201
|
Pincez T, Fernandes H, Leblanc T, Michel G, Barlogis V, Bertrand Y, Neven B, Chahla WA, Pasquet M, Guitton C, Marie-Cardine A, Pellier I, Armari-Alla C, Benadiba J, Blouin P, Jeziorski E, Millot F, Paillard C, Thomas C, Cheikh N, Bayart S, Fouyssac F, Piguet C, Deparis M, Briandet C, Dore E, Picard C, Rieux-Laucat F, Landman-Parker J, Leverger G, Aladjidi N. Long term follow-up of pediatric-onset Evans syndrome: broad immunopathological manifestations and high treatment burden. Haematologica 2021; 107:457-466. [PMID: 33440924 PMCID: PMC8804581 DOI: 10.3324/haematol.2020.271106] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2020] [Indexed: 11/12/2022] Open
Abstract
Pediatric-onset Evans syndrome (pES) is defined by both immune thrombocytopenic purpura (ITP) and autoimmune hemolytic anemia (AIHA) before the age of 18 years. There have been no comprehensive long-term studies of this rare disease, which can be associated to various immunopathological manifestations (IM). We report outcomes of the 151 patients with pES and more than 5 years of follow-up from the nationwide French prospective OBS’CEREVANCE cohort. Median age at final follow-up was 18.5 years (range, 6.8–50.0 years) and the median follow-up period was 11.3 years (range, 5.1–38.0 years). At 10 years, ITP and AIHA were in sustained complete remission in 54.5% and 78.4% of patients, respectively. The frequency and number of clinical and biological IM increased with age: at the age of 20 years, 74% had at least one clinical IM (cIM). A wide range of cIM occurred, mainly lymphoproliferation, dermatological, gastrointestinal/hepatic and pneumological IM. The number of cIM was associated with a subsequent increase in the number of second-line treatments received (other than steroids and immunoglobulins; hazard ratio 1.4, 95% Confidence Interval: 1.15–1.60, P=0.0002, Cox proportional hazards method). Survival at 15 years after diagnosis was 84%. Death occurred at a median age of 18 years (range, 1.7–31.5 years), and the most frequent cause was infection. The number of second-line treatments and severe/recurrent infections were independently associated with mortality. In conclusion, long-term outcomes of pES showed remission of cytopenias but frequent IM linked to high second-line treatment burden. Mortality was associated to drugs and/or underlying immunodeficiencies, and adolescents-young adults are a high-risk subgroup.
Collapse
Affiliation(s)
- Thomas Pincez
- Centre de Référence National des Cytopénies Auto-immunes de l'Enfant (CEREVANCE), Bordeaux, France; Division of Pediatric Hematology-Oncology, Charles-Bruneau Cancer Center, Department of Pediatrics, Sainte-Justine University Hospital, Université de Montréal, Montréal, Québec
| | - Helder Fernandes
- Centre de Référence National des Cytopénies Auto-immunes de l'Enfant (CEREVANCE), Bordeaux, France; Pediatric Oncology Hematology Unit, University Hospital, Plurithématique CIC (CICP), Centre d'Investigation Clinique (CIC) 1401, INSERM Bordeaux
| | - Thierry Leblanc
- Pediatric Hematology Unit, Robert Debré University Hospital, AP-HP, Paris
| | - Gérard Michel
- Department of Pediatric Hematology, La Timone Hospital, Marseille University Hospital, Marseille
| | - Vincent Barlogis
- Department of Pediatric Hematology, La Timone Hospital, Marseille University Hospital, Marseille
| | - Yves Bertrand
- Institute of Pediatric Hematology and Oncology, Lyon University Hospital, Lyon
| | - Bénédicte Neven
- Pediatric Immuno-Hematology and Rheumatology Department, Necker-Enfants Malades University Hospital, AP-HP, Paris, France; Laboratory of Immunogenetics of Pediatric Autoimmune Diseases, Paris, France; Imagine Institute, UMR 1163 INSERM and Paris University, Paris
| | - Wadih Abou Chahla
- Department of Pediatric Hematology, Jeanne de Flandre Hospital, Lille University Hospital, Lille
| | - Marlène Pasquet
- Pediatric Oncology Immunology Hematology Unit, Children's University Hospital, Toulouse
| | - Corinne Guitton
- Department of Pediatrics, Bicêtre University Hospital, AP-HP, Le Kremlin-Bicêtre
| | - Aude Marie-Cardine
- Department of Pediatric Hematology and Oncology, Rouen University Hospital, Rouen
| | | | | | - Joy Benadiba
- Department of Hemato-Oncology Pediatric, Nice University Hospital, Nice
| | - Pascale Blouin
- Department of Pediatric Hematology-Oncology, Clocheville Hospital, Tours University Hospital, Tours
| | - Eric Jeziorski
- Pediatric Oncology Hematology Unit, Arnaud de Villeneuve University Hospital, Montpellier
| | - Frédéric Millot
- Department of Pediatric Hematology, Poitiers University Hospital, Poitiers
| | - Catherine Paillard
- Department of Pediatric Hematology and Oncology, Hautepierre University Hospital, Strasbourg
| | - Caroline Thomas
- Pediatric Hematology Unit, Nantes University Hospital, Nantes
| | - Nathalie Cheikh
- Department of Pediatric Hematology-Oncology, Besanc_on University Hospital, Besanc_on
| | - Sophie Bayart
- Pediatric Hematology Unit, Rennes University Hospital, Rennes
| | - Fanny Fouyssac
- Pediatric Hematology Unit, Nancy University Hospital, Nancy
| | - Christophe Piguet
- Pediatric Oncology Hematology Unit, Limoges University Hospital, Limoges
| | - Marianna Deparis
- Pediatric Oncology-Hematology Unit Department, Caen University Hospital, Caen
| | | | - Eric Dore
- Pediatric Unit, Clermont-Ferrand University Hospital, Clermont-Ferrand
| | - Capucine Picard
- Imagine Institute, UMR 1163 INSERM and Paris University, Paris, France; Study Center for Primary Immunodeficiencies, Necker-Enfants Malades University Hospital, AP-HP, Paris
| | - Frédéric Rieux-Laucat
- Laboratory of Immunogenetics of Pediatric Autoimmune Diseases, Paris, France; Imagine Institute, UMR 1163 INSERM and Paris University, Paris
| | - Judith Landman-Parker
- Pediatric Oncology Immunology Hematology Unit, Armand-Trousseau University Hospital, AP-HP, Paris
| | - Guy Leverger
- Pediatric Oncology Immunology Hematology Unit, Armand-Trousseau University Hospital, AP-HP, Paris
| | - Nathalie Aladjidi
- Centre de Référence National des Cytopénies Auto-immunes de l'Enfant (CEREVANCE), Bordeaux, France; Pediatric Oncology Hematology Unit, University Hospital, Plurithématique CIC (CICP), Centre d'Investigation Clinique (CIC) 1401, INSERM Bordeaux.
| |
Collapse
|
202
|
Nandi D, Pathak S, Verma T, Singh M, Chattopadhyay A, Thakur S, Raghavan A, Gokhroo A, Vijayamahantesh. T cell costimulation, checkpoint inhibitors and anti-tumor therapy. J Biosci 2021. [PMID: 32345776 DOI: 10.1007/s12038-020-0020-2] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
The hallmarks of the adaptive immune response are specificity and memory. The cellular response is mediated by T cells which express cell surface T cell receptors (TCRs) that recognize peptide antigens in complex with major histocompatibility complex (MHC) molecules on antigen presenting cells (APCs). However, binding of cognate TCRs with MHC-peptide complexes alone (signal 1) does not trigger optimal T cell activation. In addition to signal 1, the binding of positive and negative costimulatory receptors to their ligands modulates T cell activation. This complex signaling network prevents aberrant activation of T cells. CD28 is the main positive costimulatory receptor on naı¨ve T cells; upon activation, CTLA4 is induced but reduces T cell activation. Further studies led to the identification of additional negative costimulatory receptors known as checkpoints, e.g. PD1. This review chronicles the basic studies in T cell costimulation that led to the discovery of checkpoint inhibitors, i.e. antibodies to negative costimulatory receptors (e.g. CTLA4 and PD1) which reduce tumor growth. This discovery has been recognized with the award of the 2018 Nobel prize in Physiology/Medicine. This review highlights the structural and functional roles of costimulatory receptors, the mechanisms by which checkpoint inhibitors work, the challenges encountered and future prospects.
Collapse
Affiliation(s)
- Dipankar Nandi
- Department of Biochemistry, Indian Institute of Science, Bengaluru 560 012, India
| | | | | | | | | | | | | | | | | |
Collapse
|
203
|
Autoimmune Hemolytic Anemia in the Pediatric Setting. J Clin Med 2021; 10:jcm10020216. [PMID: 33435309 PMCID: PMC7828053 DOI: 10.3390/jcm10020216] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2020] [Revised: 01/04/2021] [Accepted: 01/05/2021] [Indexed: 12/21/2022] Open
Abstract
Autoimmune hemolytic anemia (AIHA) is a rare disease in children, presenting with variable severity. Most commonly, warm-reactive IgG antibodies bind erythrocytes at 37 °C and induce opsonization and phagocytosis mainly by the splenic macrophages, causing warm AIHA (w-AIHA). Post-infectious cold-reactive antibodies can also lead to hemolysis following the patient’s exposure to cold temperatures, causing cold agglutinin syndrome (CAS) due to IgM autoantibodies, or paroxysmal cold hemoglobinuria (PCH) due to atypical IgG autoantibodies which bind their target RBC antigen and fix complement at 4 °C. Cold-reactive antibodies mainly induce intravascular hemolysis after complement activation. Direct antiglobulin test (DAT) is the gold standard for AIHA diagnosis; however, DAT negative results are seen in up to 11% of warm AIHA, highlighting the need to pursue further evaluation in cases with a phenotype compatible with immune-mediated hemolytic anemia despite negative DAT. Prompt supportive care, initiation of treatment with steroids for w-AIHA, and transfusion if necessary for symptomatic or fast-evolving anemia is crucial for a positive outcome. w-AIHA in children is often secondary to underlying immune dysregulation syndromes and thus, screening for such disorders is recommended at presentation, before initiating treatment with immunosuppressants, to determine prognosis and optimize long-term management potentially with novel targeted medications.
Collapse
|
204
|
Soskic B, Jeffery LE, Kennedy A, Gardner DH, Hou TZ, Halliday N, Williams C, Janman D, Rowshanravan B, Hirschfield GM, Sansom DM. CD80 on Human T Cells Is Associated With FoxP3 Expression and Supports Treg Homeostasis. Front Immunol 2021; 11:577655. [PMID: 33488578 PMCID: PMC7820758 DOI: 10.3389/fimmu.2020.577655] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2020] [Accepted: 11/25/2020] [Indexed: 11/24/2022] Open
Abstract
CD80 and CD86 are expressed on antigen presenting cells (APCs) and their role in providing costimulation to T cells is well established. However, it has been shown that these molecules can also be expressed by T cells, but the significance of this observation remains unknown. We have investigated stimuli that control CD80 and CD86 expression on T cells and show that in APC-free conditions around 40% of activated, proliferating CD4+ T cells express either CD80, CD86 or both. Expression of CD80 and CD86 was strongly dependent upon provision of CD28 costimulation as ligands were not expressed following TCR stimulation alone. Furthermore, we observed that CD80+ T cells possessed the hallmarks of induced regulatory T cells (iTreg), expressing Foxp3 and high levels of CTLA-4 whilst proliferating less extensively. In contrast, CD86 was preferentially expressed on INF-γ producing cells, which proliferated more extensively and had characteristics of effector T cells. Finally, we demonstrated that CD80 expressed on T cells inhibits CTLA-4 function and facilitates the growth of iTreg. Together these data establish endogenous expression of CD80 and CD86 by activated T cells is not due to ligand capture by transendocytosis and highlight clear differences in their expression patterns and associated functions.
Collapse
Affiliation(s)
- Blagoje Soskic
- Institute of Immunity and Transplantation, Division of Infection & Immunity, University College London, Royal Free Hospital, London, United Kingdom
| | - Louisa E Jeffery
- Institute of Metabolism and Systems Research, College of Medical and Dental Sciences, University of Birmingham, Edgbaston, Birmingham, United Kingdom
| | - Alan Kennedy
- Institute of Immunity and Transplantation, Division of Infection & Immunity, University College London, Royal Free Hospital, London, United Kingdom
| | - David H Gardner
- School of Immunity and Infection, College of Medical and Dental Sciences, University of Birmingham, Edgbaston, Birmingham, United Kingdom
| | - Tie Zheng Hou
- Institute of Immunity and Transplantation, Division of Infection & Immunity, University College London, Royal Free Hospital, London, United Kingdom
| | - Neil Halliday
- Institute of Immunity and Transplantation, Division of Infection & Immunity, University College London, Royal Free Hospital, London, United Kingdom
| | - Cayman Williams
- Institute of Immunity and Transplantation, Division of Infection & Immunity, University College London, Royal Free Hospital, London, United Kingdom
| | - Daniel Janman
- Institute of Immunity and Transplantation, Division of Infection & Immunity, University College London, Royal Free Hospital, London, United Kingdom
| | - Behzad Rowshanravan
- Institute of Immunity and Transplantation, Division of Infection & Immunity, University College London, Royal Free Hospital, London, United Kingdom
| | | | - David M Sansom
- Institute of Immunity and Transplantation, Division of Infection & Immunity, University College London, Royal Free Hospital, London, United Kingdom
| |
Collapse
|
205
|
van Stigt AC, Dalm VASH, Nagtzaam NMA, van Rijswijk DA, Barendregt BH, van Hagen PM, IJspeert H, Dik WA. Soluble Interleukin-2 Receptor Is a Promising Serum Biomarker for Granulomatous Disease in Common Variable Immune Deficiency. J Clin Immunol 2021; 41:694-697. [PMID: 33404971 PMCID: PMC7921039 DOI: 10.1007/s10875-020-00947-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2020] [Accepted: 12/11/2020] [Indexed: 11/25/2022]
Affiliation(s)
- Astrid C van Stigt
- Department of Immunology, Laboratory Medical Immunology, Erasmus University Medical Center, Rotterdam, the Netherlands.,Department of Internal Medicine, Division of Clinical Immunology, Erasmus University Medical Center, Rotterdam, the Netherlands.,Academic Center for Rare Immunological Diseases (RIDC), Erasmus University Medical Center, Rotterdam, the Netherlands
| | - Virgil A S H Dalm
- Department of Immunology, Laboratory Medical Immunology, Erasmus University Medical Center, Rotterdam, the Netherlands.,Department of Internal Medicine, Division of Clinical Immunology, Erasmus University Medical Center, Rotterdam, the Netherlands.,Academic Center for Rare Immunological Diseases (RIDC), Erasmus University Medical Center, Rotterdam, the Netherlands
| | - Nicole M A Nagtzaam
- Department of Immunology, Laboratory Medical Immunology, Erasmus University Medical Center, Rotterdam, the Netherlands.,Academic Center for Rare Immunological Diseases (RIDC), Erasmus University Medical Center, Rotterdam, the Netherlands
| | - Damian A van Rijswijk
- Department of Immunology, Laboratory Medical Immunology, Erasmus University Medical Center, Rotterdam, the Netherlands.,Academic Center for Rare Immunological Diseases (RIDC), Erasmus University Medical Center, Rotterdam, the Netherlands
| | - Barbara H Barendregt
- Department of Immunology, Laboratory Medical Immunology, Erasmus University Medical Center, Rotterdam, the Netherlands.,Academic Center for Rare Immunological Diseases (RIDC), Erasmus University Medical Center, Rotterdam, the Netherlands
| | - P Martin van Hagen
- Department of Immunology, Laboratory Medical Immunology, Erasmus University Medical Center, Rotterdam, the Netherlands.,Department of Internal Medicine, Division of Clinical Immunology, Erasmus University Medical Center, Rotterdam, the Netherlands.,Academic Center for Rare Immunological Diseases (RIDC), Erasmus University Medical Center, Rotterdam, the Netherlands
| | - Hanna IJspeert
- Department of Immunology, Laboratory Medical Immunology, Erasmus University Medical Center, Rotterdam, the Netherlands.,Academic Center for Rare Immunological Diseases (RIDC), Erasmus University Medical Center, Rotterdam, the Netherlands
| | - Willem A Dik
- Department of Immunology, Laboratory Medical Immunology, Erasmus University Medical Center, Rotterdam, the Netherlands. .,Academic Center for Rare Immunological Diseases (RIDC), Erasmus University Medical Center, Rotterdam, the Netherlands.
| |
Collapse
|
206
|
Bloomfield M, Klocperk A, Zachova R, Milota T, Kanderova V, Sediva A. Natural Course of Activated Phosphoinositide 3-Kinase Delta Syndrome in Childhood and Adolescence. Front Pediatr 2021; 9:697706. [PMID: 34350147 PMCID: PMC8326455 DOI: 10.3389/fped.2021.697706] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/20/2021] [Accepted: 06/18/2021] [Indexed: 11/13/2022] Open
Abstract
Activated phosphoinositide 3-kinase delta syndrome (APDS), caused by mutations in PI3Kδ catalytic p110δ (PIK3CD) or regulatory p85α (PIK3R1) subunits, is a primary immunodeficiency affecting both humoral and cellular immunity, which shares some phenotypic similarities with hyper-IgM syndromes and common variable immunodeficiency (CVID). Since its first description in 2013, over 200 patients have been reported worldwide. Unsurprisingly, many of the newly diagnosed patients were recruited later in life from previously long-standing unclassified immunodeficiencies and the early course of the disease is, therefore, often less well-described. In this study, we report clinical and laboratory features of eight patients followed for APDS, with particular focus on early warning signs, longitudinal development of their symptoms, individual variations, and response to therapy. The main clinical features shared by our patients included recurrent bacterial and viral respiratory tract infections, gastrointestinal disease, non-malignant lymphoproliferation, autoimmune thyroiditis, and susceptibility to EBV. All patients tolerated vaccination with both attenuated live and subunit vaccines with no adverse effects, although some failed to mount adequate antibody response. Laboratory findings were characterized by dysgammaglobulinaemia, elevated serum IgM, block in B-cell maturation with high transitional B cells, and low naïve T cells with CD8 T-cell activation. All patients benefited from immunoglobulin replacement therapy, whereas immunosuppression with mTOR pathway inhibitors was only partially successful. Therapy with specific PI3K inhibitor leniolisib was beneficial in all patients in the clinical trial. These vignettes, summary data, and particular tell-tale signs should serve to facilitate early recognition, referral, and initiation of outcome-improving therapy.
