201
|
Tintignac LA, Leibovitch MP, Kitzmann M, Fernandez A, Ducommun B, Meijer L, Leibovitch SA. Cyclin E-cdk2 phosphorylation promotes late G1-phase degradation of MyoD in muscle cells. Exp Cell Res 2000; 259:300-7. [PMID: 10942602 DOI: 10.1006/excr.2000.4973] [Citation(s) in RCA: 47] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Proliferating myoblasts already express MyoD before the induction of differentiation. Overexpression of MyoD in normal and transformed cell lines was shown to block cells from entering S phase, suggesting that the MyoD growth suppressive effect must be tightly controlled in growing myoblasts. Here we show that during G1 phase, but not in G2, MyoD abundance is down-regulated by the ubiquitin-proteasome pathway through phosphorylation of serine 200. Roscovitine, a specific inhibitor of cyclin-Cdk2 complexes, prevents both phosphorylation and degradation of MyoD in G1. Inhibition of the ubiquitin-dependent proteasome pathway by MG132 results in stabilization of MyoD-wt, with little effect on a MyoD mutant where serine 200 is replaced by an alanine. Our results show that MyoD Ser200 is the substrate for phosphorylation by cyclin E-Cdk2 stimulating its degradation by the ubiquitin-proteasome system which controls MyoD levels in G1. Phosphorylation/degradation of MyoD at the end of G1 thus represents the regulatory checkpoint in growing myoblasts allowing progression into S phase in a manner similar to the recently examplified cdk2-phosphorylation/degradation of p27(Kip1).
Collapse
Affiliation(s)
- L A Tintignac
- Laboratoire de Génétique Oncologique, Institut Gustave Roussy, Villejuif, 94805, France
| | | | | | | | | | | | | |
Collapse
|
202
|
Cornelison DD, Olwin BB, Rudnicki MA, Wold BJ. MyoD(-/-) satellite cells in single-fiber culture are differentiation defective and MRF4 deficient. Dev Biol 2000; 224:122-37. [PMID: 10926754 DOI: 10.1006/dbio.2000.9682] [Citation(s) in RCA: 206] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
MyoD-deficient mice are without obvious deleterious muscle phenotype during embryogenesis and fetal development, and adults in the laboratory have grossly normal skeletal muscle and life span. However, a previous study showed that in the context of muscle degeneration on a mdx (dystrophin null) genetic background, animals lacking MyoD have a greatly intensified disease phenotype leading to lethality not otherwise seen in mdx mice. Here we have examined MyoD(-/-) adult muscle fibers and their associated satellite cells in single myofiber cultures and describe major phenotypic differences found at the tissue, cellular, and molecular levels. The steady-state number of satellite cells on freshly isolated MyoD(-/-) fibers was elevated and abnormal branched fiber morphologies were observed, the latter suggesting chronic muscle regeneration in vivo. Single-cell RNA coexpression analyses were performed for c-met, m-cadherin, and the four myogenic regulatory factors (MRFs.) Most mutant satellite cells entered the cell cycle and upregulated expression of myf5, both characteristic early steps in satellite cell maturation. However, they later failed to normally upregulate MRF4, displayed a major deficit in m-cadherin expression, and showed a significant diminution in myogenin-positive status compared with wildtype. MyoD(-/-) satellite cells formed unusual aggregate structures, failed to fuse efficiently, and showed greater than 90% reduction in differentiation efficiency relative to wildtype. A further survey of RNAs encoding regulators of growth and differentiation, cell cycle progression, and cell signaling revealed similar or identical expression profiles for most genes as well as several noteworthy differences. Among these, GDF8 and Msx1 were identified as potentially important regulators of the quiescent state whose expression profile differs between mutant and wildtype. Considered together, these data suggest that activated MyoD(-/-) satellite cells assume a phenotype that resembles in some ways a developmentally "stalled" cell compared to wildtype. However, the MyoD(-/-) cells are not merely developmentally immature, as they also display novel molecular and cellular characteristics that differ from any observed in wild-type muscle precursor counterparts of any stage.
Collapse
Affiliation(s)
- D D Cornelison
- Biology Division 156-29, California Institute of Technology, Pasadena 91125, USA
| | | | | | | |
Collapse
|
203
|
Chu CY, Lim RW. Involvement of p27(kip1) and cyclin D3 in the regulation of cdk2 activity during skeletal muscle differentiation. BIOCHIMICA ET BIOPHYSICA ACTA 2000; 1497:175-85. [PMID: 10903422 DOI: 10.1016/s0167-4889(00)00064-1] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
Terminal myogenic differentiation involves an irreversible transition from a proliferative state to a post-mitotic quiescent state. We showed here that in addition to the previously reported down regulation of G(1)-related cyclin-associated kinase activities, this transition was also accompanied by an extensive reorganization of the cyclin-cdk complexes, including a dramatic shift of cdk2 from cyclin A to cyclin D3. Moreover, the inhibition of cdk activity also correlated with an increase in the expression of the p27(kip1) cdk inhibitor and in its association with the cyclin-cdk2 complexes. Since depletion of p27 substantially reduced the cdk inhibitor activity present in differentiated muscle cells, we believe that the increase in p27 expression along with the reorganization of the cyclin-cdk2 complexes may play an important role in the inhibition of cdk2 activity during the differentiation process.
Collapse
Affiliation(s)
- C Y Chu
- Department of Pharmacology, University of Missouri-Columbia, MO 65212, Columbia, USA
| | | |
Collapse
|
204
|
Leshem Y, Spicer DB, Gal-Levi R, Halevy O. Hepatocyte growth factor (HGF) inhibits skeletal muscle cell differentiation: a role for the bHLH protein twist and the cdk inhibitor p27. J Cell Physiol 2000; 184:101-9. [PMID: 10825239 DOI: 10.1002/(sici)1097-4652(200007)184:1<101::aid-jcp11>3.0.co;2-d] [Citation(s) in RCA: 56] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Hepatocyte growth factor (HGF) plays a crucial role in regulating the differentiation of both fetal and adult skeletal myoblasts. This study aimed at defining the intracellular factors that mediate the effect of HGF on adult myoblast differentiation. HGF increased Twist expression while decreasing p27(kip1) protein levels and not affecting the induction of p21(Cip1/Waf1) in satellite cells. Like HGF, overexpression of Twist did not affect p21 expression while inhibiting muscle-specific proteins. Both ectopic Twist-antisense (Twist-AS) and p27 partially rescued the effects of HGF on bromodeoxyuridine (BrdU) incorporation and myosin heavy chain (MHC) expression in muscle satellite cells; the two plasmids together effected full rescue, suggesting that HGF independently regulates these two factors to mediate its effects. Ectopic p27 promoted differentiation in the presence of HGF by blocking the induction of Twist. Using Twist-AS to lower Twist levels restored the HGF-dependent reduction of p27 and MHC. In the presence of ectopic HGF, satellite cells formed thin mononuclear myotubes. Neither ectopic p27, Twist-AS, or their combination reversed this change in cell morphology, suggesting that HGF acts through additional mediators to inhibit downstream events during myogenesis. Taken together, the results suggest that the effects of HGF on muscle cell proliferation and differentiation are mediated through changes in the expression levels of the myogenic-inhibitory basic helix-loop-helix (bHLH) protein Twist and the cell-cycle inhibitor p27.
Collapse
Affiliation(s)
- Y Leshem
- Department of Animal Sciences, The Hebrew University of Jerusalem, Rehovot, Israel
| | | | | | | |
Collapse
|
205
|
Steinman RA, Yaroslavskiy B, Kaplan SS, Goff JP, Shields DS. Clonal response of K562 leukemic cells to exogenous p21WAF1. Leuk Res 2000; 24:601-10. [PMID: 10867136 DOI: 10.1016/s0145-2126(00)00020-5] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
The p21WAF1 protein is involved in the control of cell differentiation and proliferation. We have previously shown that p21WAF1 is upregulated in normal, proliferating hematopoietic cells undergoing differentiation. Exogenous p21WAF1 has been reported to increase colony-formation by normal hematopoietic progenitors. We examined the effects of exogenous p21WAF1 on proliferation, differentiation, gene expression and colony-formation by K562 cells using an inducible p21WAF1 expression construct. Expression of the stathmin (oncoprotein 18) gene decreased within 24 h of p21WAF1 expression; Hox B4 expression increased. Four K562 subclones were derived which differed in their response to equivalent induction of p21WAF1. All four subclones exhibited growth arrest in response to p21WAF1 in liquid culture. Three of four clones developed cytoplasmic granulation and partial morphologic differentiation after p21WAF1 induction. One clone exhibited fewer morphologic features of differentiation following p21WAF1 induction and unlike other clones, colony formation in methlycellulose was not decreased by p21WAF1 expression in this clone. This indicates that additional cell-specific factors influence cellular fate in the presence of elevated p21WAF1.
Collapse
Affiliation(s)
- R A Steinman
- Department of Medicine, University of Pittsburgh School of Medicine, 211 Lothrop Street, E1052 Biomedical Science Tower, Pittsburgh, PA 15213, USA.
| | | | | | | | | |
Collapse
|
206
|
Reynaud EG, Leibovitch MP, Tintignac LA, Pelpel K, Guillier M, Leibovitch SA. Stabilization of MyoD by direct binding to p57(Kip2). J Biol Chem 2000; 275:18767-76. [PMID: 10764802 DOI: 10.1074/jbc.m907412199] [Citation(s) in RCA: 81] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Recent data have demonstrated the role of Cdk1- and Cdk2-dependent phosphorylation of MyoD(Ser200) in the regulation of MyoD activity and protein turnover. In the present study, we show that in presence of p57(Kip2), MyoD(Ala200), a MyoD mutant that cannot be phosphorylated by cyclin-Cdk complexes, displayed activity 2-5-fold higher than of MyoD(Ala200) alone in transactivation of muscle-specific genes myosin heavy chain, creatine kinase, and myosin light chain 1. Furthermore, p57(Kip2) increases the levels of MyoD(Ala200) in cotransfected cells. This result implies that p57(Kip2) may regulate MyoD through a process distinct from its function as a cyclin-dependent kinase inhibitors. We report that overexpression of p57(Kip2) increased the half-life of MyoD(Ala200). This increased half-life of MyoD involves a physical interaction between MyoD and p57(Kip2) but not with p16(Ink4a), as shown by cross-immunoprecipitation not only on overexpressed proteins from transfected cells, but also on endogenous MyoD and p57(Kip2) from C2C12 myogenic cells. Mutational and functional analyses of the two proteins show that the NH(2) domain of p57(Kip2) associates with basic region in the basic helix-loop-helix domain of MyoD. Competition/association assays and site-directed mutagenesis of the NH(2) terminus of p57(Kip2) identified the intermediate alpha-helix domain, located between the Cdk and the cyclin binding sites, as essential for MyoD interaction. These data show that the alpha-helix domain of p57(Kip2), which is conserved in the Cip/Kip proteins, is implicated in protein-protein interaction and confers a specific regulatory mechanism, outside of their Cdk-inhibitory activity, by which the p57(Kip2) family members positively act on myogenic differentiation.
