201
|
Gan Q, Fan C. Increasing the fidelity of noncanonical amino acid incorporation in cell-free protein synthesis. Biochim Biophys Acta Gen Subj 2016; 1861:3047-3052. [PMID: 27919800 DOI: 10.1016/j.bbagen.2016.12.002] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2016] [Revised: 11/04/2016] [Accepted: 12/01/2016] [Indexed: 11/17/2022]
Abstract
BACKGROUND Cell-free protein synthesis provides a robust platform for co-translational incorporation of noncanonical amino acid (ncAA) into proteins to facilitate biological studies and biotechnological applications. Recently, eliminating the activity of release factor 1 has been shown to increase ncAA incorporation in response to amber codons. However, this approach could promote mis-incorporation of canonical amino acids by near cognate suppression. METHODS We performed a facile protocol to remove near cognate tRNA isoacceptors of the amber codon from total tRNAs, and used the phosphoserine (Sep) incorporation system as validation. By manipulating codon usage of target genes and tRNA species introduced into the cell-free protein synthesis system, we increased the fidelity of Sep incorporation at a specific position. RESULTS By removing three near cognate tRNA isoacceptors of the amber stop codon [tRNALys, tRNATyr, and tRNAGln(CUG)] from the total tRNA, the near cognate suppression decreased by 5-fold without impairing normal protein synthesis in the cell-free protein synthesis system. Mass spectrometry analyses indicated that the fidelity of ncAA incorporation was improved. CONCLUSIONS Removal of near cognate tRNA isoacceptors of the amber codon could increase ncAA incorporation fidelity towards the amber stop codon in release factor deficiency systems. GENERAL SIGNIFICANCE We provide a general strategy to improve fidelity of ncAA incorporation towards stop, quadruplet and sense codons in cell-free protein synthesis systems. This article is part of a Special Issue entitled "Biochemistry of Synthetic Biology - Recent Developments" Guest Editor: Dr. Ilka Heinemann and Dr. Patrick O'Donoghue.
Collapse
Affiliation(s)
- Qinglei Gan
- Department of Chemistry and Biochemistry, University of Arkansas, Fayetteville, AR 72701, USA
| | - Chenguang Fan
- Department of Chemistry and Biochemistry, University of Arkansas, Fayetteville, AR 72701, USA.
| |
Collapse
|
202
|
Perez JG, Stark JC, Jewett MC. Cell-Free Synthetic Biology: Engineering Beyond the Cell. Cold Spring Harb Perspect Biol 2016; 8:cshperspect.a023853. [PMID: 27742731 DOI: 10.1101/cshperspect.a023853] [Citation(s) in RCA: 117] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Cell-free protein synthesis (CFPS) technologies have enabled inexpensive and rapid recombinant protein expression. Numerous highly active CFPS platforms are now available and have recently been used for synthetic biology applications. In this review, we focus on the ability of CFPS to expand our understanding of biological systems and its applications in the synthetic biology field. First, we outline a variety of CFPS platforms that provide alternative and complementary methods for expressing proteins from different organisms, compared with in vivo approaches. Next, we review the types of proteins, protein complexes, and protein modifications that have been achieved using CFPS systems. Finally, we introduce recent work on genetic networks in cell-free systems and the use of cell-free systems for rapid prototyping of in vivo networks. Given the flexibility of cell-free systems, CFPS holds promise to be a powerful tool for synthetic biology as well as a protein production technology in years to come.
Collapse
Affiliation(s)
- Jessica G Perez
- Department of Chemical and Biological Engineering, Northwestern University, Evanston, Illinois 60208-3120.,Chemistry of Life Processes Institute, Northwestern University, Evanston, Illinois 60208-3120
| | - Jessica C Stark
- Department of Chemical and Biological Engineering, Northwestern University, Evanston, Illinois 60208-3120.,Chemistry of Life Processes Institute, Northwestern University, Evanston, Illinois 60208-3120
| | - Michael C Jewett
- Department of Chemical and Biological Engineering, Northwestern University, Evanston, Illinois 60208-3120.,Chemistry of Life Processes Institute, Northwestern University, Evanston, Illinois 60208-3120.,Robert H. Lurie Comprehensive Cancer Center, Northwestern University, Chicago, Illinois 60611-3068.,Simpson Querrey Institute for BioNanotechnology, Northwestern University, Chicago, Illinois 60611-2875
| |
Collapse
|
203
|
Goldberg AB, Cho E, Miller CJ, Lou HJ, Turk BE. Identification of a Substrate-selective Exosite within the Metalloproteinase Anthrax Lethal Factor. J Biol Chem 2016; 292:814-825. [PMID: 27909054 DOI: 10.1074/jbc.m116.761734] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2016] [Revised: 11/23/2016] [Indexed: 01/02/2023] Open
Abstract
The metalloproteinase anthrax lethal factor (LF) is secreted by Bacillus anthracis to promote disease virulence through disruption of host signaling pathways. LF is a highly specific protease, exclusively cleaving mitogen-activated protein kinase kinases (MKKs) and rodent NLRP1B (NACHT leucine-rich repeat and pyrin domain-containing protein 1B). How LF achieves such restricted substrate specificity is not understood. Previous studies have suggested the existence of an exosite interaction between LF and MKKs that promotes cleavage efficiency and specificity. Through a combination of in silico prediction and site-directed mutagenesis, we have mapped an exosite to a non-catalytic region of LF. Mutations within this site selectively impair proteolysis of full-length MKKs yet have no impact on cleavage of short peptide substrates. Although this region appears important for cleaving all LF protein substrates, we found that mutation of specific residues within the exosite differentially affects MKK and NLRP1B cleavage in vitro and in cultured cells. One residue in particular, Trp-271, is essential for cleavage of MKK3, MKK4, and MKK6 but dispensable for targeting of MEK1, MEK2, and NLRP1B. Analysis of chimeric substrates suggests that this residue interacts with the MKK catalytic domain. We found that LF-W271A blocked ERK phosphorylation and growth in a melanoma cell line, suggesting that it may provide a highly selective inhibitor of MEK1/2 for use as a cancer therapeutic. These findings provide insight into how a bacterial toxin functions to specifically impair host signaling pathways and suggest a general strategy for mapping protease exosite interactions.
Collapse
Affiliation(s)
- Allison B Goldberg
- From the Department of Pharmacology, Yale University School of Medicine, New Haven, Connecticut 06520
| | - Eunice Cho
- From the Department of Pharmacology, Yale University School of Medicine, New Haven, Connecticut 06520
| | - Chad J Miller
- From the Department of Pharmacology, Yale University School of Medicine, New Haven, Connecticut 06520
| | - Hua Jane Lou
- From the Department of Pharmacology, Yale University School of Medicine, New Haven, Connecticut 06520
| | - Benjamin E Turk
- From the Department of Pharmacology, Yale University School of Medicine, New Haven, Connecticut 06520
| |
Collapse
|
204
|
Torres L, Krüger A, Csibra E, Gianni E, Pinheiro VB. Synthetic biology approaches to biological containment: pre-emptively tackling potential risks. Essays Biochem 2016; 60:393-410. [PMID: 27903826 PMCID: PMC5264511 DOI: 10.1042/ebc20160013] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2016] [Revised: 10/21/2016] [Accepted: 10/24/2016] [Indexed: 12/29/2022]
Abstract
Biocontainment comprises any strategy applied to ensure that harmful organisms are confined to controlled laboratory conditions and not allowed to escape into the environment. Genetically engineered microorganisms (GEMs), regardless of the nature of the modification and how it was established, have potential human or ecological impact if accidentally leaked or voluntarily released into a natural setting. Although all evidence to date is that GEMs are unable to compete in the environment, the power of synthetic biology to rewrite life requires a pre-emptive strategy to tackle possible unknown risks. Physical containment barriers have proven effective but a number of strategies have been developed to further strengthen biocontainment. Research on complex genetic circuits, lethal genes, alternative nucleic acids, genome recoding and synthetic auxotrophies aim to design more effective routes towards biocontainment. Here, we describe recent advances in synthetic biology that contribute to the ongoing efforts to develop new and improved genetic, semantic, metabolic and mechanistic plans for the containment of GEMs.
Collapse
Affiliation(s)
- Leticia Torres
- Department of Structural and Molecular Biology, University College London, Gower Street, London, WC1E 6BT, U.K.
| | - Antje Krüger
- Department of Structural and Molecular Biology, University College London, Gower Street, London, WC1E 6BT, U.K
| | - Eszter Csibra
- Department of Structural and Molecular Biology, University College London, Gower Street, London, WC1E 6BT, U.K
| | - Edoardo Gianni
- Department of Structural and Molecular Biology, University College London, Gower Street, London, WC1E 6BT, U.K
| | - Vitor B Pinheiro
- Department of Structural and Molecular Biology, University College London, Gower Street, London, WC1E 6BT, U.K.
- Birkbeck, Department of Biological Sciences, University of London, Malet Street, WC1E 7HX, U.K
| |
Collapse
|
205
|
Yang A, Ha S, Ahn J, Kim R, Kim S, Lee Y, Kim J, Söll D, Lee HY, Park HS. A chemical biology route to site-specific authentic protein modifications. Science 2016; 354:623-626. [PMID: 27708052 PMCID: PMC5135561 DOI: 10.1126/science.aah4428] [Citation(s) in RCA: 188] [Impact Index Per Article: 20.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2016] [Accepted: 09/20/2016] [Indexed: 12/28/2022]
Abstract
Many essential biological processes are controlled by posttranslational protein modifications. The inability to synthetically attain the diversity enabled by these modifications limits functional studies of many proteins. We designed a three-step approach for installing authentic posttranslational modifications in recombinant proteins. We first use the established O-phosphoserine (Sep) orthogonal translation system to create a Sep-containing recombinant protein. The Sep residue is then dephosphorylated to dehydroalanine (Dha). Last, conjugate addition of alkyl iodides to Dha, promoted by zinc and copper, enables chemoselective carbon-carbon bond formation. To validate our approach, we produced histone H3, ubiquitin, and green fluorescent protein variants with site-specific modifications, including different methylations of H3K79. The methylated histones stimulate transcription through histone acetylation. This approach offers a powerful tool to engineer diverse designer proteins.
