applied evolutionary biology to improve public health and disease control. We review the state of influenza predictive modeling and discuss next steps and recommendations to ensure that these models deliver upon their considerable biomedical promise.
Collapse
Affiliation(s)
- Dylan H Morris
- Department of Ecology and Evolutionary Biology, Princeton University, Princeton, NJ, USA.
| | - Katelyn M Gostic
- Department of Ecology and Evolutionary Biology, University of California, Los Angeles, CA, USA
| | - Simone Pompei
- Institute for Theoretical Physics, University of Cologne, Cologne, Germany
| | - Trevor Bedford
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Research Center, Seattle, WA, USA
| | - Marta Łuksza
- Institute for Advanced Study, Princeton, NJ, USA
| | - Richard A Neher
- Biozentrum, University of Basel and Swiss Institute of Bioinformatics, Basel, Switzerland
| | - Bryan T Grenfell
- Department of Ecology and Evolutionary Biology, Princeton University, Princeton, NJ, USA; Fogarty International Center, National Institutes of Health, Bethesda, MD, USA
| | - Michael Lässig
- Institute for Theoretical Physics, University of Cologne, Cologne, Germany
| | - John W McCauley
- Worldwide Influenza Centre, Francis Crick Institute, London, UK
| |
Collapse
|
217
|
Järhult JD. Environmental resistance development to influenza antivirals: a case exemplifying the need for a multidisciplinary One Health approach including physicians. Acta Vet Scand 2018; 60:6. [PMID: 29370857 PMCID: PMC5784702 DOI: 10.1186/s13028-018-0360-1] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2017] [Accepted: 01/17/2018] [Indexed: 12/20/2022] Open
Abstract
A multidisciplinary approach is a prerequisite for One Health. Physicians are important players in the One Health team, yet they are often hard to convince of the benefits of the One Health approach. Here, the case for multidisciplinarity including physicians is made using the example of environmental resistance development to influenza antivirals. Neuraminidase inhibitors are the major class of anti-influenza pharmaceuticals, and extensively stockpiled globally as a cornerstone of pandemic preparedness, especially important in the first phase before vaccines can be mass-produced. The active metabolite of oseltamivir that is excreted from treated patients degrades poorly in conventional sewage treatment processes and has been found in river waters. Dabbling ducks constitute the natural influenza A virus reservoir and often reside near sewage treatment plant outlets, where they may be exposed to neuraminidase inhibitor residues. In vivo experiments using influenza-infected Mallards exposed to neuraminidase inhibitors present in their water have shown resistance development and persistence, demonstrating that resistance may be induced and become established in the influenza strains circulating in natural hosts. Neuraminidase inhibitor resistance genes may become part of a human-adapted influenza virus with pandemic potential through reassortment or direct transmission. A pandemic caused by a neuraminidase inhibitor-resistant influenza virus is a serious threat as the first line defense in pandemic preparedness would be disarmed. To assess the risk for environmental influenza resistance development, a broad multidisciplinary team containing chemists, social scientists, veterinarians, biologists, ecologists, virologists, epidemiologists, and physicians is needed. Information about One Health early in high school and undergraduate training, an active participation of One Health-engaged physicians in the debate, and more One Health-adapted funding and publication possibilities are suggested to increase the possibility to engage physicians.
Collapse
Affiliation(s)
- Josef D Järhult
- Zoonosis Science Center, Department of Medical Sciences, Uppsala University, 75185, Uppsala, Sweden.
| |
Collapse
|
218
|
Lina B, Boucher C, Osterhaus A, Monto AS, Schutten M, Whitley RJ, Nguyen-Van-Tam JS. Five years of monitoring for the emergence of oseltamivir resistance in patients with influenza A infections in the Influenza Resistance Information Study. Influenza Other Respir Viruses 2018; 12:267-278. [PMID: 29265727 PMCID: PMC5820429 DOI: 10.1111/irv.12534] [Citation(s) in RCA: 75] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/06/2017] [Indexed: 01/17/2023] Open
Abstract
Background and objectives The Influenza Resistance Information Study (IRIS) was initiated in 2008 to study the emergence of neuraminidase inhibitor (NAI) resistance and the clinical course of influenza in immunocompetent treated and untreated patients. Methods Patients had throat/nose swabs collected on days 1, 3, 6 and 10 for analyses of influenza type, subtype and virus susceptibility to NAIs. RT‐PCR‐positive samples were cultured and tested for NAI resistance by specific RT‐PCR and phenotypic testing. Scores for influenza symptoms were recorded on diary cards (Days 1‐10). This study focuses on influenza A‐infected cases only. Results Among 3230 RT‐PCR‐positive patients, 2316 had influenza A of whom 1216 received oseltamivir monotherapy within 2 days of symptom onset (9 seasonal H1N1; 662 H3N2; 545 H1N1pdm2009). Except for 9 patients with naturally resistant seasonal H1N1 (2008/9), no resistance was detected in Day 1 samples. Emergence of resistance (post‐Day 1) was detected in 43/1207 (3.56%) oseltamivir‐treated influenza A‐infected patients, with a higher frequency in 1‐ to 5‐year‐olds (11.8%) vs >5‐year‐olds (1.4%). All N1‐ and N2‐resistant viruses had H275Y (n = 27) or R292K (n = 16) substitutions, respectively. For 43 patients, virus clearance was significantly delayed vs treated patients with susceptible viruses (8.1 vs 10.9 days; P < .0001), and 11 (23.2%) remained RT‐PCR positive for influenza at Day 10. However, their symptoms resolved by Day 6 or earlier. Conclusions Oseltamivir resistance was only detected during antiviral treatment, with the highest incidence occurring among 1‐ to 5‐year‐olds. Resistance delayed viral clearance, but had no impact on symptom resolution.
Collapse
Affiliation(s)
- Bruno Lina
- Lab Virology HCL & CIRI INSERM U1111, Université de Lyon, Lyon, France
| | | | - Albert Osterhaus
- Erasmus MC, Rotterdam, The Netherlands.,Research Institute for Emerging Infections and Zoonoses Veterinary University Hannover, Hannover, Germany
| | - Arnold S Monto
- University of Michigan School of Public Health, Ann Arbor, MI, USA
| | | | | | - Jonathan S Nguyen-Van-Tam
- Health Protection and Influenza Research Group, University of Nottingham School of Medicine, Nottingham, UK
| |
Collapse
|
219
|
Akand EH, Downard KM. Identification of epistatic mutations and insights into the evolution of the influenza virus using a mass-based protein phylogenetic approach. Mol Phylogenet Evol 2018; 121:132-138. [PMID: 29337273 DOI: 10.1016/j.ympev.2018.01.009] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2017] [Revised: 12/11/2017] [Accepted: 01/10/2018] [Indexed: 12/27/2022]
Abstract
A mass-based protein phylogenetic approach developed in this laboratory has been applied to study mutation trends and identify consecutive or near-consecutive mutations typically associated with positive epistasis. While epistasis is thought to occur commonly during the evolution of viruses, the extent of epistasis in influenza, and its role in the evolution of immune escape and drug resistant mutants, remains to be systematically investigated. Here putative epistatic mutations within H3 hemagglutinin in type A influenza are identified where leading parent mutations were found to predominate within reported antigenic sites of the protein. Frequent subsequent mutations resided exclusively in different antigenic regions, providing the virus with a possible immune escape mechanism, or at other remote sites that drive beneficial protein structural and functional change. The results also enable a "small steps" evolutionary model to be proposed where the more frequent consecutive, or near-consecutive, non-conservative mutations exhibited less structural, and thus functional, change. This favours the evolutionary survival of the virus over mutations associated with more substantive change that may cause or risk its own extinction.
