201
|
Schmidt M, Finley D. Regulation of proteasome activity in health and disease. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2013; 1843:13-25. [PMID: 23994620 DOI: 10.1016/j.bbamcr.2013.08.012] [Citation(s) in RCA: 340] [Impact Index Per Article: 28.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/13/2013] [Revised: 08/05/2013] [Accepted: 08/07/2013] [Indexed: 12/13/2022]
Abstract
The ubiquitin-proteasome system (UPS) is the primary selective degradation system in the nuclei and cytoplasm of eukaryotic cells, required for the turnover of myriad soluble proteins. The hundreds of factors that comprise the UPS include an enzymatic cascade that tags proteins for degradation via the covalent attachment of a poly-ubiquitin chain, and a large multimeric enzyme that degrades ubiquitinated proteins, the proteasome. Protein degradation by the UPS regulates many pathways and is a crucial component of the cellular proteostasis network. Dysfunction of the ubiquitination machinery or the proteolytic activity of the proteasome is associated with numerous human diseases. In this review we discuss the contributions of the proteasome to human pathology, describe mechanisms that regulate the proteolytic capacity of the proteasome, and discuss strategies to modulate proteasome function as a therapeutic approach to ameliorate diseases associated with altered UPS function. This article is part of a Special Issue entitled: Ubiquitin-Proteasome System. Guest Editors: Thomas Sommer and Dieter H. Wolf.
Collapse
Affiliation(s)
- Marion Schmidt
- Albert Einstein College of Medicine, Department of Biochemistry, 1300 Morris Park Avenue, Bronx, NY 10461, USA.
| | | |
Collapse
|
202
|
Giller K, Huebbe P, Hennig S, Dose J, Pallauf K, Doering F, Rimbach G. Beneficial effects of a 6-month dietary restriction are time-dependently abolished within 2 weeks or 6 months of refeeding-genome-wide transcriptome analysis in mouse liver. Free Radic Biol Med 2013; 61:170-8. [PMID: 23563226 DOI: 10.1016/j.freeradbiomed.2013.03.023] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/08/2013] [Revised: 03/19/2013] [Accepted: 03/27/2013] [Indexed: 01/20/2023]
Abstract
Dietary restriction (DR) has been shown to exert a number of beneficial effects including the prolongation of life span. One of the mechanisms by which DR leads to these advantages seems to be the induction of endogenous antioxidant defense and stress response mechanisms. However, little is known about the persistence of DR benefits after return to an ad libitum diet. In this study, male C57BL/6 mice were fed 75% of a normal diet for 6 months (DR) followed by 6 months of ad libitum refeeding (RF) and compared to a continuously ad libitum fed control group. To study the impact of DR and RF on the liver transcriptome, a global gene expression profile was generated using microarray technology. In comparison, the DR group showed lower body weight, lower triglyceride and cholesterol levels, reduced lipid peroxidation, and a changed hepatic fatty acid pattern. mRNA transcription and activity of antioxidant and phase II enzymes, as well as metallothionein 1 gene expression, were increased and autophagy was induced. Shifting from long-term DR to RF abolished 96% of the DR-mediated changes in differential gene expression within 2 weeks, and after 6 months of refeeding all of the previously differentially expressed genes were similar in both groups. These results indicate that DR has to be maintained continuously to keep its beneficial effects.
Collapse
Affiliation(s)
- K Giller
- Institute of Human Nutrition and Food Science, Division of Food Science, Christian-Albrechts-University, 24118 Kiel, Germany
| | - P Huebbe
- Institute of Human Nutrition and Food Science, Division of Food Science, Christian-Albrechts-University, 24118 Kiel, Germany
| | - S Hennig
- ImaGenes GmbH, 13125 Berlin, Germany
| | - J Dose
- Institute of Human Nutrition and Food Science, Division of Food Science, Christian-Albrechts-University, 24118 Kiel, Germany
| | - K Pallauf
- Institute of Human Nutrition and Food Science, Division of Food Science, Christian-Albrechts-University, 24118 Kiel, Germany
| | - F Doering
- Institute of Human Nutrition and Food Science, Division of Molecular Prevention, Christian-Albrechts-University, 24118 Kiel, Germany
| | - G Rimbach
- Institute of Human Nutrition and Food Science, Division of Food Science, Christian-Albrechts-University, 24118 Kiel, Germany.
| |
Collapse
|
203
|
Norden DM, Godbout JP. Review: microglia of the aged brain: primed to be activated and resistant to regulation. Neuropathol Appl Neurobiol 2013; 39:19-34. [PMID: 23039106 DOI: 10.1111/j.1365-2990.2012.01306.x] [Citation(s) in RCA: 588] [Impact Index Per Article: 49.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2012] [Accepted: 09/25/2012] [Indexed: 01/08/2023]
Abstract
Innate immunity within the central nervous system (CNS) is primarily provided by resident microglia. Microglia are pivotal in immune surveillance and also facilitate the co-ordinated responses between the immune system and the brain. For example, microglia interpret and propagate inflammatory signals that are initiated in the periphery. This transient microglial activation helps mount the appropriate physiological and behavioural response following peripheral infection. With normal ageing, however, microglia develop a more inflammatory phenotype. For instance, in several models of ageing there are increased pro-inflammatory cytokines in the brain and increased expression of inflammatory receptors on microglia. This increased inflammatory status of microglia with ageing is referred to as primed, reactive or sensitized. A modest increase in the inflammatory profile of the CNS and altered microglial function in ageing has behavioural and cognitive consequences. Nonetheless, there are major differences in microglial biology between young and old age when the immune system is challenged and microglia are activated. In this context, microglial activation is amplified and prolonged in the aged brain compared with adults. The cause of this amplified microglial activation may be related to impairments in several key regulatory systems with age that make it more difficult to resolve microglial activation. The consequences of impaired regulation and microglial hyper-activation following immune challenge are exaggerated neuroinflammation, sickness behaviour, depressive-like behaviour and cognitive deficits. Therefore the purpose of this review is to discuss the current understanding of age-associated microglial priming, consequences of priming and reactivity, and the impairments in regulatory systems that may underlie these age-related deficits.
Collapse
Affiliation(s)
- D M Norden
- Department of Neuroscience, The Ohio State University, Columbus, OH, USA
| | | |
Collapse
|
204
|
Garelick MG, Mackay VL, Yanagida A, Academia EC, Schreiber KH, Ladiges WC, Kennedy BK. Chronic rapamycin treatment or lack of S6K1 does not reduce ribosome activity in vivo. Cell Cycle 2013; 12:2493-504. [PMID: 23839034 DOI: 10.4161/cc.25512] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Reducing activity of the mTORC1/S6K1 pathway has been shown to extend lifespan in both vertebrate and invertebrate models. For instance, both pharmacological inhibition of mTORC1 with the drug rapamycin or S6K1 knockout extends lifespan in mice. Since studies with invertebrate models suggest that reducing translational activity can increase lifespan, we reasoned that the benefits of decreased mTORC1 or S6K1 activity might be due, at least in part, to a reduction of general translational activity. Here, we report that mice given a single dose of rapamycin have reduced translational activity, while mice receiving multiple injections of rapamycin over 4 weeks show no difference in translational activity compared with vehicle-injected controls. Furthermore, mice lacking S6K1 have no difference in global translational activity compared with wild-type littermates as measured by the percentage of ribosomes that are active in multiple tissues. Translational activity is reduced in S6K1-knockout mice following single injection of rapamycin, demonstrating that rapamycin's effects on translation can occur independently of S6K1. Taken together, these data suggest that benefits of chronic rapamycin treatment or lack of S6K1 are dissociable from potential benefits of reduced translational activity, instead pointing to a model whereby changes in translation of specific subsets of mRNAs and/or translation-independent effects of reduced mTOR signaling underlie the longevity benefits.
Collapse
Affiliation(s)
- Michael G Garelick
- Department of Biochemistry; University of Washington; Seattle, WA USA; Buck Institute for Age Research; Novato, CA USA
| | | | | | | | | | | | | |
Collapse
|
205
|
Hagemeier J, Geurts JJG, Zivadinov R. Brain iron accumulation in aging and neurodegenerative disorders. Expert Rev Neurother 2013; 12:1467-80. [PMID: 23237353 DOI: 10.1586/ern.12.128] [Citation(s) in RCA: 81] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
Over the decades, various studies have established an association between accumulation of iron and both aging and neurodegenerative disorders such as Alzheimer's disease and Parkinson's disease. Excess levels of iron can lead to increased oxidative stress through Fenton chemistry, and depletion of iron can similarly have deleterious effects. In addition, metal ions are known to be involved in both Alzheimer's disease and Parkinson's disease protein aggregation. Metal ion chelators have been extensively investigated in preclinical models, and may prove to be appropriate for modulating brain iron levels in age-related neurodegenerative disorders. Investigating age-related iron deposition is vital, and can possibly aid in determining at-risk groups and diagnosing neurodegenerative diseases at an early stage. Novel imaging methods have enabled researchers to examine iron deposition in vivo, and offer a noninvasive method of monitoring the progression of accumulation, and possible therapeutic effects of chelating compounds.
Collapse
Affiliation(s)
- Jesper Hagemeier
- Buffalo Neuroimaging Analysis Center, Department of Neurology, University at Buffalo, 100 High Street, Buffalo, NY 14203, USA
| | | | | |
Collapse
|
206
|
Richards SE, Wang Y, Claus SP, Lawler D, Kochhar S, Holmes E, Nicholson JK. Metabolic phenotype modulation by caloric restriction in a lifelong dog study. J Proteome Res 2013; 12:3117-27. [PMID: 23713866 DOI: 10.1021/pr301097k] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Modeling aging and age-related pathologies presents a substantial analytical challenge given the complexity of gene-environment influences and interactions operating on an individual. A top-down systems approach is used to model the effects of lifelong caloric restriction, which is known to extend life span in several animal models. The metabolic phenotypes of caloric-restricted (CR; n = 24) and pair-housed control-fed (CF; n = 24) Labrador Retriever dogs were investigated by use of orthogonal projection to latent structures discriminant analysis (OPLS-DA) to model both generic and age-specific responses to caloric restriction from the ¹H NMR blood serum profiles of young and older dogs. Three aging metabolic phenotypes were resolved: (i) an aging metabolic phenotype independent of diet, characterized by high levels of glutamine, creatinine, methylamine, dimethylamine, trimethylamine N-oxide, and glycerophosphocholine and decreasing levels of glycine, aspartate, creatine and citrate indicative of metabolic changes associated largely with muscle mass; (ii) an aging metabolic phenotype specific to CR dogs that consisted of relatively lower levels of glucose, acetate, choline, and tyrosine and relatively higher serum levels of phosphocholine with increased age in the CR population; (iii) an aging metabolic phenotype specific to CF dogs including lower levels of liproprotein fatty acyl groups and allantoin and relatively higher levels of formate with increased age in the CF population. There was no diet metabotype that consistently differentiated the CF and CR dogs irrespective of age. Glucose consistently discriminated between feeding regimes in dogs (≥312 weeks), being relatively lower in the CR group. However, it was observed that creatine and amino acids (valine, leucine, isoleucine, lysine, and phenylalanine) were lower in the CR dogs (<312 weeks), suggestive of differences in energy source utilization. ¹H NMR spectroscopic analysis of longitudinal serum profiles enabled an unbiased evaluation of the metabolic markers modulated by a lifetime of caloric restriction and showed differences in the metabolic phenotype of aging due to caloric restriction, which contributes to longevity studies in caloric-restricted animals. Furthermore, OPLS-DA provided a framework such that significant metabolites relating to life extension could be differentiated and integrated with aging processes.
