201
|
Huang Q, Wang L, Lu W. Evolution in medicinal chemistry of E-ring-modified Camptothecin analogs as anticancer agents. Eur J Med Chem 2013; 63:746-57. [DOI: 10.1016/j.ejmech.2013.01.058] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2012] [Revised: 01/13/2013] [Accepted: 01/16/2013] [Indexed: 12/24/2022]
|
202
|
Pan P, Li Y, Yu H, Sun H, Hou T. Molecular Principle of Topotecan Resistance by Topoisomerase I Mutations through Molecular Modeling Approaches. J Chem Inf Model 2013; 53:997-1006. [DOI: 10.1021/ci400066x] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Affiliation(s)
- Peichen Pan
- Institute of Functional Nano & Soft Materials (FUNSOM) and Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Soochow University, Suzhou, Jiangsu 215123, China
| | - Youyong Li
- Institute of Functional Nano & Soft Materials (FUNSOM) and Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Soochow University, Suzhou, Jiangsu 215123, China
| | - Huidong Yu
- Institute of Functional Nano & Soft Materials (FUNSOM) and Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Soochow University, Suzhou, Jiangsu 215123, China
| | - Huiyong Sun
- Institute of Functional Nano & Soft Materials (FUNSOM) and Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Soochow University, Suzhou, Jiangsu 215123, China
| | - Tingjun Hou
- Institute of Functional Nano & Soft Materials (FUNSOM) and Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Soochow University, Suzhou, Jiangsu 215123, China
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, Zhejiang 310058, China
| |
Collapse
|
203
|
Bandyopadhyay K, Li P, Gjerset RA. The p14ARF alternate reading frame protein enhances DNA binding of topoisomerase I by interacting with the serine 506-phosphorylated core domain. PLoS One 2013; 8:e58835. [PMID: 23555599 PMCID: PMC3608632 DOI: 10.1371/journal.pone.0058835] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2012] [Accepted: 02/07/2013] [Indexed: 12/27/2022] Open
Abstract
In addition to its well-characterized function as a tumor suppressor, p14ARF (ARF) is a positive regulator of topoisomerase I (topo I), a central enzyme in DNA metabolism and a target for cancer therapy. We previously showed that topo I hyperphosphorylation, a cancer-associated event mediated by elevated levels of the protein kinase CK2, increases topo I activity and the cellular sensitivity to topo I-targeted drugs. Topo I hyperphosphorylation also increases its interaction with ARF. Because the ARF−topo I interaction could be highly relevant to DNA metabolism and cancer treatment, we identified the regions of topo I involved in ARF binding and characterized the effects of ARF binding on topo I function. Using a series of topo I deletion constructs, we found that ARF interacted with the topo I core domain, which encompasses most of the catalytic and DNA-interacting residues. ARF binding increased the DNA relaxation activity of hyperphosphorylated topo I by enhancing its association with DNA, but did not affect the topo I catalytic rate. In cells, ARF promoted the chromatin association of hyperphosphorylated, but not basal phosphorylated, topo I, and increased topo I-mediated DNA nicking under conditions of oxidative stress. The aberrant nicking was found to correlate with increased formation of DNA double-strand breaks, which are precursors of many genome destabilizing events. The results suggest that the convergent actions of oxidative stress and elevated CK2 and ARF levels, which are common features of cancer cells, lead to a dysregulation of topo I that may contribute both to the cellular response to topo I-targeted drugs and to genome instability.
Collapse
Affiliation(s)
- Keya Bandyopadhyay
- Torrey Pines Institute for Molecular Studies San Diego, California, United States of America
| | - Pingchuan Li
- Torrey Pines Institute for Molecular Studies San Diego, California, United States of America
| | - Ruth A. Gjerset
- Torrey Pines Institute for Molecular Studies San Diego, California, United States of America
- * E-mail:
| |
Collapse
|
204
|
Assali M, Cid JJ, Pernía-Leal M, Muñoz-Bravo M, Fernández I, Wellinger RE, Khiar N. Glyconanosomes: disk-shaped nanomaterials for the water solubilization and delivery of hydrophobic molecules. ACS NANO 2013; 7:2145-2153. [PMID: 23421374 DOI: 10.1021/nn304986x] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/01/2023]
Abstract
Herein, we describe the first report on a new class of disk-shaped and quite monodisperse water-soluble nanomaterials that we named glyconanosomes (GNS). GNSs were obtained by sliding out the cylindrical structures formed upon self-organization and photopolymerization of glycolipid 1 on single-walled carbon nanotube (SWCNT) sidewalls. GNSs present a sheltered hydrophobic inner cavity formed by the carbonated tails, surrounded by PEG and lactose moieties. The amphiphilic character of GNSs allows the water solubility of insoluble hydrophobic cargos such as a perylene-bisimide derivative, [60]fullerene, or the anti-carcinogenic drug camptothecin (CPT). GNS/C60 inclusion complexes are able to establish specific interactions between peanut agglutinin (PNA) lectin and the lactose moiety surrounding the complexes, while CPT solubilized by GNS shows higher cytotoxicity toward MCF7-type breast cancer cells than CPT alone. Thus, GNS represents an attractive extension of nanoparticle-based drug delivery systems.
Collapse
Affiliation(s)
- Mohyeddin Assali
- Laboratory of Asymmetric Synthesis and Functional Nanosystems, Instituto de Investigaciones Químicas (IIQ), CSIC and Universidad de Sevilla, C/Américo Vepucio 49, 41092 Seville, Spain
| | | | | | | | | | | | | |
Collapse
|
205
|
Chen SH, Chan NL, Hsieh TS. New mechanistic and functional insights into DNA topoisomerases. Annu Rev Biochem 2013; 82:139-70. [PMID: 23495937 DOI: 10.1146/annurev-biochem-061809-100002] [Citation(s) in RCA: 272] [Impact Index Per Article: 22.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
DNA topoisomerases are nature's tools for resolving the unique problems of DNA entanglement that occur owing to unwinding and rewinding of the DNA helix during replication, transcription, recombination, repair, and chromatin remodeling. These enzymes perform topological transformations by providing a transient DNA break, formed by a covalent adduct with the enzyme, through which strand passage can occur. The active site tyrosine is responsible for initiating two transesterifications to cleave and then religate the DNA backbone. The cleavage reaction intermediate is exploited by cytotoxic agents, which have important applications as antibiotics and anticancer drugs. The reactions mediated by these enzymes can also be regulated by their binding partners; one example is a DNA helicase capable of modulating the directionality of strand passage, enabling important functions like reannealing denatured DNA and resolving recombination intermediates. In this review, we cover recent advances in mechanistic insights into topoisomerases and their various cellular functions.
Collapse
Affiliation(s)
- Stefanie Hartman Chen
- Department of Biochemistry, Duke University Medical Center, Durham, North Carolina 27710, USA.
| | | | | |
Collapse
|
206
|
A small organic compound enhances the religation reaction of human topoisomerase I and identifies crucial elements for the religation mechanism. Biosci Rep 2013; 33:e00025. [PMID: 23368812 PMCID: PMC3590572 DOI: 10.1042/bsr20120118] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
The different steps of the human Top1 (topoisomerase I) catalytic cycle have been analysed in the presence of a pentacyclic-diquinoid synthetic compound. The experiments indicate that it efficiently inhibits the cleavage step of the enzyme reaction, fitting well into the catalytic site. Surprisingly the compound, when incubated with the binary topoisomerase-DNA cleaved complex, helps the enzyme to remove itself from the cleaved DNA and close the DNA gap, increasing the religation rate. The compound also induces the religation of the stalled enzyme-CPT (camptothecin)-DNA ternary complex. Analysis of the molecule docked over the binary complex, together with its chemical properties, suggests that the religation enhancement is due to the presence on the compound of two oxygen atoms that act as hydrogen acceptors. This property facilitates the deprotonation of the 5' DNA end, suggesting that this is the limiting step in the topoisomerase religation mechanism.
Collapse
|
207
|
Zhang L, Ma D, Zhang Y, He W, Yang J, Li C, Jiang H. Characterization of DNA topoisomerase-1 in Spodoptera exigua for toxicity evaluation of camptothecin and hydoxy-camptothecin. PLoS One 2013; 8:e56458. [PMID: 23451051 PMCID: PMC3579855 DOI: 10.1371/journal.pone.0056458] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2012] [Accepted: 01/14/2013] [Indexed: 11/20/2022] Open
Abstract
Camptothecin (CPT), a plant alkaloid originally isolated from the native Chinese tree, Camptotheca acuminate, exerts the toxic effect by targeting eukaryotic DNA topoisomerase 1 (DNA Topo1). Besides as potent anti-cancer agents, CPT and its derivatives are now being explored as potential pesticides for insect control. In this study, we assessed their toxicity to an insect homolog, the Topo1 protein from beet armyworms (Spodoptera exigua Hübner), a worldwide pest of many important crops. The S. exigua Topo1 gene contains an ORF of 2790 base pairs that is predicted to encode a polypeptide of 930 amino acids. The deduced polypeptide exhibits polymorphism at residue sites V420, L530, A653 and T729 (numbered according to human Topo1) among insect species, which are predicted to confer sensitivity to CPT. The DNA relaxation activity of this protein was subsequently examined using a truncated form that contained the residues 337–930 and was expressed in bacteria BL21 cells. The purified protein retained the ability to relax double-stranded DNA and was susceptible to CPT and its derivative hydroxy-camptothecin (HCPT) in a dose-dependent manner. The same inhibitory effect was also found on the native Topo1 extracted from IOZCAS-Spex-II cells, a cell line established from beet armyworms. Additionally, CPT and HCPT treatment reduced the steady accumulation of Topo1 protein despite the increased mRNA expression in response to the treatment. Our studies provide information of the S. exigua Topo1 gene and its amino acid polymorphism in insects and uncover some clues about potential mechanisms of CPT toxicity against insect pests. These results also are useful for development of more effective Topo1-targeted CPT insecticides in the future.