Collapse
Affiliation(s)
- Aerin Yang
- Department of Chemistry, Korea Advanced Institute of Science and Technology, 291 Daehak-ro, Yuseong-gu, Daejeon 34141, Republic of Korea
| | - Sura Ha
- Department of Chemistry, Korea Advanced Institute of Science and Technology, 291 Daehak-ro, Yuseong-gu, Daejeon 34141, Republic of Korea
| | - Jihye Ahn
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology, 291 Daehak-ro, Yuseong-gu, Daejeon 34141, Republic of Korea
| | - Rira Kim
- Department of Chemistry, Korea Advanced Institute of Science and Technology, 291 Daehak-ro, Yuseong-gu, Daejeon 34141, Republic of Korea
| | - Sungyoon Kim
- Department of Chemistry, Korea Advanced Institute of Science and Technology, 291 Daehak-ro, Yuseong-gu, Daejeon 34141, Republic of Korea
| | - Younghoon Lee
- Department of Chemistry, Korea Advanced Institute of Science and Technology, 291 Daehak-ro, Yuseong-gu, Daejeon 34141, Republic of Korea
| | - Jaehoon Kim
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology, 291 Daehak-ro, Yuseong-gu, Daejeon 34141, Republic of Korea
| | - Dieter Söll
- Department of Molecular Biophysics and Biochemistry, Yale University, 266 Whitney Avenue, New Haven, CT 06511, USA
| | - Hee-Yoon Lee
- Department of Chemistry, Korea Advanced Institute of Science and Technology, 291 Daehak-ro, Yuseong-gu, Daejeon 34141, Republic of Korea
| | - Hee-Sung Park
- Department of Chemistry, Korea Advanced Institute of Science and Technology, 291 Daehak-ro, Yuseong-gu, Daejeon 34141, Republic of Korea
| |
Collapse
|
206
|
Chuh KN, Batt AR, Pratt MR. Chemical Methods for Encoding and Decoding of Posttranslational Modifications. Cell Chem Biol 2016; 23:86-107. [PMID: 26933738 DOI: 10.1016/j.chembiol.2015.11.006] [Citation(s) in RCA: 62] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2015] [Revised: 11/25/2015] [Accepted: 11/25/2015] [Indexed: 12/13/2022]
Abstract
A large array of posttranslational modifications can dramatically change the properties of proteins and influence different aspects of their biological function such as enzymatic activity, binding interactions, and proteostasis. Despite the significant knowledge that has been gained about the function of posttranslational modifications using traditional biological techniques, the analysis of the site-specific effects of a particular modification, the identification of the full complement of modified proteins in the proteome, and the detection of new types of modifications remains challenging. Over the years, chemical methods have contributed significantly in both of these areas of research. This review highlights several posttranslational modifications where chemistry-based approaches have made significant contributions to our ability to both prepare homogeneously modified proteins and identify and characterize particular modifications in complex biological settings. As the number and chemical diversity of documented posttranslational modifications continues to rise, we believe that chemical strategies will be essential to advance the field in years to come.
Collapse
Affiliation(s)
- Kelly N Chuh
- Department of Chemistry, University of Southern California, Los Angeles, CA 90089, USA
| | - Anna R Batt
- Department of Chemistry, University of Southern California, Los Angeles, CA 90089, USA
| | - Matthew R Pratt
- Department of Chemistry, University of Southern California, Los Angeles, CA 90089, USA; Department of Molecular and Computational Biology, University of Southern California, Los Angeles, CA 90089, USA.
| |
Collapse
|
207
|
Simonik EA, Cai Y, Kimmelshue KN, Brantley-Sieders DM, Loomans HA, Andl CD, Westlake GM, Youngblood VM, Chen J, Yarbrough WG, Brown BT, Nagarajan L, Brandt SJ. LIM-Only Protein 4 (LMO4) and LIM Domain Binding Protein 1 (LDB1) Promote Growth and Metastasis of Human Head and Neck Cancer (LMO4 and LDB1 in Head and Neck Cancer). PLoS One 2016; 11:e0164804. [PMID: 27780223 PMCID: PMC5079595 DOI: 10.1371/journal.pone.0164804] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2016] [Accepted: 10/01/2016] [Indexed: 12/18/2022] Open
Abstract
Squamous cell carcinoma of the head and neck (HNSCC) accounts for more than 300,000 deaths worldwide per year as a consequence of tumor cell invasion of adjacent structures or metastasis. LIM-only protein 4 (LMO4) and LIM-domain binding protein 1 (LDB1), two directly interacting transcriptional adaptors that have important roles in normal epithelial cell differentiation, have been associated with increased metastasis, decreased differentiation, and shortened survival in carcinoma of the breast. Here, we implicate two LDB1-binding proteins, single-stranded binding protein 2 (SSBP2) and 3 (SSBP3), in controlling LMO4 and LDB1 protein abundance in HNSCC and in regulating specific tumor cell functions in this disease. First, we found that the relative abundance of LMO4, LDB1, and the two SSBPs correlated very significantly in a panel of human HNSCC cell lines. Second, expression of these proteins in tumor primaries and lymph nodes involved by metastasis were concordant in 3 of 3 sets of tissue. Third, using a Matrigel invasion and organotypic reconstruct assay, CRISPR/Cas9-mediated deletion of LDB1 in the VU-SCC-1729 cell line, which is highly invasive of basement membrane and cellular monolayers, reduced tumor cell invasiveness and migration, as well as proliferation on tissue culture plastic. Finally, inactivation of the LDB1 gene in these cells decreased growth and vascularization of xenografted human tumor cells in vivo. These data show that LMO4, LDB1, and SSBP2 and/or SSBP3 regulate metastasis, proliferation, and angiogenesis in HNSCC and provide the first evidence that SSBPs control LMO4 and LDB1 protein abundance in a cancer context.
Collapse
Affiliation(s)
- Elizabeth A. Simonik
- Department of Cancer Biology, Vanderbilt University Medical Center, Nashville, TN, United States of America
| | - Ying Cai
- Department of Cancer Biology, Vanderbilt University Medical Center, Nashville, TN, United States of America
| | - Katherine N. Kimmelshue
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville, TN, United States of America
| | - Dana M. Brantley-Sieders
- Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, United States of America
| | - Holli A. Loomans
- Department of Cancer Biology, Vanderbilt University Medical Center, Nashville, TN, United States of America
| | - Claudia D. Andl
- Department of Cancer Biology, Vanderbilt University Medical Center, Nashville, TN, United States of America
- Department of Surgery, Vanderbilt University Medical Center, Nashville, TN, United States of America
- Vanderbilt-Ingram Cancer Center, Vanderbilt University Medical Center, Nashville, TN, United States of America
| | - Grant M. Westlake
- Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, United States of America
| | - Victoria M. Youngblood
- Department of Cancer Biology, Vanderbilt University Medical Center, Nashville, TN, United States of America
| | - Jin Chen
- Department of Cancer Biology, Vanderbilt University Medical Center, Nashville, TN, United States of America
- Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, United States of America
- Department of Cell & Developmental Biology, Vanderbilt University Medical Center, Nashville, TN, United States of America
- Vanderbilt-Ingram Cancer Center, Vanderbilt University Medical Center, Nashville, TN, United States of America
- VA Tennessee Valley Healthcare System, Nashville, TN, United States of America
| | - Wendell G. Yarbrough
- Department of Otolaryngology and Barry Baker Laboratory for Head and Neck Oncology, Vanderbilt University School of Medicine, Nashville, TN, United States of America
- Vanderbilt-Ingram Cancer Center, Vanderbilt University Medical Center, Nashville, TN, United States of America
| | - Brandee T. Brown
- Department of Otolaryngology and Barry Baker Laboratory for Head and Neck Oncology, Vanderbilt University School of Medicine, Nashville, TN, United States of America
| | - Lalitha Nagarajan
- Department of Genetics, University of Texas M.D. Anderson Cancer Center, Houston, TX, United States of America
| | - Stephen J. Brandt
- Department of Cancer Biology, Vanderbilt University Medical Center, Nashville, TN, United States of America
- Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, United States of America
- Department of Cell & Developmental Biology, Vanderbilt University Medical Center, Nashville, TN, United States of America
- Vanderbilt-Ingram Cancer Center, Vanderbilt University Medical Center, Nashville, TN, United States of America
- VA Tennessee Valley Healthcare System, Nashville, TN, United States of America
- * E-mail:
| |
Collapse
|
208
|
Wandrey G, Wurzel J, Hoffmann K, Ladner T, Büchs J, Meinel L, Lühmann T. Probing unnatural amino acid integration into enhanced green fluorescent protein by genetic code expansion with a high-throughput screening platform. J Biol Eng 2016; 10:11. [PMID: 27733867 PMCID: PMC5045631 DOI: 10.1186/s13036-016-0031-6] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2016] [Accepted: 09/14/2016] [Indexed: 01/08/2023] Open
Abstract
BACKGROUND Genetic code expansion has developed into an elegant tool to incorporate unnatural amino acids (uAA) at predefined sites in the protein backbone in response to an amber codon. However, recombinant production and yield of uAA comprising proteins are challenged due to the additional translation machinery required for uAA incorporation. RESULTS We developed a microtiter plate-based high-throughput monitoring system (HTMS) to study and optimize uAA integration in the model protein enhanced green fluorescence protein (eGFP). Two uAA, propargyl-L-lysine (Plk) and (S)-2-amino-6-((2-azidoethoxy) carbonylamino) hexanoic acid (Alk), were incorporated at the same site into eGFP co-expressing the native PylRS/tRNAPylCUA pair originating from Methanosarcina barkeri in E. coli. The site-specific uAA functionalization was confirmed by LC-MS/MS analysis. uAA-eGFP production and biomass growth in parallelized E. coli cultivations was correlated to (i) uAA concentration and the (ii) time of uAA addition to the expression medium as well as to induction parameters including the (iii) time and (iv) amount of IPTG supplementation. The online measurements of the HTMS were consolidated by end point-detection using standard enzyme-linked immunosorbent procedures. CONCLUSION The developed HTMS is powerful tool for parallelized and rapid screening. In light of uAA integration, future applications may include parallelized screening of different PylRS/tRNAPylCUA pairs as well as further optimization of culture conditions.
Collapse
Affiliation(s)
- Georg Wandrey
- AVT, Biochemical Engineering, RWTH Aachen University, Aachen, 52074 Germany
| | - Joel Wurzel
- Institute for Pharmacy and Food Chemistry, University of Würzburg, Am Hubland, Würzburg, 97074 Germany
| | - Kyra Hoffmann
- AVT, Biochemical Engineering, RWTH Aachen University, Aachen, 52074 Germany
| | - Tobias Ladner
- AVT, Biochemical Engineering, RWTH Aachen University, Aachen, 52074 Germany
| | - Jochen Büchs
- AVT, Biochemical Engineering, RWTH Aachen University, Aachen, 52074 Germany
| | - Lorenz Meinel
- Institute for Pharmacy and Food Chemistry, University of Würzburg, Am Hubland, Würzburg, 97074 Germany
| | - Tessa Lühmann
- Institute for Pharmacy and Food Chemistry, University of Würzburg, Am Hubland, Würzburg, 97074 Germany
| |
Collapse
|
209
|
Fan C, Ip K, Söll D. Expanding the genetic code of Escherichia coli with phosphotyrosine. FEBS Lett 2016; 590:3040-7. [PMID: 27477338 DOI: 10.1002/1873-3468.12333] [Citation(s) in RCA: 65] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2016] [Revised: 07/22/2016] [Accepted: 07/26/2016] [Indexed: 11/07/2022]
Abstract
Protein phosphorylation is one of the most important post-translational modifications in nature. However, the site-specific incorporation of O-phosphotyrosine into proteins in vivo has not yet been reported. Endogenous phosphatases present in cells can dephosphorylate phosphotyrosine as a free amino acid or as a protein residue. Therefore, we deleted the genes of five phosphatases from the genome of Escherichia coli with the aim of stabilizing phosphotyrosine. Together with an engineered aminoacyl-tRNA synthetase (derived from Methanocaldococcus jannaschii tyrosyl-tRNA synthetase) and an elongation factor Tu variant, we were able to cotranslationally incorporate O-phosphotyrosine into the superfolder green fluorescent protein at a desired position in vivo. This system will facilitate future studies of tyrosine phosphorylation.
