201
|
Park JE, Zhang L, Bang JK, Andresson T, DiMaio F, Lee KS. Phase separation of Polo-like kinase 4 by autoactivation and clustering drives centriole biogenesis. Nat Commun 2019; 10:4959. [PMID: 31672968 PMCID: PMC6823436 DOI: 10.1038/s41467-019-12619-2] [Citation(s) in RCA: 50] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2019] [Accepted: 09/05/2019] [Indexed: 11/09/2022] Open
Abstract
Tight control of centriole duplication is critical for normal chromosome segregation and the maintenance of genomic stability. Polo-like kinase 4 (Plk4) is a key regulator of centriole biogenesis. How Plk4 dynamically promotes its symmetry-breaking relocalization and achieves its procentriole-assembly state remains unknown. Here we show that Plk4 is a unique kinase that utilizes its autophosphorylated noncatalytic cryptic polo-box (CPB) to phase separate and generate a nanoscale spherical condensate. Analyses of the crystal structure of a phospho-mimicking, condensation-proficient CPB mutant reveal that a disordered loop at the CPB PB2-tip region is critically required for Plk4 to generate condensates and induce procentriole assembly. CPB phosphorylation also promotes Plk4's dissociation from the Cep152 tether while binding to downstream STIL, thus allowing Plk4 condensate to serve as an assembling body for centriole biogenesis. This study uncovers the mechanism underlying Plk4 activation and may offer strategies for anti-Plk4 intervention against genomic instability and cancer.
Collapse
Affiliation(s)
- Jung-Eun Park
- Laboratory of Metabolism, National Cancer Institute, National Institutes of Health, 9000 Rockville Pike, Bethesda, MD, 20892, USA
| | - Liang Zhang
- Laboratory of Metabolism, National Cancer Institute, National Institutes of Health, 9000 Rockville Pike, Bethesda, MD, 20892, USA
| | - Jeong Kyu Bang
- Division of Magnetic Resonance, Korea Basic Science Institute, 162 Yeongudanji-ro, Ochang-eup, Cheongju, 28119, Republic of Korea
| | - Thorkell Andresson
- Protein Characterization Laboratory, Frederick National Laboratory for Cancer Research and Leidos Biomedical Research Inc., 8560 Progress Drive, Frederick, MD, 21702, USA
| | - Frank DiMaio
- Department of Biochemistry and Institute for Protein Design, University of Washington, 1705 NE Pacific Street, Seattle, WA, 98195, USA
| | - Kyung S Lee
- Laboratory of Metabolism, National Cancer Institute, National Institutes of Health, 9000 Rockville Pike, Bethesda, MD, 20892, USA.
| |
Collapse
|
202
|
Dudka D, Castrogiovanni C, Liaudet N, Vassal H, Meraldi P. Spindle-Length-Dependent HURP Localization Allows Centrosomes to Control Kinetochore-Fiber Plus-End Dynamics. Curr Biol 2019; 29:3563-3578.e6. [PMID: 31668617 DOI: 10.1016/j.cub.2019.08.061] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2019] [Revised: 07/23/2019] [Accepted: 08/22/2019] [Indexed: 11/25/2022]
Abstract
During mitosis, centrosomes affect the length of kinetochore fibers (k-fibers) and the stability of kinetochore-microtubule attachments, implying that they regulate k-fiber dynamics. However, the exact cellular and molecular mechanisms of this regulation remain unknown. Here, we created human cells with only one centrosome to investigate these mechanisms. Such cells formed asymmetric bipolar spindles that resulted in asymmetric cell divisions. K-fibers in the acentrosomal half-spindles were shorter, more stable, and had a reduced poleward microtubule flux at minus ends and more frequent pausing events at their plus ends. This indicates that centrosomes regulate k-fiber dynamics both locally at minus ends and far away at plus ends. At the molecular level, we find that the microtubule-stabilizing protein HURP is enriched on the k-fiber plus ends in the acentrosomal half-spindles of cells with only one centrosome. HURP depletion rebalances k-fiber stability and plus-end dynamics in such cells and improves spindle and cell division symmetry. Our data from 3 different cell lines indicate that HURP accumulates on k-fibers inversely proportionally to half-spindle length. We therefore propose that centrosomes regulate k-fiber plus ends indirectly via length-dependent accumulation of HURP.
