201
|
Gao L, He Z, Wu Y. Advances in Anti-metabolic Disease Treatments Targeting CD47. Curr Pharm Des 2022; 28:3720-3728. [PMID: 36201266 DOI: 10.2174/1381612828666221006123144] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2022] [Revised: 08/15/2022] [Accepted: 08/21/2022] [Indexed: 01/28/2023]
Abstract
Metabolic disorders include a cluster of conditions that result from hyperglycemia, hyperlipidemia, insulin resistance, obesity, and hepatic steatosis, which cause the dysfunction of immune cells and innate cells, such as macrophages, natural killer cells, vascular endothelial cells, hepatocytes, and human kidney tubular epithelial cells. Besides targeting the derangements in lipid metabolism, therapeutic modulations to regulate abnormal responses in the immune system and innate cell dysfunctions may prove to be promising strategies in the management of metabolic diseases. In recent years, several targets have been explored for the CD47 molecule (CD47), a glycosylated protein, which was originally reported to transmit an anti-phagocytic signal known as "don't eat me" in the atherosclerotic environment, hindering the efferocytosis of immune cells and promoting arterial plaque accumulation. Subsequently, the role of CD47 has been explored in obesity, fatty liver, and lipotoxic nephropathy, and its utility as a therapeutic target has been investigated using anti-CD47 antibodies or inhibitors of the THBS1/CD47 axis and the CD47/SIRPα signaling pathway. This review summarizes the mechanisms of action of CD47 in different cell types during metabolic diseases and the clinical research progress to date, providing a reference for the comprehensive targeting of CD47 to treat metabolic diseases and the devising of potential improvements to possible side effects.
Collapse
Affiliation(s)
- Li Gao
- Department of Nephropathy, The First Affiliated Hospital of Anhui Medical University, Hefei 230022, China.,Center for Scientific Research of Anhui Medical University, Hefei 230022, China
| | - Zhe He
- Department of Nephropathy, The First Affiliated Hospital of Anhui Medical University, Hefei 230022, China
| | - Yonggui Wu
- Department of Nephropathy, The First Affiliated Hospital of Anhui Medical University, Hefei 230022, China.,Center for Scientific Research of Anhui Medical University, Hefei 230022, China
| |
Collapse
|
202
|
Wang J, Lu P, Xie W. Atypical functions of xenobiotic receptors in lipid and glucose metabolism. MEDICAL REVIEW (2021) 2022; 2:611-624. [PMID: 36785576 PMCID: PMC9912049 DOI: 10.1515/mr-2022-0032] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Accepted: 11/08/2022] [Indexed: 12/02/2022]
Abstract
Xenobiotic receptors are traditionally defined as xenobiotic chemical-sensing receptors, the activation of which transcriptionally regulates the expression of enzymes and transporters involved in the metabolism and disposition of xenobiotics. Emerging evidence suggests that "xenobiotic receptors" also have diverse endobiotic functions, including their effects on lipid metabolism and energy metabolism. Dyslipidemia is a major risk factor for cardiovascular disease, diabetes, obesity, metabolic syndrome, stroke, nonalcoholic fatty liver disease (NAFLD), and nonalcoholic steatohepatitis (NASH). Understanding the molecular mechanism by which transcriptional factors, including the xenobiotic receptors, regulate lipid homeostasis will help to develop preventive and therapeutic approaches. This review describes recent advances in our understanding the atypical roles of three xenobiotic receptors: aryl hydrocarbon receptor (AhR), pregnane X receptor (PXR), and constitutive androstane receptor (CAR), in metabolic disorders, with a particular focus on their effects on lipid and glucose metabolism. Collectively, the literatures suggest the potential values of AhR, PXR and CAR as therapeutic targets for the treatment of NAFLD, NASH, obesity and diabetes, and cardiovascular diseases.
Collapse
Affiliation(s)
- Jingyuan Wang
- Center for Pharmacogenetics and Department of Pharmaceutical Sciences, University of Pittsburgh, Pittsburgh, PA, USA
| | - Peipei Lu
- Center for Pharmacogenetics and Department of Pharmaceutical Sciences, University of Pittsburgh, Pittsburgh, PA, USA
| | - Wen Xie
- Center for Pharmacogenetics and Department of Pharmaceutical Sciences, University of Pittsburgh, Pittsburgh, PA, USA
- Department of Pharmacology and Chemical Biology, University of Pittsburgh, Pittsburgh, PA, USA
| |
Collapse
|
203
|
Lv W, Tan X, Chen X, Hu T, Jiang J, Li Q, Chen X, Tan H, Qian B. D‐Limonene for regulating metabolism‐associated fatty liver disease (MAFLD) and analysis of the TCM constitution: A protocol for an exploratory, randomized, double‐blind, placebo‐controlled trial (DL‐MAFLD‐TCM). FOOD FRONTIERS 2022; 3:550-559. [DOI: 10.1002/fft2.171] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Abstract
AbstractThe protocol describes the first study evaluating the treatment of metabolism‐associated fatty liver disease (MAFLD). MAFLD, formerly known as nonalcoholic fatty liver disease, was renamed by an internationally renowned liver disease expert group in 2020. MAFLD contains three types: overweight/obesity (A type), type 2 diabetes mellitus (B type), or evidence of metabolic dysregulation (C type). There is a lack of effective therapeutic drugs. We found that D‐limonene, a food additive in China, has potential activity on the A type of MAFLD through animal studies. Then, we designed an exploratory, single‐center, double‐blind, placebo‐controlled, randomized clinical trial for the evaluation of limonene capsules (marketed product in China) on regulating A type of MAFLD and analysis of the TCM constitution (DLMAFLD‐TCM). A total of 60 patients with A type of MAFLD will be randomly assigned to a treatment arm with (n = 30) or without (n = 30) Food Frontiers for Review Only limonene (placebo) for 12 weeks. The primary end point will be assessed at two end points combined for A type: changes in the controlled attenuation parameter and body mass index at baseline and 12 weeks after administration. The study procedures and informed consent form were approved by the hospital. We detail the protocol and the statistical analysis plan of the trial prior to study completion, which is for further study. This trial is registered in the Chinese Clinical Trial Registry (ChiCTR2000035888).
Collapse
Affiliation(s)
- Wenwen Lv
- Hongqiao International Institute of Medicine, Shanghai Tongren Hospital/Clinical Research Institute Shanghai Jiao Tong University School of Medicine Shanghai China
| | - Xiyang Tan
- Department of Rheumatology and Immunology Longhua Hospital Shanghai University of Traditional Chinese Medicine Shanghai China
| | - Xiaochen Chen
- Hongqiao International Institute of Medicine, Shanghai Tongren Hospital/Clinical Research Institute Shanghai Jiao Tong University School of Medicine Shanghai China
| | - Tingting Hu
- Hongqiao International Institute of Medicine, Shanghai Tongren Hospital/Clinical Research Institute Shanghai Jiao Tong University School of Medicine Shanghai China
| | - Jiayuan Jiang
- Hongqiao International Institute of Medicine, Shanghai Tongren Hospital/Clinical Research Institute Shanghai Jiao Tong University School of Medicine Shanghai China
| | - Qiang Li
- Hongqiao International Institute of Medicine, Shanghai Tongren Hospital/Clinical Research Institute Shanghai Jiao Tong University School of Medicine Shanghai China
| | - Xiao‐yun Chen
- Department of Rheumatology and Immunology Longhua Hospital Shanghai University of Traditional Chinese Medicine Shanghai China
| | - Hongsheng Tan
- Hongqiao International Institute of Medicine, Shanghai Tongren Hospital/Clinical Research Institute Shanghai Jiao Tong University School of Medicine Shanghai China
| | - Biyun Qian
- Hongqiao International Institute of Medicine, Shanghai Tongren Hospital/Clinical Research Institute Shanghai Jiao Tong University School of Medicine Shanghai China
| |
Collapse
|
204
|
Chen H. Iron metabolism in non-alcoholic fatty liver disease: A promising therapeutic target. LIVER RESEARCH 2022; 6:203-213. [PMID: 39957910 PMCID: PMC11791839 DOI: 10.1016/j.livres.2022.09.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/28/2022] [Revised: 06/05/2022] [Accepted: 09/12/2022] [Indexed: 11/23/2022]
Abstract
Non-alcoholic fatty liver disease (NAFLD) has become the most common cause of chronic liver disease worldwide, and is closely associated with the increased risk of the prevalence of obesity and diabetes. NAFLD begins with the presence of >5% excessive lipid accumulation in the liver, and potentially develops into non-alcoholic steatohepatitis, fibrosis, cirrhosis and hepatocellular carcinoma. Therefore, insight into the pathogenesis of NAFLD is of key importance to its effective treatment. Iron is an essential element in the life of all mammalian organisms. However, the free iron deposition is positively associated with histological severity in NAFLD patients due to the production of reactive oxygen species via the Fenton reaction. Recently, several iron metabolism-targeted therapies, such as phlebotomy, iron chelators, nanotherapeutics. and ferroptosis, have shown their potential as a therapeutic option in the treatment of NAFLD and as a clinical strategy to intervene in the progression of NAFLD. Herein, we review the recent overall evidence on iron metabolism and provide the mechanism of hepatic iron overload-induced liver pathologies and the recent advances in iron metabolism-targeted therapeutics in the treatment of NAFLD.
Collapse
Affiliation(s)
- Hanqing Chen
- Department of Gastroenterology and Hepatology, Guangzhou Digestive Disease Center, Guangzhou Key Laboratory of Digestive Diseases, Guangzhou First People's Hospital, School of Medicine, South China University of Technology, Guangzhou, Guangdong, China
| |
Collapse
|
205
|
Matye DJ, Qin X, Hasan MN, Gu L, Clayton YD, Li F, Li T. Effects of apical sodium-bile acid transporter inhibitor and obeticholic acid co-treatment in experimental non-alcoholic steatohepatitis. LIVER RESEARCH 2022; 6:276-283. [PMID: 36819659 PMCID: PMC9933918 DOI: 10.1016/j.livres.2022.11.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/14/2022] [Revised: 07/07/2022] [Accepted: 11/07/2022] [Indexed: 11/15/2022]
Abstract
Background and aims Several bile acids-based monotherapies have been developed for non-alcoholic steatohepatitis (NASH) treatment but clinical trial findings suggest that they do not satisfactorily improve NASH and liver fibrosis in many patients. Recently, we have shown that combining a gut-restricted apical sodium-bile acid transporter (ASBT) inhibitor GSK2330672 (GSK) with adeno-associated virus (AAV)-mediated liver fibroblast growth factor 15 (FGF15) overexpression provides significantly improved efficacy than either single treatment against NASH and liver fibrosis in a high fat, cholesterol, and fructose (HFCFr) diet-induced NASH mouse model. The beneficial effects of the combined treatment can be attributed to the markedly reduced bile acid pool that reduces liver bile acid burden and intestinal lipid absorption. The aim of this study is to further investigate if combining GSK treatment with the orally bioavailable obeticholic acid (OCA), which induces endogenous FGF15 and inhibits hepatic bile acid synthesis, can achieve similar anti-NASH effect as the GSK+AAV-FGF15 co-treatment in HFCFr-diet-fed mice. Materials and methods Male C57BL/6J mice were fed HFCFr diet to induce NASH and liver fibrosis. The effect of GSK, OCA, and GSK+OCA treatments on NASH development was compared and contrasted among all groups. Results Findings from this study showed that the GSK+OCA co-treatment did not cause persistent reduction of obesity over a 12-week treatment period. Neither single treatment nor the GSK+OCA co-treatment reduce hepatic steatosis, but all three treatments reduced hepatic inflammatory cytokines and fibrosis by a similar magnitude. The GSK+OCA co-treatment caused a higher degree of total bile acid pool reduction (~55%) than either GSK or OCA treatment alone. However, such bile acid pool reduction was insufficient to cause increased fecal lipid loss. The GSK+OCA co-treatment prevented GSK-mediated induction of hepatic cholesterol 7alpha-hydroxylase but failed to induce ileal FGF15 expression. GSK did not reduce gallbladder OCA amount in the GSK+OCA group compared to the OCA group, suggesting that ASBT inhibition does not reduce hepatic OCA distribution. Conclusions Unlike the GSK+AAV-FGF15 co-treatment, the GSK+OCA co-treatment does not provide improved efficacy against NASH and liver fibrosis than either single treatment in mice. The lack of synergistic effect may be partly attributed to the moderate reduction of total bile acid pool and the lack of high level of FGF15 exposure as seen in the GSK+AAV-FGF15 co-treatment.
Collapse
Affiliation(s)
- David J. Matye
- Harold Hamm Diabetes Center, Department of Physiology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| | - Xuan Qin
- Department of Pathology and Immunology, Baylor College of Medicine, Houston, TX, USA
| | - Mohammad Nazmul Hasan
- Harold Hamm Diabetes Center, Department of Physiology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| | - Lijie Gu
- Harold Hamm Diabetes Center, Department of Physiology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| | - Yung Dai Clayton
- Harold Hamm Diabetes Center, Department of Physiology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| | - Feng Li
- Department of Pathology and Immunology, Baylor College of Medicine, Houston, TX, USA
- NMR and Drug Metabolism Core, Baylor College of Medicine, Houston, TX, USA
| | - Tiangang Li
- Harold Hamm Diabetes Center, Department of Physiology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| |
Collapse
|
206
|
Liang M, Huo M, Guo Y, Zhang Y, Xiao X, Xv J, Fang L, Li T, Wang H, Dong S, Jiang X, Yu W. Aqueous extract of Artemisia capillaris improves non-alcoholic fatty liver and obesity in mice induced by high-fat diet. Front Pharmacol 2022; 13:1084435. [PMID: 36518663 PMCID: PMC9742474 DOI: 10.3389/fphar.2022.1084435] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2022] [Accepted: 11/15/2022] [Indexed: 01/21/2024] Open
Abstract
Non-alcoholic fatty liver disease (NAFLD) is one of the most common chronic liver diseases and is a nutritional metabolic disease. Artemisia capillaris (AC) is the above-ground dried part of Artemisia capillaris Thunb. or Artemisia scoparia Waldst. et Kit., a natural medicinal plant with pharmacological effects of heat-clearing and biliary-promoting. In order to evaluate the therapeutic effect of Artemisia capillaris on NAFLD and obesity, experiments were conducted using aqueous extracts of Artemisia capillaris (WAC) to intervene in NAFLD models in vivo and in vitro. In vivo experiments were performed using HFD-fed (high fat diet) C57BL/6 mice to induce NAFLD model, and in vitro experiments were performed using oleic acid to induce HepG2 cells to construct NAFLD cell model. H.E. staining and oil red O staining of liver tissue were used to observe hepatocytes. Blood biochemistry analyzer was used to detect serum lipid levels in mice. The drug targets and mechanism of action of AC to improve NAFLD were investigated by western blotting, qRT-PCR and immunofluorescence. The results showed that C57BL/6 mice fed HFD continuously for 16 weeks met the criteria for NAFLD in terms of lipid index and hepatocyte fat accumulation. WAC was able to reverse the elevation of serum lipid levels induced by high-fat diet in mice. WAC promoted the phosphorylation levels of PI3K/AKT and AMPK in liver and HepG2 cells of NAFLD mice, inhibited SREBP-1c expression, reduced TG and lipogenesis, and decreased lipid accumulation. In summary, WAC extract activates PI3K/AKT pathway, reduces SREBP-1c protein expression by promoting AMPK phosphorylation, and decreases fatty acid synthesis and TG content in hepatocytes. AC can be used as a potential health herb to improve NAFLD and obesity.
Collapse
Affiliation(s)
- Meng Liang
- Department of Veterinary Medicine, Northeast Agricultural University, Harbin, China
| | - Mohan Huo
- Department of Life Sciences, Northeast Agricultural University, Harbin, China
| | - Yi Guo
- Department of Veterinary Medicine, Northeast Agricultural University, Harbin, China
| | - Yuyi Zhang
- Department of Veterinary Medicine, Northeast Agricultural University, Harbin, China
| | - Xiao Xiao
- Department of Veterinary Medicine, Northeast Agricultural University, Harbin, China
| | - Jianwen Xv
- Department of Veterinary Medicine, Northeast Agricultural University, Harbin, China
| | - Lixue Fang
- Department of Veterinary Medicine, Northeast Agricultural University, Harbin, China
| | - Tianqi Li
- Department of Veterinary Medicine, Northeast Agricultural University, Harbin, China
| | - Huan Wang
- Department of Veterinary Medicine, Northeast Agricultural University, Harbin, China
| | - Siyu Dong
- Department of Veterinary Medicine, Northeast Agricultural University, Harbin, China
| | - Xiaowen Jiang
- Department of Veterinary Medicine, Northeast Agricultural University, Harbin, China
| | - Wenhui Yu
- Department of Veterinary Medicine, Northeast Agricultural University, Harbin, China
- Institute of Chinese Veterinary Medicine, Northeast Agricultural University, Harbin, China
- Heilongjiang Provincial Key Laboratory for Prevention and Control of Common Animal Diseases, Northeast Agricultural University, Harbin, China
| |
Collapse
|
207
|
Futatsugi K, Cabral S, Kung DW, Huard K, Lee E, Boehm M, Bauman J, Clark RW, Coffey SB, Crowley C, Dechert-Schmitt AM, Dowling MS, Dullea R, Gosset JR, Kalgutkar AS, Kou K, Li Q, Lian Y, Loria PM, Londregan AT, Niosi M, Orozco C, Pettersen JC, Pfefferkorn JA, Polivkova J, Ross TT, Sharma R, Stock IA, Tesz G, Wisniewska H, Goodwin B, Price DA. Discovery of Ervogastat (PF-06865571): A Potent and Selective Inhibitor of Diacylglycerol Acyltransferase 2 for the Treatment of Non-alcoholic Steatohepatitis. J Med Chem 2022; 65:15000-15013. [PMID: 36322383 DOI: 10.1021/acs.jmedchem.2c01200] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Discovery efforts leading to the identification of ervogastat (PF-06865571), a systemically acting diacylglycerol acyltransferase (DGAT2) inhibitor that has advanced into clinical trials for the treatment of non-alcoholic steatohepatitis (NASH) with liver fibrosis, are described herein. Ervogastat is a first-in-class DGAT2 inhibitor that addressed potential development risks of the prototype liver-targeted DGAT2 inhibitor PF-06427878. Key design elements that culminated in the discovery of ervogastat are (1) replacement of the metabolically labile motif with a 3,5-disubstituted pyridine system, which addressed potential safety risks arising from a cytochrome P450-mediated O-dearylation of PF-06427878 to a reactive quinone metabolite precursor, and (2) modifications of the amide group to a 3-THF group, guided by metabolite identification studies coupled with property-based drug design.
