201
|
Lin R, Gewert D, Hiscott J. Differential transcriptional activation in vitro by NF-kappa B/Rel proteins. J Biol Chem 1995; 270:3123-31. [PMID: 7852394 DOI: 10.1074/jbc.270.7.3123] [Citation(s) in RCA: 82] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
Distinct NF-kappa B subunit combinations contribute to the specificity of NF-kappa B-mediated transcriptional activation and to the induction of multiple cytokine genes including interferon-beta (IFN-beta). To evaluate the regulatory influence of different homo- and heterodimers, NF-kappa B subunits were analyzed for transcriptional activity in vitro using test templates containing two types of NF-kappa B recognition elements (the human immunodeficiency virus type 1 enhancer and the IFN-beta-positive regulatory domain-II (PRDII) as well as IFN-beta PRDIII-PRDI-PRDII linked to the -56 minimal promoter of rabbit beta-globin. Recombinant NF-kappa B subunits (p50, p65, c-Rel, p52, and I kappa B alpha) and interferon regulatory factor 1 were produced from either Escherichia coli or baculovirus expression systems. Transcriptional analysis in vitro demonstrated that 1) various dimeric complexes of NF-kappa B differentially stimulated transcription through the human immunodeficiency virus enhancer or PRDII up to 20-fold; 2) recombinant I kappa B alpha specifically inhibited NF-kappa B-dependent transcription in vitro; and 3) different NF-kappa B complexes and interferon regulatory factor 1 cooperated to stimulate transcription in vitro through the PRDIII-PRDI-PRDII virus-inducible regulatory domains of the IFN-beta promoter. These results demonstrate the role of NF-kappa B protein dimerization in differential transcriptional activation in vitro and emphasize the role of cooperativity between transcription factor families as an additional regulatory level to maintain transcriptional specificity.
Collapse
Affiliation(s)
- R Lin
- Terry Fox Molecular Oncology Group, Lady Davis Institute for Medical Research, Jewish General Hospital, Montreal, Quebec, Canada
| | | | | |
Collapse
|
202
|
Scheinman RI, Gualberto A, Jewell CM, Cidlowski JA, Baldwin AS. Characterization of mechanisms involved in transrepression of NF-kappa B by activated glucocorticoid receptors. Mol Cell Biol 1995; 15:943-53. [PMID: 7823959 PMCID: PMC231982 DOI: 10.1128/mcb.15.2.943] [Citation(s) in RCA: 601] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
Glucocorticoids are potent immunosuppressants which work in part by inhibiting cytokine gene transcription. We show here that NF-kappa B, an important regulator of numerous cytokine genes, is functionally inhibited by the synthetic glucocorticoid dexamethasone (DEX). In transfection experiments, DEX treatment in the presence of cotransfected glucocorticoid receptor (GR) inhibits NF-kappa B p65-mediated gene expression and p65 inhibits GR activation of a glucocorticoid response element. Evidence is presented for a direct interaction between GR and the NF-kappa B subunits p65 and p50. In addition, we demonstrate that the ability of p65, p50, and c-rel subunits to bind DNA is inhibited by DEX and GR. In HeLa cells, DEX activation of endogenous GR is sufficient to block tumor necrosis factor alpha or interleukin 1 activation of NF-kappa B at the levels of both DNA binding and transcriptional activation. DEX treatment of HeLa cells also results in a significant loss of nuclear p65 and a slight increase in cytoplasmic p65. These data reveal a second mechanism by which NF-kappa B activity may be regulated by DEX. We also report that RU486 treatment of wild-type GR and DEX treatment of a transactivation mutant of GR each can significantly inhibit p65 activity. In addition, we found that the zinc finger domain of GR is necessary for the inhibition of p65. This domain is also required for GR repression of AP-1. Surprisingly, while both AP-1 and NF-kappa B can be inhibited by activated GR, synergistic NF-kappa B/AP-1 activity is largely unaffected. These data suggest that NF-kappa B, AP-1, and GR interact in a complex regulatory network to modulate gene expression and that cross-coupling of NF-kappa B and GR plays an important role in glucocorticoid-mediated repression of cytokine transcription.
Collapse
Affiliation(s)
- R I Scheinman
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill 27599
| | | | | | | | | |
Collapse
|
203
|
Sha WC, Liou HC, Tuomanen EI, Baltimore D. Targeted disruption of the p50 subunit of NF-kappa B leads to multifocal defects in immune responses. Cell 1995; 80:321-30. [PMID: 7834752 DOI: 10.1016/0092-8674(95)90415-8] [Citation(s) in RCA: 913] [Impact Index Per Article: 30.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
NF-kappa B, a heterodimeric transcription factor composed of p50 and p65 subunits, can be activated in many cell types and is thought to regulate a wide variety of genes involved in immune function and development. Mice lacking the p50 subunit of NF-kappa B show no developmental abnormalities, but exhibit multifocal defects in immune responses involving B lymphocytes and nonspecific responses to infection. B cells do not proliferate in response to bacterial lipopolysaccharide and are defective in basal and specific antibody production. Mice lacking p50 are unable effectively to clear L. monocytogenes and are more susceptible to infection with S. pneumoniae, but are more resistant to infection with murine encephalomyocarditis virus. These data support the role of NF-kappa B as a vital transcription factor for both specific and nonspecific immune responses, but do not indicate a developmental role for the factor.
Collapse
Affiliation(s)
- W C Sha
- Department of Biology, Massachusetts Institute of Technology, Cambridge 02139
| | | | | | | |
Collapse
|
204
|
|
205
|
Williams DH, Woodrow M, Cantrell DA, Murray EJ. Protein kinase C is not a downstream effector of p21ras in activated T cells. Eur J Immunol 1995; 25:42-7. [PMID: 7843251 DOI: 10.1002/eji.1830250109] [Citation(s) in RCA: 23] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
The aim of this present study was to investigate the role of protein kinase C (PKC), downstream of p21ras, in activating interleukin-2 (IL-2) gene expression. It has been reported that PKC is an effector of p21ras in T cells. Data is presented, using the potent and selective PKC inhibitor Ro 31-8425 and transient expression of a constitutively active ras mutant, which clearly shows that PKC is not downstream of p21ras in the induction of NF-AT and AP-1 transcriptional activity and in the expression of IL-2 in human Jurkat T cells. Reporter gene experiments demonstrated that NF-kappa B transcriptional activity is not affected by expression of activated p21ras. The signaling pathways involving PKC activation, calcium mobilization and ras activation combine to provide the necessary components for production of IL-2 during T cell activation.
Collapse
Affiliation(s)
- D H Williams
- Roche Research Centre, Welwyn Garden City, Herts, GB
| | | | | | | |
Collapse
|
206
|
Thanos D, Maniatis T. Identification of the rel family members required for virus induction of the human beta interferon gene. Mol Cell Biol 1995; 15:152-64. [PMID: 7799921 PMCID: PMC231925 DOI: 10.1128/mcb.15.1.152] [Citation(s) in RCA: 118] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
We have carried out experiments to determine which members of the rel family of transcription factors are involved in virus induction of the beta interferon (IFN-beta) gene. First, we examined the inducibility of artificial DNA binding sites that preferentially interact with different homo- or heterodimeric combinations of rel proteins in vitro. We found that only those sites capable of binding the p50/p65 heterodimer are virus inducible. Second, we analyzed a series of mutant rel DNA-binding sites in the context of the intact IFN-beta promoter. We found a correlation between (i) sites capable of binding both the p50/p65 heterodimer and the high-mobility-group protein HMG I(Y) and (ii) virus inducibility. Third, cotransfection of the IFN-beta gene enhancer/promoter with plasmids capable of expressing several different rel proteins revealed that only the combination of p50 and p65 efficiently activated transcription. Finally, we have used antibodies directed against different rel proteins to show that virus-inducible protein-DNA complexes assembled on the IFN-beta enhancer in vitro contain both p50 and p65. We conclude that the p50/p65 heterodimer is responsible for the NF-kappa B-dependent activation of the IFN-beta gene promoter in response to virus infection.
Collapse
Affiliation(s)
- D Thanos
- Department of Molecular and Cellular Biology, Harvard University, Cambridge, Massachusetts 02138
| | | |
Collapse
|
207
|
Affiliation(s)
- E B Kopp
- Department of Cell Biology, Howard Hughes Medical Institute, Yale University, New Haven, Connecticut 06520, USA
| | | |
Collapse
|
208
|
Gold MR, Matsuuchi L. Signal transduction by the antigen receptors of B and T lymphocytes. INTERNATIONAL REVIEW OF CYTOLOGY 1995; 157:181-276. [PMID: 7706020 DOI: 10.1016/s0074-7696(08)62159-2] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
B and T lymphocytes of the immune system recognize and destroy invading microorganisms but are tolerant to the cells and tissues of one's own body. The basis for this self/non-self-discrimination is the clonal nature of the B and T cell antigen receptors. Each lymphocyte has antigen receptors with a single unique antigen specificity. Multiple mechanisms ensure that self-reactive lymphocytes are eliminated or silenced whereas lymphocytes directed against foreign antigens are activated only when the appropriate antigen is present. The key element in these processes is the ability of the antigen receptors to transmit signals to the interior of the lymphocyte when they bind the antigen for which they are specific. Whether these signals lead to activation, tolerance, or cell death is dependent on the maturation state of the lymphocytes as well as on signals from other receptors. We review the role of antigen receptor signaling in the development and activation of B and T lymphocytes and also describe the biochemical signaling mechanisms employed by these receptors. In addition, we discuss how signal transduction pathways activated by the antigen receptors may alter gene expression, regulate the cell cycle, and induce or prevent programmed cell death.