Collapse
Affiliation(s)
- Marketa Bloomfield
- Department of Immunology, 2nd Faculty of Medicine, Charles University Hospital in Motol, Prague, Czechia.,Department of Pediatrics, 1st Faculty of Medicine, Charles University in Prague and Thomayer University Hospital, Prague, Czechia
| | - Adam Klocperk
- Department of Immunology, 2nd Faculty of Medicine, Charles University Hospital in Motol, Prague, Czechia
| | - Radana Zachova
- Department of Immunology, 2nd Faculty of Medicine, Charles University Hospital in Motol, Prague, Czechia
| | - Tomas Milota
- Department of Immunology, 2nd Faculty of Medicine, Charles University Hospital in Motol, Prague, Czechia
| | - Veronika Kanderova
- Childhood Leukaemia Investigation Prague, Department of Paediatric Haematology and Oncology, 2nd Faculty of Medicine, Charles University and University Hospital in Motol, Prague, Czechia
| | - Anna Sediva
- Department of Immunology, 2nd Faculty of Medicine, Charles University Hospital in Motol, Prague, Czechia
| |
Collapse
|
207
|
Zhao S, Ma J, Zhu X, Zhang J, Wu R. Chronic Refractory Immune Thrombocytopenia Is Associated With Variants in Immune Genes. Clin Appl Thromb Hemost 2021; 27:10760296211059813. [PMID: 34786962 PMCID: PMC8619729 DOI: 10.1177/10760296211059813] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Revised: 10/09/2021] [Accepted: 10/27/2021] [Indexed: 01/19/2023] Open
Abstract
The pathogenesis of chronic refractory immune thrombocytopenia (C/RITP) is mechanistically complex and considerably varies across patients. Few studies have focused on the genetic characteristics of C/RITP in children. The aim of this study was to analyze and summarize the clinical manifestations and genetic characteristics of C/RITP children with mutations in immune-related genes. In the study, 51 children with variants in immune-related genes (mutation group) and 103 children with no abnormal mutations (control group) were enrolled. Children in the mutation group showed severity of hemorrhage, a higher incidence of abnormal immunological indices, and an increased expression of SLE biomarkers. The number of peripheral T and B lymphocytes in the mutation group significantly increased. Nine patients (17.6%) had probable pathogenic variant genes associated with primary immunodeficiencies (TNFRSF13B, CARD11, CBL, and RAG2), and 42 patients (82.4%) had variants of uncertain significance in 23 genes. C/RITP patients with variants in immune-related genes had more severe bleeding, abnormal immunological indices, and an increased expression of SLE biomarker. Next-generation sequenciong (NGS) might be a useful way to differentiate those patients from C/RITP.
Collapse
Affiliation(s)
- Shasha Zhao
- Beijing Children’s Hospital, Capital Medical University, Beijing, China
| | - Jingyao Ma
- Beijing Children’s Hospital, Capital Medical University, Beijing, China
| | - Xiaojing Zhu
- Beijing Children’s Hospital, Capital Medical University, Beijing, China
| | - Jialu Zhang
- Beijing Children’s Hospital, Capital Medical University, Beijing, China
| | - Runhui Wu
- Beijing Children’s Hospital, Capital Medical University, Beijing, China
| |
Collapse
|
208
|
Colman RJ, Dhaliwal J, Rosen MJ. Predicting Therapeutic Response in Pediatric Ulcerative Colitis-A Journey Towards Precision Medicine. Front Pediatr 2021; 9:634739. [PMID: 33681110 PMCID: PMC7925616 DOI: 10.3389/fped.2021.634739] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/28/2020] [Accepted: 01/08/2021] [Indexed: 12/12/2022] Open
Abstract
Ulcerative colitis (UC) is a disabling disease, characterized by chronic inflammation of the colon, with a rising prevalence worldwide in the pediatric age group. Although UC presents in children with varying severity, disease extent, and comorbidities, initial treatment is essentially uniform, consisting of 5-aminosalicylate drugs with corticosteroid induction for those with moderately to severely active disease. With the advent of anti-tumor necrosis factor (TNF) biologic therapy and several new biologics and small-molecule drugs for UC, precision medicine approaches to treatment are needed to more rapidly achieve sustained remission, restore quality of life, normalize development, and limit exposure to toxic corticosteroids in children with UC. Here, we review available data on clinical, biochemical, histopathologic, and molecular predictors of treatment response in UC. We also address known predictors and special treatment considerations in specific relevant scenarios such as very-early-onset UC, acute severe UC, ileal pouch anal anastomosis, and UC with concomitant primary sclerosing cholangitis. The review concludes with a prediction of how machine learning will integrate multimodal patient data to bring precision medicine to the bedside of children with UC in the future.
Collapse
Affiliation(s)
- Ruben J Colman
- Division of Gastroenterology, Hepatology and Nutrition, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, United States
| | - Jasbir Dhaliwal
- Division of Gastroenterology, Hepatology and Nutrition, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, United States.,Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH, United States
| | - Michael J Rosen
- Division of Gastroenterology, Hepatology and Nutrition, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, United States.,Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH, United States
| |
Collapse
|
209
|
Salami F, Shirkani A, Shahrooei M, Azizi G, Yazdani R, Abolhassani H, Aghamohammadi A. Leishmaniasis and Autoimmunity in Patient with LPS-Responsive Beige-Like Anchor Protein (LRBA) Deficiency. Endocr Metab Immune Disord Drug Targets 2021; 20:479-484. [PMID: 31389321 DOI: 10.2174/1871530319666190807161546] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/19/2019] [Revised: 04/26/2019] [Accepted: 05/30/2019] [Indexed: 11/22/2022]
Abstract
BACKGROUND/OBJECTIVE LPS-responsive beige-like anchor protein (LRBA) deficiency is a combined immunodeficiency and immune dysregulation. The authors present a case report of LPSresponsive beige-like anchor protein (LRBA) deficiency with the history of autoimmunity, enteropathy and visceral leishmaniasis. Sirolimus therapy was started for autoimmunity and enteropathy but was discontinued due to recurrent leishmaniasis. Therefore, a common side-effect of many immunosuppressive drugs in patients with LRBA deficiency is increased susceptibility to infections. METHODS Whole exome sequencing was performed to detect the underlying genetic mutation and Leishmania DNA was detected by the PCR technique in this patient. RESULTS Whole exome sequencing of the patient reported a homozygous frameshift deletion mutation in the LRBA gene (NM_006726: exon29: c.4638delC, p. S1546fs). Leishmania DNA PCR was positive in this case. CONCLUSION Parasite infections manifestations report in LRBA deficiency. Leishmania infections in patients with chronic diarrhea and autoimmunity should be considered for immunodeficiency.
Collapse
Affiliation(s)
- Fereshte Salami
- Research Center for Immunodeficiencies, Pediatrics Center of Excellence, Children's Medical Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Afshin Shirkani
- Allergy and Clinical Immunology Department, School of Medicine, Bushehr University of Medical Science, Bushehr, Iran
| | - Mohammad Shahrooei
- Department of Immunology, Specialised Immunology Laboratory of Dr. Shahrooei, Ahvaz, Iran
| | - Gholamreza Azizi
- Non-communicable Diseases Research Center, Alborz University of Medical Sciences, Karaj, Iran
| | - Reza Yazdani
- Research Center for Immunodeficiencies, Pediatrics Center of Excellence, Children's Medical Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Hassan Abolhassani
- Research Center for Immunodeficiencies, Pediatrics Center of Excellence, Children's Medical Center, Tehran University of Medical Sciences, Tehran, Iran.,Division of Clinical Immunology, Department of Laboratory Medicine, Karolinska Institute at Karolinska University Hospital Huddinge, Stockholm, Sweden
| | - Asghar Aghamohammadi
- Research Center for Immunodeficiencies, Pediatrics Center of Excellence, Children's Medical Center, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
210
|
Farmer JR, Uzel G. Mapping Out Autoimmunity Control in Primary Immune Regulatory Disorders. THE JOURNAL OF ALLERGY AND CLINICAL IMMUNOLOGY-IN PRACTICE 2020; 9:653-659. [PMID: 33358993 DOI: 10.1016/j.jaip.2020.12.024] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/11/2020] [Revised: 12/11/2020] [Accepted: 12/15/2020] [Indexed: 12/19/2022]
Abstract
There is a growing understanding of the clinical overlap between primary immune deficiency and autoimmunity. An atypical or treatment-refractory clinical presentation of autoimmunity may in fact signal an underlying congenital condition of primary immune dysregulation (an inborn error of immunity). Detailed profiling of the family history is critical in the diagnostic process and must not be limited to the occurrence of frequent or atypical infections, but additionally should include inquiries into chronic forms of autoimmunity, hyperinflammation, and malignancy. A genetic and a functional diagnostic approach are complementary and nonoverlapping methods of identifying and validating an inborn error of immunity. Extended immune phenotyping of both affected and unaffected family members may provide insight into disease mode of inheritance, penetrance, and secondary inherited or environmentally acquired modifiers. Clinical care of a family with an inborn error of immunity may require local and national expertise in addition to cross-disciplinary care from the disciplines of pediatrics and internal medicine. Physician communication across subspecialties as well as distinct medical institutes can facilitate the appropriate disclosure of genetic testing results toward their prompt incorporation into patient care. Targeted immunomodulation based directly on genetic and functional immune phenotyping has the potential to reduce unnecessary immunosuppression and provide more exacting therapeutic benefit to our patients.
Collapse
Affiliation(s)
- Jocelyn R Farmer
- Division of Rheumatology, Allergy & Immunology, Department of Medicine, Massachusetts General Hospital, Boston, Mass; Ragon Institute of MGH, MIT and Harvard, Boston, Mass.
| | - Gulbu Uzel
- Laboratory of Clinical Immunology and Microbiology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Md
| |
Collapse
|
211
|
de Jesus AA, Hou Y, Brooks S, Malle L, Biancotto A, Huang Y, Calvo KR, Marrero B, Moir S, Oler AJ, Deng Z, Montealegre Sanchez GA, Ahmed A, Allenspach E, Arabshahi B, Behrens E, Benseler S, Bezrodnik L, Bout-Tabaku S, Brescia AC, Brown D, Burnham JM, Caldirola MS, Carrasco R, Chan AY, Cimaz R, Dancey P, Dare J, DeGuzman M, Dimitriades V, Ferguson I, Ferguson P, Finn L, Gattorno M, Grom AA, Hanson EP, Hashkes PJ, Hedrich CM, Herzog R, Horneff G, Jerath R, Kessler E, Kim H, Kingsbury DJ, Laxer RM, Lee PY, Lee-Kirsch MA, Lewandowski L, Li S, Lilleby V, Mammadova V, Moorthy LN, Nasrullayeva G, O'Neil KM, Onel K, Ozen S, Pan N, Pillet P, Piotto DG, Punaro MG, Reiff A, Reinhardt A, Rider LG, Rivas-Chacon R, Ronis T, Rösen-Wolff A, Roth J, Ruth NM, Rygg M, Schmeling H, Schulert G, Scott C, Seminario G, Shulman A, Sivaraman V, Son MB, Stepanovskiy Y, Stringer E, Taber S, Terreri MT, Tifft C, Torgerson T, Tosi L, Van Royen-Kerkhof A, Wampler Muskardin T, Canna SW, Goldbach-Mansky R. Distinct interferon signatures and cytokine patterns define additional systemic autoinflammatory diseases. J Clin Invest 2020; 130:1669-1682. [PMID: 31874111 DOI: 10.1172/jci129301] [Citation(s) in RCA: 155] [Impact Index Per Article: 31.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2019] [Accepted: 12/18/2019] [Indexed: 01/01/2023] Open
Abstract
BACKGROUNDUndifferentiated systemic autoinflammatory diseases (USAIDs) present diagnostic and therapeutic challenges. Chronic interferon (IFN) signaling and cytokine dysregulation may identify diseases with available targeted treatments.METHODSSixty-six consecutively referred USAID patients underwent underwent screening for the presence of an interferon signature using a standardized type-I IFN-response-gene score (IRG-S), cytokine profiling, and genetic evaluation by next-generation sequencing.RESULTSThirty-six USAID patients (55%) had elevated IRG-S. Neutrophilic panniculitis (40% vs. 0%), basal ganglia calcifications (46% vs. 0%), interstitial lung disease (47% vs. 5%), and myositis (60% vs. 10%) were more prevalent in patients with elevated IRG-S. Moderate IRG-S elevation and highly elevated serum IL-18 distinguished 8 patients with pulmonary alveolar proteinosis (PAP) and recurrent macrophage activation syndrome (MAS). Among patients with panniculitis and progressive cytopenias, 2 patients were compound heterozygous for potentially novel LRBA mutations, 4 patients harbored potentially novel splice variants in IKBKG (which encodes NF-κB essential modulator [NEMO]), and 6 patients had de novo frameshift mutations in SAMD9L. Of additional 12 patients with elevated IRG-S and CANDLE-, SAVI- or Aicardi-Goutières syndrome-like (AGS-like) phenotypes, 5 patients carried mutations in either SAMHD1, TREX1, PSMB8, or PSMG2. Two patients had anti-MDA5 autoantibody-positive juvenile dermatomyositis, and 7 could not be classified. Patients with LRBA, IKBKG, and SAMD9L mutations showed a pattern of IRG elevation that suggests prominent NF-κB activation different from the canonical interferonopathies CANDLE, SAVI, and AGS.CONCLUSIONSIn patients with elevated IRG-S, we identified characteristic clinical features and 3 additional autoinflammatory diseases: IL-18-mediated PAP and recurrent MAS (IL-18PAP-MAS), NEMO deleted exon 5-autoinflammatory syndrome (NEMO-NDAS), and SAMD9L-associated autoinflammatory disease (SAMD9L-SAAD). The IRG-S expands the diagnostic armamentarium in evaluating USAIDs and points to different pathways regulating IRG expression.TRIAL REGISTRATIONClinicalTrials.gov NCT02974595.FUNDINGThe Intramural Research Program of the NIH, NIAID, NIAMS, and the Clinical Center.