Collapse
Affiliation(s)
- Kentaro Futatsugi
- Pfizer Inc. Medicine Design, 1 Portland Street, Cambridge, Massachusetts 02139, United States
| | - Shawn Cabral
- Pfizer Inc. Medicine Design, Eastern Point Road, Groton, Connecticut 06340, United States
| | - Daniel W Kung
- Pfizer Inc. Medicine Design, Eastern Point Road, Groton, Connecticut 06340, United States
| | - Kim Huard
- Pfizer Inc. Medicine Design, 1 Portland Street, Cambridge, Massachusetts 02139, United States
| | - Esther Lee
- Pfizer Inc. Medicine Design, 1 Portland Street, Cambridge, Massachusetts 02139, United States
| | - Markus Boehm
- Pfizer Inc. Medicine Design, 1 Portland Street, Cambridge, Massachusetts 02139, United States
| | - Jonathan Bauman
- Pfizer Inc. Medicine Design, Eastern Point Road, Groton, Connecticut 06340, United States
| | - Ronald W Clark
- Pfizer Inc. Internal Medicine Research Unit, 1 Portland Street, Cambridge, Massachusetts 02139, United States
| | - Steven B Coffey
- Pfizer Inc. Medicine Design, Eastern Point Road, Groton, Connecticut 06340, United States
| | - Collin Crowley
- Pfizer Inc. Internal Medicine Research Unit, 1 Portland Street, Cambridge, Massachusetts 02139, United States
| | | | - Matthew S Dowling
- Pfizer Inc. Medicine Design, Eastern Point Road, Groton, Connecticut 06340, United States
| | - Robert Dullea
- Pfizer Inc. Internal Medicine Research Unit, 1 Portland Street, Cambridge, Massachusetts 02139, United States
| | - James R Gosset
- Pfizer Inc. Medicine Design, 1 Portland Street, Cambridge, Massachusetts 02139, United States
| | - Amit S Kalgutkar
- Pfizer Inc. Medicine Design, 1 Portland Street, Cambridge, Massachusetts 02139, United States
| | - Kou Kou
- Pfizer Inc. Internal Medicine Research Unit, 1 Portland Street, Cambridge, Massachusetts 02139, United States
| | - Qifang Li
- Pfizer Inc. Medicine Design, Eastern Point Road, Groton, Connecticut 06340, United States
| | - Yajing Lian
- Pfizer Inc. Medicine Design, Eastern Point Road, Groton, Connecticut 06340, United States
| | - Paula M Loria
- Pfizer Inc. Medicine Design, Eastern Point Road, Groton, Connecticut 06340, United States
| | - Allyn T Londregan
- Pfizer Inc. Medicine Design, Eastern Point Road, Groton, Connecticut 06340, United States
| | - Mark Niosi
- Pfizer Inc. Medicine Design, Eastern Point Road, Groton, Connecticut 06340, United States
| | - Christine Orozco
- Pfizer Inc. Medicine Design, Eastern Point Road, Groton, Connecticut 06340, United States
| | - John C Pettersen
- Pfizer Inc. Drug Safety R&D, Eastern Point Road, Groton, Connecticut 06340, United States
| | - Jeffrey A Pfefferkorn
- Pfizer Inc. Internal Medicine Research Unit, 1 Portland Street, Cambridge, Massachusetts 02139, United States
| | - Jana Polivkova
- Pfizer Inc. Medicine Design, Eastern Point Road, Groton, Connecticut 06340, United States
| | - Trenton T Ross
- Pfizer Inc. Internal Medicine Research Unit, 1 Portland Street, Cambridge, Massachusetts 02139, United States
| | - Raman Sharma
- Pfizer Inc. Medicine Design, Eastern Point Road, Groton, Connecticut 06340, United States
| | - Ingrid A Stock
- Pfizer Inc. Medicine Design, Eastern Point Road, Groton, Connecticut 06340, United States
| | - Gregory Tesz
- Pfizer Inc. Internal Medicine Research Unit, 1 Portland Street, Cambridge, Massachusetts 02139, United States
| | - Hanna Wisniewska
- Pfizer Inc. Medicine Design, Eastern Point Road, Groton, Connecticut 06340, United States
| | - Bryan Goodwin
- Pfizer Inc. Internal Medicine Research Unit, 1 Portland Street, Cambridge, Massachusetts 02139, United States
| | - David A Price
- Pfizer Inc. Medicine Design, 1 Portland Street, Cambridge, Massachusetts 02139, United States
| |
Collapse
|
208
|
Yan S, Zhou J, Zhang H, Lin Z, Khambu B, Liu G, Ma M, Chen X, Chalasani N, Yin X. Promotion of diet-induced obesity and metabolic syndromes by BID is associated with gut microbiota. Hepatol Commun 2022; 6:3349-3362. [PMID: 36382356 PMCID: PMC9701492 DOI: 10.1002/hep4.2052] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/19/2022] [Revised: 06/23/2022] [Accepted: 07/01/2022] [Indexed: 11/17/2022] Open
Abstract
A growing body of evidence has indicated an expanding functional network of B-cell lymphoma 2 (BCL-2) family proteins beyond regulation of cell death and survival. Here, we examined the role and mechanisms of BH3 interacting-domain death agonist (BID), a pro-death BCL-2 family member, in the development of diet-induced metabolic dysfunction. Mice deficient in bid (bid-/- ) were resistant to high-fat diet (HFD)-induced obesity, hepatic steatosis, and dyslipidemia with an increased insulin sensitivity. Indirect calorimetry analysis indicated that bid deficiency increased metabolic rate and decreased respiratory exchange ratio, suggesting a larger contribution of lipids to overall energy expenditure. While expression of several genes related to lipid accumulation was only increased in wild-type livers, metabolomics analysis revealed a consistent reduction in fatty acids but an increase in certain sugars and Krebs cycle intermediates in bid-/- livers. Gut microbiota (GM) analysis indicated that HFD induced gut dysbiosis with differential patterns in wild-type and in bid-/- mice. Notably, abrogation of GM by antibiotics during HFD feeding eliminated the beneficial effects against obesity and hepatic steatosis conferred by the bid deficiency. Conclusion: These results indicate that the protective role of bid-deficiency against diet-induced metabolic dysfunction interacts with the function of GM.
Collapse
Affiliation(s)
- Shengmin Yan
- Department of Pathology and Laboratory MedicineTulane University School of MedicineNew OrleansLouisianaUSA,Department of Pathology and Laboratory MedicineIndiana University School of MedicineIndianapolisIndianaUSA
| | - Jun Zhou
- Department of Pathology and Laboratory MedicineIndiana University School of MedicineIndianapolisIndianaUSA,Department of Emergency MedicineThe Second Xiangya HospitalCentral South UniversityChangshaChina
| | - Hao Zhang
- Department of Pathology and Laboratory MedicineIndiana University School of MedicineIndianapolisIndianaUSA,Digestive Health InstituteUniversity of IllinoisUrbanain IllinoisUSA
| | - Zhen Lin
- Department of Pathology and Laboratory MedicineTulane University School of MedicineNew OrleansLouisianaUSA
| | - Bilon Khambu
- Department of Pathology and Laboratory MedicineTulane University School of MedicineNew OrleansLouisianaUSA,Department of Pathology and Laboratory MedicineIndiana University School of MedicineIndianapolisIndianaUSA
| | - Gang Liu
- Department of Pathology and Laboratory MedicineTulane University School of MedicineNew OrleansLouisianaUSA
| | - Michelle Ma
- Department of Pathology and Laboratory MedicineTulane University School of MedicineNew OrleansLouisianaUSA
| | - Xiaoyun Chen
- Department of Pathology and Laboratory MedicineIndiana University School of MedicineIndianapolisIndianaUSA
| | - Naga Chalasani
- Department of MedicineIndiana University School of MedicineIndianapolisIndianaUSA
| | - Xiao‐Ming Yin
- Department of Pathology and Laboratory MedicineTulane University School of MedicineNew OrleansLouisianaUSA,Department of Pathology and Laboratory MedicineIndiana University School of MedicineIndianapolisIndianaUSA
| |
Collapse
|
209
|
Ye P, Zhang H, Qu J, Wang JY, Zhu X, Sai F, Lv Y, Ma S, Hu Q. Preparation of oxime compound lipid droplet-specifically labeled fluorescent probe and its application in cell imaging. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2022; 281:121648. [PMID: 35872430 DOI: 10.1016/j.saa.2022.121648] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Revised: 07/15/2022] [Accepted: 07/16/2022] [Indexed: 06/15/2023]
Abstract
Fluorescent probes can facilitate our further comprehension of the functional and physiological roles of LDs and thus promote the development of effective therapeutic approaches. Oxime compounds are widely used due to their good crystallinity and high reactivity. However, the majority oximes fluorescent probes are usually employed for the detection of HCIO, and the application of oximes in fluorescently labeled LDS is poorly reported. In this paper, three kinds of LDs fluorescent probes (NAP-a, NAP-b and NAP-c) with D-π-A structure were synthesized by simple synthesis method with 1,8-naphthalimide as fluorescent matrix and oxime group as electron donor. These probes were highly sensitive to polarity, and possessed good photostability and low cytotoxicity. Co-staining experiments showed that these probes could target LDs and the fluorescence image was green. These probes NAP-a, NAP-b and NAP-c possessed high Pearson coefficient (HeLa cells: 0.91, 0.95, 0.86) and Manders coefficient (HeLa cells: 0.91, 0.96, 0.86) with Nile Red. Interestingly, the dynamic variations in their size, shape and distribution could be clearly observed in the oleic acid-treated cell model of LDs. Imaging of zebrafish was performed and green fluorescence was collected in zebrafish. These excellent properties make oxime compound fluorescent probes a promising fluorescent probes for studying LDs and metabolic diseases. This study opens up a new way for the preparation of LDs fluorescent probe.
Collapse
Affiliation(s)
- Peng Ye
- State Key Laboratory of Biobased Material and Green Papermaking, Qilu University of Technology, Shandong Academy of Sciences, Jinan 250353, China
| | - Haitao Zhang
- State Key Laboratory of Biobased Material and Green Papermaking, Qilu University of Technology, Shandong Academy of Sciences, Jinan 250353, China.
| | - Jianbo Qu
- State Key Laboratory of Biobased Material and Green Papermaking, Qilu University of Technology, Shandong Academy of Sciences, Jinan 250353, China
| | - Jian-Yong Wang
- State Key Laboratory of Biobased Material and Green Papermaking, Qilu University of Technology, Shandong Academy of Sciences, Jinan 250353, China
| | - Xiuzhong Zhu
- State Key Laboratory of Biobased Material and Green Papermaking, Qilu University of Technology, Shandong Academy of Sciences, Jinan 250353, China
| | - Futao Sai
- State Key Laboratory of Biobased Material and Green Papermaking, Qilu University of Technology, Shandong Academy of Sciences, Jinan 250353, China
| | - Yongfen Lv
- State School of Chemistry and Chemical Engineering, Qilu University of Technology, Shandong Academy of Sciences, Jinan 250353, China
| | - Shanghong Ma
- State Key Laboratory of Biobased Material and Green Papermaking, Qilu University of Technology, Shandong Academy of Sciences, Jinan 250353, China
| | - Qingfei Hu
- State Key Laboratory of Biobased Material and Green Papermaking, Qilu University of Technology, Shandong Academy of Sciences, Jinan 250353, China
| |
Collapse
|
210
|
Yang TY, Yu MH, Wu YL, Hong CC, Chen CS, Chan KC, Wang CJ. Mulberry Leaf ( Morus alba L.) Extracts and Its Chlorogenic Acid Isomer Component Improve Glucolipotoxicity-Induced Hepatic Lipid Accumulation via Downregulating miR-34a and Decreased Inflammation. Nutrients 2022; 14:nu14224808. [PMID: 36432495 PMCID: PMC9695749 DOI: 10.3390/nu14224808] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2022] [Revised: 11/11/2022] [Accepted: 11/11/2022] [Indexed: 11/16/2022] Open
Abstract
Mulberry leaf (Morus alba L.) is used as a traditional medicine and potential health food to treat various metabolic diseases, such as hypertension, diabetes, and hyperlipidemia. However, we sought the mechanisms by which functional components of mulberry leaves mediate diabetic steatohepatitis. We applied an in vitro model of HepG2 cells induced by glucolipotoxicity and evaluated the effects of MLE and its major components nCGA, Crp, and CGA. The results showed that MLE and nCGA reduced liver fat accumulation by inhibiting SREBP-1/FASN, SREBP-2/HMG-CoAR, and activating PPARα/CPT-1. Additionally, MLE and nCGA decreased inflammatory responses associated with NF-κB, TNF-α, and IL-6 to alleviate steatohepatitis. Furthermore, we showed that MLE and nCGA exerted anti-glucolipotoxicity effects by downregulating miR-34a, thus activating SIRT1/AMPK signaling, and subsequently suppressing hepatic lipid accumulation.
Collapse
Affiliation(s)
- Tsung-Yuan Yang
- Department of Internal Medicine, Chung-Shan Medical University Hospital, No. 110, Section 1, Jianguo N. Road, Taichung 402, Taiwan
- School of Medicine, Institute of Medicine, Chung-Shan Medical University, No. 110, Section 1, Jianguo N. Road, Taichung 402, Taiwan
| | - Meng-Hsun Yu
- Department of Health Industry Technology Management, Chung Shan Medical University, No. 110, Section 1, Jianguo N. Road, Taichung 402, Taiwan
- Department of Nutrition, Chung Shan Medical University, No. 110, Section 1, Jianguo N. Road, Taichung 402, Taiwan
| | - Yi-Liang Wu
- Division of Cardiovascular Surgery, Surgical Department, Chung Shan Medical University Hospital, No. 110, Section 1, Jianguo N. Road, Taichung 402, Taiwan
- Department of Surgery, School of Medicine, Chung-Shan Medical University, No. 110, Section 1, Jianguo N. Road, Taichung 402, Taiwan
| | - Ching-Chun Hong
- Department of Food Science and Biotechnology, National Chung Hsing University, Taichung 402, Taiwan
| | - Chin-Shuh Chen
- Department of Food Science and Biotechnology, National Chung Hsing University, Taichung 402, Taiwan
| | - Kuei-Chuan Chan
- Department of Internal Medicine, Chung-Shan Medical University Hospital, No. 110, Section 1, Jianguo N. Road, Taichung 402, Taiwan
- School of Medicine, Institute of Medicine, Chung-Shan Medical University, No. 110, Section 1, Jianguo N. Road, Taichung 402, Taiwan
- Correspondence: (K.-C.C.); (C.-J.W.); Tel.: +886-4-247-30022 (ext. 34704) (K.-C.C. & C.-J.W.)
| | - Chau-Jong Wang
- Department of Health Industry Technology Management, Chung Shan Medical University, No. 110, Section 1, Jianguo N. Road, Taichung 402, Taiwan
- Department of Medical Research, Chung Shan Medical University Hospital, No. 110, Section 1, Jianguo N. Road, Taichung 402, Taiwan
- Correspondence: (K.-C.C.); (C.-J.W.); Tel.: +886-4-247-30022 (ext. 34704) (K.-C.C. & C.-J.W.)
| |
Collapse
|
211
|
Jiang SY, Yang X, Yang Z, Li JW, Xu MQ, Qu YX, Tang JJ, Li YF, Wang L, Shao YW, Meng XY, Hu H, Song BL, Rao Y, Qi W. Discovery of an insulin-induced gene binding compound that ameliorates nonalcoholic steatohepatitis by inhibiting sterol regulatory element-binding protein-mediated lipogenesis. Hepatology 2022; 76:1466-1481. [PMID: 35102596 DOI: 10.1002/hep.32381] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/27/2021] [Revised: 01/14/2022] [Accepted: 01/27/2022] [Indexed: 12/28/2022]
Abstract
BACKGROUND AND AIMS NASH is associated with high levels of cholesterol and triglyceride (TG) in the liver; however, there is still no approved pharmacological therapy. Synthesis of cholesterol and TG is controlled by sterol regulatory element-binding protein (SREBP), which is found to be abnormally activated in NASH patients. We aim to discover small molecules for treating NASH by inhibiting the SREBP pathway. APPROACH AND RESULTS Here, we identify a potent SREBP inhibitor, 25-hydroxylanosterol (25-HL). 25-HL binds to insulin-induced gene (INSIG) proteins, stimulates the interaction between INSIG and SCAP, and retains them in the endoplasmic reticulum, thereby suppressing SREBP activation and inhibiting lipogenesis. In NASH mouse models, 25-HL lowers levels of cholesterol and TG in serum and the liver, enhances energy expenditure to prevent obesity, and improves insulin sensitivity. 25-HL dramatically ameliorates hepatic steatosis, inflammation, ballooning, and fibrosis through down-regulating the expression of lipogenic genes. Furthermore, 25-HL exhibits both prophylactic and therapeutic efficacies of alleviating NASH and atherosclerosis in amylin liver NASH model diet-treated Ldlr-/- mice, and reduces the formation of cholesterol crystals and associated crown-like structures of Kupffer cells. Notably, 25-HL lowers lipid contents in serum and the liver to a greater extent than lovastatin or obeticholic acid. 25-HL shows a good safety and pharmacokinetics profile. CONCLUSIONS This study provides the proof of concept that inhibiting SREBP activation by targeting INSIG to lower lipids could be a promising strategy for treating NASH. It suggests the translational potential of 25-HL in human NASH and demonstrates the critical role of SREBP-controlled lipogenesis in the progression of NASH by pharmacological inhibition.