Collapse
Affiliation(s)
- Lan Zhang
- Key Laboratory of Integrated Pest Management in Crops, Ministry of Agriculture, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Dejun Ma
- Key Laboratory of Integrated Pest Management in Crops, Ministry of Agriculture, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
- College of Agriculture, Yangtze University, Jingzhou, China
| | - Yanning Zhang
- Key Laboratory of Integrated Pest Management in Crops, Ministry of Agriculture, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Weizhi He
- Key Laboratory of Integrated Pest Management in Crops, Ministry of Agriculture, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Jingjing Yang
- Key Laboratory of Integrated Pest Management in Crops, Ministry of Agriculture, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
- College of Natural Resources and Environment, South China Agricultural University, Guangzhou, China
| | - Chuanren Li
- College of Agriculture, Yangtze University, Jingzhou, China
| | - Hongyun Jiang
- Key Laboratory of Integrated Pest Management in Crops, Ministry of Agriculture, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
- * E-mail:
| |
Collapse
|
208
|
Shou KJ, Li J, Jin Y, Lv YW. Design, Synthesis, Biological Evaluation, and Molecular Docking Studies of Quinolone Derivatives as Potential Antitumor Topoisomerase I Inhibitors. Chem Pharm Bull (Tokyo) 2013; 61:631-6. [DOI: 10.1248/cpb.c13-00040] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Affiliation(s)
| | - Jie Li
- College of Chemistry and Materials Engineering, Quzhou University
| | - Yi Jin
- College of Chemistry and Materials Engineering, Quzhou University
| | - Yan-wen Lv
- College of Chemistry and Materials Engineering, Quzhou University
- Key Laboratory of Pharmaceutical Engineering of Ministry of Education, College of Pharmaceutical Sciences, Zhejiang University of Technology
| |
Collapse
|
209
|
Chakraborty S, Sandoval-Bernal B, Kumi-Diaka J. Therapeutic Efficacy of Genistein-Topotecan Combination Compared to Vitamin D3-Topotecan Combination in LNCaP Prostate Cancer Cells. Cell 2013. [DOI: 10.4236/cellbio.2013.23011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
210
|
Castelli S, Vieira S, D'Annessa I, Katkar P, Musso L, Dallavalle S, Desideri A. A derivative of the natural compound kakuol affects DNA relaxation of topoisomerase IB inhibiting the cleavage reaction. Arch Biochem Biophys 2012; 530:7-12. [PMID: 23262316 DOI: 10.1016/j.abb.2012.12.013] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2012] [Revised: 12/06/2012] [Accepted: 12/09/2012] [Indexed: 11/28/2022]
Abstract
Topoisomerases IB are anticancer and antimicrobial targets whose inhibition by several natural and synthetic compounds has been documented over the last three decades. Here we show that kakuol, a natural compound isolated from the rhizomes of Asarum sieboldii, and a derivative analogue are able to inhibit the DNA relaxation mediated by the human enzyme. The analogue is the most efficient one and the inhibitory effect is enhanced upon pre-incubation with the enzyme. Analysis of the different steps of the catalytic cycle indicates that the inhibition occurs at the cleavage level and does not prevent DNA binding. Molecular docking shows that the compound preferentially binds near the active site at the bottom of the catalytic residue Tyr723, providing an atomistic explanation for its inhibitory activity.
Collapse
Affiliation(s)
- Silvia Castelli
- University of Rome Tor Vergata, Department of Biology, Via Della Ricerca Scientifica, 00133 Rome, Italy
| | | | | | | | | | | | | |
Collapse
|
211
|
Mancini G, D'Annessa I, Coletta A, Chillemi G, Pommier Y, Cushman M, Desideri A. Binding of an Indenoisoquinoline to the topoisomerase-DNA complex induces reduction of linker mobility and strengthening of protein-DNA interaction. PLoS One 2012; 7:e51354. [PMID: 23236483 PMCID: PMC3516564 DOI: 10.1371/journal.pone.0051354] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2012] [Accepted: 10/31/2012] [Indexed: 11/18/2022] Open
Abstract
Long-duration comparative molecular dynamics simulations of the DNA-topoisomerase binary and DNA-topoisomerase-indenoisoquinoline ternary complexes have been carried out. The analyses demonstrated the role of the drug in conformationally stabilizing the protein-DNA interaction. In detail, the protein lips, clamping the DNA substrate, interact more tightly in the ternary complex than in the binary one. The drug also reduces the conformational space sampled by the protein linker domain through an increased interaction with the helix bundle proximal to the active site. A similar alteration of linker domain dynamics has been observed in a precedent work for topotecan but the molecular mechanisms were different if compared to those described in this work. Finally, the indenoisoquinoline keeps Lys532 far from the DNA, making it unable to participate in the religation reaction, indicating that both short- and long-range interactions contribute to the drug poisoning effect.
Collapse
Affiliation(s)
- Giordano Mancini
- CASPUR Inter-University Consortium for the Application of Super-Computing for Universities and Research, Rome, Italy
| | | | | | | | | | | | | |
Collapse
|
212
|
Design and one-pot synthesis of new 7-acyl camptothecin derivatives as potent cytotoxic agents. Bioorg Med Chem Lett 2012; 22:7659-61. [DOI: 10.1016/j.bmcl.2012.10.002] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2012] [Revised: 09/24/2012] [Accepted: 10/01/2012] [Indexed: 11/20/2022]
|
213
|
Bandyopadhyay K, Li P, Gjerset RA. CK2-mediated hyperphosphorylation of topoisomerase I targets serine 506, enhances topoisomerase I-DNA binding, and increases cellular camptothecin sensitivity. PLoS One 2012. [PMID: 23185622 PMCID: PMC3503890 DOI: 10.1371/journal.pone.0050427] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/05/2022] Open
Abstract
Topoisomerase I is the target for a potent class of chemotherapeutic drugs derived from the plant alkaloid camptothecin that includes irinotecan and topotecan. In this study we have identified a novel site of CK2-mediated topoisomerase I (topo I) phosphorylation at serine 506 (PS506) that is relevant to topo I function and to cellular responses to these topo I-targeted drugs. CK2 treatment induced hyperphosphorylation of recombinant topo I and expression of the PS506 epitope, and resulted in increased binding of topo I to supercoiled plasmid DNA. Hyperphosphorylated topo I was approximately three times more effective than the basal phosphorylated enzyme at relaxing plasmid supercoils but had similar DNA cleavage activity once bound to DNA. The PS506 epitope was expressed in cancer cell lines with elevated CK2 activity, hyperphosphorylated topo I, and increased sensitivity to camptothecin. In contrast, PS506 was not detected in normal cells or cancer cell lines with lower levels of CK2 activity. By experimentally manipulating CK2 activity in cancer cell lines, we demonstrate a cause and effect relationship between CK2 activity, PS506 expression, camptothecin-induced cellular DNA damage, and cellular camptothecin sensitivity. Our results show that the PS506 epitope is an indicator of dysregulated, hyperphosphorylated topo I in cancer cells, and may thus serve as a diagnostic or prognostic biomarker and predict tumor responsiveness to widely used topo I-targeted therapies.