Collapse
Affiliation(s)
- E G Reynaud
- Laboratoire de Génétique Oncologique UMR 1599, Centre National de la Recherche Scientifique, Institut Gustave Roussy, 39, rue Camille Desmoulins, 94805 Villejuif, France
| | | | | | | | | | | |
Collapse
|
207
|
Bounpheng MA, Morrish TA, Dodds SG, Christy BA. Negative regulation of selected bHLH proteins by eHAND. Exp Cell Res 2000; 257:320-31. [PMID: 10837146 DOI: 10.1006/excr.2000.4898] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The bHLH protein eHAND plays an important role in the development of extraembryonic, mesodermal, and cardiac cell lineages, presumably through heterodimerization with other HLH proteins and DNA binding. In this study, we have identified a novel transcriptional activity of eHAND. In transient transfection assays, eHAND is a potent inhibitor of activation by some but not all bHLH proteins. eHAND can prevent E-box DNA binding by these bHLH proteins. Interestingly, eHAND can also strongly inhibit transactivation activity by a MyoD approximately E47 tethered dimer, which suggests a distinct mechanism of action. eHAND also inhibits MyoD-dependent skeletal muscle cell differentiation and expression of the muscle-specific myosin heavy chain protein. In addition, we show that eHAND can repress activity of the natural p75LNGFR promoter, whose expression overlaps that of eHAND and dHAND. The inhibitory activity of eHAND may be attributed to multiple mechanisms, such as the ability to act as a corepressor, the presence of a repression domain, and its ability to sequester E proteins in an inactive complex. Based upon its inhibitory effect on bHLH proteins and cellular differentiation, we propose that eHAND may function by several mechanisms to promote placental giant cell proliferation by negatively regulating the activities of the bHLH protein MASH-2.
Collapse
Affiliation(s)
- M A Bounpheng
- Department of Cellular and Structural Biology, University of Texas Health Science Center, San Antonio, Texas, 78245-3207, USA
| | | | | | | |
Collapse
|
208
|
Pelpel K, Leibovitch M, Fernandez A, Leibovitch SA. Mutation of MyoD-Ser237 abolishes its up-regulation by c-Mos. FEBS Lett 2000; 474:233-7. [PMID: 10838091 DOI: 10.1016/s0014-5793(00)01610-0] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Recently we have shown that Mos could activate myogenic differentiation by promoting heterodimerisation of MyoD and E12 proteins. Here, we demonstrate that MyoD can be efficiently phosphorylated by in vitro kinase assay with purified Mos immunoprecipitated from transfected cells. Comparative two-dimensional tryptic phosphopeptide mapping combined with site-directed mutagenesis revealed that Mos phosphorylates MyoD on serine 237. Mutation of serine 237 to a non-phosphorylable alanine (MyoD-Ala237) abolished the positive regulation of MyoD by Mos following overexpression in proliferating 10T1/2 cells. Taken together, our data show that direct phosphorylation of MyoD-Ser237 by Mos plays a positive role in increasing MyoD activity during myoblast proliferation.
Collapse
Affiliation(s)
- K Pelpel
- Laboratoire de Génétique Oncologique, UMR 1599, CNRS Institut Gustave Roussy, Villejuif, France
| | | | | | | |
Collapse
|
209
|
Wu Z, Woodring PJ, Bhakta KS, Tamura K, Wen F, Feramisco JR, Karin M, Wang JY, Puri PL. p38 and extracellular signal-regulated kinases regulate the myogenic program at multiple steps. Mol Cell Biol 2000; 20:3951-64. [PMID: 10805738 PMCID: PMC85749 DOI: 10.1128/mcb.20.11.3951-3964.2000] [Citation(s) in RCA: 388] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The extracellular signals which regulate the myogenic program are transduced to the nucleus by mitogen-activated protein kinases (MAPKs). We have investigated the role of two MAPKs, p38 and extracellular signal-regulated kinase (ERK), whose activities undergo significant changes during muscle differentiation. p38 is rapidly activated in myocytes induced to differentiate. This activation differs from those triggered by stress and cytokines, because it is not linked to Jun-N-terminal kinase stimulation and is maintained during the whole process of myotube formation. Moreover, p38 activation is independent of a parallel promyogenic pathway stimulated by insulin-like growth factor 1. Inhibition of p38 prevents the differentiation program in myogenic cell lines and human primary myocytes. Conversely, deliberate activation of endogenous p38 stimulates muscle differentiation even in the presence of antimyogenic cues. Much evidence indicates that p38 is an activator of MyoD: (i) p38 kinase activity is required for the expression of MyoD-responsive genes, (ii) enforced induction of p38 stimulates the transcriptional activity of a Gal4-MyoD fusion protein and allows efficient activation of chromatin-integrated reporters by MyoD, and (iii) MyoD-dependent myogenic conversion is reduced in mouse embryonic fibroblasts derived from p38alpha(-/-) embryos. Activation of p38 also enhances the transcriptional activities of myocyte enhancer binding factor 2A (MEF2A) and MEF2C by direct phosphorylation. With MEF2C, selective phosphorylation of one residue (Thr293) is a tissue-specific activating signal in differentiating myocytes. Finally, ERK shows a biphasic activation profile, with peaks of activity in undifferentiated myoblasts and postmitotic myotubes. Importantly, activation of ERK is inhibitory toward myogenic transcription in myoblasts but contributes to the activation of myogenic transcription and regulates postmitotic responses (i.e., hypertrophic growth) in myotubes.
Collapse
Affiliation(s)
- Z Wu
- Laboratory of Gene Regulation and Signal Transduction, University of California, San Diego, La Jolla, California 92093-0322, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
210
|
Chen SL, Dowhan DH, Hosking BM, Muscat GE. The steroid receptor coactivator, GRIP-1, is necessary for MEF-2C-dependent gene expression and skeletal muscle differentiation. Genes Dev 2000. [DOI: 10.1101/gad.14.10.1209] [Citation(s) in RCA: 64] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Nuclear receptor-mediated activation of transcription involves coactivation by cofactors collectively denoted the steroid receptor coactivators (SRCs). The process also involves the subsequent recruitment of p300/CBP and PCAF to a complex that synergistically regulates transcription and remodels the chromatin. PCAF and p300 have also been demonstrated to function as critical coactivators for the muscle-specific basic helix–loop–helix (bHLH) protein MyoD during myogenic commitment. Skeletal muscle differentiation and the activation of muscle-specific gene expression is dependent on the concerted action of another bHLH factor, myogenin, and the MADS protein, MEF-2, which function in a cooperative manner. We examined the functional role of one SRC, GRIP-1, in muscle differentiation, an ideal paradigm for the analysis of the determinative events that govern the cell's decision to divide or differentiate. We observed that the mRNA encoding GRIP-1 is expressed in proliferating myoblasts and post-mitotic differentiated myotubes, and that protein levels increase during differentiation. Exogenous/ectopic expression studies with GRIP-1 sense and antisense vectors in myogenic C2C12 cells demonstrated that this SRC is necessary for (1) induction/activation of myogenin, MEF-2, and the crucial cell cycle regulator, p21, and (2) contractile protein expression and myotube formation. Furthermore, we demonstrate that the SRC GRIP-1 coactivates MEF-2C-mediated transcription. GRIP-1 also coactivates the synergistic transactivation of E box-dependent transcription by myogenin and MEF-2C. GST-pulldowns, mammalian two-hybrid analysis, and immunoprecipitation demonstrate that the mechanism involves direct interactions between MEF-2C and GRIP-1 and is associated with the ability of the SRC to interact with the MADS domain of MEF-2C. The HLH region of myogenin mediates the direct interaction of myogenin and GRIP-1. Interestingly, interaction with myogenic factors is mediated by two regions of GRIP-1, an amino-terminal bHLH–PAS region and the carboxy-terminal region between amino acids 1158 and 1423 (which encodes an activation domain, has HAT activity, and interacts with the coactivator-associated arginine methyltransferase). This work demonstrates that GRIP-1 potentiates skeletal muscle differentiation by acting as a critical coactivator for MEF-2C-mediated transactivation and is the first study to ascribe a function to the amino-terminal bHLH–PAS region of SRCs.
Collapse
|
211
|
Farwell DG, Shera KA, Koop JI, Bonnet GA, Matthews CP, Reuther GW, Coltrera MD, McDougall JK, Klingelhutz AJ. Genetic and epigenetic changes in human epithelial cells immortalized by telomerase. THE AMERICAN JOURNAL OF PATHOLOGY 2000; 156:1537-47. [PMID: 10793065 PMCID: PMC1876907 DOI: 10.1016/s0002-9440(10)65025-0] [Citation(s) in RCA: 136] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
Exogenous expression of hTERT, the catalytic component of telomerase, is sufficient for the immortalization of human fibroblasts but insufficient for the immortalization of human foreskin keratinocytes (HFKs) and human mammary epithelial cells (HMECs). These latter cell types can overcome senescence by coexpression of hTERT and human papillomavirus (HPV) E7 or by expression of hTERT and loss of p16(INK4a) expression, indicating that the retinoblastoma (Rb) pathway, along with a telomere maintenance pathway, plays a role in determining the life span of epithelial cells. In this study, we further characterize hTERT-immortalized HFKs and human adenoid epithelial cells (HAKs) for genotypic and phenotypic alterations that are associated with immortalization. Of five hTERT-immortalized HFK and HAK cell lines examined, four exhibited repression of p16(INK4a) expression by promoter methylation or specific large-scale deletion of chromosome 9p, the location of p16(INK4a). Interestingly, one cell line exhibited complete down-regulation of expression of p14(ARF), with only slight down-regulation of expression of p16(INK4a). Yet, all of the immortal cells lines exhibited hyperphosphorylated Rb. Cytogenetic analysis revealed clonal chromosome aberrations in three of the five cell lines. All of the cell lines retained a growth block response with the expression of mutant ras. When grown on organotypic raft cultures, however, the hTERT-immortalized cells exhibited a maturation delay on terminal differentiation. Our results indicate that immortalization of epithelial cells may require both activation of telomerase and other genetic and/or epigenetic alterations that abrogate normal differentiation.