Collapse
Affiliation(s)
- Shi-You Jiang
- Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, Wuhan University, Wuhan, China.,Gene Editing Center, School of Life Science and Technology, ShanghaiTech University, Shanghai, China
| | - Xinglin Yang
- MOE Key Laboratory of Protein Sciences, School of Pharmaceutical Sciences, MOE Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology, Tsinghua University, Beijing, China
| | - Zimo Yang
- MOE Key Laboratory of Protein Sciences, School of Pharmaceutical Sciences, MOE Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology, Tsinghua University, Beijing, China
| | - Jue-Wan Li
- Gene Editing Center, School of Life Science and Technology, ShanghaiTech University, Shanghai, China
| | - Meng-Qiang Xu
- Gene Editing Center, School of Life Science and Technology, ShanghaiTech University, Shanghai, China
| | - Yu-Xiu Qu
- Gene Editing Center, School of Life Science and Technology, ShanghaiTech University, Shanghai, China
| | - Jing-Jie Tang
- The State Key Laboratory of Molecular Biology, Institute of Biochemistry and Cell Biology, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Yun-Feng Li
- Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, Wuhan University, Wuhan, China
| | - Liguo Wang
- MOE Key Laboratory of Protein Sciences, School of Pharmaceutical Sciences, MOE Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology, Tsinghua University, Beijing, China
| | - Yi-Wen Shao
- The Key Laboratory of Experimental Teratology, Ministry of Education and Department of Molecular Medicine and Genetics, Shandong University Cheeloo Medical College, School of Basic Medical Sciences, Jinan, China.,The Research Center of Stem Cell and Regenerative Medicine, Shandong University Cheeloo Medical College, School of Basic Medical Sciences, Jinan, China
| | - Xin-Yuan Meng
- The Key Laboratory of Experimental Teratology, Ministry of Education and Department of Molecular Medicine and Genetics, Shandong University Cheeloo Medical College, School of Basic Medical Sciences, Jinan, China.,The Research Center of Stem Cell and Regenerative Medicine, Shandong University Cheeloo Medical College, School of Basic Medical Sciences, Jinan, China
| | - Huili Hu
- The Key Laboratory of Experimental Teratology, Ministry of Education and Department of Molecular Medicine and Genetics, Shandong University Cheeloo Medical College, School of Basic Medical Sciences, Jinan, China.,The Research Center of Stem Cell and Regenerative Medicine, Shandong University Cheeloo Medical College, School of Basic Medical Sciences, Jinan, China
| | - Bao-Liang Song
- Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, Wuhan University, Wuhan, China
| | - Yu Rao
- MOE Key Laboratory of Protein Sciences, School of Pharmaceutical Sciences, MOE Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology, Tsinghua University, Beijing, China
| | - Wei Qi
- Gene Editing Center, School of Life Science and Technology, ShanghaiTech University, Shanghai, China
| |
Collapse
|
212
|
Cheng D, Zinker BA, Luo Y, Shipkova P, De Oliveira CH, Krishna G, Brown EA, Boehm SL, Tirucherai GS, Gu H, Ma Z, Chu CH, Onorato JM, Kopcho LM, Ammar R, Smith J, Devasthale P, Lawrence RM, Stryker SA, Dierks EA, Azzara AV, Carayannopoulos L, Charles ED, Lentz KA, Gordon DA. MGAT2 inhibitor decreases liver fibrosis and inflammation in murine NASH models and reduces body weight in human adults with obesity. Cell Metab 2022; 34:1732-1748.e5. [PMID: 36323235 DOI: 10.1016/j.cmet.2022.10.007] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/20/2022] [Revised: 06/14/2022] [Accepted: 10/12/2022] [Indexed: 11/07/2022]
Abstract
Monoacylglycerol acyltransferase 2 (MGAT2) is an important enzyme highly expressed in the human small intestine and liver for the regulation of triglyceride absorption and homeostasis. We report that treatment with BMS-963272, a potent and selective MGAT2 inhibitor, decreased inflammation and fibrosis in CDAHFD and STAM, two murine nonalcoholic steatohepatitis (NASH) models. In high-fat-diet-treated cynomolgus monkeys, in contrast to a selective diacylglycerol acyltransferase 1 (DGAT1) inhibitor, BMS-963272 did not cause diarrhea. In a Phase 1 multiple-dose trial of healthy human adults with obesity (NCT04116632), BMS-963272 was safe and well tolerated with no treatment discontinuations due to adverse events. Consistent with the findings in rodent models, BMS-963272 elevated plasma long-chain dicarboxylic acid, indicating robust pharmacodynamic biomarker modulation; increased gut hormones GLP-1 and PYY; and decreased body weight in human subjects. These data suggest MGAT2 inhibition is a promising therapeutic opportunity for NASH, a disease with high unmet medical needs.
Collapse
Affiliation(s)
- Dong Cheng
- Departments of Discovery Biology Cardiovascular and Fibrosis, Bristol Myers Squibb, Princeton, NJ 08543, USA.
| | - Bradley A Zinker
- Departments of Discovery Biology Cardiovascular and Fibrosis, Bristol Myers Squibb, Princeton, NJ 08543, USA
| | - Yi Luo
- Translational Medicine, Bristol Myers Squibb, Lawrenceville, NJ 08543, USA
| | - Petia Shipkova
- Pharmaceutical Candidate Optimization, Bristol Myers Squibb, Princeton, NJ 08543, USA
| | | | - Gopal Krishna
- ICF Early Clinical Development, Bristol Myers Squibb, Summit, NJ 07901, USA
| | - Elizabeth A Brown
- Translational Bioinformatics, Bristol Myers Squibb, Princeton, NJ 08543, USA
| | - Stephanie L Boehm
- Departments of Discovery Biology Cardiovascular and Fibrosis, Bristol Myers Squibb, Princeton, NJ 08543, USA
| | | | - Huidong Gu
- Translational Medicine, Bristol Myers Squibb, Lawrenceville, NJ 08543, USA
| | - Zhengping Ma
- Departments of Discovery Biology Cardiovascular and Fibrosis, Bristol Myers Squibb, Princeton, NJ 08543, USA
| | - Ching-Hsuen Chu
- Departments of Discovery Biology Cardiovascular and Fibrosis, Bristol Myers Squibb, Princeton, NJ 08543, USA
| | - Joelle M Onorato
- Pharmaceutical Candidate Optimization, Bristol Myers Squibb, Princeton, NJ 08543, USA
| | - Lisa M Kopcho
- Leads Discovery and Optimization, Bristol Myers Squibb, Princeton, NJ 08543, USA
| | - Ron Ammar
- Translational Bioinformatics, Bristol Myers Squibb, Princeton, NJ 08543, USA
| | - Julia Smith
- Departments of Discovery Biology Cardiovascular and Fibrosis, Bristol Myers Squibb, Princeton, NJ 08543, USA
| | - Pratik Devasthale
- Small Molecule Drug Discovery, Bristol Myers Squibb, Princeton, NJ 08543, USA
| | - R Michael Lawrence
- Small Molecule Drug Discovery, Bristol Myers Squibb, Princeton, NJ 08543, USA
| | - Steven A Stryker
- Pharmaceutical Candidate Optimization, Bristol Myers Squibb, Princeton, NJ 08543, USA
| | - Elizabeth A Dierks
- Pharmaceutical Candidate Optimization, Bristol Myers Squibb, Princeton, NJ 08543, USA
| | - Anthony V Azzara
- Departments of Discovery Biology Cardiovascular and Fibrosis, Bristol Myers Squibb, Princeton, NJ 08543, USA
| | | | - Edgar D Charles
- Global Drug Development, Bristol Myers Squibb, Lawrenceville, NJ 08543, USA
| | - Kimberley A Lentz
- Pharmaceutical Candidate Optimization, Bristol Myers Squibb, Princeton, NJ 08543, USA
| | - David A Gordon
- Departments of Discovery Biology Cardiovascular and Fibrosis, Bristol Myers Squibb, Princeton, NJ 08543, USA
| |
Collapse
|
213
|
Li CC, Cao JX, Wang L, Wang JY. A novel polyethylene glycol fluorescent probe for simultaneously tracking lysosomes and lipid droplets with large Stokes shift and its application in distinguishing living from dead cells. Microchem J 2022. [DOI: 10.1016/j.microc.2022.108223] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
214
|
Wang XY, Lu LJ, Li YM, Xu CF. MicroRNA-376b-3p ameliorates nonalcoholic fatty liver disease by targeting FGFR1 and regulating lipid oxidation in hepatocytes. Life Sci 2022; 308:120925. [PMID: 36057399 DOI: 10.1016/j.lfs.2022.120925] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Revised: 08/22/2022] [Accepted: 08/29/2022] [Indexed: 11/19/2022]
Abstract
AIMS Nonalcoholic fatty liver disease (NAFLD) is a common chronic liver disease whose molecular mechanisms remain unclear. This study aimed to explore the role and mechanisms of microRNA-376b-3p in NAFLD. MATERIALS AND METHODS We used a microarray to reveal hepatic microRNA expression profiles and validated their expression in cellular and mouse models via qRT-PCR. In vitro, the expression of microRNA-376b-3p was increased by a microRNA-376b-3p mimic and decreased by a microRNA-376b-3p inhibitor. The role and potential mechanisms of microRNA-376b-3p in NAFLD were investigated in mice injected with lentiviral vectors before high-fat diet (HFD) feeding, and the direct target gene was explored using a dual-luciferase reporter gene assay and confirmed by Western blotting. KEY FINDINGS Microarray analysis and subsequent validation showed that the expression of microRNA-376b-3p was downregulated by nearly 90 % in the livers of HFD-fed mice and by >50 % in free fatty acid-stimulated hepatocytes. Overexpression of microRNA-376b-3p markedly ameliorated hepatic lipid accumulation, which was attributable to an increase in fatty acid oxidation. Conversely, inhibition of miR-376b-3p exhibited the opposite effects. The luciferase reporter assay indicated that Fgfr1 is a direct target gene of miR-376b-3p. Fgfr1 intervention eliminated the effect of miR-376b-3p on the lipid oxidation pathway and hepatocyte steatosis, which suggests that miR-376b-3p regulates fatty acid oxidation by targeting Fgfr1 to influence NAFLD development. SIGNIFICANCE miR-376b-3p was downregulated in NAFLD and has a novel regulatory role in lipid oxidation through a miR-376b-3p-Fgfr1-dependent mechanism. Thus, miR-376b-3p may serve as a potential diagnostic marker or therapeutic target for NAFLD.
Collapse
Affiliation(s)
- Xin-Yu Wang
- Department of Gastroenterology, the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, China
| | - Lin-Jie Lu
- Department of Gastroenterology, the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, China
| | - You-Ming Li
- Department of Gastroenterology, the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, China
| | - Cheng-Fu Xu
- Department of Gastroenterology, the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, China.
| |
Collapse
|
215
|
Chiang Morales MD, Chang CY, Le VL, Huang IT, Tsai IL, Shih HJ, Huang CJ. High-Fructose/High-Fat Diet Downregulates the Hepatic Mitochondrial Oxidative Phosphorylation Pathway in Mice Compared with High-Fat Diet Alone. Cells 2022; 11:3425. [PMID: 36359820 PMCID: PMC9656843 DOI: 10.3390/cells11213425] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Revised: 10/20/2022] [Accepted: 10/27/2022] [Indexed: 05/06/2024] Open
Abstract
Both high-fat diet (HFD) alone and high-fructose plus HFD (HFr/HFD) cause diet-induced non-alcoholic fatty liver disease in murine models. However, the mechanisms underlying their impacts on inducing different levels of liver injury are yet to be elucidated. This study employed a proteomic approach to elucidate further on this issue. Adult male C57BL/6J mice were allocated to the HFD or the HFr/HFD group. After feeding for 12 weeks, all mice were euthanized and samples were collected. The proteomic profiles in liver tissues were analyzed using liquid chromatography-tandem mass spectrometry followed by canonical pathway analysis. We demonstrated that the mitochondrial oxidative phosphorylation (OXPHOS) pathway was the most significantly downregulated canonical pathway in the HFr/HFD group when compared with the HFD group. Within the OXPHOS pathway, the HFr/HFD group demonstrated significant downregulation of complexes I and III and significant upregulation of complex IV when compared with the HFD group. Moreover, the HFr/HFD group had lower protein levels of NADH: ubiquinone oxidoreductase subunits S3, S6, A5, and A12 in complex I (p < 0.001, =0.03, <0.001, and <0.001, respectively), lower protein level of cytochrome C in complex III (p < 0.001), and higher protein level of cytochrome C oxidase subunit 2 in complex IV (p = 0.002), when compared with the HFD group. To summarize, we have demonstrated that the hepatic mitochondrial OXPHOS pathway is significantly downregulated in long-term HFr/HFD feeding when compared with long-term HFD feeding. These data support the concept that the hepatic mitochondrial OXPHOS pathway should be involved in mediating the effects of HFr/HFD on inducing more severe liver injury than HFD alone.
Collapse
Affiliation(s)
- Milton D. Chiang Morales
- International Ph.D. Program in Medicine, College of Medicine, Taipei Medical University, Taipei 110, Taiwan
- Graduate Institute of Clinical Medicine, College of Medicine, Taipei Medical University, Taipei 110, Taiwan
| | - Chao-Yuan Chang
- Graduate Institute of Clinical Medicine, College of Medicine, Taipei Medical University, Taipei 110, Taiwan
- Department of Medical Research, Wan Fang Hospital, Taipei Medical University, Taipei 116, Taiwan
- Integrative Research Center for Critical Care, Wan Fang Hospital, Taipei Medical University, Taipei 116, Taiwan
| | - Van Long Le
- International Ph.D. Program in Medicine, College of Medicine, Taipei Medical University, Taipei 110, Taiwan
- Department of Anesthesiology and Critical Care, Hue University of Medicine and Pharmacy, Hue City 52000, Vietnam
| | - I-Tao Huang
- Emergency Department, Redcliffe Hospital, Redcliffe, QLD 4020, Australia
- School of Public Health, Faculty of Medicine, University of Queensland, Herston, QLD 4006, Australia
| | - I-Lin Tsai
- Department of Biochemistry and Molecular Cell Biology, School of Medicine, College of Medicine, Taipei Medical University, Taipei 110, Taiwan
| | - Hung-Jen Shih
- Division of Urology, Department of Surgery, Changhua Christian Hospital, Changhua 500, Taiwan
- Department of Urology, School of Medicine, College of Medicine, Taipei Medical University, Taipei 110, Taiwan
| | - Chun-Jen Huang
- Graduate Institute of Clinical Medicine, College of Medicine, Taipei Medical University, Taipei 110, Taiwan
- Integrative Research Center for Critical Care, Wan Fang Hospital, Taipei Medical University, Taipei 116, Taiwan
- Department of Anesthesiology, Wan Fang Hospital, Taipei Medical University, Taipei 116, Taiwan
- Department of Anesthesiology, School of Medicine, College of Medicine, Taipei Medical University, Taipei 110, Taiwan
| |
Collapse
|
216
|
Nagatomo A, Ninomiya K, Marumoto S, Sakai C, Watanabe S, Ishikawa W, Manse Y, Kikuchi T, Yamada T, Tanaka R, Muraoka O, Morikawa T. A Gedunin-Type Limonoid, 7-Deacetoxy-7-Oxogedunin, from Andiroba ( Carapa guianensis Aublet) Reduced Intracellular Triglyceride Content and Enhanced Autophagy in HepG2 Cells. Int J Mol Sci 2022; 23:13141. [PMID: 36361930 PMCID: PMC9655357 DOI: 10.3390/ijms232113141] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Revised: 10/21/2022] [Accepted: 10/25/2022] [Indexed: 01/03/2025] Open
Abstract
The seed oil of Carapa guianensis Aublet (Andiroba) has been used in folk medicine for its insect-repelling, anti-inflammatory, and anti-malarial activities. This study aimed to examine the triglyceride (TG) reducing effects of C. guianensis-derived limonoids or other commercially available limonoids in human hepatoblastoma HepG2 cells and evaluate the expression of lipid metabolism or autophagy-related proteins by treatment with 7-deacetoxy-7-oxogedunin (DAOG; 1), a principal limonoid of C. guianensis. The gedunin-type limonoids, such as DAOG (% of control at 20 μM: 70.9 ± 0.9%), gedunin (2, 74.0 ± 1.1%), epoxyazadiradione (4, 73.4 ± 2.0%), 17β-hydroxyazadiradione (5, 79.9 ± 0.6%), 7-deacetoxy-7α-hydroxygedunin (6, 61.0 ± 1.2%), andirolide H (7, 87.4 ± 2.2%), and 6α-hydroxygedunin (8, 84.5 ± 1.1%), were observed to reduce the TG content at lower concentrations than berberine chloride (BBR, a positive control, 84.1 ± 0.3% at 30 μM) in HepG2 cells pretreated with high glucose and oleic acid. Andirobin-, obacunol-, nimbin-, and salannin-type limonoids showed no effect on the intracellular TG content in HepG2 cells. The TG-reducing effect of DAOG was attenuated by the concomitant use of compound C (dorsomorphin), an AMPK inhibitor. Further investigation on the detailed mechanism of action of DAOG at non-cytotoxic concentrations revealed that the expressions of autophagy-related proteins, LC3 and p62, were upregulated by treatment with DAOG. These findings suggested that gedunin-type limonoids from Andiroba could ameliorate fatty liver, and that the action of DAOG in particular is mediated by autophagy.