Collapse
Affiliation(s)
- M R Gold
- Department of Microbiology and Immunology, University of British Columbia, Vancouver, Canada
| | | |
Collapse
|
209
|
Wu RL, Chen TT, Sun TT. Functional importance of an Sp1- and an NFkB-related nuclear protein in a keratinocyte-specific promoter of rabbit K3 keratin gene. J Biol Chem 1994. [DOI: 10.1016/s0021-9258(18)46948-7] [Citation(s) in RCA: 47] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
|
210
|
A striking similarity in the organization of the E-selectin and beta interferon gene promoters. Mol Cell Biol 1994. [PMID: 7523851 DOI: 10.1128/mcb.14.10.6464] [Citation(s) in RCA: 122] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Transcription of the endothelial leukocyte adhesion molecule 1 (E-selectin or ELAM-1) gene is induced by the inflammatory cytokines interleukin-1 beta and tumor necrosis factor alpha (TNF-alpha). In this report, we identify four positive regulatory domains (PDI to PDIV) in the E-selectin promoter that are required for maximal levels of TNF-alpha induction in endothelial cells. In vitro DNA binding studies reveal that two of the domains contain novel adjacent binding sites for the transcription factor NF-kappa B (PDIII and PDIV), a third corresponds to a recently described CRE/ATF site (PDII), and a fourth is a consensus NF-kappa B site (PDI). Mutations that decrease the binding of NF-kappa B to any one of the NF-kappa B binding sites in vitro abolished cytokine-induced E-selectin gene expression in vivo. Previous studies demonstrated a similar correlation between ATF binding to PDII and E-selectin gene expression. Here we show that the high-mobility-group protein I(Y) [HMG I(Y)] also binds specifically to the E-selectin promoter and thereby enhances the binding of both ATF-2 and NF-kappa B to the E-selectin promoter in vitro. Moreover, mutations that interfere with HMG I(Y) binding decrease the level of cytokine-induced E-selectin expression. The organization of the TNF-alpha-inducible element of the E-selectin promoter is remarkably similar to that of the virus-inducible promoter of the human beta interferon gene in that both promoters require NF-kappa B, ATF-2, and HMG I(Y). We propose that HMG I(Y) functions as a key architectural component in the assembly of inducible transcription activation complexes on both promoters.
Collapse
|
211
|
Meng YG, Wong T. Transfection of murine myeloma cells to produce a chimeric antibody to the interleukin-2 receptor. Gene 1994; 148:337-42. [PMID: 7958965 DOI: 10.1016/0378-1119(94)90709-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
Murine myeloma X63Ag8.653 cells were transfected with heavy and light-chain expression vectors for a chimeric antibody (Ab) to the human interleukin-2 receptor. A cell line producing low quantities of the chimeric Ab was obtained and was transfected with either the cytomegalovirus (CMV) immediate-early gene ie1 or Epstein-Barr virus (EBV) BMLF1 DNA, together with the hygromycin B resistance (HyR) encoding gene for selection to improve productivity. Two cell lines with a four to eightfold increase in productivity were obtained. They showed higher levels of heavy- and light-chain mRNA expression. CMV ie1 or EBV BMLF1 DNA was not detected and no integration pattern changes for the heavy- and light-chain DNA were seen. The long-term productivity of one of the cell lines showed hygromycin B (Hy) requirement. Transfection with the HyR DNA alone also resulted in cells with increased productivity. The expression vectors contained the immunoglobulin light-chain enhancer kappa B DNA sequences (kappa B site). Nuclear extracts from parent myeloma cells showed one kappa B-binding protein band on a polyacrylamide gel, but nuclear extracts from transfected cells showed two additional slower-migrating bands. Increased Ab production correlated with an increased ratio of the medium-mobility kappa B-binding protein band to the high-mobility band. The possibility that Hy used for selection activated kappa B-binding proteins and increased Ab expression is discussed.
Collapse
Affiliation(s)
- Y G Meng
- Department of Cellular and Molecular Biology Research, Miles Inc., Berkeley, CA 94701
| | | |
Collapse
|
212
|
Whitley MZ, Thanos D, Read MA, Maniatis T, Collins T. A striking similarity in the organization of the E-selectin and beta interferon gene promoters. Mol Cell Biol 1994; 14:6464-75. [PMID: 7523851 PMCID: PMC359176 DOI: 10.1128/mcb.14.10.6464-6475.1994] [Citation(s) in RCA: 47] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
Transcription of the endothelial leukocyte adhesion molecule 1 (E-selectin or ELAM-1) gene is induced by the inflammatory cytokines interleukin-1 beta and tumor necrosis factor alpha (TNF-alpha). In this report, we identify four positive regulatory domains (PDI to PDIV) in the E-selectin promoter that are required for maximal levels of TNF-alpha induction in endothelial cells. In vitro DNA binding studies reveal that two of the domains contain novel adjacent binding sites for the transcription factor NF-kappa B (PDIII and PDIV), a third corresponds to a recently described CRE/ATF site (PDII), and a fourth is a consensus NF-kappa B site (PDI). Mutations that decrease the binding of NF-kappa B to any one of the NF-kappa B binding sites in vitro abolished cytokine-induced E-selectin gene expression in vivo. Previous studies demonstrated a similar correlation between ATF binding to PDII and E-selectin gene expression. Here we show that the high-mobility-group protein I(Y) [HMG I(Y)] also binds specifically to the E-selectin promoter and thereby enhances the binding of both ATF-2 and NF-kappa B to the E-selectin promoter in vitro. Moreover, mutations that interfere with HMG I(Y) binding decrease the level of cytokine-induced E-selectin expression. The organization of the TNF-alpha-inducible element of the E-selectin promoter is remarkably similar to that of the virus-inducible promoter of the human beta interferon gene in that both promoters require NF-kappa B, ATF-2, and HMG I(Y). We propose that HMG I(Y) functions as a key architectural component in the assembly of inducible transcription activation complexes on both promoters.
Collapse
Affiliation(s)
- M Z Whitley
- Department of Pathology, Brigham and Women's Hospital, Boston, Massachusetts 02115
| | | | | | | | | |
Collapse
|
213
|
Oakes JW, Bagasra O, Duan L, Pomerantz RJ. Association of alterations in NF-kappa B moieties with HIV type 1 proviral latency in certain monocytic cells. AIDS Res Hum Retroviruses 1994; 10:1213-9. [PMID: 7848679 DOI: 10.1089/aid.1994.10.1213] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
Human immunodeficiency virus type 1 (HIV-1) replication is controlled by a complex array of virally encoded and cellular proteins. A wide spectrum of levels of HIV-1 expression have been demonstrated in various cells, both in cell culture and in vivo. Molecular mechanisms leading to restricted HIV-1 replication may differ between certain cell types. It is now demonstrated that HIV-1 proviral latency in the monocytic cell line U1, in which only extremely low levels of HIV-1 expression are detected in the baseline unstimulated state, is associated with alterations in nuclear factor-kappa B (NF-kappa B) moieties demonstrated in these cells by electrophoretic mobility shift assays (EMSAs) and in situ UV cross-linking studies. A predominance of p50 NF-kappa B moieties and possibly p50 homodimers or closely related species, rather than the p50-p56 heterodimer of NF-kappa B that is the predominant NF-kappa B species in most T lymphocytic and monocytic cells, is demonstrated in the nuclei of U1 cells. This pattern of NF-kappa B-related moieties differs from the latently infected T lymphocytic cell line ACH-2, and from the U937 monocytic line, the parental cell line of the U1 cellular clone. As such, these data suggest that different proximal mechanisms may lead to restricted HIV-1 replication in various cell types.
Collapse
Affiliation(s)
- J W Oakes
- Department of Medicine, Dorrance H. Hamilton Laboratories, Jefferson Medical College, Thomas Jefferson University, Philadelphia, Pennsylvania 19104
| | | | | | | |
Collapse
|
214
|
Sequential induction of NF-kappa B/Rel family proteins during B-cell terminal differentiation. Mol Cell Biol 1994. [PMID: 8035813 DOI: 10.1128/mcb.14.8.5349] [Citation(s) in RCA: 169] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The NF-kappa B/Rel family of at least five transcription factor polypeptides is thought to function both as a developmental regulator in B cells and as a rapid response system in all cells. To examine this notion in more detail, we determined the protein contents of both the inducible and constitutive NF-kappa B/Rel activities in a pre-B-cell line, 70Z/3, and a mature B-cell line, WEHI 231. NF-kappa B p50/p65 is the major inducible nuclear complex after lipopolysaccharide or phorbol myristate acetate treatment of 70Z/3 cells. The constitutive and inducible complexes in WEHI 231 cells are mainly composed of p50 and Rel. The constitutive or induced activities are all sensitive to I kappa B-alpha, but this inhibitor is very short-lived in WEHI 231 cells, suggesting that the balance between synthesis and degradation of I kappa B-alpha determines whether a particular cell lineage has constitutive activity. A patterned expression of the NF-kappa B/Rel activator proteins emerges from an analysis of other B-lineage cell lines and splenic B cells: mainly p50 and p65 in pre-B (and non-B) cells, a predominance of Rel and p50 in mature B cells, and expression of p52 and RelB in plasmacytoma lines. This ordered pattern of regulators may reflect the requirement for expression of different genes during terminal B-cell differentiation because different combinations of NF-kappa B/Rel family members preferentially activate distinct kappa B sites in reporter constructs.