Collapse
Affiliation(s)
- Damian Dudka
- Department of Cell Physiology and Metabolism, Faculty of Medicine, University of Geneva, 1211 Geneva 4, Switzerland
| | - Cédric Castrogiovanni
- Department of Cell Physiology and Metabolism, Faculty of Medicine, University of Geneva, 1211 Geneva 4, Switzerland
| | - Nicolas Liaudet
- Bioimaging Facility, Faculty of Medicine, University of Geneva, 1211 Geneva 4, Switzerland
| | - Hélène Vassal
- Department of Cell Physiology and Metabolism, Faculty of Medicine, University of Geneva, 1211 Geneva 4, Switzerland; National Institute of Applied Sciences, Villeurbanne 69621, France
| | - Patrick Meraldi
- Department of Cell Physiology and Metabolism, Faculty of Medicine, University of Geneva, 1211 Geneva 4, Switzerland; Translational Research Centre in Onco-hematology, Faculty of Medicine, University of Geneva, 1211 Geneva 4, Switzerland.
| |
Collapse
|
203
|
Denu RA, Kaur G, Sass MM, Lakkaraju A, Burkard ME. Centrosome Amplification in Cancer Disrupts Autophagy and Sensitizes to Autophagy Inhibition. Mol Cancer Res 2019; 18:33-45. [PMID: 31604847 DOI: 10.1158/1541-7786.mcr-19-0509] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2019] [Revised: 07/30/2019] [Accepted: 10/08/2019] [Indexed: 12/24/2022]
Abstract
Centrosome amplification (CA), or a numerical increase in centrosomes, is common in human cancers, particularly those with high-risk features. We have discovered that cells with CA have an increased burden of autophagy, a catabolic process whereby autophagosomes engulf damaged organelles and proteins and deliver these contents to the lysosome for degradation and subsequent recycling. Cells with CA demonstrate an accumulation of autophagosomes. We evaluated the alternative hypotheses that CA alters autophagy by modulating microtubule networks and impairing trafficking versus altering lysosome clustering and organization versus chromosome missegregation-induced proteotoxic stress. Using LC3 reporter assays and autophagosome tracking experiments, we demonstrate that CA causes an accumulation of autophagosomes by interfering with autophagosome trafficking. To establish whether this was a druggable weakness, we tested autophagy inhibitors in our cell models of CA. Cells with CA are sensitized to chemical and genetic autophagy inhibition. Taken together, our results suggest that autophagy is disrupted by CA and sensitizes cells to inhibition of autophagy. These findings suggest a novel precision medicine strategy, whereby CA increases reliance on autophagy and serves as a biomarker for autophagy inhibitors in high-risk cancers. IMPLICATIONS: Our study suggests that CA could be used as a predictive biomarker for treatment with autophagy inhibitors.