Collapse
Affiliation(s)
- Elma H Akand
- Infectious Disease Responses Laboratory, University of New South Wales, Sydney, Australia
| | - Kevin M Downard
- Infectious Disease Responses Laboratory, University of New South Wales, Sydney, Australia.
| |
Collapse
|
220
|
Han J, Perez J, Schafer A, Cheng H, Peet N, Rong L, Manicassamy B. Influenza Virus: Small Molecule Therapeutics and Mechanisms of Antiviral Resistance. Curr Med Chem 2018; 25:5115-5127. [PMID: 28933281 PMCID: PMC8735713 DOI: 10.2174/0929867324666170920165926] [Citation(s) in RCA: 51] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2016] [Revised: 03/09/2017] [Accepted: 05/26/2017] [Indexed: 11/22/2022]
Abstract
BACKGROUND Influenza viruses cause severe upper respiratory illness in children and the elderly during seasonal epidemics. Influenza viruses from zoonotic reservoirs can also cause pandemics with significant loss of life in all age groups. Although vaccination is one of the most effective methods to protect against seasonal epidemics, seasonal vaccines vary in efficacy, can be ineffective in the elderly population, and do not provide protection against novel strains. Small molecule therapeutics are a critical part of our antiviral strategies to control influenza virus epidemics and pandemics as well as to ameliorate disease in elderly and immunocompromised individuals. OBJECTIVE This review aims to summarize the existing antiviral strategies for combating influenza viruses, the mechanisms of antiviral resistance for available drugs, and novel therapeutics currently in development. METHODS We systematically evaluated and synthesized the published scientific literature for mechanistic detail into therapeutic strategies against influenza viruses. RESULTS Current IAV strains have developed resistance to neuraminidase inhibitors and nearly complete resistance to M2 ion channel inhibitors, exacerbated by sub-therapeutic dosing used for treatment and chemoprophylaxis. New tactics include novel therapeutics targeting host components and combination therapy, which show potential for fighting influenza virus disease while minimizing viral resistance. CONCLUSION Antiviral drugs are crucial for controlling influenza virus disease burden, but their efficacy is limited by human misuse and the capacity of influenza viruses to circumvent antiviral barriers. To relieve the public health hardship of influenza virus, emerging therapies must be selected for their capacity to impede not only influenza virus disease, but also the development of antiviral resistance.
Collapse
Affiliation(s)
- Julianna Han
- Department of Microbiology, The University of Chicago, Chicago, Illinois 60637, USA
| | - Jasmine Perez
- Department of Microbiology, The University of Chicago, Chicago, Illinois 60637, USA
| | - Adam Schafer
- Department of Microbiology and Immunology, College of Medicine, University of Illinois at Chicago, Chicago, Illinois 60612, USA
| | - Han Cheng
- Department of Microbiology and Immunology, College of Medicine, University of Illinois at Chicago, Chicago, Illinois 60612, USA
| | | | - Lijun Rong
- Department of Microbiology and Immunology, College of Medicine, University of Illinois at Chicago, Chicago, Illinois 60612, USA
| | - Balaji Manicassamy
- Department of Microbiology, The University of Chicago, Chicago, Illinois 60637, USA
| |
Collapse
|
221
|
Krammer F, Smith GJD, Fouchier RAM, Peiris M, Kedzierska K, Doherty PC, Palese P, Shaw ML, Treanor J, Webster RG, García-Sastre A. Influenza. Nat Rev Dis Primers 2018; 4:3. [PMID: 29955068 PMCID: PMC7097467 DOI: 10.1038/s41572-018-0002-y] [Citation(s) in RCA: 993] [Impact Index Per Article: 141.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Influenza is an infectious respiratory disease that, in humans, is caused by influenza A and influenza B viruses. Typically characterized by annual seasonal epidemics, sporadic pandemic outbreaks involve influenza A virus strains of zoonotic origin. The WHO estimates that annual epidemics of influenza result in ~1 billion infections, 3–5 million cases of severe illness and 300,000–500,000 deaths. The severity of pandemic influenza depends on multiple factors, including the virulence of the pandemic virus strain and the level of pre-existing immunity. The most severe influenza pandemic, in 1918, resulted in >40 million deaths worldwide. Influenza vaccines are formulated every year to match the circulating strains, as they evolve antigenically owing to antigenic drift. Nevertheless, vaccine efficacy is not optimal and is dramatically low in the case of an antigenic mismatch between the vaccine and the circulating virus strain. Antiviral agents that target the influenza virus enzyme neuraminidase have been developed for prophylaxis and therapy. However, the use of these antivirals is still limited. Emerging approaches to combat influenza include the development of universal influenza virus vaccines that provide protection against antigenically distant influenza viruses, but these vaccines need to be tested in clinical trials to ascertain their effectiveness.
Collapse
Affiliation(s)
- Florian Krammer
- 0000 0001 0670 2351grid.59734.3cDepartment of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY USA
| | - Gavin J. D. Smith
- 0000 0001 2180 6431grid.4280.eDuke–NUS Medical School, Singapore, Singapore ,0000 0004 1936 7961grid.26009.3dDuke Global Health Institute, Duke University, Durham, NC USA
| | - Ron A. M. Fouchier
- 000000040459992Xgrid.5645.2Department of Viroscience, Erasmus MC, Rotterdam, Netherlands
| | - Malik Peiris
- 0000000121742757grid.194645.bWHO Collaborating Centre for Infectious Disease Epidemiology and Control, School of Public Health, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong Special Administrative Region, Hong Kong, China ,0000000121742757grid.194645.bCenter of Influenza Research, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong Special Administrative Region, Hong Kong, China
| | - Katherine Kedzierska
- 0000 0001 2179 088Xgrid.1008.9Department of Microbiology and Immunology, University of Melbourne at the Peter Doherty Institute for Infection and Immunity, Melbourne, Victoria Australia
| | - Peter C. Doherty
- 0000 0001 2179 088Xgrid.1008.9Department of Microbiology and Immunology, University of Melbourne at the Peter Doherty Institute for Infection and Immunity, Melbourne, Victoria Australia ,0000 0001 0224 711Xgrid.240871.8Department of Immunology, St Jude Children’s Research Hospital, Memphis, TN USA
| | - Peter Palese
- 0000 0001 0670 2351grid.59734.3cDepartment of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY USA ,0000 0001 0670 2351grid.59734.3cDivision of Infectious Diseases, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, NY USA
| | - Megan L. Shaw
- 0000 0001 0670 2351grid.59734.3cDepartment of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY USA
| | - John Treanor
- 0000 0004 1936 9166grid.412750.5Division of Infectious Diseases, Department of Medicine, University of Rochester School of Medicine and Dentistry, Rochester, NY USA
| | - Robert G. Webster
- 0000 0001 0224 711Xgrid.240871.8Department of Infectious Diseases, St Jude Children’s Research Hospital, Memphis, TN USA
| | - Adolfo García-Sastre
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY, USA. .,Division of Infectious Diseases, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, USA. .,Global Health and Emerging Pathogens Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA.
| |
Collapse
|
222
|
Ormond L, Liu P, Matuszewski S, Renzette N, Bank C, Zeldovich K, Bolon DN, Kowalik TF, Finberg RW, Jensen JD, Wang JP. The Combined Effect of Oseltamivir and Favipiravir on Influenza A Virus Evolution. Genome Biol Evol 2017; 9:1913-1924. [PMID: 28854600 PMCID: PMC5570085 DOI: 10.1093/gbe/evx138] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/18/2017] [Indexed: 01/14/2023] Open
Abstract
Influenza virus inflicts a heavy death toll annually and resistance to existing antiviral drugs has generated interest in the development of agents with novel mechanisms of action. Favipiravir is an antiviral drug that acts by increasing the genome-wide mutation rate of influenza A virus (IAV). Potential synergistic benefits of combining oseltamivir and favipiravir have been demonstrated in animal models of influenza, but the population-level effects of combining the drugs are unknown. In order to elucidate the underlying evolutionary processes at play, we performed genome-wide sequencing of IAV experimental populations subjected to serial passaging in vitro under a combined protocol of oseltamivir and favipiravir. We describe the interplay between mutation, selection, and genetic drift that ultimately culminates in population extinction. In particular, selective sweeps around oseltamivir resistance mutations reduce genome-wide variation while deleterious mutations hitchhike to fixation given the increased mutational load generated by favipiravir. This latter effect reduces viral fitness and accelerates extinction compared with IAV populations treated with favipiravir alone, but risks spreading both established and newly emerging mutations, including possible drug resistance mutations, if transmission occurs before the viral populations are eradicated.