Collapse
Affiliation(s)
- Adriana A de Jesus
- Translational Autoinflammatory Diseases Section (TADS), NIAID/NIH, Bethesda, Maryland, USA
| | - Yangfeng Hou
- Department of Rheumatology, Shandong Provincial Qianfoshan Hospital, Shandong University, Shandong, China
| | - Stephen Brooks
- Biomining and Discovery Section, NIAMS/NIH, Bethesda, Maryland, USA
| | - Louise Malle
- Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Angelique Biancotto
- Immunology & Inflammation Research Therapeutic Area, Sanofi, Boston, Massachusetts, USA
| | - Yan Huang
- Translational Autoinflammatory Diseases Section (TADS), NIAID/NIH, Bethesda, Maryland, USA
| | - Katherine R Calvo
- Department of Laboratory Medicine (DLM), Clinical Center/NIH, Bethesda, Maryland, USA
| | | | | | - Andrew J Oler
- Bioinformatics and Computational Biosciences Branch (BCBB), Office of Cyber Infrastructure and Computational Biology (OCICB), NIAID/NIH, Bethesda, Maryland, USA
| | - Zuoming Deng
- Biomining and Discovery Section, NIAMS/NIH, Bethesda, Maryland, USA
| | | | - Amina Ahmed
- The Autoinflammatory Diseases Consortium.,Levine Children's Hospital, Charlotte, North Carolina, USA
| | - Eric Allenspach
- The Autoinflammatory Diseases Consortium.,Divisions of Immunology & Rheumatology, Department of Pediatrics, University of Washington and Seattle Children's Hospital, Seattle, Washington, USA
| | - Bita Arabshahi
- The Autoinflammatory Diseases Consortium.,Virginia Commonwealth University & Pediatric Specialists of Virginia, Fairfax, Virginia, USA
| | - Edward Behrens
- The Autoinflammatory Diseases Consortium.,Division of Rheumatology, Children's Hospital of Philadelphia and the Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Susanne Benseler
- The Autoinflammatory Diseases Consortium.,Department of Pediatrics, Pediatric Rheumatology Section, Alberta Children's Hospital, University of Calgary, Calgary, Alberta, Canada
| | - Liliana Bezrodnik
- The Autoinflammatory Diseases Consortium.,Immunology Unit, Pediatric Hospital R. Gutierrez, Buenos Aires, Argentina
| | - Sharon Bout-Tabaku
- The Autoinflammatory Diseases Consortium.,Department of Pediatric Medicine, Sidra Medicine, Qatar Foundation, Doha, Qatar
| | - AnneMarie C Brescia
- The Autoinflammatory Diseases Consortium.,Nemours/Alfred I. DuPont Hospital for Children, Wilmington, Delaware, USA
| | - Diane Brown
- The Autoinflammatory Diseases Consortium.,Division of Rheumatology, Children's Hospital Los Angeles & USC, Los Angeles, California, USA
| | - Jon M Burnham
- The Autoinflammatory Diseases Consortium.,Division of Rheumatology, Children's Hospital of Philadelphia and the Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Maria Soledad Caldirola
- The Autoinflammatory Diseases Consortium.,Immunology Unit, Pediatric Hospital R. Gutierrez, Buenos Aires, Argentina
| | - Ruy Carrasco
- The Autoinflammatory Diseases Consortium.,Pediatric Rheumatology, Dell Children's Medical Center of Central Texas, Austin, Texas, USA
| | - Alice Y Chan
- The Autoinflammatory Diseases Consortium.,Divisions of Pediatric AIBMT & Rheumatology, UCSF, San Francisco, California, USA
| | - Rolando Cimaz
- The Autoinflammatory Diseases Consortium.,Department of Clinical Sciences and Community Health, University of Milano, Milan, Italy
| | - Paul Dancey
- The Autoinflammatory Diseases Consortium.,Division of Rheumatology, Janeway Children's Hospital & Rehabilitation Centre, Saint John's, Newfoundland and Labrador, Canada
| | - Jason Dare
- The Autoinflammatory Diseases Consortium.,Division of Pediatric Rheumatology, University of Arkansas for Medical Sciences, Arkansas Children's Hospital, Little Rock, Arkansas, USA
| | - Marietta DeGuzman
- The Autoinflammatory Diseases Consortium.,Department of Immunology, Allergy and Rheumatology, Baylor College of Medicine, Houston, Texas, USA
| | - Victoria Dimitriades
- The Autoinflammatory Diseases Consortium.,Division of Pediatric Allergy, Immunology & Rheumatology, UC Davis Health, Sacramento, California, USA
| | - Ian Ferguson
- The Autoinflammatory Diseases Consortium.,Department of Pediatrics/Pediatric Rheumatology, Yale University School of Medicine, New Haven, Connecticut, USA
| | - Polly Ferguson
- The Autoinflammatory Diseases Consortium.,Pediatrics Department, University of Iowa Carver College of Medicine, Iowa City, Iowa, USA
| | - Laura Finn
- The Autoinflammatory Diseases Consortium.,Pathology Department, University of Washington and Seattle Children's Hospital, Seattle, Washington, USA
| | - Marco Gattorno
- The Autoinflammatory Diseases Consortium.,Center for Autoinflammatory Diseases and Immunedeficiencies, IRCCS Giannina Gaslini, Genoa, Italy
| | - Alexei A Grom
- The Autoinflammatory Diseases Consortium.,Division of Rheumatology, Children's Hospital Medical Center, Cincinnati, Ohio, USA
| | - Eric P Hanson
- The Autoinflammatory Diseases Consortium.,Department of Pediatrics Indiana University School of Medicine and Riley Hospital for Children, Indianapolis, Indiana, USA
| | - Philip J Hashkes
- The Autoinflammatory Diseases Consortium.,Pediatric Rheumatology Unit, Shaare Zedek Medical Center, Jerusalem, Israel
| | - Christian M Hedrich
- The Autoinflammatory Diseases Consortium.,Department of Women's & Children's Health, Institute of Translational Medicine, University of Liverpool & Department of Paediatric Rheumatology, Alder Hey Children's NHS Foundation Trust Hospital, Liverpool, United Kingdom
| | - Ronit Herzog
- The Autoinflammatory Diseases Consortium.,Department of Otolaryngology, Division of Allergy and Immunology, New York University, New York, New York, USA
| | - Gerd Horneff
- The Autoinflammatory Diseases Consortium.,Asklepios Klinik Sankt, Augustin GmbH, St. Augustin, Germany and Department of Pediatric and Adolescents Medicine, University of Cologne, Cologne, Germany
| | - Rita Jerath
- The Autoinflammatory Diseases Consortium.,Augusta University Medical Center, Augusta, Georgia, USA
| | - Elizabeth Kessler
- The Autoinflammatory Diseases Consortium.,Division of Rheumatology, Children's Mercy, Kansas City and University of Missouri, Kansas City, Missouri, USA
| | - Hanna Kim
- The Autoinflammatory Diseases Consortium.,Pediatric Translational Research Branch, NIAMS/NIH, Bethesda, Maryland, USA
| | - Daniel J Kingsbury
- The Autoinflammatory Diseases Consortium.,Randall Children's Hospital at Legacy Emanuel, Portland, Oregon, USA
| | - Ronald M Laxer
- The Autoinflammatory Diseases Consortium.,Division of Pediatric Rheumatology, University of Toronto and The Hospital for Sick Children, Toronto, Ontario, Canada
| | - Pui Y Lee
- The Autoinflammatory Diseases Consortium.,Division of Allergy, Immunology and Rheumatology, Boston Children's Hospital, Boston, Massachusetts, USA
| | - Min Ae Lee-Kirsch
- The Autoinflammatory Diseases Consortium.,Department of Pediatrics, Medizinische Fakultät Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany
| | - Laura Lewandowski
- The Autoinflammatory Diseases Consortium.,Systemic Autoimmunity Branch, NIAMS/NIH, Bethesda, Maryland, USA
| | - Suzanne Li
- The Autoinflammatory Diseases Consortium.,Hackensack University Medical Center, Hackensack Meridian School of Medicine at Seton Hall University, Hackensack, New Jersey, USA
| | - Vibke Lilleby
- The Autoinflammatory Diseases Consortium.,Department of Rheumatology, Pediatric Section, Oslo University Hospital, Oslo, Norway
| | - Vafa Mammadova
- The Autoinflammatory Diseases Consortium.,Azerbaijan Medical University, Baku, Azerbaijan
| | - Lakshmi N Moorthy
- The Autoinflammatory Diseases Consortium.,Rutgers - Robert Wood Johnson Medical School, New Brunswick, New Jersey, USA
| | - Gulnara Nasrullayeva
- The Autoinflammatory Diseases Consortium.,Azerbaijan Medical University, Baku, Azerbaijan
| | - Kathleen M O'Neil
- The Autoinflammatory Diseases Consortium.,Department of Pediatrics Indiana University School of Medicine and Riley Hospital for Children, Indianapolis, Indiana, USA
| | - Karen Onel
- The Autoinflammatory Diseases Consortium.,Division of Pediatric Rheumatology, Weill Cornell Medicine & Hospital for Special Surgery, New York, New York, USA
| | - Seza Ozen
- The Autoinflammatory Diseases Consortium.,Hacettepe University, Department of Pediatrics, Ankara, Turkey
| | - Nancy Pan
- The Autoinflammatory Diseases Consortium.,Division of Pediatric Rheumatology, Weill Cornell Medicine & Hospital for Special Surgery, New York, New York, USA
| | - Pascal Pillet
- The Autoinflammatory Diseases Consortium.,Children Hospital Pellegrin-Enfants, Bordeaux, France
| | - Daniela Gp Piotto
- The Autoinflammatory Diseases Consortium.,Department of Pediatric Rheumatology, Federal University of Sao Paulo, Sao Paulo, Brazil
| | - Marilynn G Punaro
- The Autoinflammatory Diseases Consortium.,Department of Pediatrics, University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | - Andreas Reiff
- The Autoinflammatory Diseases Consortium.,Division of Rheumatology, Children's Hospital Los Angeles, Keck School of Medicine, USC, Los Angeles, California, USA
| | - Adam Reinhardt
- The Autoinflammatory Diseases Consortium.,University of Nebraska Medical Center/Children's Hospital and Medical Center, Omaha, Nebraska, USA
| | - Lisa G Rider
- The Autoinflammatory Diseases Consortium.,Environmental Autoimmunity Group, NIEHS/NIH, Bethesda, Maryland, USA
| | - Rafael Rivas-Chacon
- The Autoinflammatory Diseases Consortium.,Department of Pediatric Rheumatology, Nicklaus Children's Hospital, Miami, Florida, USA
| | - Tova Ronis
- The Autoinflammatory Diseases Consortium.,Division of Pediatric Rheumatology, Children's National Health System, Washington, DC, USA
| | - Angela Rösen-Wolff
- The Autoinflammatory Diseases Consortium.,Department of Pediatrics, Medizinische Fakultät Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany
| | - Johannes Roth
- The Autoinflammatory Diseases Consortium.,Division of Pediatric Dermatology and Rheumatology, Children's Hospital of Eastern Ontario, Ottawa, Canada
| | - Natasha Mckerran Ruth
- The Autoinflammatory Diseases Consortium.,Medical University of South Carolina, Charleston, South Carolina, USA
| | - Marite Rygg
- The Autoinflammatory Diseases Consortium.,Department of Clinical and Molecular Medicine, NTNU - Norwegian University of Science and Technology, and Department of Pediatrics, St. Olavs Hospital, Trondheim, Norway
| | - Heinrike Schmeling
- The Autoinflammatory Diseases Consortium.,Department of Pediatrics, Pediatric Rheumatology Section, Alberta Children's Hospital, University of Calgary, Calgary, Alberta, Canada
| | - Grant Schulert
- The Autoinflammatory Diseases Consortium.,Division of Rheumatology, Children's Hospital Medical Center, Cincinnati, Ohio, USA
| | - Christiaan Scott
- The Autoinflammatory Diseases Consortium.,University of Cape Town, Red Cross War Memorial Children's Hospital, Cape Town, South Africa
| | - Gisella Seminario
- The Autoinflammatory Diseases Consortium.,Immunology Unit, Pediatric Hospital R. Gutierrez, Buenos Aires, Argentina
| | - Andrew Shulman
- The Autoinflammatory Diseases Consortium.,Pediatric Rheumatology, Children's Hospital of Orange County, UC Irvine, Irvine, California, USA
| | - Vidya Sivaraman
- The Autoinflammatory Diseases Consortium.,Section of Rheumatology, Nationwide Children's Hospital, Columbus, Ohio, USA
| | - Mary Beth Son
- The Autoinflammatory Diseases Consortium.,Division of Immunology, Boston Children's Hospital, Boston, Massachusetts, USA
| | - Yuriy Stepanovskiy
- The Autoinflammatory Diseases Consortium.,Department of Pediatric Infectious Diseases and Immunology, Shupyk National Medical Academy for Postgraduate Education, Kiev, Ukraine
| | - Elizabeth Stringer
- The Autoinflammatory Diseases Consortium.,IWK Health Centre, Dalhousie University, Halifax, Nova Scotia, Canada
| | - Sara Taber
- The Autoinflammatory Diseases Consortium.,Division of Pediatric Rheumatology, Department of Rheumatology, Hospital for Special Surgery, New York, New York, USA
| | - Maria Teresa Terreri
- The Autoinflammatory Diseases Consortium.,Department of Pediatric Rheumatology, Federal University of Sao Paulo, Sao Paulo, Brazil
| | - Cynthia Tifft
- The Autoinflammatory Diseases Consortium.,Undiagnosed Diseases Program, NHGRI/NIH, Bethesda, Maryland, USA
| | - Troy Torgerson
- The Autoinflammatory Diseases Consortium.,Divisions of Immunology & Rheumatology, Department of Pediatrics, University of Washington and Seattle Children's Hospital, Seattle, Washington, USA
| | - Laura Tosi
- The Autoinflammatory Diseases Consortium.,Bone Health Program, Children's National Health System, Washington, DC, USA
| | - Annet Van Royen-Kerkhof
- The Autoinflammatory Diseases Consortium.,Department of Pediatric Immunology and Rheumatology, Wilhelmina Children's Hospital Utrecht, Utrecht, Netherlands
| | - Theresa Wampler Muskardin
- The Autoinflammatory Diseases Consortium.,New York University School of Medicine, New York, New York, USA
| | - Scott W Canna
- Children's Hospital Pittsburgh, Pittsburgh, Pennsylvania, USA
| | | |
Collapse
|
212
|
Casamayor-Polo L, López-Nevado M, Paz-Artal E, Anel A, Rieux-Laucat F, Allende LM. Immunologic evaluation and genetic defects of apoptosis in patients with autoimmune lymphoproliferative syndrome (ALPS). Crit Rev Clin Lab Sci 2020; 58:253-274. [PMID: 33356695 DOI: 10.1080/10408363.2020.1855623] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Apoptosis plays an important role in controlling the adaptive immune response and general homeostasis of the immune cells, and impaired apoptosis in the immune system results in autoimmunity and immune dysregulation. In the last 25 years, inherited human diseases of the Fas-FasL pathway have been recognized. Autoimmune lymphoproliferative syndrome (ALPS) is an inborn error of immunity, characterized clinically by nonmalignant and noninfectious lymphoproliferation, autoimmunity, and increased risk of lymphoma due to a defect in lymphocyte apoptosis. The laboratory hallmarks of ALPS are an elevated percentage of T-cell receptor αβ double negative T cells (DNTs), elevated levels of vitamin B12, soluble FasL, IL-10, IL-18 and IgG, and defective in vitro Fas-mediated apoptosis. In order of frequency, the genetic defects associated with ALPS are germinal and somatic ALPS-FAS, ALPS-FASLG, ALPS-CASP10, ALPS-FADD, and ALPS-CASP8. Partial disease penetrance and severity suggest the combination of germline and somatic FAS mutations as well as other risk factor genes. In this report, we summarize human defects of apoptosis leading to ALPS and defects that are known as ALPS-like syndromes that can be clinically similar to, but are genetically distinct from, ALPS. An efficient genetic and immunological diagnostic approach to patients suspected of having ALPS or ALPS-like syndromes is essential because this enables the establishment of specific therapeutic strategies for improving the prognosis and quality of life of patients.
Collapse
Affiliation(s)
- Laura Casamayor-Polo
- Instituto de Investigación Sanitaria Hospital 12 de Octubre (imas12), Madrid, Spain
| | - Marta López-Nevado
- Instituto de Investigación Sanitaria Hospital 12 de Octubre (imas12), Madrid, Spain
| | - Estela Paz-Artal
- Instituto de Investigación Sanitaria Hospital 12 de Octubre (imas12), Madrid, Spain.,Immunology Department, University Hospital 12 de Octubre, Madrid, Spain.,School of Medicine, University Hospital 12 de Octubre, Complutense University of Madrid, Madrid, Spain
| | - Alberto Anel
- Apoptosis, Immunity and Cancer Group, University of Zaragoza/Aragón Health Research Institute (IIS-Aragón), Zaragoza, Spain
| | - Frederic Rieux-Laucat
- Laboratory of Immunogenetics of Pediatric Autoimmune Diseases, Université de Paris, Imagine Institute, INSERM UMR 1163, Paris, France
| | - Luis M Allende
- Instituto de Investigación Sanitaria Hospital 12 de Octubre (imas12), Madrid, Spain.,Immunology Department, University Hospital 12 de Octubre, Madrid, Spain.,School of Medicine, University Hospital 12 de Octubre, Complutense University of Madrid, Madrid, Spain
| |
Collapse
|
213
|
Oyewole-Said D, Konduri V, Vazquez-Perez J, Weldon SA, Levitt JM, Decker WK. Beyond T-Cells: Functional Characterization of CTLA-4 Expression in Immune and Non-Immune Cell Types. Front Immunol 2020; 11:608024. [PMID: 33384695 PMCID: PMC7770141 DOI: 10.3389/fimmu.2020.608024] [Citation(s) in RCA: 85] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2020] [Accepted: 11/05/2020] [Indexed: 12/23/2022] Open
Abstract
The immune response consists of a finely-tuned program, the activation of which must be coupled with inhibitory mechanisms whenever initiated. This ensures tight control of beneficial anti-pathogen and anti-tumor responses while preserving tissue integrity, promoting tissue repair, and safeguarding against autoimmunity. A cogent example of this binary response is in the mobilization of co-stimulatory and co-inhibitory signaling in regulating the strength and type of a T-cell response. Of particular importance is the costimulatory molecule CD28 which is countered by CTLA-4. While the role of CD28 in the immune response has been thoroughly elucidated, many aspects of CTLA-4 biology remain controversial. The expression of CD28 is largely constrained to constitutive expression in T-cells and as such, teasing out its function has been somewhat simplified by a limited and specific expression profile. The expression of CTLA-4, on the other hand, while reported predominantly in T-cells, has also been described on a diverse repertoire of cells within both lymphoid and myeloid lineages as well as on the surface of tumors. Nonetheless, the function of CTLA-4 has been mostly described within the context of T-cell biology. The focus on T-cell biology may be a direct result of the high degree of amino acid sequence homology and the co-expression pattern of CD28 and CTLA-4, which initially led to the discovery of CTLA-4 as a counter receptor to CD28 (for which a T-cell-activating role had already been described). Furthermore, observations of the outsized role of CTLA-4 in Treg-mediated immune suppression and the striking phenotype of T-cell hyperproliferation and resultant disease in CTLA-4-/- mice contribute to an appropriate T-cell-centric focus in the study of CTLA-4. Complete elucidation of CTLA-4 biology, however, may require a more nuanced understanding of its role in a context other than that of T-cells. This makes particular sense in light of the remarkable, yet limited utility of anti-CTLA-4 antibodies in the treatment of cancers and of CTLA-4-Ig in autoimmune disorders like rheumatoid arthritis. By fully deducing the biology of CTLA-4-regulated immune homeostasis, bottlenecks that hinder the widespread applicability of CTLA-4-based immunotherapies can be resolved.