Collapse
Affiliation(s)
- Akifumi Nagatomo
- Pharmaceutical Research and Technology Institute, Kindai University, 3-4-1 Kowakae, Higashiosaka 577-8502, Osaka, Japan
| | - Kiyofumi Ninomiya
- Pharmaceutical Research and Technology Institute, Kindai University, 3-4-1 Kowakae, Higashiosaka 577-8502, Osaka, Japan
- School of Pharmacy, Shujitsu University, 1-6-1 Nishigawara, Naka-ku, Okayama 703-8516, Okayama, Japan
| | - Shinsuke Marumoto
- Joint Research Center, Kindai University, 3-4-1 Kowakae, Higashiosaka 577-8502, Osaka, Japan
| | - Chie Sakai
- Pharmaceutical Research and Technology Institute, Kindai University, 3-4-1 Kowakae, Higashiosaka 577-8502, Osaka, Japan
| | - Shuta Watanabe
- Pharmaceutical Research and Technology Institute, Kindai University, 3-4-1 Kowakae, Higashiosaka 577-8502, Osaka, Japan
| | - Wakana Ishikawa
- Pharmaceutical Research and Technology Institute, Kindai University, 3-4-1 Kowakae, Higashiosaka 577-8502, Osaka, Japan
| | - Yoshiaki Manse
- Pharmaceutical Research and Technology Institute, Kindai University, 3-4-1 Kowakae, Higashiosaka 577-8502, Osaka, Japan
| | - Takashi Kikuchi
- Faculty of Pharmacy, Osaka Medical and Pharmaceutical University, 4-20-1 Nasahara, Takatsuki 569-1094, Osaka, Japan
- Faculty of Pharmacy, Toho University, 2-2-1 Miyama, Funabashi 274-8510, Chiba, Japan
| | - Takeshi Yamada
- Faculty of Pharmacy, Osaka Medical and Pharmaceutical University, 4-20-1 Nasahara, Takatsuki 569-1094, Osaka, Japan
| | - Reiko Tanaka
- Faculty of Pharmacy, Osaka Medical and Pharmaceutical University, 4-20-1 Nasahara, Takatsuki 569-1094, Osaka, Japan
| | - Osamu Muraoka
- Pharmaceutical Research and Technology Institute, Kindai University, 3-4-1 Kowakae, Higashiosaka 577-8502, Osaka, Japan
- Antiaging Center, Kindai University, 3-4-1 Kowakae, Higashiosaka 577-8502, Osaka, Japan
| | - Toshio Morikawa
- Pharmaceutical Research and Technology Institute, Kindai University, 3-4-1 Kowakae, Higashiosaka 577-8502, Osaka, Japan
- Antiaging Center, Kindai University, 3-4-1 Kowakae, Higashiosaka 577-8502, Osaka, Japan
| |
Collapse
|
217
|
Wang M, Li L, Xu Y, Du J, Ling C. Roles of hepatic stellate cells in NAFLD: From the perspective of inflammation and fibrosis. Front Pharmacol 2022; 13:958428. [PMID: 36313291 PMCID: PMC9606692 DOI: 10.3389/fphar.2022.958428] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Accepted: 09/21/2022] [Indexed: 11/23/2022] Open
Abstract
Non-alcoholic fatty liver disease (NAFLD) has become one of the most common diseases and severe problems worldwide because of the global increase in obesity, dyslipidemia, hypertension, and type 2 diabetes mellitus. NAFLD includes a wide spectrum of liver diseases, the histological forms of which range from non-alcoholic fatty liver (NAFL), which is generally nonprogressive, to non-alcoholic steatohepatitis (NASH), which can progress to chronic hepatitis, liver cirrhosis (LC), and sometimes hepatocellular carcinoma (HCC). Unlike NAFL, as the progressive form of NAFLD, NASH is characterized by the presence of inflammation with or without fibrosis in addition to hepatic steatosis. Although it is widely known and proved that persistent hepatic injury and chronic inflammation in the liver activate quiescent hepatic stellate cells (HSCs) and lead to hepatic fibrosis, the three-step process of “inflammation-fibrosis-carcinoma” in NAFLD has not been investigated and clarified clearly. In this process, the initiation of inflammation in the liver and the function of various liver inflammatory cells have been discussed regularly, while the activated HSCs, which constitute the principal cells responsible for fibrosis and their cross-talk with inflammation, seem not to be investigated specifically and frequently. Also, accumulated evidence suggests that HSCs can not only be activated by inflammation but also participate in the regulation of liver inflammation. Therefore, it is necessary to investigate the unique roles of HSCs in NAFLD from the perspective of inflammation and fibrosis. Here, we review the pivotal effects and mechanisms of HSCs and highlight the potential value of HSC-targeted treatment methods in NAFLD.
Collapse
Affiliation(s)
- Man Wang
- School of Traditional Chinese Medicine, Naval Medical University, Shanghai, China
| | - Lei Li
- Department of Emergency, Changhai Hospital, Naval Medical University, Shanghai, China
| | - Yannan Xu
- School of Traditional Chinese Medicine, Naval Medical University, Shanghai, China
| | - Juan Du
- School of Traditional Chinese Medicine, Naval Medical University, Shanghai, China
| | - Changquan Ling
- School of Traditional Chinese Medicine, Naval Medical University, Shanghai, China
| |
Collapse
|
218
|
Western Diet-Fed ApoE Knockout Male Mice as an Experimental Model of Non-Alcoholic Steatohepatitis. Curr Issues Mol Biol 2022; 44:4692-4703. [PMID: 36286035 PMCID: PMC9600038 DOI: 10.3390/cimb44100320] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2022] [Revised: 10/05/2022] [Accepted: 10/06/2022] [Indexed: 11/23/2022] Open
Abstract
One of the consequences of the Western lifestyle and high-fat diet is non-alcoholic fatty liver disease (NAFLD) and its aggressive form, non-alcoholic steatohepatitis (NASH), which can progress to cirrhosis and hepatocellular carcinoma (HCC) and is rapidly becoming the leading cause of end-stage liver disease or liver transplantation. Currently, rodent NASH models lack significant aspects of the full NASH spectrum, representing a major problem for NASH research. Therefore, this work aimed to characterize a fast rodent model with all characteristic features of NASH. Eight-week-old male ApoE KO mice were fed with Western diet (WD), high fatty diet (HFD) or normal chow (Chow) for 7 weeks. Whole-body fat was increased by ~2 times in WD mice and HFD mice and was associated with increased glucose intolerance, hepatic triglycerides, and plasma ALT and plasma AST compared with Chow mice. WD mice also showed increased galectin-3 expression compared with Chow or HFD mice and increased plasma cholesterol compared with Chow mice. WD and HFD displayed increased hepatic fibrosis and increased F4/80 expression. WD mice also displayed increased levels of plasma MCP-1. Hepatic inflammatory markers were evaluated, and WD mice showed increased levels of TNF-α, MCP-1, IL-6 and IFN-γ. Taken together, these data demonstrated that the ApoE KO mouse fed with WD is a great model for NASH research, once it presents the fundamental parameters of the disease, including hepatic steatosis, fibrosis, inflammation, and metabolic syndrome.
Collapse
|
219
|
Ye H, Ma S, Qiu Z, Huang S, Deng G, Li Y, Xu S, Yang M, Shi H, Wu C, Li M, Zhang J, Zhang F, Qin M, Huang H, Zeng Z, Wang M, Chen Y, Lin H, Gao Z, Cai M, Song Y, Gong S, Gao L. Poria cocos polysaccharides rescue pyroptosis-driven gut vascular barrier disruption in order to alleviates non-alcoholic steatohepatitis. JOURNAL OF ETHNOPHARMACOLOGY 2022; 296:115457. [PMID: 35753609 DOI: 10.1016/j.jep.2022.115457] [Citation(s) in RCA: 46] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/21/2022] [Revised: 06/08/2022] [Accepted: 06/09/2022] [Indexed: 06/15/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Poria cocos polysaccharides (PCP) are abundant in Poria cocos (Schw.) Wolf (Poria). This is a common traditional Chinese medicine used to treat gastrointestinal and liver diseases. Poria cocos dispel dampness and enhance gastrointestinal functions, strongly affecting the treatment of non-alcoholic fatty liver disease. Still, the mechanism is not yet clear. AIM OF THE STUDY The latest research found that protecting the integrity of the intestinal barrier can slow down the progression of non-alcoholic fatty liver disease (NAFLD). Hence, our research ought to explore the protective mechanism of PCP on the intestinal barrier under a high-fat diet and to clarify the relationship between intestinal barrier damage and steatohepatitis. MATERIALS AND METHODS H&E staining was done to evaluate pathological damage, whereas Nile red and oil red O staining was conducted to evaluate hepatic fat infiltration. Immunofluorescence staining and immunohistochemical staining were used to detect protein expression and locations. Bone marrow-derived macrophages were isolated for in vitro experiments. ONOO- and ROS fluorescent probes and MDA, SOD, and GSH kits assessed the levels of nitrogen and oxidative stress. LPS levels were detected with a Limulus Amebocyte Lysate assay. The Western blot analysis and reverse transcription-quantitative PCR detected the expression of related proteins and genes. The Elisa kit detected the level of the inflammatory factors in the cell supernatant. For the vivo NAFLD experiments, in briefly, mice were randomly chosen to receive either a High-fat diet or control diet for 12 weeks. Drug treatments started after 4 weeks of feeding. Zebrafish larvae were raised separately in fish water or 7 mM thioacetamide as the control or model group for approximately 72 h. In the therapy groups, different concentrations of PCP were added to the culture environment at the same time. RESULTS In zebrafish, we determined the safe concentration of PCP and found that PCP could effectively reduce the pathological damage in the liver and intestines induced by the NAFLD model. In mice, PCP could slow down weight gain, hyperlipidemia, and liver steatosis caused by a high-fat diet. More importantly, PCP could reduce the destruction of the gut-vascular barrier and the translocation of endotoxins caused by a high-fat diet. Further, we found that PCP could inhibit intestinal pyroptosis by regulating PARP-1. Pyroptosis inhibitors, such as MCC950, could effectively protect the intestinal and liver damage induced by a high-fat diet. We also found that pyroptosis mainly occurred in intestinal macrophages. PCP could effectively improve the survival rate of bone marrow-derived macrophages in a high-fat environment and inhibit pyroptosis. CONCLUSIONS These results indicated that PCP inhibited the pyroptosis of small intestinal macrophages to protect the intestinal barrier integrity under a high-fat diet. This resulted in decreased endotoxin translocation and progression of steatohepatitis.
Collapse
Affiliation(s)
- Haixin Ye
- Zhujiang Hospital, Southern Medical University, Guangzhou, 510280, China; School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, 510000, Guangdong, China
| | - Shuoyi Ma
- Department of Traditional Chinese Medicine, Guangzhou First People's Hospital, School of Medicine, South China University of Technology, Guangzhou, 510000, Guangdong, China
| | - Zhantu Qiu
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, 510000, Guangdong, China
| | - Sha Huang
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, 510000, Guangdong, China
| | - Guanghui Deng
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, 510000, Guangdong, China
| | - Yunjia Li
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, 510000, Guangdong, China
| | - Shu Xu
- Department of Oncology, Shenzhen Hospital, University of Chinese Academy of Sciences, Shenzhen, 518107, Guangdong, China
| | - Menghan Yang
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, 510000, Guangdong, China
| | - Hao Shi
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, 510000, Guangdong, China
| | - Chaofeng Wu
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, 510000, Guangdong, China
| | - Min Li
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, 510000, Guangdong, China
| | - Jia Zhang
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, 510000, Guangdong, China
| | - Fengxian Zhang
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, 510000, Guangdong, China
| | - Mengchen Qin
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, 510000, Guangdong, China
| | - Huacong Huang
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, 510000, Guangdong, China
| | - Zhiyun Zeng
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, 510000, Guangdong, China
| | - Ming Wang
- Zhujiang Hospital, Southern Medical University, Guangzhou, 510280, China; School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, 510000, Guangdong, China
| | - Yuyao Chen
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, 510000, Guangdong, China
| | - Haiyan Lin
- Department of Oncology, Shenzhen Hospital, University of Chinese Academy of Sciences, Shenzhen, 518107, Guangdong, China
| | - Zhuowei Gao
- Third Affiliated Hospital, Southern Medical University, Guangzhou, 510280, China; Shunde Hospital, Guangzhou University of Chinese Medicine, Guangzhou, 510280, China
| | - Min Cai
- Department of Hepatology, Hainan Provincial Hospital of Chinese Medicine, Haikou, 570203, Hainan, PR China
| | - Yuhong Song
- Department of Traditional Chinese Medicine, Guangzhou First People's Hospital, School of Medicine, South China University of Technology, Guangzhou, 510000, Guangdong, China.
| | - Shenhai Gong
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, 510000, Guangdong, China.
| | - Lei Gao
- Zhujiang Hospital, Southern Medical University, Guangzhou, 510280, China; School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, 510000, Guangdong, China.
| |
Collapse
|
220
|
Patil NY, Rus I, Downing E, Mandala A, Friedman JE, Joshi AD. Cinnabarinic Acid Provides Hepatoprotection Against Nonalcoholic Fatty Liver Disease. J Pharmacol Exp Ther 2022; 383:32-43. [PMID: 35933113 PMCID: PMC9513857 DOI: 10.1124/jpet.122.001301] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2022] [Accepted: 07/12/2022] [Indexed: 11/22/2022] Open
Abstract
Nonalcoholic fatty liver disease (NAFLD) is a chronic condition in which excess lipids accumulate in the liver and can lead to a range of progressive liver disorders including non-alcoholic steatohepatitis, liver cirrhosis, and hepatocellular carcinoma. While lifestyle and diet modifications have proven to be effective as NAFLD treatments, they are not sustainable in the long-term, and currently no pharmacological therapies are approved to treat NAFLD. Our previous studies demonstrated that cinnabarinic acid (CA), a novel endogenous Aryl hydrocarbon Receptor (AhR) agonist, activates the AhR target gene, Stanniocalcin 2, and confers cytoprotection against a plethora of ER/oxidative stressors. In this study, the hepatoprotective and anti-steatotic properties of CA were examined against free fatty-acid-induced in vitro and high-fat-diet fed in vivo NAFLD models. The results demonstrated that CA treatment significantly lowered weight gain and attenuated hepatic lipotoxicity both before and after the established fatty liver, thereby protecting against steatosis, inflammation, and liver injury. CA mitigated intracellular free fatty acid uptake concomitant with the downregulation of CD36/fatty acid translocase. Genes involved in fatty acid and triglyceride synthesis were also downregulated in response to CA treatment. Additionally, suppressing AhR and Stc2 expression using RNA interference in vitro verified that the hepatoprotective effects of CA were absolutely dependent on both AhR and its target, Stc2. Collectively, our results demonstrate that the endogenous AhR agonist, CA, confers hepatoprotection against NAFLD by regulating hepatic fatty acid uptake and lipogenesis. SIGNIFICANCE STATEMENT: In this study using in vitro and in vivo models, we demonstrate that cinnabarinic acid (CA), an endogenous AhR agonist, provides protection against non-alcoholic fatty liver disease. CA bestows cytoprotection against steatosis and liver injury by controlling expression of several key genes associated with lipid metabolism pathways, limiting the hepatic lipid uptake, and controlling liver inflammation. Moreover, CA-induced hepatoprotection is absolutely dependent on AhR and Stc2 expression.
Collapse
Affiliation(s)
- Nikhil Y Patil
- Department of Pharmaceutical Sciences (N.Y.P., I.R., E.D., A.D.J.) and Harold Hamm Diabetes Center (A.M., J.E.F., A.D.J.), University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma
| | - Iulia Rus
- Department of Pharmaceutical Sciences (N.Y.P., I.R., E.D., A.D.J.) and Harold Hamm Diabetes Center (A.M., J.E.F., A.D.J.), University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma
| | - Emma Downing
- Department of Pharmaceutical Sciences (N.Y.P., I.R., E.D., A.D.J.) and Harold Hamm Diabetes Center (A.M., J.E.F., A.D.J.), University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma
| | - Ashok Mandala
- Department of Pharmaceutical Sciences (N.Y.P., I.R., E.D., A.D.J.) and Harold Hamm Diabetes Center (A.M., J.E.F., A.D.J.), University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma
| | - Jacob E Friedman
- Department of Pharmaceutical Sciences (N.Y.P., I.R., E.D., A.D.J.) and Harold Hamm Diabetes Center (A.M., J.E.F., A.D.J.), University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma
| | - Aditya D Joshi
- Department of Pharmaceutical Sciences (N.Y.P., I.R., E.D., A.D.J.) and Harold Hamm Diabetes Center (A.M., J.E.F., A.D.J.), University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma
| |
Collapse
|
221
|
Lean SC, Candia AA, Gulacsi E, Lee GCL, Sferruzzi-Perri AN. Obesogenic diet in mice compromises maternal metabolic physiology and lactation ability leading to reductions in neonatal viability. Acta Physiol (Oxf) 2022; 236:e13861. [PMID: 35880402 PMCID: PMC9787084 DOI: 10.1111/apha.13861] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2022] [Revised: 07/12/2022] [Accepted: 07/20/2022] [Indexed: 01/29/2023]
Abstract
AIMS Diets containing high-fat and high sugar (HFHS) lead to overweight/obesity. Overweight/obesity increases the risk of infertility, and of the pregnant mother and her child for developing metabolic conditions. Overweight/obesity has been recreated in mice, but most studies focus on the effects of chronic, long-term HFHS diet exposure. Here, we exposed mice to HFHS from 3 weeks prior to pregnancy with the aim of determining impacts on fertility, and gestational and neonatal outcomes. METHODS Time-domain NMR scanning was used to assess adiposity, glucose, and insulin tolerance tests were employed to examine metabolic physiology, and morphological and proteomic analyses conducted to assess structure and nutrient levels of maternal organs and placenta. RESULTS Fertility measures of HFHS dams were largely the same as controls. HFHS dams had increased adiposity pre-pregnancy, however, exhibited exacerbated lipolysis/hyper-mobilization of adipose stores in late pregnancy. While there were no differences in glucose or insulin tolerance, HFHS dams were hyperglycemic and hyperinsulinemic in pregnancy. HFHS dams had fatty livers and altered pancreatic islet morphology. Although fetuses were hyperglycemic and hyperinsulinemic, there was no change in fetal growth in HFHS dams. There were also reductions in placenta formation. Moreover, there was increased offspring loss during lactation, which was related to aberrant mammary gland development and milk protein composition in HFHS dams. CONCLUSIONS These findings are relevant given current dietary habits and the development of maternal and offspring alterations in the absence of an increase in maternal weight and adiposity during pregnancy, which are the current clinical markers to determine risk across gestation.
Collapse
Affiliation(s)
- Samantha C Lean
- Centre for Trophoblast Research, Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge, UK
| | - Alejandro A Candia
- Centre for Trophoblast Research, Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge, UK.,Department for the Woman and Newborn Health Promotion, Universidad de Chile, Santiago, Chile
| | - Edina Gulacsi
- Centre for Trophoblast Research, Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge, UK
| | - Giselle C L Lee
- Centre for Trophoblast Research, Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge, UK
| | - Amanda N Sferruzzi-Perri
- Centre for Trophoblast Research, Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge, UK
| |
Collapse
|
222
|
Wang Q, Guo F, Jin Y, Ma Y. Applications of human organoids in the personalized treatment for digestive diseases. Signal Transduct Target Ther 2022; 7:336. [PMID: 36167824 PMCID: PMC9513303 DOI: 10.1038/s41392-022-01194-6] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2022] [Revised: 08/09/2022] [Accepted: 09/13/2022] [Indexed: 11/15/2022] Open
Abstract
Digestive system diseases arise primarily through the interplay of genetic and environmental influences; there is an urgent need in elucidating the pathogenic mechanisms of these diseases and deploy personalized treatments. Traditional and long-established model systems rarely reproduce either tissue complexity or human physiology faithfully; these shortcomings underscore the need for better models. Organoids represent a promising research model, helping us gain a more profound understanding of the digestive organs; this model can also be used to provide patients with precise and individualized treatment and to build rapid in vitro test models for drug screening or gene/cell therapy, linking basic research with clinical treatment. Over the past few decades, the use of organoids has led to an advanced understanding of the composition of each digestive organ and has facilitated disease modeling, chemotherapy dose prediction, CRISPR-Cas9 genetic intervention, high-throughput drug screening, and identification of SARS-CoV-2 targets, pathogenic infection. However, the existing organoids of the digestive system mainly include the epithelial system. In order to reveal the pathogenic mechanism of digestive diseases, it is necessary to establish a completer and more physiological organoid model. Combining organoids and advanced techniques to test individualized treatments of different formulations is a promising approach that requires further exploration. This review highlights the advancements in the field of organoid technology from the perspectives of disease modeling and personalized therapy.