Collapse
Affiliation(s)
- Louise Ormond
- École Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland.,Swiss Institute of Bioinformatics (SIB), Lausanne, Switzerland
| | - Ping Liu
- Department of Medicine, University of Massachusetts Medical School
| | - Sebastian Matuszewski
- École Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland.,Swiss Institute of Bioinformatics (SIB), Lausanne, Switzerland
| | - Nicholas Renzette
- Swiss Institute of Bioinformatics (SIB), Lausanne, Switzerland.,Department of Microbiology and Physiological Systems, University of Massachusetts Medical School
| | - Claudia Bank
- École Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland.,Swiss Institute of Bioinformatics (SIB), Lausanne, Switzerland.,Instituto Gulbenkian de Ciência, Oeiras, Portugal
| | - Konstantin Zeldovich
- Program in Bioinformatics and Integrative Biology, University of Massachusetts Medical School
| | - Daniel N Bolon
- Department of Biochemistry and Molecular Pharmacology, University of Massachusetts Medical School
| | - Timothy F Kowalik
- Department of Microbiology and Physiological Systems, University of Massachusetts Medical School
| | - Robert W Finberg
- Department of Medicine, University of Massachusetts Medical School
| | - Jeffrey D Jensen
- École Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland.,Swiss Institute of Bioinformatics (SIB), Lausanne, Switzerland.,School of Life Sciences, Center for Evolution & Medicine, Arizona State University
| | - Jennifer P Wang
- Department of Medicine, University of Massachusetts Medical School
| |
Collapse
|
223
|
Siddiq MA, Hochberg GK, Thornton JW. Evolution of protein specificity: insights from ancestral protein reconstruction. Curr Opin Struct Biol 2017; 47:113-122. [PMID: 28841430 PMCID: PMC6141201 DOI: 10.1016/j.sbi.2017.07.003] [Citation(s) in RCA: 68] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2017] [Revised: 07/13/2017] [Accepted: 07/20/2017] [Indexed: 01/01/2023]
Abstract
Specific interactions between proteins and their molecular partners drive most biological processes, so understanding how these interactions evolve is an important question for biochemists and evolutionary biologists alike. It is often thought that ancestral proteins were systematically more promiscuous than modern proteins and that specificity usually evolves after gene duplication by partitioning and refining the activities of multifunctional ancestors. However, recent studies using ancestral protein reconstruction (APR) have found that ligand-specific functions in some modern protein families evolved de novo from ancestors that did not already have those functions. Further, the new specific interactions evolved by simple mechanisms, with just a few mutations changing classically recognized biochemical determinants of specificity, such as steric and electrostatic complementarity. Acquiring new specific interactions during evolution therefore appears to be neither difficult nor rare. Rather, it is likely that proteins continually gain and lose new activities over evolutionary time as mutations cause subtle but consequential changes in the shape and electrostatics of interaction interfaces. Only a few of these activities, however, are incorporated into the biological processes that contribute to fitness before they are lost to the ravages of further mutation.
Collapse
Affiliation(s)
| | | | - Joseph W Thornton
- Department of Ecology and Evolution, University of Chicago, USA; Department of Human Genetics, University of Chicago, USA.
| |
Collapse
|
224
|
|
225
|
Starr TN, Picton LK, Thornton JW. Alternative evolutionary histories in the sequence space of an ancient protein. Nature 2017; 549:409-413. [PMID: 28902834 PMCID: PMC6214350 DOI: 10.1038/nature23902] [Citation(s) in RCA: 130] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2017] [Accepted: 08/08/2017] [Indexed: 12/28/2022]
Abstract
To understand why molecular evolution turned out as it did, we must characterize not only the path that evolution followed across the space of possible molecular sequences but also the many alternative trajectories that could have been taken but were not. A large-scale comparison of real and possible histories would establish whether the outcome of evolution represents an optimal state driven by natural selection or the contingent product of historical chance events; it would also reveal how the underlying distribution of functions across sequence space shaped historical evolution. Here we combine ancestral protein reconstruction with deep mutational scanning to characterize alternative histories in the sequence space around an ancient transcription factor, which evolved a novel biological function through well-characterized mechanisms. We find hundreds of alternative protein sequences that use diverse biochemical mechanisms to perform the derived function at least as well as the historical outcome. These alternatives all require prior permissive substitutions that do not enhance the derived function, but not all require the same permissive changes that occurred during history. We find that if evolution had begun from a different starting point within the network of sequences encoding the ancestral function, outcomes with different genetic and biochemical forms would probably have resulted; this contingency arises from the distribution of functional variants in sequence space and epistasis between residues. Our results illuminate the topology of the vast space of possibilities from which history sampled one path, highlighting how the outcome of evolution depends on a serial chain of compounding chance events.
Collapse
Affiliation(s)
- Tyler N Starr
- Department of Biochemistry and Molecular Biology, University of Chicago, Chicago, Illinois 60637, USA
| | - Lora K Picton
- Department of Ecology and Evolution, University of Chicago, Chicago, Illinois 60637, USA
| | - Joseph W Thornton
- Department of Ecology and Evolution, University of Chicago, Chicago, Illinois 60637, USA
- Department of Human Genetics, University of Chicago, Chicago, Illinois 60637, USA
| |
Collapse
|
226
|
Zhang L, Ai HX, Li SM, Qi MY, Zhao J, Zhao Q, Liu HS. Virtual screening approach to identifying influenza virus neuraminidase inhibitors using molecular docking combined with machine-learning-based scoring function. Oncotarget 2017; 8:83142-83154. [PMID: 29137330 PMCID: PMC5669956 DOI: 10.18632/oncotarget.20915] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2017] [Accepted: 08/28/2017] [Indexed: 01/27/2023] Open
Abstract
In recent years, an epidemic of the highly pathogenic avian influenza H7N9 virus has persisted in China, with a high mortality rate. To develop novel anti-influenza therapies, we have constructed a machine-learning-based scoring function (RF-NA-Score) for the effective virtual screening of lead compounds targeting the viral neuraminidase (NA) protein. RF-NA-Score is more accurate than RF-Score, with a root-mean-square error of 1.46, Pearson’s correlation coefficient of 0.707, and Spearman’s rank correlation coefficient of 0.707 in a 5-fold cross-validation study. The performance of RF-NA-Score in a docking-based virtual screening of NA inhibitors was evaluated with a dataset containing 281 NA inhibitors and 322 noninhibitors. Compared with other docking–rescoring virtual screening strategies, rescoring with RF-NA-Score significantly improved the efficiency of virtual screening, and a strategy that averaged the scores given by RF-NA-Score, based on the binding conformations predicted with AutoDock, AutoDock Vina, and LeDock, was shown to be the best strategy. This strategy was then applied to the virtual screening of NA inhibitors in the SPECS database. The 100 selected compounds were tested in an in vitro H7N9 NA inhibition assay, and two compounds with novel scaffolds showed moderate inhibitory activities. These results indicate that RF-NA-Score improves the efficiency of virtual screening for NA inhibitors, and can be used successfully to identify new NA inhibitor scaffolds. Scoring functions specific for other drug targets could also be established with the same method.
Collapse
Affiliation(s)
- Li Zhang
- School of Life Science, Liaoning University, Shenyang 110036, China.,Research Center for Computer Simulating and Information Processing of Bio-macromolecules of Liaoning Province, Shenyang 110036, China
| | - Hai-Xin Ai
- School of Life Science, Liaoning University, Shenyang 110036, China.,Research Center for Computer Simulating and Information Processing of Bio-macromolecules of Liaoning Province, Shenyang 110036, China.,Engineering Laboratory for Molecular Simulation and Designing of Drug Molecules of Liaoning, Shenyang 110036, China
| | - Shi-Meng Li
- School of Life Science, Liaoning University, Shenyang 110036, China
| | - Meng-Yuan Qi
- School of Life Science, Liaoning University, Shenyang 110036, China
| | - Jian Zhao
- School of Life Science, Liaoning University, Shenyang 110036, China
| | - Qi Zhao
- School of Mathematics, Liaoning University, Shenyang 110036, China
| | - Hong-Sheng Liu
- School of Life Science, Liaoning University, Shenyang 110036, China.,Research Center for Computer Simulating and Information Processing of Bio-macromolecules of Liaoning Province, Shenyang 110036, China.,Engineering Laboratory for Molecular Simulation and Designing of Drug Molecules of Liaoning, Shenyang 110036, China
| |
Collapse
|
227
|
Bandoro C, Runstadler JA. Bacterial Lipopolysaccharide Destabilizes Influenza Viruses. mSphere 2017; 2:e00267-17. [PMID: 29034326 PMCID: PMC5636225 DOI: 10.1128/msphere.00267-17] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2017] [Accepted: 09/20/2017] [Indexed: 12/16/2022] Open
Abstract
Depending on the specific viral pathogen, commensal bacteria can promote or reduce the severity of viral infection and disease progression in their hosts. Influenza A virus (IAV) has a broad host range, comprises many subtypes, and utilizes different routes of transmission, including the fecal-oral route in wild birds. It has been previously demonstrated that commensal bacteria can interact with the host's immune system to protect against IAV pathogenesis. However, it is unclear whether bacteria and their products may be interacting directly with IAV to impact virion stability. Herein we show that gastrointestinal (GI) tract bacterial isolates in an in vitro system significantly reduce the stability of IAV. Moreover, bacterial lipopolysaccharide (LPS), found on the exterior surfaces of bacteria, was sufficient to significantly decrease the stability of both human and avian viral strains in a temperature-dependent manner, including at the relevant temperatures of their respective hosts and the external aquatic habitat. The subtype and host origin of the viruses were shown to affect the extent to which IAV was susceptible to LPS. Furthermore, using a receptor binding assay and transmission electron microscopy, we observed that LPS binds to and alters the morphology of influenza virions, suggesting that direct interaction with the viral surface contributes to the observed antiviral effect of LPS on influenza. IMPORTANCE Influenza A virus (IAV), transmitted primarily via the fecal-oral route in wild birds, encounters high concentrations of bacteria and their products. Understanding the extent to which bacteria affect the infectivity of IAV will lead to a broader understanding of viral ecology in reservoir hosts and may lead to insights for the development of therapeutics in respiratory infection. Herein we show that bacteria and lipopolysaccharide (LPS) interact with and destabilize influenza virions. Moreover, we show that LPS reduces the long-term persistence and freeze-thaw stability of IAV, which is important information for modeling the movement and emergence of novel strains from animal hosts. Our results, demonstrating that the subtype and host origin of a virus also influence its susceptibility to LPS, raise key questions about the fitness of viruses in reservoir hosts, their potential to transmit to humans, and the importance of bacterial-viral interactions in viral ecology.