Collapse
MESH Headings
- Antineoplastic Agents, Phytogenic/pharmacology
- Biomarkers, Tumor/genetics
- Biomarkers, Tumor/metabolism
- Camptothecin/pharmacology
- Casein Kinase II/genetics
- Casein Kinase II/metabolism
- Cell Line, Tumor
- DNA Fragmentation/drug effects
- DNA Topoisomerases, Type I/genetics
- DNA Topoisomerases, Type I/metabolism
- DNA, Superhelical/metabolism
- Drug Resistance, Neoplasm/drug effects
- Drug Resistance, Neoplasm/genetics
- Epitopes
- Gene Expression Regulation, Neoplastic/drug effects
- Humans
- Phosphorylation/drug effects
- Plasmids
- Serine/genetics
- Serine/metabolism
- Topoisomerase I Inhibitors/pharmacology
Collapse
Affiliation(s)
- Keya Bandyopadhyay
- Torrey Pines Institute for Molecular Studies, San Diego, California, United States of America
| | - Pingchuan Li
- Torrey Pines Institute for Molecular Studies, San Diego, California, United States of America
| | - Ruth A. Gjerset
- Torrey Pines Institute for Molecular Studies, San Diego, California, United States of America
- * E-mail:
| |
Collapse
|
214
|
Hörmann V, Kumi-Diaka J, Durity M, Rathinavelu A. Anticancer activities of genistein-topotecan combination in prostate cancer cells. J Cell Mol Med 2012; 16:2631-6. [PMID: 22452992 PMCID: PMC4118231 DOI: 10.1111/j.1582-4934.2012.01576.x] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2011] [Accepted: 03/19/2012] [Indexed: 11/28/2022] Open
Abstract
Prostate cancer is one of the leading causes of death in men aged 40 to 55. Genistein isoflavone (4', 5', 7-trihydroxyisoflavone) is a dietary phytochemical with demonstrated anti-tumour activities in a variety of cancers. Topotecan Hydrochloride (Hycamtin) is an FDA-approved chemotherapy drug, primarily used for secondary treatment of ovarian, cervical and small cell lung cancers. This study was to demonstrate the potential anticancer efficacy of genistein-topotecan combination in LNCaP prostate cancer cells and the mechanism of the combination treatment. The LNCaP cells were grown in complete RPMI medium, and cultured at 37°C, 5% CO(2) for 24-48 hrs to achieve 70-90% confluency. The cells were treated with varying concentrations of genistein, topotecan and genistein-topotecan combination and incubated for 24 hrs. The treated cells were assayed for (i) post-treatment sensitivity using MTT assay and DNA fragmentation, (ii) treatment-induced apoptosis using caspase-3 and -9 binding assays and (iii) treatment-induced ROS generation levels. The overall data indicated that (i) both genistein and topotecan induce cellular death in LNCaP cells, (ii) genistein-topotecan combination was significantly more efficacious in reducing LNCaP cell viability compared with either genistein or topotecan alone, (iii) in all cases, cell death was primarily through apoptosis, via the activation of caspase-3 and -9, which are involved in the intrinsic pathway, (iv) ROS generation levels increased significantly with the genistein-topotecan combination treatment. Treatments involving genistein-topotecan combination may prove to be an attractive alternative phytotherapy or adjuvant therapy for prostate cancer.
Collapse
Affiliation(s)
- Vanessa Hörmann
- Department of Biological Sciences, Florida Atlantic University, Davie, FL 33314, USA.
| | | | | | | |
Collapse
|
215
|
Synthesis and preliminary bioevaluation of novel E-ring modified acetal analog of camptothecin as cytotoxic agents. Eur J Med Chem 2012; 56:1-9. [DOI: 10.1016/j.ejmech.2012.07.050] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2012] [Revised: 07/27/2012] [Accepted: 07/31/2012] [Indexed: 11/17/2022]
|
216
|
Kasai H, Murakami T, Ikuta Y, Koseki Y, Baba K, Oikawa H, Nakanishi H, Okada M, Shoji M, Ueda M, Imahori H, Hashida M. Creation of Pure Nanodrugs and Their Anticancer Properties. Angew Chem Int Ed Engl 2012; 51:10315-8. [DOI: 10.1002/anie.201204596] [Citation(s) in RCA: 122] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2012] [Indexed: 11/09/2022]
|
217
|
|
218
|
Alaghaz ANMA, El-Sayad BA, Albohy SAH. Synthesis, Spectroscopic, and Antimicrobial Activity Studies of Novel 10-Substituted Camptothecin Phosphorothioate Analogs. PHOSPHORUS SULFUR 2012. [DOI: 10.1080/10426507.2011.631643] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
|
219
|
Animati F, Berettoni M, Bigioni M, Binaschi M, Cipollone A, Irrissuto C, Nardelli F, Olivieri L. Synthesis and biological evaluation of rebeccamycin analogues modified at the imide moiety. Bioorg Med Chem Lett 2012; 22:5013-7. [PMID: 22749423 DOI: 10.1016/j.bmcl.2012.06.016] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2012] [Revised: 06/06/2012] [Accepted: 06/07/2012] [Indexed: 11/19/2022]
Abstract
Glycosylated indolocarbazoles related to the antibiotic rebeccamycin represent an important class of antitumour drugs. In the course of our structure-activity relationship studies, new rebeccamycin analogues modified at the imide moiety were synthesised. The antiproliferative activity of the compounds was evaluated on three human cancer cell lines, A2780 (ovarian cancer), H460 (lung cancer), and GLC4 (small-cell lung cancer). The in vitro cytotoxicity of compounds 2 and 4, characterised respectively by a 1,3-dioxolan and (1,3-dioxolan-4-yl)methylene groups linked to the imide moiety, was higher than the reference compound, edotecarin. The effect of compound 2 in inducing tumour regression in the A2780 xenograft model was also investigated.
Collapse
Affiliation(s)
- Fabio Animati
- Menarini Ricerche Pomezia, via Tito Speri 10, 00040 Pomezia (Rome), Italy
| | | | | | | | | | | | | | | |
Collapse
|
220
|
Nguyen TX, Morrell A, Conda-Sheridan M, Marchand C, Agama K, Bermingam A, Stephen AG, Chergui A, Naumova A, Fisher R, O’Keefe BR, Pommier Y, Cushman M. Synthesis and biological evaluation of the first dual tyrosyl-DNA phosphodiesterase I (Tdp1)-topoisomerase I (Top1) inhibitors. J Med Chem 2012; 55:4457-78. [PMID: 22536944 PMCID: PMC3350798 DOI: 10.1021/jm300335n] [Citation(s) in RCA: 76] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
Substances with dual tyrosyl-DNA phosphodiesterase I-topoisomerase I inhibitory activity in one low molecular weight compound would constitute a unique class of anticancer agents that could potentially have significant advantages over drugs that work against the individual enzymes. The present study demonstrates the successful synthesis and evaluation of the first dual Top1-Tdp1 inhibitors, which are based on the indenoisoquinoline chemotype. One bis(indenoisoquinoline) had significant activity against human Tdp1 (IC(50) = 1.52 ± 0.05 μM), and it was also equipotent to camptothecin as a Top1 inhibitor. Significant insights into enzyme-drug interactions were gained via structure-activity relationship studies of the series. The present results also document the failure of the previously reported sulfonyl ester pharmacophore to confer Tdp1 inhibition in this indenoisoquinoline class of inhibitors even though it was demonstrated to work well for the steroid NSC 88915 (7). The current study will facilitate future efforts to optimize dual Top1-Tdp1 inhibitors.
Collapse
Affiliation(s)
- Trung Xuan Nguyen
- Department of Medicinal Chemistry and Molecular Pharmacology, College of Pharmacy, and the Purdue Center for Cancer Research, Purdue University, West Lafayette, Indiana 47907
| | - Andrew Morrell
- Department of Medicinal Chemistry and Molecular Pharmacology, College of Pharmacy, and the Purdue Center for Cancer Research, Purdue University, West Lafayette, Indiana 47907
| | - Martin Conda-Sheridan
- Department of Medicinal Chemistry and Molecular Pharmacology, College of Pharmacy, and the Purdue Center for Cancer Research, Purdue University, West Lafayette, Indiana 47907
| | - Christophe Marchand
- Laboratory of Molecular Pharmacology, Center for Cancer Research, National Cancer Institute, Bethesda, Maryland 20892-4255
| | - Keli Agama
- Laboratory of Molecular Pharmacology, Center for Cancer Research, National Cancer Institute, Bethesda, Maryland 20892-4255
| | - Alun Bermingam
- Molecular Targets Laboratory, Center for Cancer Research, National Cancer Institute, NCI-Frederick, Frederick, Maryland 217023
| | - Andrew G. Stephen
- Protein Chemistry Laboratory, Advanced Technology Program, SAIC-Frederick, Inc., NCI-Frederick, Frederick, Maryland 21702
| | - Adel Chergui
- Laboratory of Molecular Pharmacology, Center for Cancer Research, National Cancer Institute, Bethesda, Maryland 20892-4255
| | - Alena Naumova
- Laboratory of Molecular Pharmacology, Center for Cancer Research, National Cancer Institute, Bethesda, Maryland 20892-4255
| | - Robert Fisher
- Protein Chemistry Laboratory, Advanced Technology Program, SAIC-Frederick, Inc., NCI-Frederick, Frederick, Maryland 21702
| | - Barry R. O’Keefe
- Molecular Targets Laboratory, Center for Cancer Research, National Cancer Institute, NCI-Frederick, Frederick, Maryland 217023
| | - Yves Pommier
- Laboratory of Molecular Pharmacology, Center for Cancer Research, National Cancer Institute, Bethesda, Maryland 20892-4255
| | - Mark Cushman
- Department of Medicinal Chemistry and Molecular Pharmacology, College of Pharmacy, and the Purdue Center for Cancer Research, Purdue University, West Lafayette, Indiana 47907
| |
Collapse
|
221
|
Amna T, Hassan MS, Nam KT, Bing YY, Barakat NAM, Khil MS, Kim HY. Preparation, characterization, and cytotoxicity of CPT/Fe₂O₃-embedded PLGA ultrafine composite fibers: a synergistic approach to develop promising anticancer material. Int J Nanomedicine 2012; 7:1659-70. [PMID: 22615530 PMCID: PMC3357050 DOI: 10.2147/ijn.s24467] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
The aim of this study was to fabricate camptothecin/iron(III) oxide (CPT/Fe2O3)-loaded poly(D,L-lactide-co-glycolide) (PLGA) composite mats to modulate the CPT release and to improve the structural integrity and antitumor activity of the released drug. The CPT/Fe2O3-loaded PLGA ultrafine fibers were prepared for the first time by electrospinning a composite solution of CPT/Fe2O3 and neat PLGA (4 weight percent). The physicochemical characterization of the electrospun composite mat was carried out by scanning electron microscopy, energy dispersive X-ray spectroscopy, electron probe microanalysis, thermogravimetry, transmission electron microscopy, ultraviolet-visible spectroscopy, and X-ray diffraction pattern. The medicated composite fibers were evaluated for their cytotoxicity on C2C12 cells using Cell Counting Kit-8 assay (Sigma-Aldrich Corporation, St Louis, MO). The in vitro studies indicated a slow and prolonged release over a period of 96 hours with mild initial burst. Scanning electron microscopy, thermogravimetry, and X-ray diffraction studies confirmed the interaction of CPT/Fe2O3 with the PLGA matrix and showed that the crystallinity of CPT decreased after loading. Incorporation of CPT in the polymer media affected both the morphology and the size of the CPT/Fe2O3-loaded PLGA composite fibers. Electron probe microanalysis and energy dispersive X-ray spectroscopy results confirmed well-oriented composite ultrafine fibers with good incorporation of CPT/Fe2O3. The cytotoxicity results illustrate that the pristine PLGA did not exhibit noteworthy cytotoxicity; conversely, the CPT/Fe2O3 composite fibers inhibited C2C12 cells significantly. Thus, the current work demonstrates that the CPT/Fe2O3-loaded PLGA composite fibers represent a promising chemotherapeutic system for enhancing anticancer drug efficacy and selectively targeting cancer cells in order to treat diverse cancers.