Collapse
|
215
|
Liou HC, Sha WC, Scott ML, Baltimore D. Sequential induction of NF-kappa B/Rel family proteins during B-cell terminal differentiation. Mol Cell Biol 1994; 14:5349-59. [PMID: 8035813 PMCID: PMC359054 DOI: 10.1128/mcb.14.8.5349-5359.1994] [Citation(s) in RCA: 94] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
The NF-kappa B/Rel family of at least five transcription factor polypeptides is thought to function both as a developmental regulator in B cells and as a rapid response system in all cells. To examine this notion in more detail, we determined the protein contents of both the inducible and constitutive NF-kappa B/Rel activities in a pre-B-cell line, 70Z/3, and a mature B-cell line, WEHI 231. NF-kappa B p50/p65 is the major inducible nuclear complex after lipopolysaccharide or phorbol myristate acetate treatment of 70Z/3 cells. The constitutive and inducible complexes in WEHI 231 cells are mainly composed of p50 and Rel. The constitutive or induced activities are all sensitive to I kappa B-alpha, but this inhibitor is very short-lived in WEHI 231 cells, suggesting that the balance between synthesis and degradation of I kappa B-alpha determines whether a particular cell lineage has constitutive activity. A patterned expression of the NF-kappa B/Rel activator proteins emerges from an analysis of other B-lineage cell lines and splenic B cells: mainly p50 and p65 in pre-B (and non-B) cells, a predominance of Rel and p50 in mature B cells, and expression of p52 and RelB in plasmacytoma lines. This ordered pattern of regulators may reflect the requirement for expression of different genes during terminal B-cell differentiation because different combinations of NF-kappa B/Rel family members preferentially activate distinct kappa B sites in reporter constructs.
Collapse
Affiliation(s)
- H C Liou
- Rockfeller University, New York, New York 10021
| | | | | | | |
Collapse
|
216
|
Bakalkin G, Yakovleva T, Terenius L. Prodynorphin gene expression relates to NF-kappa B factors. BRAIN RESEARCH. MOLECULAR BRAIN RESEARCH 1994; 24:301-12. [PMID: 7968369 DOI: 10.1016/0169-328x(94)90143-0] [Citation(s) in RCA: 25] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
The prodynorphin gene contains several kappa B motifs, suggesting that kappa B-specific DNA-binding factors may regulate its expression. Prodynorphin is known to be expressed in human tumor cell lines [Geiger et al., Regul. Peptides, 34 (1991) 181-188] and we report here that several DNA-binding factors of the NF-kappa B/c-Rel-family are present in the same cells. Three main kappa B-specific factors, presumably a p50 homodimer, NF-kappa B which is a p50/p65 heterodimer and a p65/c-Rel heterodimer were identified using an electromobility shift assay (EMSA), immunoabsorption and UV cross-linking experiments. Minor factors consisting of a novel kappa B-specific protein of about 125 kDa (p125) or being hetero-oligomeric, composed of p125 and either of three other subunits, namely p50, p65 and c-Rel, were also identified. The homo-oligomer of p125 may be identical to the kappa B-specific factor BETA, previously found only in brain [Korner et al., Neuron, 3 (1989) 563-572]. Comparison of prodynorphin mRNA levels with levels of the kappa B-specific DNA-binding factors revealed a negative correlation with the level of p50 homodimer, and a positive correlation with the ratio of the levels of p65/c-Rel to NF-kappa B. No association was found with proenkephalin mRNA levels which were significant in only one cell line. The p50 homodimer, but not p65/c-Rel and NF-kappa B, bound specifically to a DNA-motif within the dynorphin A-encoding gene sequence. This sequence is located in exon 4 and similar to the consensus kappa B-sequence. The dynorphin A-encoding sequence may represent an intragenic target for the p50 homodimer, which when bound to the sequence suppresses transcription.
Collapse
Affiliation(s)
- G Bakalkin
- Department of Drug Dependence Research, Karolinska Institute, Stockholm, Sweden
| | | | | |
Collapse
|
217
|
Ohmori Y, Tebo J, Nedospasov S, Hamilton T. Kappa B binding activity in a murine macrophage-like cell line. Sequence-specific differences in kappa B binding and transcriptional activation functions. J Biol Chem 1994. [DOI: 10.1016/s0021-9258(17)32495-x] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
|
218
|
BCL3 encodes a nuclear protein which can alter the subcellular location of NF-kappa B proteins. Mol Cell Biol 1994. [PMID: 8196632 DOI: 10.1128/mcb.14.6.3915] [Citation(s) in RCA: 62] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
BCL3 is a candidate proto-oncogene involved in the recurring translocation t(14;19) found in some patients with chronic lymphocytic leukemia. BCL3 protein acts as an I kappa B in that it can specifically inhibit the DNA binding of NF-kappa B factors. Here, we demonstrate that BCL3 is predominantly a nuclear protein and provide evidence that its N terminus is necessary to direct the protein into the nucleus. In contrast to I kappa B alpha (MAD3), BCL3 does not cause NF-kappa B p50 to be retained in the cytoplasm; instead, in cotransfection assays, it alters the subnuclear localization of p50. The two proteins colocalize, suggesting that they interact in vivo. Further immunofluorescence experiments showed that a mutant p50, lacking a nuclear localization signal and restricted to the cytoplasm, is brought into the nucleus in the presence of BCL3. Correspondingly, a wild-type p50 directs into the nucleus a truncated BCL3, which, when transfected alone, is found in the cytoplasm. We tested whether BCL3 could overcome the cytoplasmic retention of p50 by I kappa B alpha. Results from triple cotransfection experiments with BCL3, I kappa B alpha, and p50 implied that BCL3 can successfully compete with I kappa B alpha and bring p50 into the nucleus; thus, localization of NF-kappa B factors may be affected by differential expression of I kappa B proteins. These novel properties of BCL3 protein further establish BCL3 as a distinctive member of the I kappa B family.
Collapse
|
219
|
McCaffrey PG, Kim PK, Valge-Archer VE, Sen R, Rao A. Cyclosporin A sensitivity of the NF-kappa B site of the IL2R alpha promoter in untransformed murine T cells. Nucleic Acids Res 1994; 22:2134-42. [PMID: 8029023 PMCID: PMC308132 DOI: 10.1093/nar/22.11.2134] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
We have investigated the characteristics of IL2R alpha gene induction in untransformed murine T cells. Induction of IL2R alpha mRNA by TCR/CD3 ligands in a murine T cell clone and in short-term splenic T cell cultures was inhibited by protein synthesis inhibitors and by CsA. This result was contrary to previous observations in JURKAT T leukemia cells and human peripheral blood T cells, suggesting a difference in the mechanisms of IL2R alpha gene induction in these different cell types. The CsA sensitivity of IL2R alpha mRNA induction represented a direct effect on the TCR/CD3 response, and was not due to CsA-sensitive release of the lymphokines IL2 or tumour necrosis factor alpha (TNF alpha) and consequent lymphokine-mediated induction of IL2R alpha mRNA. The NF-kappa B site of the IL2R alpha promoter was essential for gene induction through the TCR/CD3 complex, and the induction of reporter plasmids containing multimers of this site was significantly inhibited by CsA. Northern blotting analysis indicated that while the p65 subunit of NF-kappa B was constitutively expressed and not appreciably induced upon T cell activation, mRNA for the p105 precursor of p50 NF-kappa B was induced in response to TCR/CD3 stimulation and this induction was sensitive to CsA. Electrophoretic mobility shift assays and antiserum against the p50 subunit of NF-kappa B indicated that p50 was a component of the inducible nuclear complex that bound to the IL2R alpha kappa B site. Appearance of the kB-binding proteins was insensitive to CsA at early times after activation (approximately 15 min), but was partially sensitive to CsA at later times. Based on these results, we propose that the NF-kappa B site of the IL2R alpha promoter mediates at least part of the CsA sensitivity of IL2R alpha gene induction in untransformed T cells, possibly because de novo synthesis of p105 NF-kappa B is required for sustained IL2R alpha expression.
Collapse
Affiliation(s)
- P G McCaffrey
- Division of Tumor Virology, Dana-Farber Cancer Institute, Boston, MA 02115
| | | | | | | | | |
Collapse
|
220
|
Zhang Q, Didonato JA, Karin M, McKeithan TW. BCL3 encodes a nuclear protein which can alter the subcellular location of NF-kappa B proteins. Mol Cell Biol 1994; 14:3915-26. [PMID: 8196632 PMCID: PMC358758 DOI: 10.1128/mcb.14.6.3915-3926.1994] [Citation(s) in RCA: 42] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Abstract
BCL3 is a candidate proto-oncogene involved in the recurring translocation t(14;19) found in some patients with chronic lymphocytic leukemia. BCL3 protein acts as an I kappa B in that it can specifically inhibit the DNA binding of NF-kappa B factors. Here, we demonstrate that BCL3 is predominantly a nuclear protein and provide evidence that its N terminus is necessary to direct the protein into the nucleus. In contrast to I kappa B alpha (MAD3), BCL3 does not cause NF-kappa B p50 to be retained in the cytoplasm; instead, in cotransfection assays, it alters the subnuclear localization of p50. The two proteins colocalize, suggesting that they interact in vivo. Further immunofluorescence experiments showed that a mutant p50, lacking a nuclear localization signal and restricted to the cytoplasm, is brought into the nucleus in the presence of BCL3. Correspondingly, a wild-type p50 directs into the nucleus a truncated BCL3, which, when transfected alone, is found in the cytoplasm. We tested whether BCL3 could overcome the cytoplasmic retention of p50 by I kappa B alpha. Results from triple cotransfection experiments with BCL3, I kappa B alpha, and p50 implied that BCL3 can successfully compete with I kappa B alpha and bring p50 into the nucleus; thus, localization of NF-kappa B factors may be affected by differential expression of I kappa B proteins. These novel properties of BCL3 protein further establish BCL3 as a distinctive member of the I kappa B family.