Collapse
Affiliation(s)
- Damilola Oyewole-Said
- Department of Pathology & Immunology, Baylor College of Medicine, Houston, TX, United States
| | - Vanaja Konduri
- Department of Pathology & Immunology, Baylor College of Medicine, Houston, TX, United States
| | - Jonathan Vazquez-Perez
- Department of Pathology & Immunology, Baylor College of Medicine, Houston, TX, United States
| | - Scott A. Weldon
- Michael E. DeBakey Department of Surgery, Baylor College of Medicine, Houston, TX, United States
| | - Jonathan M. Levitt
- Department of Pathology & Immunology, Baylor College of Medicine, Houston, TX, United States
- Dan L. Duncan Cancer Center, Baylor College of Medicine, Houston, TX, United States
- Scott Department of Urology, Baylor College of Medicine, Houston, TX, United States
| | - William K. Decker
- Department of Pathology & Immunology, Baylor College of Medicine, Houston, TX, United States
- Dan L. Duncan Cancer Center, Baylor College of Medicine, Houston, TX, United States
- Center for Cell and Gene Therapy, Baylor College of Medicine, Houston, TX, United States
| |
Collapse
|
214
|
Abraham RS. How to evaluate for immunodeficiency in patients with autoimmune cytopenias: laboratory evaluation for the diagnosis of inborn errors of immunity associated with immune dysregulation. HEMATOLOGY. AMERICAN SOCIETY OF HEMATOLOGY. EDUCATION PROGRAM 2020; 2020:661-672. [PMID: 33275711 PMCID: PMC7727558 DOI: 10.1182/hematology.2020000173] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
The identification of genetic disorders associated with dysregulated immunity has upended the notion that germline pathogenic variants in immune genes universally result in susceptibility to infection. Immune dysregulation (autoimmunity, autoinflammation, lymphoproliferation, and malignancy) and immunodeficiency (susceptibility to infection) represent 2 sides of the same coin and are not mutually exclusive. Also, although autoimmunity implies dysregulation within the adaptive immune system and autoinflammation indicates disordered innate immunity, these lines may be blurred, depending on the genetic defect and diversity in clinical and immunological phenotypes. Patients with immune dysregulatory disorders may present to a variety of clinical specialties, depending on the dominant clinical features. Therefore, awareness of these disorders, which may manifest at any age, is essential to avoid a protracted diagnostic evaluation and associated complications. Availability of and access to expanded immunological testing has altered the diagnostic landscape for immunological diseases. Nonetheless, there are constraints in using these resources due to a lack of awareness, challenges in systematic and logical evaluation, interpretation of results, and using results to justify additional advanced testing, when needed. The ability to molecularly characterize immune defects and develop "bespoke" therapy and management mandates a new paradigm for diagnostic evaluation of these patients. The immunological tests run the gamut from triage to confirmation and can be used for both diagnosis and refinement of treatment or management strategies. However, the complexity of testing and interpretation of results often necessitates dialogue between laboratory immunologists and specialty physicians to ensure timely and appropriate use of testing and delivery of care.
Collapse
Affiliation(s)
- Roshini S Abraham
- Department of Pathology and Laboratory Medicine, Nationwide Children's Hospital, Columbus, OH
| |
Collapse
|
215
|
Glinos DA, Soskic B, Williams C, Kennedy A, Jostins L, Sansom DM, Trynka G. Genomic profiling of T-cell activation suggests increased sensitivity of memory T cells to CD28 costimulation. Genes Immun 2020; 21:390-408. [PMID: 33223527 PMCID: PMC7785515 DOI: 10.1038/s41435-020-00118-0] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2020] [Revised: 10/30/2020] [Accepted: 11/04/2020] [Indexed: 02/03/2023]
Abstract
T-cell activation is a critical driver of immune responses. The CD28 costimulation is an essential regulator of CD4 T-cell responses, however, its relative importance in naive and memory T cells is not fully understood. Using different model systems, we observe that human memory T cells are more sensitive to CD28 costimulation than naive T cells. To deconvolute how the T-cell receptor (TCR) and CD28 orchestrate activation of human T cells, we stimulate cells using varying intensities of TCR and CD28 and profiled gene expression. We show that genes involved in cell cycle progression and division are CD28-driven in memory cells, but under TCR control in naive cells. We further demonstrate that T-helper differentiation and cytokine expression are controlled by CD28. Using chromatin accessibility profiling, we observe that AP1 transcriptional regulation is enriched when both TCR and CD28 are engaged, whereas open chromatin near CD28-sensitive genes is enriched for NF-kB motifs. Lastly, we show that CD28-sensitive genes are enriched in GWAS regions associated with immune diseases, implicating a role for CD28 in disease development. Our study provides important insights into the differential role of costimulation in naive and memory T-cell responses and disease susceptibility.
Collapse
Affiliation(s)
- Dafni A Glinos
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, CB10 1SA, UK
- New York Genome Center, New York, NY, 10013, USA
| | - Blagoje Soskic
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, CB10 1SA, UK
- Open Targets, Wellcome Genome Campus, Hinxton, CB10 1SA, UK
| | - Cayman Williams
- UCL Institute of Immunity and Transplantation, Royal Free Hospital, London, NW3 2PF, UK
| | - Alan Kennedy
- UCL Institute of Immunity and Transplantation, Royal Free Hospital, London, NW3 2PF, UK
| | - Luke Jostins
- Kennedy Institute of Rheumatology, University of Oxford, Roosevelt Drive, Oxford, OX3 7FY, UK
- Big Data Institute, University of Oxford, Roosevelt Drive, Oxford, OX3 7FZ, UK
- Christ Church, St. Aldates, Oxford, OX1 1DP, UK
| | - David M Sansom
- UCL Institute of Immunity and Transplantation, Royal Free Hospital, London, NW3 2PF, UK.
| | - Gosia Trynka
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, CB10 1SA, UK.
- Open Targets, Wellcome Genome Campus, Hinxton, CB10 1SA, UK.
| |
Collapse
|
216
|
Dhalla F, Lochlainn DJM, Chapel H, Patel SY. Histology of Interstitial Lung Disease in Common Variable Immune Deficiency. Front Immunol 2020; 11:605187. [PMID: 33329602 PMCID: PMC7718002 DOI: 10.3389/fimmu.2020.605187] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2020] [Accepted: 10/26/2020] [Indexed: 12/16/2022] Open
Abstract
Interstitial lung disease (ILD) is an important non-infectious complication in several primary immune deficiencies. In common variable immune deficiency (CVID) it is associated with complex clinical phenotypes and adverse outcomes. The histology of ILD in CVID is heterogeneous and mixed patterns are frequently observed within a single biopsy, including non-necrotising granulomatous inflammation, lymphoid interstitial pneumonitis, lymphoid hyperplasia, follicular bronchiolitis, organizing pneumonia, and interstitial fibrosis; ILD has to be differentiated from lymphoma. The term granulomatous-lymphocytic interstitial lung disease (GLILD), coined to describe the histopathological findings within the lungs of patients with CVID with or without multisystem granulomata, is somewhat controversial as pulmonary granulomata are not always present on histology and the nature of infiltrating lymphocytes is variable. In this mini review we summarize the literature on the histology of CVID-related ILD and discuss some of the factors that may contribute to the inter- and intra- patient variability in the histological patterns reported. Finally, we highlight areas for future development. In particular, there is a need for standardization of histological assessments and reporting, together with a better understanding of the immunopathogenesis of CVID-related ILD to resolve the apparent heterogeneity of ILD in this setting and guide the selection of rational targeted therapies in different patients.
Collapse
Affiliation(s)
- Fatima Dhalla
- Department of Clinical Immunology, John Radcliffe Hospital, Oxford University Hospitals NHS Foundation Trust, Oxford, United Kingdom.,Developmental Immunology, MRC Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, United Kingdom
| | - Dylan J Mac Lochlainn
- Department of Clinical Immunology, John Radcliffe Hospital, Oxford University Hospitals NHS Foundation Trust, Oxford, United Kingdom
| | - Helen Chapel
- Department of Clinical Immunology, John Radcliffe Hospital, Oxford University Hospitals NHS Foundation Trust, Oxford, United Kingdom.,Primary Immunodeficiency Unit, Nuffield Department of Medicine and National Institute for Health Research Oxford Biomedical Research Centre, University of Oxford, Oxford, United Kingdom
| | - Smita Y Patel
- Department of Clinical Immunology, John Radcliffe Hospital, Oxford University Hospitals NHS Foundation Trust, Oxford, United Kingdom.,Primary Immunodeficiency Unit, Nuffield Department of Medicine and National Institute for Health Research Oxford Biomedical Research Centre, University of Oxford, Oxford, United Kingdom
| |
Collapse
|
217
|
Salami F, Fekrvand S, Yazdani R, Shahkarami S, Azizi G, Bagheri Y, Delavari S, Shariati S, Mahdaviani SA, Nabavi M, Shirkani A, Abolhassani H, Samadi M, Aghamohammadi A. Evaluation of Expression of LRBA and CTLA-4 Proteins in Common Variable Immunodeficiency Patients. Immunol Invest 2020; 51:381-394. [PMID: 33191838 DOI: 10.1080/08820139.2020.1833029] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Common variable immunodeficiency (CVID) is a primary immunodeficiency disease with a heterogeneous genetic background. Lipopolysaccharide-responsive beige-like anchor (LRBA), as well as cytotoxic T-lymphocyte-associated protein 4 (CTLA-4), have important regulatory roles in the immune responses. Here, we have investigated the expression of LRBA and CTLA-4 proteins in CVID patients with at least one presentation of early-onset occurrence, autoimmunity, or enteropathy. In this study, 20 newly diagnosed CVID patients without infection only phenotype, and ten healthy individuals were enrolled. The expressions of LRBA and CTLA-4 proteins were assessed by western blotting and flow cytometry, respectively. The patients were divided into two groups of autoimmunity-positive (11 cases) and autoimmunity-negative (9 patients). LRBA and CTLA-4 expressions were significantly lower in autoimmune-positive patients than in healthy individuals (P = .03 and P = .03, respectively). Autoimmune-negative patients had lower expression of LRBA and CTLA-4 than the control group, although it was not significant. There was a positive correlation between the expressions of LRBA and CTLA-4 in both groups of patients (P < .05). Furthermore, the highest frequency of LRBA (85.7%) and CTLA-4 (71.4%) defects was detected in those with concomitant presence of autoimmunity, enteropathy, and early-onset occurrence. Concurrent presence of autoimmunity, enteropathy, and early-onset occurrence in CVID patients could be indicative of a lack of expression in LRBA and CTLA-4 proteins. This could be helpful in early diagnosis and initiation of appropriate treatment in these patients prior to genetic confirmation.
Collapse
Affiliation(s)
- Fereshte Salami
- Reproductive Immunology Research Center, Shahid Sadoughi University of Medical Sciences, Yazd, Iran.,Research Center for Immunodeficiencies, Children's Medical Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Saba Fekrvand
- Research Center for Immunodeficiencies, Children's Medical Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Reza Yazdani
- Research Center for Immunodeficiencies, Children's Medical Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Sepideh Shahkarami
- Research Center for Immunodeficiencies, Children's Medical Center, Tehran University of Medical Sciences, Tehran, Iran.,Department of Pediatrics, Dr. Von Hauner Children's Hospital, University Hospital, Ludwig-Maximilians-Universität München (LMU), Munich, Germany.,Medical Genetics Network (Megene), Universal Scientific Education and Research Network (USERN), Tehran, Iran
| | - Gholamreza Azizi
- Non-Communicable Diseases Research Center, Alborz University of Medical Sciences, Karaj, Iran
| | - Yasser Bagheri
- Clinical Research Development Unit (CRDU), 5 Azar Hospital, Golestan University of Medical Sciences, Gorgan, Iran
| | - Samaneh Delavari
- Research Center for Immunodeficiencies, Children's Medical Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Sahar Shariati
- Reproductive Immunology Research Center, Shahid Sadoughi University of Medical Sciences, Yazd, Iran.,Research Center for Immunodeficiencies, Children's Medical Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Seyed Alireza Mahdaviani
- Pediatric Respiratory Diseases Research Center, National Research Institute of Tuberculosis and Lung Diseases (NRITLD), Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mohammamd Nabavi
- Department of Allergy and Clinical Immunology, Rasool e Akram Hospital, Iran University of Medical Sciences, Tehran, Iran
| | - Afshin Shirkani
- Allergy and clinical immunology department, Bushehr University of Medical Sciences, School of Medicine, Bushehr, Iran
| | - Hassan Abolhassani
- Research Center for Primary Immunodeficiencies, Iran University of Medical Sciences, Tehran, Iran.,Division of Clinical Immunology, Department of Laboratory Medicine, Karolinska Institute at Karolinska University Hospital Huddinge, Stockholm, Sweden
| | - Morteza Samadi
- Reproductive Immunology Research Center, Shahid Sadoughi University of Medical Sciences, Yazd, Iran.,Abortion Research Center, Research and Clinical Center for Infertility, Shahid Sadoughi University of Medical Sciences, Yazd, Iran.,Research Center for Food Hygiene and Safety, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
| | - Asghar Aghamohammadi
- Research Center for Immunodeficiencies, Children's Medical Center, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
218
|
Gao H, Cai H, Liu J, Wang X, Zheng P, Devenport M, Xu T, Dou F, Liu Y, Zhou A. Structure of CTLA-4 complexed with a pH-sensitive cancer immunotherapeutic antibody. Cell Discov 2020; 6:79. [PMID: 33298884 PMCID: PMC7606454 DOI: 10.1038/s41421-020-00202-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2020] [Accepted: 08/11/2020] [Indexed: 11/26/2022] Open
Affiliation(s)
- Han Gao
- State Key Laboratory of Cognitive Neuroscience and Learning, and Beijing Key Laboratory of Genetic Engineering Drugs and Biotechnology, College of Life Sciences, Beijing Normal University, Beijing, 100875, China
| | - Haiyan Cai
- Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education, Department of Pathophysiology, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Jia Liu
- School of Life Science and Technology, Southeast University, Nanjing, Jiangsu, 210096, China
| | - Xiaoxiao Wang
- School of Life Science and Technology, Southeast University, Nanjing, Jiangsu, 210096, China.,Alphamab Co. Ltd, Suzhou, Jiangsu, 215125, China
| | - Pan Zheng
- OncoImmune, Inc., Rockville, MD, 20850, USA
| | | | - Ting Xu
- School of Life Science and Technology, Southeast University, Nanjing, Jiangsu, 210096, China.,Alphamab Co. Ltd, Suzhou, Jiangsu, 215125, China
| | - Fei Dou
- State Key Laboratory of Cognitive Neuroscience and Learning, and Beijing Key Laboratory of Genetic Engineering Drugs and Biotechnology, College of Life Sciences, Beijing Normal University, Beijing, 100875, China.
| | - Yang Liu
- OncoImmune, Inc., Rockville, MD, 20850, USA.
| | - Aiwu Zhou
- Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education, Department of Pathophysiology, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China.
| |
Collapse
|
219
|
Waldman AD, Fritz JM, Lenardo MJ. A guide to cancer immunotherapy: from T cell basic science to clinical practice. Nat Rev Immunol 2020; 20:651-668. [PMID: 32433532 PMCID: PMC7238960 DOI: 10.1038/s41577-020-0306-5] [Citation(s) in RCA: 2543] [Impact Index Per Article: 508.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/03/2020] [Indexed: 02/06/2023]
Abstract
The T lymphocyte, especially its capacity for antigen-directed cytotoxicity, has become a central focus for engaging the immune system in the fight against cancer. Basic science discoveries elucidating the molecular and cellular biology of the T cell have led to new strategies in this fight, including checkpoint blockade, adoptive cellular therapy and cancer vaccinology. This area of immunological research has been highly active for the past 50 years and is now enjoying unprecedented bench-to-bedside clinical success. Here, we provide a comprehensive historical and biological perspective regarding the advent and clinical implementation of cancer immunotherapeutics, with an emphasis on the fundamental importance of T lymphocyte regulation. We highlight clinical trials that demonstrate therapeutic efficacy and toxicities associated with each class of drug. Finally, we summarize emerging therapies and emphasize the yet to be elucidated questions and future promise within the field of cancer immunotherapy.
Collapse
Affiliation(s)
- Alex D Waldman
- Molecular Development of the Immune System Section, Laboratory of Immune System Biology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
- Clinical Genomics Program, Division of Intramural Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Jill M Fritz
- Molecular Development of the Immune System Section, Laboratory of Immune System Biology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
- Clinical Genomics Program, Division of Intramural Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Michael J Lenardo
- Molecular Development of the Immune System Section, Laboratory of Immune System Biology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA.
- Clinical Genomics Program, Division of Intramural Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA.
| |
Collapse
|
220
|
Maggiore R, Grossi A, Fioredda F, Palmisani E, Terranova P, Cappelli E, Lanza T, Pierri F, Guardo D, Calvillo M, Micalizzi C, Beccaria A, Coccia MC, Arrigo S, Dufour C, Ceccherini I, Miano M. Unusual Late-onset Enteropathy in a Patient With Lipopolysaccharide-responsive Beige-like Anchor Protein Deficiency. J Pediatr Hematol Oncol 2020; 42:e768-e771. [PMID: 31876783 DOI: 10.1097/mph.0000000000001708] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
In recent years, monogenic causes of immune dysregulation syndromes, with variable phenotypes, have been documented. Mutations in the lipopolysaccharide-responsive beige-like anchor (LRBA) protein are associated with common variable immunodeficiency, autoimmunity, chronic enteropathy, and immune dysregulation disorders. The LRBA protein prevents degradation of cytotoxic T-lymphocyte antigen 4 (CTLA4) protein, thus inhibiting immune responses. Both LRBA and CTLA4 deficiencies usually present with immune dysregulation, mostly characterized by autoimmunity and lymphoproliferation. In this report, we describe a patient with an atypical clinical onset of LRBA deficiency and the patient's response to abatacept, a fusion protein-drug that mimics the action of CTLA4.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | | | | | | | - Serena Arrigo
- Gastroenterology Unit, IRCCS Istituto Giannina Gaslini, Genoa, Italy
| | | | | | | |
Collapse
|
221
|
Abstract
PURPOSE OF REVIEW Very early-onset inflammatory bowel disease (VEO-IBD) is a rare presentation defined as onset of intestinal inflammation at the age of <6 years. Some of these young children develop IBD because of inherent defects in immune or epithelial cell function resulting from deleterious mutations in genes involved in mucosal homeostasis. Here, we provide an overview of the clinical, genetic and immunologic approach in patients with VEO-IBD. RECENT FINDINGS More than 50 different monogenic disorders directly causing IBD have been identified in the last decade; most of them present with unique clinical features in the first years of life. Such a diagnosis may facilitate the administration of targeted therapies and is important for genetic counseling. Nevertheless, a monogenic disorder is identified only in a minority of patients with VEO-IBD. Consequently, different demographic, clinical and histologic features should prompt a detailed genetic and immunologic workup in patients with IBD. SUMMARY A diagnosis of monogenic IBD can have a huge impact on patient's care, enabling in some cases to provide personalized therapies. Clinicians should be aware of unique features of such disorders, and complete a detailed genetic and immune workup in selected cases, even when disease manifests beyond a young age.