Collapse
Affiliation(s)
- Selena E Richards
- Biomolecular Medicine, Department of Surgery and Cancer, Faculty of Medicine, Imperial College London, Sir Alexander Fleming Building, South Kensington, London SW7 2AZ, UK.
| | | | | | | | | | | | | |
Collapse
|
207
|
Goard CA, Schimmer AD. Mitochondrial matrix proteases as novel therapeutic targets in malignancy. Oncogene 2013; 33:2690-9. [PMID: 23770858 DOI: 10.1038/onc.2013.228] [Citation(s) in RCA: 63] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2013] [Revised: 04/23/2013] [Accepted: 04/30/2013] [Indexed: 12/30/2022]
Abstract
Although mitochondrial function is often altered in cancer, it remains essential for tumor viability. Tight control of protein homeostasis is required for the maintenance of mitochondrial function, and the mitochondrial matrix houses several coordinated protein quality control systems. These include three evolutionarily conserved proteases of the AAA+ superfamily-the Lon, ClpXP and m-AAA proteases. In humans, these proteases are proposed to degrade, process and chaperone the assembly of mitochondrial proteins in the matrix and inner membrane involved in oxidative phosphorylation, mitochondrial protein synthesis, mitochondrial network dynamics and nucleoid function. In addition, these proteases are upregulated by a variety of mitochondrial stressors, including oxidative stress, unfolded protein stress and imbalances in respiratory complex assembly. Given that tumor cells must survive and proliferate under dynamic cellular stress conditions, dysregulation of mitochondrial protein quality control systems may provide a selective advantage. The association of mitochondrial matrix AAA+ proteases with cancer and their potential for therapeutic modulation therefore warrant further consideration. Although our current knowledge of the endogenous human substrates of these proteases is limited, we highlight functional insights gained from cultured human cells, protease-deficient mouse models and other eukaryotic model organisms. We also review the consequences of disrupting mitochondrial matrix AAA+ proteases through genetic and pharmacological approaches, along with implications of these studies on the potential of these proteases as anticancer therapeutic targets.
Collapse
Affiliation(s)
- C A Goard
- Princess Margaret Cancer Centre, Ontario Cancer Institute, University Health Network, Toronto, Ontario, Canada
| | - A D Schimmer
- Princess Margaret Cancer Centre, Ontario Cancer Institute, University Health Network, Toronto, Ontario, Canada
| |
Collapse
|
208
|
Chishti MA, Kaya N, BinBakheet AB, Al-Mohanna F, Goyns MH, Colak D. Induction of cell proliferation in old rat liver can reset certain gene expression levels characteristic of old liver to those associated with young liver. AGE (DORDRECHT, NETHERLANDS) 2013; 35:719-732. [PMID: 22477361 PMCID: PMC3636416 DOI: 10.1007/s11357-012-9404-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/18/2011] [Accepted: 03/14/2012] [Indexed: 05/31/2023]
Abstract
During the past decade, it has become increasingly clear that consistent changes in the levels of expression of a small cohort of genes accompany the aging of mammalian tissues. In many cases, these changes have been shown to generate features that are characteristic of the senescent phenotype. Previously, a small pilot study indicated that some of these changes might be reversed in rat liver, if the liver cells became malignant and were proliferating. The present study has tested the hypothesis that inducing proliferation in old rat liver can reset the levels of expression of these age-related genes to that observed in young tissue. A microarray approach was used to identify genes that exhibited the greatest changes in their expression during aging. The levels of expression of these markers were then examined in transcriptomes of both proliferating hepatomas from old animals and old rat liver lobes that had regenerated after partial hepatectomy but were again quiescent. We have found evidence that over 20 % of the aging-related genes had their levels of expression reset to young levels by stimulating proliferation, even in cells that had undergone a limited number of cell cycles and then become quiescent again. Moreover, our network analysis indicated alterations in MAPK/ERK and Jun-N-terminal kinase pathways and the potential important role of PAX3, VCAN, ARRB2, NR1H2, and ITGA5 that may provide insights into mechanisms involved in longevity and regeneration that are distinct from cancer.
Collapse
MESH Headings
- Aging/genetics
- Aging/metabolism
- Aging/pathology
- Animals
- Carcinoma, Hepatocellular/genetics
- Carcinoma, Hepatocellular/metabolism
- Carcinoma, Hepatocellular/surgery
- Cell Cycle
- Cell Proliferation
- Gene Expression Regulation, Neoplastic
- Genes, Neoplasm/genetics
- Hepatectomy
- Hepatocytes
- Liver/metabolism
- Liver/pathology
- Liver Neoplasms, Experimental/genetics
- Liver Neoplasms, Experimental/metabolism
- Liver Neoplasms, Experimental/surgery
- Liver Regeneration/genetics
- Longevity/genetics
- Male
- Pilot Projects
- RNA, Neoplasm/genetics
- Rats
- Rats, Sprague-Dawley
- Reverse Transcriptase Polymerase Chain Reaction
Collapse
Affiliation(s)
- Muhammad A. Chishti
- Department of Comparative Medicine, King Faisal Specialist Hospital and Research Centre, Riyadh, Saudi Arabia 11211
- Present Address: Department of Pathology, Clinical Biochemistry Unit, Obesity Research Center, College of Medicine, King Saud University, Riyadh, Saudi Arabia 11461
| | - Namik Kaya
- Department of Genetics, King Faisal Specialist Hospital and Research Centre, Riyadh, Saudi Arabia 11211
| | - Al-Bandary BinBakheet
- Department of Genetics, King Faisal Specialist Hospital and Research Centre, Riyadh, Saudi Arabia 11211
| | - Falah Al-Mohanna
- Department of Comparative Medicine, King Faisal Specialist Hospital and Research Centre, Riyadh, Saudi Arabia 11211
| | - Malcolm H. Goyns
- Children’s Cancer Center, King Faisal Specialist Hospital and Research Centre, Riyadh, Saudi Arabia 11211
- Present Address: Immorgene Concepts Ltd., Stockton-on-Tees, TS22 5YA UK
| | - Dilek Colak
- Department of Biostatistics, Epidemiology and Scientific Computing, King Faisal Specialist Hospital and Research Centre, Riyadh, Saudi Arabia 11211
| |
Collapse
|
209
|
Sung MMY, Dyck JRB. Age-related cardiovascular disease and the beneficial effects of calorie restriction. Heart Fail Rev 2013; 17:707-19. [PMID: 22095297 DOI: 10.1007/s10741-011-9293-8] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Aging is a well-recognized risk factor in the development of cardiovascular disease, which is the primary cause of death and disability in the elderly population. The normal process of aging is associated with progressive deterioration in structure and function of the heart and vasculature. These age-related changes likely act as both a catalyst and accelerator in the development of cardiovascular disease. Since the aging population is one of the fastest growing segments of the population, it is of vital importance that we have a thorough understanding of the physiological changes that occur with aging that contribute to the high incidence of cardiovascular disease in this population. This insight will allow for the development of more targeted therapies that can prevent and treat these conditions. One such anti-aging strategy that has received considerable attention as of late is calorie restriction. Calorie restriction has emerged as one of the most effective and reproducible interventions for extending lifespan, as well as protecting against obesity, metabolic disorders, and cardiovascular disease. Herein, we review the multiple beneficial effects that calorie restriction and resveratrol exert on the cardiovascular system with a particular focus on aging. Although calorie restriction and resveratrol have proven to be very effective in preventing and treating the development of cardiovascular disease in animal models, studies continue as to whether these profound beneficial effects can translate to humans to improve cardiovascular health.
Collapse
Affiliation(s)
- Miranda M Y Sung
- Department of Pediatrics, Cardiovascular Research Centre, Mazankowski Alberta Heart Institute, University of Alberta, Edmonton, AB, Canada
| | | |
Collapse
|
210
|
Hou L, Huang J, Green CD, Boyd-Kirkup J, Zhang W, Yu X, Gong W, Zhou B, Han JDJ. Systems biology in aging: linking the old and the young. Curr Genomics 2013; 13:558-65. [PMID: 23633915 PMCID: PMC3468888 DOI: 10.2174/138920212803251418] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2012] [Revised: 06/11/2012] [Accepted: 07/25/2012] [Indexed: 12/05/2022] Open
Abstract
Aging can be defined as a process of progressive decline in the physiological capacity of an organism, manifested by accumulated alteration and destabilization at the whole system level. Systems biology approaches offer a promising new perspective to examine the old problem of aging. We begin this review by introducing the concepts of systems biology, and then illustrate the application of systems biology approaches to aging research, from gene expression profiling to network analysis. We then introduce the network that can be constructed using known lifespan and aging regulators, and conclude with a look forward to the future of systems biology in aging research. In summary, systems biology is not only a young field that may help us understand aging at a higher level, but also an important platform that can link different levels of knowledge on aging, moving us closer to a more comprehensive control of systematic decline during aging.
Collapse
Affiliation(s)
- Lei Hou
- Chinese Academy of Sciences Key Laboratory of Computational Biology, Chinese Academy of Sciences-Max Planck Partner Institute for Computational Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, China ; Center of Molecular Systems Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China
| | | | | | | | | | | | | | | | | |
Collapse
|
211
|
Hwang AB, Jeong DE, Lee SJ. Mitochondria and organismal longevity. Curr Genomics 2013; 13:519-32. [PMID: 23633912 PMCID: PMC3468885 DOI: 10.2174/138920212803251427] [Citation(s) in RCA: 65] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2012] [Revised: 06/11/2012] [Accepted: 07/25/2012] [Indexed: 12/03/2022] Open
Abstract
Mitochondria are essential for various biological processes including cellular energy production. The oxidative stress theory of aging proposes that mitochondria play key roles in aging by generating reactive oxygen species (ROS), which indiscriminately damage macromolecules and lead to an age-dependent decline in biological function. However, recent studies show that increased levels of ROS or inhibition of mitochondrial function can actually delay aging and increase lifespan. The aim of this review is to summarize recent findings regarding the role of mitochondria in organismal aging processes. We will discuss how mitochondria contribute to evolutionarily conserved longevity pathways, including mild inhibition of respiration, dietary restriction, and target of rapamycin (TOR) signaling.
Collapse
Affiliation(s)
- Ara B Hwang
- Division of Molecular and Life Science, Pohang University of Science and Technology, Pohang, Kyungbuk, South Korea
| | | | | |
Collapse
|
212
|
The age-by-disease interaction hypothesis of late-life depression. Am J Geriatr Psychiatry 2013; 21:418-32. [PMID: 23570886 PMCID: PMC3549303 DOI: 10.1016/j.jagp.2013.01.053] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/05/2012] [Revised: 04/20/2012] [Accepted: 06/19/2012] [Indexed: 12/28/2022]
Abstract
The phenomenologic diagnosis of depression is successful in increasing diagnostic reliability, but it is a classification scheme without biologic bases. One subtype of depression for which evidence suggests a unique biologic basis is late-life depression (LLD), with first onset of symptoms after the age of 65. LLD is common and poses a significant burden on affected individuals, caretakers, and society. The pathophysiology of LLD includes disruptions of the neural network underlying mood, which can be conceptualized as the result of dysfunction in multiple underlying biologic processes. Here, we briefly review current LLD hypotheses and then describe the characteristics of molecular brain aging and their overlap with disease processes. Furthermore, we propose a new hypothesis for LLD, the age-by-disease interaction hypothesis, which posits that the clinical presentation of LLD is the integrated output of specific biologic processes that are pushed in LLD-promoting directions by changes in gene expression naturally occurring in the brain during aging. Hence, the brain is led to a physiological state that is more susceptible to LLD, because additional pushes by genetic, environmental, and biochemical factors may now be sufficient to generate dysfunctional states that produce depressive symptoms. We put our propositions together into a decanalization model to aid in illustrating how age-related biologic changes of the brain can shift the repertoire of available functional states in a prodepression direction, and how additional factors can readily lead the system into distinct and stable maladaptive phenotypes, including LLD. This model brings together basic research on neuropsychiatric and neurodegenerative diseases more closely with the investigation of normal aging. Specifically, identifying biologic processes affected during normal aging may inform the development of new interventions for the prevention and treatment of LLD.