Collapse
Affiliation(s)
- Chenguang Fan
- Department of Chemistry and Biochemistry, University of Arkansas, Fayetteville, AR, USA
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT, USA
| | - Kevan Ip
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT, USA
| | - Dieter Söll
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT, USA
- Department of Chemistry, Yale University, New Haven, CT, USA
| |
Collapse
|
210
|
Bag SS, Jana S, Pradhan MK. Synthesis, photophysical properties of triazolyl-donor/acceptor chromophores decorated unnatural amino acids: Incorporation of a pair into Leu-enkephalin peptide and application of triazolylperylene amino acid in sensing BSA. Bioorg Med Chem 2016; 24:3579-95. [DOI: 10.1016/j.bmc.2016.05.069] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2016] [Revised: 05/29/2016] [Accepted: 05/30/2016] [Indexed: 02/03/2023]
|
211
|
Regan L, Caballero D, Hinrichsen MR, Virrueta A, Williams DM, O'Hern CS. Protein design: Past, present, and future. Biopolymers 2016; 104:334-50. [PMID: 25784145 DOI: 10.1002/bip.22639] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2015] [Revised: 03/05/2015] [Accepted: 03/07/2015] [Indexed: 01/16/2023]
Abstract
Building on the pioneering work of Ho and DeGrado (J Am Chem Soc 1987, 109, 6751-6758) in the late 1980s, protein design approaches have revealed many fundamental features of protein structure and stability. We are now in the era that the early work presaged - the design of new proteins with practical applications and uses. Here we briefly survey some past milestones in protein design, in addition to highlighting recent progress and future aspirations.
Collapse
Affiliation(s)
- Lynne Regan
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT.,Department of Chemistry, Yale University, New Haven, CT.,Integrated Graduate Program in Physical and Engineering Biology, Yale University, New Haven, CT
| | - Diego Caballero
- Integrated Graduate Program in Physical and Engineering Biology, Yale University, New Haven, CT.,Department of Physics, Yale University, New Haven, CT
| | - Michael R Hinrichsen
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT
| | - Alejandro Virrueta
- Integrated Graduate Program in Physical and Engineering Biology, Yale University, New Haven, CT.,Department of Mechanical Engineering and Materials Science, Yale University, New Haven, CT
| | - Danielle M Williams
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT
| | - Corey S O'Hern
- Integrated Graduate Program in Physical and Engineering Biology, Yale University, New Haven, CT.,Department of Physics, Yale University, New Haven, CT.,Department of Mechanical Engineering and Materials Science, Yale University, New Haven, CT.,Department of Applied Physics, Yale University, New Haven, CT
| |
Collapse
|
212
|
Synthesis of Isomeric Phosphoubiquitin Chains Reveals that Phosphorylation Controls Deubiquitinase Activity and Specificity. Cell Rep 2016; 16:1180-1193. [PMID: 27425610 PMCID: PMC4967478 DOI: 10.1016/j.celrep.2016.06.064] [Citation(s) in RCA: 59] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2016] [Revised: 05/05/2016] [Accepted: 06/14/2016] [Indexed: 01/30/2023] Open
Abstract
Ubiquitin is post-translationally modified by phosphorylation at several sites, but the consequences of these modifications are largely unknown. Here, we synthesize multi-milligram quantities of ubiquitin phosphorylated at serine 20, serine 57, and serine 65 via genetic code expansion. We use these phosphoubiquitins for the enzymatic assembly of 20 isomeric phosphoubiquitin dimers, with different sites of isopeptide linkage and/or phosphorylation. We discover that phosphorylation of serine 20 on ubiquitin converts UBE3C from a dual-specificity E3 ligase into a ligase that primarily synthesizes K48 chains. We profile the activity of 31 deubiquitinases on the isomeric phosphoubiquitin dimers in 837 reactions, and we discover that phosphorylation at distinct sites in ubiquitin can activate or repress cleavage of a particular linkage by deubiquitinases and that phosphorylation at a single site in ubiquitin can control the specificity of deubiquitinases for distinct ubiquitin linkages. Milligram quantities of ubiquitin phosphorylated at Ser 20, 57, or 65 are purified Twenty isomeric phosphoubiquitin dimers are assembled and purified UBE3C chain synthesis specificity is controlled by Ser 20 ubiquitin phosphorylation Phosphorylation of ubiquitin controls deubiquitinase activity and linkage specificity
Collapse
|
213
|
Neumann-Staubitz P, Neumann H. The use of unnatural amino acids to study and engineer protein function. Curr Opin Struct Biol 2016; 38:119-28. [DOI: 10.1016/j.sbi.2016.06.006] [Citation(s) in RCA: 79] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2016] [Revised: 06/02/2016] [Accepted: 06/04/2016] [Indexed: 12/21/2022]
|
214
|
Crnković A, Suzuki T, Söll D, Reynolds NM. Pyrrolysyl-tRNA synthetase, an aminoacyl-tRNA synthetase for genetic code expansion. CROAT CHEM ACTA 2016; 89:163-174. [PMID: 28239189 PMCID: PMC5321558 DOI: 10.5562/cca2825] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Genetic code expansion (GCE) has become a central topic of synthetic biology. GCE relies on engineered aminoacyl-tRNA synthetases (aaRSs) and a cognate tRNA species to allow codon reassignment by co-translational insertion of non-canonical amino acids (ncAAs) into proteins. Introduction of such amino acids increases the chemical diversity of recombinant proteins endowing them with novel properties. Such proteins serve in sophisticated biochemical and biophysical studies both in vitro and in vivo, they may become unique biomaterials or therapeutic agents, and they afford metabolic dependence of genetically modified organisms for biocontainment purposes. In the Methanosarcinaceae the incorporation of the 22nd genetically encoded amino acid, pyrrolysine (Pyl), is facilitated by pyrrolysyl-tRNA synthetase (PylRS) and the cognate UAG-recognizing tRNAPyl. This unique aaRS•tRNA pair functions as an orthogonal translation system (OTS) in most model organisms. The facile directed evolution of the large PylRS active site to accommodate many ncAAs, and the enzyme's anticodon-blind specific recognition of the cognate tRNAPyl make this system highly amenable for GCE purposes. The remarkable polyspecificity of PylRS has been exploited to incorporate >100 different ncAAs into proteins. Here we review the Pyl-OT system and selected GCE applications to examine the properties of an effective OTS.
Collapse
Affiliation(s)
- Ana Crnković
- Department of Molecular Biophysics & Biochemistry, Yale University, New Haven, CT 06520-8114, USA
| | - Tateki Suzuki
- Department of Molecular Biophysics & Biochemistry, Yale University, New Haven, CT 06520-8114, USA
| | - Dieter Söll
- Department of Molecular Biophysics & Biochemistry, Yale University, New Haven, CT 06520-8114, USA
- Department of Chemistry, Yale University, New Haven, CT 06520-8114, USA
| | - Noah M. Reynolds
- Department of Molecular Biophysics & Biochemistry, Yale University, New Haven, CT 06520-8114, USA
| |
Collapse
|
215
|
Mass spectrometry-based absolute quantification reveals rhythmic variation of mouse circadian clock proteins. Proc Natl Acad Sci U S A 2016; 113:E3461-7. [PMID: 27247408 DOI: 10.1073/pnas.1603799113] [Citation(s) in RCA: 59] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Absolute values of protein expression levels in cells are crucial information for understanding cellular biological systems. Precise quantification of proteins can be achieved by liquid chromatography (LC)-mass spectrometry (MS) analysis of enzymatic digests of proteins in the presence of isotope-labeled internal standards. Thus, development of a simple and easy way for the preparation of internal standards is advantageous for the analyses of multiple target proteins, which will allow systems-level studies. Here we describe a method, termed MS-based Quantification By isotope-labeled Cell-free products (MS-QBiC), which provides the simple and high-throughput preparation of internal standards by using a reconstituted cell-free protein synthesis system, and thereby facilitates both multiplexed and sensitive quantification of absolute amounts of target proteins. This method was applied to a systems-level dynamic analysis of mammalian circadian clock proteins, which consist of transcription factors and protein kinases that govern central and peripheral circadian clocks in mammals. Sixteen proteins from 20 selected circadian clock proteins were successfully quantified from mouse liver over a 24-h time series, and 14 proteins had circadian variations. Quantified values were applied to detect internal body time using a previously developed molecular timetable method. The analyses showed that single time-point data from wild-type mice can predict the endogenous state of the circadian clock, whereas data from clock mutant mice are not applicable because of the disappearance of circadian variation.
Collapse
|
216
|
George S, Aguirre JD, Spratt DE, Bi Y, Jeffery M, Shaw GS, O'Donoghue P. Generation of phospho-ubiquitin variants by orthogonal translation reveals codon skipping. FEBS Lett 2016; 590:1530-42. [DOI: 10.1002/1873-3468.12182] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2016] [Revised: 04/10/2016] [Accepted: 04/11/2016] [Indexed: 11/10/2022]
Affiliation(s)
- Susanna George
- Department of Biochemistry; The University of Western Ontario; London Canada
| | - Jacob D. Aguirre
- Department of Biochemistry; The University of Western Ontario; London Canada
| | - Donald E. Spratt
- Department of Biochemistry; The University of Western Ontario; London Canada
| | - Yumin Bi
- Department of Biochemistry; The University of Western Ontario; London Canada
| | - Madeline Jeffery
- Department of Biochemistry; The University of Western Ontario; London Canada
| | - Gary S. Shaw
- Department of Biochemistry; The University of Western Ontario; London Canada
- Department of Chemistry; The University of Western Ontario; London Canada
| | - Patrick O'Donoghue
- Department of Biochemistry; The University of Western Ontario; London Canada
- Department of Chemistry; The University of Western Ontario; London Canada
| |
Collapse
|
217
|
Regan L, Hinrichsen MR, Oi C. Protein engineering strategies with potential applications for altering clinically relevant cellular pathways at the protein level. Expert Rev Proteomics 2016; 13:481-93. [PMID: 27031866 DOI: 10.1586/14789450.2016.1172966] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
All diseases can be fundamentally viewed as the result of malfunctioning cellular pathways. Protein engineering offers the potential to develop new tools that will allow these dysfunctional pathways to be better understood, in addition to potentially providing new routes to restore proper function. Here we discuss different approaches that can be used to change the intracellular activity of a protein by intervening at the protein level: targeted protein sequestration, protein recruitment, protein degradation, and selective inhibition of binding interfaces. The potential of each of these tools to be developed into effective therapeutic treatments will also be discussed, along with any major barriers that currently block their translation into the clinic.