Collapse
Affiliation(s)
- Christopher Bandoro
- Microbiology Graduate Program, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA
| | - Jonathan A. Runstadler
- Microbiology Graduate Program, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA
- Division of Comparative Medicine, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA
| |
Collapse
|
228
|
Farrukee R, Hurt AC. Antiviral Drugs for the Treatment and Prevention of Influenza. CURRENT TREATMENT OPTIONS IN INFECTIOUS DISEASES 2017. [DOI: 10.1007/s40506-017-0129-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
229
|
Discovery of dapivirine, a nonnucleoside HIV-1 reverse transcriptase inhibitor, as a broad-spectrum antiviral against both influenza A and B viruses. Antiviral Res 2017; 145:103-113. [PMID: 28778830 DOI: 10.1016/j.antiviral.2017.07.016] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2017] [Revised: 07/26/2017] [Accepted: 07/27/2017] [Indexed: 01/22/2023]
Abstract
The emergence of multidrug-resistant influenza viruses poses a persistent threat to public health. The current prophylaxis and therapeutic interventions for influenza virus infection have limited efficacy due to the continuous antigenic drift and antigenic shift of influenza viruses. As part of our ongoing effort to develop the next generation of influenza antivirals with broad-spectrum antiviral activity and a high genetic barrier to drug resistance, in this study we report the discovery of dapivirine, an FDA-approved HIV nonnucleoside reverse transcriptase inhibitor, as a broad-spectrum antiviral against multiple strains of influenza A and B viruses with low micromolar efficacy. Mechanistic studies revealed that dapivirine inhibits the nuclear entry of viral ribonucleoproteins at the early stage of viral replication. As a result, viral RNA and protein synthesis were inhibited. Furthermore, dapivirine has a high in vitro genetic barrier to drug resistance, and its antiviral activity is synergistic with oseltamivir carboxylate. In summary, the in vitro antiviral results of dapivirine suggest it is a promising candidate for the development of the next generation of dual influenza and HIV antivirals.
Collapse
|
230
|
Pál C, Papp B. Evolution of complex adaptations in molecular systems. Nat Ecol Evol 2017; 1:1084-1092. [PMID: 28782044 PMCID: PMC5540182 DOI: 10.1038/s41559-017-0228-1] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2016] [Accepted: 05/02/2017] [Indexed: 12/31/2022]
Abstract
A central challenge in evolutionary biology concerns the mechanisms by which complex adaptations arise. Such adaptations depend on the fixation of multiple, highly specific mutations, where intermediate stages of evolution seemingly provide little or no benefit. It is generally assumed that the establishment of complex adaptations is very slow in nature, as evolution of such traits demands special population genetic or environmental circumstances. However, blueprints of complex adaptations in molecular systems are pervasive, indicating that they can readily evolve. We discuss the prospects and limitations of non-adaptive scenarios, which assume multiple neutral or deleterious steps in the evolution of complex adaptations. Next, we examine how complex adaptations can evolve by natural selection in changing environment. Finally, we argue that molecular 'springboards', such as phenotypic heterogeneity and promiscuous interactions facilitate this process by providing access to new adaptive paths.
Collapse
Affiliation(s)
- Csaba Pál
- Synthetic and Systems Biology Unit, Biological Research Center, Szeged, 6726, Hungary.
| | - Balázs Papp
- Synthetic and Systems Biology Unit, Biological Research Center, Szeged, 6726, Hungary
| |
Collapse
|
231
|
Olabode AS, Kandathil SM, Lovell SC, Robertson DL. Adaptive HIV-1 evolutionary trajectories are constrained by protein stability. Virus Evol 2017; 3:vex019. [PMID: 28852572 PMCID: PMC5570062 DOI: 10.1093/ve/vex019] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Abstract
Despite the use of combination antiretroviral drugs for the treatment of HIV-1 infection, the emergence of drug resistance remains a problem. Resistance may be conferred either by a single mutation or a concerted set of mutations. The involvement of multiple mutations can arise due to interactions between sites in the amino acid sequence as a consequence of the need to maintain protein structure. To better understand the nature of such epistatic interactions, we reconstructed the ancestral sequences of HIV-1’s Pol protein, and traced the evolutionary trajectories leading to mutations associated with drug resistance. Using contemporary and ancestral sequences we modelled the effects of mutations (i.e. amino acid replacements) on protein structure to understand the functional effects of residue changes. Although the majority of resistance-associated sequences tend to destabilise the protein structure, we find there is a general tendency for protein stability to decrease across HIV-1’s evolutionary history. That a similar pattern is observed in the non-drug resistance lineages indicates that non-resistant mutations, for example, associated with escape from the immune response, also impacts on protein stability. Maintenance of optimal protein structure therefore represents a major constraining factor to the evolution of HIV-1.
Collapse
Affiliation(s)
- Abayomi S Olabode
- Evolution & Genomic Sciences, School of Biological Sciences, University of Manchester, Oxford Road, Manchester, UK
| | - Shaun M Kandathil
- Evolution & Genomic Sciences, School of Biological Sciences, University of Manchester, Oxford Road, Manchester, UK.,Francis Crick Institute & Dept. of Computer Science, University College London, London, UK
| | - Simon C Lovell
- Evolution & Genomic Sciences, School of Biological Sciences, University of Manchester, Oxford Road, Manchester, UK
| | - David L Robertson
- Evolution & Genomic Sciences, School of Biological Sciences, University of Manchester, Oxford Road, Manchester, UK.,MRC-University of Glasgow Centre for Virus Research, Garscube Campus, Glasgow, UK
| |
Collapse
|
232
|
Ho BS, Chao KM. Data-driven interdisciplinary mathematical modelling quantitatively unveils competition dynamics of co-circulating influenza strains. J Transl Med 2017; 15:163. [PMID: 28754164 PMCID: PMC5534049 DOI: 10.1186/s12967-017-1269-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2017] [Accepted: 07/20/2017] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Co-circulation of influenza strains is common to seasonal epidemics and pandemic emergence. Competition was considered involved in the vicissitudes of co-circulating influenza strains but never quantitatively studied at the human population level. The main purpose of the study was to explore the competition dynamics of co-circulating influenza strains in a quantitative way. METHODS We constructed a heterogeneous dynamic transmission model and ran the model to fit the weekly A/H1N1 influenza virus isolation rate through an influenza season. The construction process started on the 2007-2008 single-clade influenza season and, with the contribution from the clade-based A/H1N1 epidemiological curves, advanced to the 2008-2009 two-clade influenza season. Pearson method was used to estimate the correlation coefficient between the simulated epidemic curve and the observed weekly A/H1N1 influenza virus isolation rate curve. RESULTS The model found the potentially best-fit simulation with correlation coefficient up to 96% and all the successful simulations converging to the best-fit. The annual effective reproductive number of each co-circulating influenza strain was estimated. We found that, during the 2008-2009 influenza season, the annual effective reproductive number of the succeeding A/H1N1 clade 2B-2, carrying H275Y mutation in the neuraminidase, was estimated around 1.65. As to the preceding A/H1N1 clade 2C-2, the annual effective reproductive number would originally be equivalent to 1.65 but finally took on around 0.75 after the emergence of clade 2B-2. The model reported that clade 2B-2 outcompeted for the 2008-2009 influenza season mainly because clade 2C-2 suffered from a reduction of transmission fitness of around 71% on encountering the former. CONCLUSIONS We conclude that interdisciplinary data-driven mathematical modelling could bring to light the transmission dynamics of the A/H1N1 H275Y strains during the 2007-2009 influenza seasons worldwide and may inspire us to tackle the continually emerging drug-resistant A/H1N1pdm09 strains. Furthermore, we provide a prospective approach through mathematical modelling to solving a seemingly unintelligible problem at the human population level and look forward to its application at molecular level through bridging the resolution capacities of related disciplines.