Collapse
|
213
|
Douillard-Guilloux G, Guilloux JP, Lewis DA, Sibille E. Anticipated brain molecular aging in major depression. Am J Geriatr Psychiatry 2013; 21:450-60. [PMID: 23570888 PMCID: PMC3615087 DOI: 10.1016/j.jagp.2013.01.040] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/23/2012] [Revised: 04/03/2012] [Accepted: 04/30/2012] [Indexed: 12/28/2022]
Abstract
OBJECTIVES Brain molecular aging, the pervasive and consistent transcriptome changes associated with normal brain aging, appears to overlap with disease pathways and may be anticipated in neurodegenerative and neuropsychiatric diseases, including major depressive disorder (MDD). Here, we characterize the global interaction of MDD-related gene changes with age, starting from our previous report of downregulated brain-derived neurotrophic factor (BDNF) and BDNF-dependent genes in the amygdala of women with MDD. METHODS A large-scale gene expression data set in the amygdala from a postmortem cohort of 21 women with MDD and 21 age-matched controls (age range: 16-74 years) was analyzed for correlations of gene transcript changes with age, in the presence or absence of a diagnosis of MDD. RESULTS 1) The age-related decrease in BDNF transcripts observed in control subjects corresponds with further age-related decreases in BDNF and BDNF-dependent gene expression in MDD subjects; 2) most MDD-related genes are frequently age-regulated in both MDD and control subjects; 3) the effects of MDD and age are positively correlated; 4) most genes that are age-dependent in control subjects display greater age effects in MDD subjects; and 5) the increased prevalence of age effects in MDD corresponds to similar trends in controls, rather than representing de novo age effects. CONCLUSIONS MDD strongly associates with robust and anticipated gene expression changes that occur during normal aging of the brain, suggesting that an older molecular age of the brain represents an early biological event and/or a marker of risk for subsequent onset of MDD symptoms.
Collapse
|
214
|
Gao L, Hidalgo-Figueroa M, Escudero LM, Díaz-Martín J, López-Barneo J, Pascual A. Age-mediated transcriptomic changes in adult mouse substantia nigra. PLoS One 2013; 8:e62456. [PMID: 23638090 PMCID: PMC3640071 DOI: 10.1371/journal.pone.0062456] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2012] [Accepted: 03/21/2013] [Indexed: 11/30/2022] Open
Abstract
Substantia nigra pars compacta (SNpc) is highly sensitive to normal aging and selectively degenerates in Parkinson's disease (PD). Until now, molecular mechanisms behind SNpc aging have not been fully investigated using high throughput techniques. Here, we show early signs of aging in SNpc, which are more evident than in ventral tegmental area (VTA), a region adjacent to SNpc but less affected in PD. Aging-associated early changes in transcriptome were investigated comparing late middle-aged (18 months old) to young (2 months old) mice in both SNpc and VTA. A meta-analysis of published microarray studies allowed us to generate a common “transcriptional signature” of the aged (≥ 24 months old) mouse brain. SNpc of late-middle aged mice shared characteristics with the transcriptional signature, suggesting an accelerated aging in SNpc. Age-dependent changes in gene expression specific to SNpc were also observed, which were related to neuronal functions and inflammation. Future studies could greatly help determine the contribution of these changes to SNpc aging. These data help understand the processes underlying SNpc aging and their potential contribution to age-related disorders like PD.
Collapse
Affiliation(s)
- Lin Gao
- Instituto de Biomedicina de Sevilla, Hospital Universitario Virgen del Rocío/CSIC/Universidad de Sevilla, Seville, Spain
- Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas, Madrid, Spain
- * E-mail: (LG); (AP)
| | - María Hidalgo-Figueroa
- Instituto de Biomedicina de Sevilla, Hospital Universitario Virgen del Rocío/CSIC/Universidad de Sevilla, Seville, Spain
- Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas, Madrid, Spain
| | - Luis M. Escudero
- Instituto de Biomedicina de Sevilla, Hospital Universitario Virgen del Rocío/CSIC/Universidad de Sevilla, Seville, Spain
- Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas, Madrid, Spain
| | - Juan Díaz-Martín
- Instituto de Biomedicina de Sevilla, Hospital Universitario Virgen del Rocío/CSIC/Universidad de Sevilla, Seville, Spain
- Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas, Madrid, Spain
| | - José López-Barneo
- Instituto de Biomedicina de Sevilla, Hospital Universitario Virgen del Rocío/CSIC/Universidad de Sevilla, Seville, Spain
- Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas, Madrid, Spain
| | - Alberto Pascual
- Instituto de Biomedicina de Sevilla, Hospital Universitario Virgen del Rocío/CSIC/Universidad de Sevilla, Seville, Spain
- Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas, Madrid, Spain
- * E-mail: (LG); (AP)
| |
Collapse
|
215
|
Abstract
Aging is associated with a host of biological changes that contribute to a progressive decline in cognitive and physical function, ultimately leading to a loss of independence, and increased risk of mortality. To date, prolonged caloric restriction (i.e., a reduction in caloric intake without malnutrition) is the only non-genetic intervention that has consistently been found to extend both mean and maximal life span across a variety of species. Most individuals have difficulty sustaining prolonged caloric restriction, which has led to a search for alternative approaches that can produce similar to benefits as caloric restriction. A growing body of evidence indicates that fasting periods and intermittent fasting regimens in particular can trigger similar biological pathways as caloric restriction. For this reason, there is increasing scientific interest in further exploring the biological and metabolic effects of intermittent fasting periods, as well as whether long-term compliance may be improved by this type of dietary approach. This special will highlight the latest scientific findings related to the effects of both caloric restriction and intermittent fasting across various species including yeast, fruit flies, worms, rodents, primates, and humans. A specific emphasis is placed on translational research with findings from basic bench to bedside reviewed and practical clinical implications discussed.
Collapse
Affiliation(s)
- Stephen Anton
- University of Florida, Department of Aging and Geriatric Research, Institute on Aging, Gainesville, FL 32610, United States.
| | | |
Collapse
|
216
|
Braeckman BP, Houthoofd K, Vanfleteren JR. Patterns of metabolic activity during aging of the wild type and longevity mutants of Caenorhabditis elegans. J Am Aging Assoc 2013; 23:55-73. [PMID: 23604840 DOI: 10.1007/s11357-000-0007-8] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
At least three mechanisms determine life span in Caenorhabditis elegans. An insulin-like signaling pathway regulates dauer diapause, reproduction and longevity. Reduction-or loss-of-function mutations in this pathway can extend longevity substantially, suggesting that the wild-type alleles shorten life span. The mutations extend life span by activating components of a dauer longevity assurance program in adult life, resulting in altered metabolism and enhanced stress resistance. The Clock (Clk) genes regulate many temporal processes, including life span. Mutation in the Clk genes clk-1 and gro-1 mildly affect energy production, but repress energy consumption dramatically, thereby reducing the rate of anabolic metabolism and lengthening life span. Dietary restriction, either imposed by mutation or by the culture medium increases longevity and uncovers a third mechanism of life span determination. Dietary restriction likely elicits the longevity assurance program. There is still uncertainty as to whether these pathways converge on daf-16 to activate downstream longevity effector genes such as ctl-1 and sod-3. There is overwhelming evidence that the interplay between reactive oxygen species (ROS) and the capacity to resist oxidative stress controls the aging process and longevity. It is as yet not clear whether metabolic homeostasis collapses with age as a direct result of ROS-derived damage or is selectively repressed by longevity-determining genes. The dramatic decline of protein turnover during senescence results in the accumulation of altered enzymes and in a gradual decline of metabolic performance eventually followed by fatal failure of the system.
Collapse
Affiliation(s)
- B P Braeckman
- Department of Biology, University of Gent, Ledeganckstraat 35, B-9000 Gent, Belgium
| | | | | |
Collapse
|
217
|
Bhardwaj M. The Applications of Omics Technologies and the Challenges of Ethics in Nutritional Sciences. Bioinformatics 2013. [DOI: 10.4018/978-1-4666-3604-0.ch068] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
During the past two decades, there have been numerous developments in the genetic and genomic technologies enabling us to understand complex biological systems in an integrative manner through holistic approaches in research. Since the sequencing of the human genome, efforts are made to identify the number of the genes and their functions. The tools for determining the functionality of the genes are just beginning to appear. Initially the methodologies to identify functionality of the genes were largely based on comparative studies between model organisms. The very high number of genes with unknown functions demanded the need to develop new methods and technologies that may be helpful in assigning functions to the identified genes. Advancements in computing techniques and software opened the door for new technologies to be able to take an applied approach by studying biomolecules needed for proper functioning of the cell and take a holistic approach in biomedical research. Besides genomics, several other technologies are developed in the last decade that take an ‘omics’ approach, i.e., an integrated approach in the study of cell function. It is hoped that the applied integrative omics approaches may be helpful in establishing cause and effect relationships between genotype and phenotype. These ‘omics’ approaches include the integration of genomics, proteomics, transcriptomics, metabolomics and other omic technologies to do the non-targeted studies of biomolecules involved in the proper functioning of the cells and their responses to environmental changes. The applications of these technologies have been also utilized in the field of nutrition for studies on how nutrients and other metabolites effect the proper functioning of the cell. With these emerging techniques to understand the molecular functioning of the body, it is envisaged that they might be helpful to give personalized medical care and dietary advice to people based on their individual genotypes in the future. Whilst nutritional genomics is a rapidly growing field in the nutritional sciences focusing on the diet-gene relationships, there is an increasing understanding that other technologies will also be crucial in understanding the whole biological processes involved in metabolism of food. In this chapter I wish to outline the use of contemporary technologies that are involved in establishing the intricate linkages between diet and the genes, and the ethical challenges they raise in their applications.
Collapse
|
218
|
Radak Z, Zhao Z, Koltai E, Ohno H, Atalay M. Oxygen consumption and usage during physical exercise: the balance between oxidative stress and ROS-dependent adaptive signaling. Antioxid Redox Signal 2013; 18:1208-46. [PMID: 22978553 PMCID: PMC3579386 DOI: 10.1089/ars.2011.4498] [Citation(s) in RCA: 414] [Impact Index Per Article: 34.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
The complexity of human DNA has been affected by aerobic metabolism, including endurance exercise and oxygen toxicity. Aerobic endurance exercise could play an important role in the evolution of Homo sapiens, and oxygen was not important just for survival, but it was crucial to redox-mediated adaptation. The metabolic challenge during physical exercise results in an elevated generation of reactive oxygen species (ROS) that are important modulators of muscle contraction, antioxidant protection, and oxidative damage repair, which at moderate levels generate physiological responses. Several factors of mitochondrial biogenesis, such as peroxisome proliferator-activated receptor-γ coactivator 1α (PGC-1α), mitogen-activated protein kinase, and SIRT1, are modulated by exercise-associated changes in the redox milieu. PGC-1α activation could result in decreased oxidative challenge, either by upregulation of antioxidant enzymes and/or by an increased number of mitochondria that allows lower levels of respiratory activity for the same degree of ATP generation. Endogenous thiol antioxidants glutathione and thioredoxin are modulated with high oxygen consumption and ROS generation during physical exercise, controlling cellular function through redox-sensitive signaling and protein-protein interactions. Endurance exercise-related angiogenesis, up to a significant degree, is regulated by ROS-mediated activation of hypoxia-inducible factor 1α. Moreover, the exercise-associated ROS production could be important to DNA methylation and post-translation modifications of histone residues, which create heritable adaptive conditions based on epigenetic features of chromosomes. Accumulating data indicate that exercise with moderate intensity has systemic and complex health-promoting effects, which undoubtedly involve regulation of redox homeostasis and signaling.