Collapse
Affiliation(s)
- Q Zhang
- Department of Pathology, University of Chicago, Illinois 60637
| | | | | | | |
Collapse
|
221
|
Ziegler-Heitbrock H, Wedel A, Schraut W, Ströbel M, Wendelgass P, Sternsdorf T, Bäuerle P, Haas J, Riethmüller G. Tolerance to lipopolysaccharide involves mobilization of nuclear factor kappa B with predominance of p50 homodimers. J Biol Chem 1994. [DOI: 10.1016/s0021-9258(17)32510-3] [Citation(s) in RCA: 210] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023] Open
|
222
|
Function of NF-kappa B/Rel binding sites in the major histocompatibility complex class II invariant chain promoter is dependent on cell-specific binding of different NF-kappa B/Rel subunits. Mol Cell Biol 1994. [PMID: 8164652 DOI: 10.1128/mcb.14.5.2926] [Citation(s) in RCA: 44] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The promoter of the human major histocompatibility complex class II-associated invariant-chain gene (Ii) contains two NF-kappa B/Rel binding sites located at -109 to -118 (Ii kappa B-1) and -163 to -172 (Ii kappa B-2) from the transcription start site. We report here that the differential function of each of these NF-kappa B/Rel sites in several distinct cell types depends on cell-specific binding of NF-kappa B/Rel transcription factors. Ii kappa B-1 is a positive regulatory element in B-cell lines and in the Ii-expressing T-cell line, H9, but acts as a negative regulatory element in myelomonocytic and glia cell lines. In vivo protein-DNA contacts are detectable at Ii kappa B-1 in cell lines in which this site is functional as either a positive or negative regulator. Electrophoretic mobility supershift assays determine that members of the NF-kappa B/Rel family of transcription factors can bind to this site in vitro and that DNA-binding complexes that contain p50, p52, p65, and cRel correlate with positive regulation whereas the presence of p50 correlates with negative regulation. Ii kappa B-2 is a site of positive regulation in B-cell lines and a site of negative regulation in H9 T cells, myelomonocytic, and glial cell lines. In vivo occupancy of this site is observed only in the H9 T-cell line. Again, in vitro supershift studies indicate that the presence of p50, p52, p65, and cRel correlates with positive function whereas the presence of only p50 and p52 correlates with negative function. This differential binding of specific NF-kappa B/Rel subunits is likely to mediate the disparate functions of these two NF-kappa B/Rel binding sites.
Collapse
|
223
|
Brown AM, Linhoff MW, Stein B, Wright KL, Baldwin AS, Basta PV, Ting JP. Function of NF-kappa B/Rel binding sites in the major histocompatibility complex class II invariant chain promoter is dependent on cell-specific binding of different NF-kappa B/Rel subunits. Mol Cell Biol 1994; 14:2926-35. [PMID: 8164652 PMCID: PMC358660 DOI: 10.1128/mcb.14.5.2926-2935.1994] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Abstract
The promoter of the human major histocompatibility complex class II-associated invariant-chain gene (Ii) contains two NF-kappa B/Rel binding sites located at -109 to -118 (Ii kappa B-1) and -163 to -172 (Ii kappa B-2) from the transcription start site. We report here that the differential function of each of these NF-kappa B/Rel sites in several distinct cell types depends on cell-specific binding of NF-kappa B/Rel transcription factors. Ii kappa B-1 is a positive regulatory element in B-cell lines and in the Ii-expressing T-cell line, H9, but acts as a negative regulatory element in myelomonocytic and glia cell lines. In vivo protein-DNA contacts are detectable at Ii kappa B-1 in cell lines in which this site is functional as either a positive or negative regulator. Electrophoretic mobility supershift assays determine that members of the NF-kappa B/Rel family of transcription factors can bind to this site in vitro and that DNA-binding complexes that contain p50, p52, p65, and cRel correlate with positive regulation whereas the presence of p50 correlates with negative regulation. Ii kappa B-2 is a site of positive regulation in B-cell lines and a site of negative regulation in H9 T cells, myelomonocytic, and glial cell lines. In vivo occupancy of this site is observed only in the H9 T-cell line. Again, in vitro supershift studies indicate that the presence of p50, p52, p65, and cRel correlates with positive function whereas the presence of only p50 and p52 correlates with negative function. This differential binding of specific NF-kappa B/Rel subunits is likely to mediate the disparate functions of these two NF-kappa B/Rel binding sites.
Collapse
Affiliation(s)
- A M Brown
- Department of Microbiology and Immunology, University of North Carolina at Chapel Hill 27599-7295
| | | | | | | | | | | | | |
Collapse
|
224
|
Zhang L, Nabel GJ. Positive and negative regulation of IL-2 gene expression: role of multiple regulatory sites. Cytokine 1994; 6:221-8. [PMID: 8054477 DOI: 10.1016/1043-4666(94)90016-7] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
Interleukin 2 (IL-2) is an important lymphokine required in the process of T cell activation, proliferation, clonal expansion and differentiation. The IL-2 gene displays both T cell specific and inducible expression: it is only expressed in CD4+ T cells after antigenic or mitogenic stimulation. Several cis-acting regulatory sites are required for induction of the IL-2 gene after stimulation. In this study, we have analysed the function of these cis-acting regulatory sites in the context of the native IL-2 enhancer and promoter sequence. The results of this study suggest that the NFAT (-276 to -261), the distal octamer (-256 to -248) and the proximal octamer (-75 to -66) sites not only act as enhancers of IL-2 gene transcription in the presence of cellular stimulation, but also have a silencing effect on IL-2 gene expression in resting cells. Two other sites display disparate effects on IL-2 gene expression in different T leukemia cell lines: the distal purine box (-291 to -277) and the proximal purine box sites (-145 to -128). Finally, the AP-1 (-186 to -176) and the kappa B sites (-206 to -195) respond to different cellular activation in EL4 cells. The AP-1 site mediated the response to PMA stimulation while the kappa B site responded to IL-1 stimulation. These data suggest that the regulation of IL-2 gene expression is a complex process and multiple cis-acting regulatory sites interact to exert different effects in T cells representative of alternative stages of differentiation.
Collapse
Affiliation(s)
- L Zhang
- Howard Hughes Medical Institute, University of Michigan Medical Center, Department of Internal Medicine, Ann Arbor 48109-0650
| | | |
Collapse
|
225
|
Lenardo M, Siebenlist U. Bcl-3-mediated nuclear regulation of the NF-kappa B trans-activating factor. IMMUNOLOGY TODAY 1994; 15:145-7. [PMID: 8198705 DOI: 10.1016/0167-5699(94)90308-5] [Citation(s) in RCA: 45] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
The NF-kappa B factor governs the expression of many genes encoding immunoregulatory molecules. This activity is itself controlled. In this article, novel nuclear pathways for NF-kappa B regulation are described.
Collapse
Affiliation(s)
- M Lenardo
- Laboratory of Immunology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892
| | | |
Collapse
|
226
|
Kralova J, Schatzle JD, Bargmann W, Bose HR. Transformation of avian fibroblasts overexpressing the c-rel proto-oncogene and a variant of c-rel lacking 40 C-terminal amino acids. J Virol 1994; 68:2073-83. [PMID: 8138992 PMCID: PMC236681 DOI: 10.1128/jvi.68.4.2073-2083.1994] [Citation(s) in RCA: 25] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Abstract
The v-rel oncogene was derived from the c-rel proto-oncogene, which encodes a transcriptional activator. Expression of v-rel transforms avian hematopoietic cells and fibroblasts. Here we report that overexpression (via a replication-competent retroviral vector) of full-length c-Rel as well as a 40-amino-acid, carboxy-terminal deletion construct of c-Rel (c-Rel delta) resulted in the morphological transformation of chicken embryo fibroblasts (CEFs). Subcellular localization of Rel polypeptides in these transformed cells as determined by immunofluorescence and immunoprecipitation revealed their presence in both the nucleus and the cytoplasm, with the majority of Rel polypeptides showing cytoplasmic localization. Cytoplasmic localization could be due to interaction with I kappa B molecules, and in fact, the overexpression of c-Rel or the C-terminal deletion construct of c-Rel resulted in an increase in the levels of mRNA encoding the avian I kappa B protein pp40 and the avian homolog of the NF-kappa B protein, p105. However, expression of v-Rel resulted in the induction of pp40 mRNA only. While c-Rel was a weak activator of kappa B-mediated transcription of a reporter construct in transformed CEFs, v-Rel and c-Rel delta were transcriptional repressors. However, in spite of these differences, all of these proteins resulted in the transformation of CEFs.