Collapse
Affiliation(s)
- Ryan A Denu
- Medical Scientist Training Program, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, Wisconsin.,Division of Hematology/Oncology, Department of Medicine, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, Wisconsin.,Graduate Program in Cellular and Molecular Biology, University of Wisconsin-Madison, Madison, Wisconsin
| | - Gulpreet Kaur
- Graduate Program in Cellular and Molecular Biology, University of Wisconsin-Madison, Madison, Wisconsin.,Department of Ophthalmology and Visual Sciences, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, Wisconsin
| | - Madilyn M Sass
- Division of Hematology/Oncology, Department of Medicine, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, Wisconsin
| | - Aparna Lakkaraju
- Department of Ophthalmology, University of California, San Francisco, San Francisco, California
| | - Mark E Burkard
- Division of Hematology/Oncology, Department of Medicine, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, Wisconsin. .,Carbone Cancer Center, University of Wisconsin, Madison, Wisconsin
| |
Collapse
|
204
|
Zhao Y, Wang X. PLK4: a promising target for cancer therapy. J Cancer Res Clin Oncol 2019; 145:2413-2422. [PMID: 31492983 DOI: 10.1007/s00432-019-02994-0] [Citation(s) in RCA: 46] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2019] [Accepted: 08/05/2019] [Indexed: 12/11/2022]
Abstract
PURPOSE Polo-like kinase 4 (PLK4) is a serine/threonine protein kinase that regulates centriole duplication. PLK4 deregulation causes centrosome number abnormalities, mitotic defects, chromosomal instability and, consequently, tumorigenesis. Therefore, PLK4 has emerged as a therapeutic target for the treatment of multiple cancers. In this review, we summarize the critical role of centrosome amplification and PLK4 in cancer. We also highlight recent advances in the development of PLK4 inhibitors and discuss potential combination therapies for cancer. METHODS The relevant literature from PubMed is reviewed in this article. The ClinicalTrials.gov database was searched for clinical trials related to the specific topic. RESULTS PLK4 is aberrantly expressed in multiple cancers and has prognostic value. Targeting PLK4 with inhibitors suppresses tumor growth in vitro and in vivo. CONCLUSIONS PLK4 plays an important role in centrosome amplification and tumor progression. PLK4 inhibitors used alone or in combination with other drugs have shown significant anticancer efficacy, suggesting a potential therapeutic strategy for cancer. The results of relevant clinical trials await evaluation.
Collapse
Affiliation(s)
- Yi Zhao
- Department of Hematology, Shandong Provincial Hospital Affiliated to Shandong University, No. 324, Jingwu Road, Jinan, 250021, Shandong, People's Republic of China
| | - Xin Wang
- Department of Hematology, Shandong Provincial Hospital Affiliated to Shandong University, No. 324, Jingwu Road, Jinan, 250021, Shandong, People's Republic of China.
- School of Medicine, Shandong University, Jinan, 250012, Shandong, China.
- Shandong Provincial Engineering Research Center of Lymphoma, Jinan, 250021, Shandong, China.
- Key Laboratory for Kidney Regeneration of Shandong Province, Jinan, 250021, Shandong, China.
| |
Collapse
|
205
|
Takao D, Watanabe K, Kuroki K, Kitagawa D. Feedback loops in the Plk4-STIL-HsSAS6 network coordinate site selection for procentriole formation. Biol Open 2019; 8:bio047175. [PMID: 31533936 PMCID: PMC6777370 DOI: 10.1242/bio.047175] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2019] [Accepted: 08/23/2019] [Indexed: 12/12/2022] Open
Abstract
Centrioles are duplicated once in every cell cycle, ensuring the bipolarity of the mitotic spindle. How the core components cooperate to achieve high fidelity in centriole duplication remains poorly understood. By live-cell imaging of endogenously tagged proteins in human cells throughout the entire cell cycle, we quantitatively tracked the dynamics of the critical duplication factors: Plk4, STIL and HsSAS6. Centriolar Plk4 peaks and then starts decreasing during the late G1 phase, which coincides with the accumulation of STIL at centrioles. Shortly thereafter, the HsSAS6 level increases steeply at the procentriole assembly site. We also show that both STIL and HsSAS6 are necessary for attenuating Plk4 levels. Furthermore, our mathematical modeling and simulation suggest that the STIL-HsSAS6 complex in the cartwheel has a negative feedback effect on centriolar Plk4. Combined, these findings illustrate how the dynamic behavior of and interactions between critical duplication factors coordinate the centriole-duplication process.This article has an associated First Person interview with the first author of the paper.