Collapse
Affiliation(s)
- Qinying Wang
- Department of Colorectal Surgery, Fudan University Shanghai Cancer Center, Shanghai, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Fanying Guo
- School of Clinical Medicine, Shanghai Medical College, Fudan University, Shanghai, China
| | - Yutao Jin
- Department of Colorectal Surgery, Fudan University Shanghai Cancer Center, Shanghai, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Yanlei Ma
- Department of Colorectal Surgery, Fudan University Shanghai Cancer Center, Shanghai, China.
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China.
| |
Collapse
|
223
|
Association between Mediterranean Diet and Fatty Liver in Women with Overweight and Obesity. Nutrients 2022; 14:nu14183771. [PMID: 36145146 PMCID: PMC9501123 DOI: 10.3390/nu14183771] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Revised: 09/05/2022] [Accepted: 09/08/2022] [Indexed: 11/17/2022] Open
Abstract
Obesity is a risk factor for NAFLD. However, not all people with obesity have an excessive intrahepatic fat content. Adherence to a high-quality dietary pattern may also promote liver health in obesity. A cross-sectional study of 2967 women with overweight and obesity was carried out to assess the association between a Mediterranean diet and fatty liver. All women underwent clinical examination, anthropometric measurements, blood sampling, ultrasound measurements of abdominal visceral and subcutaneous fat, and assessment of adherence to the Mediterranean diet using the 14-item MEDAS questionnaire. Fatty liver index (FLI), NAFLD fatty liver steatosis (NAFLD-FLS) and hepatic steatosis index (HSI) were calculated. In women with obesity, the MEDAS score was inversely associated with FLI (β = −0.60, 95% CI: −1.04, −0.16, p = 0.008), NAFLD-FLS (β = −0.092, 95% CI: −0.134, −0.049, p < 0.001) and HSI (β = −0.17, 95% CI: −0.30, −0.04, p = 0.011). Stronger associations were observed in premenopausal women with obesity. Mediterranean diet was inversely associated with NAFLD-FLS in women with overweight, independently of menopausal status. In conclusion, Mediterranean diet is associated with a better liver status in women with overweight and obesity. This may have a public health impact and be useful in drafting nutritional guidelines for NAFLD.
Collapse
|
224
|
Zhang P, Chen Z, Kuang H, Liu T, Zhu J, Zhou L, Wang Q, Xiong X, Meng Z, Qiu X, Jacks R, Liu L, Li S, Lumeng CN, Li Q, Zhou X, Lin JD. Neuregulin 4 suppresses NASH-HCC development by restraining tumor-prone liver microenvironment. Cell Metab 2022; 34:1359-1376.e7. [PMID: 35973424 PMCID: PMC9458631 DOI: 10.1016/j.cmet.2022.07.010] [Citation(s) in RCA: 56] [Impact Index Per Article: 18.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Revised: 04/20/2022] [Accepted: 07/20/2022] [Indexed: 12/13/2022]
Abstract
The mammalian liver comprises heterogeneous cell types within its tissue microenvironment that undergo pathophysiological reprogramming in disease states, such as non-alcoholic steatohepatitis (NASH). Patients with NASH are at an increased risk for the development of hepatocellular carcinoma (HCC). However, the molecular and cellular nature of liver microenvironment remodeling that links NASH to liver carcinogenesis remains obscure. Here, we show that diet-induced NASH is characterized by the induction of tumor-associated macrophage (TAM)-like macrophages and exhaustion of cytotoxic CD8+ T cells in the liver. The adipocyte-derived endocrine factor Neuregulin 4 (NRG4) serves as a hormonal checkpoint that restrains this pathological reprogramming during NASH. NRG4 deficiency exacerbated the induction of tumor-prone liver immune microenvironment and NASH-related HCC, whereas transgenic NRG4 overexpression elicited protective effects in mice. In a therapeutic setting, recombinant NRG4-Fc fusion protein exhibited remarkable potency in suppressing HCC and prolonged survival in the treated mice. These findings pave the way for therapeutic intervention of liver cancer by targeting the NRG4 hormonal checkpoint.
Collapse
Affiliation(s)
- Peng Zhang
- Life Sciences Institute and Department of Cell & Developmental Biology, University of Michigan Medical Center, Ann Arbor, MI 48109, USA
| | - Zhimin Chen
- Life Sciences Institute and Department of Cell & Developmental Biology, University of Michigan Medical Center, Ann Arbor, MI 48109, USA
| | - Henry Kuang
- Life Sciences Institute and Department of Cell & Developmental Biology, University of Michigan Medical Center, Ann Arbor, MI 48109, USA
| | - Tongyu Liu
- Life Sciences Institute and Department of Cell & Developmental Biology, University of Michigan Medical Center, Ann Arbor, MI 48109, USA
| | - Jiaqiang Zhu
- Department of Biostatistics, University of Michigan, Ann Arbor, MI 48109, USA
| | - Linkang Zhou
- Life Sciences Institute and Department of Cell & Developmental Biology, University of Michigan Medical Center, Ann Arbor, MI 48109, USA
| | - Qiuyu Wang
- Life Sciences Institute and Department of Cell & Developmental Biology, University of Michigan Medical Center, Ann Arbor, MI 48109, USA
| | - Xuelian Xiong
- Life Sciences Institute and Department of Cell & Developmental Biology, University of Michigan Medical Center, Ann Arbor, MI 48109, USA
| | - Ziyi Meng
- Life Sciences Institute and Department of Cell & Developmental Biology, University of Michigan Medical Center, Ann Arbor, MI 48109, USA
| | - Xiaoxue Qiu
- Life Sciences Institute and Department of Cell & Developmental Biology, University of Michigan Medical Center, Ann Arbor, MI 48109, USA
| | - Ramiah Jacks
- Department of Pediatrics and Communicable Diseases, University of Michigan Medical Center, Ann Arbor, MI 48109, USA
| | - Lu Liu
- Department of Internal Medicine and Department of Cell & Developmental Biology, University of Michigan Medical Center, Ann Arbor, MI 48109, USA
| | - Siming Li
- Life Sciences Institute and Department of Cell & Developmental Biology, University of Michigan Medical Center, Ann Arbor, MI 48109, USA
| | - Carey N Lumeng
- Department of Pediatrics and Communicable Diseases, University of Michigan Medical Center, Ann Arbor, MI 48109, USA
| | - Qing Li
- Department of Internal Medicine and Department of Cell & Developmental Biology, University of Michigan Medical Center, Ann Arbor, MI 48109, USA
| | - Xiang Zhou
- Department of Biostatistics, University of Michigan, Ann Arbor, MI 48109, USA; Center for Statistical Genetics, University of Michigan, Ann Arbor, MI 48109, USA
| | - Jiandie D Lin
- Life Sciences Institute and Department of Cell & Developmental Biology, University of Michigan Medical Center, Ann Arbor, MI 48109, USA.
| |
Collapse
|
225
|
Mäkelä TNK, Tuomainen TP, Hantunen S, Virtanen JK. Associations of serum n-3 and n-6 polyunsaturated fatty acids with prevalence and incidence of nonalcoholic fatty liver disease. Am J Clin Nutr 2022; 116:759-770. [PMID: 35648467 PMCID: PMC9437980 DOI: 10.1093/ajcn/nqac150] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Accepted: 05/19/2022] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND Nonalcoholic fatty liver disease (NAFLD) is a major cause of liver diseases worldwide, and lifestyle and diet are significant factors in its development. Recent studies have suggested that dietary fat quality is associated with the development of NAFLD. OBJECTIVES Our purpose was to investigate the cross-sectional and longitudinal associations of serum n-3 (ω-3) and n-6 (ω-6) PUFAs with NAFLD among middle-aged and older men and women from eastern Finland. We also investigated the associations of estimated Δ5-desaturase and Δ6-desaturase activities, enzymes involved in PUFA metabolism, with NAFLD. METHODS After exclusions, the cross-sectional analyses included 1533 men examined in 1984-1989 and 674 men and 870 women examined in 1998-2001 in the Kuopio Ischaemic Heart Disease Risk Factor Study. The longitudinal analyses included 520 men examined in 1991-1993 and 301 men and 466 women examined in 2005-2008. Fatty liver index (FLI) was used as a surrogate for NAFLD. Hepatic steatosis was defined as FLI >60. ANCOVA and logistic regression were used for analyses. RESULTS In the longitudinal analyses, participants with higher serum concentrations of total n-6 PUFA and linoleic acid, the major n-6 PUFA, had markedly lower FLI and lower odds for hepatic steatosis (e.g., odds ratios for incident hepatic steatosis in the highest compared with lowest quartiles were ≤0.41), whereas serum γ-linolenic acid concentration was associated with a higher FLI and higher odds for hepatic steatosis. The associations with the other PUFAs were generally weaker and nonsignificant. In the cross-sectional analyses, also the long-chain n-3 PUFAs had inverse associations. In most analyses, high estimated Δ5-desaturase activity was associated with lower risk and high estimated Δ6-desaturase activity with higher risk for NAFLD. CONCLUSIONS In middle-aged and older Finnish adults, higher serum concentrations of total n-6 PUFAs and linoleic acid were associated with lower odds for future NAFLD.
Collapse
Affiliation(s)
- Tiia N K Mäkelä
- Institute of Clinical Medicine, University of Eastern Finland, Finland
| | - Tomi-Pekka Tuomainen
- Institute of Public Health and Clinical Nutrition, University of Eastern Finland, Kuopio, Finland
| | - Sari Hantunen
- Institute of Public Health and Clinical Nutrition, University of Eastern Finland, Kuopio, Finland
| | - Jyrki K Virtanen
- Institute of Public Health and Clinical Nutrition, University of Eastern Finland, Kuopio, Finland
| |
Collapse
|
226
|
Jiang X, Fulte S, Deng F, Chen S, Xie Y, Chao X, He XC, Zhang Y, Li T, Li F, McCoin C, Morris EM, Thyfault J, Liu W, Li L, Davidson NO, Ding WX, Ni HM. Lack of VMP1 impairs hepatic lipoprotein secretion and promotes non-alcoholic steatohepatitis. J Hepatol 2022; 77:619-631. [PMID: 35452693 PMCID: PMC9449865 DOI: 10.1016/j.jhep.2022.04.010] [Citation(s) in RCA: 37] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/09/2021] [Revised: 04/01/2022] [Accepted: 04/07/2022] [Indexed: 12/12/2022]
Abstract
BACKGROUND & AIMS Vacuole membrane protein 1 (VMP1) is an endoplasmic reticulum (ER) transmembrane protein that regulates the formation of autophagosomes and lipid droplets. Recent evidence suggests that VMP1 plays a critical role in lipoprotein secretion in zebra fish and cultured cells. However, the pathophysiological roles and mechanisms by which VMP1 regulates lipoprotein secretion and lipid accumulation in non-alcoholic fatty liver disease (NAFLD) and non-alcoholic steatohepatitis (NASH) are unknown. METHODS Liver-specific and hepatocyte-specific Vmp1 knockout mice as well as Vmp1 knock-in mice were generated by crossing Vmp1flox or Vmp1KI mice with albumin-Cre mice or by injecting AAV8-TBG-cre, respectively. Lipid and energy metabolism in these mice were characterized by metabolomic and transcriptome analyses. Mice with hepatic overexpression of VMP1 who were fed a NASH diet were also characterized. RESULTS Hepatocyte-specific deletion of Vmp1 severely impaired VLDL secretion resulting in massive hepatic steatosis, hepatocyte death, inflammation and fibrosis, which are hallmarks of NASH. Mechanistically, loss of Vmp1 led to decreased hepatic levels of phosphatidylcholine and phosphatidylethanolamine as well as to changes in phospholipid composition. Deletion of Vmp1 in mouse liver also led to the accumulation of neutral lipids in the ER bilayer and impaired mitochondrial beta-oxidation. Overexpression of VMP1 ameliorated steatosis in diet-induced NASH by improving VLDL secretion. Importantly, we also showed that decreased liver VMP1 is associated with NAFLD/NASH in humans. CONCLUSIONS Our results provide novel insights on the role of VMP1 in regulating hepatic phospholipid synthesis and lipoprotein secretion in the pathogenesis of NAFLD/NASH. LAY SUMMARY Non-alcoholic fatty liver disease and its more severe form, non-alcoholic steatohepatitis, are associated with a build-up of fat in the liver (steatosis). However, the exact mechanisms that underly steatosis in patients are not completely understood. Herein, the authors identified that the lack of a protein called VMP1 impairs the secretion and metabolism of fats in the liver and could therefore contribute to the development and progression of non-alcoholic fatty liver disease.
Collapse
Affiliation(s)
- Xiaoxiao Jiang
- Department of Pharmacology, Toxicology and Therapeutics, University of Kansas Medical Center, Kansas City, KS, USA
| | - Sam Fulte
- Department of Pharmacology, Toxicology and Therapeutics, University of Kansas Medical Center, Kansas City, KS, USA
| | - Fengyan Deng
- Department of Pharmacology, Toxicology and Therapeutics, University of Kansas Medical Center, Kansas City, KS, USA
| | - Shiyuan Chen
- Stowers Institute for Medical Research, Kansas City, MO, USA
| | - Yan Xie
- Division of Gastroenterology, Department of Medicine, Washington University School of Medicine, St. Louis, MO, USA
| | - Xiaojuan Chao
- Department of Pharmacology, Toxicology and Therapeutics, University of Kansas Medical Center, Kansas City, KS, USA
| | - Xi C He
- Stowers Institute for Medical Research, Kansas City, MO, USA
| | - Yuxia Zhang
- Department of Pharmacology, Toxicology and Therapeutics, University of Kansas Medical Center, Kansas City, KS, USA
| | - Tiangang Li
- Department of Physiology, Harold Hamm Diabetes Center, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| | - Feng Li
- Department of Pathology & Immunology, Baylor College of Medicine, Houston, TX, USA
| | - Colin McCoin
- Department of Physiology, University of Kansas Medical Center, Kansas City, KS, USA
| | - E Matthew Morris
- Department of Physiology, University of Kansas Medical Center, Kansas City, KS, USA
| | - John Thyfault
- Department of Physiology, University of Kansas Medical Center, Kansas City, KS, USA
| | - Wanqing Liu
- Department of Pharmaceutical Sciences, Wayne State University, Detroit, MI, USA
| | - Linheng Li
- Stowers Institute for Medical Research, Kansas City, MO, USA; Department of Pathology, University of Kansas Medical Center, Kansas City, KS, USA
| | - Nicholas O Davidson
- Division of Gastroenterology, Department of Medicine, Washington University School of Medicine, St. Louis, MO, USA
| | - Wen-Xing Ding
- Department of Pharmacology, Toxicology and Therapeutics, University of Kansas Medical Center, Kansas City, KS, USA
| | - Hong-Min Ni
- Department of Pharmacology, Toxicology and Therapeutics, University of Kansas Medical Center, Kansas City, KS, USA.
| |
Collapse
|
227
|
Younossi Z, Aggarwal P, Shrestha I, Fernandes J, Johansen P, Augusto M, Nair S. The burden of non-alcoholic steatohepatitis: A systematic review of health-related quality of life and patient-reported outcomes. JHEP Rep 2022; 4:100525. [PMID: 36039144 PMCID: PMC9418497 DOI: 10.1016/j.jhepr.2022.100525] [Citation(s) in RCA: 44] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/25/2021] [Revised: 04/25/2022] [Accepted: 05/27/2022] [Indexed: 02/08/2023] Open
Abstract
Background & Aims Non-alcoholic steatohepatitis (NASH) is associated with increased mortality and a high clinical burden. NASH adversely impacts patients' health-related quality of life (HRQoL), but published data on the humanistic burden of disease are limited. This review aimed to summarise and critically evaluate studies reporting HRQoL or patient-reported outcomes (PROs) in populations with NASH and identify key gaps for further research. Methods Medline, EMBASE, the Cochrane Library and PsycINFO were searched for English-language publications published from 2010 to 2021 that reported HRQoL/PRO outcomes of a population or subpopulation with NASH. Results Twenty-five publications covering 23 unique studies were identified. Overall, the data showed a substantial impact of NASH on HRQoL, particularly in terms of physical functioning and fatigue, with deterioration of physical and mental health as NASH progresses. Prevalent symptoms, including fatigue, abdominal pain, anxiety/depression, cognition problems, and poor sleep quality, adversely impact patients' ability to work and perform activities of daily living and the quality of relationships. However, some patients fail to attribute symptoms to their disease because of a lack of patient awareness and education. NASH is associated with high rates of comorbidities such as obesity and type 2 diabetes, which contribute to reduced HRQoL. Studies were heterogeneous in terms of diagnostic methods, population, outcomes, follow-up time, and measures of HRQoL/utility. Most studies were rated 'moderate' at quality assessment, and all evaluable studies had inadequate control of confounders. Conclusions NASH is associated with a significant HRQoL burden that begins early in the disease course and increases with disease progression. More robust studies are needed to better understand the humanistic burden of NASH, with adequate adjustment for confounders that could influence outcomes. Lay summary Non-alcoholic steatohepatitis (NASH) has a significant impact on quality of life, with individuals experiencing worse physical and mental health compared with the general population. NASH and its symptoms, which include tiredness, stomach pain, anxiety, depression, poor focus and memory, and impaired sleep, affect individuals' relationships and ability to work and perform day-to-day tasks. However, not all patients are aware that their symptoms may be related to NASH. Patients would benefit from more education on their disease, and the importance of good social networks for patient health and well-being should be reinforced. More studies are needed to better understand the patient burden of NASH.