Collapse
Affiliation(s)
- J Kralova
- Department of Microbiology, University of Texas at Austin 78712-1095
| | | | | | | |
Collapse
|
227
|
Interleukin-2 transcription is regulated in vivo at the level of coordinated binding of both constitutive and regulated factors. Mol Cell Biol 1994. [PMID: 8114746 DOI: 10.1128/mcb.14.3.2159] [Citation(s) in RCA: 80] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
Abstract
Interleukin-2 (IL-2) transcription is developmentally restricted to T cells and physiologically dependent on specific stimuli such as antigen recognition. Prior studies have shown that this stringent two-tiered regulation is mediated through a transcriptional promoter/enhancer DNA segment which is composed of diverse recognition elements. Factors binding to some of these elements are present constitutively in many cell types, while others are signal dependent, T cell specific, or both. This raises several questions about the molecular mechanism by which IL-2 expression is regulated. Is the developmental commitment of T cells reflected molecularly by stable interaction between available factors and the IL-2 enhancer prior to signal-dependent induction? At which level, factor binding to DNA or factor activity once bound, are individual regulatory elements within the native enhancer regulated? By what mechanism is developmental and physiological specificity enforced, given the participation of many relatively nonspecific elements? To answer these questions, we have used in vivo footprinting to determine and compare patterns of protein-DNA interactions at the native IL-2 locus in cell environments, including EL4 T-lymphoma cells and 32D clone 5 premast cells, which express differing subsets of IL-2 DNA-binding factors. We also used the immunosuppressant cyclosporin A as a pharmacological agent to further dissect the roles played by cyclosporin A-sensitive factors in the assembly and maintenance of protein-DNA complexes. Occupancy of all site types was observed exclusively in T cells and then only upon excitation of signal transduction pathways. This was true even though partially overlapping subsets of IL-2-binding activities were shown to be present in 32D clone 5 premast cells. This observation was especially striking in 32D cells because, upon signal stimulation, they mobilized a substantial set of IL-2 DNA-binding activities, as measured by in vitro assays using nuclear extracts. We conclude that binding activities of all classes fail to stably occupy their cognate sites in IL-2, except following activation of T cells, and that specificity of IL-2 transcription is enforced at the level of chromosomal occupancy, which appears to be an all-or-nothing phenomenon.
Collapse
|
228
|
Garrity PA, Chen D, Rothenberg EV, Wold BJ. Interleukin-2 transcription is regulated in vivo at the level of coordinated binding of both constitutive and regulated factors. Mol Cell Biol 1994; 14:2159-69. [PMID: 8114746 PMCID: PMC358576 DOI: 10.1128/mcb.14.3.2159-2169.1994] [Citation(s) in RCA: 43] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
Interleukin-2 (IL-2) transcription is developmentally restricted to T cells and physiologically dependent on specific stimuli such as antigen recognition. Prior studies have shown that this stringent two-tiered regulation is mediated through a transcriptional promoter/enhancer DNA segment which is composed of diverse recognition elements. Factors binding to some of these elements are present constitutively in many cell types, while others are signal dependent, T cell specific, or both. This raises several questions about the molecular mechanism by which IL-2 expression is regulated. Is the developmental commitment of T cells reflected molecularly by stable interaction between available factors and the IL-2 enhancer prior to signal-dependent induction? At which level, factor binding to DNA or factor activity once bound, are individual regulatory elements within the native enhancer regulated? By what mechanism is developmental and physiological specificity enforced, given the participation of many relatively nonspecific elements? To answer these questions, we have used in vivo footprinting to determine and compare patterns of protein-DNA interactions at the native IL-2 locus in cell environments, including EL4 T-lymphoma cells and 32D clone 5 premast cells, which express differing subsets of IL-2 DNA-binding factors. We also used the immunosuppressant cyclosporin A as a pharmacological agent to further dissect the roles played by cyclosporin A-sensitive factors in the assembly and maintenance of protein-DNA complexes. Occupancy of all site types was observed exclusively in T cells and then only upon excitation of signal transduction pathways. This was true even though partially overlapping subsets of IL-2-binding activities were shown to be present in 32D clone 5 premast cells. This observation was especially striking in 32D cells because, upon signal stimulation, they mobilized a substantial set of IL-2 DNA-binding activities, as measured by in vitro assays using nuclear extracts. We conclude that binding activities of all classes fail to stably occupy their cognate sites in IL-2, except following activation of T cells, and that specificity of IL-2 transcription is enforced at the level of chromosomal occupancy, which appears to be an all-or-nothing phenomenon.
Collapse
Affiliation(s)
- P A Garrity
- Division of Biology, California Institute of Technology, Pasadena 91125
| | | | | | | |
Collapse
|
229
|
Critchfield JM, Racke MK, Zúñiga-Pflücker JC, Cannella B, Raine CS, Goverman J, Lenardo MJ. T cell deletion in high antigen dose therapy of autoimmune encephalomyelitis. Science 1994; 263:1139-43. [PMID: 7509084 DOI: 10.1126/science.7509084] [Citation(s) in RCA: 429] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Encounters with antigen can stimulate T cells to become activated and proliferate, become nonresponsive to antigen, or to die. T cell death was shown to be a physiological response to interleukin-2-stimulated cell cycling and T cell receptor reengagement at high antigen doses. This feedback regulatory mechanism attenuates the immune response by deleting a portion of newly dividing, antigen-reactive T cells. This mechanism deleted autoreactive T cells and abrogated the clinical and pathological signs of autoimmune encephalomyelitis in mice after repetitive administration of myelin basic protein.
Collapse
Affiliation(s)
- J M Critchfield
- Laboratory of Immunology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892
| | | | | | | | | | | | | |
Collapse
|
230
|
A novel NF-kappa B complex containing p65 homodimers: implications for transcriptional control at the level of subunit dimerization. Mol Cell Biol 1994. [PMID: 8246997 DOI: 10.1128/mcb.13.12.7826] [Citation(s) in RCA: 60] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The predominant inducible form of the NF-kappa B transcription factor is a heteromeric complex containing two Rel-related DNA-binding subunits, termed p65 and p50. Prior transfection studies have shown that when these p65 and p50 subunits are expressed independently as stable homodimers, p65 stimulates kappa B-directed transcription, whereas p50 functions as a kappa B-specific repressor. While authentic p50 homodimers (previously termed KBF1) have been detected in nuclear extracts from nontransfected cells, experimental evidence supporting the existence of p65 homodimers in vivo was lacking. We now provide direct biochemical evidence for the presence of an endogenous pool of inducible p65 homodimers in intact human T cells. As with the prototypical NF-kappa B p50-p65 heterodimer, this novel p65 homodimeric form of NF-kappa B is functionally sequestered in the cytoplasm but rapidly appears in the nuclear compartment following cellular stimulation. Site-directed mutagenesis studies indicate that the homodimerization function of p65 is dependent upon the presence of cysteine 216 and a conserved recognition motif for protein kinase A (RRPS; amino acids 273 to 276), both of which reside within a 91-amino-acid segment of the Rel homology domain that mediates self-association. In contrast, mutations at these two sites do not affect heterodimerization of p65 with p50 or its functional interaction with I kappa B alpha. These later findings indicate that neither homo- nor heterodimer formation is an absolute prerequisite for I kappa B alpha recognition of p65. Taken together with prior in vivo transcription studies, these results suggest that the biological activities of p65 and p50 homodimers are independently regulated, thereby providing an integrated and flexible control mechanism for the rapid activation and repression of NF-kappa B/Rel-directed gene expression.
Collapse
|
231
|
Soong L, Tarleton RL. Trypanosoma cruzi infection suppresses nuclear factors that bind to specific sites on the interleukin-2 enhancer. Eur J Immunol 1994; 24:16-23. [PMID: 8020551 DOI: 10.1002/eji.1830240104] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
Interleukin-2 (IL-2) gene expression, a critical early event during T lymphocyte activation, is severely suppressed in mice infected with the protozoan parasite Trypanosoma cruzi, the causative agent of human Chagas' disease. Our previous observation that reduction of IL-2 mRNA in T cells from T. cruzi-infected mice is not due to an increased degradation of the mRNA suggests a repression of the IL-2 gene at the transcriptional level. In this study, we have measured the level of nuclear factors that bind to specific sites on the IL-2 enhancer. Splenocytes and splenic T cells from acutely infected mice show a marked decrease in the level of AP-1, and a modest decrease in the level of NF-kappa B and nuclear factor of activated T cells (NF-AT). DNA-binding activity of Oct-1 was least affected in T cells from infected mice. Although the basal level of AP-1 activity is comparable in cells from uninfected and infected mice, mitogen-induced AP-1 activation is absent in the cells from T. cruzi-infected mice. Sodium deoxycholate treatment slightly enhances NF-kappa B-binding activity in splenocyte nuclear and whole-cell extracts from infected mice, suggesting that a blockage of the activation of NF-kappa B is only partially responsible for the decrease in the level of NF-kappa B in T cells from T. cruzi-infected mice. These data identify the molecular basis of IL-2 gene regulation in T. cruzi infection and suggest that T cells are anergized as a result of the infection.