Collapse
Affiliation(s)
- Touseef Amna
- Center for Healthcare Technology Development, Chonbuk National University, Jeonju, Korea
| | | | | | | | | | | | | |
Collapse
|
222
|
Ishikawa T, Krzysko KA, Kowalska-Loth B, Skrajna AM, Czubaty A, Girstun A, Cieplak MK, Lesyng B, Staron K. Activities of topoisomerase I in its complex with SRSF1. Biochemistry 2012; 51:1803-16. [PMID: 22320324 DOI: 10.1021/bi300043t] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Human DNA topoisomerase I (topo I) catalyzes DNA relaxation and phosphorylates SRSF1. Whereas the structure of topo I complexed with DNA has been resolved, the structure of topo I in the complex with SRSF1 and structural determinants of topo I activities in this complex are not known. The main obstacle to resolving the structure is a contribution of unfolded domains of topo I and SRSF1 in formation of the complex. To overcome this difficulty, we employed a three-step strategy: identifying the interaction regions, modeling the complex, and validating the model with biochemical methods. The binding sites in both topo I and SRSF1 are localized in the structured regions as well as in the unfolded domains. One observes cooperation between the binding sites in topo I but not in SRSF1. Our results indicate two features of the unfolded RS domain of SRSF1 containing phosphorylated residues that are critical for the kinase activity of topo I: its spatial arrangement relative to topo I and the organization of its sequence. The efficiency of phosphorylation of SRSF1 depends on the length and flexibility of the spacer between the two RRM domains that uniquely determine an arrangement of the RS domain relative to topo I. The spacer also influences inhibition of DNA nicking, a prerequisite for DNA relaxation. To be phosphorylated, the RS domain has to include a short sequence recognized by topo I. A lack of this sequence in the mutants of SRSF1 or its spatial inaccessibility in SRSF9 makes them inadequate as topo I/kinase substrates.
Collapse
Affiliation(s)
- Takao Ishikawa
- Institute of Biochemistry, University of Warsaw, Miecznikowa 1, 02-096 Warsaw, Poland
| | | | | | | | | | | | | | | | | |
Collapse
|
223
|
Perriches T, Singleton MR. Structure of yeast kinetochore Ndc10 DNA-binding domain reveals unexpected evolutionary relationship to tyrosine recombinases. J Biol Chem 2012; 287:5173-9. [PMID: 22215672 PMCID: PMC3281669 DOI: 10.1074/jbc.c111.318501] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2011] [Revised: 12/21/2011] [Indexed: 11/06/2022] Open
Abstract
We have solved the x-ray structure of the N-terminal half of the yeast kinetochore protein Ndc10 at 1.9 Å resolution. This essential protein is a key constituent of the budding yeast centromere and is essential for the recruitment of the centromeric nucleosome and establishment of the kinetochore. The fold of the protein shows unexpected similarities to the tyrosine recombinase/λ-integrase family of proteins, most notably Cre, with some variation in the relative position of the subdomains. This finding offers new insights into kinetochore evolution and the adaptation of a well studied protein fold to a novel role. By comparison with tyrosine recombinases and mutagenesis studies, we have been able to define some of the key DNA-binding motifs.
Collapse
Affiliation(s)
- Thibaud Perriches
- From the Macromolecular Structure and Function Laboratory, Cancer Research UK London Research Institute, 44 Lincoln's Inn Fields, London WC2A 3LY, United Kingdom
| | - Martin R. Singleton
- From the Macromolecular Structure and Function Laboratory, Cancer Research UK London Research Institute, 44 Lincoln's Inn Fields, London WC2A 3LY, United Kingdom
| |
Collapse
|
224
|
Role of Flexibility in Protein-DNA-Drug Recognition: The Case of Asp677Gly-Val703Ile Topoisomerase Mutant Hypersensitive to Camptothecin. JOURNAL OF AMINO ACIDS 2012; 2012:206083. [PMID: 22315664 PMCID: PMC3270393 DOI: 10.1155/2012/206083] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/11/2011] [Accepted: 10/07/2011] [Indexed: 11/17/2022]
Abstract
Topoisomerases I are ubiquitous enzymes that control DNA topology within the cell. They are the unique target of the antitumor drug camptothecin that selectively recognizes the DNA-topoisomerase covalent complex and reversibly stabilizes it. The biochemical and structural-dynamical properties of the Asp677Gly-Val703Ile double mutant with enhanced CPT sensitivity have been investigated. The mutant displays a lower religation rate of the DNA substrate when compared to the wild-type protein. Analyses of the structural dynamical properties by molecular dynamics simulation show that the mutant has reduced flexibility and an active site partially destructured at the level of the Lys532 residue. These results demonstrate long-range communication mechanism where reduction of the linker flexibility alters the active site geometry with the consequent lowering of the religation rate and increase in drug sensitivity.
Collapse
|
225
|
Perego P, Cossa G, Tinelli S, Corna E, Carenini N, Gatti L, De Cesare M, Ciusani E, Zunino F, Luison E, Canevari S, Zaffaroni N, Beretta GL. Role of tyrosyl-DNA phosphodiesterase 1 and inter-players in regulation of tumor cell sensitivity to topoisomerase I inhibition. Biochem Pharmacol 2012; 83:27-36. [DOI: 10.1016/j.bcp.2011.09.021] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2011] [Revised: 09/15/2011] [Accepted: 09/19/2011] [Indexed: 11/30/2022]
|
226
|
Vos SM, Tretter EM, Schmidt BH, Berger JM. All tangled up: how cells direct, manage and exploit topoisomerase function. Nat Rev Mol Cell Biol 2011; 12:827-41. [PMID: 22108601 DOI: 10.1038/nrm3228] [Citation(s) in RCA: 495] [Impact Index Per Article: 35.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Topoisomerases are complex molecular machines that modulate DNA topology to maintain chromosome superstructure and integrity. Although capable of stand-alone activity in vitro, topoisomerases are frequently linked to larger pathways and systems that resolve specific DNA superstructures and intermediates arising from cellular processes such as DNA repair, transcription, replication and chromosome compaction. Topoisomerase activity is indispensible to cells, but requires the transient breakage of DNA strands. This property has been exploited, often for significant clinical benefit, by various exogenous agents that interfere with cell proliferation. Despite decades of study, surprising findings involving topoisomerases continue to emerge with respect to their cellular function, regulation and utility as therapeutic targets.
Collapse
Affiliation(s)
- Seychelle M Vos
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, California 94720, USA
| | | | | | | |
Collapse
|
227
|
Yoshizaki A, Yanaba K, Ogawa A, Asano Y, Kadono T, Sato S. Immunization with DNA topoisomerase I and Freund's complete adjuvant induces skin and lung fibrosis and autoimmunity via interleukin-6 signaling. ACTA ACUST UNITED AC 2011; 63:3575-85. [DOI: 10.1002/art.30539] [Citation(s) in RCA: 65] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
228
|
Zhang X, Wang R, Zhao L, Lu N, Wang J, You Q, Li Z, Guo Q. Synthesis and biological evaluations of novel indenoisoquinolines as topoisomerase I inhibitors. Bioorg Med Chem Lett 2011; 22:1276-81. [PMID: 22079759 DOI: 10.1016/j.bmcl.2011.10.019] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2011] [Revised: 10/04/2011] [Accepted: 10/07/2011] [Indexed: 01/02/2023]
Abstract
A series of novel indenoisoquinoline derivatives were synthesized. The anticancer activities of these molecules were tested in human cancer cell lines A549, HepG2, and HCT-116. These compounds were also tested for their activity of topoisomerase I (top1) inhibition. Among them, compound 25 was found to be 10-times more potent in cell-killing activity for both cell lines HepG2 and HCT-116 than reported compound 11, with IC(50) of 0.019 and 0.093μM, respectively. Compound 25 was also found to have stronger top1 inhibition activity than 11 in our inhibition assay. Further in vivo evaluations of compound 25 are in progress and will be reported in due course.