Collapse
Key Words
- AIS, Athens Insomnia Scale
- BC, biopsy-confirmed
- BDI-II, Beck Depression Inventory-II
- Burden of disease
- CC, compensated cirrhosis
- CD, cognitive debriefing
- CE, concept elicitation
- CHC, chronic hepatitis C
- CLD, chronic liver disease
- CLDQ, Chronic Liver Disease Questionnaire
- CVD, cardiovascular disease
- Comorbidities
- Disease progression
- ELF, enhanced liver fibrosis
- EPHPP, Effective Public Health Practice Project
- EQ-5D, EuroQol-5D
- EQ-5D-5L, EuroQol-5D-5 level
- F1–4, fibrosis stages 1–4
- FSSG, frequency scale for the symptoms of gastro-oesophageal reflux disease
- GERD, gastro-oesophageal reflux disease
- GGT, gamma-glutamyl transpeptidase
- GI, gastrointestinal
- GfK, Growth from Knowledge
- HADS, Hospital Anxiety and Depression Scale
- HCC, hepatocellular carcinoma
- HRQoL, health-related quality of life
- Health-related quality of life
- MCID, minimal clinically important difference
- MCS, mental component summary
- N/A, not available
- NAFL, non-alcoholic fatty liver
- NAFLD, non-alcoholic fatty liver disease
- NAS, NAFLD activity score
- NASH
- NASH, non-alcoholic steatohepatitis
- NFS, non-alcoholic fatty liver disease fibrosis score
- NICE, National Institute for Health and Care Excellence
- NIT, non-invasive test
- NR, not reported
- Non-alcoholic steatohepatitis
- OR, odds ratio
- PCS, physical component summary
- PHAQ, Patient-Reported Outcome Measurement Information System Health Assessment Questionnaire
- PRISMA, Preferred Reporting Items for Systematic Reviews and Meta-Analyses
- PRO, patient-reported outcome
- Patient-reported outcomes
- QD, once daily
- QoL, quality of life
- RCT, randomised controlled trial
- SF-12, 12-item Short Form Health Survey
- SF-36, Short Form-36
- SF-6D, Short Form–6 Dimension
- SG, standard gamble
- SPAN, School Physical Activity and Nutrition
- Symptoms
- T2D, type 2 diabetes
- VAS, visual analogue scale
- WPAI, Work Productivity and Activity Impairment
- WPAI:SHP, Work Productivity and Activity Impairment: Specific Health Problem
- e1, excluded after screening title and abstract
- e2, excluded after screening full text
- i1, included to screen based on title and abstract
- i2, included to screen full text
- i3, total included studies after the full-text review stage for original report and 2021 search update
Collapse
Affiliation(s)
- Zobair Younossi
- Center for Liver Diseases and Department of Medicine, Inova Fairfax Hospital, Falls Church, VA, USA
- Inova Medicine, Inova Health System, Falls Church VA, USA
| | | | | | | | - Pierre Johansen
- Novo Nordisk Denmark A/S, Region North & West Europe, Ørestad, Denmark
| | | | - Sunita Nair
- DRG Abacus (Clarivate), Mumbai, Maharashtra, India
| |
Collapse
|
228
|
Nayebi M, Seyedian SS, Hashemi SJ, Parsi A, Hajiani E. Association between high-sensitivity-CRP and liver elastography and cardiac ischemic diseases in patients with fatty liver. J Family Med Prim Care 2022; 11:5495-5499. [PMID: 36505545 PMCID: PMC9731058 DOI: 10.4103/jfmpc.jfmpc_2223_21] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2021] [Revised: 04/17/2022] [Accepted: 05/17/2022] [Indexed: 12/15/2022] Open
Abstract
Objective Inflammatory markers are among the possible contributing factors with a proposed role in hepatic and ischemic heart disease. The present study aimed to determine the association between high-sensitivity-C-reactive protein (hs-CRP), liver elastography, and cardiac ischemic diseases in patients with fatty liver. Methods In this cross-sectional comparative study, 103 consecutive patients with fatty liver were enrolled to undergo angiography. They were divided into groups with and without cardiac ischemia. Results The results demonstrated that the mean hs-CRP was 2.3 and 10.9 mg/L in normal and ischemic angiography groups, respectively (P = 0.001). According to the receiver operating characteristic (ROC) analysis, the predictive role for hs-CRP was 94.5% that had sensitivity and specificity of 95.2% and 90%, respectively, with a cut-off point of 3.1. Conclusion This study showed that there is an association between the fatty liver, cardiac ischemia, and hs-CRP level.
Collapse
Affiliation(s)
- Morteza Nayebi
- Department of Gastroenterology, Research Center for Infectious Diseases of Digestive System, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Seyed Saeed Seyedian
- Department of Gastroenterology, Research Center for Infectious Diseases of Digestive System, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Seyed Jalal Hashemi
- Department of Gastroenterology, Research Center for Infectious Diseases of Digestive System, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Abazar Parsi
- Department of Gastroenterology, Research Center for Infectious Diseases of Digestive System, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Eskandar Hajiani
- Department of Gastroenterology, Research Center for Infectious Diseases of Digestive System, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran,Address for correspondence: Dr. Eskandar Hajiani, Department of Gastroenterology, Research Center for Infectious Diseases of Digestive System, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran. E-mail:
| |
Collapse
|
229
|
Huang L, He X, Peng W, He X, Xu B, Xu H, Wang Y, Xu W, Chen W, Wang S, Zhou L, Liu N, Xu Y, Lu W. Hyperuricemia induces liver injury by upregulating HIF-1α and inhibiting arginine biosynthesis pathway in mouse liver and human L02 hepatocytes. Biochem Biophys Res Commun 2022; 617:55-61. [PMID: 35696777 DOI: 10.1016/j.bbrc.2022.05.096] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2022] [Revised: 05/29/2022] [Accepted: 05/30/2022] [Indexed: 11/25/2022]
Abstract
The molecular mechanisms of uric acid (UA)-induced liver injury has not been clearly elucidated. In this study, we aimed to investigate the effect and action mechanisms of UA in liver injury. We analyzed the damaging effect of UA on mouse liver and L02 cells and subsequently performed metabolomics studies on L02 cells to identify abnormal metabolic pathways. Finally, we verified transcription factors that regulate related metabolic enzymes. UA directly activated the hepatic NLRP3 inflammasome and Bax apoptosis pathway invivo and invitro. Related metabolites in the arginine biosynthesis pathway (or urea cycle), l-arginine and l-argininosuccinate were decreased, and ammonia was increased in UA-stimulated L02 cells, which was mediated by carbamoyl phosphate synthase 1 (CPS1), argininosuccinate synthase (ASS) and argininosuccinate lyase (ASL) downregulation. UA upregulated hypoxia inducible factor-1alpha (HIF-1α) invivo and invitro, and HIF-1α inhibition alleviated the UA-induced ASS downregulation and hepatocyte injury. In conclusion, UA upregulates HIF-1α and inhibits urea cycle enzymes (UCEs). This leads to liver injury, with evidence of hepatocyte inflammation, apoptosis and oxidative stress.
Collapse
Affiliation(s)
- Lei Huang
- Basic Medical College, Anhui Medical University, Hefei, 230032, China
| | - Xinyu He
- Basic Medical College, Anhui Medical University, Hefei, 230032, China
| | - Wen Peng
- Department of Oncology, The People's Hospital of Guizhou Province, Guiyang, 550004, China
| | - Xueqing He
- Basic Medical College, Anhui Medical University, Hefei, 230032, China
| | - Bei Xu
- Basic Medical College, Anhui Medical University, Hefei, 230032, China
| | - Hu Xu
- Basic Medical College, Anhui Medical University, Hefei, 230032, China
| | - Yaoxing Wang
- Basic Medical College, Anhui Medical University, Hefei, 230032, China
| | - Wenjun Xu
- Basic Medical College, Anhui Medical University, Hefei, 230032, China
| | - Wentong Chen
- Basic Medical College, Anhui Medical University, Hefei, 230032, China
| | - Sheng Wang
- Center for Scientific Rrsearch, Anhui Medical University, Hefei, 230032, China
| | - Lanlan Zhou
- School of Medical Technology and Nursing, Shenzhen Polytechnic, Shenzhen, 518055, China
| | - Ning Liu
- Basic Medical College, Anhui Medical University, Hefei, 230032, China.
| | - Youzhi Xu
- Basic Medical College, Anhui Medical University, Hefei, 230032, China.
| | - Wenjie Lu
- Basic Medical College, Anhui Medical University, Hefei, 230032, China.
| |
Collapse
|
230
|
Yang L, Li JZ, Li MR. Progress in research of lipogenesis inhibitors for treatment of nonalcoholic fatty liver disease. Shijie Huaren Xiaohua Zazhi 2022; 30:735-742. [DOI: 10.11569/wcjd.v30.i16.735] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Affiliation(s)
- Liu Yang
- Department of Infectious Diseases, The First Affiliated Hospital of Jinan University, Guangzhou 510630, Guangdong Province, China
| | - Jin-Zhong Li
- Department of Infectious Diseases, The First Affiliated Hospital of Jinan University, Guangzhou 510630, Guangdong Province, China
| | - Min-Ran Li
- Department of Infectious Diseases, The First Affiliated Hospital of Jinan University, Guangzhou 510630, Guangdong Province, China
| |
Collapse
|
231
|
Amelioration of hydrolyzed guar gum on high-fat diet-induced obesity: Integrated hepatic transcriptome and metabolome. Carbohydr Polym 2022; 297:120051. [DOI: 10.1016/j.carbpol.2022.120051] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2022] [Revised: 08/25/2022] [Accepted: 08/25/2022] [Indexed: 11/18/2022]
|
232
|
Alalwani J, Eljazzar S, Basil M, Tayyem R. The impact of health status, diet and lifestyle on non-alcoholic fatty liver disease: Narrative review. Clin Obes 2022; 12:e12525. [PMID: 35412016 DOI: 10.1111/cob.12525] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/24/2021] [Revised: 03/30/2022] [Accepted: 03/31/2022] [Indexed: 12/13/2022]
Abstract
Non-alcoholic fatty liver disease (NAFLD) is defined as the abnormal accumulation of triglycerides in the liver. NAFLD has a global prevalence of almost 30%, while incidence is rising with increasing levels of obesity, type 2 diabetes mellitus (T2DM) and metabolic syndrome. Nutrition plays a significant role in both the prevention and treatment of NAFLD. Therefore, the aim of this literature review is to explore the associations between dietary, lifestyle and other risk factors and the risk for developing NAFLD. Dietary patterns, lifestyle behaviours, comorbidities, or a combination of any may contribute to either the progression or prevention of NAFLD. Having diabetes, hypertension, or having obesity might increase the progression of NAFLD if not well treated and controlled. Diet influences the progression of NAFLD; following a western diet or simply a high-fat diet may contribute to the worsening of NAFLD and further progression to non-alcoholic steatohepatitis (NASH) and cirrhosis in later stages. On the other hand, the Mediterranean diet is the gold standard for both the treatment and prevention of NAFLD. Social behaviours, such as smoking, caffeine consumption and physical activity also play a role in the pathophysiology of NAFLD. Nutrition contributes significantly to the prevention or treatment of NAFLD, since this disease can be managed by diet and physical activity. However, further studies are still needed for a better understanding of the mechanisms of action. Randomized control trials are also needed to confirm findings in observational studies.
Collapse
Affiliation(s)
- Joud Alalwani
- Human Nutrition Department, College of Health Sciences, Qatar University, Doha, Qatar
| | - Sereen Eljazzar
- Human Nutrition Department, College of Health Sciences, Qatar University, Doha, Qatar
| | - Maya Basil
- Human Nutrition Department, College of Health Sciences, Qatar University, Doha, Qatar
| | - Reema Tayyem
- Human Nutrition Department, College of Health Sciences, Qatar University, Doha, Qatar
| |
Collapse
|
233
|
Li J, Qu Z, Liu F, Jing H, Pan Y, Guo S, Ho CL. Diet‐Based Microbiome Modulation: You are What You Eat. PRINCIPLES IN MICROBIOME ENGINEERING 2022:1-46. [DOI: 10.1002/9783527825462.ch1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
|
234
|
Theel W, Boxma-de Klerk BM, Dirksmeier-Harinck F, van Rossum EFC, Kanhai DA, Apers J, van Dalen BM, de Knegt RJ, Holleboom AG, Tushuizen ME, Grobbee DE, Wiebolt J, Castro Cabezas M. Evaluation of nonalcoholic fatty liver disease (NAFLD) in severe obesity using noninvasive tests and imaging techniques. Obes Rev 2022; 23:e13481. [PMID: 35692179 DOI: 10.1111/obr.13481] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/17/2022] [Revised: 05/25/2022] [Accepted: 05/26/2022] [Indexed: 12/15/2022]
Abstract
The prevalence of nonalcoholic fatty liver disease (NAFLD) and the more severe and inflammatory type, nonalcoholic steatohepatitis (NASH), is increasing rapidly. Especially in high-risk patients, that is those with obesity, metabolic syndrome, and type 2 diabetes mellitus, the prevalence of NAFLD can be as high as 80% while NASH may be present in 20% of these subjects. With the worldwide increase of obesity, it is most likely that these numbers will rise. Since advanced stages of NAFLD and NASH are strongly associated with morbidity and mortality-in particular, cardiovascular disease, liver cirrhosis, and hepatocellular carcinoma-it is of great importance to identify subjects at risk. A great variety of noninvasive tests has been published to diagnose NAFLD and NASH, especially using blood- and imaging-based tests. Liver biopsy remains the gold standard for NAFLD/NASH. This review aims to summarize the different mechanisms leading to NASH and liver fibrosis, the different noninvasive liver tests to diagnose and evaluate patients with severe obesity.
Collapse
Affiliation(s)
- Willy Theel
- Department of Internal Medicine, Franciscus Gasthuis & Vlietland, Rotterdam, The Netherlands.,Obesity Center CGG, Rotterdam, The Netherlands
| | - Bianca M Boxma-de Klerk
- Department of Statistics and Education, Franciscus Gasthuis & Vlietland, Rotterdam, The Netherlands
| | - Femme Dirksmeier-Harinck
- Department of Gastroenterology and Hepatology, Franciscus Gasthuis & Vlietland, Rotterdam, The Netherlands
| | - Elisabeth F C van Rossum
- Obesity Center CGG, Rotterdam, The Netherlands.,Department of Internal Medicine, Division of Endocrinology, Erasmus University Medical Center, Rotterdam, The Netherlands
| | - Danny A Kanhai
- Department of Pediatrics, Franciscus Gasthuis & Vlietland, Rotterdam, The Netherlands
| | - Jan Apers
- Department of Bariatric Surgery, Franciscus Gasthuis & Vlietland, Rotterdam, The Netherlands
| | - Bas M van Dalen
- Department of Cardiology, Franciscus Gasthuis & Vlietland, Rotterdam, The Netherlands
| | - Robert J de Knegt
- Department of Gastroenterology and Hepatology, Erasmus Medical Centre, Rotterdam, The Netherlands
| | | | - Maarten E Tushuizen
- Department of Gastroenterology and Hepatology, Leiden UMC, Leiden, The Netherlands
| | - Diederick E Grobbee
- Julius Centre for Health Science and Primary Care, University Medical Center Utrecht, Utrecht, The Netherlands.,Julius Clinical, Zeist, The Netherlands
| | - Janneke Wiebolt
- Department of Internal Medicine, Franciscus Gasthuis & Vlietland, Rotterdam, The Netherlands.,Obesity Center CGG, Rotterdam, The Netherlands
| | - Manuel Castro Cabezas
- Department of Internal Medicine, Franciscus Gasthuis & Vlietland, Rotterdam, The Netherlands.,Department of Internal Medicine, Division of Endocrinology, Erasmus University Medical Center, Rotterdam, The Netherlands.,Julius Clinical, Zeist, The Netherlands
| |
Collapse
|
235
|
Chen P, Li S, Zhou Z, Wang X, Shi D, Li Z, Li X, Xiao Y. Liver fat metabolism of broilers regulated by Bacillus amyloliquefaciens TL via stimulating IGF-1 secretion and regulating the IGF signaling pathway. Front Microbiol 2022; 13:958112. [PMID: 35966703 PMCID: PMC9363834 DOI: 10.3389/fmicb.2022.958112] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Accepted: 06/30/2022] [Indexed: 11/29/2022] Open
Abstract
Bacillus amyloliquefaciens TL (B.A-TL) is well-known for its capability of promoting protein synthesis and lipid metabolism, in particular, the abdominal fat deposition in broilers. However, the underlying molecular mechanism remains unclear. In our study, the regulations of lipid metabolism of broilers by B.A-TL were explored both in vivo and in vitro. The metabolites of B.A-TL were used to simulate in vitro the effect of B.A-TL on liver metabolism based on the chicken hepatocellular carcinoma cell line (i.e., LMH cells). The effects of B.A-TL on lipid metabolism by regulating insulin/IGF signaling pathways were investigated by applying the signal pathway inhibitors in vitro. The results showed that the B.A-TL metabolites enhanced hepatic lipid synthesis and stimulated the secretion of IGF-1. The liver transcriptome analysis revealed the significantly upregulated expressions of four genes (SI, AMY2A, PCK1, and FASN) in the B.A-TL treatment group, mainly involved in carbohydrate digestion and absorption as well as biomacromolecule metabolism, with a particularly prominent effect on fatty acid synthase (FASN). Results of cellular assays showed that B.A-TL metabolites were involved in the insulin/IGF signaling pathway, regulating the expressions of lipid metabolism genes (e.g., FASN, ACCα, LPIN, and ACOX) and the FASN protein, ultimately regulating the lipid metabolism via the IGF/PI3K/FASN pathway in broilers.