Collapse
Affiliation(s)
- L Soong
- Department of Zoology, University of Georgia, Athens 30602
| | | |
Collapse
|
232
|
Ganchi PA, Sun SC, Greene WC, Ballard DW. A novel NF-kappa B complex containing p65 homodimers: implications for transcriptional control at the level of subunit dimerization. Mol Cell Biol 1993; 13:7826-35. [PMID: 8246997 PMCID: PMC364854 DOI: 10.1128/mcb.13.12.7826-7835.1993] [Citation(s) in RCA: 42] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Abstract
The predominant inducible form of the NF-kappa B transcription factor is a heteromeric complex containing two Rel-related DNA-binding subunits, termed p65 and p50. Prior transfection studies have shown that when these p65 and p50 subunits are expressed independently as stable homodimers, p65 stimulates kappa B-directed transcription, whereas p50 functions as a kappa B-specific repressor. While authentic p50 homodimers (previously termed KBF1) have been detected in nuclear extracts from nontransfected cells, experimental evidence supporting the existence of p65 homodimers in vivo was lacking. We now provide direct biochemical evidence for the presence of an endogenous pool of inducible p65 homodimers in intact human T cells. As with the prototypical NF-kappa B p50-p65 heterodimer, this novel p65 homodimeric form of NF-kappa B is functionally sequestered in the cytoplasm but rapidly appears in the nuclear compartment following cellular stimulation. Site-directed mutagenesis studies indicate that the homodimerization function of p65 is dependent upon the presence of cysteine 216 and a conserved recognition motif for protein kinase A (RRPS; amino acids 273 to 276), both of which reside within a 91-amino-acid segment of the Rel homology domain that mediates self-association. In contrast, mutations at these two sites do not affect heterodimerization of p65 with p50 or its functional interaction with I kappa B alpha. These later findings indicate that neither homo- nor heterodimer formation is an absolute prerequisite for I kappa B alpha recognition of p65. Taken together with prior in vivo transcription studies, these results suggest that the biological activities of p65 and p50 homodimers are independently regulated, thereby providing an integrated and flexible control mechanism for the rapid activation and repression of NF-kappa B/Rel-directed gene expression.
Collapse
Affiliation(s)
- P A Ganchi
- Gladstone Institute of Virology and Immunology, University of California, San Francisco General Hospital 94141-9100
| | | | | | | |
Collapse
|
233
|
Matsusaka T, Fujikawa K, Nishio Y, Mukaida N, Matsushima K, Kishimoto T, Akira S. Transcription factors NF-IL6 and NF-kappa B synergistically activate transcription of the inflammatory cytokines, interleukin 6 and interleukin 8. Proc Natl Acad Sci U S A 1993; 90:10193-10197. [PMID: 8234276 PMCID: PMC47740 DOI: 10.1073/pnas.90.21.10193] [Citation(s) in RCA: 780] [Impact Index Per Article: 24.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Abstract
Single binding sites for transcription factors NF-IL6 and NF-kappa B are present in the promoter of the interleukin (IL) 6 gene. Previous studies of internally deleted promoter mutants demonstrated that these two sites are important for the transcriptional regulation of this gene. In this report, we describe the synergistic activation of the IL-6 promoter by transcription factors NF-IL6 and NF-kappa B. Cotransfection of NF-IL6 with the NF-kappa B p65 subunit resulted in strong synergistic activation of an IL-6 promoter-reporter construct. Both the NF-IL6 and NF-kappa B binding sites in the IL-6 promoter were required for synergistic activation. Similar synergistic activation was observed in the IL-8 promoter, which also contains both NF-IL6 and NF-kappa B binding sites. Furthermore, we demonstrated that NF-IL6 and the NF-kappa B p65 subunit directly associated via the basic leucine-zipper domain of NF-IL6 and the Rel homology domain of p65. Since the promoters of many other genes involved in the inflammatory and acute-phase responses also contain binding sites for NF-IL6 and NF-kappa B, the cooperation between these two factors may have an important role in these responses. We also discuss the possible interplay between various viral gene products and these two factors in the process of viral infection and constitutive cytokine production.
Collapse
Affiliation(s)
- T Matsusaka
- Institute for Molecular and Cellular Biology, Osaka University, Japan
| | | | | | | | | | | | | |
Collapse
|
234
|
Beg AA, Baldwin AS. The I kappa B proteins: multifunctional regulators of Rel/NF-kappa B transcription factors. Genes Dev 1993; 7:2064-70. [PMID: 8224838 DOI: 10.1101/gad.7.11.2064] [Citation(s) in RCA: 643] [Impact Index Per Article: 20.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Affiliation(s)
- A A Beg
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill 27599
| | | |
Collapse
|
235
|
Lernbecher T, Müller U, Wirth T. Distinct NF-kappa B/Rel transcription factors are responsible for tissue-specific and inducible gene activation. Nature 1993; 365:767-70. [PMID: 7692309 DOI: 10.1038/365767a0] [Citation(s) in RCA: 178] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
The NF-kappa B/Rel family is a growing class of transcriptional regulators whose members share the conserved Rel-homology domain, involved in specific DNA binding and dimerization. They interact with the regulatory elements of many different genes and are involved in the regulation of lymphoid-specific and inducible transcription. We tested whether these factors could alone activate a gene in transgenic mice. We report here that a minimal promoter containing three copies of a binding site for these proteins allows tissue-specific and inducible transgene activation. In lymphoid tissues constitutive transgene expression correlates with the presence of a constitutively active p50/RelB heterodimer. Other organs that only contain the p50 homodimer do not express the transgene. In contrast to this constitutive activity mediated by p50/RelB, the p50/p65 heterodimer (which is NF-kappa B) could confer inducible transgene activation in embryo fibroblasts. Thus two different members of the NF-kappa B/Rel family of transcriptional activators are involved in tissue-specific and inducible gene activation in transgenic mice.
Collapse
Affiliation(s)
- T Lernbecher
- Zentrum für Molekulare Biologie, Heidelberg, Germany
| | | | | |
Collapse
|
236
|
Brunvand MW, Krumm A, Groudine M. In vivo footprinting of the human IL-2 gene reveals a nuclear factor bound to the transcription start site in T cells. Nucleic Acids Res 1993; 21:4824-9. [PMID: 8233832 PMCID: PMC331512 DOI: 10.1093/nar/21.20.4824] [Citation(s) in RCA: 28] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Abstract
The IL-2 gene is a T cell specific gene that is expressed early during the activation-specific T lymphocyte development program. Electrophoretic mobility shift assay (EMSA) and DNase I footprinting assays have defined DNA/protein interactions at the IL-2 promoter cis-elements in vitro. To determine if the trans-activators documented in T cell nuclear extracts actually bind the IL-2 promoter in vivo, ligation mediated PCR (LMPCR) genomic footprinting was performed on the IL-2 promoter in both activated and non-activated T cells and HL60 promyelocytes, which do not express the IL-2 gene. The in vivo footprints indicate that the IL-2 gene transcription start site and TATA sequence are protected in both activated and resting T cells, prior to the appearance of detectable IL-2 steady state message. The distal NF-AT and the NF kappa B sites are each footprinted and the Oct/OAP site contains hypersensitive residues in the unstimulated T lymphocytes. Additional residues are protected in each of these sites after T cell activation. The proximal NF-AT site (NF-IL-2B) and the AP-1 site at -150 are protected in activated Jurkat T lymphocytes, but these two sites are not protected in activated Jurkat lymphocytes stably transfected a gene construct containing multiple NFAT binding sites.
Collapse
Affiliation(s)
- M W Brunvand
- Clinical Division, Fred Hutchinson Cancer Research Center, Seattle, WA 98104
| | | | | |
Collapse
|
237
|
Grilli M, Chen-Tran A, Lenardo MJ. Tumor necrosis factor alpha mediates a T cell receptor-independent induction of the gene regulatory factor NF-kappa B in T lymphocytes. Mol Immunol 1993; 30:1287-94. [PMID: 8413329 DOI: 10.1016/0161-5890(93)90045-d] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
We investigated the molecular basis of the ability of DCEK experimental antigen-presenting cells (APCs) to induce the nuclear form of the transcription factor NF-kappa B in T lymphocytes without engagement of the T cell receptor. We found that NF-kappa B induction did not require contact between the APCs and T lymphocytes and could be achieved by medium conditioned by the APCs. The APCs were found to express low levels of mRNA for TNF alpha. The addition of antibody against TNF alpha blocked the ability of APCs to induce NF-kappa B. These observations were extended by the finding that NF-kappa B was also induced in T lymphocytes separated by a membrane from a mixture of T lymphocytes, splenic APCs and antigen by a TNF alpha-dependent mechanism. Together, these findings suggest that induction of NF-kappa B in antigenically stimulated or 'bystander' T cells may take place through stimulation by TNF alpha as well as in response to T cell receptor occupancy.