Collapse
|
222
|
Noh JY, Seo H, Lee J, Jung H. Immunotherapy in Hematologic Malignancies: Emerging Therapies and Novel Approaches. Int J Mol Sci 2020; 21:E8000. [PMID: 33121189 PMCID: PMC7663624 DOI: 10.3390/ijms21218000] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2020] [Revised: 10/21/2020] [Accepted: 10/26/2020] [Indexed: 12/15/2022] Open
Abstract
Immunotherapy is extensively investigated for almost all types of hematologic tumors, from preleukemic to relapse/refractory malignancies. Due to the emergence of technologies for target cell characterization, antibody design and manufacturing, as well as genome editing, immunotherapies including gene and cell therapies are becoming increasingly elaborate and diversified. Understanding the tumor immune microenvironment of the target disease is critical, as is reducing toxicity. Although there have been many successes and newly FDA-approved immunotherapies for hematologic malignancies, we have learned that insufficient efficacy due to disease relapse following treatment is one of the key obstacles for developing successful therapeutic regimens. Thus, combination therapies are also being explored. In this review, immunotherapies for each type of hematologic malignancy will be introduced, and novel targets that are under investigation will be described.
Collapse
Affiliation(s)
- Ji-Yoon Noh
- Immunotherapy Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), 125 Gwahak-ro, Yuseong-gu, Daejeon 34141, Korea;
| | - Huiyun Seo
- Center for Genome Engineering, Institute for Basic Science (IBS), 55 Expo-ro, Yuseong-gu, Daejeon 34126, Korea;
| | - Jungwoon Lee
- Environmental Disease Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Yuseong-gu, Daejeon 34141, Korea
| | - Haiyoung Jung
- Immunotherapy Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), 125 Gwahak-ro, Yuseong-gu, Daejeon 34141, Korea;
- Department of Functional Genomics, Korea University of Science and Technology (UST), 113 Gwahak-ro, Yuseong-gu, Daejeon 34113, Korea
| |
Collapse
|
223
|
Vardi I, Chermesh I, Werner L, Barel O, Freund T, McCourt C, Fisher Y, Pinsker M, Javasky E, Weiss B, Rechavi G, Hagin D, Snapper SB, Somech R, Konnikova L, Shouval DS. Monogenic Inflammatory Bowel Disease: It's Never Too Late to Make a Diagnosis. Front Immunol 2020; 11:1775. [PMID: 33013830 PMCID: PMC7509434 DOI: 10.3389/fimmu.2020.01775] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2020] [Accepted: 07/02/2020] [Indexed: 12/19/2022] Open
Abstract
Background: More than 50 different monogenic disorders have been identified as directly causing inflammatory bowel diseases, typically manifesting in the first years of life. We present the clinical course and immunological work-up of an adult patient who presented in adolescent years with an atypical gastrointestinal phenotype and was diagnosed more than two decades later with a monogenic disorder with important therapeutic implications. Methods: Whole exome sequencing was performed in a 37-years-old patient with a history of diarrhea since adolescence. Sanger sequencing was used to validate the suspected variant. Mass cytometry (CyTOF) and flow cytometry were conducted on peripheral blood mononuclear cells for deep immunophenotyping. Next-generation sequencing of the TCRB and IgH was performed for global immune repertoire analysis of circulating lymphocytes. Results: We identified a novel deleterious c.1455C>A (p.Y485X) mutation in LRBA. CyTOF studies demonstrated significant changes in immune landscape in the LRBA-deficient patient, including an increase in myeloid derived suppressor cells and double-negative T cells, decreased B cells, low ratio of naïve:memory T cells, and reduced capacity of T cells to secrete various cytokines following stimulation, including tumor necrosis factor alpha (TNF-α) and interferon gamma (IFN-γ). In addition, this patient exhibited low frequency of regulatory T cells, with a reduction in their CTLA4 expression and interleukin (IL)-10 secretion. Finally, we show marked oligoclonal expansion of specific B- and T-cell clones in the peripheral blood of the LRBA-deficient patient. Conclusions: LRBA deficiency is characterized by marked immunological changes in innate and adaptive immune cells. This case highlights the importance of advanced genetic studies in patients with a unique phenotype, regardless of their age at presentation.
Collapse
Affiliation(s)
- Iddo Vardi
- Pediatric Gastroenterology Unit, Edmond and Lily Safra Children's Hospital, Sheba Medical Center, Ramat Gan, Israel.,Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel.,The Genomic Unit, Sheba Cancer Research Center, Sheba Medical Center, Ramat Gan, Israel.,Sheba Medical Center, Wohl Institute of Translational Medicine, Ramat Gan, Israel
| | - Irit Chermesh
- Department of Gastroenterology, Rambam Health Care Campus, Affiliated With Technion-Israel Institute of Technology, Haifa, Israel
| | - Lael Werner
- Pediatric Gastroenterology Unit, Edmond and Lily Safra Children's Hospital, Sheba Medical Center, Ramat Gan, Israel.,Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Ortal Barel
- Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel.,The Genomic Unit, Sheba Cancer Research Center, Sheba Medical Center, Ramat Gan, Israel.,Sheba Medical Center, Wohl Institute of Translational Medicine, Ramat Gan, Israel
| | - Tal Freund
- Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel.,Allergy and Clinical Immunology Unit, Department of Medicine, Tel Aviv Sourasky Medical Center, Tel Aviv, Israel
| | - Collin McCourt
- Division of Newborn Medicine, Department of Pediatrics, UPMC Children's Hospital of Pittsburgh, Pittsburgh, PA, United States
| | - Yael Fisher
- Institute of Pathology, Rambam Health Care Campus, Affiliated With Technion-Israel Institute of Technology, Haifa, Israel
| | - Marina Pinsker
- Pediatric Gastroenterology Unit, Edmond and Lily Safra Children's Hospital, Sheba Medical Center, Ramat Gan, Israel.,Institute of Nanotechnology and Advanced Materials, Bar Ilan University, Ramat Gan, Israel
| | - Elisheva Javasky
- Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel.,The Genomic Unit, Sheba Cancer Research Center, Sheba Medical Center, Ramat Gan, Israel.,Sheba Medical Center, Wohl Institute of Translational Medicine, Ramat Gan, Israel
| | - Batia Weiss
- Pediatric Gastroenterology Unit, Edmond and Lily Safra Children's Hospital, Sheba Medical Center, Ramat Gan, Israel.,Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Gideon Rechavi
- Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel.,The Genomic Unit, Sheba Cancer Research Center, Sheba Medical Center, Ramat Gan, Israel.,Sheba Medical Center, Wohl Institute of Translational Medicine, Ramat Gan, Israel
| | - David Hagin
- Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel.,Allergy and Clinical Immunology Unit, Department of Medicine, Tel Aviv Sourasky Medical Center, Tel Aviv, Israel
| | - Scott B Snapper
- Division of Gastroenterology, Hepatology and Nutrition, Boston Children's Hospital, Boston, MA, United States.,Department of Medicine, Harvard Medical School, Boston, MA, United States
| | - Raz Somech
- Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel.,Pediatric Immunology Service, Edmond and Lily Safra Children's Hospital, Sheba Medical Center, Ramat Gan, Israel.,Pediatric Department Ward A, Edmond and Lily Safra Children's Hospital, Sheba Medical Center, Ramat Gan, Israel.,Jeffrey Modell Foundation Center, Edmond and Lily Safra Children's Hospital, Sheba Medical Center, Ramat Gan, Israel
| | - Liza Konnikova
- Division of Newborn Medicine, Department of Pediatrics, UPMC Children's Hospital of Pittsburgh, Pittsburgh, PA, United States.,Department of Immunology, University of Pittsburgh, Pittsburgh, PA, United States.,Department of Developmental Biology, University of Pittsburgh, Pittsburgh, PA, United States
| | - Dror S Shouval
- Pediatric Gastroenterology Unit, Edmond and Lily Safra Children's Hospital, Sheba Medical Center, Ramat Gan, Israel.,Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| |
Collapse
|
224
|
Arai K. Very Early-Onset Inflammatory Bowel Disease: A Challenging Field for Pediatric Gastroenterologists. Pediatr Gastroenterol Hepatol Nutr 2020; 23:411-422. [PMID: 32953636 PMCID: PMC7481055 DOI: 10.5223/pghn.2020.23.5.411] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/26/2019] [Revised: 04/18/2020] [Accepted: 06/02/2020] [Indexed: 12/22/2022] Open
Abstract
With the increasing number of children with inflammatory bowel disease (IBD), very early-onset IBD (VEO-IBD), defined as IBD that is diagnosed or that develops before 6 years of age, has become a field of innovation among pediatric gastroenterologists. Advances in genetic testing have enabled the diagnosis of IBD caused by gene mutations, also known as monogenic or Mendelian disorder-associated IBD (MD-IBD), with approximately 60 causative genes reported to date. The diagnosis of VEO-IBD requires endoscopic and histological evaluations. However, satisfactory small bowel imaging studies may not be feasible in this small population. Both genetic and immunological approaches are necessary for the diagnosis of MD-IBD, which can differ among countries according to the available resources. As a result of the use of targeted gene panels covered by the national health insurance and the nationwide research project investigating inborn errors of immunity, an efficient approach for the diagnosis of MD-IBD has been developed in Japan. Proper management of VEO-IBD by pediatric gastroenterologists constitutes a challenge. Some MD-IBDs can be curable by allogenic hematopoietic stem cell transplantation. With an understanding of the affected gene functions, targeted therapies are being developed. Social and psychological support systems for both children and their families should also be provided to improve their quality of life. Multidisciplinary team care would contribute to early diagnosis, proper therapeutic interventions, and improved quality of life in patients and their families.
Collapse
Affiliation(s)
- Katsuhiro Arai
- Center for Pediatric Inflammatory Bowel Disease, Division of Gastroenterology, National Center for Child Health and Development, Tokyo, Japan
| |
Collapse
|
225
|
Hossain MA, Liu G, Dai B, Si Y, Yang Q, Wazir J, Birnbaumer L, Yang Y. Reinvigorating exhausted CD8 + cytotoxic T lymphocytes in the tumor microenvironment and current strategies in cancer immunotherapy. Med Res Rev 2020; 41:156-201. [PMID: 32844499 DOI: 10.1002/med.21727] [Citation(s) in RCA: 62] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2019] [Revised: 06/26/2020] [Accepted: 08/11/2020] [Indexed: 02/06/2023]
Abstract
Immunotherapy has revolutionized the treatment of cancer in recent years and achieved overall success and long-term clinical benefit in patients with a wide variety of cancer types. However, there is still a large proportion of patients exhibiting limited or no responses to immunotherapeutic strategy, some of which were even observed with hyperprogressive disease. One major obstacle restricting the efficacy is that tumor-reactive CD8+ T cells, which are central for tumor control, undergo exhaustion, and lose their ability to eliminate cancer cells after infiltrating into the strongly immunosuppressive tumor microenvironment. Thus, as a potential therapeutic rationale in the development of cancer immunotherapy, targeting or reinvigorating exhausted CD8+ T cells has been attracting much interest. Hitherto, both intrinsic and extrinsic mechanisms that govern CD8+ T-cell exhaustion have been explored. Specifically, the transcriptional and epigenetic landscapes have been depicted utilizing single-cell RNA sequencing or mass cytometry (CyTOF). In addition, cellular metabolism dictating the tumor-infiltrating CD8+ T-cell fate is currently under investigation. A series of clinical trials are being carried out to further establish the current strategies targeting CD8+ T-cell exhaustion. Taken together, despite the proven benefit of immunotherapy in cancer patients, additional efforts are still needed to fully circumvent limitations of exhausted T cells in the treatment. In this review, we will focus on the current cellular and molecular understanding of metabolic changes, epigenetic remodeling, and transcriptional regulation in CD8+ T-cell exhaustion and describe hypothetical treatment approaches based on immunotherapy aiming at reinvigorating exhausted CD8+ T cells.
Collapse
Affiliation(s)
- Md Amir Hossain
- Center for New Drug Safety Evaluation and Research, State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, Jiangsu, China
| | - Guilai Liu
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, Jiangsu, China
| | - Beiying Dai
- Center for New Drug Safety Evaluation and Research, State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, Jiangsu, China
| | - Yaxuan Si
- Center for New Drug Safety Evaluation and Research, State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, Jiangsu, China
| | - Qitao Yang
- Center for New Drug Safety Evaluation and Research, State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, Jiangsu, China
| | - Junaid Wazir
- Department of Clinical Pharmacy, School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing, Jiangsu, China
| | - Lutz Birnbaumer
- Neurobiology Laboratory, National Institute of Environmental Health Sciences, Durham, North Carolina, USA.,Institute of Biomedical Research (BIOMED), Catholic University of Argentina, Buenos Aires, Argentina
| | - Yong Yang
- Center for New Drug Safety Evaluation and Research, State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, Jiangsu, China.,Department of Clinical Pharmacy, School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing, Jiangsu, China
| |
Collapse
|
226
|
Karim MY. Using Clinical Cases to Restore Basic Science Immunology Knowledge in Physicians and Senior Medical Students. Front Immunol 2020; 11:1756. [PMID: 32973743 PMCID: PMC7466718 DOI: 10.3389/fimmu.2020.01756] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2020] [Accepted: 06/30/2020] [Indexed: 12/05/2022] Open
Abstract
The majority of medical students and many physicians find basic science immunology confusing and the teaching of immunology to be uninteresting. Physicians undergoing training in a range of disciplines treat patients with immunological disease, including allergy/immunology and rheumatology. It is essential for senior medical students and physicians to understand the pathology of immune diseases and the pharmacology of immune interventions. In order to optimize this learning, underlying concepts of basic immunology need to be revised, or sometimes learned for the first time. Teachers may need to overcome baseline attitudinal negativity. Medical students and postgraduates are more able to relate to basic immunology if approached through a clinical route. Case presentations and case-based discussions are a familiar format for medical students and physicians, though typically utilized to enhance understanding of clinical presentation, investigation, and treatment. Hence, they may be more receptive to “difficult” immunology concepts when presented in a familiar teaching framework. Although there is data supporting case-based learning for basic immunology in medical students, there is little data in physicians. Extrapolating from the medical student literature, I devised a program of clinical cases for physicians whereby understanding the immunopathological basis of the condition and/or its immunological treatment was employed as a platform to appreciate the basic science immunology in more depth. A variety of cases were selected to illustrate different immunological topics. The sessions were small group and highly interactive in nature. As this programme has only recently been introduced, formal evaluation has yet to be concluded.
Collapse
Affiliation(s)
- Mohammed Yousuf Karim
- Acting Division Chief, Hematopathology, Sidra Medicine, Doha, Qatar.,Assistant Professor in Clinical Pathology and Laboratory Medicine, Weill Cornell Medicine-Qatar, Ar-Rayyan, Qatar
| |
Collapse
|
227
|
Salik B, Smyth MJ, Nakamura K. Targeting immune checkpoints in hematological malignancies. J Hematol Oncol 2020; 13:111. [PMID: 32787882 PMCID: PMC7425174 DOI: 10.1186/s13045-020-00947-6] [Citation(s) in RCA: 68] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2020] [Accepted: 07/28/2020] [Indexed: 12/12/2022] Open
Abstract
Immune checkpoint blockade (ICB) therapies such as anti-programmed death 1 (PD-1) and anti-CTLA-4 (cytotoxic T lymphocyte-associated protein 4) have dramatically transformed treatment in solid tumor oncology. While immunotherapeutic approaches such as stem cell transplantation and anti-cancer monoclonal antibodies have made critical contributions to improve outcomes in hematological malignancies, clinical benefits of ICB are observed in only limited tumor types that are particularly characterized by a high infiltration of immune cells. Importantly, even patients that initially respond to ICB are unable to achieve long-term disease control using these therapies. Indeed, primary and acquired resistance mechanisms are differentially orchestrated in hematological malignancies depending on tumor types and/or genotypes, and thus, an in-depth understanding of the disease-specific immune microenvironments will be essential in improving efficacy. In addition to PD-1 and CTLA-4, various T cell immune checkpoint molecules have been characterized that regulate T cell responses in a non-redundant manner. Several lines of evidence suggest that these T cell checkpoint molecules might play unique roles in hematological malignancies, highlighting their potential as therapeutic targets. Targeting innate checkpoint molecules on natural killer cells and/or macrophages has also emerged as a rational approach against tumors that are resistant to T cell-mediated immunity. Given that various monoclonal antibodies against tumor surface proteins have been clinically approved in hematological malignancies, innate checkpoint blockade might play a key role to augment antibody-mediated cellular cytotoxicity and phagocytosis. In this review, we discuss recent advances and emerging roles of immune checkpoint blockade in hematological malignancies.
Collapse
Affiliation(s)
- Basit Salik
- Immunology in Cancer and Infection Laboratory, QIMR Berghofer Medical Research Institute, 300 Herston Road, Herston, Queensland, 4006, Australia
| | - Mark J Smyth
- Immunology in Cancer and Infection Laboratory, QIMR Berghofer Medical Research Institute, 300 Herston Road, Herston, Queensland, 4006, Australia
| | - Kyohei Nakamura
- Immunology in Cancer and Infection Laboratory, QIMR Berghofer Medical Research Institute, 300 Herston Road, Herston, Queensland, 4006, Australia.
| |
Collapse
|
228
|
Rheumatologic and autoimmune manifestations in primary immune deficiency. Curr Opin Allergy Clin Immunol 2020; 19:545-552. [PMID: 31425194 DOI: 10.1097/aci.0000000000000583] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
PURPOSE OF REVIEW Here we review the rheumatologic and autoimmune features of primary immune deficiencies with a focus on recently recognized genetic diseases, the spectrum of autoimmunity in PID, and targeted therapies. RECENT FINDINGS Primary immune deficiencies (PIDs) were initially described as genetic diseases of the immune system leading to susceptibility to infection. It is now well recognized that immune dysfunction and dysregulation also cause noninfectious complications including autoimmunity. The increased application of molecular testing for PID has revealed the diversity of clinical disease. Recent discoveries of diseases with prominent autoimmunity include activated phosphoinositide 3-kinase δ syndrome and PIDs caused by gain-of-function in STAT1 and STAT3. Similarly, identification of larger cohorts of patients with molecular diagnoses in more common PIDs, such as common variable immune deficiency (CVID), has led to increased understanding of the range of autoimmunity in PIDs. Understanding the molecular basis of these PIDs has the potential to lead to targeted therapy to treat associated autoimmunity. SUMMARY Autoimmunity and rheumatologic disease can be presenting symptoms and/or complicating features of primary immunodeficiencies. Evaluation for PIDs in patients who have early-onset, multiple, and/or atypical autoimmunity can enhance diagnosis and therapeutic options.