Collapse
Affiliation(s)
- Bin-Shenq Ho
- Department of Computer Science and Information Engineering, National Taiwan University, Taipei, Taiwan, ROC.,Public Health Bureau, Hsinchu, Taiwan, ROC.,Taiwan Centers for Disease Control, Taipei, Taiwan, ROC
| | - Kun-Mao Chao
- Department of Computer Science and Information Engineering, National Taiwan University, Taipei, Taiwan, ROC. .,Graduate Institute of Biomedical Electronics and Bioinformatics, National Taiwan University, Taipei, Taiwan, ROC.
| |
Collapse
|
233
|
Computational design of trimeric influenza-neutralizing proteins targeting the hemagglutinin receptor binding site. Nat Biotechnol 2017; 35:667-671. [PMID: 28604661 PMCID: PMC5512607 DOI: 10.1038/nbt.3907] [Citation(s) in RCA: 103] [Impact Index Per Article: 12.9] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2016] [Accepted: 05/19/2017] [Indexed: 01/17/2023]
Abstract
Many viral surface glycoproteins and cell surface receptors are homo-oligomers, and thus can potentially be targeted by geometrically matched homo-oligomers that engage all subunits simultaneously to attain high avidity and/or lock subunits together. The adaptive immune system cannot generally employ this strategy since the individual antibody binding sites are not arranged with appropriate geometry to simultaneously engage multiple sites in a single target homo-oligomer. We describe a general strategy for the computational design of homo-oligomeric protein assemblies with binding functionality precisely matched to homo-oligomeric target sites. In the first step, a small protein is designed that binds a single site on the target. In the second step, the designed protein is assembled into a homo-oligomer such that the designed binding sites are aligned with the target sites. We use this approach to design high-avidity trimeric proteins that bind influenza A hemagglutinin (HA) at its conserved receptor binding site. The designed trimers can both capture and detect HA in a paper-based diagnostic format, neutralizes influenza in cell culture, and completely protects mice when given as a single dose 24 h before or after challenge with influenza.
Collapse
|
234
|
Flynn WF, Haldane A, Torbett BE, Levy RM. Inference of Epistatic Effects Leading to Entrenchment and Drug Resistance in HIV-1 Protease. Mol Biol Evol 2017; 34:1291-1306. [PMID: 28369521 PMCID: PMC5435099 DOI: 10.1093/molbev/msx095] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Understanding the complex mutation patterns that give rise to drug resistant viral strains provides a foundation for developing more effective treatment strategies for HIV/AIDS. Multiple sequence alignments of drug-experienced HIV-1 protease sequences contain networks of many pair correlations which can be used to build a (Potts) Hamiltonian model of these mutation patterns. Using this Hamiltonian model, we translate HIV-1 protease sequence covariation data into quantitative predictions for the probability of observing specific mutation patterns which are in agreement with the observed sequence statistics. We find that the statistical energies of the Potts model are correlated with the fitness of individual proteins containing therapy-associated mutations as estimated by in vitro measurements of protein stability and viral infectivity. We show that the penalty for acquiring primary resistance mutations depends on the epistatic interactions with the sequence background. Primary mutations which lead to drug resistance can become highly advantageous (or entrenched) by the complex mutation patterns which arise in response to drug therapy despite being destabilizing in the wildtype background. Anticipating epistatic effects is important for the design of future protease inhibitor therapies.
Collapse
Affiliation(s)
- William F. Flynn
- Department of Physics and Astronomy, Rutgers University, New Brunswick, NJ
- Center for Biophysics and Computational Biology, Temple University, Philadelphia, PA
| | - Allan Haldane
- Center for Biophysics and Computational Biology, Temple University, Philadelphia, PA
- Department of Chemistry, Temple University, Philadelphia, PA
| | - Bruce E. Torbett
- Department of Molecular and Experimental Medicine, The Scripps Research Institute, La Jolla, CA
| | - Ronald M. Levy
- Center for Biophysics and Computational Biology, Temple University, Philadelphia, PA
- Department of Chemistry, Temple University, Philadelphia, PA
| |
Collapse
|
235
|
Mosaad Z, Arafa A, Hussein HA, Shalaby MA. Mutation signature in neuraminidase gene of avian influenza H9N2/G1 in Egypt. Virusdisease 2017; 28:164-173. [PMID: 28770242 DOI: 10.1007/s13337-017-0367-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2016] [Accepted: 02/18/2017] [Indexed: 10/19/2022] Open
Abstract
The low pathogenic avian influenza (LPAI) H9N2 subtype has become the most prevalent and widespread in many Asian and Middle Eastern countries. It causes an enzootic situation in commercial poultry and known as a potential facilitator virus that can be transmitted to human from birds. The neuraminidase (NA) gene plays an important role the release and spread of the virus from infected cells and throughout the bird. The complete nucleotide sequences of the NA gene of seven H9N2 viruses collected from apparent healthy chicken and quail flocks in Egypt during 2014-2015, were amplified and sequenced. The phylogenetic relationships were investigated and all viruses were belonging to the A/Q/HK/G1/97 strain (G1-like). There were no insertions or deletions or shortening in NA stalk regions when compared to Y280-lineage and the human H9N2 isolates. No obvious changes NA interactions with antiviral drugs. We found that the Egyptian H9N2 viruses have seven glycosylation sites like the most recorded H9N2 viruses in the country, except A/Q/Egypt/14864V/2014 virus which has only six. The NA has four amino acid substitutions distributed in different parts of the hemadsorbing site. The most characteristic substitutions in this site were S372A and W403R these substitutions were a distinctive feature resembling to human H9N2, H2N2 and H3N2 viruses but differs from the other avian influenza viruses. These Special features of surface glycoproteins of LPAI-H9N2 viruses refer to the tendency for enhanced introductions into humans and ensuring the importance of poultry in the transfer influenza viruses.
Collapse
Affiliation(s)
- Zienab Mosaad
- National Laboratory for Veterinary Quality Control on Poultry Production, Animal Health Research Institute, P.O. Box 264, Dokki, Giza, 12618 Egypt
| | - Abdelsatar Arafa
- National Laboratory for Veterinary Quality Control on Poultry Production, Animal Health Research Institute, P.O. Box 264, Dokki, Giza, 12618 Egypt
| | - Hussein A Hussein
- Virology Department, Faculty of Veterinary Medicine, Cairo University, Giza, 12211 Egypt
| | - Mohamed A Shalaby
- Virology Department, Faculty of Veterinary Medicine, Cairo University, Giza, 12211 Egypt
| |
Collapse
|
236
|
Abstract
A central goal in biochemistry is to explain the causes of protein sequence, structure, and function. Mainstream approaches seek to rationalize sequence and structure in terms of their effects on function and to identify function's underlying determinants by comparing related proteins to each other. Although productive, both strategies suffer from intrinsic limitations that have left important aspects of many proteins unexplained. These limits can be overcome by reconstructing ancient proteins, experimentally characterizing their properties, and retracing their evolution through time. This approach has proven to be a powerful means for discovering how historical changes in sequence produced the functions, structures, and other physical/chemical characteristics of modern proteins. It has also illuminated whether protein features evolved because of functional optimization, historical constraint, or blind chance. Here we review recent studies employing ancestral protein reconstruction and show how they have produced new knowledge not only of molecular evolutionary processes but also of the underlying determinants of modern proteins' physical, chemical, and biological properties.
Collapse
Affiliation(s)
- Georg K A Hochberg
- Department of Ecology and Evolution, University of Chicago, Illinois 60637;
| | - Joseph W Thornton
- Department of Ecology and Evolution, University of Chicago, Illinois 60637;
- Department of Human Genetics, University of Chicago, Illinois 60637
| |
Collapse
|
237
|
Abstract
Influenza is a serious and frequently underestimated, but vaccine preventable disease. The adamantane derivates rimantadine and amantadine and the neuraminidase inhibitors zanamivir and oseltamivir are the only antiviral drugs currently approved in Europe for therapy and prophylaxis of influenza infections. Resistance to these drugs occurs due to mutations within the therapeutic target proteins M2 ion channel protein and viral neuraminidase. An unexpected occurrence of oseltamivir-resistant seasonal A(H1N1) viruses was detected in winter 2007/2008. The prevalence of these viruses increased rapidly and nearby all viruses circulating during the following seasons were resistant to oseltamivir. The A(H1N1)pdm09 viruses replaced the former seasonal A(H1N1) subtype during the 2009-2010 influenza season. Fortunately, resistance to neuraminidase inhibitors was detected in A(H1N1)pdm09, A(H3N2) and influenza B viruses only sporadically and was treatment related mostly. Comprehensive analyses of circulating viruses showed a high prevalence of A(H3N2) influenza viruses that are resistant to adamantane derivates since 2004/2005 and a progressive trend in the prevalence of resistant viruses up to 100% in following seasons. The M2 ion channel protein of A(H1N1)pdm09 viruses is associated with the Eurasian avian-like swine lineage and thus show "natural" resistance to adamantane derivates. Therefore, only neuraminidase inhibitors are recommended for influenza treatment today. This manuscript summarizes the occurrence and spread of antiviral resistant influenza viruses and highlights the importance for developing and/or approving new antiviral compounds.