Collapse
Affiliation(s)
- Xiaoyun Zhang
- Department of Medicinal Chemistry, Jiangsu Key Laboratory of Carcinogenesis and Intervention, China Pharmaceutical University, 24 Tongjiaxiang, Nanjing 210009, People's Republic of China
| | | | | | | | | | | | | | | |
Collapse
|
229
|
Wang C, Xu R, Tian W, Jiang X, Cui Z, Wang M, Sun H, Fang K, Gu N. Determining intracellular temperature at single-cell level by a novel thermocouple method. Cell Res 2011; 21:1517-9. [PMID: 21788987 PMCID: PMC3193458 DOI: 10.1038/cr.2011.117] [Citation(s) in RCA: 71] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Affiliation(s)
- Changling Wang
- School of Biological Science and Medical Engineering, Jiangsu Laboratory for Biomaterials and Devices, State Key Laboratory of BioElectronics, Southeast University, Nanjing 210009, China
| | - Ruizhi Xu
- Jiangsu Institute of Metrology, Nanjing 210007, China
| | - Wenjuan Tian
- School of Biological Science and Medical Engineering, Jiangsu Laboratory for Biomaterials and Devices, State Key Laboratory of BioElectronics, Southeast University, Nanjing 210009, China
| | - Xiaoli Jiang
- School of Biological Science and Medical Engineering, Jiangsu Laboratory for Biomaterials and Devices, State Key Laboratory of BioElectronics, Southeast University, Nanjing 210009, China
| | - Zhengyu Cui
- School of Biological Science and Medical Engineering, Jiangsu Laboratory for Biomaterials and Devices, State Key Laboratory of BioElectronics, Southeast University, Nanjing 210009, China
| | - Meng Wang
- School of Biological Science and Medical Engineering, Jiangsu Laboratory for Biomaterials and Devices, State Key Laboratory of BioElectronics, Southeast University, Nanjing 210009, China
| | - Huaming Sun
- School of Biological Science and Medical Engineering, Jiangsu Laboratory for Biomaterials and Devices, State Key Laboratory of BioElectronics, Southeast University, Nanjing 210009, China
| | - Kun Fang
- School of Biological Science and Medical Engineering, Jiangsu Laboratory for Biomaterials and Devices, State Key Laboratory of BioElectronics, Southeast University, Nanjing 210009, China
| | - Ning Gu
- School of Biological Science and Medical Engineering, Jiangsu Laboratory for Biomaterials and Devices, State Key Laboratory of BioElectronics, Southeast University, Nanjing 210009, China
| |
Collapse
|
230
|
Fukui T, Mitsufuji H, Kubota M, Inaoka H, Hirose M, Iwabuchi K, Masuda N, Kobayashi H. Prevalence of topoisomerase I genetic mutations and UGT1A1 polymorphisms associated with irinotecan in individuals of Asian descent. Oncol Lett 2011; 2:923-928. [PMID: 22866151 DOI: 10.3892/ol.2011.346] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2011] [Accepted: 06/17/2011] [Indexed: 12/31/2022] Open
Abstract
Topoisomerase I (TOP-I) mutations have been shown to be correlated to irinotecan resistance in vitro. However, the prevalence of TOP-I germline mutations has yet to be systematically elucidated. On the other hand, polymorphisms of UGT1A1 have been shown to be associated with CPT-11 toxicity in clinical situations. The primary aim of this study was to investigate the prevalence of mutations in the TOP-I exons associated with CPT-11 resistance, including untreated cancer tissue. A secondary aim was to confirm the less frequent UGT1A1*28 and more frequent UGT1A1*6 in individuals of Asian descent compared to Caucasians and individuals of African descent. The prevalence of 5 reported TOP-I mutations in exons was investigated in volunteers (n=236) using DNA sequencing of the PCR products. The prevalence of TOP-I mutations in untreated lung cancer tissues (n=16) was also investigated. Additionally, 3 UGT1A1 polymorphisms, UGT1A1*6, *27 and *28, were investigated in volunteers (n=126). There were no mutations of TOP-I in any of the 236 subjects or in the untreated lung tissues. Among 128 subjects, the distribution of homozygous polymorphisms of UGT1A1 was: UGT1A1*28 in 3 (2.4%) and UGT1A1*6 in 4 (3.2%) subjects, and co-occurrence of heterozygous polymorphisms for both UGT1A1*6 and UGT1A1*28 in 4 (3.2%) subjects, and for UGT1A1*27 and UGT1A1*28 in 1 subject (0.8%). The Hardy-Weinberg deviation test showed there was no significant deviation from the equilibrium, and the association analysis indicated no significant linkage between UGT1A1*6 and UGT1A1*28. In conclusion, TOP-I genetic mutations correlated to CPT-11 resistance were not detected in any of the subjects and untreated lung cancer tissues. Less frequent UGT1A1*28 and more frequent UGT1A1*6 were confirmed in East Asian individuals compared to Caucasians and individuals of African descent. Linkage disequilibrium was not detected between UGT1A1*6 and UGT1A1*28.
Collapse
Affiliation(s)
- Tomoya Fukui
- Department of Respiratory Medicine, School of Medicine, Kitasato University, Kanagawa 252-0373, Japan
| | | | | | | | | | | | | | | |
Collapse
|
231
|
Evaluation of two models for human topoisomerase I interaction with dsDNA and camptothecin derivatives. PLoS One 2011; 6:e24314. [PMID: 21912628 PMCID: PMC3166174 DOI: 10.1371/journal.pone.0024314] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2011] [Accepted: 08/04/2011] [Indexed: 11/19/2022] Open
Abstract
Human topoisomerase I (Top1) relaxes supercoiled DNA during cell division. Camptothecin stabilizes Top1/dsDNA covalent complexes which ultimately results in cell death, and this makes Top1 an anti-cancer target. There are two current models for how camptothecin and derivatives bind to Top1/dsDNA covalent complexes (Staker, et al., 2002, Proc Natl Acad Sci USA 99: 15387–15392; and Laco, et al., 2004, Bioorg Med Chem 12: 5225–5235). The interaction energies between bound camptothecin, and derivatives, and Top1/dsDNA in the two models were calculated. The published structure-activity-relationships for camptothecin and derivatives correlated with the interaction energies for camptothecin and derivatives in the Laco et al. model, however, this was not the case for several camptothecin derivatives in the Stacker et al. model. By defining the binding orientation of camptothecin and derivatives in the Top1/dsDNA active-site these results allow for the rational design of potentially more efficacious camptothecin derivatives.
Collapse
|
232
|
Marchand C, Pommier Y. Topoisomerases Inhibitors: A Paradigm for Interfacial Inhibition. ACTA ACUST UNITED AC 2011. [DOI: 10.1007/978-1-4614-0323-4_9] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/19/2023]
|
233
|
Lillian TD, Taranova M, Wereszczynski J, Andricioaei I, Perkins NC. A multiscale dynamic model of DNA supercoil relaxation by topoisomerase IB. Biophys J 2011; 100:2016-23. [PMID: 21504738 DOI: 10.1016/j.bpj.2011.03.003] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2010] [Revised: 03/04/2011] [Accepted: 03/14/2011] [Indexed: 11/28/2022] Open
Abstract
In this study, we report what we believe to be the first multiscale simulation of the dynamic relaxation of DNA supercoils by human topoisomerase IB (topo IB). We leverage our previous molecular dynamics calculations of the free energy landscape describing the interaction between a short DNA fragment and topo IB. Herein, this landscape is used to prescribe boundary conditions for a computational, elastodynamic continuum rod model of a long length of supercoiled DNA. The rod model, which accounts for the nonlinear bending, twisting, and electrostatic interaction of the (negatively charged) DNA backbone, is extended to include the hydrodynamic drag induced by the surrounding physiological buffer. Simulations for a 200-bp-long DNA supercoil in complex with topo IB reveal a relaxation timescale of ∼0.1-1.0 μs. The relaxation follows a sequence of cascading reductions in the supercoil linking number (Lk), twist (Tw), and writhe (Wr) that follow companion cascading reductions in the supercoil elastic and electrostatic energies. The novel (to our knowledge) multiscale modeling method may enable simulations of the entire experimental setup that measures DNA supercoiling and relaxation via single molecule magnetic trapping.