Collapse
Affiliation(s)
- D G Farwell
- Department of Otolaryngology, Head-Neck Surgery, University of Washington, Seattle, Washington 98195, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
212
|
Constantin B, Cronier L. Involvement of gap junctional communication in myogenesis. INTERNATIONAL REVIEW OF CYTOLOGY 2000; 196:1-65. [PMID: 10730212 DOI: 10.1016/s0074-7696(00)96001-7] [Citation(s) in RCA: 41] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Cell-to-cell communication plays important roles in development and in tissue morphogenesis. Gap junctional intercellular communication (GJIC) has been implicated in embryonic development of various tissues and provides a pathway to exchange ions, secondary messengers, and metabolites through the intercellular gap junction channels. Although GJIC is absent in adult skeletal muscles, the formation of skeletal muscles involves a sequence of complex events including cell-cell interaction processes where myogenic cells closely adhere to each other. Much experimental evidence has shown that myogenic precursors and developing muscle fibers can directly communicate through junctional channels. This review summarizes current knowledge on the GJIC and developmental events involved in the formation of skeletal muscle fibers and describes recent progress in the investigation of the role of GJIC in myogenesis: evidence of gap junctions in somitic and myotomal tissue as well as in developing muscle fibers in situ, GJIC between perfusion myoblasts in culture, and involvement of GJIC in cytodifferentiation of skeletal muscle cells and in myoblast fusion. A model of intercellular signaling is proposed where GJIC participates to coordinate a multicellular population of interacting myogenic precursors to allow commitment to the skeletal muscle fate.
Collapse
Affiliation(s)
- B Constantin
- Laboratoire de Physiologie Générale, CNRS UMR 6558, University of Poitiers, France.
| | | |
Collapse
|
213
|
Mal A, Chattopadhyay D, Ghosh MK, Poon RY, Hunter T, Harter ML. p21 and retinoblastoma protein control the absence of DNA replication in terminally differentiated muscle cells. J Cell Biol 2000; 149:281-92. [PMID: 10769022 PMCID: PMC2175169 DOI: 10.1083/jcb.149.2.281] [Citation(s) in RCA: 56] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/1999] [Accepted: 03/10/2000] [Indexed: 01/10/2023] Open
Abstract
During differentiation, skeletal muscle cells withdraw from the cell cycle and fuse into multinucleated myotubes. Unlike quiescent cells, however, these cells cannot be induced to reenter S phase by means of growth factor stimulation. The studies reported here document that both the retinoblastoma protein (Rb) and the cyclin-dependent kinase (cdk) inhibitor p21 contribute to this unresponsiveness. We show that the inactivation of Rb and p21 through the binding of the adenovirus E1A protein leads to the induction of DNA replication in differentiated muscle cells. Moreover, inactivation of p21 by E1A results in the restoration of cyclin E-cdk2 activity, a kinase made nonfunctional by the binding of p21 and whose protein levels in differentiated muscle cells is relatively low in amount. We also show that restoration of kinase activity leads to the phosphorylation of Rb but that this in itself is not sufficient for allowing differentiated muscle cells to reenter the cell cycle. All the results obtained are consistent with the fact that Rb is functioning downstream of p21 and that the activities of these two proteins may be linked in sustaining the postmitotic state.
Collapse
Affiliation(s)
- Asoke Mal
- Department of Molecular Biology, Lerner Research Institute, The Cleveland Clinic Foundation, Cleveland, Ohio 44195
| | - Debasis Chattopadhyay
- Department of Molecular Biology, Lerner Research Institute, The Cleveland Clinic Foundation, Cleveland, Ohio 44195
| | - Mrinal K. Ghosh
- Department of Molecular Biology, Lerner Research Institute, The Cleveland Clinic Foundation, Cleveland, Ohio 44195
| | - Randy Y.C. Poon
- Department of Biochemistry, The Hong Kong University of Science and Technology, Kowloon, Hong Kong
| | - Tony Hunter
- The Salk Institute, La Jolla, California 92037
| | - Marian L. Harter
- Department of Molecular Biology, Lerner Research Institute, The Cleveland Clinic Foundation, Cleveland, Ohio 44195
| |
Collapse
|
214
|
Skapek SX, Jansen D, Wei TF, McDermott T, Huang W, Olson EN, Lee EY. Cloning and characterization of a novel Kruppel-associated box family transcriptional repressor that interacts with the retinoblastoma gene product, RB. J Biol Chem 2000; 275:7212-23. [PMID: 10702291 DOI: 10.1074/jbc.275.10.7212] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
The retinoblastoma gene product, RB, seems to function as a key tumor suppressor by repressing the expression of genes activated by members of the E2F family of transcription factors. In order to accomplish this, RB has been proposed to interact with a transcriptional repressor. However, no genuine transcriptional repressors have been identified by virtue of interaction with RB. By using the yeast two-hybrid system, we have identified a novel member of a known family of transcriptional repressors that contain zinc fingers of the Kruppel type and a portable transcriptional repressor motif known as the Kruppel-associated box (KRAB). The mouse and human forms of the novel RB-associated KRAB protein (RBaK) are widely expressed. The amino acid motif that links the KRAB domain and zinc fingers appears to be required for interaction with RB in vitro. Human RBaK ectopically expressed in fibroblasts is an 80-kDa protein that is localized to the nucleus. The expression of either RB or RBaK in 10T1/2 fibroblasts represses the activation of an E2F-dependent promoter and decreases DNA synthesis to a similar degree. However, a mutant form of RBaK that cannot interact with RB in vitro is unable to prevent DNA synthesis. We present a model in which RB physically interacts with the novel transcriptional repressor RBaK to repress E2F-dependent genes and prevent DNA synthesis.
Collapse
Affiliation(s)
- S X Skapek
- Department of Molecular Medicine, University of Texas Health Science Center, San Antonio, Texas 78245, USA
| | | | | | | | | | | | | |
Collapse
|
215
|
Abstract
Evidence obtained during recent years suggests that B-Myb, a highly conserved member of the Myb transcription factor family, plays a key role in cell proliferation. We have shown previously that the activity of B-Myb is stimulated by cyclin A/Cdk2-dependent phosphorylation of the carboxyl-terminus of B-Myb. We have now investigated in more detail the effect of other cyclins on B-Myb. Here, we show that cyclin D1, in contrast to cyclin A, strongly inhibits the activity of B-Myb. This inhibitory effect does not involve increased phosphorylation of B-Myb but seems to rely on the formation of a specific complex of B-Myb and cyclin D1. Our work identifies B-Myb as an interacting partner for cyclin D1 and suggest that the activity of B-Myb during the cell cycle is controlled by the antagonistic effects of cyclin D1 and A. The results presented here suggest a more general role of cyclin D1 as regulator of transcription in addition to the known effect on RB phosphorylation.
Collapse
Affiliation(s)
- S Horstmann
- Institute of Biochemistry, University of Münster, Wilhelm-Klemm-Str. 2, D-48149 Münster, Germany
| | | | | |
Collapse
|
216
|
Salzberg S, Vilchik S, Cohen S, Heller A, Kronfeld-Kinar Y. Expression of a PKR dominant-negative mutant in myogenic cells interferes with the myogenic process. Exp Cell Res 2000; 254:45-54. [PMID: 10623464 DOI: 10.1006/excr.1999.4721] [Citation(s) in RCA: 21] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
In this study, we explored the possibility that PKR, a dsRNA-activated regulatory protein, is an essential component in the differentiation program of myogenic cells in vitro. For this purpose, we used a retroviral expression vector pMV7, harboring the PKR dominant-negative mutant PKRDelta6 (pMV7-p68Delta6). Murine C2C12 myogenic cells were transfected either with pMV7 or with pMV7-p68Delta6. Neomycin-resistant clones from both types were isolated and expanded and the results obtained with the representative clones C2-NEO (transfected with pMV7) and clone 17 and clone 22 (both transfected with pMV7-p68Delta6) are presented. In clone 17 and 22 cells, regardless of IFN treatment, a similar level of the transfected human p68 PKR mutant was detected. This protein was absent in C2-NEO cells. In parallel, in all types of cells, a low basal level of the endogenous murine p65 PKR protein was observed, which was further induced by IFN. However, PKR enzymatic activity was significantly induced by IFN only in C2-NEO cells, while it was hardly detected in both clones 17 and 22, even after IFN treatment. Furthermore, in contrast to C2-NEO cells, only a slight to moderate increase in enzymatic activity was observed in clone 17 and 22 differentiating cells. Next, cells were grown either in growth medium (GM) or differentiation medium (DM), and the progression of the myogenic program was studied. An inhibition in myotube formation in clone 17 versus C2-NEO cells cultivated in DM was clearly observed. Furthermore, while the growth rate and thymidine incorporation were reduced in C2-NEO cells grown in DM, both clone 17 and 22 cells were less affected under the same conditions. Similarly, a delay in the accumulation of the transcription factors MyoD and myogenin, as well as in creatine kinase activity and accumulation of troponin T, was detected in DM-cultivated clone 17 and clone 22 cells. Moreover, a delay in the induction of p21 (WAF1), in down-regulation of cyclin D1 and c-myc, and in the accumulation of the underphosphorylated form of pRb was also observed in clone 17 cells. We conclude that inhibition of endogenous PKR activity by a PKR dominant-negative mutant interferes with the myogenic program of murine C2C12 myogenic cells.
Collapse
Affiliation(s)
- S Salzberg
- Faculty of Life Sciences, Bar-Ilan University, Ramat-Gan, 52900, Israel.
| | | | | | | | | |
Collapse
|
217
|
Miwa Y, Sasaguri T, Kosaka C, Taba Y, Ishida A, Abumiya T, Kubohara Y. Differentiation-inducing factor-1, a morphogen of dictyostelium, induces G(1) arrest and differentiation of vascular smooth muscle cells. Circ Res 2000; 86:68-75. [PMID: 10625307 DOI: 10.1161/01.res.86.1.68] [Citation(s) in RCA: 40] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Differentiation-inducing factor-1 (DIF-1) is a morphogen that induces differentiation of DICTYOSTELIUM: Recently, DIF-1 has been shown to inhibit proliferation and induce differentiation in tumor cells, although the underlying mechanisms remain unknown. In this study, we examined the effects of DIF-1 on the proliferation and differentiation of vascular smooth muscle cells, to explore novel therapeutic strategies for atherosclerosis. DIF-1 nearly completely inhibited DNA synthesis and cell division in mitogen-stimulated cells. DIF-1 inhibited the phosphorylation of the retinoblastoma protein and the activities of cyclin-dependent kinase (Cdk) 4, Cdk6, and Cdk2, which phosphorylate the retinoblastoma protein. DIF-1 strongly suppressed the expression of cyclins D1, D2, and D3, as well as those of cyclins E and A, which normally began after that of the D-type cyclins. The mRNAs for the smooth muscle myosin heavy chains SM1 and SM2 were expressed in quiescent cells in primary culture, and these expression levels decreased after mitogenic stimulation. In the presence of DIF-1, the rate of the reduction was significantly decelerated. Moreover, the addition of DIF-1 to dedifferentiated cells induced the expressions of SM1 and SM2, accompanied by a reduction in the level of SMemb, a nonmuscle-type myosin heavy chain. Therefore, DIF-1 seemed to interrupt a very early stage of G(1) probably by suppressing the expressions of the D-type cyclins. Furthermore, this compound may prevent phenotypic modulation and induce differentiation of vascular smooth muscle cells.