Collapse
Affiliation(s)
- M Grilli
- Laboratory of Immunology, National Institute for Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland
| | | | | |
Collapse
|
238
|
Kaltschmidt C, Kaltschmidt B, Baeuerle PA. Brain synapses contain inducible forms of the transcription factor NF-kappa B. Mech Dev 1993; 43:135-47. [PMID: 8297787 DOI: 10.1016/0925-4773(93)90031-r] [Citation(s) in RCA: 170] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
We investigated the rat brain for the presence and activation state of the inducible transcription factor NF-kappa B. Two forms of NF-kappa B containing the transactivating p65 subunit were found in all brain regions investigated. The majority of NF-kappa B was in an inducible cytoplasmic form by virtue of its association with the inhibitory subunit I kappa B. Significant amounts of inducible NF-kappa B forms were present in synaptosomes, as suggested by electrophoretic mobility shift assay and Western blot analysis of subcellular brain fractions. A synaptic localization of NF-kappa B was further evident from immunostaining of inner and outer plexiform layers of the retina with an antibody directed against the p50 subunit of NF-kappa B. In cerebral cortex and striatum, NF-kappa B-specific antibodies showed a punctate immunostaining partially overlapping with that for the synaptic marker protein synaptophysin. NF-kappa B is thus the first transcription factor found in synapses of neurons. With its unusual subneuronal localization, the inducible transcription factor has the potential to function as retrograde messenger mediating stimulus-response coupling and long-term changes in gene expression following presynaptic stimulation.
Collapse
Affiliation(s)
- C Kaltschmidt
- Laboratory for Molecular Biology, Gene Center, Martinsried, Germany
| | | | | |
Collapse
|
239
|
Zúñiga-Pflücker JC, Schwartz HL, Lenardo MJ. Gene transcription in differentiating immature T cell receptor(neg) thymocytes resembles antigen-activated mature T cells. J Exp Med 1993; 178:1139-49. [PMID: 8376926 PMCID: PMC2191200 DOI: 10.1084/jem.178.4.1139] [Citation(s) in RCA: 41] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023] Open
Abstract
Early in ontogeny thymocytes have a surface marker phenotype that resembles activated mature T cells but they lack expression of the T cell receptor (TCR) complex. We have made preparations of day 14/15 triple negative fetal thymocytes that exhibit the activated T lymphocyte markers CD25, intercellular adhesion molecule 1, Ly-6A/E, CD44, and heat stable antigen and are rapidly proliferating as evidenced by flow cytometric examination of BrdU incorporation. We found that binding activities of the gene regulators nuclear factor (NF)-kappa B, the NF-kappa B p50 homodimer complex, nuclear factor of activated T cells (NF-AT), oct-1, oct-2, activator protein 1 (AP-1), and serum response factor (SRF), are all present in these early thymocytes. Whereas the octamer factors and SRF persist during ontogeny, NF-kappa B, NF-AT, and AP-1 decrease and are undetectable in the adult thymus. Transfection of disaggregated thymocytes by electroporation or intact thymic lobes by gold-particle bombardment revealed that reporter constructs for NF-kappa B, NF-AT, AP-1, octamer factors and, to a small extent, the TCR-alpha enhancer were active in early thymocyte development. We rigorously eliminated the possibility that these transcriptional events were due to minor populations of TCR+ cells by showing that these reporter constructs were also active in recombinase activating gene (RAG)-/- thymocytes that are incapable of completing TCR gene rearrangement, and predominantly contain cells that have an activated phenotype. Thus, transcriptional events that are usually triggered by antigen stimulation in mature T cells take place early in thymic ontogeny in the absence of the TCR. Our analysis suggests that there are striking regulatory similarities but also important differences between the activation processes that take place in antigen-stimulated mature T cells and thymic progenitor cells.
Collapse
Affiliation(s)
- J C Zúñiga-Pflücker
- Laboratory of Immunology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland 20892
| | | | | |
Collapse
|
240
|
Hay RT, Nicholson J. DNA binding alters the protease susceptibility of the p50 subunit of NF-kappa B. Nucleic Acids Res 1993; 21:4592-8. [PMID: 8233795 PMCID: PMC311195 DOI: 10.1093/nar/21.19.4592] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Abstract
The subdomain structure of the p50 subunit of NF-kappa B (amino acids 35-381) was investigated by partial proteolysis of the native protein. Trypsin cleaves p50 at a limited number of sites with an initial cleavage at low trypsin concentration occurring after R362 and a second cleavage taking place at higher trypsin concentration after K77. The cleavage after R362 does not alter the DNA binding characteristics of p50 but removes the nuclear localisation signal indicating that this region occupies a highly exposed position on the surface of the protein. The second cleavage after K77 generates a protein that although dimeric is incapable of binding DNA, thus emphasising the importance of residues 35-77 in DNA recognition. However p50 dimers containing one molecule cleaved after K77 and one molecule with this region intact are capable of binding DNA. When very high concentrations of trypsin are employed p50 is completely degraded. However if p50 is bound tightly to DNA containing its specific recognition site prior to trypsin addition the cleavage after K77 is almost completely blocked and the protein becomes highly resistant to proteolysis. These data suggest that bound DNA may mask critical trypsin cleavage sites or that DNA binding is accompanied by a conformational change in protein structure that renders the protein resistant to proteolysis.
Collapse
Affiliation(s)
- R T Hay
- School of Biological and Medical Sciences, University of St Andrews, Fife, UK
| | | |
Collapse
|
241
|
Fraser JD, Straus D, Weiss A. Signal transduction events leading to T-cell lymphokine gene expression. IMMUNOLOGY TODAY 1993; 14:357-62. [PMID: 8363726 DOI: 10.1016/0167-5699(93)90236-e] [Citation(s) in RCA: 128] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
The expression of T-cell derived lymphokines is regulated by signal transduction events initiated by the T-cell antigen receptor and other T-cell surface molecules. Substantial progress has been made in characterizing the signal transduction events initiated at the plasma membrane of the T cell and their targets which control lymphokine gene expression in the nucleus. This review will summarize recent progress in this area of investigation.
Collapse
Affiliation(s)
- J D Fraser
- Dept of Medicine, Howard Hughes Medical Institute, University of California, San Francisco 94143
| | | | | |
Collapse
|
242
|
The bcl-3 proto-oncogene encodes a nuclear I kappa B-like molecule that preferentially interacts with NF-kappa B p50 and p52 in a phosphorylation-dependent manner. Mol Cell Biol 1993. [PMID: 8497270 DOI: 10.1128/mcb.13.6.3557] [Citation(s) in RCA: 138] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The product of the putative proto-oncogene bcl-3 is an I kappa B-like molecule with novel binding properties specific for a subset of the rel family of transcriptional regulators. In vitro, Bcl-3 protein specifically inhibited the DNA binding of both the homodimeric NF-kappa B p50 subunit and a closely related homolog, p52 (previously p49), to immunoglobulin kappa NF-kappa B DNA motifs. Bcl-3 could catalyze the removal of these proteins from DNA. At concentrations that significantly inhibited DNA binding by homodimeric p50, Bcl-3 did not inhibit binding of reconstituted heterodimeric NF-kappa B (p50:p65), a DNA-binding homodimeric form of p65, or homodimers of c-Rel. Phosphatase treatment of Bcl-3 partially inactivated its inhibitory properties, implicating a role for phosphorylation in the regulation of Bcl-3 activity. Bcl-3, like p50, localizes to the cell nucleus. In cells cotransduced with Bcl-3 and p50, both molecules could be found in the nucleus of the same cells. Interestingly, coexpression of Bcl-3 with a p50 mutant deleted for its nuclear-localizing signal resulted in the relocalization of Bcl-3 to the cytoplasm, showing that the proteins interact in the cell. These properties contrast Bcl-3 to classically defined I kappa B, which maintains heterodimeric NF-kappa B p50:p65 in the cytoplasm through specific interactions with the p65 subunit. Bcl-3 appears to be a nuclear, I kappa B-related molecule that regulates the activity of homodimeric nuclear p50 and its homolog p52.
Collapse
|
243
|
Nolan GP, Fujita T, Bhatia K, Huppi C, Liou HC, Scott ML, Baltimore D. The bcl-3 proto-oncogene encodes a nuclear I kappa B-like molecule that preferentially interacts with NF-kappa B p50 and p52 in a phosphorylation-dependent manner. Mol Cell Biol 1993; 13:3557-66. [PMID: 8497270 PMCID: PMC359825 DOI: 10.1128/mcb.13.6.3557-3566.1993] [Citation(s) in RCA: 82] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Abstract
The product of the putative proto-oncogene bcl-3 is an I kappa B-like molecule with novel binding properties specific for a subset of the rel family of transcriptional regulators. In vitro, Bcl-3 protein specifically inhibited the DNA binding of both the homodimeric NF-kappa B p50 subunit and a closely related homolog, p52 (previously p49), to immunoglobulin kappa NF-kappa B DNA motifs. Bcl-3 could catalyze the removal of these proteins from DNA. At concentrations that significantly inhibited DNA binding by homodimeric p50, Bcl-3 did not inhibit binding of reconstituted heterodimeric NF-kappa B (p50:p65), a DNA-binding homodimeric form of p65, or homodimers of c-Rel. Phosphatase treatment of Bcl-3 partially inactivated its inhibitory properties, implicating a role for phosphorylation in the regulation of Bcl-3 activity. Bcl-3, like p50, localizes to the cell nucleus. In cells cotransduced with Bcl-3 and p50, both molecules could be found in the nucleus of the same cells. Interestingly, coexpression of Bcl-3 with a p50 mutant deleted for its nuclear-localizing signal resulted in the relocalization of Bcl-3 to the cytoplasm, showing that the proteins interact in the cell. These properties contrast Bcl-3 to classically defined I kappa B, which maintains heterodimeric NF-kappa B p50:p65 in the cytoplasm through specific interactions with the p65 subunit. Bcl-3 appears to be a nuclear, I kappa B-related molecule that regulates the activity of homodimeric nuclear p50 and its homolog p52.