Collapse
|
236
|
Li S, Liu J, Wang Z, Duan F, Jia Z, Chen X, Li S. The promising role of probiotics/prebiotics/synbiotics in energy metabolism biomarkers in patients with NAFLD: A systematic review and meta-analysis. Front Public Health 2022; 10:862266. [PMID: 35958869 PMCID: PMC9358257 DOI: 10.3389/fpubh.2022.862266] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2022] [Accepted: 07/01/2022] [Indexed: 11/13/2022] Open
Abstract
Background Nonalcoholic fatty liver disease (NAFLD) is a chronic liver disease with a high prevalence worldwide, seriously harming human health, and its pathogenesis remains unclear. In recent years, increasing evidence has indicated that intestinal microbiota plays an important role in the occurrence and development of NAFLD. The regulation method of probiotics/prebiotics/synbiotics can alter the intestinal microbiota and has been suggested as an option in the treatment of NAFLD. Methods Five databases of PubMed, Embase, the Cochrane Library, clinicaltrails.gov, and China National Knowledge Infrastructure were searched initially, and then the eligible studies were screened. Finally, the data of included studieswere extracted, combined and analyzed Results A total of 29 randomized controlled trials involving 2,110 patients were included in this study. The results showed that using probiotics/prebiotics/synbiotics in the intervention group could reduce the levels of glucose (SMD = −0.23, 95% CI [−0.45, −0.01], P = 0.04), HOMA-IR (SMD = −0.47, 95% CI [−0.63, −0.31], P < 0.00001) and insulin (SMD = −0.46, 95% CI [−0.76, −0.16], P = 0.002) in sugar metabolism; in terms of lipid metabolism, the levels of TC (SMD = −0.62, 95%CI [−0.87, −0.36], P < 0.00001), and LDL-C (SMD = −0.57, 95%CI [−0.85, −0.28], P < 0.00001) were decreased; and the level of ALB was decreased in protein metabolism (SMD = −0.34, 95%CI [−0.61, −0.06], P = 0.02). Conclusions Based on the current evidence, probiotics/prebiotics/synbiotics may improve energy metabolism biomarkers in the NAFLD population, but these effects still need to be confirmed by further research. Systematic Review Registration https://www.crd.york.ac.uk/PROSPERO/#aboutpage.
Collapse
Affiliation(s)
- Shudi Li
- Henan University of Chinese Medicine, Zhengzhou, China
| | - Jiangkai Liu
- The First Affiliated Hospital of Henan University of TCM, Zhengzhou, China
| | - Zhen Wang
- The First Affiliated Hospital of Henan University of TCM, Zhengzhou, China
| | - Fei Duan
- The First Affiliated Hospital of Henan University of TCM, Zhengzhou, China
| | - Zi Jia
- Henan University of Chinese Medicine, Zhengzhou, China
| | - Xinju Chen
- The First Affiliated Hospital of Henan University of TCM, Zhengzhou, China
| | - Suling Li
- The First Affiliated Hospital of Henan University of TCM, Zhengzhou, China
- *Correspondence: Suling Li
| |
Collapse
|
237
|
Catlin NR, Bowman CJ, Campion SN, Lewis EM, Nowland WS, Stethem C, Cappon GD. The postnatal resolution of developmental toxicity induced by pharmacological diacylglycerol acyltransferase 2 (DGAT2) inhibition during gestation in rats. Toxicol Sci 2022; 189:225-236. [PMID: 35866640 DOI: 10.1093/toxsci/kfac077] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Ervogastat (PF-06865571) is a small molecule diacylglycerol acyltransferase 2 (DGAT2) inhibitor being developed for the oral treatment of non-alcoholic steatohepatitis (NASH) with liver fibrosis. DGAT2 is a key enzyme in triglyceride synthesis in tissues and in regulating energy metabolism. Fertility and developmental toxicity studies with ervogastat were conducted in female rats and rabbits. There were no effects on female rat fertility or rabbit embryo-fetal development. Administration of ervogastat to pregnant rats during organogenesis reduced fetal weight and caused higher incidences of bent bones in fetuses that were shown to resolve by postnatal day 28 and were therefore considered to be transient variations secondary to developmental delay. Extended dosing in rats through the end of gestation and lactation (pre- and post-natal development study) caused impaired skin development, reduced offspring viability and growth retardation. The spectrum of developmental effects in rats is consistent with the intended pharmacology (altered triglyceride metabolism) and the transient nature of the skeletal findings, along with the late gestational window of sensitivity for the effects on skin barrier development, reduce the concern for potential adverse developmental effects following unintended early gestational exposure to ervogastat in humans where treatment can be discontinued once pregnancy is determined.
Collapse
Affiliation(s)
- Natasha R Catlin
- Drug Safety Research, Development, & Medical, Pfizer Worldwide Research & Development, Groton, CT, USA
| | - Christopher J Bowman
- Drug Safety Research, Development, & Medical, Pfizer Worldwide Research & Development, Groton, CT, USA
| | - Sarah N Campion
- Drug Safety Research, Development, & Medical, Pfizer Worldwide Research & Development, Groton, CT, USA
| | - Elise M Lewis
- Charles River Laboratories, Inc, Safety Assessment, Horsham, PA, USA
| | - William S Nowland
- Drug Safety Research, Development, & Medical, Pfizer Worldwide Research & Development, Groton, CT, USA
| | - Christine Stethem
- Drug Safety Research, Development, & Medical, Pfizer Worldwide Research & Development, Groton, CT, USA
| | - Gregg D Cappon
- Drug Safety Research, Development, & Medical, Pfizer Worldwide Research & Development, Groton, CT, USA
| |
Collapse
|
238
|
Combination Therapies for Nonalcoholic Fatty Liver Disease. J Pers Med 2022; 12:jpm12071166. [PMID: 35887662 PMCID: PMC9322793 DOI: 10.3390/jpm12071166] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2022] [Revised: 07/01/2022] [Accepted: 07/13/2022] [Indexed: 11/17/2022] Open
Abstract
Nonalcoholic fatty liver disease (NAFLD) is considered a highly prevalent disease associated with various co-morbidities that lead to socioeconomic burden. Despite large-scale investigation, no pharmacological treatment has been approved specifically for NAFLD to date. Lifestyle modifications and diet are regarded as highly beneficial for the management of NAFLD, albeit with poor compliance, thus rendering pharmacological treatment highly important. Based on the current failure to discover a “magic bullet” to treat all patients with NAFLD and considering the multifaceted pathophysiology of the disease, combination therapies may be considered to be a rational alternative approach. In this regard, several drug categories have been considered, including, but not limited to, lipid-lowering, anti-hypertensive, glucose-lowering, anti-obesity, anti-oxidant, anti-inflammatory and anti-fibrotic medications. The aim of this review is, in addition to summarizing some of the multiple factors contributing to the pathophysiology of NAFLD, to focus on the efficacy of pharmacological combinations on the management of NAFLD. This may provide evidence for a more personalized treatment of patients with NAFLD in the future.
Collapse
|
239
|
Zhang Z, Xun Y, Rong S, Yan L, SoRelle JA, Li X, Tang M, Keller K, Ludwig S, Moresco EMY, Beutler B. Loss of immunity-related GTPase GM4951 leads to nonalcoholic fatty liver disease without obesity. Nat Commun 2022; 13:4136. [PMID: 35842425 PMCID: PMC9288484 DOI: 10.1038/s41467-022-31812-4] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2021] [Accepted: 07/05/2022] [Indexed: 11/30/2022] Open
Abstract
Obesity and diabetes are well known risk factors for nonalcoholic fatty liver disease (NAFLD), but the genetic factors contributing to the development of NAFLD remain poorly understood. Here we describe two semi-dominant allelic missense mutations (Oily and Carboniferous) of Predicted gene 4951 (Gm4951) identified from a forward genetic screen in mice. GM4951 deficient mice developed NAFLD on high fat diet (HFD) with no changes in body weight or glucose metabolism. Moreover, HFD caused a reduction in the level of Gm4951, which in turn promoted the development of NAFLD. Predominantly expressed in hepatocytes, GM4951 was verified as an interferon inducible GTPase. The NAFLD in Gm4951 knockout mice was associated with decreased lipid oxidation in the liver and no defect in hepatic lipid secretion. After lipid loading, hepatocyte GM4951 translocated to lipid droplets (LDs), bringing with it hydroxysteroid 17β-dehydrogenase 13 (HSD17B13), which in the absence of GM4951 did not undergo this translocation. We identified a rare non-obese mouse model of NAFLD caused by GM4951 deficiency and define a critical role for GTPase-mediated translocation in hepatic lipid metabolism.
Collapse
Affiliation(s)
- Zhao Zhang
- Center for the Genetics of Host Defense, University of Texas Southwestern Medical Center, Dallas, TX, 75390, USA. .,Division of Endocrinology, Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, TX, 75390, USA.
| | - Yu Xun
- grid.267313.20000 0000 9482 7121Center for the Genetics of Host Defense, University of Texas Southwestern Medical Center, Dallas, TX 75390 USA ,grid.267313.20000 0000 9482 7121Division of Endocrinology, Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, TX 75390 USA
| | - Shunxing Rong
- grid.267313.20000 0000 9482 7121Center for Human Nutrition, University of Texas Southwestern Medical Center, Dallas, TX 75390 USA ,grid.267313.20000 0000 9482 7121Department of Molecular Genetics, University of Texas Southwestern Medical Center, Dallas, TX 75390 USA
| | - Lijuan Yan
- grid.267313.20000 0000 9482 7121Center for the Genetics of Host Defense, University of Texas Southwestern Medical Center, Dallas, TX 75390 USA
| | - Jeffrey A. SoRelle
- grid.267313.20000 0000 9482 7121Center for the Genetics of Host Defense, University of Texas Southwestern Medical Center, Dallas, TX 75390 USA
| | - Xiaohong Li
- grid.267313.20000 0000 9482 7121Center for the Genetics of Host Defense, University of Texas Southwestern Medical Center, Dallas, TX 75390 USA
| | - Miao Tang
- grid.267313.20000 0000 9482 7121Center for the Genetics of Host Defense, University of Texas Southwestern Medical Center, Dallas, TX 75390 USA
| | - Katie Keller
- grid.267313.20000 0000 9482 7121Center for the Genetics of Host Defense, University of Texas Southwestern Medical Center, Dallas, TX 75390 USA
| | - Sara Ludwig
- grid.267313.20000 0000 9482 7121Center for the Genetics of Host Defense, University of Texas Southwestern Medical Center, Dallas, TX 75390 USA
| | - Eva Marie Y. Moresco
- grid.267313.20000 0000 9482 7121Center for the Genetics of Host Defense, University of Texas Southwestern Medical Center, Dallas, TX 75390 USA
| | - Bruce Beutler
- Center for the Genetics of Host Defense, University of Texas Southwestern Medical Center, Dallas, TX, 75390, USA.
| |
Collapse
|
240
|
Teng T, Qiu S, Zhao Y, Zhao S, Sun D, Hou L, Li Y, Zhou K, Yu X, Yang C, Li Y. Pathogenesis and Therapeutic Strategies Related to Non-Alcoholic Fatty Liver Disease. Int J Mol Sci 2022; 23:ijms23147841. [PMID: 35887189 PMCID: PMC9322253 DOI: 10.3390/ijms23147841] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2022] [Revised: 07/12/2022] [Accepted: 07/14/2022] [Indexed: 12/10/2022] Open
Abstract
Non-alcoholic fatty liver disease (NAFLD), one of the most common types of chronic liver disease, is strongly correlated with obesity, insulin resistance, metabolic syndrome, and genetic components. The pathological progression of NAFLD, consisting of non-alcoholic fatty liver (NAFL), non-alcoholic steatohepatitis (NASH), and liver cirrhosis, is characterized by a broad spectrum of clinical phenotypes. Although patients with mild NAFL are considered to show no obvious clinical symptoms, patients with long-term NAFL may culminate in NASH and further liver fibrosis. Even though various drugs are able to improve NAFLD, there are no FDA-approved medications that directly treat NAFLD. In this paper, the pathogenesis of NAFLD, the potential therapeutic targets, and their underlying mechanisms of action were reviewed.
Collapse
Affiliation(s)
- Tieshan Teng
- Institute of Biomedical Informatics, School of Basic Medical Sciences, Henan University, Kaifeng 475004, China; (T.T.); (S.Q.); (Y.Z.); (S.Z.); (D.S.); (L.H.); (Y.L.); (K.Z.); (X.Y.)
- School of Nursing and Health, Henan University, Kaifeng 475004, China
| | - Shuai Qiu
- Institute of Biomedical Informatics, School of Basic Medical Sciences, Henan University, Kaifeng 475004, China; (T.T.); (S.Q.); (Y.Z.); (S.Z.); (D.S.); (L.H.); (Y.L.); (K.Z.); (X.Y.)
- School of Nursing and Health, Henan University, Kaifeng 475004, China
| | - Yiming Zhao
- Institute of Biomedical Informatics, School of Basic Medical Sciences, Henan University, Kaifeng 475004, China; (T.T.); (S.Q.); (Y.Z.); (S.Z.); (D.S.); (L.H.); (Y.L.); (K.Z.); (X.Y.)
| | - Siyuan Zhao
- Institute of Biomedical Informatics, School of Basic Medical Sciences, Henan University, Kaifeng 475004, China; (T.T.); (S.Q.); (Y.Z.); (S.Z.); (D.S.); (L.H.); (Y.L.); (K.Z.); (X.Y.)
| | - Dequan Sun
- Institute of Biomedical Informatics, School of Basic Medical Sciences, Henan University, Kaifeng 475004, China; (T.T.); (S.Q.); (Y.Z.); (S.Z.); (D.S.); (L.H.); (Y.L.); (K.Z.); (X.Y.)
| | - Lingzhu Hou
- Institute of Biomedical Informatics, School of Basic Medical Sciences, Henan University, Kaifeng 475004, China; (T.T.); (S.Q.); (Y.Z.); (S.Z.); (D.S.); (L.H.); (Y.L.); (K.Z.); (X.Y.)
| | - Yihang Li
- Institute of Biomedical Informatics, School of Basic Medical Sciences, Henan University, Kaifeng 475004, China; (T.T.); (S.Q.); (Y.Z.); (S.Z.); (D.S.); (L.H.); (Y.L.); (K.Z.); (X.Y.)
| | - Ke Zhou
- Institute of Biomedical Informatics, School of Basic Medical Sciences, Henan University, Kaifeng 475004, China; (T.T.); (S.Q.); (Y.Z.); (S.Z.); (D.S.); (L.H.); (Y.L.); (K.Z.); (X.Y.)
| | - Xixi Yu
- Institute of Biomedical Informatics, School of Basic Medical Sciences, Henan University, Kaifeng 475004, China; (T.T.); (S.Q.); (Y.Z.); (S.Z.); (D.S.); (L.H.); (Y.L.); (K.Z.); (X.Y.)
| | - Changyong Yang
- Institute of Biomedical Informatics, School of Basic Medical Sciences, Henan University, Kaifeng 475004, China; (T.T.); (S.Q.); (Y.Z.); (S.Z.); (D.S.); (L.H.); (Y.L.); (K.Z.); (X.Y.)
- School of Nursing and Health, Henan University, Kaifeng 475004, China
- Correspondence: or (C.Y.); (Y.L.)
| | - Yanzhang Li
- Institute of Biomedical Informatics, School of Basic Medical Sciences, Henan University, Kaifeng 475004, China; (T.T.); (S.Q.); (Y.Z.); (S.Z.); (D.S.); (L.H.); (Y.L.); (K.Z.); (X.Y.)
- Correspondence: or (C.Y.); (Y.L.)
| |
Collapse
|
241
|
RPA1 controls chromatin architecture and maintains lipid metabolic homeostasis. Cell Rep 2022; 40:111071. [PMID: 35830798 DOI: 10.1016/j.celrep.2022.111071] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Revised: 04/24/2022] [Accepted: 06/17/2022] [Indexed: 11/21/2022] Open
Abstract
Non-alcoholic fatty liver disease (NAFLD) is the most common liver disease, with a prevalence of 25% worldwide. However, the underlying molecular mechanism involved in the development and progression of the NAFLD spectrum remains unclear. Single-stranded DNA-binding protein replication protein A1 (RPA1) participates in DNA replication, recombination, and damage repair. Here, we show that Rpa1+/- mice develop fatty liver disease during aging and in response to a high-fat diet. Liver-specific deletion of Rpa1 results in downregulation of genes related to fatty acid oxidation and impaired fatty acid oxidation, which leads to hepatic steatosis and hepatocellular carcinoma. Mechanistically, RPA1 binds gene regulatory regions, chromatin-remodeling factors, and HNF4A and remodels chromatin architecture, through which RPA1 promotes HNF4A transcriptional activity and fatty acid β oxidation. Collectively, our data demonstrate that RPA1 is an important regulator of NAFLD through controlling chromatin accessibility.
Collapse
|
242
|
Chen G, Harwood JL, Lemieux MJ, Stone SJ, Weselake RJ. Acyl-CoA:diacylglycerol acyltransferase: Properties, physiological roles, metabolic engineering and intentional control. Prog Lipid Res 2022; 88:101181. [PMID: 35820474 DOI: 10.1016/j.plipres.2022.101181] [Citation(s) in RCA: 46] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2022] [Revised: 05/31/2022] [Accepted: 07/04/2022] [Indexed: 12/15/2022]
Abstract
Acyl-CoA:diacylglycerol acyltransferase (DGAT, EC 2.3.1.20) catalyzes the last reaction in the acyl-CoA-dependent biosynthesis of triacylglycerol (TAG). DGAT activity resides mainly in membrane-bound DGAT1 and DGAT2 in eukaryotes and bifunctional wax ester synthase-diacylglycerol acyltransferase (WSD) in bacteria, which are all membrane-bound proteins but exhibit no sequence homology to each other. Recent studies also identified other DGAT enzymes such as the soluble DGAT3 and diacylglycerol acetyltransferase (EaDAcT), as well as enzymes with DGAT activities including defective in cuticular ridges (DCR) and steryl and phytyl ester synthases (PESs). This review comprehensively discusses research advances on DGATs in prokaryotes and eukaryotes with a focus on their biochemical properties, physiological roles, and biotechnological and therapeutic applications. The review begins with a discussion of DGAT assay methods, followed by a systematic discussion of TAG biosynthesis and the properties and physiological role of DGATs. Thereafter, the review discusses the three-dimensional structure and insights into mechanism of action of human DGAT1, and the modeled DGAT1 from Brassica napus. The review then examines metabolic engineering strategies involving manipulation of DGAT, followed by a discussion of its therapeutic applications. DGAT in relation to improvement of livestock traits is also discussed along with DGATs in various other eukaryotic organisms.