Collapse
Affiliation(s)
- Lynne Regan
- a Department of Molecular Biophysics & Biochemistry , Yale University , New Haven , CT , USA.,b Department of Chemistry , Yale University , New Haven , CT , USA.,c Integrated Graduate Program in Physical and Engineering Biology , Yale University , New Haven , CT , USA
| | - Michael R Hinrichsen
- a Department of Molecular Biophysics & Biochemistry , Yale University , New Haven , CT , USA
| | | |
Collapse
|
218
|
Melo Czekster C, Robertson WE, Walker AS, Söll D, Schepartz A. In Vivo Biosynthesis of a β-Amino Acid-Containing Protein. J Am Chem Soc 2016; 138:5194-7. [PMID: 27086674 DOI: 10.1021/jacs.6b01023] [Citation(s) in RCA: 104] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
It has recently been reported that ribosomes from erythromycin-resistant Escherichia coli strains, when isolated in S30 extracts and incubated with chemically mis-acylated tRNA, can incorporate certain β-amino acids into full length DHFR in vitro. Here we report that wild-type E. coli EF-Tu and phenylalanyl-tRNA synthetase collaborate with these mutant ribosomes and others to incorporate β(3)-Phe analogs into full length DHFR in vivo. E. coli harboring the most active mutant ribosomes are robust, with a doubling time only 14% longer than wild-type. These results reveal the unexpected tolerance of E. coli and its translation machinery to the β(3)-amino acid backbone and should embolden in vivo selections for orthogonal translational machinery components that incorporate diverse β-amino acids into proteins and peptides. E. coli harboring mutant ribosomes may possess the capacity to incorporate many non-natural, non-α-amino acids into proteins and other sequence-programmed polymeric materials.
Collapse
Affiliation(s)
- Clarissa Melo Czekster
- Department of Chemistry, ‡Department of Molecular, Cellular, and Developmental Biology, and §Department of Molecular Biophysics and Biochemistry, Yale University , New Haven, Connecticut 06520-8107, United States
| | - Wesley E Robertson
- Department of Chemistry, ‡Department of Molecular, Cellular, and Developmental Biology, and §Department of Molecular Biophysics and Biochemistry, Yale University , New Haven, Connecticut 06520-8107, United States
| | - Allison S Walker
- Department of Chemistry, ‡Department of Molecular, Cellular, and Developmental Biology, and §Department of Molecular Biophysics and Biochemistry, Yale University , New Haven, Connecticut 06520-8107, United States
| | - Dieter Söll
- Department of Chemistry, ‡Department of Molecular, Cellular, and Developmental Biology, and §Department of Molecular Biophysics and Biochemistry, Yale University , New Haven, Connecticut 06520-8107, United States
| | - Alanna Schepartz
- Department of Chemistry, ‡Department of Molecular, Cellular, and Developmental Biology, and §Department of Molecular Biophysics and Biochemistry, Yale University , New Haven, Connecticut 06520-8107, United States
| |
Collapse
|
219
|
Schwagerus S, Reimann O, Despres C, Smet-Nocca C, Hackenberger CPR. Semi-synthesis of a tag-freeO-GlcNAcylated tau protein by sequential chemoselective ligation. J Pept Sci 2016; 22:327-33. [DOI: 10.1002/psc.2870] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2015] [Revised: 02/11/2016] [Accepted: 02/11/2016] [Indexed: 12/18/2022]
Affiliation(s)
- Sergej Schwagerus
- Leibniz-Institut für Molekulare Pharmakologie (FMP); Campus Berlin-Buch Robert-Roessle-Str. 10 13125 Berlin Germany
- Department Chemie; Humboldt Universität zu Berlin; Brook-Taylor-Strasse 2 12489 Berlin Germany
| | - Oliver Reimann
- Leibniz-Institut für Molekulare Pharmakologie (FMP); Campus Berlin-Buch Robert-Roessle-Str. 10 13125 Berlin Germany
- Freie Universität Berlin; Institut für Chemie und Biochemie; Takustrasse 3 14195 Berlin Germany
| | - Clement Despres
- UMR 8576 - UGSF; Univ. Lille, CNRS; Unité de Glycobiologie Structurale et Fonctionnelle F-59000 Lille France
- CNRS; UMR 8576 F-59000 Lille France
| | - Caroline Smet-Nocca
- UMR 8576 - UGSF; Univ. Lille, CNRS; Unité de Glycobiologie Structurale et Fonctionnelle F-59000 Lille France
- CNRS; UMR 8576 F-59000 Lille France
| | - Christian P. R. Hackenberger
- Leibniz-Institut für Molekulare Pharmakologie (FMP); Campus Berlin-Buch Robert-Roessle-Str. 10 13125 Berlin Germany
- Department Chemie; Humboldt Universität zu Berlin; Brook-Taylor-Strasse 2 12489 Berlin Germany
| |
Collapse
|
220
|
Kwon I, Choi ES. Forced Ambiguity of the Leucine Codons for Multiple-Site-Specific Incorporation of a Noncanonical Amino Acid. PLoS One 2016; 11:e0152826. [PMID: 27028506 PMCID: PMC4814082 DOI: 10.1371/journal.pone.0152826] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2015] [Accepted: 03/03/2016] [Indexed: 11/24/2022] Open
Abstract
Multiple-site-specific incorporation of a noncanonical amino acid into a recombinant protein would be a very useful technique to generate multiple chemical handles for bioconjugation and multivalent binding sites for the enhanced interaction. Previously combination of a mutant yeast phenylalanyl-tRNA synthetase variant and the yeast phenylalanyl-tRNA containing the AAA anticodon was used to incorporate a noncanonical amino acid into multiple UUU phenylalanine (Phe) codons in a site-specific manner. However, due to the less selective codon recognition of the AAA anticodon, there was significant misincorporation of a noncanonical amino acid into unwanted UUC Phe codons. To enhance codon selectivity, we explored degenerate leucine (Leu) codons instead of Phe degenerate codons. Combined use of the mutant yeast phenylalanyl-tRNA containing the CAA anticodon and the yPheRS_naph variant allowed incorporation of a phenylalanine analog, 2-naphthylalanine, into murine dihydrofolate reductase in response to multiple UUG Leu codons, but not to other Leu codon sites. Despite the moderate UUG codon occupancy by 2-naphthylalaine, these results successfully demonstrated that the concept of forced ambiguity of the genetic code can be achieved for the Leu codons, available for multiple-site-specific incorporation.
Collapse
Affiliation(s)
- Inchan Kwon
- School of Materials Science and Engineering, Gwangju Institute of Science and Technology (GIST), Gwangju, Republic of Korea
- Department of Chemical Engineering, University of Virginia, Charlottesville, Virginia, United States of America
- * E-mail:
| | - Eun Sil Choi
- School of Materials Science and Engineering, Gwangju Institute of Science and Technology (GIST), Gwangju, Republic of Korea
- Department of Biological Sciences, College of Natural Sciences, Chonnam National University, Gwangju, Republic of Korea
| |
Collapse
|
221
|
McKenney KM, Alfonzo JD. From Prebiotics to Probiotics: The Evolution and Functions of tRNA Modifications. Life (Basel) 2016; 6:E13. [PMID: 26985907 PMCID: PMC4810244 DOI: 10.3390/life6010013] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2016] [Revised: 02/27/2016] [Accepted: 03/07/2016] [Indexed: 12/13/2022] Open
Abstract
All nucleic acids in cells are subject to post-transcriptional chemical modifications. These are catalyzed by a myriad of enzymes with exquisite specificity and that utilize an often-exotic array of chemical substrates. In no molecule are modifications more prevalent than in transfer RNAs. In the present document, we will attempt to take a chemical rollercoaster ride from prebiotic times to the present, with nucleoside modifications as key players and tRNA as the centerpiece that drove the evolution of biological systems to where we are today. These ideas will be put forth while touching on several examples of tRNA modification enzymes and their modus operandi in cells. In passing, we submit that the choice of tRNA is not a whimsical one but rather highlights its critical function as an essential invention for the evolution of protein enzymes.
Collapse
Affiliation(s)
- Katherine M McKenney
- The Center for RNA Biology, The Ohio State University, Columbus, OH 43210, USA.
- The Ohio State Biochemistry Program, The Ohio State University, Columbus, OH 43210, USA.
| | - Juan D Alfonzo
- The Center for RNA Biology, The Ohio State University, Columbus, OH 43210, USA.
- The Ohio State Biochemistry Program, The Ohio State University, Columbus, OH 43210, USA.
- Department of Microbiology, The Ohio State University, Columbus, OH 43210, USA.
| |
Collapse
|
222
|
Xiong H, Reynolds NM, Fan C, Englert M, Hoyer D, Miller SJ, Söll D. Duale genetische Kodierung von Acetyllysin und nicht-hydrolysierbarem Thioacetyllysin mittels Flexizym. Angew Chem Int Ed Engl 2016; 128:4151-4154. [DOI: 10.1002/ange.201511750] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Hai Xiong
- Department of Molecular Biophysics and Biochemistry; Yale University; Whitney Avenue 266 New Haven CT 06511 USA
| | - Noah M. Reynolds
- Department of Molecular Biophysics and Biochemistry; Yale University; Whitney Avenue 266 New Haven CT 06511 USA
| | - Chenguang Fan
- Department of Molecular Biophysics and Biochemistry; Yale University; Whitney Avenue 266 New Haven CT 06511 USA
| | - Markus Englert
- Department of Molecular Biophysics and Biochemistry; Yale University; Whitney Avenue 266 New Haven CT 06511 USA
| | - Denton Hoyer
- Yale Center for Molecular Discovery; Yale University; West Haven CT 06516 USA
| | - Scott J. Miller
- Department of Chemistry; Yale University; 225 Prospect Street New Haven CT 06511 USA
| | - Dieter Söll
- Department of Molecular Biophysics and Biochemistry; Yale University; Whitney Avenue 266 New Haven CT 06511 USA
- Department of Chemistry; Yale University; 225 Prospect Street New Haven CT 06511 USA
| |
Collapse
|
223
|
Lajoie MJ, Söll D, Church GM. Overcoming Challenges in Engineering the Genetic Code. J Mol Biol 2016; 428:1004-21. [PMID: 26348789 PMCID: PMC4779434 DOI: 10.1016/j.jmb.2015.09.003] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2015] [Revised: 08/19/2015] [Accepted: 09/01/2015] [Indexed: 11/24/2022]
Abstract
Withstanding 3.5 billion years of genetic drift, the canonical genetic code remains such a fundamental foundation for the complexity of life that it is highly conserved across all three phylogenetic domains. Genome engineering technologies are now making it possible to rationally change the genetic code, offering resistance to viruses, genetic isolation from horizontal gene transfer, and prevention of environmental escape by genetically modified organisms. We discuss the biochemical, genetic, and technological challenges that must be overcome in order to engineer the genetic code.
Collapse
Affiliation(s)
- M J Lajoie
- Department of Genetics, Harvard Medical School, Boston, MA 02115, USA; Program in Chemical Biology, Harvard University, Cambridge, MA 02138, USA.
| | - D Söll
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT 06520-8114, USA
| | - G M Church
- Department of Genetics, Harvard Medical School, Boston, MA 02115, USA; Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, MA 02115, USA
| |
Collapse
|
224
|
Xiong H, Reynolds NM, Fan C, Englert M, Hoyer D, Miller SJ, Söll D. Dual Genetic Encoding of Acetyl-lysine and Non-deacetylatable Thioacetyl-lysine Mediated by Flexizyme. Angew Chem Int Ed Engl 2016; 55:4083-6. [PMID: 26914285 DOI: 10.1002/anie.201511750] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2015] [Indexed: 11/10/2022]
Abstract
Acetylation of lysine residues is an important post-translational protein modification. Lysine acetylation in histones and its crosstalk with other post-translational modifications in histone and non-histone proteins are crucial to DNA replication, DNA repair, and transcriptional regulation. We incorporated acetyl-lysine (AcK) and the non-hydrolyzable thioacetyl-lysine (ThioAcK) into full-length proteins in vitro, mediated by flexizyme. ThioAcK and AcK were site-specifically incorporated at different lysine positions into human histone H3, either individually or in pairs. We demonstrate that the thioacetyl group in histone H3 could not be removed by the histone deacetylase sirtuin type 1. This method provides a powerful tool to study protein acetylation and its role in crosstalk between post-translational modifications.