Collapse
Affiliation(s)
- Daisuke Takao
- Graduate School of Pharmaceutical Sciences, University of Tokyo, Hongo, Tokyo 113-0033, Japan
| | - Koki Watanabe
- Graduate School of Pharmaceutical Sciences, University of Tokyo, Hongo, Tokyo 113-0033, Japan
| | - Kanako Kuroki
- Graduate School of Pharmaceutical Sciences, University of Tokyo, Hongo, Tokyo 113-0033, Japan
| | - Daiju Kitagawa
- Graduate School of Pharmaceutical Sciences, University of Tokyo, Hongo, Tokyo 113-0033, Japan
| |
Collapse
|
206
|
Dynamics of centriole amplification in centrosome-depleted brain multiciliated progenitors. Sci Rep 2019; 9:13060. [PMID: 31506528 PMCID: PMC6736942 DOI: 10.1038/s41598-019-49416-2] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2019] [Accepted: 08/02/2019] [Indexed: 12/20/2022] Open
Abstract
Reproductive and respiratory organs, along with brain ventricles, are lined by multiciliated epithelial cells (MCC) that generate cilia-powered fluid flows. MCC hijack the centrosome duplication pathway to form hundreds of centrioles and nucleate motile cilia. In these cells, the large majority of procentrioles are formed associated with partially characterized organelles called deuterosomes. We recently challenged the paradigm that deuterosomes and procentrioles are formed de novo by providing data, in brain MCC, suggesting that they are nucleated from the pre-existing centrosomal younger centriole. However, the origin of deuterosomes and procentrioles is still under debate. Here, we further question centrosome importance for deuterosome and centriole amplification. First, we provide additional data confirming that centriole amplification occurs sequentially from the centrosomal region, and that the first procentriole-loaded deuterosomes are associated with the daughter centriole or in the centrosomal centriole vicinity. Then, to further test the requirement of the centrosome in deuterosome and centriole formation, we depleted centrosomal centrioles using a Plk4 inhibitor. We reveal unexpected limited consequences in deuterosome/centriole number in absence of centrosomal centrioles. Notably, in absence of the daughter centriole only, deuterosomes are not seen associated with the mother centriole. In absence of both centrosomal centrioles, procentrioles are still amplified sequentially and with no apparent structural defects. They seem to arise from a focal region, characterized by microtubule convergence and pericentriolar material (PCM) assembly. The relevance of deuterosome association with the daughter centriole as well as the role of the PCM in the focal and sequential genesis of centrioles in absence of centrosomal centrioles are discussed.
Collapse
|
207
|
Wang M, Nagle RB, Knudsen BS, Cress AE, Rogers GC. Centrosome loss results in an unstable genome and malignant prostate tumors. Oncogene 2019; 39:399-413. [PMID: 31477840 DOI: 10.1038/s41388-019-0995-z] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2019] [Revised: 08/06/2019] [Accepted: 08/15/2019] [Indexed: 12/14/2022]
Abstract
Localized, nonindolent prostate cancer (PCa) is characterized by large-scale genomic rearrangements, aneuploidy, chromothripsis, and other forms of chromosomal instability (CIN), yet how this occurs remains unclear. A well-established mechanism of CIN is the overproduction of centrosomes, which promotes tumorigenesis in various mouse models. Therefore, we developed a single-cell assay for quantifying centrosomes in human prostate tissue. Surprisingly, centrosome loss-which has not been described in human cancer-was associated with PCa progression. By chemically or genetically inducing centrosome loss in nontumorigenic prostate epithelial cells, mitotic errors ensued, producing aneuploid, and multinucleated cells. Strikingly, transient or chronic centrosome loss transformed prostate epithelial cells, which produced highly proliferative and poorly differentiated malignant tumors in mice. Our findings suggest that centrosome loss could create a cellular crisis with oncogenic potential in prostate epithelial cells.