Collapse
Affiliation(s)
- Y Miwa
- Department of Bioscience, National Cardiovascular Center Research Institute, Japan
| | | | | | | | | | | | | |
Collapse
|
218
|
Abstract
Human T-cell leukemia virus type I (HTLV-I) is the etiological agent for adult T-cell leukemia (ATL) and various human myopathies/neuropathies. HTLV-I encodes a 40 kDa phosphoprotein, Tax, which has been implicated in cellular transformation. In similarity with several other oncoproteins such as Myc, Jun, and Fos, Tax is a transcriptional activator. How Tax mechanistically dysregulates the cell cycle remains unclear. Recent findings from us and others have shown that Tax targets key regulators of G1/S and M progression such as p16INK4a, cyclin D1, cyclin D3-cdk, and the mitotic spindle checkpoint apparatus. Thus, Tax influences the progression of cells in various phases of the cell cycle. In this regard, we will discuss three distinct mechanisms through which Tax affects cell-cycling: a) through direct association Tax can abrogate the inhibitory function of p16INK4a on the G1-cdks, b) Tax can also directly influence cyclin D-cdk activities by a protein-protein interaction, and c) Tax targets the HsMAD1 mitotic spindle-assembly checkpoint protein. Through these varied routes, the HTLV-I oncoprotein dysregulates cellular growth controls and engenders a proclivity of cells toward a loss of DNA-damage surveillance.
Collapse
Affiliation(s)
- C Neuveut
- Laboratoire de Recombinaison et Expression Genetique, Institut Pasteur, Paris, France
| | | |
Collapse
|
219
|
Abstract
Over the past years, several studies have unraveled important mechanisms by which the four myogenic regulatory factors (MRFs: MyoD, Myf-5, myogenin, and MRF4) control the specification and the differentiation of the muscle lineage. Early experiments led to the hypothesis that these factors were redundant and could functionally replace one another. However, recent experiments using in vivo and in vitro models have demonstrated that in fact different aspects of the myogenic program are controlled by different factors in vivo, suggesting that these factors play distinct roles during myogenesis. The activity of the MRFs during proliferation and differentiation of muscle precursor cells has clearly been demonstrated to be dependent on specific cell-cycle control mechanisms as well as distinct interactions with other regulatory molecules, such as the ubiquitously expressed E proteins and several other transcription factors. Furthermore, the observation that the MRFs can recruit chromatin remodeling proteins has shed some light on the mechanisms by which the MRFs activate gene expression. Recently, a functional role for MyoD during satellite cell activation and muscle repair has been identified in vivo, which cannot be substituted for by the other MRFs. This has put forward the hypothesis that these factors also play specific biological roles following muscle injury and repair.
Collapse
Affiliation(s)
- L A Sabourin
- Institute for Molecular Biology and Biotechnology, MOBIX, McMaster University, Hamilton, Ontario, Canada
| | | |
Collapse
|
220
|
Tang XM, Beesley JS, Grinspan JB, Seth P, Kamholz J, Cambi F. Cell cycle arrest induced by ectopic expression of p27 is not sufficient to promote oligodendrocyte differentiation. J Cell Biochem 1999; 76:270-9. [PMID: 10618643 DOI: 10.1002/(sici)1097-4644(20000201)76:2<270::aid-jcb10>3.0.co;2-6] [Citation(s) in RCA: 40] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
Oligodendrocyte differentiation is accompanied by dramatic changes in gene expression as well as cell cycle arrest. To determine whether cell cycle arrest is sufficient to induce the changes in cell phenotype associated with differentiation, we inhibited oligodendrocyte precursor proliferation in vitro by overexpressing p27, a cyclin kinase inhibitor, using a recombinant adenovirus. Ectopic expression of p27 efficiently inhibited oligodendrocyte precursor cell division, even in the presence of exogenous mitogens, by blocking the activity of the cyclin-dependent kinase, cdk2. Although the cells had stopped dividing, they did not express galactocerebroside (GalC) or myelin basic protein (MBP), changes associated with oligodendrocyte differentiation, suggesting that they had not differentiated. After removal of exogenous mitogens, however, adenovirus-expressing oligodendrocyte precursors differentiated with a temporal profile similar to that of control, uninfected oligodendrocytes, as indicated by expression of GalC and MBP. We conclude that cell cycle arrest is not sufficient to induce differentiation of dividing oligodendrocyte precursors, and that modulation of additional, as yet unknown, signaling pathways is required for this to occur.
Collapse
Affiliation(s)
- X M Tang
- Department of Neurology, Thomas Jefferson University, Philadelphia, Pennsylvania 19107, USA
| | | | | | | | | | | |
Collapse
|
221
|
Abstract
p300 and CBP are highly related nuclear proteins, which have been implicated in transcriptional responses to disparate extracellular and intracellular signals. There are at least two very good reasons for which p300 and CBP have attracted the attention of the scientific world. First, they belong to an unique class of transcription co-activators possessing histone acetyltransferase activity and therefore have the potential to reveal basic aspects pertaining to regulation of chromatin structure. Second, p300 and CBP deliver essential functions in virtually all known cellular programs, including the decision to grow, to differentiate, or to commit suicide by apoptosis. Consistent with the complexity of these processes, a multitude of intracellular factors physically interact with p300 and CBP. Thus, the task of many investigations has been the understanding of how these proteins receive signals in the cells, what induces their recruitment in a given signal transduction pathway, and what determines the final outcome of their individual activity. This review will focus on mechanistic and theoretical questions pertaining to the mode of action of p300 and CBP posed by works performed in animal and in vitro model systems.
Collapse
Affiliation(s)
- A Giordano
- Department of Pathology, Jefferson Medical College, Philadelphia, Pennsylvania, USA
| | | |
Collapse
|
222
|
Reynaud EG, Pelpel K, Guillier M, Leibovitch MP, Leibovitch SA. p57(Kip2) stabilizes the MyoD protein by inhibiting cyclin E-Cdk2 kinase activity in growing myoblasts. Mol Cell Biol 1999; 19:7621-9. [PMID: 10523650 PMCID: PMC84790 DOI: 10.1128/mcb.19.11.7621] [Citation(s) in RCA: 79] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
We show that expression of p57(Kip2), a potent tight-binding inhibitor of several G(1) cyclin-cyclin-dependent kinase (Cdk) complexes, increases markedly during C2C12 myoblast differentiation. We examined the effect of p57(Kip2) on the activity of the transcription factor MyoD. In transient transfection assays, transcriptional transactivation of the mouse muscle creatine kinase promoter by MyoD was enhanced by the Cdk inhibitors. In addition, p57(Kip2), p21(Cip1), and p27(Kip1) but not p16(Ink4a) induced an increased level of MyoD protein, and we show that MyoD, an unstable nuclear protein, was stabilized by p57(Kip2). Forced expression of p57(Kip2) correlated with hypophosphorylation of MyoD in C2C12 myoblasts. A dominant-negative Cdk2 mutant arrested cells at the G(1) phase transition and induced hypophosphorylation of MyoD. Furthermore, phosphorylation of MyoD by purified cyclin E-Cdk2 complexes was inhibited by p57(Kip2). In addition, the NH2 domain of p57(Kip2) necessary for inhibition of cyclin E-Cdk2 activity was sufficient to inhibit MyoD phosphorylation and to stabilize it, leading to its accumulation in proliferative myoblasts. Taken together, our data suggest that repression of cyclin E-Cdk2-mediated phosphorylation of MyoD by p57(Kip2) could play an important role in the accumulation of MyoD at the onset of myoblast differentiation.
Collapse
Affiliation(s)
- E G Reynaud
- Laboratoire de Génétique Oncologique UMR 1599 CNRS, Institut Gustave Roussy, 94805 Villejuif, France
| | | | | | | | | |
Collapse
|
223
|
Abstract
Rhabdomyosarcomas constitute a collection of childhood malignancies thought to arise as a consequence of regulatory disruption of skeletal muscle progenitor cell growth and differentiation. Our understanding of the pathogenesis of this neoplasm has recently benefited from the study of normal and malignant myogenic cells in vitro, facilitating the identification of diagnostic cytogenetic markers and the elucidation of mechanisms by which myogenesis is regulated. It is now appreciated that the delicate balance between proliferation and differentiation, mutually exclusive yet intimately associated processes, is normally controlled in large part through the action of a multitude of growth factors, whose signals are interpreted by members of the MyoD family of helix - loop - helix proteins, and key regulatory cell cycle factors. The latter have proven to be frequent targets of mutational events that subvert myogenesis and promote the development of rhabdomyosarcoma. Although significant progress has been made in the treatment of rhabdomyosarcoma, patients presenting with metastatic disease or certain high risk features are still faced with a dismal prognosis. Only now are genetically engineered mouse models becoming available that are certain to provide fresh insights into the molecular/genetic pathways by which rhabdomyosarcomas arise and progress, and to suggest novel avenues of therapeutic opportunity.