Collapse
Affiliation(s)
- Zsolt Radak
- Faculty of Physical Education and Sport Science, Institute of Sport Science, Semmelweis University, Budapest, Hungary.
| | | | | | | | | |
Collapse
|
219
|
da Rocha AM, Ferreira JR, Barros DM, Pereira TCB, Bogo MR, Oliveira S, Geraldo V, Lacerda RG, Ferlauto AS, Ladeira LO, Pinheiro MVB, Monserrat JM. Gene expression and biochemical responses in brain of zebrafish Danio rerio exposed to organic nanomaterials: carbon nanotubes (SWCNT) and fullerenol (C60(OH)18-22(OK4)). Comp Biochem Physiol A Mol Integr Physiol 2013; 165:460-7. [PMID: 23542748 DOI: 10.1016/j.cbpa.2013.03.025] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2012] [Revised: 03/17/2013] [Accepted: 03/21/2013] [Indexed: 12/31/2022]
Abstract
Nanomaterials (NM) industry had grown in the last decade, although there are few studies concerning its potential toxicity effects on aquatic organisms. In this study the freshwater zebrafish (Danio rerio) was exposed to two kinds of carbon NM, single-wall carbon nanotubes (SWCNT) and fullerenol [C60(OH)18-22(OK4)] to analyze oxidative stress responses on fish brain. Adult zebrafish (mean mass: 0.52±0.01g) were submitted to intraperitoneal injections of SWCNT suspension and fullerenol solution (30mg/kg of fish), receiving one or two doses with a time interval of 24h. Results showed that total antioxidant capacity was lowered in brains of fish exposed 24h to fullerenol when compared to those from SWCNT treatment (p<0.05). After 48h, fullerenol induced higher expression of both catalytic and regulatory subunits of enzyme glutamate cysteine ligase when compared to control group (p<0.05), indicating an antioxidant behavior. In vitro assays showed a dual effect of SWCNT, since a pro-oxidant behavior was observed at low concentrations (0.1 and 1.0mg/L) and an antioxidant one at the highest concentration (10.0mg/L). Few biological responses were altered by this NM: decrease in total antioxidant capacity and induction of the expression of the transcription factor Nrf2 when compared to control group.
Collapse
|
220
|
Gkogkolou P, Böhm M. Advanced glycation end products: Key players in skin aging? DERMATO-ENDOCRINOLOGY 2013; 4:259-70. [PMID: 23467327 PMCID: PMC3583887 DOI: 10.4161/derm.22028] [Citation(s) in RCA: 374] [Impact Index Per Article: 31.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Aging is the progressive accumulation of damage to an organism over time leading to disease and death. Aging research has been very intensive in the last years aiming at characterizing the pathophysiology of aging and finding possibilities to fight age-related diseases. Various theories of aging have been proposed. In the last years advanced glycation end products (AGEs) have received particular attention in this context. AGEs are formed in high amounts in diabetes but also in the physiological organism during aging. They have been etiologically implicated in numerous diabetes- and age-related diseases. Strategies inhibiting AGE accumulation and signaling seem to possess a therapeutic potential in these pathologies. However, still little is known on the precise role of AGEs during skin aging. In this review the existing literature on AGEs and skin aging will be reviewed. In addition, existing and potential anti-AGE strategies that may be beneficial on skin aging will be discussed.
Collapse
Affiliation(s)
- Paraskevi Gkogkolou
- Department of Dermatology; Laboratory for Neuroendocrinology of the Skin and Interdisciplinary Endocrinology; University of Münster; Münster, Germany
| | | |
Collapse
|
221
|
Calorie restriction and cancer prevention: a mechanistic perspective. Cancer Metab 2013; 1:10. [PMID: 24280167 PMCID: PMC4178215 DOI: 10.1186/2049-3002-1-10] [Citation(s) in RCA: 91] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2012] [Accepted: 01/11/2013] [Indexed: 12/18/2022] Open
Abstract
Calorie restriction (CR) is one of the most potent broadly acting dietary interventions for inducing weight loss and for inhibiting cancer in experimental models. Translation of the mechanistic lessons learned from research on CR to cancer prevention strategies in human beings is important given the high prevalence of excess energy intake, obesity, and metabolic syndrome in many parts of the world and the established links between obesity-associated metabolic perturbations and increased risk or progression of many types of cancer. This review synthesizes findings on the biological mechanisms underlying many of the anticancer effects of CR, with emphasis on the impact of CR on growth factor signaling pathways, inflammation, cellular and systemic energy homeostasis pathways, vascular perturbations, and the tumor microenvironment. These CR-responsive pathways and processes represent targets for translating CR research into effective cancer prevention strategies in human beings.
Collapse
|
222
|
Foddy B. The Right and Wrong of Growing Old: Assessing the Argument from Evolution. PHILOSOPHY & TECHNOLOGY 2013; 25:547-560. [PMID: 23396796 PMCID: PMC3566834 DOI: 10.1007/s13347-012-0066-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 11/21/2011] [Accepted: 01/23/2012] [Indexed: 10/28/2022]
Abstract
One argument which is frequently levelled against the enhancement of human biology is that we do not understand the evolved function of our bodies well enough to meddle in our biology without producing unintended and potentially catastrophic effects. In particular, this argument is levelled against attempts to slow or eliminate the processes of human ageing, or 'senescence', which cause us to grow decrepit before we die. In this article, I claim that even if this argument could usefully be applied against attempts to enhance other human traits, it cannot be valid in the case of attempts to enhance the various processes that constitute senescence. I begin by reviewing the biology of ageing to show how it consists of a number of unrelated traits. Then, following the arguments of a number of evolutionary biologists, I explain that every one of these traits is a product of evolutionary 'neglect' rather than 'intent'. Finally, I consider the strongest version of the argument against enhancing senescence, which acknowledges these facts about the evolution of ageing but insists that we have nevertheless have prudential reasons to avoid enhancement wherever there is some uncertainty about the genetics or evolutionary function of a trait. I provide two reasons for rejecting this version of the argument as well, even in the case of human senescence, where such uncertainty is currently significant.
Collapse
Affiliation(s)
- Bennett Foddy
- Institute for Science & Ethics, University of Oxford, Suite 8, Littlegate House, 16-17 St. Ebbes St, Oxford, OX1 1PT UK
| |
Collapse
|
223
|
Ngo JK, Pomatto LCD, Davies KJA. Upregulation of the mitochondrial Lon Protease allows adaptation to acute oxidative stress but dysregulation is associated with chronic stress, disease, and aging. Redox Biol 2013; 1:258-64. [PMID: 24024159 PMCID: PMC3757690 DOI: 10.1016/j.redox.2013.01.015] [Citation(s) in RCA: 113] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2013] [Accepted: 01/18/2013] [Indexed: 11/30/2022] Open
Abstract
The elimination of oxidatively modified proteins is a crucial process in maintaining cellular homeostasis, especially during stress. Mitochondria are protein-dense, high traffic compartments, whose polypeptides are constantly exposed to superoxide, hydrogen peroxide, and other reactive species, generated by 'electron leakage' from the respiratory chain. The level of oxidative stress to mitochondrial proteins is not constant, but instead varies greatly with numerous metabolic and environmental factors. Oxidized mitochondrial proteins must be removed rapidly (by proteolytic degradation) or they will aggregate, cross-link, and cause toxicity. The Lon Protease is a key enzyme in the degradation of oxidized proteins within the mitochondrial matrix. Under conditions of acute stress Lon is highly inducible, possibly with the oxidant acting as the signal inducer, thereby providing increased protection. It seems that under chronic stress conditions, however, Lon levels actually decline. Lon levels also decline with age and with senescence, and senescent cells even lose the ability to induce Lon during acute stress. We propose that the regulation of Lon is biphasic, in that it is up-regulated during transient stress and down-regulated during chronic stress and aging, and we suggest that the loss of Lon responsiveness may be a significant factor in aging, and in age-related diseases.
Collapse
Key Words
- 2D-PAGE, two-dimensional polyacrylamide gel electrophoresis
- AAA, ATPases associated with diverse cellular activities
- Aco1, Aconitase 1
- Adaptation
- CDDO, 2-cyano-3,12-dioxoolean-1,9-dien-28-oic acid
- CDDO-Me, methyl-2-cyano-3,12-dioxooleana-1,9(11)-dien-28-oate
- COX, cytochrome c oxidase
- COX4-1, cytochrome c oxidase subunit IV isoform 1
- COX4-2, cytochrome c oxidase subunit IV isoform 2
- Ccp1, mitochondrial cytochrome-c peroxidase
- Clp, caseinolytic protease
- ClpP, core catalytic protease unit
- ERAD, endoplasmic reticulum-associated degradation
- FRDA, Friedreich's ataxia
- Fe/S, iron/SULFUR
- HAART, highly active antiretroviral therapy
- HIF-1, hypoxia inducible factor-1
- HSP104, heat shock protein 104
- HSP60, heat shock protein 60
- Hormesis
- HsIVU, bacterial ATP-dependent protease
- Lon Protease
- MELAS, mitochondrial encephalomyopathy, lactic acidosis, and stroke-like episodes
- MPPβ, mitochondrial processing peptidase beta subunit
- Mitochondria
- NRF-2, nuclear factor (erythroid-derived 2)-like 2
- Nfκb, nuclear factor kappa-light-chain-enhancer of activated B csells
- Oxidative stress
- PRSS15, LON gene
- Pim1, ATP-dependent Lon protease from yeast
- Protease La, ATP-dependent protease
- Protein degradation and oxidation
- Prx1, mitochondrial peroxiredoxin 1
- SLLVY-AMC, N-succinyl-Leu-Leu-Val-Tyr-7-amino-4-methylcoumarin
- SOD, cytosolic superoxide dismutase
- SOD2, mitochondrial superoxide dismutase 2
- SPG13, hereditary spastic paraplegia
- WI-38, human lung fibroblast
- Yjl200c, mitochondrial aconitase isozyme
Collapse
Affiliation(s)
- Jenny K Ngo
- Ethel Percy Andrus Gerontology Center of the Davis School of Gerontology, University of Southern California, Los Angeles, CA 90089-0191, USA
| | | | | |
Collapse
|
224
|
Höhn A, König J, Grune T. Protein oxidation in aging and the removal of oxidized proteins. J Proteomics 2013; 92:132-59. [PMID: 23333925 DOI: 10.1016/j.jprot.2013.01.004] [Citation(s) in RCA: 160] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2012] [Accepted: 01/08/2013] [Indexed: 12/12/2022]
Abstract
Reactive oxygen species (ROS) are generated constantly within cells at low concentrations even under physiological conditions. During aging the levels of ROS can increase due to a limited capacity of antioxidant systems and repair mechanisms. Proteins are among the main targets for oxidants due to their high rate constants for several reactions with ROS and their abundance in biological systems. Protein damage has an important influence on cellular viability since most protein damage is non-repairable, and has deleterious consequences on protein structure and function. In addition, damaged and modified proteins can form cross-links and provide a basis for many senescence-associated alterations and may contribute to a range of human pathologies. Two proteolytic systems are responsible to ensure the maintenance of cellular functions: the proteasomal (UPS) and the lysosomal system. Those degrading systems provide a last line of antioxidative protection, removing irreversible damaged proteins and recycling amino acids for the continuous protein synthesis. But during aging, both systems are affected and their proteolytic activity declines significantly. Here we highlight the recent advantages in the understanding of protein oxidation and the fate of these damaged proteins during aging. This article is part of a Special Issue entitled: Posttranslational Protein modifications in biology and Medicine.