Collapse
|
229
|
Sacco KA, Stack M, Notarangelo LD. Targeted pharmacologic immunomodulation for inborn errors of immunity. Br J Clin Pharmacol 2020; 88:2500-2508. [PMID: 32738057 DOI: 10.1111/bcp.14509] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2020] [Revised: 07/21/2020] [Accepted: 07/24/2020] [Indexed: 12/16/2022] Open
Abstract
Inborn errors of immunity consist of over 400 known single gene disorders that may manifest with infection susceptibility, autoimmunity, autoinflammation, hypersensitivity and cancer predisposition. Most patients are treated symptomatically with immunoglobulin replacement, prophylactic antimicrobials or broad immunosuppression pertaining to their disease phenotype. Other than haematopoietic stem cell transplantation, the aforementioned treatments do little to alter disease morbidity or mortality. Further, many patients may not be transplant candidates. In this review, we describe monogenic disorders affecting leucocyte migration, disorders of immune synapse formation and dysregulation of immune cell signal transduction. We highlight the use of off-label small molecules and biologics mechanistically targeted to altered disease pathophysiology of such diseases.
Collapse
Affiliation(s)
- Keith A Sacco
- Laboratory of Clinical Immunology and Microbiology, National Institute for Allergy and Infectious Diseases, NIH, Maryland, USA
| | - Michael Stack
- Laboratory of Clinical Immunology and Microbiology, National Institute for Allergy and Infectious Diseases, NIH, Maryland, USA
| | - Luigi D Notarangelo
- Laboratory of Clinical Immunology and Microbiology, National Institute for Allergy and Infectious Diseases, NIH, Maryland, USA
| |
Collapse
|
230
|
Chellapandian D, Chitty-Lopez M, Leiding JW. Precision Therapy for the Treatment of Primary Immunodysregulatory Diseases. Immunol Allergy Clin North Am 2020; 40:511-526. [DOI: 10.1016/j.iac.2020.04.001] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
231
|
Notarangelo LD, Bacchetta R, Casanova JL, Su HC. Human inborn errors of immunity: An expanding universe. Sci Immunol 2020; 5:5/49/eabb1662. [PMID: 32651211 DOI: 10.1126/sciimmunol.abb1662] [Citation(s) in RCA: 169] [Impact Index Per Article: 33.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2020] [Accepted: 06/18/2020] [Indexed: 12/11/2022]
Abstract
Molecular, cellular, and clinical studies of human inborn errors of immunity have revolutionized our understanding of their pathogenesis, considerably broadened their spectrum of immunological and clinical phenotypes, and enabled successful targeted therapeutic interventions. These studies have also been of great scientific merit, challenging a number of immunological notions initially established in inbred mice while revealing previously unrecognized mechanisms of host defense by leukocytes and other cells and of both innate and adaptive tolerance to self.
Collapse
Affiliation(s)
- Luigi D Notarangelo
- Laboratory of Clinical Immunology and Microbiology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA.
| | - Rosa Bacchetta
- Division of Stem Cell Transplantation and Regenerative Medicine, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Jean-Laurent Casanova
- St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, Rockefeller University, New York, NY 10065, USA.,Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM, Necker Hospital for Sick Children, Paris, France.,Paris University, Imagine Institute, Paris, France.,Pediatrics Hematology-Immunology Unit, Necker Hospital for Sick Children, Paris, France.,Howard Hughes Medical Institute, New York, NY 10065, USA
| | - Helen C Su
- Laboratory of Clinical Immunology and Microbiology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| |
Collapse
|
232
|
Cui J, Yu J, Xu H, Zou Y, Zhang H, Chen S, Le S, Zhao J, Jiang L, Xia J, Wu J. Autophagy-lysosome inhibitor chloroquine prevents CTLA-4 degradation of T cells and attenuates acute rejection in murine skin and heart transplantation. Theranostics 2020; 10:8051-8060. [PMID: 32724457 PMCID: PMC7381746 DOI: 10.7150/thno.43507] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2019] [Accepted: 06/19/2020] [Indexed: 01/31/2023] Open
Abstract
Background: The immune checkpoint cytotoxic T lymphocyte antigen-4 (CTLA-4), induced upon T cell activation but degraded quickly, has been targeted in the clinical therapy of advanced cancers and autoimmune diseases. However, whether inhibiting CTLA-4 degradation ameliorates transplant rejection remains unknown. Methods: The CTLA-4 expression in activated murine T cells treated with the inhibitors mediating protein degradation was detected by flow cytometry (FCM). CD45.1 mice, which received TEa T cells and underwent heart transplantation, were administrated with the inhibitor. Subsequently, CTLA-4 expression of TEa T cells was analyzed. Murine skin and heart transplantation models were built, then the survival and histopathology of the allografts, and T cell subsets in the spleens of each group were compared. Results: Chloroquine (CQ) was identified as an inhibitor of CTLA-4 degradation, which augmented both surface and total CTLA-4 expression in T cells. It considerably prolonged the skin and heart allograft survival time and reduced the infiltration of inflammatory cells in allografts. Besides decreasing the frequencies of the CD4+ and CD8+ effector T cells, especially IFN-γ producing T cells, CQ also increased the proportion of regulatory T cells in the spleen. The CTLA-4 blockade abrogated the benefits of CQ on the survival of heart allografts. Moreover, CQ enhanced CTLA-4 expression in activated human T cells and reduced the secretion of IFN-γ in human mixed lymphocyte reaction. Conclusion: Targeting CTLA-4 degradation provides a novel means to prevent transplant rejection and induce transplant tolerance.
Collapse
|
233
|
Abstract
Primary antibody deficiencies (PADs) are the most common types of inherited primary immunodeficiency diseases (PIDs) presenting at any age, with a broad spectrum of clinical manifestations including susceptibility to infections, autoimmunity and cancer. Antibodies are produced by B cells, and consequently, genetic defects affecting B cell development, activation, differentiation or antibody secretion can all lead to PADs. Whole exome and whole genome sequencing approaches have helped identify genetic defects that are involved in the pathogenesis of PADs. Here, we summarize the clinical manifestations, causal genes, disease mechanisms and clinical treatments of different types of PADs.
Collapse
|
234
|
Vece TJ, Wambach JA, Hagood JS. Childhood rare lung disease in the 21st century: "-omics" technology advances accelerating discovery. Pediatr Pulmonol 2020; 55:1828-1837. [PMID: 32533908 PMCID: PMC8711209 DOI: 10.1002/ppul.24809] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/17/2020] [Accepted: 04/28/2020] [Indexed: 01/14/2023]
Abstract
Childhood rare lung diseases comprise a large number of heterogeneous respiratory disorders that are individually rare but are collectively associated with substantial morbidity, mortality, and healthcare resource utilization. Although the genetic mechanisms for several of these disorders have been elucidated, the pathogenesis mechanisms for others remain poorly understood and treatment options remain limited. Childhood rare lung diseases are enriched for genetic etiologies; identification of the disease mechanisms underlying these rare disorders can inform the biology of normal human lung development and has implications for the treatment of more common respiratory diseases in children and adults. Advances in "-omics" technology, such as genomic sequencing, clinical phenotyping, biomarker discovery, genome editing, in vitro and model organism disease modeling, single-cell analyses, cellular imaging, and high-throughput drug screening have enabled significant progress for diagnosis and treatment of rare childhood lung diseases. The most striking example of this progress has been realized for patients with cystic fibrosis for whom effective, personalized therapies based on CFTR genotype are now available. In this chapter, we focus on recent technology advances in childhood rare lung diseases, acknowledge persistent challenges, and identify promising new technologies that will impact not only biological discovery, but also improve diagnosis, therapies, and survival for children with these rare disorders.
Collapse
Affiliation(s)
- Timothy J. Vece
- Division of Pediatric Pulmonology, Program for Rare and Interstitial Lung Disease, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
| | - Jennifer A. Wambach
- Division of Newborn Medicine, Edward Mallinckrodt Department of Pediatrics, Washington University School of Medicine, St. Louis, Missouri
| | - James S. Hagood
- Division of Pediatric Pulmonology, Program for Rare and Interstitial Lung Disease, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
| |
Collapse
|
235
|
Moreno-Corona NC, Lopez-Ortega O, Flores Hermenegildo JM, Berron-Ruiz L, Rodriguez-Alba JC, Santos-Argumedo L, Lopez-Herrera G. Lipopolysaccharide-responsive beige-like anchor acts as a cAMP-dependent protein kinase anchoring protein in B cells. Scand J Immunol 2020; 92:e12922. [PMID: 32592188 DOI: 10.1111/sji.12922] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2019] [Revised: 05/15/2020] [Accepted: 06/21/2020] [Indexed: 01/04/2023]
Abstract
Lipopolysaccharide (LPS)-responsive beige-like anchor (LRBA) protein was initially described as a monogenetic cause for common variable immune deficiency, a syndrome characterized by low levels of B cells, defects in memory B cell differentiation and hypogammaglobulinaemia. LRBA was identified as an LPS up-regulated gene in B cells, macrophages and T cells. LRBA weighs 320 kDa and has 2863 amino acids. Its sequence contains multiple domains, suggesting that LRBA can act as a scaffolding protein. It contains two putative binding sites for cAMP-dependent kinase (PKA) regulatory subunits, suggesting this protein can act as A-kinase anchor protein (AKAP); however, physical interactions involving LRBA and PKA have not been demonstrated to date, and functional roles for such interactions are unexplored. In this work, we investigated physical interactions involving LRBA with regulatory subunits of PKA in human B cell lines and primary human B cells. PKA is a holoenzyme composed of two regulatory subunits, which can be RIα, RIβ, RIIα or RIIβ, and two catalytic subunits, Cα or Cβ. We co-immunoprecipitated LRBA using Ramos B cell lymphoma cells and observed that LRBA interacts with RIIβ. Interestingly, St-Ht31, an inhibitory peptide that disrupts AKAP interactions with regulatory subunits, reduced the amount of interacting protein. Furthermore, in primary human B cells, LRBA was induced after CD40L and IL-4 stimulation, and under such activation, we found that LRBA interacts with RIIα and RIIβ, suggesting that LRBA acts as an AKAP and binds RII subunits. Interestingly, we also identified that LRBA interacts with activation-induced cytidine deaminase in primary B cells, suggesting that it is involved in B cell function.
Collapse
Affiliation(s)
- Nidia Carolina Moreno-Corona
- Biomedicina Molecular, Centro de Investigacion y de Estudios Avanzados, Mexico City, Mexico.,Unidad de Investigacion en Inmunodeficiencias, Instituto Nacional de Pediatria, Mexico City, Mexico
| | - Orestes Lopez-Ortega
- Biomedicina Molecular, Centro de Investigacion y de Estudios Avanzados, Mexico City, Mexico
| | - Jose Mizael Flores Hermenegildo
- Biomedicina Molecular, Centro de Investigacion y de Estudios Avanzados, Mexico City, Mexico.,Unidad de Investigacion en Inmunodeficiencias, Instituto Nacional de Pediatria, Mexico City, Mexico
| | - Laura Berron-Ruiz
- Unidad de Investigacion en Inmunodeficiencias, Instituto Nacional de Pediatria, Mexico City, Mexico
| | - Juan Carlos Rodriguez-Alba
- Unidad de Citometria de Flujo, Instituto de Ciencias de la Salud, Universidad Veracruzana, Xalapa, Veracruz, Mexico
| | | | - Gabriela Lopez-Herrera
- Unidad de Investigacion en Inmunodeficiencias, Instituto Nacional de Pediatria, Mexico City, Mexico
| |
Collapse
|
236
|
Froehlich M, Schwaneck EC, Gernert M, Gadeholt O, Strunz PP, Morbach H, Tony HP, Schmalzing M. Autologous Stem Cell Transplantation in Common Variable Immunodeficiency: A Case of Successful Treatment of Severe Refractory Autoimmune Encephalitis. Front Immunol 2020; 11:1317. [PMID: 32670291 PMCID: PMC7330058 DOI: 10.3389/fimmu.2020.01317] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2020] [Accepted: 05/26/2020] [Indexed: 12/22/2022] Open
Abstract
Common variable immunodeficiency (CVID) is the most common primary immunodeficiency in adults. It is associated with hypogammaglobulinemia, recurring infections and autoimmune phenomena. Treatment includes immunoglobulin substitution and immunosuppressants. Autoimmune neurological manifestations of CVID are rare and occur predominantly as granulomatous disease. We report the case of a 35-year-old woman with CVID who developed autoimmune encephalitis as demonstrated by double cerebral biopsy. Infectious or malignant causes could be excluded. Despite intensive immunosuppressive therapy with common regimens no significant improvement could be achieved. Ultimately, an autologous hematopoietic stem cell transplantation (HSCT) was performed, resulting in lasting complete remission of the encephalitis. To our knowledge, this is the first report of refractory autoimmune phenomena in CVID treated by autologous HSCT.
Collapse
Affiliation(s)
- Matthias Froehlich
- Schwerpunkt Rheumatologie/Klinische Immunologie, Medizinische Klinik und Poliklinik II, Universität Würzburg, Würzburg, Germany
| | - Eva C Schwaneck
- Schwerpunkt Rheumatologie/Klinische Immunologie, Medizinische Klinik und Poliklinik II, Universität Würzburg, Würzburg, Germany
| | - Michael Gernert
- Schwerpunkt Rheumatologie/Klinische Immunologie, Medizinische Klinik und Poliklinik II, Universität Würzburg, Würzburg, Germany
| | - Ottar Gadeholt
- Rheumatologische Schwerpunktpraxis Würzburg, Würzburg, Germany
| | - Patrick-Pascal Strunz
- Schwerpunkt Rheumatologie/Klinische Immunologie, Medizinische Klinik und Poliklinik II, Universität Würzburg, Würzburg, Germany
| | - Henner Morbach
- Kinderklinik und Poliklinik, Universität Würzburg, Würzburg, Germany
| | - Hans-Peter Tony
- Schwerpunkt Rheumatologie/Klinische Immunologie, Medizinische Klinik und Poliklinik II, Universität Würzburg, Würzburg, Germany
| | - Marc Schmalzing
- Schwerpunkt Rheumatologie/Klinische Immunologie, Medizinische Klinik und Poliklinik II, Universität Würzburg, Würzburg, Germany
| |
Collapse
|
237
|
Lee WI, Huang JL, Lin SJ, Yeh KW, Chen LC, Ou LS, Yao TC, Jaing TH, Shih YF, Wu CY. Lower T Regulatory and Th17 Cell Populations Predicted by RT-PCR-Amplified FOXP3 and RORγ t Genes Are Not Rare in Patients With Primary Immunodeficiency Diseases. Front Immunol 2020; 11:1111. [PMID: 32670274 PMCID: PMC7330141 DOI: 10.3389/fimmu.2020.01111] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2020] [Accepted: 05/07/2020] [Indexed: 12/31/2022] Open
Abstract
Deficiencies in T regulatory (Treg) and Th17 cells attenuate peripheral tolerance and the IL-17 family of cytokines, contributing to autoimmune disorders and opportunistic (fungal) infections, respectively. Because of limited blood samples from patients with primary immunodeficiency diseases (PIDs), a positive correlation/linear relationship between Treg and Th17 cells and their respective expressions of transcription factors forkhead box P3 (FOXP3) and retinoic acid-related orphan receptor γ (RORγt) by real-time PCR (RT-PCR) amplification, was used to predict the percentages of Treg and Th17 cells in peripheral blood. Compared to glyceraldehyde 3-phosphate dehydrogenase (GAPDH) expression, the percentages of Treg and Th17 cells were calculated as the linear relationship to the 2−ΔCT value (cycle threshold). Among 91 PIDs patients, 68 and 78 had predicted Treg and Th17 percentages below 5% of the normal ranges (0.859 and 0.734%, respectively), which expanded different categories beyond obvious T cell deficiency. Notably, FOXP3 was undetectable in one patient (CVID), RORγt was undetectable in six patients (one CVID, one CID, two neutropenia, one WAS, and one CMC), and both were undetectable in four patients (two SCID, one STAT1, and one periodic fever). In contrast, two patients with auto-IFNγ antibodies had increased susceptibility to intracellular mycobacterial infections, interrupted Th1 development and subsequent elevation in the Th17 cells. Both predicted Treg and Th17 percentages in the PIDs patients were more independent of age (months) than in the controls. The predicted Th17/Treg ratio in the PIDs patients, overall, was lower than that in the healthy controls (0.79 ± 0.075 vs. 1.16 ± 0.208; p = 0.038). In conclusion, lower predicted Treg and Th17 cell populations calculated by RT-PCR-amplified FOXP3 and RORγt in PIDs patients at diagnosis can explain the higher potential phenotypes of autoimmune disorders and opportunistic infections, although effective interventions in the early stage might have prevented such phenotypic development and caused a statistical bias in the comparisons.