Collapse
Affiliation(s)
- Todd D Lillian
- Department of Mechanical Engineering, Texas Tech University, Lubbock, Texas, USA
| | | | | | | | | |
Collapse
|
234
|
Kiselev E, DeGuire S, Morrell A, Agama K, Dexheimer TS, Pommier Y, Cushman M. 7-azaindenoisoquinolines as topoisomerase I inhibitors and potential anticancer agents. J Med Chem 2011; 54:6106-16. [PMID: 21823606 DOI: 10.1021/jm200719v] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
A series of 7-azaindenoisoquinoline topoisomerase I (Top1) inhibitors have been prepared to investigate the effect of increased electron affinity of the aromatic system on the ability to stabilize the Top1-DNA cleavage complex. Ab initio calculations suggest that introduction of nitrogen into the aromatic system of the indenoisoquinolines would facilitate charge transfer complex formation with DNA, thus improving the π-π stacking interactions. The present study shows that 7-azaindenoisoquinolines demonstrate improved water solubility without any decrease in Top1 inhibitory activity or cytotoxicity. Analysis of the biological results reveals that smaller lactam ring substituents enable intercalation into both free DNA and Top1-DNA cleavage complex, whereas larger substituents only allow binding to the cleavage complex but not free DNA. Free DNA binding suppresses Top1-catalyzed DNA cleavage at high drug concentrations, whereas DNA cleavage and inhibition of religation occurs at low drug concentration.
Collapse
Affiliation(s)
- Evgeny Kiselev
- Department of Medicinal Chemistry and Molecular Pharmacology, College of Pharmacy, and The Purdue Center for Cancer Research, Purdue University, West Lafayette, Indiana 47907, USA
| | | | | | | | | | | | | |
Collapse
|
235
|
Interthal H, Champoux JJ. Effects of DNA and protein size on substrate cleavage by human tyrosyl-DNA phosphodiesterase 1. Biochem J 2011; 436:559-66. [PMID: 21463258 PMCID: PMC3151729 DOI: 10.1042/bj20101841] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
TDP (tyrosyl-DNA phosphodiesterase) 1 catalyses the hydrolysis of phosphodiester linkages between a DNA 3' phosphate and a tyrosine residue as well as a variety of other DNA 3' substituents, and has been implicated in the repair of covalent complexes involving eukaryotic type IB topoisomerases. To better understand the substrate features that are recognized by TDP1, the size of either the DNA or protein component of the substrate was varied. Competition experiments and gel-shift analyses comparing a series of substrates with DNA lengths increasing from 6 to 28 nt indicated that, contrary to predictions based on the crystal structure of the protein, the apparent affinity for the substrate increased as the DNA length was increased over the entire range tested. It has been found previously that a substrate containing the full-length native form of human topoisomerase I protein is not cleaved by TDP1. Protein-oligonucleotide complexes containing either a 53 or 108 amino acid topoisomerase I-derived peptide were efficiently cleaved by TDP1, but similar to the full-length protein, a substrate containing a 333 amino acid topoisomerase I fragment was resistant to cleavage. Consistent with these results, evidence is presented that processing by the proteasome is required for TDP1 cleavage in vivo.
Collapse
Affiliation(s)
- Heidrun Interthal
- Department of Microbiology, School of Medicine, Box 357242 University of Washington, Seattle, Washington, 98195 USA
| | - James J. Champoux
- Department of Microbiology, School of Medicine, Box 357242 University of Washington, Seattle, Washington, 98195 USA
| |
Collapse
|
236
|
Roy A, D'Annessa I, Nielsen CJF, Tordrup D, Laursen RR, Knudsen BR, Desideri A, Andersen FF. Peptide Inhibition of Topoisomerase IB from Plasmodium falciparum. Mol Biol Int 2011; 2011:854626. [PMID: 22091414 PMCID: PMC3200115 DOI: 10.4061/2011/854626] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2010] [Accepted: 03/03/2011] [Indexed: 11/21/2022] Open
Abstract
Control of diseases inflicted by protozoan parasites such as Leishmania, Trypanosoma, and Plasmodium, which pose a serious threat to human health worldwide, depends on a rather small number of antiparasite drugs, of which many are toxic and/or inefficient. Moreover, the increasing occurrence of drug-resistant parasites emphasizes the need for new and effective antiprotozoan drugs. In the current study, we describe a synthetic peptide, WRWYCRCK, with inhibitory effect on the essential enzyme topoisomerase I from the malaria-causing parasite Plasmodium falciparum. The peptide inhibits specifically the transition from noncovalent to covalent DNA binding of P. falciparum topoisomerase I, while it does not affect the ligation step of catalysis. A mechanistic explanation for this inhibition is provided by molecular docking analyses. Taken together the presented results suggest that synthetic peptides may represent a new class of potential antiprotozoan drugs.
Collapse
Affiliation(s)
- Amit Roy
- Department of Molecular Biology and Interdisciplinary Nanoscience Center (iNANO), Aarhus University, C.F. Møllers Allé 3, Building 1130, 8000 Aarhus C, Denmark
| | | | | | | | | | | | | | | |
Collapse
|
237
|
Ullrich S, Nazir Z, Büsing A, Scheffer U, Wirth D, Bats JW, Dürner G, Göbel MW. Cleavage of phosphodiesters and of DNA by a bis(guanidinium)naphthol acting as a metal-free anion receptor. Chembiochem 2011; 12:1223-9. [PMID: 21500334 DOI: 10.1002/cbic.201100022] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2011] [Indexed: 11/07/2022]
Abstract
Phosphoric acid diesters form anions at neutral pH. As a result of charge repulsion they are notoriously resistant to hydrolysis. Nucleophilic attack, however, can be promoted by different types of electrophilic catalysts that bind to the anions and reduce their negative charge density. Although in most cases phosphodiester-cleaving enzymes and synthetic catalysts rely on Lewis acidic metal ions, some exploit the guanidinium residues of arginine as metal-free electrophiles. Here we report that a combination of two guanidines and a hydroxy group yields highly reactive receptor molecules that can attack a broad range of phosphodiester substrates by nucleophilic displacement at phosphorus in a single-turnover mode. Some stable O-phosphates were isolated and characterized further by NMR spectroscopy. The bis(guanidinium)naphthols also cleave plasmid DNA, presumably by a transphosphorylation mechanism.
Collapse
Affiliation(s)
- Stefan Ullrich
- Institut für Organische Chemie und Chemische Biologie, Johann Wolfgang Goethe-Universität Frankfurt, Frankfurt am Main, Germany
| | | | | | | | | | | | | | | |
Collapse
|
238
|
Crystal structure of a covalent intermediate in DNA cleavage and rejoining by Escherichia coli DNA topoisomerase I. Proc Natl Acad Sci U S A 2011; 108:6939-44. [PMID: 21482796 DOI: 10.1073/pnas.1100300108] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
DNA topoisomerases control DNA topology by breaking and rejoining DNA strands via covalent complexes with cleaved DNA substrate as catalytic intermediates. Here we report the structure of Escherichia coli topoisomerase I catalytic domain (residues 2-695) in covalent complex with a cleaved single-stranded oligonucleotide substrate, refined to 2.3-Å resolution. The enzyme-substrate intermediate formed after strand cleavage was captured due to the presence of the D111N mutation. This structure of the covalent topoisomerase-DNA intermediate, previously elusive for type IA topoisomerases, shows distinct conformational changes from the structure of the enzyme without bound DNA and provides detailed understanding of the covalent catalysis required for strand cleavage to take place. The portion of cleaved DNA 5' to the site of cleavage is anchored tightly with extensive noncovalent protein-DNA interactions as predicted by the "enzyme-bridged" model. Distortion of the scissile strand at the -4 position 5' to the cleavage site allows specific selectivity of a cytosine base in the binding pocket. Many antibacterial and anticancer drugs initiate cell killing by trapping the covalent complexes formed by topoisomerases. We have demonstrated in previous mutagenesis studies that accumulation of the covalent complex of bacterial topoisomerase I is bactericidal. This structure of the covalent intermediate provides the basis for the design of novel antibiotics that can trap the enzyme after formation of the covalent complex.
Collapse
|
239
|
Toward new camptothecins. Part 7: Synthesis of thioluotonin and its 5-methoxycarbonyl derivative. Tetrahedron Lett 2011. [DOI: 10.1016/j.tetlet.2011.01.105] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
|
240
|
Shuai L, Deng M, Zhang D, Zhou Y, Zhou X. Quadruplex-duplex motifs as new topoisomerase I inhibitors. NUCLEOSIDES NUCLEOTIDES & NUCLEIC ACIDS 2011; 29:841-53. [PMID: 21128171 DOI: 10.1080/15257770.2010.530635] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
In this article, 13 short chains that can form G-quadruplex and quadruplex-duplex motif have been designed. Fourteen oligonucleotides, including 13 short chains as well as a reference short chain all have certain level of inhibition to topoisomerase I, whether or not they form G-quadruplex and quadruplex-duplex motif, and the G-quadruplex and quadruplex-duplex motif show better activity than single short chain. The result confirmed that after forming G-quadruplex and quadruplex-duplex motif these 14 oligonucleotides are competitive inhibition, that is, through the priority binding with the topoisomerase I and precluding from its binding with the normal substrate pBR322 and, therefore, inhibiting the next reaction.