Collapse
Affiliation(s)
- G Merlino
- Molecular Genetics Section, Laboratory of Molecular Biology, National Cancer Institute, Bethesda, Maryland, MD 20892, USA
| | | |
Collapse
|
224
|
Liu Q, VanHoy RW, Zhou JH, Dantzer R, Freund GG, Kelley KW. Elevated cyclin E levels, inactive retinoblastoma protein, and suppression of the p27(KIP1) inhibitor characterize early development of promyeloid cells into macrophages. Mol Cell Biol 1999; 19:6229-39. [PMID: 10454569 PMCID: PMC84572 DOI: 10.1128/mcb.19.9.6229] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
Cyclin-dependent kinase inhibitors such as p27(KIP1) have recently been shown to lead to cellular differentiation by causing cell cycle arrest, but it is unknown whether similar events occur in differentiating promyeloid cells. Hematopoietic progenitor cells undergo lineage-restricted differentiation, which is accompanied by expression of distinct maturation markers. Here we show that the classical growth factor insulin-like growth factor I (IGF-I) potently promotes vitamin D(3)-induced macrophage differentiation of promyeloid cells, as assessed by measurement of a coordinate increase in expression of the integrin alpha subunit CD11b, the CD14 lipopolysaccharide receptor, and the macrophage-specific esterase, alpha-naphthyl acetate esterase, as early as 24 h following initiation of terminal differentiation. Addition of IGF-I to cells undergoing vitamin D(3)-induced differentiation also leads to an early increase in expression of cyclin E, phosphorylation of the retinoblastoma tumor suppressor protein, and a doubling of the cell number. Early expression of CD11b (24 h) is simultaneously accompanied by inhibition in the expression of p27(KIP1). Cell cycle analysis with propidium iodide revealed that CD11b expression at 24 h following initiation of differentiation occurs at all phases of the cell cycle instead of only those cells arrested in G(0)/G(1). Similarly, development of a novel double-labeling intra- and extracellular flow-cytometric technique demonstrated that single cells expressing the mature leukocyte differentiation antigen CD11b can also incorporate the thymidine analog bromodeoxyuridine. Likewise, expression of the intracellular DNA polymerase delta cofactor/proliferating-cell nuclear antigen at 24 h is also simultaneously expressed with the surface marker CD11b, indicating that these cells continue to proliferate early in their differentiation program. Finally, at 24 h following induction of differentiation, IGF-I promoted a fourfold increase in the uptake of [(3)H]thymidine by purified populations of CD11b-expressing cells. Taken together, these data demonstrate that the initial steps associated with terminal macrophage differentiation occur concomitantly with progression through the cell cycle and that these very early differentiation events do not require the accumulation of p27(KIP1).
Collapse
Affiliation(s)
- Q Liu
- Department of Animal Sciences, Laboratory of Immunophysiology, College of Medicine, University of Illinois, Urbana, Illinois 61801, USA
| | | | | | | | | | | |
Collapse
|
225
|
Pestell RG, Albanese C, Reutens AT, Segall JE, Lee RJ, Arnold A. The cyclins and cyclin-dependent kinase inhibitors in hormonal regulation of proliferation and differentiation. Endocr Rev 1999; 20:501-34. [PMID: 10453356 DOI: 10.1210/edrv.20.4.0373] [Citation(s) in RCA: 106] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- R G Pestell
- Albert Einstein Cancer Center, Department of Developmental and Molecular Biology, Morris Park, Bronx, New York 10461, USA.
| | | | | | | | | | | |
Collapse
|
226
|
Guttridge DC, Albanese C, Reuther JY, Pestell RG, Baldwin AS. NF-kappaB controls cell growth and differentiation through transcriptional regulation of cyclin D1. Mol Cell Biol 1999; 19:5785-99. [PMID: 10409765 PMCID: PMC84428 DOI: 10.1128/mcb.19.8.5785] [Citation(s) in RCA: 1080] [Impact Index Per Article: 41.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Accumulating evidence implicates the transcription factor NF-kappaB as a positive mediator of cell growth, but the molecular mechanism(s) involved in this process remains largely unknown. Here we use both a skeletal muscle differentiation model and normal diploid fibroblasts to gain insight into how NF-kappaB regulates cell growth and differentiation. Results obtained with the C2C12 myoblast cell line demonstrate that NF-kappaB functions as an inhibitor of myogenic differentiation. Myoblasts generated to lack NF-kappaB activity displayed defects in cellular proliferation and cell cycle exit upon differentiation. An analysis of cell cycle markers revealed that NF-kappaB activates cyclin D1 expression, and the results showed that this regulatory pathway is one mechanism by which NF-kappaB inhibits myogenesis. NF-kappaB regulation of cyclin D1 occurs at the transcriptional level and is mediated by direct binding of NF-kappaB to multiple sites in the cyclin D1 promoter. Using diploid fibroblasts, we demonstrate that NF-kappaB is required to induce cyclin D1 expression and pRb hyperphosphorylation and promote G(1)-to-S progression. Consistent with results obtained with the C2C12 differentiation model, we show that NF-kappaB also promotes cell growth in embryonic fibroblasts, correlating with its regulation of cyclin D1. These data therefore identify cyclin D1 as an important transcriptional target of NF-kappaB and reveal a mechanism to explain how NF-kappaB is involved in the early phases of the cell cycle to regulate cell growth and differentiation.
Collapse
Affiliation(s)
- D C Guttridge
- Lineberger Comprehensive Cancer Center, University of North Carolina, Chapel Hill, North Carolina 27599-7295, USA
| | | | | | | | | |
Collapse
|
227
|
Voltage-activated K+ channels and membrane depolarization regulate accumulation of the cyclin-dependent kinase inhibitors p27(Kip1) and p21(CIP1) in glial progenitor cells. J Neurosci 1999. [PMID: 10377348 DOI: 10.1523/jneurosci.19-13-05380.1999] [Citation(s) in RCA: 104] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Neural cell development is regulated by membrane ion channel activity. We have previously demonstrated that cell membrane depolarization with veratridine or blockage of K+ channels with tetraethylammonium (TEA) inhibit oligodendrocyte progenitor (OP) proliferation and differentiation (); however the molecular events involved are largely unknown. Here we show that forskolin (FSK) and its derivative dideoxyforskolin (DFSK) block K+ channels in OPs and inhibit cell proliferation. The antiproliferative effects of TEA, FSK, DFSK, and veratridine were attributable to OP cell cycle arrest in G1 phase. In fact, (1) cyclin D accumulation in synchronized OP cells was not affected by K+ channel blockers or veratridine; (2) these agents prevented OP cell proliferation only if present during G1 phase; and (3) G1 blockers, such as rapamycin and deferoxamine, mimicked the anti-proliferative effects of K+ channel blockers. DFSK also prevented OP differentiation, whereas FSK had no effect. Blockage of K+ channels and membrane depolarization also caused accumulation of the cyclin-dependent kinase inhibitors p27(Kip1) and p21(CIP1) in OP cells. The antiproliferative effects of K+ channel blockers and veratridine were still present in OP cells isolated from INK4a-/- mice, lacking the cyclin-dependent kinase inhibitors p16(INK4a) and p19(ARF). Our results demonstrate that blockage of K+ channels and cell depolarization induce G1 arrest in the OP cell cycle through a mechanism that may involve p27(Kip1) and p21(CIP1) and further support the conclusion that OP cell cycle arrest and differentiation are two uncoupled events.
Collapse
|
228
|
L'ecuyer TJ, Schutte BC, Mendel KA, Morris E, Fulton AB. Muscle-specific transcription factors in fibroblasts expressing the alpha-striated tropomyosin 3' untranslated region. Mol Genet Metab 1999; 67:213-26. [PMID: 10381329 DOI: 10.1006/mgme.1999.2858] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The alpha-striated tropomyosin 3' untranslated region (TM UTR) promotes differentiation of fibroblasts into cells resembling skeletal muscle. To investigate the mechanism of this observation, RNA harvested from transfected primary fibroblasts was used for semiquantitative RT-PCR with primers specific for muscle transcription factors, showing that myoD and myogenin transcripts are detected in these cells, but that differentiation after TM UTR expression is independent of a detectable increase in these transcripts. Double immunofluorescent staining with antibodies to myoD family members and to titin confirms that muscle differentiation in TM UTR-transfected fibroblasts is independent of production of any transcription factor in this family. In contrast, the muscle transcription factor myocyte enhancer factor 2 (mef-2) is strongly expressed after transfection of fibroblasts with the TM UTR. The increase in mef-2 protein is due to an increase in the steady-state level of its mRNA, as shown by Northern analysis. The expression of p21 ordinarily observed in skeletal myogenesis before the expression of muscle-specific proteins is not seen in fibroblasts induced to differentiate by the TM UTR. These results demonstrate that post-transcriptional regulation of myoD family members is seen in fibroblasts, and that the TM UTR induces muscle differentiation independent of the myoD transcription factors and without expressing proteins characteristic of terminal withdrawal from the cell cycle. Finally, an increase in the steady-state level of mef-2 transcripts appears in the proximal pathway of myogenic activation in response to expression of the TM UTR. These results imply that fibroblasts can utilize an additional differentiation route upon TM UTR expression resulting in mature muscle other than that requiring myoD family members.
Collapse
Affiliation(s)
- T J L'ecuyer
- Department of Pediatrics, Wayne State University College of Medicine, Cardiology Division, 3901 Beaubien Boulevard, Detroit, Michigan, 48201, USA.
| | | | | | | | | |
Collapse
|
229
|
Cenciarelli C, De Santa F, Puri PL, Mattei E, Ricci L, Bucci F, Felsani A, Caruso M. Critical role played by cyclin D3 in the MyoD-mediated arrest of cell cycle during myoblast differentiation. Mol Cell Biol 1999; 19:5203-5217. [PMID: 10373569 PMCID: PMC84363 DOI: 10.1128/mcb.19.7.5203] [Citation(s) in RCA: 111] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/1998] [Accepted: 03/09/1999] [Indexed: 11/20/2022] Open
Abstract
During the terminal differentiation of skeletal myoblasts, the activities of myogenic factors regulate not only tissue-specific gene expressions but also the exit from the cell cycle. The induction of cell cycle inhibitors such as p21 and pRb has been shown to play a prominent role in the growth arrest of differentiating myoblasts. Here we report that, at the onset of differentiation, activation by MyoD of the Rb, p21, and cyclin D3 genes occurs in the absence of new protein synthesis and with the requirement of the p300 transcriptional coactivator. In differentiated myocytes, cyclin D3 also becomes stabilized and is found nearly totally complexed with unphosphorylated pRb. The detection of complexes containing cyclin D3, cdk4, p21, and PCNA suggests that cdk4, along with PCNA, may get sequestered into high-order structures held together by pRb and cyclin D3. Cyclin D3 up-regulation and stabilization is inhibited by adenovirus E1A, and this correlates with the ability of E1A to promote pRb phosphorylation; conversely, the overexpression of cyclin D3 in differentiated myotubes counteracts the E1A-mediated reactivation of DNA synthesis. These results indicate that cyclin D3 critically contributes to the irreversible exit of differentiating myoblasts from the cell cycle.