Collapse
Affiliation(s)
- Hai Xiong
- Department of Molecular Biophysics and Biochemistry, Yale University, Whitney Avenue 266, New Haven, CT, 06511, USA
| | - Noah M Reynolds
- Department of Molecular Biophysics and Biochemistry, Yale University, Whitney Avenue 266, New Haven, CT, 06511, USA
| | - Chenguang Fan
- Department of Molecular Biophysics and Biochemistry, Yale University, Whitney Avenue 266, New Haven, CT, 06511, USA
| | - Markus Englert
- Department of Molecular Biophysics and Biochemistry, Yale University, Whitney Avenue 266, New Haven, CT, 06511, USA
| | - Denton Hoyer
- Yale Center for Molecular Discovery, Yale University, West Haven, CT, 06516, USA
| | - Scott J Miller
- Department of Chemistry, Yale University, 225 Prospect Street, New Haven, CT, 06511, USA
| | - Dieter Söll
- Department of Molecular Biophysics and Biochemistry, Yale University, Whitney Avenue 266, New Haven, CT, 06511, USA. .,Department of Chemistry, Yale University, 225 Prospect Street, New Haven, CT, 06511, USA.
| |
Collapse
|
225
|
Peuker S, Andersson H, Gustavsson E, Maiti KS, Kania R, Karim A, Niebling S, Pedersen A, Erdelyi M, Westenhoff S. Efficient Isotope Editing of Proteins for Site-Directed Vibrational Spectroscopy. J Am Chem Soc 2016; 138:2312-8. [DOI: 10.1021/jacs.5b12680] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Affiliation(s)
- Sebastian Peuker
- Department
of Chemistry and Molecular Biology, University of Gothenburg, SE-405 30 Gothenburg, Sweden
| | - Hanna Andersson
- Department
of Chemistry and Molecular Biology, University of Gothenburg, SE-405 30 Gothenburg, Sweden
| | - Emil Gustavsson
- Department
of Chemistry and Molecular Biology, University of Gothenburg, SE-405 30 Gothenburg, Sweden
| | - Kiran Sankar Maiti
- Department
of Chemistry and Molecular Biology, University of Gothenburg, SE-405 30 Gothenburg, Sweden
| | - Rafal Kania
- Department
of Chemistry and Molecular Biology, University of Gothenburg, SE-405 30 Gothenburg, Sweden
| | - Alavi Karim
- Department
of Chemistry and Molecular Biology, University of Gothenburg, SE-405 30 Gothenburg, Sweden
| | - Stephan Niebling
- Department
of Chemistry and Molecular Biology, University of Gothenburg, SE-405 30 Gothenburg, Sweden
| | - Anders Pedersen
- Swedish
NMR Centre at the University of Gothenburg, P.O. Box 465, SE-405 30 Gothenburg, Sweden
| | - Mate Erdelyi
- Department
of Chemistry and Molecular Biology, University of Gothenburg, SE-405 30 Gothenburg, Sweden
| | - Sebastian Westenhoff
- Department
of Chemistry and Molecular Biology, University of Gothenburg, SE-405 30 Gothenburg, Sweden
| |
Collapse
|
226
|
Yamano K, Matsuda N, Tanaka K. The ubiquitin signal and autophagy: an orchestrated dance leading to mitochondrial degradation. EMBO Rep 2016; 17:300-16. [PMID: 26882551 DOI: 10.15252/embr.201541486] [Citation(s) in RCA: 187] [Impact Index Per Article: 20.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2015] [Accepted: 01/05/2016] [Indexed: 12/21/2022] Open
Abstract
The quality of mitochondria, essential organelles that produce ATP and regulate numerous metabolic pathways, must be strictly monitored to maintain cell homeostasis. The loss of mitochondrial quality control systems is acknowledged as a determinant for many types of neurodegenerative diseases including Parkinson's disease (PD). The two gene products mutated in the autosomal recessive forms of familial early-onset PD, Parkin and PINK1, have been identified as essential proteins in the clearance of damaged mitochondria via an autophagic pathway termed mitophagy. Recently, significant progress has been made in understanding how the mitochondrial serine/threonine kinase PINK1 and the E3 ligase Parkin work together through a novel stepwise cascade to identify and eliminate damaged mitochondria, a process that relies on the orchestrated crosstalk between ubiquitin/phosphorylation signaling and autophagy. In this review, we highlight our current understanding of the detailed molecular mechanisms governing Parkin-/PINK1-mediated mitophagy and the evidences connecting Parkin/PINK1 function and mitochondrial clearance in neurons.
Collapse
Affiliation(s)
- Koji Yamano
- Ubiquitin Project, Tokyo Metropolitan Institute of Medical Science, Setagaya-ku, Tokyo, Japan
| | - Noriyuki Matsuda
- Ubiquitin Project, Tokyo Metropolitan Institute of Medical Science, Setagaya-ku, Tokyo, Japan
| | - Keiji Tanaka
- Laboratory of Protein Metabolism, Tokyo Metropolitan Institute of Medical Science, Setagaya-ku, Tokyo, Japan
| |
Collapse
|
227
|
Bah A, Forman-Kay JD. Modulation of Intrinsically Disordered Protein Function by Post-translational Modifications. J Biol Chem 2016; 291:6696-705. [PMID: 26851279 DOI: 10.1074/jbc.r115.695056] [Citation(s) in RCA: 386] [Impact Index Per Article: 42.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Post-translational modifications (PTMs) produce significant changes in the structural properties of intrinsically disordered proteins (IDPs) by affecting their energy landscapes. PTMs can induce a range of effects, from local stabilization or destabilization of transient secondary structure to global disorder-to-order transitions, potentially driving complete state changes between intrinsically disordered and folded states or dispersed monomeric and phase-separated states. Here, we discuss diverse biological processes that are dependent on PTM regulation of IDPs. We also present recent tools for generating homogenously modified IDPs for studies of PTM-mediated IDP regulatory mechanisms.
Collapse
Affiliation(s)
- Alaji Bah
- From the Program in Molecular Structure & Function, The Hospital for Sick Children, Toronto, Ontario M5G 0A4 and the Department of Biochemistry, University of Toronto, Toronto, Ontario M5S 1A8, Canada
| | - Julie D Forman-Kay
- From the Program in Molecular Structure & Function, The Hospital for Sick Children, Toronto, Ontario M5G 0A4 and the Department of Biochemistry, University of Toronto, Toronto, Ontario M5S 1A8, Canada
| |
Collapse
|
228
|
Iwane Y, Hitomi A, Murakami H, Katoh T, Goto Y, Suga H. Expanding the amino acid repertoire of ribosomal polypeptide synthesis via the artificial division of codon boxes. Nat Chem 2016; 8:317-25. [DOI: 10.1038/nchem.2446] [Citation(s) in RCA: 83] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2015] [Accepted: 12/18/2015] [Indexed: 01/02/2023]
|
229
|
Fujino T, Murakami H. In VitroSelection Combined with Ribosomal Translation Containing Non-proteinogenic Amino Acids. CHEM REC 2016; 16:365-77. [DOI: 10.1002/tcr.201500239] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2015] [Indexed: 11/10/2022]
Affiliation(s)
- Tomoshige Fujino
- Department of Chemical and Biological Engineering, School of Engineering; Nagoya University; Furo-cho, Chikusa-ku Nagoya 464-8603 Japan
| | - Hiroshi Murakami
- Department of Chemical and Biological Engineering, School of Engineering; Nagoya University; Furo-cho, Chikusa-ku Nagoya 464-8603 Japan
| |
Collapse
|
230
|
Rauch BJ, Porter JJ, Mehl RA, Perona JJ. Improved Incorporation of Noncanonical Amino Acids by an Engineered tRNA(Tyr) Suppressor. Biochemistry 2016; 55:618-28. [PMID: 26694948 DOI: 10.1021/acs.biochem.5b01185] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
The Methanocaldcoccus jannaschii tyrosyl-tRNA synthetase (TyrRS):tRNA(Tyr) cognate pair has been used to incorporate a large number of noncanonical amino acids (ncAAs) into recombinant proteins in Escherichia coli. However, the structural elements of the suppressor tRNA(Tyr) used in these experiments have not been examined for optimal performance. Here, we evaluate the steady-state kinetic parameters of wild-type M. jannaschii TyrRS and an evolved 3-nitrotyrosyl-tRNA synthetase (nitroTyrRS) toward several engineered tRNA(Tyr) suppressors, and we correlate aminoacylation properties with the efficiency and fidelity of superfolder green fluorescent protein (sfGFP) synthesis in vivo. Optimal ncAA-sfGFP synthesis correlates with improved aminoacylation kinetics for a tRNA(Tyr) amber suppressor with two substitutions in the anticodon loop (G34C/G37A), while four additional mutations in the D and variable loops, present in the tRNA(Tyr) used in all directed evolution experiments to date, are deleterious to function both in vivo and in vitro. These findings extend to three of four other evolved TyrRS enzymes that incorporate distinct ncAAs. Suppressor tRNAs elicit decreases in amino acid Km values for both TyrRS and nitroTyrRS, suggesting that direct anticodon recognition by TyrRS need not be an impediment to superior performance of this orthogonal system and offering insight into novel approaches for directed evolution. The G34C/G37A tRNA(Tyr) may enhance future incorporation of many ncAAs by engineered TyrRS enzymes.
Collapse
Affiliation(s)
- Benjamin J Rauch
- Department of Chemistry, Portland State University , P.O. Box 751, Portland, Oregon 97207, United States.,Department of Biochemistry & Molecular Biology, Oregon Health & Sciences University , 3181 Southwest Sam Jackson Park Road, Portland, Oregon 97239, United States
| | - Joseph J Porter
- Department of Biochemistry and Biophysics, Oregon State University , 2011 Agriculture and Life Sciences Building, Corvallis, Oregon 97331, United States
| | - Ryan A Mehl
- Department of Biochemistry and Biophysics, Oregon State University , 2011 Agriculture and Life Sciences Building, Corvallis, Oregon 97331, United States
| | - John J Perona
- Department of Chemistry, Portland State University , P.O. Box 751, Portland, Oregon 97207, United States.,Department of Biochemistry & Molecular Biology, Oregon Health & Sciences University , 3181 Southwest Sam Jackson Park Road, Portland, Oregon 97239, United States
| |
Collapse
|
231
|
Vincentelli R, Romier C. Complex Reconstitution and Characterization by Combining Co-expression Techniques in Escherichia coli with High-Throughput. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2016; 896:43-58. [PMID: 27165318 DOI: 10.1007/978-3-319-27216-0_4] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
Single protein expression technologies have strongly benefited from the Structural Genomics initiatives that have introduced parallelization at the laboratory level. Specifically, the developments made in the wake of these initiatives have revitalized the use of Escherichia coli as major host for heterologous protein expression. In parallel to these improvements for single expression, technologies for complex reconstitution by co-expression in E. coli have been developed. Assessments of these co-expression technologies have highlighted the need for combinatorial experiments requiring automated protocols. These requirements can be fulfilled by adapting the high-throughput approaches that have been developed for single expression to the co-expression technologies. Yet, challenges are laying ahead that further need to be addressed and that are only starting to be taken into account in the case of single expression. These notably include the biophysical characterization of the samples at the small-scale level. Specifically, these approaches aim at discriminating the samples at an early stage of their production based on various biophysical criteria leading to cost-effectiveness and time-saving. This chapter addresses these various issues to provide the reader with a broad and comprehensive overview of complex reconstitution and characterization by co-expression in E. coli.