Collapse
Affiliation(s)
- Guanqun Chen
- Department of Agricultural, Food, and Nutritional Science, University of Alberta, Edmonton, Alberta T6H 2P5, Canada.
| | - John L Harwood
- School of Biosciences, Cardiff University, Cardiff CF10 3AX, UK
| | - M Joanne Lemieux
- Department of Biochemistry, University of Alberta, Membrane Protein Disease Research Group, Edmonton T6G 2H7, Canada
| | - Scot J Stone
- Department of Biochemistry, Microbiology and Immunology, University of Saskatchewan, Saskatoon, Saskatchewan S7N 5E5, Canada.
| | - Randall J Weselake
- Department of Agricultural, Food, and Nutritional Science, University of Alberta, Edmonton, Alberta T6H 2P5, Canada
| |
Collapse
|
243
|
IκBζ regulates the development of nonalcoholic fatty liver disease through the attenuation of hepatic steatosis in mice. Sci Rep 2022; 12:11634. [PMID: 35804007 PMCID: PMC9270369 DOI: 10.1038/s41598-022-15840-0] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Accepted: 06/30/2022] [Indexed: 11/24/2022] Open
Abstract
IκBζ is a transcriptional regulator that augments inflammatory responses from the Toll-like receptor or interleukin signaling. These innate immune responses contribute to the progression of nonalcoholic fatty liver disease (NAFLD); however, the role of IκBζ in the pathogenesis of NAFLD remains elusive. We investigated whether IκBζ was involved in the progression of NAFLD in mice. We generated hepatocyte-specific IκBζ-deficient mice (Alb-Cre; Nfkbizfl/fl) by crossing Nfkbizfl/fl mice with Alb-Cre transgenic mice. NAFLD was induced by feeding the mice a choline-deficient, L-amino acid-defined, high-fat diet (CDAHFD). CDAHFD-induced IκBζ expression in the liver was observed in Nfkbizfl/fl mice, but not in Alb-Cre; Nfkbizfl/fl mice. Contrary to our initial expectation, IκBζ deletion in hepatocytes accelerated the progression of NAFLD after CDAHFD treatment. Although the increased expression of inflammatory cytokines and apoptosis-related proteins by CDAHFD remained unchanged between Nfkbizfl/fl and Alb-Cre; Nfkbizfl/fl mice, early-stage steatosis of the liver was significantly augmented in Alb-Cre; Nfkbizfl/fl mice. Overexpression of IκBζ in hepatocytes via the adeno-associated virus vector attenuated liver steatosis caused by the CDAHFD in wild-type C57BL/6 mice. This preventive effect of IκBζ overexpression on steatosis was not observed without transcriptional activity. Microarray analysis revealed a correlation between IκBζ expression and the changes of factors related to triglyceride biosynthesis and lipoprotein uptake. Our data suggest that hepatic IκBζ attenuates the progression of NAFLD possibly through the regulation of the factors related to triglyceride metabolism.
Collapse
|
244
|
MFG-E8 Knockout Aggravated Nonalcoholic Steatohepatitis by Promoting the Activation of TLR4/NF- κB Signaling in Mice. Mediators Inflamm 2022; 2022:5791915. [PMID: 35769208 PMCID: PMC9236848 DOI: 10.1155/2022/5791915] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Revised: 05/23/2022] [Accepted: 06/04/2022] [Indexed: 12/30/2022] Open
Abstract
Nonalcoholic steatohepatitis (NASH) is the common liver disease characterized by hepatic steatosis, inflammation, and fibrosis; there are no approved drugs to treat this disease because of incomplete understanding of pathophysiological mechanisms of NASH. Milk fat globule-epidermal growth factor-factor 8 (MFG-E8), a multifunctional glycoprotein, has shown anti-inflammation and antifibrosis. Here, MFG-E8 was shown to play a key role in NASH progression. Using methionine and choline deficient (MCD) diet-fed mice, we found MFG-E8 knockout exacerbated hepatic damage and steatosis as indicated by increased plasma transaminases activities and hepatic histopathologic change, higher hepatic triglycerides (TGs), and lipid accumulation. Moreover, liver fibrosis and inflammation elicited by MCD were aggravated in MFG-E8 knockout mice. Mechanistically, MFG-E8 knockout facilitated activation of hepatic toll-like receptor 4 (TLR4)/nuclear factor kappa B (NF-κB) signaling pathway in MCD-fed mice. In vitro experiment, the TLR4 specific antagonist TAK-242 rescued palmitic acid- (PA-) primed lipid formation and inflammation in MFG-E8 knockout primary murine hepatocytes. These findings indicated that MFG-E8 is involved in the progression of NASH and the possible mechanism by which MFG-E8 knockout exacerbated NASH in mice is associated with activation of the TLR4/NF-κB signaling pathway.
Collapse
|
245
|
Di Ciaula A, Bonfrate L, Portincasa P. The role of microbiota in nonalcoholic fatty liver disease. Eur J Clin Invest 2022; 52:e13768. [PMID: 35294774 DOI: 10.1111/eci.13768] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/28/2021] [Revised: 02/17/2022] [Accepted: 03/06/2022] [Indexed: 02/05/2023]
Abstract
Nonalcoholic fatty liver disease (NAFLD) is the most frequent liver disease worldwide. Gut microbiota can play a role in the pathogenesis of NAFLD since dysbiosis is associated with reduced bacterial diversity, altered Firmicutes/Bacteroidetes ratio, a relative abundance of alcohol-producing bacteria, or other specific genera. Changes can promote disrupted intestinal barrier and hyperpermeability, filtration of bacterial products, activation of the immune system, and pro-inflammatory changes in the intestine, in the liver, and at a systemic level. Microbiota-derived molecules can contribute to the steatogenic effects. The link between gut dysbiosis and NAFLD, however, is confused by several factors which include age, BMI, comorbidities, dietary components, and lifestyle. The role of toxic chemicals in food and water requires further studies in both gut dysbiosis and NAFLD. We can anticipate that gut microbiota manipulation will represent a potential therapeutic tool to delay or reverse the progression of NAFLD, paving the way to primary prevention measures.
Collapse
Affiliation(s)
- Agostino Di Ciaula
- Clinica Medica "A. Murri", Department of Biomedical Sciences & Human Oncology, University of Bari Medical School, Bari, Italy
| | - Leonilde Bonfrate
- Clinica Medica "A. Murri", Department of Biomedical Sciences & Human Oncology, University of Bari Medical School, Bari, Italy
| | - Piero Portincasa
- Clinica Medica "A. Murri", Department of Biomedical Sciences & Human Oncology, University of Bari Medical School, Bari, Italy
| |
Collapse
|
246
|
Cai X, Liang C, Zhang M, Xu Y, Weng Y, Li X, Yu W. N6-methyladenosine modification and metabolic reprogramming of digestive system malignancies. Cancer Lett 2022; 544:215815. [DOI: 10.1016/j.canlet.2022.215815] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2022] [Revised: 06/20/2022] [Accepted: 06/30/2022] [Indexed: 12/12/2022]
|
247
|
Li G, Tang LJ, Zhu PW, Huang OY, Rios RS, Zheng KI, Chen SD, Ma HL, Targher G, Byrne CD, Pan XY, Zheng MH. PNPLA3 rs738409 C>G Variant Influences the Association Between Visceral Fat and Significant Fibrosis in Biopsy-proven Nonalcoholic Fatty Liver Disease. J Clin Transl Hepatol 2022; 10:439-448. [PMID: 35836754 PMCID: PMC9240254 DOI: 10.14218/jcth.2021.00286] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/16/2021] [Revised: 08/11/2021] [Accepted: 09/22/2021] [Indexed: 12/04/2022] Open
Abstract
BACKGROUND AND AIMS Intra-abdominal visceral fat accumulation and patatin-like phospholipase domain containing 3 (PNPLA3) rs738409 G/C gene polymorphism confer a greater susceptibility to nonalcoholic fatty liver disease (NAFLD). We examined whether the relationship between visceral fat accumulation and liver disease severity may be influenced by PNPLA3 rs738409 polymorphism. METHODS The variant of PNPLA3 rs738409 was genotyped within 523 Han individuals with biopsy-confirmed NAFLD. Visceral fat area (VFA) was measured by bioelectrical impedance. Significant liver fibrosis (SF), defined as stage F ≥2 on histology, was the outcome measure of interest. RESULTS The distribution of PNPLA3 genotypes was CC: 27.5%, CG: 48.2%, and GG: 24.3%. Higher VFA was associated with greater risk of having SF (adjusted-odds ratio [OR]: 1.03; 95% confidence interval [CI]: 1.02-1.04, p<0.05), independent of potential confounders. Among subjects with the same VFA level, the risk of SF was greater among carriers of the rs738409 G genotype than among those who did not. Stratified analysis showed that PNPLA3 rs738409 significantly influenced the association between VFA and SF. VFA remained significantly associated with SF only among the rs738409 G-allele carriers (adjusted-OR: 1.05; 95% CI: 1.03-1.08 for the GG group; and adjusted-OR:1.03; 95% CI: 1.01-1.04 for the GC group). There was a significant interaction between VFA and PNPLA3 rs738409 genotype (P interaction =0.004). CONCLUSIONS PNPLA3 rs738409 G allele has a moderate effect on the association between VFA and risk of SF in adult individuals with biopsy-proven NAFLD. Existence of the PNPLA3 rs738409 G allele and VFA interact to increase risk of SF.
Collapse
Affiliation(s)
- Gang Li
- NAFLD Research Center, Department of Hepatology, the First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Liang-Jie Tang
- NAFLD Research Center, Department of Hepatology, the First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Pei-Wu Zhu
- Department of Laboratory Medicine, the First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Ou-Yang Huang
- NAFLD Research Center, Department of Hepatology, the First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Rafael S. Rios
- NAFLD Research Center, Department of Hepatology, the First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Kenneth I. Zheng
- NAFLD Research Center, Department of Hepatology, the First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Sui-Dan Chen
- Department of Pathology, the First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Hong-Lei Ma
- NAFLD Research Center, Department of Hepatology, the First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Giovanni Targher
- Section of Endocrinology, Diabetes and Metabolism, Department of Medicine, University and Azienda Ospedaliera Universitaria Integrata of Verona, Verona, Italy
| | - Christopher D. Byrne
- Southampton National Institute for Health Research Biomedical Research Centre, University Hospital Southampton, Southampton General Hospital, Southampton, UK
| | - Xiao-Yan Pan
- Department of Endocrinology, the First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Ming-Hua Zheng
- NAFLD Research Center, Department of Hepatology, the First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
- Institute of Hepatology, Wenzhou Medical University, Wenzhou, Zhejiang, China
- Key Laboratory of Diagnosis and Treatment for The Development of Chronic Liver Disease in Zhejiang Province, Wenzhou, Zhejiang, China
| |
Collapse
|
248
|
SIRT2 Deficiency Exacerbates Hepatic Steatosis via a Putative Role of the ER Stress Pathway. Int J Mol Sci 2022; 23:ijms23126790. [PMID: 35743232 PMCID: PMC9223775 DOI: 10.3390/ijms23126790] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2022] [Revised: 06/15/2022] [Accepted: 06/16/2022] [Indexed: 11/24/2022] Open
Abstract
Nonalcoholic fatty liver disease (NAFLD), a condition strongly associated with obesity and insulin resistance, is characterized by hepatic lipid accumulation and activation of the endoplasmic reticulum (ER) stress response. The sirtuin 2 (SIRT2) protein deacetylase is emerging as a new player in metabolic homeostasis, but its role in the development of hepatic steatosis and its link with ER stress activation remains unknown. SIRT2-knockout (SIRT2-KO) and wild-type mice were fed either a control or a high-fat diet (HFD) for 4 weeks. Genetic manipulation of SIRT2 levels was performed in human hepatic cells. Although apparently normal under a control diet, SIRT2-KO mice showed accelerated body weight gain and adiposity on a HFD, accompanied by severe insulin resistance. Importantly, SIRT2-KO mice exhibited worsened hepatic steatosis independently from diet, consistent with upregulated gene expression of lipogenic enzymes and increased expression of ER stress markers. Exposure of hepatic cells to palmitate induced lipid accumulation, increased ER stress, and decreased SIRT2 expression. Moreover, SIRT2-silenced cells showed enhanced lipid accumulation and ER stress activation under basal conditions, whereas SIRT2 overexpression abrogated palmitate-induced lipid deposition and ER stress activation. Our findings reveal a role for SIRT2 in the regulation of hepatic lipid homeostasis, potentially through the ER stress response, suggesting that SIRT2 activation might constitute a therapeutic strategy against obesity and its metabolic complications.
Collapse
|
249
|
Huang Y, Gao Y, Pi X, Zhao S, Liu W. In Vitro Hepatoprotective and Human Gut Microbiota Modulation of Polysaccharide-Peptides in Pleurotus citrinopileatus. Front Cell Infect Microbiol 2022; 12:892049. [PMID: 35669115 PMCID: PMC9165600 DOI: 10.3389/fcimb.2022.892049] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2022] [Accepted: 04/12/2022] [Indexed: 12/12/2022] Open
Abstract
Pleurotus citrinopileatus, a golden oyster mushroom, is popular in Asia and has pharmacological functions. However, the effects of polysaccharide-peptides extracted from Pleurotus citrinopileatus and underlying mechanism on digestive systme have not yet been clarified. Here, we determined the composition of two polysaccharide-peptides (PSI and PSII) from P. citrinopileatus and investigated the protective effects of on hepatoprotective and gut microbiota. The results showed that PSI and PSII were made up of similar monosaccharide moieties, except for the varying ratios. Furthermore, PSI and PSII showed that they have the hepatoprotective effects and significantly increased the viabilities and cellular total superoxide dismutase activities increased significantly in HepG2 cells. Intracellular triglyceride content and extracellular alanine aminotransferase and aspartate transaminase contents markedly decreased following treatment with 40 and 50 μg/mL PSI and PSII, respectively. Moreover, PSI and PSII activated the adiponectin pathway and reduced lipid accumulation in liver cells. PSI and PSII elevated short-chain fatty acid concentrations, especially butyric and acetic acids. 16S rRNA gene sequencing analysis showed that PSI promoted the relative abundances of Bifidobacteria, Lactobacillus, Faecalibacterium, as well as Prevotella generas in the gut. PSII markedly suppressed the relative abundances of Escherichia-Shigella and Bacteroides generas. We speculate that the PSI and PSII play a role through liver-gut axis system. Polysaccharide-peptides metabolize by gut microbiota to produce short-chain fatty acids (SCFAs) and in turn influence liver functions.
Collapse
Affiliation(s)
- Yihua Huang
- Disinfection Supply Center, Lishui Second People's Hospital, Lishui, China
| | - Yi Gao
- Department of Stomatology, Beijing Xicheng District Health Care Center for Mothers and Children, Beijing, China
| | - Xionge Pi
- Institute of Plant Protection and Microbiology, Zhejiang Academy of Agricultural Sciences, Hangzhou, China
| | - Shuang Zhao
- Institute of Agri-food Processing and Nutrition, Beijing Academy of Agriculture and Forestry Sciences, Beijing, China
| | - Wei Liu
- Institute of Plant Protection and Microbiology, Zhejiang Academy of Agricultural Sciences, Hangzhou, China
| |
Collapse
|
250
|
Li RY, Qin Q, Yang HC, Wang YY, Mi YX, Yin YS, Wang M, Yu CJ, Tang Y. TREM2 in the pathogenesis of AD: a lipid metabolism regulator and potential metabolic therapeutic target. Mol Neurodegener 2022; 17:40. [PMID: 35658903 PMCID: PMC9166437 DOI: 10.1186/s13024-022-00542-y] [Citation(s) in RCA: 94] [Impact Index Per Article: 31.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2022] [Accepted: 05/09/2022] [Indexed: 12/13/2022] Open
Abstract
Triggering receptor expressed on myeloid cells 2 (TREM2) is a single-pass transmembrane immune receptor that is mainly expressed on microglia in the brain and macrophages in the periphery. Recent studies have identified TREM2 as a risk factor for Alzheimer’s disease (AD). Increasing evidence has shown that TREM2 can affect lipid metabolism both in the central nervous system (CNS) and in the periphery. In the CNS, TREM2 affects the metabolism of cholesterol, myelin, and phospholipids and promotes the transition of microglia into a disease-associated phenotype. In the periphery, TREM2 influences lipid metabolism by regulating the onset and progression of obesity and its complications, such as hypercholesterolemia, atherosclerosis, and nonalcoholic fatty liver disease. All these altered lipid metabolism processes could influence the pathogenesis of AD through several means, including affecting inflammation, insulin resistance, and AD pathologies. Herein, we will discuss a potential pathway that TREM2 mediates lipid metabolism to influence the pathogenesis of AD in both the CNS and periphery. Moreover, we discuss the possibility that TREM2 may be a key factor that links central and peripheral lipid metabolism under disease conditions, including AD. This link may be due to impacts on the integrity of the blood–brain barrier, and we introduce potential pathways by which TREM2 affects the blood–brain barrier. Moreover, we discuss the role of lipids in TREM2-associated treatments for AD. We propose some potential therapies targeting TREM2 and discuss the prospect and limitations of these therapies.
Collapse
Affiliation(s)
- Rui-Yang Li
- Innovation Center for Neurological Disorders, Department of Neurology, Xuanwu Hospital, Capital Medical University, National Center for Neurological Disorders, Beijing, China
| | - Qi Qin
- Innovation Center for Neurological Disorders, Department of Neurology, Xuanwu Hospital, Capital Medical University, National Center for Neurological Disorders, Beijing, China
| | - Han-Chen Yang
- Innovation Center for Neurological Disorders, Department of Neurology, Xuanwu Hospital, Capital Medical University, National Center for Neurological Disorders, Beijing, China
| | - Ying-Ying Wang
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
| | - Ying-Xin Mi
- Innovation Center for Neurological Disorders, Department of Neurology, Xuanwu Hospital, Capital Medical University, National Center for Neurological Disorders, Beijing, China
| | - Yun-Si Yin
- Innovation Center for Neurological Disorders, Department of Neurology, Xuanwu Hospital, Capital Medical University, National Center for Neurological Disorders, Beijing, China
| | - Meng Wang
- Innovation Center for Neurological Disorders, Department of Neurology, Xuanwu Hospital, Capital Medical University, National Center for Neurological Disorders, Beijing, China
| | - Chao-Ji Yu
- Innovation Center for Neurological Disorders, Department of Neurology, Xuanwu Hospital, Capital Medical University, National Center for Neurological Disorders, Beijing, China
| | - Yi Tang
- Innovation Center for Neurological Disorders, Department of Neurology, Xuanwu Hospital, Capital Medical University, National Center for Neurological Disorders, Beijing, China.
| |
Collapse
|