Collapse
Affiliation(s)
- Li Shuai
- College of Pharmacy, South-Central University for Nationalities, Hubei, Wuhan, P. R. China.
| | | | | | | | | |
Collapse
|
241
|
Chen YA, Kuo HC, Chen YM, Huang SY, Liu YR, Lin SC, Yang HL, Chen TY. A gene delivery system based on the N-terminal domain of human topoisomerase I. Biomaterials 2011; 32:4174-84. [PMID: 21406310 DOI: 10.1016/j.biomaterials.2011.02.041] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2011] [Accepted: 02/19/2011] [Indexed: 02/07/2023]
Abstract
The N-terminal 200 amino acid residues of topoisomerase I (TopoN) is highly positive in charge and has DNA binding activity, without DNA sequence and topological specificity. Here, a fusion protein (6 x His-PTD-TopoN) containing a hexahistidine (6 x His) tag, a membrane penetration domain and TopoN (amino acid 3-200) was designed and developed. The protein can bind to different sizes (3.0-8.0 kb) and forms (circular and linear) of DNA and translocates the bound DNA to the nucleus. The protein also showed low cytotoxicity to GF-1 grouper fish fin cells that were previously very sensitive and difficult to transfect in vitro. Maintaining the hexahistidine tag increased the protein's transfection efficiency in COS7 African green monkey kidney cells and simplified the purification process. The plasmid pEGFP-N1 was delivered into COS7 cells by the protein in ATP- and temperature-dependent manners. The results indicate that the binding ability of TopoN is very useful for DNA delivery and the carrier protein can be expressed in Escherichia coli without removal of the hexahistidine tag.
Collapse
Affiliation(s)
- Yi-An Chen
- Laboratory of Molecular Genetics, Institute of Biotechnology, College of Bioscience and Biotechnology, National Cheng Kung University, Tainan 70101, Taiwan
| | | | | | | | | | | | | | | |
Collapse
|
242
|
Abstract
Nucleases cleave the phosphodiester bonds of nucleic acids and may be endo or exo, DNase or RNase, topoisomerases, recombinases, ribozymes, or RNA splicing enzymes. In this review, I survey nuclease activities with known structures and catalytic machinery and classify them by reaction mechanism and metal-ion dependence and by their biological function ranging from DNA replication, recombination, repair, RNA maturation, processing, interference, to defense, nutrient regeneration or cell death. Several general principles emerge from this analysis. There is little correlation between catalytic mechanism and biological function. A single catalytic mechanism can be adapted in a variety of reactions and biological pathways. Conversely, a single biological process can often be accomplished by multiple tertiary and quaternary folds and by more than one catalytic mechanism. Two-metal-ion-dependent nucleases comprise the largest number of different tertiary folds and mediate the most diverse set of biological functions. Metal-ion-dependent cleavage is exclusively associated with exonucleases producing mononucleotides and endonucleases that cleave double- or single-stranded substrates in helical and base-stacked conformations. All metal-ion-independent RNases generate 2',3'-cyclic phosphate products, and all metal-ion-independent DNases form phospho-protein intermediates. I also find several previously unnoted relationships between different nucleases and shared catalytic configurations.
Collapse
Affiliation(s)
- Wei Yang
- Laboratory of Molecular Biology, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, 9000 Rockville Pike, Bldg. 5, Rm B1-03, Bethesda, MD 20892, USA.
| |
Collapse
|
243
|
Park JE, Kim HI, Park JW, Park JK, Lee JS. Cloning and biochemical characterization of Staphylococcus aureus type IA DNA topoisomerase comprised of distinct five domains. Arch Biochem Biophys 2011; 508:78-86. [PMID: 21281597 DOI: 10.1016/j.abb.2011.01.016] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2010] [Revised: 01/20/2011] [Accepted: 01/24/2011] [Indexed: 11/30/2022]
Abstract
DNA topoisomerases play critical roles in regulating DNA topology and are essential enzymes for cell survival. In this study, a gene encoding type IA DNA topoisomerase was cloned from Staphylococcus aureus (S. aureus) sp. strain C-66, and the biochemical properties of recombinant enzyme was characterized. The nucleotide sequence analysis showed that the cloned gene contained an open reading frame (2070 bp) that could encode a polypeptide of 689 amino acids. The cloned gene actually produced 79.1 kDa functional enzyme (named Sau-TopoI) in Escherichia coli (E. coli). Sau-TopoI enzyme purified from E. coli showed ATP-independent and Mg(2+)-dependent manners for relaxing negatively supercoiled DNA. The relaxation activity of Sau-TopoI was inhibited by camptothecin, but not by nalidixic acid and etoposide. Cleavage site mapping showed that the enzyme could preferentially bind to and cleave the sequence GGNN↓CAT (N and ↓ represent any nucleotide and cleavage site, respectively). All these results suggest that the purified enzyme is type IA DNA topoisomerase. In addition, domain mapping analysis showed that the enzyme was composed of conserved four domains (I through IV), together with a variable C-terminal region containing a unique domain V.
Collapse
Affiliation(s)
- Jung Eun Park
- Department of Biotechnology, Chosun University, Gwangju 501-759, Republic of Korea
| | | | | | | | | |
Collapse
|
244
|
Abstract
This chapter reviews the state-of-the-art in the study of molecular or colloidal systems whose mutual interactions are mediated by DNA molecules. In the last decade, the robust current knowledge of DNA interactions has enabled an impressive growth of self-assembled DNA-based structures that depend crucially on the properties of DNA-DNA interactions. In many cases, structures are built on design by exploiting the programmable selectivity of DNA interactions and the modularity of their strength. The study of DNA-based materials is definitely an emerging field in condensed matter physics, nanotechnology, and material science. This chapter will consider both systems that are entirely constructed by DNA and hybrid systems in which latex or metal colloidal particles are coated by DNA strands. We will confine our discussion to systems in which DNA-mediated interactions promote the formation of "phases," that is structures extending on length scales much larger than the building blocks. Their self-assembly typically involves a large number of interacting particles and often features hierarchical stages of structuring. Because of the possibility of fine-tuning the geometry and strength of the DNA-mediated interactions, these systems are characterized by a wide variety of patterns of self-assembly, ranging from amorphous, to liquid crystalline, to crystalline in one, two, or three dimensions.
Collapse
Affiliation(s)
- Tommaso Bellini
- Dipartimento di Chimica, Biochimica e Biotecnologie per la Medicina, Università degli Studi di Milano, Via F.lli Cervi 93, 20090 Milano, Italy.
| | | | | |
Collapse
|
245
|
Dong G, Sheng C, Wang S, Miao Z, Yao J, Zhang W. Selection of evodiamine as a novel topoisomerase I inhibitor by structure-based virtual screening and hit optimization of evodiamine derivatives as antitumor agents. J Med Chem 2010; 53:7521-31. [PMID: 20942490 DOI: 10.1021/jm100387d] [Citation(s) in RCA: 122] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Human topoisomerase I (TopoI) is recognized as a valuable target for the development of effective antitumor agents. Structure-based virtual screening was applied to the discovery of structurally diverse TopoI inhibitors. From 23 compounds selected by virtual screening, a total of 14 compounds were found to be TopoI inhibitors. Five hits (compounds 1, 14, 20, 21, and 23) also showed moderate to good in vitro antitumor activity. These novel structures can be considered as good starting points for the development of new antitumor lead compounds. Hit 20 (evodiamine) was chosen for preliminary structure-activity relationship studies. Various groups, including alkyl, benzoyl, benzyl and ester, were introduced to the indole nitrogen atom of evodiamine. The substituted benzoyl groups were found to be favorable for the antitumor activity and spectrum. The 4-Cl benzoyl derivative, compound 29u, was the most active one with IC(50) values in the range 0.049-2.6 μM.
Collapse
Affiliation(s)
- Guoqiang Dong
- Department of Medicinal Chemistry, School of Pharmacy, Second Military Medical University, 325 Guohe Road, Shanghai 200433, People's Republic of China
| | | | | | | | | | | |
Collapse
|
246
|
Kiselev E, Dexheimer TS, Pommier Y, Cushman M. Design, synthesis, and evaluation of dibenzo[c,h][1,6]naphthyridines as topoisomerase I inhibitors and potential anticancer agents. J Med Chem 2010; 53:8716-26. [PMID: 21090809 PMCID: PMC3064471 DOI: 10.1021/jm101048k] [Citation(s) in RCA: 56] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Indenoisoquinoline topoisomerase I (Top1) inhibitors are a novel class of anticancer agents. Modifications of the indenoisoquinoline A, B, and D rings have been extensively studied in order to optimize Top1 inhibitory activity and cytotoxicity. To improve understanding of the forces that stabilize drug-Top1-DNA ternary complexes, the five-membered cyclopentadienone C-ring of the indenoisoquinoline system was replaced by six-membered nitrogen heterocyclic rings, resulting in dibenzo[c,h][1,6]naphthyridines that were synthesized by a novel route and tested for Top1 inhibition. This resulted in several compounds that have unique DNA cleavage site selectivities and potent antitumor activities in a number of cancer cell lines.