Collapse
Affiliation(s)
- G P Nolan
- Rockefeller University, New York, New York 10021
| | | | | | | | | | | | | |
Collapse
|
244
|
Liou HC, Baltimore D. Regulation of the NF-kappa B/rel transcription factor and I kappa B inhibitor system. Curr Opin Cell Biol 1993; 5:477-87. [PMID: 8352966 DOI: 10.1016/0955-0674(93)90014-h] [Citation(s) in RCA: 439] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
The interplay between proteins of the NF-kappa B/rel and I kappa B families is a tightly regulated process that ensures appropriate responses to specific environmental and developmental signals. Various mechanisms are utilized in regulating NF-kappa B/rel and I kappa B activities, some unique to this transcription factor system. All of these regulatory strategies converge towards one purpose, namely the controlled nuclear translocation of activated NF-kappa B/rel protein complexes. The variety of rel-related and ankyrin repeat containing subunits makes regulation of this system both rich and complicated.
Collapse
Affiliation(s)
- H C Liou
- Rockefeller University, New York
| | | |
Collapse
|
245
|
Umlauf SW, Beverly B, Kang SM, Brorson K, Tran AC, Schwartz RH. Molecular regulation of the IL-2 gene: rheostatic control of the immune system. Immunol Rev 1993; 133:177-97. [PMID: 8225366 DOI: 10.1111/j.1600-065x.1993.tb01516.x] [Citation(s) in RCA: 51] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
The delivery of costimulation and the effects of the anergic state impinge on IL-2 production via different molecular mechanisms. The strongest experimental support at this stage suggests that CD28 signaling effects mRNA stability of several lymphokine genes including IL-2. While there may also be transcriptional effects of CD28 signals in human cells, controversy surrounding relevant TCR mimics must be addressed. In the case of clonal anergy, however, transcriptional non-responsiveness is evident when anergic cells are restimulated with TCR and costimulatory signals. This repression affects predominantly AP-1 activity. So far, the nature of the repression has not been identified.
Collapse
Affiliation(s)
- S W Umlauf
- Laboratory of Cellular and Molecular Immunology, National Institutes of Health, Bethesda, MD 20892
| | | | | | | | | | | |
Collapse
|
246
|
Plaksin D, Baeuerle PA, Eisenbach L. KBF1 (p50 NF-kappa B homodimer) acts as a repressor of H-2Kb gene expression in metastatic tumor cells. J Exp Med 1993; 177:1651-62. [PMID: 8496683 PMCID: PMC2191052 DOI: 10.1084/jem.177.6.1651] [Citation(s) in RCA: 100] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Abstract
Downregulation of major histocompatibility complex class I expression is causally related to high malignancy and low immunogenicity of certain murine tumors. In this study, we have analyzed the roles of the nuclear factors KBF1/p50 and p65 in regulation of class I expression in high and low metastatic tumor cells. Low class I-expressing cells show at higher levels of KBF1/p50 and NF-kappa B (p50/p65) binding activity than high class I-expressing cells. However, an excess of KBF1 over NF-kappa B is observed in low expressing cells, while an excess of NF-kappa B over KBF1 is observed in high expressing cells. Stable transfection of a p65 expression vector into low class I-expressing cells activated H-2 transcription and cell surface expression, while stable transfection of p50 expression vector into high expressing cells suppressed H-2Kb transcription and cell surface expression. Our studies suggest that KBF1 has the potential of downregulating class I gene expression, whereas dimers containing the p65 subunit are activators of class I gene expression.
Collapse
Affiliation(s)
- D Plaksin
- Department of Cell Biology, Weizmann Institute of Science, Rehovot, Israel
| | | | | |
Collapse
|
247
|
Interaction between NF-kappa B- and serum response factor-binding elements activates an interleukin-2 receptor alpha-chain enhancer specifically in T lymphocytes. Mol Cell Biol 1993. [PMID: 8455627 DOI: 10.1128/mcb.13.4.2536] [Citation(s) in RCA: 23] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Abstract
We find that a short enhancer element containing the NF-kappa B binding site from the interleukin-2 receptor alpha-chain gene (IL-2R alpha) is preferentially activated in T cells. The IL-2R alpha enhancer binds NF-kappa B poorly and is only weakly activated by the NF-kappa B site alone. Serum response factor (SRF) binds to a site adjacent to the NF-kappa B site in the IL-2R enhancer, and both sites together have strong transcriptional activity specifically in T cells. Surprisingly, the levels of SRF constitutively expressed in T cells are consistently higher than in other cell types. Overexpression of SRF in B cells causes the IL-2R enhancer to function as well as it does in T cells, suggesting that the high level of SRF binding in T cells is functionally important.
Collapse
|
248
|
Conservation of transcriptional activation functions of the NF-kappa B p50 and p65 subunits in mammalian cells and Saccharomyces cerevisiae. Mol Cell Biol 1993. [PMID: 8441404 DOI: 10.1128/mcb.13.3.1666] [Citation(s) in RCA: 47] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The NF-kappa B transcription factor complex is composed of a 50-kDa (p50) and a 65-kDa (p65) subunit. Both subunits bind to similar DNA motifs and elicit transcriptional activation as either homo- or heterodimers. By using chimeric proteins that contain the DNA binding domain of the yeast transcriptional activator GAL4 and subdomains of p65, three distinct transcriptional activation domains were identified. One domain was localized to a region of 42 amino acids containing a potential leucin zipper structure, consistent with earlier reports. Two other domains, both acidic and rich in prolines, were also identified. Of perhaps more significance, the same minimal activation domains that were functional in mammalian cells were also functional in the yeast Saccharomyces cerevisiae. Coexpression of the NF-kappa B inhibitory molecule, I kappa B, reduced the transcriptional activity of p65 significantly, suggesting the ability of I kappa B to function in a similar manner in S. cerevisiae. Surprisingly, while the conserved rel homology domain of p65 demonstrated no transcriptional activity in either mammalian cells or S. cerevisiae, the corresponding domain in p50 was a strong transcriptional activator in S. cerevisiae. The observation that similar domains elicit transcriptional activation in mammalian cells and S. cerevisiae demonstrates strong conservation of the transcriptional machinery required for NF-kappa B function and provides a powerful genetic system to study the transcriptional mechanisms of these proteins.
Collapse
|
249
|
Müller JM, Ziegler-Heitbrock HW, Baeuerle PA. Nuclear factor kappa B, a mediator of lipopolysaccharide effects. Immunobiology 1993; 187:233-56. [PMID: 8330898 DOI: 10.1016/s0171-2985(11)80342-6] [Citation(s) in RCA: 361] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
Exposure of certain cell types to bacterial lipopolysaccharide (LPS) leads to activation of nuclear factor kappa B (NF-kappa B), an inducible transcription factor. One of NF-kappa B's unique properties is its posttranslational activation via release of an inhibitory subunit, called inhibitor of NF-kappa B (I kappa B), from a sequestered cytoplasmic form. This event is also triggered under various other conditions of biomedical importance. Other bacterial toxins, tumor necrosis factor-alpha (TNF), interleukin-1 (IL-1), T cell mitogens, UV light, gamma rays and oxidative stress were reported to induce NF-kappa B. The activated form of NF-kappa B, which is rapidly taken up into nuclei, initiates transcription from immediate early genes in a wide variety of cell types. Most of the target genes for NF-kappa B are of relevance for the immune response and can be grouped into those encoding cytokines, cell surface receptors, acute phase proteins and viral genomes, such as that of human immunodeficiency virus type 1 (HIV-1). We will discuss recent experimental evidences suggesting that LPS might share a pathway of NF-kappa B activation with other inducers of the factor. This common pathway may involve reactive oxygen intermediates (ROI) as messenger molecules.
Collapse
Affiliation(s)
- J M Müller
- Laboratory for Molecular Biology, Gene Center, Martinsried, Germany
| | | | | |
Collapse
|
250
|
Kuang AA, Novak KD, Kang SM, Bruhn K, Lenardo MJ. Interaction between NF-kappa B- and serum response factor-binding elements activates an interleukin-2 receptor alpha-chain enhancer specifically in T lymphocytes. Mol Cell Biol 1993; 13:2536-45. [PMID: 8455627 PMCID: PMC359582 DOI: 10.1128/mcb.13.4.2536-2545.1993] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023] Open
Abstract
We find that a short enhancer element containing the NF-kappa B binding site from the interleukin-2 receptor alpha-chain gene (IL-2R alpha) is preferentially activated in T cells. The IL-2R alpha enhancer binds NF-kappa B poorly and is only weakly activated by the NF-kappa B site alone. Serum response factor (SRF) binds to a site adjacent to the NF-kappa B site in the IL-2R enhancer, and both sites together have strong transcriptional activity specifically in T cells. Surprisingly, the levels of SRF constitutively expressed in T cells are consistently higher than in other cell types. Overexpression of SRF in B cells causes the IL-2R enhancer to function as well as it does in T cells, suggesting that the high level of SRF binding in T cells is functionally important.
Collapse
Affiliation(s)
- A A Kuang
- Laboratory of Immunology, National Institute of Allergy and Infectious Diseases, Bethesda, Maryland 20892
| | | | | | | | | |
Collapse
|