Collapse
Affiliation(s)
- Renaud Vincentelli
- Architecture et Fonction des Macromolécules Biologiques (A.F.M.B), UMR7257 CNRS, Université Aix-Marseille, Case 932, 163 Avenue de Luminy, 13288, Marseille cedex 9, France.
| | - Christophe Romier
- Département de Biologie Structurale Intégrative, Centre de Biologie Intégrative, Institut de Génétique et Biologie Moléculaire et Cellulaire (IGBMC), Université de Strasbourg (UDS), CNRS, INSERM, 1 rue Laurent Fries, B.P. 10142, 67404, Illkirch Cedex, France.
| |
Collapse
|
232
|
|
233
|
Cox VE, Gaucher EA. Molecular Evolution Directs Protein Translation Using Unnatural Amino Acids. ACTA ACUST UNITED AC 2015; 7:223-228. [PMID: 26629613 DOI: 10.1002/9780470559277.ch150115] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
Unnatural amino acids have in recent years established their importance in a wide range of fields, from pharmaceuticals to polymer science. Unnatural amino acids can increase the number of chemical groups within proteins and thus expand or enhance biological function. Our ability to utilize these important building blocks, however, has been limited by the inherent difficulty in incorporating these molecules into proteins. To address this challenge, researchers have examined how the canonical twenty amino acids are incorporated, regulated, and modified in nature. This review focuses on achievements and techniques used to engineer the ribosomal protein-translation machinery, including the introduction of orthogonal translation components, how directed evolution enhances the incorporation of unnatural amino acids, and the potential utility of ancient biomolecules for this process.
Collapse
Affiliation(s)
- Vanessa E Cox
- School of Chemistry and Biochemistry, Georgia Institute of Technology, Atlanta, Georgia
| | - Eric A Gaucher
- School of Biology, School of Chemistry and Biochemistry, Georgia Institute of Technology, Atlanta, Georgia
| |
Collapse
|
234
|
Englert M, Nakamura A, Wang YS, Eiler D, Söll D, Guo LT. Probing the active site tryptophan of Staphylococcus aureus thioredoxin with an analog. Nucleic Acids Res 2015; 43:11061-7. [PMID: 26582921 PMCID: PMC4678829 DOI: 10.1093/nar/gkv1255] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2015] [Accepted: 10/30/2015] [Indexed: 12/27/2022] Open
Abstract
Genetically encoded non-canonical amino acids are powerful tools of protein research and engineering; in particular they allow substitution of individual chemical groups or atoms in a protein of interest. One such amino acid is the tryptophan (Trp) analog 3-benzothienyl-l-alanine (Bta) with an imino-to-sulfur substitution in the five-membered ring. Unlike Trp, Bta is not capable of forming a hydrogen bond, but preserves other properties of a Trp residue. Here we present a pyrrolysyl-tRNA synthetase-derived, engineered enzyme BtaRS that enables efficient and site-specific Bta incorporation into proteins of interest in vivo. Furthermore, we report a 2.1 Å-resolution crystal structure of a BtaRS•Bta complex to show how BtaRS discriminates Bta from canonical amino acids, including Trp. To show utility in protein mutagenesis, we used BtaRS to introduce Bta to replace the Trp28 residue in the active site of Staphylococcus aureus thioredoxin. This experiment showed that not the hydrogen bond between residues Trp28 and Asp58, but the bulky aromatic side chain of Trp28 is important for active site maintenance. Collectively, our study provides a new and robust tool for checking the function of Trp in proteins.
Collapse
Affiliation(s)
- Markus Englert
- Department of Molecular Biophysics & Biochemistry, Yale University, New Haven, CT 06520-8114, USA
| | - Akiyoshi Nakamura
- Department of Molecular Biophysics & Biochemistry, Yale University, New Haven, CT 06520-8114, USA
| | - Yane-Shih Wang
- Department of Molecular Biophysics & Biochemistry, Yale University, New Haven, CT 06520-8114, USA
| | - Daniel Eiler
- Department of Molecular Biophysics & Biochemistry, Yale University, New Haven, CT 06520-8114, USA
| | - Dieter Söll
- Department of Molecular Biophysics & Biochemistry, Yale University, New Haven, CT 06520-8114, USA Department of Chemistry, Yale University, New Haven, CT 06520-8114, USA
| | - Li-Tao Guo
- Department of Molecular Biophysics & Biochemistry, Yale University, New Haven, CT 06520-8114, USA
| |
Collapse
|
235
|
Amiram M, Haimovich AD, Fan C, Wang YS, Aerni HR, Ntai I, Moonan DW, Ma NJ, Rovner AJ, Hong SH, Kelleher NL, Goodman AL, Jewett MC, Söll D, Rinehart J, Isaacs FJ. Evolution of translation machinery in recoded bacteria enables multi-site incorporation of nonstandard amino acids. Nat Biotechnol 2015; 33:1272-1279. [PMID: 26571098 DOI: 10.1038/nbt.3372] [Citation(s) in RCA: 201] [Impact Index Per Article: 20.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2014] [Accepted: 09/11/2015] [Indexed: 01/24/2023]
Abstract
Expansion of the genetic code with nonstandard amino acids (nsAAs) has enabled biosynthesis of proteins with diverse new chemistries. However, this technology has been largely restricted to proteins containing a single or few nsAA instances. Here we describe an in vivo evolution approach in a genomically recoded Escherichia coli strain for the selection of orthogonal translation systems capable of multi-site nsAA incorporation. We evolved chromosomal aminoacyl-tRNA synthetases (aaRSs) with up to 25-fold increased protein production for p-acetyl-L-phenylalanine and p-azido-L-phenylalanine (pAzF). We also evolved aaRSs with tunable specificities for 14 nsAAs, including an enzyme that efficiently charges pAzF while excluding 237 other nsAAs. These variants enabled production of elastin-like-polypeptides with 30 nsAA residues at high yields (∼50 mg/L) and high accuracy of incorporation (>95%). This approach to aaRS evolution should accelerate and expand our ability to produce functionalized proteins and sequence-defined polymers with diverse chemistries.
Collapse
Affiliation(s)
- Miriam Amiram
- Department of Molecular, Cellular, and Developmental Biology, Yale University, New Haven, Connecticut, USA.,Systems Biology Institute, Yale University, West Haven, Connecticut, USA
| | - Adrian D Haimovich
- Department of Molecular, Cellular, and Developmental Biology, Yale University, New Haven, Connecticut, USA.,Systems Biology Institute, Yale University, West Haven, Connecticut, USA
| | - Chenguang Fan
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, Connecticut, USA
| | - Yane-Shih Wang
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, Connecticut, USA
| | - Hans-Rudolf Aerni
- Systems Biology Institute, Yale University, West Haven, Connecticut, USA.,Department of Cellular and Molecular Physiology, Yale University, New Haven, Connecticut, USA
| | - Ioanna Ntai
- Department of Chemistry, Northwestern University, Evanston, Illinois, USA
| | - Daniel W Moonan
- Department of Molecular, Cellular, and Developmental Biology, Yale University, New Haven, Connecticut, USA.,Systems Biology Institute, Yale University, West Haven, Connecticut, USA
| | - Natalie J Ma
- Department of Molecular, Cellular, and Developmental Biology, Yale University, New Haven, Connecticut, USA.,Systems Biology Institute, Yale University, West Haven, Connecticut, USA
| | - Alexis J Rovner
- Department of Molecular, Cellular, and Developmental Biology, Yale University, New Haven, Connecticut, USA.,Systems Biology Institute, Yale University, West Haven, Connecticut, USA
| | - Seok Hoon Hong
- Department of Chemical and Biological Engineering, Northwestern University, Evanston, Illinois, USA
| | - Neil L Kelleher
- Department of Chemistry, Northwestern University, Evanston, Illinois, USA
| | - Andrew L Goodman
- Department of Microbial Pathogenesis and Microbial Sciences Institute, Yale University School of Medicine, New Haven, Connecticut, USA
| | - Michael C Jewett
- Department of Chemical and Biological Engineering, Northwestern University, Evanston, Illinois, USA
| | - Dieter Söll
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, Connecticut, USA.,Department of Chemistry, Yale University, New Haven, Connecticut, USA
| | - Jesse Rinehart
- Systems Biology Institute, Yale University, West Haven, Connecticut, USA.,Department of Cellular and Molecular Physiology, Yale University, New Haven, Connecticut, USA
| | - Farren J Isaacs
- Department of Molecular, Cellular, and Developmental Biology, Yale University, New Haven, Connecticut, USA.,Systems Biology Institute, Yale University, West Haven, Connecticut, USA
| |
Collapse
|
236
|
Seo GJ, Yang A, Tan B, Kim S, Liang Q, Choi Y, Yuan W, Feng P, Park HS, Jung JU. Akt Kinase-Mediated Checkpoint of cGAS DNA Sensing Pathway. Cell Rep 2015; 13:440-9. [PMID: 26440888 DOI: 10.1016/j.celrep.2015.09.007] [Citation(s) in RCA: 160] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2015] [Revised: 07/08/2015] [Accepted: 09/01/2015] [Indexed: 12/22/2022] Open
Abstract
Upon DNA stimulation, cyclic GMP-AMP synthase (cGAS) synthesizes the second messenger cyclic GMP-AMP (cGAMP) that binds to the STING, triggering antiviral interferon-β (IFN-β) production. However, it has remained undetermined how hosts regulate cGAS enzymatic activity after the resolution of DNA immunogen. Here, we show that Akt kinase plays a negative role in cGAS-mediated anti-viral immune response. Akt phosphorylated the S291 or S305 residue of the enzymatic domain of mouse or human cGAS, respectively, and this phosphorylation robustly suppressed its enzymatic activity. Consequently, expression of activated Akt led to the reduction of cGAMP and IFN-β production and the increase of herpes simplex virus 1 replication, whereas treatment with Akt inhibitor augmented cGAS-mediated IFN-β production. Furthermore, expression of the phosphorylation-resistant cGAS S291A mutant enhanced IFN-β production upon DNA stimulation, HSV-1 infection, and vaccinia virus infection. Our study identifies an Akt kinase-mediated checkpoint to fine-tune hosts' immune responses to DNA stimulation.