Collapse
Affiliation(s)
- Wen-I Lee
- Primary Immunodeficiency Care and Research (PICAR) Institute, Taoyuan, Taiwan.,Division of Allergy, Asthma, and Rheumatology, Department of Pediatrics, Chang Gung Memorial Hospital, Chang Gung University College of Medicine, Taoyuan, Taiwan
| | - Jing-Long Huang
- Division of Allergy, Asthma, and Rheumatology, Department of Pediatrics, Chang Gung Memorial Hospital, Chang Gung University College of Medicine, Taoyuan, Taiwan.,Department of Pediatrics, New Taipei Municipal TuChen Hospital, Taoyuan, Taiwan
| | - Syh-Jae Lin
- Division of Allergy, Asthma, and Rheumatology, Department of Pediatrics, Chang Gung Memorial Hospital, Chang Gung University College of Medicine, Taoyuan, Taiwan
| | - Kuo-Wei Yeh
- Division of Allergy, Asthma, and Rheumatology, Department of Pediatrics, Chang Gung Memorial Hospital, Chang Gung University College of Medicine, Taoyuan, Taiwan
| | - Li-Chen Chen
- Department of Pediatrics, New Taipei Municipal TuChen Hospital, Taoyuan, Taiwan
| | - Liang-Shiou Ou
- Division of Allergy, Asthma, and Rheumatology, Department of Pediatrics, Chang Gung Memorial Hospital, Chang Gung University College of Medicine, Taoyuan, Taiwan
| | - Tsung-Chieh Yao
- Division of Allergy, Asthma, and Rheumatology, Department of Pediatrics, Chang Gung Memorial Hospital, Chang Gung University College of Medicine, Taoyuan, Taiwan
| | - Tang-Her Jaing
- Division of Hematology/Oncology, Department of Pediatrics, Chang Gung Memorial Hospital, Chang Gung University College of Medicine, Taoyuan, Taiwan
| | - Ying-Fan Shih
- Primary Immunodeficiency Care and Research (PICAR) Institute, Taoyuan, Taiwan
| | - Chao-Yi Wu
- Division of Allergy, Asthma, and Rheumatology, Department of Pediatrics, Chang Gung Memorial Hospital, Chang Gung University College of Medicine, Taoyuan, Taiwan
| |
Collapse
|
238
|
Single Nucleotide Polymorphisms in PPARD Associated with Systemic Lupus Erythematosus in Chinese Populations. J Immunol Res 2020; 2020:7285747. [PMID: 32566688 PMCID: PMC7281840 DOI: 10.1155/2020/7285747] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2019] [Revised: 04/19/2020] [Accepted: 04/28/2020] [Indexed: 11/17/2022] Open
Abstract
Background Systemic lupus erythematosus (SLE) is a multifactorial autoimmune disease characterized by apoptotic clearance deficiency provoking autoimmune responses and leading to multiple organ damage. PPAR-δ, encoded by the PPARD gene, was induced in macrophages promoting the timely disposal of apoptotic cells. Biological studies had provided solid foundation of PPARD involvement in SLE; it is worthwhile to further explore the genetic contribution of PPARD to SLE. Methods We performed a discovery-replication genetic association study. The discovery study was based on previous reported GWAS data. And the replication study was conducted in 1003 SLE patients and 815 healthy controls from Henan, Middle East of China. Further, we analyzed the eQTL effect to identify possible functional significance. Results In the genetic association analysis, we observed significant association between the risk C allele of rs4713853 (p = 0.03, OR 1.167, 95% CI 1.015-1.341) and increased SLE susceptibility. Moreover, individuals with the risk C allele were associated with lower expression of PPARD and DEF6. Our clinical analysis showed that SLE patients with the risk C allele of rs4713853 were more likely to present a higher proportion of anti-Sm antibody presence (CC+CT vs. TT, 20.0% vs. 14.2%, p = 0.039) and higher level of Scr (median inter quarter range CC+CT vs. TT, 56 48-71 vs. 54 46-64 μmol/L, p = 0.002). Conclusions In conclusion, our study identified a novel association between PPARD rs4713853 and SLE susceptibility in Chinese populations. By integrating multiple layers of analysis, we suggested that PPARD might be a main candidate in the pathogenesis of SLE.
Collapse
|
239
|
Abstract
PURPOSE OF REVIEW The advent of enhanced genetic testing has allowed for the discovery of gene defects underlying two broad categories of antibody deficiency in children: agammaglobulinemia and common variable immunodeficiency (CVID). This review describes the underlying gene defects and the clinical manifestations. RECENT FINDINGS Because novel monogenetic defects have been discovered in both categories, a strict dichotomous classification of B cell disorders as either X-linked agammaglobulinemia or common variable immunodeficiency is no longer appropriate. Advances in genetic testing technology and the decreasing cost of such testing permit more precise diagnosis of B cell disorders, more helpful information for genetic counselors, and a better understanding of the complex process of B cell development and function. More disorders await discovery.
Collapse
Affiliation(s)
- Bailee Gilchrist
- Department of Pediatrics, Allergy-Immunology and Pediatric Rheumatology Division, Medical College of Georgia at Augusta University, 1120 15th Street, Augusta, GA, 30912, USA
| | - William K Dolen
- Department of Pediatrics, Allergy-Immunology and Pediatric Rheumatology Division, Medical College of Georgia at Augusta University, 1120 15th Street, Augusta, GA, 30912, USA.
| |
Collapse
|
240
|
Vabret N, Britton GJ, Gruber C, Hegde S, Kim J, Kuksin M, Levantovsky R, Malle L, Moreira A, Park MD, Pia L, Risson E, Saffern M, Salomé B, Esai Selvan M, Spindler MP, Tan J, van der Heide V, Gregory JK, Alexandropoulos K, Bhardwaj N, Brown BD, Greenbaum B, Gümüş ZH, Homann D, Horowitz A, Kamphorst AO, Curotto de Lafaille MA, Mehandru S, Merad M, Samstein RM. Immunology of COVID-19: Current State of the Science. Immunity 2020; 52:910-941. [PMID: 32505227 PMCID: PMC7200337 DOI: 10.1016/j.immuni.2020.05.002] [Citation(s) in RCA: 1171] [Impact Index Per Article: 234.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
The coronavirus disease 2019 (COVID-19) pandemic, caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has affected millions of people worldwide, igniting an unprecedented effort from the scientific community to understand the biological underpinning of COVID19 pathophysiology. In this Review, we summarize the current state of knowledge of innate and adaptive immune responses elicited by SARS-CoV-2 infection and the immunological pathways that likely contribute to disease severity and death. We also discuss the rationale and clinical outcome of current therapeutic strategies as well as prospective clinical trials to prevent or treat SARS-CoV-2 infection.
Collapse
Affiliation(s)
- Nicolas Vabret
- Precision Immunology Institute at the Icahn School of Medicine at Mount Sinai, New York, NY, USA.
| | - Graham J Britton
- Precision Immunology Institute at the Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Conor Gruber
- Precision Immunology Institute at the Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Samarth Hegde
- Precision Immunology Institute at the Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Joel Kim
- Precision Immunology Institute at the Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Maria Kuksin
- Precision Immunology Institute at the Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Rachel Levantovsky
- Precision Immunology Institute at the Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Louise Malle
- Precision Immunology Institute at the Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Alvaro Moreira
- Precision Immunology Institute at the Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Matthew D Park
- Precision Immunology Institute at the Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Luisanna Pia
- Precision Immunology Institute at the Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Emma Risson
- Precision Immunology Institute at the Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Miriam Saffern
- Precision Immunology Institute at the Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Bérengère Salomé
- Precision Immunology Institute at the Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Myvizhi Esai Selvan
- Precision Immunology Institute at the Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Matthew P Spindler
- Precision Immunology Institute at the Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Jessica Tan
- Precision Immunology Institute at the Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Verena van der Heide
- Precision Immunology Institute at the Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Jill K Gregory
- Precision Immunology Institute at the Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | | | - Nina Bhardwaj
- Precision Immunology Institute at the Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Brian D Brown
- Precision Immunology Institute at the Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Benjamin Greenbaum
- Precision Immunology Institute at the Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Zeynep H Gümüş
- Precision Immunology Institute at the Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Dirk Homann
- Precision Immunology Institute at the Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Amir Horowitz
- Precision Immunology Institute at the Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Alice O Kamphorst
- Precision Immunology Institute at the Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | | | - Saurabh Mehandru
- Precision Immunology Institute at the Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Miriam Merad
- Precision Immunology Institute at the Icahn School of Medicine at Mount Sinai, New York, NY, USA.
| | - Robert M Samstein
- Precision Immunology Institute at the Icahn School of Medicine at Mount Sinai, New York, NY, USA.
| |
Collapse
|
241
|
Maglione PJ. Chronic Lung Disease in Primary Antibody Deficiency: Diagnosis and Management. Immunol Allergy Clin North Am 2020; 40:437-459. [PMID: 32654691 DOI: 10.1016/j.iac.2020.03.003] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Chronic lung disease is a complication of primary antibody deficiency (PAD) associated with significant morbidity and mortality. Manifestations of lung disease in PAD are numerous. Thoughtful application of diagnostic approaches is imperative to accurately identify the form of disease. Much of the treatment used is adapted from immunocompetent populations. Recent genomic and translational medicine advances have led to specific treatments. As chronic lung disease has continued to affect patients with PAD, we hope that continued advancements in our understanding of pulmonary pathology will ultimately lead to effective methods that alleviate impact on quality of life and survival.
Collapse
Affiliation(s)
- Paul J Maglione
- Pulmonary Center, Boston University School of Medicine, 72 East Concord Street, R304, Boston, MA 02118, USA.
| |
Collapse
|
242
|
Meshaal S, El Hawary R, Adel R, Abd Elaziz D, Erfan A, Lotfy S, Hafez M, Hassan M, Johnson M, Rojas-Restrepo J, Gamez-Diaz L, Grimbacher B, Shoman W, Abdelmeguid Y, Boutros J, Galal N, El-Guindy N, Elmarsafy A. Clinical Phenotypes and Immunological Characteristics of 18 Egyptian LRBA Deficiency Patients. J Clin Immunol 2020; 40:820-832. [PMID: 32506362 DOI: 10.1007/s10875-020-00799-2] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2020] [Accepted: 05/28/2020] [Indexed: 12/17/2022]
Abstract
LPS-responsive beige-like anchor (LRBA) deficiency is an autosomal recessive primary immunodeficiency disorder, OMIM (#614700). LRBA deficiency patients suffer from variable manifestations including recurrent infections, immune dysregulation, autoimmunity, cytopenias, and enteropathy. This study describes different clinical phenotypes and immunological characteristics of 18 LRBA deficiency patients diagnosed from Egypt. T and B lymphocyte subpopulations, LRBA, and cytotoxic T lymphocyte-associated protein 4 (CTLA4) expression were evaluated in resting and stimulated T cells using flow cytometry. Next-generation sequencing was used to identify mutations in the LRBA gene. LRBA deficiency patients had significantly lower B cells and increased percentage of memory T cells. CTLA4 levels were lower in LRBA-deficient T regulatory cells in comparison to healthy donors at resting conditions and significantly increased upon stimulation of T cells. We identified 11 novel mutations in LRBA gene ranging from large deletions to point mutations. Finally, we were able to differentiate LRBA-deficient patients from healthy control and common variable immunodeficiency patients using a simple flow cytometry test performed on whole blood and without need to prior stimulation. LRBA deficiency has heterogeneous phenotypes with poor phenotype-genotype correlation since the same mutation may manifest differently even within the same family. Low LRBA expression, low numbers of B cells, increased numbers of memory T cells, and defective CTLA4 expression (which increase to normal level upon T cell stimulation) are useful laboratory tests to establish the diagnosis of LRBA deficiency. Screening of the siblings of affected patients is very important as patients may be asymptomatic at the beginning of the disease course.
Collapse
Affiliation(s)
- Safa Meshaal
- Clinical and Chemical Pathology Department, Faculty of Medicine, Cairo University, Giza, 11562, Egypt.
| | - Rabab El Hawary
- Clinical and Chemical Pathology Department, Faculty of Medicine, Cairo University, Giza, 11562, Egypt
| | - Rana Adel
- Clinical and Chemical Pathology Department, Faculty of Medicine, Cairo University, Giza, 11562, Egypt
| | - Dalia Abd Elaziz
- Pediatrics Department, Faculty of Medicine, Cairo University, Giza, Egypt
| | - Aya Erfan
- Clinical and Chemical Pathology Department, Faculty of Medicine, Cairo University, Giza, 11562, Egypt
| | - Sohilla Lotfy
- Pediatrics Department, Faculty of Medicine, Cairo University, Giza, Egypt
| | - Mona Hafez
- Pediatrics Department, Faculty of Medicine, Cairo University, Giza, Egypt
| | - Mona Hassan
- Pediatrics Department, Faculty of Medicine, Cairo University, Giza, Egypt
| | - Matthew Johnson
- Institute of Biomedical and Clinical Science, University of Exeter Medical School, Exeter, UK
| | - Jessica Rojas-Restrepo
- Institute for Immunodeficiency, Center for Chronic Immunodeficiency (CC), Medical Center, Faculty of Medicine, Albert-Ludwig-University of Freiburg, Freiburg, Germany
| | - Laura Gamez-Diaz
- Institute for Immunodeficiency, Center for Chronic Immunodeficiency (CC), Medical Center, Faculty of Medicine, Albert-Ludwig-University of Freiburg, Freiburg, Germany
| | - Bodo Grimbacher
- Institute for Immunodeficiency, Center for Chronic Immunodeficiency (CC), Medical Center, Faculty of Medicine, Albert-Ludwig-University of Freiburg, Freiburg, Germany.,DZIF - German Center for Infection Research, Satellite Center Freiburg, Germany, Freiburg, Germany.,CIBSS - Centre for Integrative Biological Signalling Studies, Albert-Ludwigs University, Freiburg, Germany.,RESIST - Cluster of Excellence 2155 to Hanover Medical School, Satellite Center Freiburg, Freiburg, Germany
| | - Walaa Shoman
- Pediatrics Department, Faculty of Medicine, Alexandria University, Alexandria, Egypt
| | - Yasmine Abdelmeguid
- Pediatrics Department, Faculty of Medicine, Alexandria University, Alexandria, Egypt
| | - Jeannette Boutros
- Pediatrics Department, Faculty of Medicine, Cairo University, Giza, Egypt
| | - Nermeen Galal
- Pediatrics Department, Faculty of Medicine, Cairo University, Giza, Egypt
| | - Nancy El-Guindy
- Clinical and Chemical Pathology Department, Faculty of Medicine, Cairo University, Giza, 11562, Egypt
| | - Aisha Elmarsafy
- Pediatrics Department, Faculty of Medicine, Cairo University, Giza, Egypt
| |
Collapse
|
243
|
Whole-Exome Sequencing-Based Approach for Germline Mutations in Patients with Inborn Errors of Immunity. J Clin Immunol 2020; 40:729-740. [PMID: 32506361 DOI: 10.1007/s10875-020-00798-3] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2020] [Accepted: 05/28/2020] [Indexed: 02/06/2023]
Abstract
PURPOSE Owing to recent technological advancements, using next-generation sequencing (NGS) and the accumulation of clinical experiences worldwide, more than 420 genes associated with inborn errors of immunity (IEI) have been identified, which exhibit large genotypic and phenotypic variations. Consequently, NGS-based comprehensive genetic analysis, including whole-exome sequencing (WES), have become more valuable in the clinical setting and have contributed to earlier diagnosis, improved treatment, and prognosis. However, these approaches have the following disadvantages that need to be considered: a relatively low diagnostic rate, high cost, difficulties in the interpretation of each variant, and the risk of incidental findings. Thus, the objective of this study is to review our WES results of a large number of patients with IEI and to elucidate patient characteristics, which are related to the positive WES result. METHODS We performed WES for 136 IEI patients with negative conventional screening results for candidate genes and classified these variants depending on validity of their pathogenicity. RESULTS We identified disease-causing pathogenic mutations in 36 (26.5%) of the patients which were found in known IEI-causing genes. Although the overall diagnostic rate was not high and was not apparently correlated with the clinical subcategories and severity, we revealed that earlier onset with longer duration of diseases were associated with positive WES results, especially in pediatric cases. CONCLUSIONS Most of the disease-causing germline mutations were located in the known IEI genes which could be predicted using patients' clinical characteristics. These results may be useful when considering appropriate genetic approaches in the clinical setting.
Collapse
|
244
|
Ghaini M, Arzanian MT, Shamsian BS, Sadr S, Rohani P, Keramatipour M, Mesdaghi M, Eskandarzadeh S, Lo B, Jamee M, Chavoshzadeh Z. Identifying Novel Mutations in Iranian Patients with LPS-responsive Beige-like Anchor Protein (LRBA) Deficiency. Immunol Invest 2020; 50:399-405. [PMID: 32476511 DOI: 10.1080/08820139.2020.1770784] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Abstract
LPS-responsive beige-like anchor protein (LRBA) deficiency is a monogenic primary immunodeficiency characterized by a heterogeneous spectrum of clinical manifestations associated with immune dysregulation. In this study, we reported clinical, immunologic, and genetic evaluation of two Iranian patients from unrelated families, both suffering from recurrent respiratory tract infections, failure to thrive, interstitial lung disease, autoimmune cytopenia, and hypogammaglobulinemia. Pulmonary abscess in one patient and persistent enteropathy in another were also observed. Further investigations revealed causative mutations in the exon (c.2166_2766del) and intron (c.4730-3 T > G) of the LRBA gene. These results may provide further elucidation of the clinical phenotypes and responsible genetic factors of LRBA deficiency.