Collapse
Affiliation(s)
- Susanne Duwe
- Robert Koch Institute, Division of Influenza Viruses and Other Respiratory Viruses, National Reference Centre for Influenza, Berlin, Germany
| |
Collapse
|
238
|
Hague MT, Feldman CR, Brodie ED, Brodie ED. Convergent adaptation to dangerous prey proceeds through the same first‐step mutation in the garter snake
Thamnophis sirtalis. Evolution 2017; 71:1504-1518. [DOI: 10.1111/evo.13244] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2017] [Accepted: 03/24/2017] [Indexed: 12/28/2022]
Affiliation(s)
- Michael T.J. Hague
- Department of Biology University of Virginia Charlottesville Virginia 22904
| | | | | | - Edmund D. Brodie
- Department of Biology University of Virginia Charlottesville Virginia 22904
| |
Collapse
|
239
|
Hussain M, Galvin HD, Haw TY, Nutsford AN, Husain M. Drug resistance in influenza A virus: the epidemiology and management. Infect Drug Resist 2017; 10:121-134. [PMID: 28458567 PMCID: PMC5404498 DOI: 10.2147/idr.s105473] [Citation(s) in RCA: 322] [Impact Index Per Article: 40.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Influenza A virus (IAV) is the sole cause of the unpredictable influenza pandemics and deadly zoonotic outbreaks and constitutes at least half of the cause of regular annual influenza epidemics in humans. Two classes of anti-IAV drugs, adamantanes and neuraminidase (NA) inhibitors (NAIs) targeting the viral components M2 ion channel and NA, respectively, have been approved to treat IAV infections. However, IAV rapidly acquired resistance against both classes of drugs by mutating these viral components. The adamantane-resistant IAV has established itself in nature, and a majority of the IAV subtypes, especially the most common H1N1 and H3N2, circulating globally are resistant to adamantanes. Consequently, adamantanes have become practically obsolete as anti-IAV drugs. Similarly, up to 100% of the globally circulating IAV H1N1 subtypes were resistant to oseltamivir, the most commonly used NAI, until 2009. However, the 2009 pandemic IAV H1N1 subtype, which was sensitive to NAIs and has now become one of the dominant seasonal influenza virus strains, has replaced the pre-2009 oseltamivir-resistant H1N1 variants. This review traces the epidemiology of both adamantane- and NAI-resistant IAV subtypes since the approval of these drugs and highlights the susceptibility status of currently circulating IAV subtypes to NAIs. Further, it provides an overview of currently and soon to be available control measures to manage current and emerging drug-resistant IAV. Finally, this review outlines the research directions that should be undertaken to manage the circulation of IAV in intermediate hosts and develop effective and alternative anti-IAV therapies.
Collapse
Affiliation(s)
- Mazhar Hussain
- Department of Microbiology and Immunology, University of Otago, Dunedin, New Zealand
| | - Henry D Galvin
- Department of Microbiology and Immunology, University of Otago, Dunedin, New Zealand
| | - Tatt Y Haw
- Department of Microbiology and Immunology, University of Otago, Dunedin, New Zealand
| | - Ashley N Nutsford
- Department of Microbiology and Immunology, University of Otago, Dunedin, New Zealand
| | - Matloob Husain
- Department of Microbiology and Immunology, University of Otago, Dunedin, New Zealand
| |
Collapse
|
240
|
Ashenberg O, Padmakumar J, Doud MB, Bloom JD. Deep mutational scanning identifies sites in influenza nucleoprotein that affect viral inhibition by MxA. PLoS Pathog 2017; 13:e1006288. [PMID: 28346537 PMCID: PMC5383324 DOI: 10.1371/journal.ppat.1006288] [Citation(s) in RCA: 56] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2016] [Revised: 04/06/2017] [Accepted: 03/10/2017] [Indexed: 01/24/2023] Open
Abstract
The innate-immune restriction factor MxA inhibits influenza replication by targeting the viral nucleoprotein (NP). Human influenza virus is more resistant than avian influenza virus to inhibition by human MxA, and prior work has compared human and avian viral strains to identify amino-acid differences in NP that affect sensitivity to MxA. However, this strategy is limited to identifying sites in NP where mutations that affect MxA sensitivity have fixed during the small number of documented zoonotic transmissions of influenza to humans. Here we use an unbiased deep mutational scanning approach to quantify how all single amino-acid mutations to NP affect MxA sensitivity in the context of replication-competent virus. We both identify new sites in NP where mutations affect MxA resistance and re-identify mutations known to have increased MxA resistance during historical adaptations of influenza to humans. Most of the sites where mutations have the greatest effect are almost completely conserved across all influenza A viruses, and the amino acids at these sites confer relatively high resistance to MxA. These sites cluster in regions of NP that appear to be important for its recognition by MxA. Overall, our work systematically identifies the sites in influenza nucleoprotein where mutations affect sensitivity to MxA. We also demonstrate a powerful new strategy for identifying regions of viral proteins that affect inhibition by host factors. During viral infection, human cells express proteins that can restrict virus replication. However, in many cases it remains unclear what determines the sensitivity of a given viral strain to a particular restriction factor. Here we use a high-throughput approach to measure how all amino-acid mutations to the nucleoprotein of influenza virus affect restriction by the human protein MxA. We find several dozen sites where mutations substantially affect the sensitivity of influenza virus to MxA. While a few of these sites are known to have fixed mutations during past adaptations of influenza virus to humans, most of the sites are broadly conserved across all influenza strains and have never previously been described as affecting MxA resistance. Our results therefore show that the known historical evolution of influenza has only involved substitutions at a small fraction of the sites where mutations can in principle affect MxA resistance. We suggest that this is because many sites are already broadly fixed at amino acids that confer high resistance.
Collapse
Affiliation(s)
- Orr Ashenberg
- Division of Basic Sciences and Computational Biology Program, Fred Hutchinson Cancer Research Center, Seattle, WA, USA
| | - Jai Padmakumar
- Division of Basic Sciences and Computational Biology Program, Fred Hutchinson Cancer Research Center, Seattle, WA, USA
| | - Michael B. Doud
- Division of Basic Sciences and Computational Biology Program, Fred Hutchinson Cancer Research Center, Seattle, WA, USA
- Department of Genome Sciences, University of Washington, Seattle, WA, USA
- Medical Scientist Training Program, University of Washington School of Medicine, Seattle, WA, USA
| | - Jesse D. Bloom
- Division of Basic Sciences and Computational Biology Program, Fred Hutchinson Cancer Research Center, Seattle, WA, USA
- Department of Genome Sciences, University of Washington, Seattle, WA, USA
- * E-mail:
| |
Collapse
|
241
|
Doud MB, Hensley SE, Bloom JD. Complete mapping of viral escape from neutralizing antibodies. PLoS Pathog 2017; 13:e1006271. [PMID: 28288189 PMCID: PMC5363992 DOI: 10.1371/journal.ppat.1006271] [Citation(s) in RCA: 104] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2017] [Revised: 03/23/2017] [Accepted: 03/06/2017] [Indexed: 11/18/2022] Open
Abstract
Identifying viral mutations that confer escape from antibodies is crucial for understanding the interplay between immunity and viral evolution. We describe a high-throughput approach to quantify the selection that monoclonal antibodies exert on all single amino-acid mutations to a viral protein. This approach, mutational antigenic profiling, involves creating all replication-competent protein variants of a virus, selecting with antibody, and using deep sequencing to identify enriched mutations. We use mutational antigenic profiling to comprehensively identify mutations that enable influenza virus to escape four monoclonal antibodies targeting hemagglutinin, and validate key findings with neutralization assays. We find remarkable mutation-level idiosyncrasy in antibody escape: for instance, at a single residue targeted by two antibodies, some mutations escape both antibodies while other mutations escape only one or the other. Because mutational antigenic profiling rapidly maps all mutations selected by an antibody, it is useful for elucidating immune specificities and interpreting the antigenic consequences of viral genetic variation.