Collapse
Affiliation(s)
- Gil Ju Seo
- Department of Molecular Microbiology and Immunology, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA
| | - Aerin Yang
- Department of Chemistry, Korea Advanced Institute of Science and Technology, Daejeon 305-701, Republic of Korea
| | - Brandon Tan
- Department of Molecular Microbiology and Immunology, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA
| | - Sungyoon Kim
- Department of Chemistry, Korea Advanced Institute of Science and Technology, Daejeon 305-701, Republic of Korea
| | - Qiming Liang
- Department of Molecular Microbiology and Immunology, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA
| | - Younho Choi
- Department of Molecular Microbiology and Immunology, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA
| | - Weiming Yuan
- Department of Molecular Microbiology and Immunology, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA
| | - Pinghui Feng
- Department of Molecular Microbiology and Immunology, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA
| | - Hee-Sung Park
- Department of Chemistry, Korea Advanced Institute of Science and Technology, Daejeon 305-701, Republic of Korea
| | - Jae U Jung
- Department of Molecular Microbiology and Immunology, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA; Department of Pharmacology and Pharmaceutical Sciences, School of Pharmacy, University of Southern California, Los Angeles, CA 90033, USA.
| |
Collapse
|
237
|
Effects of Non-Natural Amino Acid Incorporation into the Enzyme Core Region on Enzyme Structure and Function. Int J Mol Sci 2015; 16:22735-53. [PMID: 26402667 PMCID: PMC4613333 DOI: 10.3390/ijms160922735] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2015] [Revised: 09/02/2015] [Accepted: 09/14/2015] [Indexed: 11/17/2022] Open
Abstract
Techniques to incorporate non-natural amino acids (NNAAs) have enabled biosynthesis of proteins containing new building blocks with unique structures, chemistry, and reactivity that are not found in natural amino acids. It is crucial to understand how incorporation of NNAAs affects protein function because NNAA incorporation may perturb critical function of a target protein. This study investigates how the site-specific incorporation of NNAAs affects catalytic properties of an enzyme. A NNAA with a hydrophobic and bulky sidechain, 3-(2-naphthyl)-alanine (2Nal), was site-specifically incorporated at six different positions in the hydrophobic core of a model enzyme, murine dihydrofolate reductase (mDHFR). The mDHFR variants with a greater change in van der Waals volume upon 2Nal incorporation exhibited a greater reduction in the catalytic efficiency. Similarly, the steric incompatibility calculated using RosettaDesign, a protein stability calculation program, correlated with the changes in the catalytic efficiency.
Collapse
|
238
|
Howard CJ, Yu RR, Gardner ML, Shimko JC, Ottesen JJ. Chemical and biological tools for the preparation of modified histone proteins. Top Curr Chem (Cham) 2015; 363:193-226. [PMID: 25863817 DOI: 10.1007/128_2015_629] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Eukaryotic chromatin is a complex and dynamic system in which the DNA double helix is organized and protected by interactions with histone proteins. This system is regulated through a large network of dynamic post-translational modifications (PTMs) which ensure proper gene transcription, DNA repair, and other processes involving DNA. Homogenous protein samples with precisely characterized modification sites are necessary to understand better the functions of modified histone proteins. Here, we discuss sets of chemical and biological tools developed for the preparation of modified histones, with a focus on the appropriate choice of tool for a given target. We start with genetic approaches for the creation of modified histones, including the incorporation of genetic mimics of histone modifications, chemical installation of modification analogs, and the use of the expanded genetic code to incorporate modified amino acids. We also cover the chemical ligation techniques which have been invaluable in the generation of complex modified histones indistinguishable from their natural counterparts. We end with a prospectus on future directions.
Collapse
Affiliation(s)
- Cecil J Howard
- Department of Chemistry and Biochemistry and The Ohio State Biochemistry Program, The Ohio State University, Columbus, OH, 43210, USA
| | | | | | | | | |
Collapse
|
239
|
A flexible codon in genomically recoded Escherichia coli permits programmable protein phosphorylation. Nat Commun 2015; 6:8130. [PMID: 26350500 PMCID: PMC4566969 DOI: 10.1038/ncomms9130] [Citation(s) in RCA: 78] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2015] [Accepted: 07/22/2015] [Indexed: 11/23/2022] Open
Abstract
Biochemical investigation of protein phosphorylation events is limited by inefficient production of the phosphorylated and non-phosphorylated forms of full-length proteins. Here using a genomically recoded strain of E. coli with a flexible UAG codon we produce site-specific serine- or phosphoserine-containing proteins, with purities approaching 90%, from a single recombinant DNA. Specifically, we synthesize human MEK1 kinase with two serines or two phosphoserines, from one DNA template, and demonstrate programmable kinase activity. Programmable protein phosphorylation is poised to help reveal the structural and functional information encoded in the phosphoproteome. The effects of protein phosphorylation, a common post-translational modification, are difficult to study using recombinant proteins. Here the authors use genomically engineered E. coli to enhance translation systems that express phosphor-serine containing proteins, and use these systems to produce phosphorylated MEK1 kinase.
Collapse
|
240
|
Robust production of recombinant phosphoproteins using cell-free protein synthesis. Nat Commun 2015; 6:8168. [PMID: 26350765 PMCID: PMC4566161 DOI: 10.1038/ncomms9168] [Citation(s) in RCA: 90] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2015] [Accepted: 07/25/2015] [Indexed: 01/18/2023] Open
Abstract
Understanding the functional and structural consequences of site-specific protein phosphorylation has remained limited by our inability to produce phosphoproteins at high yields. Here we address this limitation by developing a cell-free protein synthesis (CFPS) platform that employs crude extracts from a genomically recoded strain of Escherichia coli for site-specific, co-translational incorporation of phosphoserine into proteins. We apply this system to the robust production of up to milligram quantities of human MEK1 kinase. Then, we recapitulate a physiological signalling cascade in vitro to evaluate the contributions of site-specific phosphorylation of mono- and doubly phosphorylated forms on MEK1 activity. We discover that only one phosphorylation event is necessary and sufficient for MEK1 activity. Our work sets the stage for using CFPS as a rapid high-throughput technology platform for direct expression of programmable phosphoproteins containing multiple phosphorylated residues. This work will facilitate study of phosphorylation-dependent structure–function relationships, kinase signalling networks and kinase inhibitor drugs. The inability to produce recombinant phosphoproteins has hindered research into their structure and function. Here the authors develop a cell-free protein synthesis platform to site-specifically incorporate phosphoserine into proteins at high yields, and recapitulate a MEK1 kinase signalling cascade.
Collapse
|
241
|
Herhaus L, Dikic I. Expanding the ubiquitin code through post-translational modification. EMBO Rep 2015; 16:1071-83. [PMID: 26268526 PMCID: PMC4576978 DOI: 10.15252/embr.201540891] [Citation(s) in RCA: 173] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2015] [Revised: 07/23/2015] [Accepted: 07/27/2015] [Indexed: 12/14/2022] Open
Abstract
Ubiquitylation is among the most prevalent post-translational modifications (PTMs) and regulates numerous cellular functions. Interestingly, ubiquitin (Ub) can be itself modified by other PTMs, including acetylation and phosphorylation. Acetylation of Ub on K6 and K48 represses the formation and elongation of Ub chains. Phosphorylation of Ub happens on multiple sites, S57 and S65 being the most frequently modified in yeast and mammalian cells, respectively. In mammals, the PINK1 kinase activates ubiquitin ligase Parkin by phosphorylating S65 of Ub and of the Parkin Ubl domain, which in turn promotes the amplification of autophagy signals necessary for the removal of damaged mitochondria. Similarly, TBK1 phosphorylates the autophagy receptors OPTN and p62 to initiate feedback and feedforward programs for Ub-dependent removal of protein aggregates, mitochondria and pathogens (such as Salmonella and Mycobacterium tuberculosis). The impact of PINK1-mediated phosphorylation of Ub and TBK1-dependent phosphorylation of autophagy receptors (OPTN and p62) has been recently linked to the development of Parkinson's disease and amyotrophic lateral sclerosis, respectively. Hence, the post-translational modification of Ub and its receptors can efficiently expand the Ub code and modulate its functions in health and disease.
Collapse
Affiliation(s)
- Lina Herhaus
- Institute of Biochemistry II Goethe University, Frankfurt am Main, Germany
| | - Ivan Dikic
- Institute of Biochemistry II Goethe University, Frankfurt am Main, Germany
| |
Collapse
|
242
|
Abstract
Next-generation DNA sequencing has revealed the complete genome sequences of numerous organisms, establishing a fundamental and growing understanding of genetic variation and phenotypic diversity. Engineering at the gene, network and whole-genome scale aims to introduce targeted genetic changes both to explore emergent phenotypes and to introduce new functionalities. Expansion of these approaches into massively parallel platforms establishes the ability to generate targeted genome modifications, elucidating causal links between genotype and phenotype, as well as the ability to design and reprogramme organisms. In this Review, we explore techniques and applications in genome engineering, outlining key advances and defining challenges.
Collapse
|
243
|
Fischle W, Mootz HD, Schwarzer D. Synthetic histone code. Curr Opin Chem Biol 2015; 28:131-40. [PMID: 26256563 DOI: 10.1016/j.cbpa.2015.07.005] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2015] [Revised: 06/04/2015] [Accepted: 07/12/2015] [Indexed: 01/17/2023]
Abstract
Chromatin is the universal template of genetic information in all eukaryotic cells. This complex of DNA and histone proteins not only packages and organizes genomes but also regulates gene expression. A multitude of posttranslational histone modifications and their combinations are thought to constitute a code for directing distinct structural and functional states of chromatin. Methods of protein chemistry, including protein semisynthesis, amber suppression technology, and cysteine bioconjugation, have enabled the generation of so-called designer chromatin containing histones in defined and homogeneous modification states. Several of these approaches have matured from proof-of-concept studies into efficient tools and technologies for studying the biochemistry of chromatin regulation and for interrogating the histone code. We summarize pioneering experiments and recent developments in this exciting field of chemical biology.
Collapse
Affiliation(s)
- Wolfgang Fischle
- Max Planck Institute for Biophysical Chemistry, 37077 Göttingen, Germany.
| | - Henning D Mootz
- Institute of Biochemistry, University of Muenster, 48149 Muenster, Germany.
| | - Dirk Schwarzer
- Interfaculty Institute of Biochemistry, University of Tübingen, 72076 Tübingen, Germany.
| |
Collapse
|
244
|
Ren W, Truong TM, Ai HW. Study of the Binding Energies between Unnatural Amino Acids and Engineered Orthogonal Tyrosyl-tRNA Synthetases. Sci Rep 2015; 5:12632. [PMID: 26220470 PMCID: PMC4518261 DOI: 10.1038/srep12632] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2015] [Accepted: 07/03/2015] [Indexed: 11/08/2022] Open
Abstract
We utilized several computational approaches to evaluate the binding energies of tyrosine (Tyr) and several unnatural Tyr analogs, to several orthogonal aaRSes derived from Methanocaldococcus jannaschii and Escherichia coli tyrosyl-tRNA synthetases. The present study reveals the following: (1) AutoDock Vina and ROSETTA were able to distinguish binding energy differences for individual pairs of favorable and unfavorable aaRS-amino acid complexes, but were unable to cluster together all experimentally verified favorable complexes from unfavorable aaRS-Tyr complexes; (2) MD-MM/PBSA provided the best prediction accuracy in terms of clustering favorable and unfavorable enzyme-substrate complexes, but also required the highest computational cost; and (3) MM/PBSA based on single energy-minimized structures has a significantly lower computational cost compared to MD-MM/PBSA, but still produced sufficiently accurate predictions to cluster aaRS-amino acid interactions. Although amino acid-aaRS binding is just the first step in a complex series of processes to acylate a tRNA with its corresponding amino acid, the difference in binding energy, as shown by MD-MM/PBSA, is important for a mutant orthogonal aaRS to distinguish between a favorable unnatural amino acid (unAA) substrate from unfavorable natural amino acid substrates. Our computational study should assist further designing and engineering of orthogonal aaRSes for the genetic encoding of novel unAAs.