Collapse
Affiliation(s)
- Mehdi Ghaini
- Immunology and Allergy Department, Mofid Children's Hospital, Shahid Beheshti University of Medical Science, Tehran, Iran
| | - Mohammad Taghi Arzanian
- Department of Pediatric Hematology and Oncology, Mofid Children's Hospital, Shahid Beheshti University of Medical Science, Tehran, Iran
| | - Bibi Shahin Shamsian
- Department of Pediatric Hematology and Oncology, Mofid Children's Hospital, Shahid Beheshti University of Medical Science, Tehran, Iran
| | - Saeed Sadr
- Department of Pediatric Pulmonology, Mofid Children's Hospital, Shahid Beheshti University of Medical Science, Tehran, Iran
| | - Pejman Rohani
- Department of Pediatric Gastroenterology and Hepatology, Mofid Children's Hospital, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mohammad Keramatipour
- Department of Medical Genetics, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Mehrnaz Mesdaghi
- Immunology and Allergy Department, Mofid Children's Hospital, Shahid Beheshti University of Medical Science, Tehran, Iran
| | - Shabnam Eskandarzadeh
- Immunology and Allergy Department, Mofid Children's Hospital, Shahid Beheshti University of Medical Science, Tehran, Iran
| | - Bernice Lo
- Department of Human Genetics, Research Branch, Sidra Medicine, Doha, Qatar
| | - Mahnaz Jamee
- Student Research Committee, Alborz University of Medical Sciences, Karaj, Iran.,Alborz Office of USERN, Universal Scientific Education and Research Network (USERN), Alborz University of Medical Sciences, Karaj, Iran
| | - Zahra Chavoshzadeh
- Immunology and Allergy Department, Mofid Children's Hospital, Shahid Beheshti University of Medical Science, Tehran, Iran
| |
Collapse
|
245
|
Ohkura N, Sakaguchi S. Transcriptional and epigenetic basis of Treg cell development and function: its genetic anomalies or variations in autoimmune diseases. Cell Res 2020; 30:465-474. [PMID: 32367041 PMCID: PMC7264322 DOI: 10.1038/s41422-020-0324-7] [Citation(s) in RCA: 207] [Impact Index Per Article: 41.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2020] [Accepted: 04/08/2020] [Indexed: 01/01/2023] Open
Abstract
Naturally arising regulatory CD4+ T (Treg) cells, which specifically express the transcription factor FoxP3 in the nucleus and CD25 and CTLA-4 on the cell surface, are a T-cell subpopulation specialized for immune suppression, playing a key role in maintaining immunological self-tolerance and homeostasis. FoxP3 is required for Treg function, especially for its suppressive activity. However, FoxP3 expression per se is not necessary for Treg cell lineage commitment in the thymus and insufficient for full Treg-type gene expression in mature Treg cells. It is Treg-specific epigenetic changes such as CpG demethylation and histone modification that can confer a stable and heritable pattern of Treg type gene expression on developing Treg cells in a FoxP3-independent manner. Anomalies in the formation of Treg-specific epigenome, in particular, Treg-specific super-enhancers, which largely include Treg-specific DNA demethylated regions, are indeed able to cause autoimmune diseases in rodents. Furthermore, in humans, single nucleotide polymorphisms in Treg-specific DNA demethylated regions associated with Treg signature genes, such as IL2RA (CD25) and CTLA4, can affect the development and function of naïve Treg cells rather than effector T cells. Such genetic variations are therefore causative of polygenic common autoimmune diseases including type 1 diabetes and rheumatoid arthritis via affecting endogenous natural Treg cells. These findings on the transcription factor network with FoxP3 at a key position as well as Treg-specific epigenetic landscape facilitate our understanding of Treg cell development and function, and can be exploited to prepare functionally stable FoxP3-expressing Treg cells from antigen-specific conventional T cells to treat autoimmune diseases.
Collapse
Affiliation(s)
- Naganari Ohkura
- Experimental immunology, Immunology Frontier Research Center, Osaka University, 3-1 Yamadaoka, Suita, Osaka, 565-0871, Japan
| | - Shimon Sakaguchi
- Experimental immunology, Immunology Frontier Research Center, Osaka University, 3-1 Yamadaoka, Suita, Osaka, 565-0871, Japan.
| |
Collapse
|
246
|
Ouahed J, Spencer E, Kotlarz D, Shouval DS, Kowalik M, Peng K, Field M, Grushkin-Lerner L, Pai SY, Bousvaros A, Cho J, Argmann C, Schadt E, Mcgovern DPB, Mokry M, Nieuwenhuis E, Clevers H, Powrie F, Uhlig H, Klein C, Muise A, Dubinsky M, Snapper SB. Very Early Onset Inflammatory Bowel Disease: A Clinical Approach With a Focus on the Role of Genetics and Underlying Immune Deficiencies. Inflamm Bowel Dis 2020; 26:820-842. [PMID: 31833544 PMCID: PMC7216773 DOI: 10.1093/ibd/izz259] [Citation(s) in RCA: 119] [Impact Index Per Article: 23.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/06/2019] [Indexed: 12/12/2022]
Abstract
Very early onset inflammatory bowel disease (VEO-IBD) is defined as IBD presenting before 6 years of age. When compared with IBD diagnosed in older children, VEO-IBD has some distinct characteristics such as a higher likelihood of an underlying monogenic etiology or primary immune deficiency. In addition, patients with VEO-IBD have a higher incidence of inflammatory bowel disease unclassified (IBD-U) as compared with older-onset IBD. In some populations, VEO-IBD represents the age group with the fastest growing incidence of IBD. There are contradicting reports on whether VEO-IBD is more resistant to conventional medical interventions. There is a strong need for ongoing research in the field of VEO-IBD to provide optimized management of these complex patients. Here, we provide an approach to diagnosis and management of patients with VEO-IBD. These recommendations are based on expert opinion from members of the VEO-IBD Consortium (www.VEOIBD.org). We highlight the importance of monogenic etiologies, underlying immune deficiencies, and provide a comprehensive description of monogenic etiologies identified to date that are responsible for VEO-IBD.
Collapse
Affiliation(s)
- Jodie Ouahed
- Division of Gastroenterology, Hepatology and Nutrition, Department of Pediatrics, Boston Children’s Hospital, Boston, MA, USA
| | - Elizabeth Spencer
- Division of Gastroenterology, Hepatology and Nutrition, Mount Sinai Hospital, New York City, NY, USA
| | - Daniel Kotlarz
- Department of Pediatrics, Dr. Von Haunder Children’s Hospital, University Hospital, Ludwig-Maximillians-University Munich, Munich, Germany
| | - Dror S Shouval
- Pediatric Gastroenterology Unit, Edmond and Lily Safra Children’s Hospital, Sheba Medical Center, Tel Hashomer, Ramat-Gan, Israel; Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Matthew Kowalik
- Division of Gastroenterology, Hepatology and Nutrition, Department of Pediatrics, Boston Children’s Hospital, Boston, MA, USA
| | - Kaiyue Peng
- Division of Gastroenterology, Hepatology and Nutrition, Department of Pediatrics, Boston Children’s Hospital, Boston, MA, USA,Department of Gastroenterology, Pediatric Inflammatory Bowel Disease Research Center, Children’s Hospital of Fudan University, Shanghai, China
| | - Michael Field
- Division of Gastroenterology, Hepatology and Nutrition, Department of Pediatrics, Boston Children’s Hospital, Boston, MA, USA
| | - Leslie Grushkin-Lerner
- Division of Gastroenterology, Hepatology and Nutrition, Department of Pediatrics, Boston Children’s Hospital, Boston, MA, USA
| | - Sung-Yun Pai
- Division of Hematology-Oncology, Boston Children’s Hospital, Dana-Farber Cancer Institute, Boston, MA USA
| | - Athos Bousvaros
- Division of Gastroenterology, Hepatology and Nutrition, Department of Pediatrics, Boston Children’s Hospital, Boston, MA, USA
| | - Judy Cho
- Icahn School of Medicine at Mount Sinai, Dr. Henry D. Janowitz Division of Gastroenterology, New York, NY, USA
| | - Carmen Argmann
- Icahn Institute for Genomics and Multiscale Biology, Icahn School of Medicine at Mount Sinai, New York, USA
| | - Eric Schadt
- Icahn Institute for Genomics and Multiscale Biology, Icahn School of Medicine at Mount Sinai, New York, USA,Sema4, Stamford, CT, USA
| | - Dermot P B Mcgovern
- F. Widjaja Foundation Inflammatory Bowel and Immunobiology Research Institute, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Michal Mokry
- Division of Pediatrics, Wilhelmina Children’s Hospital, University Medical Center Utrecht, Utrecht, the Netherlands
| | - Edward Nieuwenhuis
- Division of Pediatrics, Wilhelmina Children’s Hospital, University Medical Center Utrecht, Utrecht, the Netherlands
| | - Hans Clevers
- Hubrecht Institute-Royal Netherlands Academy of Arts and Sciences, Utrecht, the Netherlands
| | - Fiona Powrie
- University of Oxford, Kennedy Institute of Rheumatology, Oxford, UK
| | - Holm Uhlig
- Translational Gastroenterology Unit, University of Oxford, Oxford, UK; Department of Pediatrics, University of Oxford, Oxford, UK
| | - Christoph Klein
- Pediatric Gastroenterology Unit, Edmond and Lily Safra Children’s Hospital, Sheba Medical Center, Tel Hashomer, Ramat-Gan, Israel; Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Aleixo Muise
- SickKids Inflammatory Bowel Disease Center and Cell Biology Program, Research Institute, Hospital for Sick Children, Toronto, ON, Canada. Department of Pediatrics and Biochemistry, University of Toronto, Hospital for Sick Children, Toronto, ON, Canada
| | - Marla Dubinsky
- Division of Gastroenterology, Hepatology and Nutrition, Mount Sinai Hospital, New York City, NY, USA
| | - Scott B Snapper
- Division of Gastroenterology, Hepatology and Nutrition, Department of Pediatrics, Boston Children’s Hospital, Boston, MA, USA,Address correspondence to: Scott B. Snapper, MD, PhD, Children's Hospital Boston, Boston, Massachusetts, USA.
| |
Collapse
|
247
|
Abstract
Immune checkpoint blockade therapy has become a major weapon in fighting cancer. Antibody drugs, such as anti-PD-1 and anti-PD-L1, demonstrate obvious advantages such as broad applicability across cancer types and durable clinical response when treatment is effective. However, the overall response rates are still unsatisfying, especially for cancers with low mutational burden. Moreover, adverse effects, such as autoimmune symptoms and tumor hyperprogression, present a significant downside in some clinical applications. These challenges reflect the urgent need to fully understand the basic biology of immune checkpoints. In this review, we discuss regulation of immune checkpoint signaling at multiple levels to provide an overview of our current understanding of checkpoint biology. Topics include the regulation of surface expression levels for known immune checkpoint proteins via surface delivery, internalization, recycling, and degradation. Upon reaching the surface, checkpoints engage in both conventional trans and also cis interactions with ligands to induce signaling and regulate immune responses. Novel therapeutic strategies targeting these pathways in addition to classical checkpoint blockade have recently emerged and been tested in preclinical models, providing new avenues for developing next-generation immunotherapies.
Collapse
|
248
|
Smirnov VS, Totolian AA. Some opportunities for immunotherapy in coronavirus infection. RUSSIAN JOURNAL OF INFECTION AND IMMUNITY 2020. [DOI: 10.15789/2220-7619-spo-1470] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Here we review means of immunomodulatory therapy for coronavirus infection caused by SARS-CoV-2 (COVID-19). It has been appreciated that highly limited arsenal of relatively effective means and methods of prevention and treatment of the COVID-19 pandemic is available. The goal of our study was to analyze some therapeutic approaches based on available publications for COVID-19 treatment viewed from acting via innate immunity system. Convalescent plasma serotherapy represents one of the means with verified therapeutic efficacy that was accompanied with decreased viral load and relief of the disease symptoms. The drawback of serotherapy results from limited number of potential plasma donors and profound variety in amount of SARS-CoV-2-specific antibodies found in donor plasma. Another approach to COVID-19 therapy is based on using monoclonal antibodies engineered to target specific virus antigenic determinants, most often surface spike antigen. Antibodies blocking such antigen are able to prevent virus entrance into target cells and development of overt infection. On the other hand, there are monoclonal antibodies abrogating production or binding of excessive amounts of pro-inflammatory cytokines, such as IL-6, TNFα, etc., some of which (tocilizumab) have been already tested in COVID-19 therapy, whereas the remaining preparations are being currently investigated and tested. A certain breakthrough in COVID-19 therapy was provided by the well-known drugs chloroquine and dihydrochloroquine, which have proven to be effective as antiviral, anti-inflammatory and immunomodulatory means. Finally, a new multicomponent immunomodulatory preparation Cytovir-3 has been proposed already passed clinical trials and recommended for use in prevention and treatment of influenza and SARS and might have found its own niche in preventing COVID-19, as SARS-CoV-2 also belongs to the group of acute respiratory viruses. Thus, the arsenal of means for COVID-19 prevention and treatment contains the drugs for immunomodulatory therapy and prevention of immune-related disorders developing in response to invasion pathogenic viruses and lowering a risk of possible damage. Hence, correct and scientifically justified use of such remedies will increase overall effectiveness of fight against the coronavirus pandemic.
Collapse
|
249
|
Clough JN, Omer OS, Tasker S, Lord GM, Irving PM. Regulatory T-cell therapy in Crohn's disease: challenges and advances. Gut 2020; 69:942-952. [PMID: 31980447 PMCID: PMC7229901 DOI: 10.1136/gutjnl-2019-319850] [Citation(s) in RCA: 117] [Impact Index Per Article: 23.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/12/2019] [Revised: 11/21/2019] [Accepted: 12/19/2019] [Indexed: 12/12/2022]
Abstract
The prevalence of IBD is rising in the Western world. Despite an increasing repertoire of therapeutic targets, a significant proportion of patients suffer chronic morbidity. Studies in mice and humans have highlighted the critical role of regulatory T cells in immune homeostasis, with defects in number and suppressive function of regulatory T cells seen in patients with Crohn's disease. We review the function of regulatory T cells and the pathways by which they exert immune tolerance in the intestinal mucosa. We explore the principles and challenges of manufacturing a cell therapy, and discuss clinical trial evidence to date for their safety and efficacy in human disease, with particular focus on the development of a regulatory T-cell therapy for Crohn's disease.
Collapse
Affiliation(s)
- Jennie N Clough
- School of Immunology and Microbial Sciences, King's College London, London, UK
- NIHR Biomedical Research Centre at Guy's and Saint Thomas' NHS Foundation Trust and King's College, London, UK
| | - Omer S Omer
- School of Immunology and Microbial Sciences, King's College London, London, UK
- Department of Gastroenterology, Guy's and Saint Thomas' Hospitals NHS Trust, London, UK
| | - Scott Tasker
- Division of Transplantation Immunology and Mucosal Biology, King's College London, London, UK
| | - Graham M Lord
- School of Immunology and Microbial Sciences, King's College London, London, UK
- Faculty of Biology, Medicine and Health, The University of Manchester, Manchester, UK
| | - Peter M Irving
- School of Immunology and Microbial Sciences, King's College London, London, UK
- Department of Gastroenterology, Guy's and Saint Thomas' Hospitals NHS Trust, London, UK
| |
Collapse
|
250
|
Prenzel F, Harfst J, Schwerk N, Ahrens F, Rietschel E, Schmitt-Grohé S, Rubak SML, Poplawska K, Baden W, Vogel M, Hollizeck S, Ley-Zaporozhan J, Brasch F, Reu S, Griese M. Lymphocytic interstitial pneumonia and follicular bronchiolitis in children: A registry-based case series. Pediatr Pulmonol 2020; 55:909-917. [PMID: 32040879 DOI: 10.1002/ppul.24680] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/19/2019] [Accepted: 01/26/2020] [Indexed: 12/26/2022]
Abstract
OBJECTIVES Pediatric lymphocytic interstitial pneumonia (LIP) and follicular bronchiolitis (FB) are poorly characterized lymphoproliferative disorders. We present and quantify demographics, radiological and histopathologic patterns, treatments and their responses, and outcomes in non-HIV-infected children with LIP and FB. METHODS This structured registry-based study included a retrospective chart review, blinded analysis of imaging studies and lung biopsies, genetic testing, and evaluation of treatments and outcomes. RESULTS Of the 13 patients (eight females) studied, eight had FB, four had combined LIP/FB, and one had isolated LIP; diagnoses were highly concordant between the pathologists. Most patients became symptomatic during the first 2 years of life, with a mean lag time to diagnosis of 4 years. The most common symptoms were coughing and respiratory infections (11 out of 13 each), dyspnea (10 out of 13), and wheezing (eight out of 13). Autoantibodies were found in eight out of 13 patients. In three patients, disease-causing mutations in the COPA gene were identified. CT revealed hilar lymphadenopathy (five out of 12), ground-glass opacity (eight out of 12), consolidation (five out of 12), and cysts (four out of 13). Systemic steroids as intravenous pulses (11 out of 13) or oral intake (10 out of 13) were the main treatments and showed high response rates of 100% and 90%, respectively. Within the mean observation period of 68 months, all children had chronic courses, eight out of 13 had severe diseases, two died, and one worsened. CONCLUSIONS Children with LIP/FB have chronic diseases that occurred in early childhood and were commonly associated with immune dysregulation as well as high morbidity and mortality. Early diagnosis and treatment may be crucial to improve the outcome.
Collapse
Affiliation(s)
- Freerk Prenzel
- Department of Pediatrics, Center for Pediatric Research Leipzig (CPL), University of Leipzig Medical Center, Leipzig, Germany
| | - Jacqueline Harfst
- Hauner Children's Hospital and KUBUS Research Center, University of Munich, Munich, Germany
| | - Nicolaus Schwerk
- Clinic for Pediatric Pneumology, Allergology, and Neonatology, Hannover Medical School, Hannover, Germany
| | | | - Ernst Rietschel
- University Children's Hospital, University of Cologne, Cologne, Germany
| | | | - Sune M L Rubak
- Danish Center of Pediatric Pulmonology and Allergology, University Hospital of Aarhus, Aarhus, Denmark
| | | | - Winfried Baden
- University Children's Hospital Tübingen, Tübingen, Germany
| | - Mandy Vogel
- LIFE Leipzig Research Center for Civilization Diseases, University of Leipzig, Leipzig, Germany
| | - Sebastian Hollizeck
- Hauner Children's Hospital and KUBUS Research Center, University of Munich, Munich, Germany
| | | | - Frank Brasch
- Department of Pathology, Academic Teaching Hospital Bielefeld, Bielefeld, Germany
| | - Simone Reu
- Department of Pathology, University of Munich, Munich, Germany
| | - Matthias Griese
- Hauner Children's Hospital and KUBUS Research Center, University of Munich, Munich, Germany
| | | |
Collapse
|