Collapse
Affiliation(s)
- Annika Höhn
- Department of Nutritional Toxicology, Institute of Nutrition, Friedrich Schiller University Jena, 07743 Jena, Germany
| | | | | |
Collapse
|
225
|
SESN-1 is a positive regulator of lifespan in Caenorhabditis elegans. Exp Gerontol 2013; 48:371-9. [PMID: 23318476 DOI: 10.1016/j.exger.2012.12.011] [Citation(s) in RCA: 59] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2012] [Revised: 11/20/2012] [Accepted: 12/22/2012] [Indexed: 01/20/2023]
Abstract
Aging is a process of gradual functional decline leading to death. Reactive oxygen species (ROS) not only contribute to oxidative stress and cell damage that lead to aging but also serve as signaling molecules. Sestrins are evolutionarily conserved in all multicellular organisms and are required for regenerating hyperoxidized forms of peroxiredoxins and ROS clearance. However, whether sestrins regulate longevity in metazoans is still unclear. Here, we demonstrated that SESN-1, the only sestrin ortholog in Caenorhabditis elegans, is a positive regulator of lifespan. sesn-1 gene mutant worms had significantly shorter lifespans compared to wild-type animals, and overexpression of sesn-1 prolonged lifespan. Moreover, sesn-1 was found to play a key role in defense against several life stressors, including heat, hydrogen peroxide and the heavy metal copper; and sesn-1 mutants expressed higher levels of ROS and showed a decline in body muscle function. Surprisingly, loss of sesn-1 did not weaken the innate immune function of the worms. Together, these results suggest that SESN-1 is required for normal lifespan and its function in muscle cells prevents muscle degeneration over a lifetime.
Collapse
|
226
|
Gonzalez Pardo V, Russo de Boland A. Age-related changes in the response of intestinal cells to 1α,25(OH)2-vitamin D3. Ageing Res Rev 2013; 12:76-89. [PMID: 22706185 DOI: 10.1016/j.arr.2012.06.001] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2012] [Revised: 06/01/2012] [Accepted: 06/06/2012] [Indexed: 12/14/2022]
Abstract
The hormonally active form of vitamin D(3), 1α,25(OH)(2)-vitamin D(3), acts in intestine, its major target tissue, where its actions are of regulatory and developmental importance: regulation of intracellular calcium through modulation of second messengers and activation of mitogenic cascades leading to cell proliferation. Several causes have been postulated to modify the hormone response in intestinal cells with ageing, among them, alterations of vitamin D receptor (VDR) levels and binding sites, reduced expression of G-proteins and hormone signal transduction changes. The current review summarizes the actual knowledge regarding the molecular and biochemical basis of age-impaired 1α,25(OH)(2)-vitamin D(3) receptor-mediated signaling in intestinal cells. A fundamental understanding why the hormone functions are impaired with age will enhance our knowledge of its importance in intestinal cell physiology.
Collapse
Affiliation(s)
- Verónica Gonzalez Pardo
- Departamento de Biología, Bioquímica y Farmacia, Universidad Nacional del Sur, Consejo Nacional de Investigaciones Científicas y Técnicas, Bahía Blanca, Argentina
| | | |
Collapse
|
227
|
|
228
|
Analysis of biomarkers of caloric restriction in aging cells. Methods Mol Biol 2013; 1048:19-29. [PMID: 23929095 PMCID: PMC3875466 DOI: 10.1007/978-1-62703-556-9_3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
Caloric restriction (CR) has been extensively documented for its profound role in effectively extending maximum lifespan in many different species. However, the accurate mechanisms, especially at the cellular level, for CR-induced aging delay are still under intense investigation. An emerging technique, recently explored in our laboratory, provides precisely controllable caloric intake in a cultured cellular system that allows real-time observation and quantitative analysis of the impact of CR on the molecular cellular level during the aging processes. This in vitro method allows investigation of the molecular mechanisms pertaining to how CR influences aging processes leading to life extension in human cellular systems. It will provide important clinical implications for future preventive approaches for aging and aging-related degeneration diseases in humans. Hence, we will discuss the detailed procedures of this novel technique as well as the analysis of relevant aging biomarkers and its broad application in the field.
Collapse
|
229
|
Bédard K, Bédard J, Rocheleau G, Ferland G, Gaudreau P. Aging and diets regulate the rat anterior pituitary and hypothalamic transcriptome. Neuroendocrinology 2013; 97:146-59. [PMID: 22538389 DOI: 10.1159/000338411] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/22/2011] [Accepted: 03/18/2012] [Indexed: 11/19/2022]
Abstract
Dietary interventions involving caloric restriction represent a powerful strategy to prevent or delay age-related deteriorations and diseases. Their beneficial effects have been observed in several tissues and species. This microarray study investigated the effects of aging, long-term moderate caloric restriction (LTMCR) and long-term dietary soy on the regulation of gene expression in the anterior pituitary and hypothalamus of 20-month-old Sprague-Dawley rats. In both tissues, aging regulated genes mainly involved in cell defense and repair mechanisms related to apoptosis, DNA repair, cellular stress, inflammatory and immune response. In the aging pituitary, the highest upregulated gene was the regenerating islet-derived 3β (5.77-fold), coding for a secretory protein involved in acute stress and inflammation. A protective effect of LTMCR on age-related change of gene expression was observed for 35 pituitary genes. In addition, beneficial effects of LTMCR in the pituitary were observed on new regulated genes mainly involved in cell death and cell stress response. In the hypothalamus, the effects of LTMCR on age-related changes were modest. Finally, changing the quality of dietary protein (20% casein for soy) had a low impact on the regulation of mRNA levels in both tissues. Genes associated with the somatotroph function were also differentially expressed in the aging pituitary. Interestingly, LTMCR prevented the effect of aging on insulin-like growth factor-binding protein-3 gene. Altogether, this study proposes novel pituitary and hypothalamic molecular targets and signaling pathways to help in understanding the mechanisms involved in aging processes and LTMCR.
Collapse
Affiliation(s)
- Karine Bédard
- Laboratory of Neuroendocrinology of Aging, Centre hospitalier de l'Université de Montréal Research Center (CRCHUM), Montreal, Qué., Canada
| | | | | | | | | |
Collapse
|
230
|
Mitochondrial metabolism in aging: effect of dietary interventions. Ageing Res Rev 2013; 12:22-8. [PMID: 22504406 DOI: 10.1016/j.arr.2012.03.009] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2012] [Revised: 03/20/2012] [Accepted: 03/30/2012] [Indexed: 01/09/2023]
Abstract
Mitochondrial energy metabolism and mitochondrially-derived oxidants have, for many years, been recognized as central toward the effects of aging. A body of recent work has focused on the relationship between mitochondrial redox state, aging and dietary interventions that affect lifespan. These studies have uncovered mechanisms through which diet alters mitochondrial metabolism, in addition to determining how these changes affect oxidant generation, which in itself has an impact on mitochondrial function in aged animals. Many of the studies conducted to date, however, are correlative, and it remains to be determined which of the energy metabolism and redox modifications induced by diet are central toward lifespan extent. Furthermore, dietary interventions used for laboratory animals are often unequal, and of difficult comparison with humans (for whom, by nature, no long-term sound scientific information on the effects of diet on mitochondrial redox state and aging is available). We hope future studies will be able to mechanistically characterize which energy metabolism and redox changes promoted by dietary interventions have positive lifespan effects, and translate these findings into human prevention and treatment of age-related disease.
Collapse
|
231
|
Calixto A, Jara JS, Court FA. Diapause formation and downregulation of insulin-like signaling via DAF-16/FOXO delays axonal degeneration and neuronal loss. PLoS Genet 2012; 8:e1003141. [PMID: 23300463 PMCID: PMC3531479 DOI: 10.1371/journal.pgen.1003141] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2012] [Accepted: 10/18/2012] [Indexed: 01/21/2023] Open
Abstract
Axonal degeneration is a key event in the pathogenesis of neurodegenerative conditions. We show here that mec-4d triggered axonal degeneration of Caenorhabditis elegans neurons and mammalian axons share mechanistical similarities, as both are rescued by inhibition of calcium increase, mitochondrial dysfunction, and NMNAT overexpression. We then explore whether reactive oxygen species (ROS) participate in axonal degeneration and neuronal demise. C. elegans dauers have enhanced anti-ROS systems, and dauer mec-4d worms are completely protected from axonal degeneration and neuronal loss. Mechanistically, downregulation of the Insulin/IGF-1-like signaling (IIS) pathway protects neurons from degenerating in a DAF-16/FOXO–dependent manner and is related to superoxide dismutase and catalase-increased expression. Caloric restriction and systemic antioxidant treatment, which decrease oxidative damage, protect C. elegans axons from mec-4d-mediated degeneration and delay Wallerian degeneration in mice. In summary, we show that the IIS pathway is essential in maintaining neuronal homeostasis under pro-degenerative stimuli and identify ROS as a key intermediate of neuronal degeneration in vivo. Since axonal degeneration represents an early pathological event in neurodegeneration, our work identifies potential targets for therapeutic intervention in several conditions characterized by axonal loss and functional impairment. Axonal degeneration and neuronal loss are currently considered crucial pathological factors in neurodegenerative diseases. Therefore, delaying or blocking these procesess is key for neuroprotection. In this work, we used an in vivo approach combining invertebrate (C. elegans) and vertebrate (mice) model systems to identify a novel and unexpected player in the mechanisms of axonal degeneration. Here, we demonstrate that both neuronal somas and axons degenerate through a step dependent on oxidative stress that can be efficiently delayed by genetic downregulation of a pathway controlling oxidative stress resistance. Impressively, we discovered that diapause formation, which is a state related to hibernating conditions, fully prevents neuronal degeneration. We uncovered new players in the degenerative mechanisms of neurons with relevance for several conditions associated to axonal degeneration, such as multiple sclerosis, motoneuron, and Parkinson diseases, offering novel potential targets for neuroprotection.