Collapse
Affiliation(s)
- Wei Ren
- Department of Chemistry, University of California-Riverside, 501 Big Springs Road, Riverside, California 92521, United States
| | - Tan M. Truong
- Cell, Molecular, and Developmental Biology Graduate Program, University of California-Riverside, Riverside, California 92521, United States
| | - Hui-wang Ai
- Department of Chemistry, University of California-Riverside, 501 Big Springs Road, Riverside, California 92521, United States
- Cell, Molecular, and Developmental Biology Graduate Program, University of California-Riverside, Riverside, California 92521, United States
| |
Collapse
|
245
|
Han C, Pao KC, Kazlauskaite A, Muqit MMK, Virdee S. A Versatile Strategy for the Semisynthetic Production of Ser65 Phosphorylated Ubiquitin and Its Biochemical and Structural Characterisation. Chembiochem 2015; 16:1574-9. [PMID: 26010437 PMCID: PMC4581463 DOI: 10.1002/cbic.201500185] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2015] [Accepted: 05/22/2015] [Indexed: 11/10/2022]
Abstract
Ubiquitin phosphorylation is emerging as an important regulatory layer in the ubiquitin system. This is exemplified by the phosphorylation of ubiquitin on Ser65 by the Parkinson's disease-associated kinase PINK1, which mediates the activation of the E3 ligase Parkin. Additional phosphorylation sites on ubiquitin might also have important cellular roles. Here we report a versatile strategy for preparing phosphorylated ubiquitin. We biochemically and structurally characterise semisynthetic phospho-Ser65-ubiquitin. Unexpectedly, we observed disulfide bond formation between ubiquitin molecules, and hence a novel crystal form. The method outlined provides a direct approach to study the combinatorial effects of phosphorylation on ubiquitin function. Our analysis also suggests that disulfide engineering of ubiquitin could be a useful strategy for obtaining alternative crystal forms of ubiquitin species thereby facilitating structural validation.
Collapse
Affiliation(s)
- Cong Han
- MRC Protein Phosphorylation and Ubiquitylation Unit, College of Life Sciences, University of Dundee, Dow Street, Dundee DD1 5EH (UK)
| | - Kuan-Chuan Pao
- MRC Protein Phosphorylation and Ubiquitylation Unit, College of Life Sciences, University of Dundee, Dow Street, Dundee DD1 5EH (UK)
| | - Agne Kazlauskaite
- MRC Protein Phosphorylation and Ubiquitylation Unit, College of Life Sciences, University of Dundee, Dow Street, Dundee DD1 5EH (UK)
| | - Miratul M K Muqit
- MRC Protein Phosphorylation and Ubiquitylation Unit, College of Life Sciences, University of Dundee, Dow Street, Dundee DD1 5EH (UK)
| | - Satpal Virdee
- MRC Protein Phosphorylation and Ubiquitylation Unit, College of Life Sciences, University of Dundee, Dow Street, Dundee DD1 5EH (UK).
| |
Collapse
|
246
|
Abstract
Reversible protein phosphorylation is critically important in biology and medicine. Hundreds of thousands of sites of protein phosphorylation have been discovered but our understanding of the functions of the vast majority of these post-translational modifications is lacking. This review describes several chemical and biochemical methods that are under development and in current use to install phospho-amino acids and their mimics site-specifically into proteins. The relative merits of total chemical synthesis, semisynthesis, and nonsense suppression strategies for studying protein phosphorylation are discussed in terms of technical simplicity, scope, and versatility.
Collapse
Affiliation(s)
- Zan Chen
- Department of Pharmacology and Molecular Sciences, Johns Hopkins School of Medicine, Baltimore, MD 21205, United States
| | - Philip A Cole
- Department of Pharmacology and Molecular Sciences, Johns Hopkins School of Medicine, Baltimore, MD 21205, United States.
| |
Collapse
|
247
|
Soye BJD, Patel JR, Isaacs FJ, Jewett MC. Repurposing the translation apparatus for synthetic biology. Curr Opin Chem Biol 2015; 28:83-90. [PMID: 26186264 DOI: 10.1016/j.cbpa.2015.06.008] [Citation(s) in RCA: 59] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2015] [Accepted: 06/08/2015] [Indexed: 10/23/2022]
Abstract
The translation system (the ribosome and associated factors) is the cell's factory for protein synthesis. The extraordinary catalytic capacity of the protein synthesis machinery has driven extensive efforts to harness it for novel functions. For example, pioneering efforts have demonstrated that it is possible to genetically encode more than the 20 natural amino acids and that this encoding can be a powerful tool to expand the chemical diversity of proteins. Here, we discuss recent advances in efforts to expand the chemistry of living systems, highlighting improvements to the molecular machinery and genomically recoded organisms, applications of cell-free systems, and extensions of these efforts to include eukaryotic systems. The transformative potential of repurposing the translation apparatus has emerged as one of the defining opportunities at the interface of chemical and synthetic biology.
Collapse
Affiliation(s)
- Benjamin J Des Soye
- Interdisciplinary Biological Sciences Program, Northwestern University, 2145 Sheridan Road, Evanston, IL 60208, USA.,Northwestern Institute on Complex Systems, Northwestern University, 2145 Sheridan Road, Evanston, IL 60208, USA.,Simpson Querrey Institute, Northwestern University, 303 East Superior Street, Suite 11-131, Chicago, IL 60611, USA.,Chemistry of Life Processes Institute, Northwestern University, 2145 Sheridan Road, Evanston, IL 60208, USA
| | - Jaymin R Patel
- Systems Biology Institute, Yale University, West Haven, CT 06516, USA.,Department of Molecular, Cellular and Developmental Biology, Yale University, New Haven, CT 06510, USA
| | - Farren J Isaacs
- Systems Biology Institute, Yale University, West Haven, CT 06516, USA.,Department of Molecular, Cellular and Developmental Biology, Yale University, New Haven, CT 06510, USA
| | - Michael C Jewett
- Interdisciplinary Biological Sciences Program, Northwestern University, 2145 Sheridan Road, Evanston, IL 60208, USA.,Northwestern Institute on Complex Systems, Northwestern University, 2145 Sheridan Road, Evanston, IL 60208, USA.,Simpson Querrey Institute, Northwestern University, 303 East Superior Street, Suite 11-131, Chicago, IL 60611, USA.,Chemistry of Life Processes Institute, Northwestern University, 2145 Sheridan Road, Evanston, IL 60208, USA.,Department of Chemical and Biological Engineering, Northwestern University, 2145 Sheridan Road, Evanston, IL 60208, USA
| |
Collapse
|
248
|
Abstract
Protein kinases transfer a phosphoryl group from ATP onto target proteins and play a critical role in signal transduction and other cellular processes. Here, we review the kinase kinetic and chemical mechanisms and their application in understanding kinase structure and function. Aberrant kinase activity has been implicated in many human diseases, in particular cancer. We highlight applications of technologies and concepts derived from kinase mechanistic studies that have helped illuminate how kinases are regulated and contribute to pathophysiology.
Collapse
Affiliation(s)
- Zhihong Wang
- Department of Chemistry and Biochemistry, University of the Sciences, Philadelphia, Pennsylvania, USA
| | - Philip A Cole
- Department of Pharmacology and Molecular Sciences, Johns Hopkins School of Medicine, Baltimore, Maryland, USA.
| |
Collapse
|
249
|
Rogerson DT, Sachdeva A, Wang K, Haq T, Kazlauskaite A, Hancock SM, Huguenin-Dezot N, Muqit MMK, Fry AM, Bayliss R, Chin JW. Efficient genetic encoding of phosphoserine and its nonhydrolyzable analog. Nat Chem Biol 2015; 11:496-503. [PMID: 26030730 PMCID: PMC4830402 DOI: 10.1038/nchembio.1823] [Citation(s) in RCA: 193] [Impact Index Per Article: 19.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2015] [Accepted: 04/15/2015] [Indexed: 11/09/2022]
Abstract
Serine phosphorylation is a key post-translational modification that regulates diverse biological processes. Powerful analytical methods have identified thousands of phosphorylation sites, but many of their functions remain to be deciphered. A key to understanding the function of protein phosphorylation is access to phosphorylated proteins, but this is often challenging or impossible. Here we evolve an orthogonal aminoacyl-tRNA synthetase/tRNACUA pair that directs the efficient incorporation of phosphoserine (pSer (1)) into recombinant proteins in Escherichia coli. Moreover, combining the orthogonal pair with a metabolically engineered E. coli enables the site-specific incorporation of a nonhydrolyzable analog of pSer. Our approach enables quantitative decoding of the amber stop codon as pSer, and we purify, with yields of several milligrams per liter of culture, proteins bearing biologically relevant phosphorylations that were previously challenging or impossible to access--including phosphorylated ubiquitin and the kinase Nek7, which is synthetically activated by a genetically encoded phosphorylation in its activation loop.
Collapse
Affiliation(s)
- Daniel T. Rogerson
- Medical Research Council Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge, CB2 0QH
| | - Amit Sachdeva
- Medical Research Council Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge, CB2 0QH
| | - Kaihang Wang
- Medical Research Council Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge, CB2 0QH
| | - Tamanna Haq
- Department of Biochemistry, Henry Wellcome Building, Lancaster Road, Leicester, LE1 9HN
| | - Agne Kazlauskaite
- Medical Research Council Protein Phosphorylation and Ubiquitylation Unit, University of Dundee, Dow Street Dundee DD1 5EH, UK
| | - Susan M. Hancock
- Medical Research Council Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge, CB2 0QH
| | - Nicolas Huguenin-Dezot
- Medical Research Council Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge, CB2 0QH
| | - Miratul M. K. Muqit
- Medical Research Council Protein Phosphorylation and Ubiquitylation Unit, University of Dundee, Dow Street Dundee DD1 5EH, UK
- College of Medicine, Dentistry and Nursing, University of Dundee
| | - Andrew M. Fry
- Department of Biochemistry, Henry Wellcome Building, Lancaster Road, Leicester, LE1 9HN
| | - Richard Bayliss
- Department of Biochemistry, Henry Wellcome Building, Lancaster Road, Leicester, LE1 9HN
| | - Jason W. Chin
- Medical Research Council Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge, CB2 0QH
| |
Collapse
|
250
|
Affiliation(s)
- Manuel M. Müller
- Department of Chemistry, Princeton University,
Frick Laboratory, Princeton, New Jersey 08544, United States
| | - Tom W. Muir
- Department of Chemistry, Princeton University,
Frick Laboratory, Princeton, New Jersey 08544, United States
| |
Collapse
|