Collapse
Affiliation(s)
- C Cenciarelli
- Istituto di Tecnologie Biomediche, CNR, 00137 Rome, Italy
| | | | | | | | | | | | | | | |
Collapse
|
230
|
Bailey P, Downes M, Lau P, Harris J, Chen SL, Hamamori Y, Sartorelli V, Muscat GE. The nuclear receptor corepressor N-CoR regulates differentiation: N-CoR directly interacts with MyoD. Mol Endocrinol 1999; 13:1155-68. [PMID: 10406466 DOI: 10.1210/mend.13.7.0305] [Citation(s) in RCA: 46] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
Classical ligand-activated nuclear receptors (e.g. thyroid hormone receptor, retinoic acid receptor), orphan nuclear receptors (e.g. Rev-erbAalpha/beta), Mad/Max bHLH (basic helix loop helix)-LZ proteins, and oncoproteins, PLZF and LAZ3/BCL6, bind DNA and silence transcription by recruiting a repressor complex that contains N-CoR (nuclear receptor corepressor)/SMRT (silencing mediator of retinoic acid and thyroid hormone receptor), Sin3A/B, and HDAc-1/-2 proteins. The function of the corepressor, N-CoR, in the process of cellular differentiation and coupled phenotypic acquisition, has not been investigated. We examined the functional role of N-CoR in myogenesis (muscle differentiation), an ideal paradigm for the analysis of the determinative events that govern the cell's decision to divide or differentiate. We observed that the mRNA encoding N-CoR was suppressed as proliferating myoblasts exited the cell cycle, and formed morphologically and biochemically differentiated myotubes. Exogenous expression of N-CoR (but not RIP13) in myogenic cells ablated 1) myogenic differentiation, 2) the expression of the myoD gene family that encode the myogenic specific bHLH proteins, and 3) the crucial cell cycle regulator, p21Waf-1/Cip-1 mRNA. Furthermore, N-CoR expression efficiently inhibits the myoD-mediated myogenic conversion of pluripotential C3H10T1/2 cells. We demonstrate that MyoD-mediated transactivation and activity are repressed by N-CoR. The mechanism involves direct interactions between MyoD and N-CoR; moreover, the interaction was dependent on the amino-terminal repression domain (RD1) of N-CoR and the bHLH region of MyoD. Trichostatin A treatment significantly stimulated the activity of MyoD by approximately 10-fold and inhibited the ability of N-CoR to repress MyoD-mediated transactivation, consistent with the involvement of the corepressor and the recruitment of a histone deacteylase activity in the process. This work demonstrates that the corepressor N-CoR is a key regulator of MyoD activity and mammalian differentiation, and that N-CoR has a multifaceted role in myogenesis.
Collapse
Affiliation(s)
- P Bailey
- University of Queensland, Centre for Molecular and Cellular Biology, Ritchie Research Laboratories, Brisbane, Australia
| | | | | | | | | | | | | | | |
Collapse
|
231
|
Casini T, Pelicci PG. A function of p21 during promyelocytic leukemia cell differentiation independent of CDK inhibition and cell cycle arrest. Oncogene 1999; 18:3235-43. [PMID: 10359529 DOI: 10.1038/sj.onc.1202630] [Citation(s) in RCA: 70] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
Retinoic Acid (RA) treatment induces disease remission of Acute Promyelocytic Leukemias (APL) by triggering differentiation of neoplastic cells. Differentiation is mediated by the APL-specific transforming protein PML/RAR alpha and involves its activity as ligand-dependent enhancer factor on RA-target genes. We report here the identification of p21 as a transcriptional target of PML/RAR alpha during RA-induced differentiation of APL cells. We found that RA-treated APL cells undergo two rounds of cell division before entering post mitotic G1, that progression through the G1-S is indispensable for differentiation and coincides with the duration of commitment. RA-treatment induced two peaks of p21 synthesis: early (from the 2nd to the 6th hour), dependent on PML/RAR alpha expression and associated with G1-S transition and high CDK activity; late (from 3rd to the 4th day), independent from PML/RAR alpha and associated with G1 block and low CDK activity. Increased p21 in PML/RAR alpha cells during G1-S had no effect on the cell cycle while an antisense p21 prevented RA-induced differentiation without altering G1-S transition and the late G1 block. These results demonstrate that p21 is an effector of the activity of PML/RAR alpha on differentiation and suggest that p21 exerts a function in G1-S connected to differentiation-commitment and uncoupled from cell cycle and CDK inhibition.
Collapse
Affiliation(s)
- T Casini
- European Institute of Oncology, Department of Experimental Oncology, Milan, Italy
| | | |
Collapse
|
232
|
Kitzmann M, Vandromme M, Schaeffer V, Carnac G, Labbé JC, Lamb N, Fernandez A. cdk1- and cdk2-mediated phosphorylation of MyoD Ser200 in growing C2 myoblasts: role in modulating MyoD half-life and myogenic activity. Mol Cell Biol 1999; 19:3167-76. [PMID: 10082583 PMCID: PMC84110 DOI: 10.1128/mcb.19.4.3167] [Citation(s) in RCA: 93] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
We have examined the role of protein phosphorylation in the modulation of the key muscle-specific transcription factor MyoD. We show that MyoD is highly phosphorylated in growing myoblasts and undergoes substantial dephosphorylation during differentiation. MyoD can be efficiently phosphorylated in vitro by either purified cdk1-cyclin B or cdk1 and cdk2 immunoprecipitated from proliferative myoblasts. Comparative two-dimensional tryptic phosphopeptide mapping combined with site-directed mutagenesis revealed that cdk1 and cdk2 phosphorylate MyoD on serine 200 in proliferative myoblasts. In addition, when the seven proline-directed sites in MyoD were individually mutated, only substitution of serine 200 to a nonphosphorylatable alanine (MyoD-Ala200) abolished the slower-migrating hyperphosphorylated form of MyoD, seen either in vitro after phosphorylation by cdk1-cyclin B or in vivo following overexpression in 10T1/2 cells. The MyoD-Ala200 mutant displayed activity threefold higher than that of wild-type MyoD in transactivation of an E-box-dependent reporter gene and promoted markedly enhanced myogenic conversion and fusion of 10T1/2 fibroblasts into muscle cells. In addition, the half-life of MyoD-Ala200 protein was longer than that of wild-type MyoD, substantiating a role of Ser200 phosphorylation in regulating MyoD turnover in proliferative myoblasts. Taken together, our data show that direct phosphorylation of MyoD Ser200 by cdk1 and cdk2 plays an integral role in compromising MyoD activity during myoblast proliferation.
Collapse
Affiliation(s)
- M Kitzmann
- Institut de Génétique Humaine, Centre National de Recherche Scientifique, UPR 1142, 34396 Montpellier cedex 5, France
| | | | | | | | | | | | | |
Collapse
|
233
|
Tsihlias J, Kapusta L, Slingerland J. The prognostic significance of altered cyclin-dependent kinase inhibitors in human cancer. Annu Rev Med 1999; 50:401-23. [PMID: 10073286 DOI: 10.1146/annurev.med.50.1.401] [Citation(s) in RCA: 246] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
Progression through the cell cycle is governed by cyclin-dependent kinases (cdks), whose activity is inhibited by the cdk inhibitors. Cyclins, cdks, and cdk inhibitors are frequently deregulated in cancers. This chapter reviews the prognostic significance of alterations in cdk inhibitors. Loss of p27 protein provides independent prognostic information in breast, prostate, colon, and gastric carcinomas, and immunohistochemical (IHC) staining for p27 may eventually become part of routine histopathologic processing of cancers. Loss of IHC staining for p21 may be prognostic in certain cancers but conflicting results are reported in breast cancer. Reports on homozygous deletion of p16 and p15 genes suggest the value of larger, prospective studies with standardized treatment protocols to definitively establish the prognostic utility of p15/p16 deletions in acute leukemias. Larger trials and the development of a consensus on methods for deletion analysis, IHC staining, and tumor scoring will be needed to move these molecular assays from bench to bedside.
Collapse
Affiliation(s)
- J Tsihlias
- Department of Urology, Sunnybrook Health Science Centre, University of Toronto, Ontario, Canada
| | | | | |
Collapse
|
234
|
Cariou S, Catzavelos C, Slingerland JM. Prognostic implications of expression of the cell cycle inhibitor protein p27Kip1. Breast Cancer Res Treat 1999; 52:29-41. [PMID: 10066070 DOI: 10.1023/a:1006154900130] [Citation(s) in RCA: 41] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Mitogenic and growth inhibitory signals influence the activity of a family of cyclin dependent kinases (cdks). p27 is an important cdk inhibitor, acting in G1 to inhibit cyclin-cdks. As negative growth regulators, the cdk inhibitors may function as tumor suppressors. While the p16 gene plays a tumor suppressor role in cancers, p27 gene mutations have been identified only rarely. While high levels of p27 protein are expressed in normal human mammary epithelium, loss of p27 is frequent and is of independent prognostic significance in breast cancers. Low p27 is also a poor prognostic factor in colon, gastric, esophageal, lung, and prostate carcinomas, and enhanced proteasomal degradation may underlie loss of p27 in tumor cells. Loss of p27 has not been significantly correlated with tumor proliferation in a number of studies and may reflect alterations in differentiation and adhesion-dependent growth regulation germane to oncogenesis and tumor progression. Efforts to confirm the prognostic value of p27 are under way in a number of large breast cancer studies. These studies may also indicate whether loss of p27 in association with other traditional or novel markers has greater prognostic potential than each factor alone. p27 immunostaining is inexpensive and reliable and may become part of the routine histopathologic processing of tumors in the near future. Widespread application of p27 in prognostic testing will require greater uniformity in scoring techniques and determination of the cut off levels which distinguish individuals at high and low risk of cancer recurrence and death. Finally, the greatest utility of p27 may lie in the information it sheds on the biology of aberrant growth regulation in breast cancer and the potential to use this in the generation of novel therapeutic strategies.
Collapse
Affiliation(s)
- S Cariou
- Cancer Research, Sunnybrook Health Science Centre, Toronto, Ontario, Canada
| | | | | |
Collapse
|
235
|
Urashima M, Teoh G, Akiyama M, Yuza Y, Anderson KC, Maekawa K. Restoration of p16INK4A protein induces myogenic differentiation in RD rhabdomyosarcoma cells. Br J Cancer 1999; 79:1032-6. [PMID: 10098732 PMCID: PMC2362237 DOI: 10.1038/sj.bjc.6690165] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
p16INK4A (p16) tumour suppressor induces growth arrest by inhibiting function of cyclin-dependent kinase (CDK)4 and CDK6. Homozygous p16 gene deletion is frequent in primary rhabdomyosarcoma (RMS) cells as well as derived cell lines. To confirm the significance of p16 gene deletion in tumour biology of RMS, a temperature-sensitive p16 mutant (E119G) gene was retrovirally transfected into the human RMS cell line RD, which has homozygous gene deletion of p16 gene. Decrease from 40 degrees C (restrictive) to 34 degrees C (permissive) culture temperature reduced CDK6-associated kinase activity and induced G1 growth arrest. Moreover, RD-p16 cells cultured under permissive condition demonstrated differentiated morphology coupled with expressions of myogenin and myosin light chain. These suggest that deletion of p16 gene may not only facilitate growth but also inhibit the myogenic differentiation of RD RMS cells.