Collapse
Affiliation(s)
- Michael B. Doud
- Basic Sciences and Computational Biology Program, Fred Hutchinson Cancer Research Center, Seattle, Washington, United States of America
- Department of Genome Sciences, University of Washington, Seattle, Washington, United States of America
- Medical Scientist Training Program, University of Washington, Seattle, Washington, United States of America
| | - Scott E. Hensley
- Department of Microbiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| | - Jesse D. Bloom
- Basic Sciences and Computational Biology Program, Fred Hutchinson Cancer Research Center, Seattle, Washington, United States of America
- Department of Genome Sciences, University of Washington, Seattle, Washington, United States of America
- * E-mail:
| |
Collapse
|
242
|
Chowell G, Viboud C. Quantifying the fitness of antiviral-resistant influenza strains. THE LANCET. INFECTIOUS DISEASES 2017; 17:250-251. [PMID: 27914854 DOI: 10.1016/s1473-3099(16)30522-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/25/2016] [Accepted: 10/26/2016] [Indexed: 06/06/2023]
Affiliation(s)
- Gerardo Chowell
- School of Public Health, Georgia State University, Atlanta, GA, USA; Division of International Epidemiology and Population Studies, Fogarty International Center, National Institutes of Health, Bethesda, MD, USA.
| | - Cecile Viboud
- Division of International Epidemiology and Population Studies, Fogarty International Center, National Institutes of Health, Bethesda, MD, USA
| |
Collapse
|
243
|
Rath B, Chen X, Spies V, Muehlhans S, Obermeier P, Tief F, Seeber L, Karsch K, Milde J, Skopnik H, Schweiger B, Duwe SC. Prospective surveillance of antiviral resistance in hospitalized infants less than 12 months of age with A(H3N2) influenza infection and treated with oseltamivir. Antivir Ther 2017; 22:515-522. [PMID: 28205506 DOI: 10.3851/imp3141] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/14/2017] [Indexed: 10/20/2022]
Abstract
BACKGROUND Infants exhibit elevated influenza virus loads and prolonged viral shedding, which may increase the risk for resistance development, especially in cases of suboptimal exposure to antiviral therapy. METHODS We performed a prospective surveillance of hospitalized infants undergoing oseltamivir therapy during the 2008-2009 and 2011-2012 influenza seasons at two paediatric hospitals in Germany. A total of 37 infants less than 1 year of age with laboratory confirmed influenza A(H3N2) infection received oseltamivir as per physician's order for 5 days (2008-2009 season: 2 mg/kg twice daily; 2011-2012 season: 2.0 mg/kg; 2.5 mg/kg and 3.0 mg/kg twice daily for infants <1 month; 2-3 months and 4-12 months, respectively). Virus load, the susceptibility to neuraminidase inhibitors (NAIs), and the presence of molecular markers of resistance to NAIs was assessed for influenza viruses recovered from respiratory samples collected at baseline and during follow-up visits. RESULTS Overall, 73% of the infants continued to shed viral RNA detectable by reverse transcription (RT)-PCR after dose number 10 of oseltamivir; 12 infants shed viruses, 2 of them (both 9 months of age) shed resistant viruses. Resistance was characterized by ≥1,000-fold increase of 50% inhibitory concentration (IC50) for oseltamivir, up to 50-fold for zanamivir and elevated Km values when compared to susceptible A(H3N2) strains. Sanger sequencing revealed the selection of the NA-R292K substitution in both instances (after dose number 10 on day 6). CONCLUSIONS Our data suggest that it may be relevant to monitor antiviral resistance systematically in all infants, considering that the European Medicines Agency has recently extended the licensure for oseltamivir to include full-term infants.
Collapse
Affiliation(s)
- Barbara Rath
- Charité University Medical Center, Department of Pediatrics, Berlin, Germany.,Vienna Vaccine Safety Initiative, Berlin, Germany
| | - Xi Chen
- Charité University Medical Center, Department of Pediatrics, Berlin, Germany
| | - Vera Spies
- Klinikum Worms, Department of Pediatrics and Adolescent Medicine, Worms, Germany
| | - Susann Muehlhans
- Charité University Medical Center, Department of Pediatrics, Berlin, Germany
| | - Patrick Obermeier
- Charité University Medical Center, Department of Pediatrics, Berlin, Germany
| | - Franziska Tief
- Charité University Medical Center, Department of Pediatrics, Berlin, Germany
| | - Lea Seeber
- Charité University Medical Center, Department of Pediatrics, Berlin, Germany
| | - Katharina Karsch
- Charité University Medical Center, Department of Pediatrics, Berlin, Germany
| | - Jeanette Milde
- Robert Koch Institute, Division of Influenza Viruses and Other Respiratory Viruses, National Reference Centre for Influenza, Berlin, Germany
| | - Heino Skopnik
- Klinikum Worms, Department of Pediatrics and Adolescent Medicine, Worms, Germany
| | - Brunhilde Schweiger
- Robert Koch Institute, Division of Influenza Viruses and Other Respiratory Viruses, National Reference Centre for Influenza, Berlin, Germany
| | - Susanne C Duwe
- Robert Koch Institute, Division of Influenza Viruses and Other Respiratory Viruses, National Reference Centre for Influenza, Berlin, Germany
| |
Collapse
|
244
|
Hoffmann A, Richter M, von Grafenstein S, Walther E, Xu Z, Schumann L, Grienke U, Mair CE, Kramer C, Rollinger JM, Liedl KR, Schmidtke M, Kirchmair J. Discovery and Characterization of Diazenylaryl Sulfonic Acids as Inhibitors of Viral and Bacterial Neuraminidases. Front Microbiol 2017; 8:205. [PMID: 28261167 PMCID: PMC5309245 DOI: 10.3389/fmicb.2017.00205] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2016] [Accepted: 01/30/2017] [Indexed: 11/13/2022] Open
Abstract
Viral neuraminidases are an established drug target to combat influenza. Severe complications observed in influenza patients are primarily caused by secondary infections with e.g., Streptococcus pneumoniae. These bacteria engage in a lethal synergism with influenza A viruses (IAVs) and also express neuraminidases. Therefore, inhibitors with dual activity on viral and bacterial neuraminidases are expected to be advantageous for the treatment of influenza infections. Here we report on the discovery and characterization of diazenylaryl sulfonic acids as dual inhibitors of viral and Streptococcus pneumoniae neuraminidase. The initial hit came from a virtual screening campaign for inhibitors of viral neuraminidases. For the most active compound, 7-[2-[4-[2-[4-[2-(2-hydroxy-3,6-disulfo-1-naphthalenyl)diazenyl]-2-methylphenyl]diazenyl]-2-methylphenyl]diazenyl]-1,3-naphthalenedisulfonic acid (NSC65847; 1), the Ki-values measured in a fluorescence-based assay were lower than 1.5 μM for both viral and pneumococcal neuraminidases. The compound also inhibited N1 virus variants containing neuraminidase inhibitor resistance-conferring substitutions. Via enzyme kinetics and nonlinear regression modeling, 1 was suggested to impair the viral neuraminidases and pneumococcal neuraminidase with a mixed-type inhibition mode. Given its antiviral and antipneumococcal activity, 1 was identified as a starting point for the development of novel, dual-acting anti-infectives.
Collapse
Affiliation(s)
- Anja Hoffmann
- Department of Virology and Antiviral Therapy, Jena University HospitalJena, Germany
| | - Martina Richter
- Department of Virology and Antiviral Therapy, Jena University HospitalJena, Germany
| | - Susanne von Grafenstein
- Centre for Chemistry and Biomedicine, Institute of General, Inorganic and Theoretical Chemistry, University of InnsbruckInnsbruck, Austria
| | - Elisabeth Walther
- Department of Virology and Antiviral Therapy, Jena University HospitalJena, Germany
| | - Zhongli Xu
- Department of Virology and Antiviral Therapy, Jena University HospitalJena, Germany
| | - Lilia Schumann
- Department of Virology and Antiviral Therapy, Jena University HospitalJena, Germany
| | - Ulrike Grienke
- Department of Pharmacognosy, Faculty of Life Sciences, University of ViennaVienna, Austria
| | - Christina E. Mair
- Department of Pharmacognosy, Faculty of Life Sciences, University of ViennaVienna, Austria
| | - Christian Kramer
- Centre for Chemistry and Biomedicine, Institute of General, Inorganic and Theoretical Chemistry, University of InnsbruckInnsbruck, Austria
| | - Judith M. Rollinger
- Department of Pharmacognosy, Faculty of Life Sciences, University of ViennaVienna, Austria
| | - Klaus R. Liedl
- Centre for Chemistry and Biomedicine, Institute of General, Inorganic and Theoretical Chemistry, University of InnsbruckInnsbruck, Austria
| | - Michaela Schmidtke
- Department of Virology and Antiviral Therapy, Jena University HospitalJena, Germany
| | - Johannes Kirchmair
- Centre for Chemistry and Biomedicine, Institute of General, Inorganic and Theoretical Chemistry, University of InnsbruckInnsbruck, Austria
- Center for Bioinformatics, University of HamburgHamburg, Germany
| |
Collapse
|
245
|
Takanashi K, Dan K, Kanzaki S, Hasegawa H, Watanabe K, Ogawa K. Hochuekkito, a Japanese Herbal Medicine, Restores Metabolic Homeostasis between Mitochondrial and Glycolytic Pathways Impaired by Influenza A Virus Infection. Pharmacology 2017; 99:240-249. [PMID: 28147362 DOI: 10.1159/000455918] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2016] [Accepted: 01/09/2017] [Indexed: 11/19/2022]
Abstract
BACKGROUND Hochuekkito (HKT), a traditional Japanese herbal medicine (Kampo), has been used to treat symptoms of several diseases. In a recent clinical study, HKT was shown to be protective against the influenza virus infection. However, the underlying mechanism of the prophylactic effect is not clear. Mitochondrial and glycolytic pathways play important roles in cellular energy metabolism to maintain biological functions. These metabolic pathways are affected by the influenza virus infection. In this study, we examined the relationship between the preventive effects of HKT against the influenza virus infection and cellular energy metabolism in mitochondria and glycolysis using Madin-Darby canine kidney cells and influenza A/PR/8/34 (H1N1) virus (IAV). METHODS Mitochondrial and glycolytic metabolic pathways were evaluated on the basis of the oxygen consumption rate (OCR) and extracellular acidification rate (ECAR), respectively, using the XF24 Extracellular Analyzer. RESULTS The OCR/ECAR ratio in IAV-infected cells was lower than that in control cells. Cells that were treated with HKT before IAV infection showed a metabolic pattern similar to that in the control cells (increase in both OCR and ECAR). CONCLUSIONS Our results suggest that HKT not only activates both mitochondrial and glycolytic energy metabolism in IAV-infected cells but also helps maintain metabolic homeostasis similar to that in noninfected cells.