Collapse
Affiliation(s)
- Andrea Calixto
- Department of Cellular Biology, Faculty of Biology, Pontifical Catholic University of Chile, Santiago, Chile
- * E-mail: (AC); (FAC)
| | - Juan S. Jara
- Millennium Nucleus for Regenerative Biology, Faculty of Biology, Pontifical Catholic University of Chile, Santiago, Chile
| | - Felipe A. Court
- Millennium Nucleus for Regenerative Biology, Faculty of Biology, Pontifical Catholic University of Chile, Santiago, Chile
- NeuroUnion Biomedical Foundation, Santiago, Chile
- * E-mail: (AC); (FAC)
| |
Collapse
|
232
|
Price JC, Khambatta CF, Li KW, Bruss MD, Shankaran M, Dalidd M, Floreani NA, Roberts LS, Turner SM, Holmes WE, Hellerstein MK. The effect of long term calorie restriction on in vivo hepatic proteostatis: a novel combination of dynamic and quantitative proteomics. Mol Cell Proteomics 2012; 11:1801-14. [PMID: 22984287 PMCID: PMC3518108 DOI: 10.1074/mcp.m112.021204] [Citation(s) in RCA: 58] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2012] [Revised: 08/31/2012] [Indexed: 11/06/2022] Open
Abstract
Calorie restriction (CR) promotes longevity. A prevalent mechanistic hypothesis explaining this effect suggests that protein degradation, including mitochondrial autophagy, is increased with CR, removing damaged proteins and improving cellular fitness. At steady state, increased catabolism must be balanced by increasing mitochondrial biogenesis and protein synthesis, resulting in faster protein replacement rates. To test this hypothesis, we measured replacement kinetics and relative concentrations of hundreds of proteins in vivo in long-term CR and ad libitum-fed mice using metabolic (2)H(2)O-labeling combined with the Stable Isotope Labeling in Mammals protocol and LC-MS/MS analysis of mass isotopomer abundances in tryptic peptides. CR reduced absolute synthesis and breakdown rates of almost all measured hepatic proteins and prolonged the half-lives of most (≈ 80%), particularly mitochondrial proteins (but not ribosomal subunits). Proteins with related functions exhibited coordinated changes in relative concentration and replacement rates. In silico expression pathway interrogation allowed the testing of potential regulators of altered network dynamics (e.g. peroxisome proliferator-activated receptor gamma coactivator 1-alpha). In summary, our combination of dynamic and quantitative proteomics suggests that long-term CR reduces mitochondrial biogenesis and mitophagy. Our findings contradict the theory that CR increases mitochondrial protein turnover and provide compelling evidence that cellular fitness is accompanied by reduced global protein synthetic burden.
Collapse
|
233
|
McKinney BC, Oh H, Sibille E. Age-by-disease biological interactions: implications for late-life depression. Front Genet 2012; 3:237. [PMID: 23162569 PMCID: PMC3499806 DOI: 10.3389/fgene.2012.00237] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2012] [Accepted: 10/16/2012] [Indexed: 01/26/2023] Open
Abstract
Onset of depressive symptoms after the age of 65, or late-life depression (LLD), is common and poses a significant burden on affected individuals, caretakers, and society. Evidence suggests a unique biological basis for LLD, but current hypotheses do not account for its pathophysiological complexity. Here we propose a novel etiological framework for LLD, the age-by-disease biological interaction hypothesis, based on the observations that the subset of genes that undergoes lifelong progressive changes in expression is restricted to a specific set of biological processes, and that a disproportionate number of these age-dependent genes have been previously and similarly implicated in neurodegenerative and neuropsychiatric disorders, including depression. The age-by-disease biological interaction hypothesis posits that age-dependent biological processes (i) are “pushed” in LLD-promoting directions by changes in gene expression naturally occurring during brain aging, which (ii) directly contribute to pathophysiological mechanisms of LLD, and (iii) that individual variability in rates of age-dependent changes determines risk or resiliency to develop age-related disorders, including LLD. We review observations supporting this hypothesis, including consistent and specific age-dependent changes in brain gene expression and their overlap with neuropsychiatric and neurodegenerative disease pathways. We then review preliminary reports supporting the genetic component of this hypothesis. Other potential biological mediators of age-dependent gene changes are proposed. We speculate that studies examining the relative contribution of these mechanisms to age-dependent changes and related disease mechanisms will not only provide critical information on the biology of normal aging of the human brain, but will inform our understanding of age-dependent diseases, in time fostering the development of new interventions for prevention and treatment of age-dependent diseases, including LLD.
Collapse
|
234
|
Vaiserman AM, Pasyukova EG. Epigenetic drugs: a novel anti-aging strategy? Front Genet 2012; 3:224. [PMID: 23118737 PMCID: PMC3484325 DOI: 10.3389/fgene.2012.00224] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2012] [Accepted: 10/06/2012] [Indexed: 01/15/2023] Open
Affiliation(s)
- A M Vaiserman
- D.F. Chebotarev State Institute of Gerontology NAMS of Ukraine Kiev, Ukraine
| | | |
Collapse
|
235
|
Genomic and proteomic profiling reveals reduced mitochondrial function and disruption of the neuromuscular junction driving rat sarcopenia. Mol Cell Biol 2012; 33:194-212. [PMID: 23109432 DOI: 10.1128/mcb.01036-12] [Citation(s) in RCA: 220] [Impact Index Per Article: 16.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Molecular mechanisms underlying sarcopenia, the age-related loss of skeletal muscle mass and function, remain unclear. To identify molecular changes that correlated best with sarcopenia and might contribute to its pathogenesis, we determined global gene expression profiles in muscles of rats aged 6, 12, 18, 21, 24, and 27 months. These rats exhibit sarcopenia beginning at 21 months. Correlation of the gene expression versus muscle mass or age changes, and functional annotation analysis identified gene signatures of sarcopenia distinct from gene signatures of aging. Specifically, mitochondrial energy metabolism (e.g., tricarboxylic acid cycle and oxidative phosphorylation) pathway genes were the most downregulated and most significantly correlated with sarcopenia. Also, perturbed were genes/pathways associated with neuromuscular junction patency (providing molecular evidence of sarcopenia-related functional denervation and neuromuscular junction remodeling), protein degradation, and inflammation. Proteomic analysis of samples at 6, 18, and 27 months confirmed the depletion of mitochondrial energy metabolism proteins and neuromuscular junction proteins. Together, these findings suggest that therapeutic approaches that simultaneously stimulate mitochondrogenesis and reduce muscle proteolysis and inflammation have potential for treating sarcopenia.
Collapse
|
236
|
Chondrogianni N, Petropoulos I, Grimm S, Georgila K, Catalgol B, Friguet B, Grune T, Gonos ES. Protein damage, repair and proteolysis. Mol Aspects Med 2012; 35:1-71. [PMID: 23107776 DOI: 10.1016/j.mam.2012.09.001] [Citation(s) in RCA: 177] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2012] [Accepted: 09/26/2012] [Indexed: 01/10/2023]
Abstract
Proteins are continuously affected by various intrinsic and extrinsic factors. Damaged proteins influence several intracellular pathways and result in different disorders and diseases. Aggregation of damaged proteins depends on the balance between their generation and their reversal or elimination by protein repair systems and degradation, respectively. With regard to protein repair, only few repair mechanisms have been evidenced including the reduction of methionine sulfoxide residues by the methionine sulfoxide reductases, the conversion of isoaspartyl residues to L-aspartate by L-isoaspartate methyl transferase and deglycation by phosphorylation of protein-bound fructosamine by fructosamine-3-kinase. Protein degradation is orchestrated by two major proteolytic systems, namely the lysosome and the proteasome. Alteration of the function for both systems has been involved in all aspects of cellular metabolic networks linked to either normal or pathological processes. Given the importance of protein repair and degradation, great effort has recently been made regarding the modulation of these systems in various physiological conditions such as aging, as well as in diseases. Genetic modulation has produced promising results in the area of protein repair enzymes but there are not yet any identified potent inhibitors, and, to our knowledge, only one activating compound has been reported so far. In contrast, different drugs as well as natural compounds that interfere with proteolysis have been identified and/or developed resulting in homeostatic maintenance and/or the delay of disease progression.
Collapse
Affiliation(s)
- Niki Chondrogianni
- Institute of Biology, Medicinal Chemistry and Biotechnology, National Helenic Research Foundation, 48 Vas. Constantinou Ave., 116 35 Athens, Greece.
| | - Isabelle Petropoulos
- Laboratoire de Biologie Cellulaire du Vieillissement, UR4-UPMC, IFR 83, Université Pierre et Marie Curie-Paris 6, 4 Place Jussieu, 75005 Paris, France
| | - Stefanie Grimm
- Department of Nutritional Toxicology, Institute of Nutrition, Friedrich-Schiller University, Dornburger Straße 24, 07743 Jena, Germany
| | - Konstantina Georgila
- Institute of Biology, Medicinal Chemistry and Biotechnology, National Helenic Research Foundation, 48 Vas. Constantinou Ave., 116 35 Athens, Greece
| | - Betul Catalgol
- Department of Biochemistry, Faculty of Medicine, Genetic and Metabolic Diseases Research Center (GEMHAM), Marmara University, Haydarpasa, Istanbul, Turkey
| | - Bertrand Friguet
- Laboratoire de Biologie Cellulaire du Vieillissement, UR4-UPMC, IFR 83, Université Pierre et Marie Curie-Paris 6, 4 Place Jussieu, 75005 Paris, France
| | - Tilman Grune
- Department of Nutritional Toxicology, Institute of Nutrition, Friedrich-Schiller University, Dornburger Straße 24, 07743 Jena, Germany
| | - Efstathios S Gonos
- Institute of Biology, Medicinal Chemistry and Biotechnology, National Helenic Research Foundation, 48 Vas. Constantinou Ave., 116 35 Athens, Greece.
| |
Collapse
|
237
|
Miller BF, Robinson MM, Reuland DJ, Drake JC, Peelor FF, Bruss MD, Hellerstein MK, Hamilton KL. Calorie restriction does not increase short-term or long-term protein synthesis. J Gerontol A Biol Sci Med Sci 2012; 68:530-8. [PMID: 23105041 DOI: 10.1093/gerona/gls219] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
Increased protein synthesis is proposed as a mechanism of life-span extension during caloric restriction (CR). We hypothesized that CR does not increase protein synthesis in all tissues and protein fractions and that any increased protein synthesis with CR would be due to an increased anabolic effect of feeding. We used short- (4 hours) and long-term (6 weeks) methods to measure in vivo protein synthesis in lifelong ad libitum (AL) and CR mice. We did not detect an acute effect of feeding on protein synthesis while liver mitochondrial protein synthesis was lower in CR mice versus AL mice. Mammalian target of rapamycin (mTOR) signaling was repressed in liver and heart from CR mice indicative of energetic stress and suppression of growth. Our main findings were that CR did not increase rates of mixed protein synthesis over the long term or in response to acute feeding, and protein synthesis was maintained despite decreased mTOR signaling.
Collapse
Affiliation(s)
- Benjamin F Miller
- Department of Health and Exercise Science, Colorado State University, Fort Collins CO 80523-1582, USA.
| | | | | | | | | | | | | | | |
Collapse
|
238
|
Huffman K. The developing, aging neocortex: how genetics and epigenetics influence early developmental patterning and age-related change. Front Genet 2012; 3:212. [PMID: 23087707 PMCID: PMC3473232 DOI: 10.3389/fgene.2012.00212] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2012] [Accepted: 09/26/2012] [Indexed: 11/13/2022] Open
Abstract
A hallmark of mammalian development is the generation of functional subdivisions within the nervous system. In humans, this regionalization creates a complex system that regulates behavior, cognition, memory, and emotion. During development, specification of neocortical tissue that leads to functional sensory and motor regions results from an interplay between cortically intrinsic, molecular processes, such as gene expression, and extrinsic processes regulated by sensory input. Cortical specification in mice occurs pre- and perinatally, when gene expression is robust and various anatomical distinctions are observed alongside an emergence of physiological function. After patterning, gene expression continues to shift and axonal connections mature into an adult form. The function of adult cortical gene expression may be to maintain neocortical subdivisions that were established during early patterning. As some changes in neocortical gene expression have been observed past early development into late adulthood, gene expression may also play a role in the altered neocortical function observed in age-related cognitive decline and brain dysfunction. This review provides a discussion of how neocortical gene expression and specific patterns of neocortical sensori-motor axonal connections develop and change throughout the lifespan of the animal. We posit that a role of neocortical gene expression in neocortex is to regulate plasticity mechanisms that impact critical periods for sensory and motor plasticity in aging. We describe results from several studies in aging brain that detail changes in gene expression that may relate to microstructural changes observed in brain anatomy. We discuss the role of altered glucocorticoid signaling in age-related cognitive and functional decline, as well as how aging in the brain may result from immune system activation. We describe how caloric restriction or reduction of oxidative stress may ameliorate effects of aging on the brain.