Collapse
Affiliation(s)
- Evgeny Kiselev
- Department of Medicinal Chemistry and Molecular Pharmacology, School of Pharmacy, and The Purdue Center for Cancer Research, Purdue University, West Lafayette, Indiana 47907, USA
| | | | | | | |
Collapse
|
247
|
Koo OMY, Rubinstein I, Onyüksel H. Actively targeted low-dose camptothecin as a safe, long-acting, disease-modifying nanomedicine for rheumatoid arthritis. Pharm Res 2010; 28:776-87. [PMID: 21132352 DOI: 10.1007/s11095-010-0330-4] [Citation(s) in RCA: 75] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2010] [Accepted: 11/15/2010] [Indexed: 12/28/2022]
Abstract
PURPOSE Camptothecin (CPT), a potent topoisomerase I inhibitor, was originally discovered as an anticancer agent to induce programmed cell death of cancer cells. Recent evidence suggests that, similar to cancer, alterations in apoptosis and over-proliferation of key effector cells in the arthritic joint result in rheumatoid arthritis (RA) pathogenesis. Initial in vitro studies have suggested that camptothecin inhibits synoviocyte proliferation, matrix metalloproteinases expression in chrondrocytes and angiogenesis. This study is one of the first to test, in vivo, RA as a new indication for CPT. METHODS To circumvent insolubility, instability and toxicity of CPT, we used biocompatible, biodegradable and targeted sterically stabilized micelles (SSM) as nanocarriers for CPT (CPT-SSM). We also surface-modified CPT-SSM with vasoactive intestinal peptide (VIP) for active targeting. We then determined whether this nanomedicine abrogated collagen-induced arthritis (CIA) in mice. RESULTS Based on our findings, this is the first study to report that CPT was found to be efficacious against CIA at concentrations significantly lower than usual anti-cancer dose. Furthermore, a single subcutaneous injection of CPT-SSM-VIP (0.1 mg/kg) administered to CIA mice mitigated joint inflammation for at least 32 days thereafter without systemic toxicity. CPT alone needed at least 10-fold higher dose to achieve the same effect, albeit with some vacuolization in liver histology. CONCLUSION We propose that CPT-SSM-VIP is a promising targeted nanomedicine and should be further developed as a safe, long-acting, disease-modifying pharmaceutical product for RA.
Collapse
Affiliation(s)
- Otilia May Yue Koo
- Department of Biopharmaceutical Sciences (M/C 865) College of Pharmacy, University of Illinois at Chicago, 833 South Wood St., Chicago, Illinois 60612-7231, USA.
| | | | | |
Collapse
|
248
|
Abstract
The processes of DNA topoisomerization and site-specific recombination are fundamentally similar: DNA cleavage by forming a phospho-protein covalent linkage, DNA topological rearrangement, and DNA ligation coupled with protein regeneration. Type IB DNA topoisomerases are structurally and mechanistically homologous to tyrosine recombinases. Both enzymes nick DNA double helices independent of metal ions, form 3'-phosphotyrosine intermediates, and rearrange the free 5' ends relative to the uncut strands by swiveling. In contrast, serine recombinases generate 5'-phospho-serine intermediates. A 180° relative rotation of the two halves of a 100 kDa terameric serine recombinase and DNA complex has been proposed as the mechanism of strand exchange. Here I propose an alternative mechanism. Interestingly, the catalytic domain of serine recombinases has structural similarity to the TOPRIM domain, conserved among all Type IA and Type II topoisomerases and responsible for metal binding and DNA cleavage. TOPRIM topoisomerases also cleave DNA to generate 5'-phosphate and 3'-OH groups. Based on the existing biochemical data and crystal structures of topoisomerase II and serine recombinases bound to pre- and post-cleavage DNA, I suggest a strand passage mechanism for DNA recombination by serine recombinases. This mechanism is reminiscent of DNA topoisomerization and does not require subunit rotation.
Collapse
Affiliation(s)
- Wei Yang
- Laboratory of Molecular Biology, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD 20892, USA.
| |
Collapse
|
249
|
Khurana B, Zhuang L, Moitra PK, Stantchev TS, Broder CC, Cutler ML, D'Arpa P. Human TOP1 residues implicated in species specificity of HIV-1 infection are required for interaction with BTBD2, and RNAi of BTBD2 in old world monkey and human cells increases permissiveness to HIV-1 infection. Virol J 2010; 7:332. [PMID: 21092135 PMCID: PMC3002306 DOI: 10.1186/1743-422x-7-332] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2010] [Accepted: 11/20/2010] [Indexed: 11/29/2022] Open
Abstract
BACKGROUND Host determinants of HIV-1 viral tropism include factors from producer cells that affect the efficiency of productive infection and factors in target cells that block infection after viral entry. TRIM5α restricts HIV-1 infection at an early post-entry step through a mechanism associated with rapid disassembly of the retroviral capsid. Topoisomerase I (TOP1) appears to play a role in HIV-1 viral tropism by incorporating into or otherwise modulating virions affecting the efficiency of a post-entry step, as the expression of human TOP1 in African Green Monkey (AGM) virion-producing cells increased the infectivity of progeny virions by five-fold. This infectivity enhancement required human TOP1 residues 236 and 237 as their replacement with the AGM counterpart residues abolished the infectivity enhancement. Our previous studies showed that TOP1 interacts with BTBD1 and BTBD2, two proteins which co-localize with the TRIM5α splice variant TRIM5δ in cytoplasmic bodies. Because BTBD1 and BTBD2 interact with one HIV-1 viral tropism factor, TOP1, and co-localize with a splice variant of another, we investigated the potential involvement of BTBD1 and BTBD2 in HIV-1 restriction. RESULTS We show that the interaction of BTBD1 and BTBD2 with TOP1 requires hu-TOP1 residues 236 and 237, the same residues required to enhance the infectivity of progeny virions when hu-TOP1 is expressed in AGM producer cells. Additionally, interference with the expression of BTBD2 in AGM and human 293T target cells increased their permissiveness to HIV-1 infection two- to three-fold. CONCLUSIONS These results do not exclude the possibility that BTBD2 may modestly restrict HIV-1 infection via colocation with TRIM5 variants in cytoplasmic bodies.
Collapse
Affiliation(s)
- Bharat Khurana
- Department of Pathology, Uniformed Services University of the Health Sciences, 4301 Jones Bridge Road, Bethesda, MD (20814) USA
| | - Lei Zhuang
- Department of Biochemistry and Molecular Biology, Uniformed Services University of the Health Sciences, 4301 Jones Bridge Road, Bethesda, MD (20814) USA
| | - Prasun K Moitra
- Department of Biochemistry and Molecular Biology, Uniformed Services University of the Health Sciences, 4301 Jones Bridge Road, Bethesda, MD (20814) USA
| | - Tzanko S Stantchev
- Department of Microbiology and Immunology, Uniformed Services University of the Health Sciences, 4301 Jones Bridge Road, Bethesda, MD (20814) USA
| | - Christopher C Broder
- Department of Microbiology and Immunology, Uniformed Services University of the Health Sciences, 4301 Jones Bridge Road, Bethesda, MD (20814) USA
| | - Mary Lou Cutler
- Department of Pathology, Uniformed Services University of the Health Sciences, 4301 Jones Bridge Road, Bethesda, MD (20814) USA
- United States Military Cancer Institute, Uniformed Services University of the Health Sciences, 4301 Jones Bridge Road, Bethesda, MD (20814) USA
| | - Peter D'Arpa
- Department of Pathology, Uniformed Services University of the Health Sciences, 4301 Jones Bridge Road, Bethesda, MD (20814) USA
- Department of Biochemistry and Molecular Biology, Uniformed Services University of the Health Sciences, 4301 Jones Bridge Road, Bethesda, MD (20814) USA
| |
Collapse
|
250
|
Wereszczynski J, Andricioaei I. Free energy calculations reveal rotating-ratchet mechanism for DNA supercoil relaxation by topoisomerase IB and its inhibition. Biophys J 2010; 99:869-78. [PMID: 20682265 DOI: 10.1016/j.bpj.2010.04.077] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2009] [Revised: 04/06/2010] [Accepted: 04/21/2010] [Indexed: 11/16/2022] Open
Abstract
Topoisomerases maintain the proper topological state of DNA. Human topoisomerase I removes DNA supercoils by clamping a duplex DNA segment, nicking one strand at a phosphodiester bond, covalently attaching to the 3' end of the nick, and allowing the DNA downstream of the cut to rotate around the intact strand. Using molecular dynamics simulations and umbrella sampling free energy calculations, we show that the rotation of downstream DNA in the grip of the enzyme that brings about release of positive or negative supercoils occurs by thermally assisted diffusion on ratchet energy profiles. The ratchetlike free-energy-versus-rotation profile that we compute provides a model for the function of topoisomerase in which the periodic maxima along the profile modulate the rate of supercoil relaxation, while the minima provide metastable conformational states for DNA religation. The results confirm previous experimental and computational work, and suggest that relaxation of the two types of supercoils involves distinct protein pathways. Additionally, simulations performed with the ternary complex of topoisomerase, DNA, and the chemotherapeutic drug topotecan show important differences in the mechanisms for supercoil relaxation when the drug is present, accounting for the relative values of relaxation rates measured in single-molecule experiments. Good agreement is found between rate constants from tweezer experiments and those calculated from simulations. Evidence is presented for the existence of semiopen states of the protein, which facilitate rotations after the initial one, as a result of biasing the protein into a conformation more favorable to strand rotation than the closed state required for nicking of the DNA.
Collapse
Affiliation(s)
- Jeff Wereszczynski
- Department of Chemistry, University of California, Irvine, California, USA
| | | |
Collapse
|