Collapse
Affiliation(s)
- Keita Takanashi
- Department of Otorhinolaryngology, Head and Neck Surgery, Keio University School of Medicine, Tokyo, Japan
| | | | | | | | | | | |
Collapse
|
246
|
Colombo C, Bennet AJ. Probing Transition State Analogy in Glycoside Hydrolase Catalysis. ADVANCES IN PHYSICAL ORGANIC CHEMISTRY 2017. [DOI: 10.1016/bs.apoc.2017.09.001] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
|
247
|
Antiviral Resistance in Influenza Viruses: Clinical and Epidemiological Aspects. ANTIMICROBIAL DRUG RESISTANCE 2017. [PMCID: PMC7122614 DOI: 10.1007/978-3-319-47266-9_23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 10/31/2022]
Abstract
There are three classes of antiviral drugs approved for the treatment of influenza: the M2 ion channel inhibitors (amantadine, rimantadine), neuraminidase (NA) inhibitors (laninamivir, oseltamivir, peramivir, zanamivir), and the protease inhibitor (favipiravir); some of the agents are only available in selected countries [1, 2]. These agents are effective at treating the signs and symptoms of influenza in patients infected with susceptible viruses. Clinical failure has been demonstrated in patients infected with viruses with primary resistance, i.e., antivirals can be present in the virus initially infecting the patient, or resistance may emerge during the course of therapy [3–5]. NA inhibitors are active against all nine NA subtypes recognized in nature [6], including highly pathogenic avian influenza A/H5N1 and recent low-pathogenic avian influenza A/H7N9 viruses [7]. Since seasonal influenza is usually an acute, self-limited illness in which viral clearance usually occurs rapidly due to innate and adaptive host immune responses, the emergence of drug-resistant variants would be anticipated to have limited effect on clinical recovery in otherwise healthy patients, as has been demonstrated clinically [3, 8, 9]. Unfortunately, immunocompromised or immunologically naïve hosts, such as young children and infants or those exposed to novel strains, are more likely to have mutations that confer resistance emergence during therapy; such resistant variants may also result in clinically significant adverse outcomes [10–13].
Collapse
|
248
|
Sugrue E, Scott C, Jackson CJ. Constrained evolution of a bispecific enzyme: lessons for biocatalyst design. Org Biomol Chem 2017; 15:937-946. [DOI: 10.1039/c6ob02355j] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Analysis of the natural evolution of bispecificity in triazine hydrolase highlights the importance of epistasis in protein engineering and evolution.
Collapse
Affiliation(s)
- E. Sugrue
- Research School of Chemistry
- Australian National University
- Canberra
- Australia
| | - C. Scott
- Commonwealth Scientific and Industrial Research Organisation
- Canberra
- Australia
| | - C. J. Jackson
- Research School of Chemistry
- Australian National University
- Canberra
- Australia
| |
Collapse
|
249
|
Leung K, Lipsitch M, Yuen KY, Wu JT. Monitoring the fitness of antiviral-resistant influenza strains during an epidemic: a mathematical modelling study. THE LANCET. INFECTIOUS DISEASES 2016; 17:339-347. [PMID: 27914853 DOI: 10.1016/s1473-3099(16)30465-0] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/10/2016] [Revised: 10/03/2016] [Accepted: 10/10/2016] [Indexed: 11/30/2022]
Abstract
BACKGROUND Antivirals (eg, oseltamivir) are important for mitigating influenza epidemics. In 2007, an oseltamivir-resistant influenza seasonal A H1N1 strain emerged and spread to global fixation within 1 year. This event showed that antiviral-resistant (AVR) strains can be intrinsically more transmissible than their contemporaneous antiviral-sensitive (AVS) counterpart. Surveillance of AVR fitness is therefore essential. Our objective was to develop a simple method for estimating AVR fitness from surveillance data. METHODS We defined the fitness of AVR strains as their reproductive number relative to their co-circulating AVS counterparts. We developed a simple method for real-time estimation of AVR fitness from surveillance data. This method requires only information on generation time without other specific details regarding transmission dynamics. We first used simulations to validate this method by showing that it yields unbiased and robust fitness estimates in most epidemic scenarios. We then applied this method to two retrospective case studies and one hypothetical case study. FINDINGS We estimated that the oseltamivir-resistant A H1N1 strain that emerged in 2007 was 4% (95% credible interval [CrI] 3-5) more transmissible than its oseltamivir-sensitive predecessor and the oseltamivir-resistant pandemic A H1N1 strain that emerged and circulated in Japan during 2013-14 was 24% (95% CrI 17-30) less transmissible than its oseltamivir-sensitive counterpart. We show that in the event of large-scale antiviral interventions during a pandemic with co-circulation of AVS and AVR strains, our method can be used to inform optimal use of antivirals by monitoring intrinsic AVR fitness and drug pressure on the AVS strain. INTERPRETATION We developed a simple method that can be easily integrated into contemporary influenza surveillance systems to provide reliable estimates of AVR fitness in real time. FUNDING Research Fund for the Control of Infectious Disease (09080792) and a commissioned grant from the Health and Medical Research Fund from the Government of the Hong Kong Special Administrative Region, Harvard Center for Communicable Disease Dynamics from the National Institute of General Medical Sciences (grant number U54 GM088558), Area of Excellence Scheme of the Hong Kong University Grants Committee (grant number AoE/M-12/06).
Collapse
Affiliation(s)
- Kathy Leung
- WHO Collaborating Centre for Infectious Disease Epidemiology and Control, School of Public Health, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, China
| | - Marc Lipsitch
- Department of Epidemiology, Centre for Communicable Disease Dynamics, Harvard TH Chan School of Public Health, Boston, MA, USA
| | - Kwok Yung Yuen
- Department of Microbiology, The University of Hong Kong, Hong Kong SAR, China
| | - Joseph T Wu
- WHO Collaborating Centre for Infectious Disease Epidemiology and Control, School of Public Health, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, China.
| |
Collapse
|
250
|
Amino acid substitutions V63I or A37S/I61T/V63I/V100A in the PA N-terminal domain increase the virulence of H7N7 influenza A virus. Sci Rep 2016; 6:37800. [PMID: 27886255 PMCID: PMC5122915 DOI: 10.1038/srep37800] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2016] [Accepted: 11/02/2016] [Indexed: 12/28/2022] Open
Abstract
The PA N-terminal domain (PA-Nter) is essential for viral transcription and replication. Here we identified PA-Nter substitutions A37S, I61T, V63I and V100A in recently emerged avian influenza A viruses (IAVs) with potential effect on virus pathogenicity and/or host adaptation. We introduced the identified PA-Nter substitutions into avian H7N7 IAV by reverse genetics. Our results showed that single substitution V63I and combined substitutions, I61T/V63I and A37S/I61T/V63I/V100A (Mfour), significantly increased virus growth capacity in mammalian cells. Meanwhile, these substitutions conferred higher virus transcription/replication capacity by producing more mRNA, cRNA and vRNA. Consistently, the polymerase activity and the endonuclease activity were enhanced by these PA-Nter substitutions. Notably, substitutions V63I and Mfour strongly increased virus replication and virulence in mice. Collectively, our findings demonstrated that the PA-Nter substitutions V63I and Mfour enhanced IAV pathogenicity through modification of the polymerase activity and the endonuclease activity, which added to the evolving knowledge of IAV virulence determinants.
Collapse
|