Collapse
Affiliation(s)
- Kelly Huffman
- Department of Psychology, University of California Riverside, CA, USA
| |
Collapse
|
239
|
Lee JS, Park AH, Lee SH, Lee SH, Kim JH, Yang SJ, Yeom YI, Kwak TH, Lee D, Lee SJ, Lee CH, Kim JM, Kim D. Beta-lapachone, a modulator of NAD metabolism, prevents health declines in aged mice. PLoS One 2012; 7:e47122. [PMID: 23071729 PMCID: PMC3469505 DOI: 10.1371/journal.pone.0047122] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2012] [Accepted: 09/10/2012] [Indexed: 12/26/2022] Open
Abstract
NADH-quinone oxidoreductase 1 (NQO1) modulates cellular NAD+/NADH ratio which has been associated with the aging and anti-aging mechanisms of calorie restriction (CR). Here, we demonstrate that the facilitation of NQO1 activity by feeding β-lapachone (βL), an exogenous NQO1 co-substrate, prevented age-dependent decline of motor and cognitive function in aged mice. βL-fed mice did not alter their food-intake or locomotor activity but did increase their energy expenditure as measured by oxygen consumption and heat generation. Mitochondrial structure and numbers were disorganized and decreased in the muscles of control diet group but those defects were less severe in βL-fed aged mice. Furthermore, for a subset of genes associated with energy metabolism, mice fed the βL-diet showed similar changes in gene expression to the CR group (fed 70% of the control diet). These results support the potentiation of NQO1 activity by a βL diet and could be an option for preventing age-related decline of muscle and brain functions.
Collapse
Affiliation(s)
- Jeong-sook Lee
- Department of Biological Sciences, KAIST (Korea Advanced Institute of Science and Technology), Daejeon, Korea
| | - Ah Hyung Park
- Department of Biological Sciences, KAIST (Korea Advanced Institute of Science and Technology), Daejeon, Korea
| | - Sang-Hee Lee
- Department of Pathology and Infection Signaling Network Research Center, Chungnam National University School of Medicine, Daejeon, Korea
| | | | | | - Suk-Jin Yang
- Medical Genomics Research Center, KRIBB (Korea Research Institute of Bioscience and Biotechnology), Daejeon, Korea
| | - Young Il Yeom
- Medical Genomics Research Center, KRIBB (Korea Research Institute of Bioscience and Biotechnology), Daejeon, Korea
| | | | - Dongyeop Lee
- Division of Molecular and Life Science, POSTECH (Pohang University of Science and Technology), Pohang, Kyungbuk, Korea
| | - Seung-Jae Lee
- Division of Molecular and Life Science, POSTECH (Pohang University of Science and Technology), Pohang, Kyungbuk, Korea
| | - Chul-Ho Lee
- Animal Model Center, KRIBB (Korea Research Institute of Bioscience and Biotechnology), Daejeon, Korea
| | - Jin Man Kim
- Department of Pathology and Infection Signaling Network Research Center, Chungnam National University School of Medicine, Daejeon, Korea
| | - Daesoo Kim
- Department of Biological Sciences, KAIST (Korea Advanced Institute of Science and Technology), Daejeon, Korea
- * E-mail:
| |
Collapse
|
240
|
Heilbronn LK, Civitarese AE, Bogacka I, Smith SR, Hulver M, Ravussin E. Glucose Tolerance and Skeletal Muscle Gene Expression in Response to Alternate Day Fasting. ACTA ACUST UNITED AC 2012; 13:574-81. [PMID: 15833943 DOI: 10.1038/oby.2005.61] [Citation(s) in RCA: 126] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
OBJECTIVE Alternate day fasting may extend lifespan in rodents and is feasible for short periods in nonobese humans. The aim of this study was to examine the effects of 3 weeks of alternate day fasting on glucose tolerance and skeletal muscle expression of genes involved in fatty acid transport/oxidation, mitochondrial biogenesis, and stress response. RESEARCH METHODS AND PROCEDURES Glucose and insulin responses to a standard meal were tested in nonobese subjects (eight men and eight women; BMI, 20 to 30 kg/m(2)) at baseline and after 22 days of alternate day fasting (36 hour fast). Muscle biopsies were obtained from a subset of subjects (n = 11) at baseline and on day 21 (12-hour fast). RESULTS Glucose response to a meal was slightly impaired in women after 3 weeks of treatment (p < 0.01), but insulin response was unchanged. However, men had no change in glucose response and a significant reduction in insulin response (p < 0.03). There were no significant changes in the expression of genes involved in mitochondrial biogenesis or fatty acid transport/oxidation, although a trend toward increased CPT1 expression was observed (p < 0.08). SIRT1 mRNA expression was increased after alternate day fasting (p = 0.01). DISCUSSION Alternate day fasting may adversely affect glucose tolerance in nonobese women but not in nonobese men. The gene expression results indicate that fatty acid oxidation and mitochondrial biogenesis are unaffected by alternate day fasting. However, the increased expression in SIRT1 suggests that alternate day fasting may improve stress resistance, a commonly observed feature of calorie-restricted rodents.
Collapse
|
241
|
Selman C, Hempenstall S. Evidence of a metabolic memory to early-life dietary restriction in male C57BL/6 mice. LONGEVITY & HEALTHSPAN 2012; 1:2. [PMID: 24764508 PMCID: PMC3886256 DOI: 10.1186/2046-2395-1-2] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/19/2011] [Accepted: 12/08/2011] [Indexed: 12/21/2022]
Abstract
Background Dietary restriction (DR) extends lifespan and induces beneficial metabolic effects in many animals. What is far less clear is whether animals retain a metabolic memory to previous DR exposure, that is, can early-life DR preserve beneficial metabolic effects later in life even after the resumption of ad libitum (AL) feeding. We examined a range of metabolic parameters (body mass, body composition (lean and fat mass), glucose tolerance, fed blood glucose, fasting plasma insulin and insulin-like growth factor 1 (IGF-1), insulin sensitivity) in male C57BL/6 mice dietary switched from DR to AL (DR-AL) at 11 months of age (mid life). The converse switch (AL-DR) was also undertaken at this time. We then compared metabolic parameters of the switched mice to one another and to age-matched mice maintained exclusively on an AL or DR diet from early life (3 months of age) at 1 month, 6 months or 10 months post switch. Results Male mice dietary switched from AL-DR in mid life adopted the metabolic phenotype of mice exposed to DR from early life, so by the 10-month timepoint the AL-DR mice overlapped significantly with the DR mice in terms of their metabolic phenotype. Those animals switched from DR-AL in mid life showed clear evidence of a glycemic memory, with significantly improved glucose tolerance relative to mice maintained exclusively on AL feeding from early life. This difference in glucose tolerance was still apparent 10 months after the dietary switch, despite body mass, fasting insulin levels and insulin sensitivity all being similar to AL mice at this time. Conclusions Male C57BL/6 mice retain a long-term glycemic memory of early-life DR, in that glucose tolerance is enhanced in mice switched from DR-AL in mid life, relative to AL mice, even 10 months following the dietary switch. These data therefore indicate that the phenotypic benefits of DR are not completely dissipated following a return to AL feeding. The challenge now is to understand the molecular mechanisms underlying these effects, the time course of these effects and whether similar interventions can confer comparable benefits in humans.
Collapse
Affiliation(s)
- Colin Selman
- Integrative and Environmental Physiology, Institute of Biological and Environmental Sciences, University of Aberdeen, Aberdeen,, AB24 2TZ, UK
| | - Sarah Hempenstall
- Integrative and Environmental Physiology, Institute of Biological and Environmental Sciences, University of Aberdeen, Aberdeen,, AB24 2TZ, UK
| |
Collapse
|
242
|
Skeletal muscle mitochondria and aging: a review. J Aging Res 2012; 2012:194821. [PMID: 22888430 PMCID: PMC3408651 DOI: 10.1155/2012/194821] [Citation(s) in RCA: 205] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2012] [Accepted: 05/21/2012] [Indexed: 12/12/2022] Open
Abstract
Aging is characterized by a progressive loss of muscle mass and muscle strength. Declines in skeletal muscle mitochondria are thought to play a primary role in this process. Mitochondria are the major producers of reactive oxygen species, which damage DNA, proteins, and lipids if not rapidly quenched. Animal and human studies typically show that skeletal muscle mitochondria are altered with aging, including increased mutations in mitochondrial DNA, decreased activity of some mitochondrial enzymes, altered respiration with reduced maximal capacity at least in sedentary individuals, and reduced total mitochondrial content with increased morphological changes. However, there has been much controversy over measurements of mitochondrial energy production, which may largely be explained by differences in approach and by whether physical activity is controlled for. These changes may in turn alter mitochondrial dynamics, such as fusion and fission rates, and mitochondrially induced apoptosis, which may also lead to net muscle fiber loss and age-related sarcopenia. Fortunately, strategies such as exercise and caloric restriction that reduce oxidative damage also improve mitochondrial function. While these strategies may not completely prevent the primary effects of aging, they may help to attenuate the rate of decline.
Collapse
|
243
|
Yuan Y, Kadiyala CS, Ching TT, Hakimi P, Saha S, Xu H, Yuan C, Mullangi V, Wang L, Fivenson E, Hanson RW, Ewing R, Hsu AL, Miyagi M, Feng Z. Enhanced energy metabolism contributes to the extended life span of calorie-restricted Caenorhabditis elegans. J Biol Chem 2012; 287:31414-26. [PMID: 22810224 DOI: 10.1074/jbc.m112.377275] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Caloric restriction (CR) markedly extends life span and improves the health of a broad number of species. Energy metabolism fundamentally contributes to the beneficial effects of CR, but the underlying mechanisms that are responsible for this effect remain enigmatic. A multidisciplinary approach that involves quantitative proteomics, immunochemistry, metabolic quantification, and life span analysis was used to determine how CR, which occurs in the Caenorhabditis elegans eat-2 mutants, modifies energy metabolism of the worm, and whether the observed modifications contribute to the CR-mediated physiological responses. A switch to fatty acid metabolism as an energy source and an enhanced rate of energy metabolism by eat-2 mutant nematodes were detected. Life span analyses validated the important role of these previously unknown alterations of energy metabolism in the CR-mediated longevity of nematodes. As observed in mice, the overexpression of the gene for the nematode analog of the cytosolic form of phosphoenolpyruvate carboxykinase caused a marked extension of the life span in C. elegans, presumably by enhancing energy metabolism via an altered rate of cataplerosis of tricarboxylic acid cycle anions. We conclude that an increase, not a decrease in fuel consumption, via an accelerated oxidation of fuels in the TCA cycle is involved in life span regulation; this mechanism may be conserved across phylogeny.