Collapse
Affiliation(s)
- M Urashima
- Department of Pediatrics, Jikei University School of Medicine, Tokyo, Japan
| | | | | | | | | | | |
Collapse
|
236
|
Ghiani CA, Eisen AM, Yuan X, DePinho RA, McBain CJ, Gallo V. Neurotransmitter receptor activation triggers p27(Kip1)and p21(CIP1) accumulation and G1 cell cycle arrest in oligodendrocyte progenitors. Development 1999; 126:1077-90. [PMID: 9927607 DOI: 10.1242/dev.126.5.1077] [Citation(s) in RCA: 74] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
We examined the pathways that link neurotransmitter receptor activation and cell cycle arrest in oligodendrocyte progenitors. We had previously demonstrated that glutamate receptor activation inhibits oligodendrocyte progenitor proliferation and lineage progression. Here, using purified oligodendrocyte progenitors and cerebellar slice cultures, we show that norepinephrine and the beta-adrenergic receptor agonist isoproterenol also inhibited the proliferation, but in contrast to glutamate, isoproterenol stimulated progenitor lineage progression, as determined by O4 and O1 antibody staining. This antiproliferative effect was specifically attributable to a beta-adrenoceptor-mediated increase in cyclic adenosine monophosphate, since analogs of this cyclic nucleotide mimicked the effects of isoproterenol on oligodendrocyte progenitor proliferation, while alpha-adrenoceptor agonists were ineffective. Despite the opposite effects on lineage progression, both isoproterenol and the glutamate receptor agonist kainate caused accumulation of the cyclin-dependent kinase inhibitors p27(Kip1)and p21(CIP1), and G1 arrest. Studies with oligodendrocyte progenitor cells from INK4a−/− mice indicated that the G1 cyclin kinase inhibitor p16(INK4a) as well as p19(ARF)were not required for agonist-stimulated proliferation arrest. Our results demonstrate that beta-adrenergic and glutamatergic receptor activation inhibit oligodendrocyte progenitor proliferation through a mechanism that may involve p27(Kip1) and p21(CIP1); but while neurotransmitter-induced accumulation of p27(Kip1) is associated with cell cycle arrest, it does not by itself promote oligodendrocyte progenitor differentiation.
Collapse
Affiliation(s)
- C A Ghiani
- Laboratory of Cellular and Molecular Neurophysiology, NICHD, NIH, Bethesda, MD 20892-4495, USA
| | | | | | | | | | | |
Collapse
|
237
|
Coats S, Whyte P, Fero ML, Lacy S, Chung G, Randel E, Firpo E, Roberts JM. A new pathway for mitogen-dependent cdk2 regulation uncovered in p27(Kip1)-deficient cells. Curr Biol 1999; 9:163-73. [PMID: 10074425 DOI: 10.1016/s0960-9822(99)80086-4] [Citation(s) in RCA: 95] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
BACKGROUND The ability of cyclin-dependent kinases (CDKs) to promote cell proliferation is opposed by cyclin-dependent kinase inhibitors (CKIs), proteins that bind tightly to cyclin-CDK complexes and block the phosphorylation of exogenous substrates. Mice with targeted CKI gene deletions have only subtle proliferative abnormalities, however, and cells prepared from these mice seem remarkably normal when grown in vitro. One explanation may be the operation of compensatory pathways that control CDK activity and cell proliferation when normal pathways are inactivated. We have used mice lacking the CKIs p21(Cip1) and p27(Kip1) to investigate this issue, specifically with respect to CDK regulation by mitogens. RESULTS We show that p27 is the major inhibitor of Cdk2 activity in mitogen-starved wild-type murine embryonic fibroblasts (MEFs). Nevertheless, inactivation of the cyclin E-Cdk2 complex in response to mitogen starvation occurs normally in MEFs that have a homozygous deletion of the p27 gene. Moreover, CDK regulation by mitogens is also not affected by the absence of both p27 and p21. A titratable Cdk2 inhibitor compensates for the absence of both CKIs, and we identify this inhibitor as p130, a protein related to the retinoblastoma gene product Rb. Thus, cyclin E-Cdk2 kinase activity cannot be inhibited by mitogen starvation of MEFs that lack both p27 and p130. In addition, cell types that naturally express low amounts of p130, such as T lymphocytes, are completely dependent on p27 for regulation of the cyclin E-Cdk2 complex by mitogens. CONCLUSIONS Inhibition of Cdk2 activity in mitogen-starved fibroblasts is usually performed by the CKI p27, and to a minor extent by p21. Remarkably p130, a protein in the Rb family that is not related to either p21 or p27, will directly substitute for the CKIs and restore normal CDK regulation by mitogens in cells lacking both p27 and p21. This compensatory pathway may be important in settings in which CKIs are not expressed at standard levels, as is the case in many human tumors.
Collapse
Affiliation(s)
- S Coats
- Cancer Biology Group Amgen Inc. Thousand Oaks California USA
| | | | | | | | | | | | | | | |
Collapse
|
238
|
Melnikova IN, Bounpheng M, Schatteman GC, Gilliam D, Christy BA. Differential biological activities of mammalian Id proteins in muscle cells. Exp Cell Res 1999; 247:94-104. [PMID: 10047451 DOI: 10.1006/excr.1998.4330] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Id proteins are helix-loop-helix (HLH) transcription factors that lack DNA-binding domains. These proteins form inactive heterodimers with basic HLH (bHLH) factors, inhibiting their DNA-binding and transcriptional activities. Consistent with a proposed role for Id proteins as inhibitors of terminal differentiation, Id1 and Id3 have been shown to negatively regulate myogenesis in cultured muscle cells. Here we have investigated the possibility that Id2 and/or Id4 can act in a similar manner. Surprisingly, while overexpression of Id2 resulted in inhibition of differentiation of Sol 8 myoblast cells, overexpression of Id4 did not. Sol 8 cells stably transfected with Id4 showed no apparent changes in expression of muscle-specific genes upon differentiation. DNA-binding activities present at the muscle creatine kinase (MCK) enhancer E-box and transcription of the MCK enhancer were not altered in Id4-overexpressing cells, compared with vector-transfected cells. Id2 is also a more potent inhibitor of protein/DNA complex formation at the MCK-R enhancer E-box than Identified in vitro. Therefore, our data support the notion that members of the Id family might be involved in the regulation of distinct developmental pathways.
Collapse
Affiliation(s)
- I N Melnikova
- Institute of Biotechnology, University of Texas Health Science Center, San Antonio, Texas, 78245-3207, USA
| | | | | | | | | |
Collapse
|
239
|
Sabourin LA, Girgis-Gabardo A, Seale P, Asakura A, Rudnicki MA. Reduced differentiation potential of primary MyoD-/- myogenic cells derived from adult skeletal muscle. J Cell Biol 1999; 144:631-43. [PMID: 10037786 PMCID: PMC2132931 DOI: 10.1083/jcb.144.4.631] [Citation(s) in RCA: 273] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023] Open
Abstract
To gain insight into the regeneration deficit of MyoD-/- muscle, we investigated the growth and differentiation of cultured MyoD-/- myogenic cells. Primary MyoD-/- myogenic cells exhibited a stellate morphology distinct from the compact morphology of wild-type myoblasts, and expressed c-met, a receptor tyrosine kinase expressed in satellite cells. However, MyoD-/- myogenic cells did not express desmin, an intermediate filament protein typically expressed in cultured myoblasts in vitro and myogenic precursor cells in vivo. Northern analysis indicated that proliferating MyoD-/- myogenic cells expressed fourfold higher levels of Myf-5 and sixfold higher levels of PEA3, an ETS-domain transcription factor expressed in newly activated satellite cells. Under conditions that normally induce differentiation, MyoD-/- cells continued to proliferate and with delayed kinetics yielded reduced numbers of predominantly mononuclear myocytes. Northern analysis revealed delayed induction of myogenin, MRF4, and other differentiation-specific markers although p21 was upregulated normally. Expression of M-cadherin mRNA was severely decreased whereas expression of IGF-1 was markedly increased in MyoD-/- myogenic cells. Mixing of lacZ-labeled MyoD-/- cells and wild-type myoblasts revealed a strict autonomy in differentiation potential. Transfection of a MyoD-expression cassette restored cytomorphology and rescued the differentiation deficit. We interpret these data to suggest that MyoD-/- myogenic cells represent an intermediate stage between a quiescent satellite cell and a myogenic precursor cell.
Collapse
Affiliation(s)
- L A Sabourin
- Institute for Molecular Biology and Biotechnology, McMaster University, Hamilton, Ontario, Canada L8S 4K1
| | | | | | | | | |
Collapse
|
240
|
Zhang JM, Wei Q, Zhao X, Paterson BM. Coupling of the cell cycle and myogenesis through the cyclin D1-dependent interaction of MyoD with cdk4. EMBO J 1999; 18:926-33. [PMID: 10022835 PMCID: PMC1171185 DOI: 10.1093/emboj/18.4.926] [Citation(s) in RCA: 100] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Proliferating myoblasts express the muscle determination factor, MyoD, throughout the cell cycle in the absence of differentiation. Here we show that a mitogen-sensitive mechanism, involving the direct interaction between MyoD and cdk4, restricts myoblast differentiation to cells that have entered into the G0 phase of the cell cycle under mitogen withdrawal. Interaction between MyoD and cdk4 disrupts MyoD DNA-binding, muscle-specific gene activation and myogenic conversion of 10T1/2 cells independently of cyclin D1 and the CAK activation of cdk4. Forced induction of cyclin D1 in myotubes results in the cytoplasmic to nuclear translocation of cdk4. The specific MyoD-cdk4 interaction in dividing myoblasts, coupled with the cyclin D1-dependent nuclear targeting of cdk4, suggests a mitogen-sensitive mechanism whereby cyclin D1 can regulate MyoD function and the onset of myogenesis by controlling the cellular location of cdk4 rather than the phosphorylation status of MyoD.