Collapse
Affiliation(s)
- Yiyuan Yuan
- Department of Pharmacology, School of Medicine, Case Western Reserve University, Cleveland, Ohio 44106, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
244
|
Lafontaine J, Tchakarska G, Rodier F, Mes-Masson AM. Necdin modulates proliferative cell survival of human cells in response to radiation-induced genotoxic stress. BMC Cancer 2012; 12:234. [PMID: 22691188 PMCID: PMC3495902 DOI: 10.1186/1471-2407-12-234] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2011] [Accepted: 05/23/2012] [Indexed: 12/26/2022] Open
Abstract
Background The finite replicative lifespan of cells, termed cellular senescence, has been proposed as a protective mechanism against the proliferation of oncogenically damaged cells, that fuel cancer. This concept is further supported by the induction of premature senescence, a process which is activated when an oncogene is expressed in normal primary cells as well as following intense genotoxic stresses. Thus, deregulation of genes that control this process, like the tumor suppressor p53, may contribute to promoting cancer by allowing cells to bypass senescence. A better understanding of the genes that contribute to the establishment of senescence is therefore warranted. Necdin interacts with p53 and is also a p53 target gene, although the importance of Necdin in the p53 response is not clearly understood. Methods In this study, we first investigated Necdin protein expression during replicative senescence and premature senescence induced by gamma irradiation and by the overexpression of oncogenic RasV12. Gain and loss of function experiments were used to evaluate the contribution of Necdin during the senescence process. Results Necdin expression declined during replicative aging of IMR90 primary human fibroblasts or following induction of premature senescence. Decrease in Necdin expression seemed to be a consequence of the establishment of senescence since the depletion of Necdin in human cells did not induce a senescence-like growth arrest nor a flat morphology or SA-β-galactosidase activity normally associated with senescence. Similarly, overexpression of Necdin did not affect the life span of IMR90 cells. However, we demonstrate that in normal human cells, Necdin expression mimicked the effect of p53 inactivation by increasing radioresistance. Conclusion This result suggests that Necdin potentially attenuate p53 signaling in response to genotoxic stress in human cells and supports similar results describing an inhibitory function of Necdin over p53-dependent growth arrest in mice.
Collapse
Affiliation(s)
- Julie Lafontaine
- Centre de recherche du Centre hospitalier de l'Université de Montréal (CRCHUM), Institut du cancer de Montréal, Y-4606, 1560, rue Sherbrooke Est, Montréal, QC, H2L 4 M1, Canada
| | | | | | | |
Collapse
|
245
|
Yizhak K, Gabay O, Cohen H, Ruppin E. Metabolic modeling predicts perturbations extending lifespan in yeast and counteracting aging in mammalian muscle. BMC Proc 2012. [PMCID: PMC3374254 DOI: 10.1186/1753-6561-6-s3-p54] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
|
246
|
Wang JW, Chen W, Kang XT, Huang YQ, Tian YD, Wang YB. Identification of differentially expressed genes induced by energy restriction using annealing control primer system from the liver and adipose tissues of broilers. Poult Sci 2012; 91:972-8. [PMID: 22399737 DOI: 10.3382/ps.2011-01949] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
Female Arbor Acre broilers were divided into 2 groups at 18 d of age. One group of chickens had free access to feed (AL), and the other group of chickens had 30% energy restriction (ER). Adipose and hepatic RNA samples were collected at 48 d of age. We employed an accurate reverse-transcription (RT) PCR method that involves annealing control primers to identify the differentially expressed genes (DEG) between ER and AL groups. Using 20 annealing control primers, 43 differentially expressed bands (40 downregulated and 3 upregulated in the ER group) were detected from the hepatic tissue, whereas no differentially expressed bands were detected from the adipose tissue. It seems that energy restriction could induce more DEG in hepatic tissue than that in adipose tissue and could result in more gene-expression downregulation in hepatic tissue. Eight DEG (6 known and 2 unknown genes) were gained from hepatic tissue and confirmed by RT-PCR, which were all supported by released expressed sequence tag sequences. Their expressions were all downregulated by energy restriction in hepatic tissues. Six known genes are RPL7, RPLP1, FBXL12, ND1, ANTXR2, and SLC22A18, respectively, which seem to play essential roles in the protein translation, energy metabolism, and tumor inhibition. The alterations of gene expression in 3 selected genes, including ND1 (P < 0.01), FBXL12 (P < 0.01), and RPLP1 (P < 0.05), were supported by real-time quantitative RT-PCR reaction. Our data provide new insights on the metabolic state of broilers changed by energy restriction.
Collapse
Affiliation(s)
- J W Wang
- College of Animal Science, Henan Agricultural University, Zhengzhou, Henan, 450002, PR China
| | | | | | | | | | | |
Collapse
|
247
|
Koltai E, Hart N, Taylor AW, Goto S, Ngo JK, Davies KJA, Radak Z. Age-associated declines in mitochondrial biogenesis and protein quality control factors are minimized by exercise training. Am J Physiol Regul Integr Comp Physiol 2012; 303:R127-34. [PMID: 22573103 DOI: 10.1152/ajpregu.00337.2011] [Citation(s) in RCA: 106] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
A decline in mitochondrial biogenesis and mitochondrial protein quality control in skeletal muscle is a common finding in aging, but exercise training has been suggested as a possible cure. In this report, we tested the hypothesis that moderate-intensity exercise training could prevent the age-associated deterioration in mitochondrial biogenesis in the gastrocnemius muscle of Wistar rats. Exercise training, consisting of treadmill running at 60% of the initial Vo(2max), reversed or attenuated significant age-associated (detrimental) declines in mitochondrial mass (succinate dehydrogenase, citrate synthase, cytochrome-c oxidase-4, mtDNA), SIRT1 activity, AMPK, pAMPK, and peroxisome proliferator-activated receptor gamma coactivator 1-α, UCP3, and the Lon protease. Exercise training also decreased the gap between young and old animals in other measured parameters, including nuclear respiratory factor 1, mitochondrial transcription factor A, fission-1, mitofusin-1, and polynucleotide phosphorylase levels. We conclude that exercise training can help minimize detrimental skeletal muscle aging deficits by improving mitochondrial protein quality control and biogenesis.
Collapse
Affiliation(s)
- Erika Koltai
- Research Institute of Sport Science, Semmelweis University, Budapest, Hungary
| | | | | | | | | | | | | |
Collapse
|
248
|
Doroszuk A, Jonker MJ, Pul N, Breit TM, Zwaan BJ. Transcriptome analysis of a long-lived natural Drosophila variant: a prominent role of stress- and reproduction-genes in lifespan extension. BMC Genomics 2012; 13:167. [PMID: 22559237 PMCID: PMC3427046 DOI: 10.1186/1471-2164-13-167] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2011] [Accepted: 05/04/2012] [Indexed: 01/15/2023] Open
Abstract
Background While studying long-lived mutants has advanced our understanding of the processes involved in ageing, the mechanisms underlying natural variation in lifespan and ageing rate remain largely unknown. Here, we characterise genome-wide expression patterns of a long-lived, natural variant of Drosophila melanogaster resulting from selection for starvation resistance (SR) and compare it with normal-lived control flies (C). We do this at two time points representing middle age (90% survival) and old age (10% survival) respectively, in three adult diets (malnutrition, optimal food, and overfeeding). Results We found profound differences between Drosophila lines in their age-related expression. Most of the age-associated changes in normal-lived flies were abrogated in long-lived Drosophila. The stress-related genes, including those involved in proteolysis and cytochrome P450, were generally higher expressed in SR flies and showed a smaller increase in expression with age compared to C flies. The genes involved in reproduction showed a lower expression in middle-aged SR than in C flies and, unlike C flies, a lack of their downregulation with age. Further, we found that malnutrition strongly affected age-associated transcript patterns overriding the differences between the lines. However, under less stressful dietary conditions, line and diet affected age-dependent expression similarly. Finally, we present lists of candidate markers of ageing and lifespan extension. Conclusions Our study unveils transcriptional changes associated with lifespan extension in SR Drosophila. The results suggest that natural genetic variation for SR and lifespan can operate through similar transcriptional mechanisms as those of dietary restriction and life-extending mutations.
Collapse
Affiliation(s)
- Agnieszka Doroszuk
- Evolutionary Biology, Institute of Biology, Leiden University, The Netherlands.
| | | | | | | | | |
Collapse
|
249
|
Abstract
Intrinsic skin aging represents the biological clock of the skin cells per se and reflects the reduction processes that are common in internal organs. The reduced secretion of the pituitary, adrenal glands, and the gonads contributes to characteristic aging-associated body and skin phenotypes as well as behavior patterns. Our knowledge of whether there is a direct or indirect connection between hormonal deficiency and skin aging still remains limited. In females, serum levels of 17β-estradiol, dehydroepiandrosterone, progesterone, growth hormone (GH), and its downstream hormone insulin-like growth factor I (IGF-I) are significantly decreased with increasing age. In males, serum levels of GH and IGF-I decrease significantly, whereas it can decrease in late age in a part of the population. Hormones have been shown to influence skin morphology and functions, skin permeability, wound healing, sebaceous lipogenesis, and the metabolism of skin cells. Prevention of skin aging by estrogen/progesterone replacement therapy is effective if administered early after menopause and influences intrinsically aged skin only. Vitamin D substitution and antioxidant treatment may also be beneficial. Replacement therapy with androgens, GH, IGF-I, progesterone, melatonin, cortisol, and thyroid hormones still remains controversial.
Collapse
Affiliation(s)
- C C Zouboulis
- Department of Dermatology, Dessau Medical Center, Dessau, Germany.
| | | |
Collapse
|
250
|
Handa JT. How does the macula protect itself from oxidative stress? Mol Aspects Med 2012; 33:418-35. [PMID: 22503691 DOI: 10.1016/j.mam.2012.03.006] [Citation(s) in RCA: 121] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2012] [Accepted: 03/30/2012] [Indexed: 02/07/2023]
Abstract
Oxidative stress has been hypothesized to contribute to the development of age-related macular degeneration (AMD), the most common cause of blindness in the United States. At present, there is no treatment for early disease. Reactive oxygen species (ROS) play a physiological role in the retinal pigment epithelium (RPE), a key cell type in this disease, but with excessive ROS, oxidative damage or excessive innate immune system activation can result. The RPE has developed a robust antioxidant system driven by the transcription factor Nrf2. Impaired Nrf2 signaling can lead to oxidative damage or activate the innate immune response, both of which can lead to RPE apoptosis, a defining change in AMD. Several mouse models simulating environmental stressors or targeting specific antioxidant enzymes such as superoxide dismutase or Nrf2, have simulated some of the features of AMD. While ROS are short-lived, oxidatively damaged molecules termed oxidation specific epitopes (OSEs), can be long-lived and a source of chronic stress that activates the innate immune system through pattern recognition receptors (PRRs). The macula accumulates a number of OSEs including carboxyethylpyrrole, malondialdehyde, 4-hydroxynonenal, and advanced glycation endproducts, as well as their respective neutralizing PRRs. Excessive accumulation of OSEs results in pathologic immune activation. For example, mice immunized with the carboxyethylpyrrole develop cardinal features of AMD. Regulating ROS in the RPE by modulating antioxidant systems or neutralizing OSEs through an appropriate innate immune response are potential modalities to treat or prevent early AMD.
Collapse
Affiliation(s)
- James T Handa
- Wilmer Eye Institute, Johns Hopkins School of Medicine, Baltimore, MD, USA.
| |
Collapse
|