Collapse
Affiliation(s)
- J M Zhang
- Laboratory of Biochemistry, NCI, National Institutes of Health, Building 37 Room 4A21, 9000 Rockville Pike, Bethesda, MD 20892, USA
| | | | | | | |
Collapse
|
241
|
Gartel AL, Tyner AL. The growth-regulatory role of p21 (WAF1/CIP1). PROGRESS IN MOLECULAR AND SUBCELLULAR BIOLOGY 1999; 20:43-71. [PMID: 9928526 DOI: 10.1007/978-3-642-72149-6_4] [Citation(s) in RCA: 39] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Affiliation(s)
- A L Gartel
- Department of Genetics, University of Illinois at Chicago 60607, USA
| | | |
Collapse
|
242
|
Stiegler P, Giordano A. Big brothers are watching: the retinoblastoma family and growth control. PROGRESS IN MOLECULAR AND SUBCELLULAR BIOLOGY 1999; 20:25-42. [PMID: 9928525 DOI: 10.1007/978-3-642-72149-6_3] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/10/2023]
Affiliation(s)
- P Stiegler
- Department of Pathology, Anatomy and Cell Biology, Thomas Jefferson University, Philadelphia, PA 19107, USA
| | | |
Collapse
|
243
|
Shimizu R, Komatsu N, Miura Y. Dominant negative effect of a truncated erythropoietin receptor (EPOR-T) on erythropoietin-induced erythroid differentiation: possible involvement of EPOR-T in ineffective erythropoiesis of myelodysplastic syndrome. Exp Hematol 1999; 27:229-33. [PMID: 10029161 DOI: 10.1016/s0301-472x(98)00048-4] [Citation(s) in RCA: 21] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
We isolated a human leukemic cell line UT-7/GM from UT-7, which can differentiate into mature erythroid cells with erythropoietin (EPO) treatment. Using this cell line, we examined the effect of a truncated human EPO receptor (EPOR-T) on EPO-induced erythroid differentiation. Transfection studies revealed that UT-7/GM cells expressing exogenous EPOR-T were likely to undergo apoptosis even in the presence of EPO. In addition, EPOR-T-transfected cells could not differentiate into hemoglobin-positive cells after administration of EPO. These results suggest that EPOR-T is a negative regulator of EPO-induced anti-apoptosis and EPO-induced erythroid differentiation. The EPOR-T form was expressed in seven of nine cases of myelodysplastic syndrome but not in normal controls. In patients with myelodysplastic syndrome, dysregulated expression of EPOR-T may cause apoptosis and blockage of erythroid differentiation, resulting in ineffective erythropoiesis.
Collapse
Affiliation(s)
- R Shimizu
- Department of Medicine, Jichi Medical School, Tochigi, Japan
| | | | | |
Collapse
|
244
|
Edlund T, Jessell TM. Progression from extrinsic to intrinsic signaling in cell fate specification: a view from the nervous system. Cell 1999; 96:211-24. [PMID: 9988216 DOI: 10.1016/s0092-8674(00)80561-9] [Citation(s) in RCA: 382] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- T Edlund
- Department of Microbiology, University of Umea, Sweden.
| | | |
Collapse
|
245
|
Zhang P, Wong C, Liu D, Finegold M, Harper JW, Elledge SJ. p21(CIP1) and p57(KIP2) control muscle differentiation at the myogenin step. Genes Dev 1999; 13:213-24. [PMID: 9925645 PMCID: PMC316389 DOI: 10.1101/gad.13.2.213] [Citation(s) in RCA: 314] [Impact Index Per Article: 12.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Cell-cycle arrest is thought to be required for differentiation of muscle cells. However, the molecules controlling cell-cycle exit and the differentiation step(s) dependent on cell-cycle arrest are poorly understood. Here we show that two Cdk inhibitors, p21(CIP1) and p57(KIP2), redundantly control differentiation of skeletal muscle and alveoli in the lungs. Mice lacking both p21 and p57 fail to form myotubes, display increased proliferation and apoptotic rates of myoblasts, and display endoreplication in residual myotubes. This point of arrest during muscle development is identical to that of mice lacking the myogenic transcription factor myogenin, indicating a role for cell-cycle exit in myogenin function. Expression of myogenin, p21, and p57 is parallel but independent, and in response to differentiation signals, these proteins are coordinately regulated to trigger both cell-cycle exit and a dependent muscle-specific program of gene expression to initiate myoblast terminal differentiation and muscle formation.
Collapse
Affiliation(s)
- P Zhang
- Howard Hughes Medical Institute, Baylor College of Medicine, Houston, Texas 77030 USA
| | | | | | | | | | | |
Collapse
|
246
|
Abstract
Precise control of cell-cycle progression is believed to be critical for normal development, while oncogenesis may be a direct result of its disturbance. Cell-cycle progression is regulated predominantly by a series of serine/threonine kinases, the cyclin-dependent kinases (CDKs). The activities of the CDKs are controlled by a variety of mechanisms, and a group of molecules that inhibit CDK activity, CDK inhibitors (CKIs), has recently become the focus of interest, particularly in the fields of development and tumorigenesis. To date, seven CKIs have been identified in mammals and categorized into two families, the Cip/Kip and Ink4 families. The Cip/Kip family is well conserved phylogenetically, suggesting that it is biologically important. Despite the structural and biochemical similarities among the Cip/Kip members, the phenotypes of knockout mice of each Cip/Kip member are surprisingly different, which suggests that the Cip/Kip CKIs have a variety of physiological functions. In this review, the biological roles of Cip/Kip CKIs in development and tumor suppression are discussed.
Collapse
Affiliation(s)
- K Nakayama
- Department of Molecular and Cellular Biology, Kyushu University, Fukuoka, Japan.
| | | |
Collapse
|
247
|
Yoneda K, Yamamoto T, Ueta E, Osaki T. Induction of cyclin-dependent kinase inhibitor p21 in vesnarinone-induced differentiation of squamous cell carcinoma cells. Cancer Lett 1998; 133:35-45. [PMID: 9929158 DOI: 10.1016/s0304-3835(98)00187-6] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Induction of differentiation is today a useful strategy in cancer therapy but the clinical practice is insufficient in squamous cell carcinomas. We examined the effect of vesnarinone, a differentiation-inducing agent, on the cell cycle and cellular differentiation in four cell lines established from oral squamous cell carcinomas possessing a wild-type or mutated p53. Vesnarinone dose-dependently inhibited cell growth and induced G1 phase accumulation regardless of p53 gene mutation. The expression of involucrin and transglutaminase was increased by 4 days treatment with 60 microg/ml vesnarinone in all cell lines. Although p21 promoter activity was suppressed by vesnarinone, p21-mRNA was stabilized by the agent and expression of p21-mRNA was maintained for a long time. Corresponding to the prolonged p21-mRNA expression, p21 protein was induced by cell treatment with 60 microg/ml vesnarinone for 12 h and longer. The induced p21 protein bound cyclin E and suppressed cyclin E/Cdk2 kinase activity suppressing the phosphorylation of retinoblastoma (Rb) protein. These results suggest that vesnarinone possesses activity to induce p21 protein by stabilizing its mRNA with induction of differentiation of squamous cell carcinoma cells in a p53-independent manner.
Collapse
Affiliation(s)
- K Yoneda
- Department of Oral Surgery, Kochi Medical School, Nakoku-city, Japan
| | | | | | | |
Collapse
|
248
|
Abstract
Currently available pharmaceuticals exert beneficial effects on morbidity and mortality in heart failure. Only cardiac transplantation, however, provides a definitive solution to the irreversible loss of cardiomyocytes in the failing heart. The limited availability of donor hearts leaves the vast majority of afflicted patients in need. The need for innovative approaches to improve care for these patients is apparent.
Collapse
Affiliation(s)
- R S Williams
- Department of Internal Medicine and Molecular Biology/Oncology, University of Texas Southwestern Medical Center, Dallas, USA.
| |
Collapse
|
249
|
Goichberg P, Geiger B. Direct involvement of N-cadherin-mediated signaling in muscle differentiation. Mol Biol Cell 1998; 9:3119-31. [PMID: 9802901 PMCID: PMC25598 DOI: 10.1091/mbc.9.11.3119] [Citation(s) in RCA: 61] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
Cell-cell interactions, mediated by members of the cadherin family of Ca2+-dependent adhesion molecules, play key roles in morphogenetic processes as well as in the transduction of long-range growth and differentiation signals. In muscle differentiation cell adhesion is involved in both early stages of myogenic induction and in later stages of myoblast interaction and fusion. In this study we have explored the involvement of a specific cadherin, namely N-cadherin, in myogenic differentiation. For that purpose we have treated different established lines of cultured myoblasts with beads coated with N-cadherin-specific ligands, including a recombinant N-cadherin extracellular domain, and anti-N-cadherin antibodies. Immunofluorescent labeling for cadherins and catenins indicated that treatment with the cadherin-reactive beads for several hours enhances the assembly of cell-cell adherens-type junctions. Moreover, immunofluorescence and immunoblotting analyses indicated that treatment with the beads for 12-24 h induces myogenin expression and growth arrest, which are largely independent of cell plating density. Upon longer incubation with the beads (2-3 d) a major facilitation in the expression of several muscle-specific sarcomeric proteins and in cell fusion into myotubes was observed. These results suggest that surface clustering or immobilization of N-cadherin can directly trigger signaling events, which promote the activation of a myogenic differentiation program.
Collapse
Affiliation(s)
- P Goichberg
- Department of Molecular Cell Biology, The Weizmann Institute of Science, Rehovot 76100, Israel
| | | |
Collapse
|
250
|
Zhang P, Wong C, DePinho RA, Harper JW, Elledge SJ. Cooperation between the Cdk inhibitors p27(KIP1) and p57(KIP2) in the control of tissue growth and development. Genes Dev 1998; 12:3162-7. [PMID: 9784491 PMCID: PMC317217 DOI: 10.1101/gad.12.20.3162] [Citation(s) in RCA: 242] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Cell cycle exit is required for terminal differentiation of many cell types. The retinoblastoma protein Rb has been implicated both in cell cycle exit and differentiation in several tissues. Rb is negatively regulated by cyclin-dependent kinases (Cdks). The main effectors that down-regulate Cdk activity to activate Rb are not known in the lens or other tissues. In this study, using multiple mutant mice, we show that the Cdk inhibitors p27(KIP1) and p57(KIP2) function redundantly to control cell cycle exit and differentiation of lens fiber cells and placental trophoblasts. These studies demonstrate that p27(KIP1) and p57(KIP2) are critical terminal effectors of signal transduction pathways that control cell differentiation.
Collapse
Affiliation(s)
- P Zhang
- Howard Hughes Medical Institute, Albert Einstein College of Medicine, Bronx, New York 10461 USA
| | | | | | | | | |
Collapse
|