Collapse
Affiliation(s)
- Mengdie Wang
- Department of Cellular and Molecular Medicine, University of Arizona Cancer Center, University of Arizona, Tucson, AZ, 85724, USA
| | - Raymond B Nagle
- Department of Pathology, University of Arizona Cancer Center, University of Arizona, Tucson, AZ, 85724, USA
| | - Beatrice S Knudsen
- Department of Pathology and Laboratory Medicine, Cedars Sinai Medical Center, Los Angeles, CA, 90048, USA
| | - Anne E Cress
- Department of Cellular and Molecular Medicine, University of Arizona Cancer Center, University of Arizona, Tucson, AZ, 85724, USA.
| | - Gregory C Rogers
- Department of Cellular and Molecular Medicine, University of Arizona Cancer Center, University of Arizona, Tucson, AZ, 85724, USA.
| |
Collapse
|
208
|
Takao D, Yamamoto S, Kitagawa D. A theory of centriole duplication based on self-organized spatial pattern formation. J Cell Biol 2019; 218:3537-3547. [PMID: 31451615 PMCID: PMC6829667 DOI: 10.1083/jcb.201904156] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2019] [Revised: 06/22/2019] [Accepted: 08/06/2019] [Indexed: 12/28/2022] Open
Abstract
Super-resolution imaging combined with quantitative image analyses reveals dynamic spatial pattern formation of centriolar Plk4, a master regulator of centriole duplication. The self-organization properties of Plk4 exclusively provide the single site for centriole formation around the preexisting centriole. In each cell cycle, centrioles are duplicated to produce a single copy of each preexisting centriole. At the onset of centriole duplication, the master regulator Polo-like kinase 4 (Plk4) undergoes a dynamic change in its spatial pattern around the preexisting centriole, forming a single duplication site. However, the significance and mechanisms of this pattern transition remain unknown. Using super-resolution imaging, we found that centriolar Plk4 exhibits periodic discrete patterns resembling pearl necklaces, frequently with single prominent foci. Mathematical modeling and simulations incorporating the self-organization properties of Plk4 successfully generated the experimentally observed patterns. We therefore propose that the self-patterning of Plk4 is crucial for the regulation of centriole duplication. These results, defining the mechanisms of self-organized regulation, provide a fundamental principle for understanding centriole duplication.
Collapse
Affiliation(s)
- Daisuke Takao
- Graduate School of Pharmaceutical Sciences, University of Tokyo, Tokyo, Japan
| | - Shohei Yamamoto
- Graduate School of Pharmaceutical Sciences, University of Tokyo, Tokyo, Japan.,Graduate Program in Bioscience, Graduate School of Science, University of Tokyo, Tokyo, Japan
| | - Daiju Kitagawa
- Graduate School of Pharmaceutical Sciences, University of Tokyo, Tokyo, Japan
| |
Collapse
|
209
|
Antao NV, Marcet-Ortega M, Cifani P, Kentsis A, Foley EA. A Cancer-Associated Missense Mutation in PP2A-Aα Increases Centrosome Clustering during Mitosis. iScience 2019; 19:74-82. [PMID: 31357169 PMCID: PMC6664223 DOI: 10.1016/j.isci.2019.07.018] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2019] [Revised: 06/27/2019] [Accepted: 07/12/2019] [Indexed: 12/21/2022] Open
Abstract
Whole-genome doubling (WGD) is common early in tumorigenesis. WGD doubles ploidy and centrosome number. In the ensuing mitoses, excess centrosomes form a multipolar spindle, resulting in a lethal multipolar cell division. To survive, cells must cluster centrosomes to allow bipolar cell division. Cancer cells are often more proficient at centrosome clustering than untransformed cells, but the mechanism behind increased clustering ability is not well understood. Heterozygous missense mutations in PPP2R1A, which encodes the alpha isoform of the "scaffolding" subunit of PP2A (PP2A-Aα), positively correlate with WGD. We introduced a heterozygous hotspot mutation, P179R, into PPP2R1A in human RPE-1 cells. PP2A-AαP179R decreases PP2A assembly and intracellular targeting in mitosis. Strikingly, PP2A-AαP179R enhances centrosome clustering when centrosome number is increased either by cytokinesis failure or centrosome amplification, likely through PP2A-Aα loss of function. Thus cancer-associated mutations in PP2A-Aα may increase cellular fitness after WGD by enhancing centrosome clustering.
Collapse
Affiliation(s)
- Noelle V Antao
- Program in Biochemistry and Structural Biology, Cell and Developmental Biology, and Molecular Biology, Weill Cornell Medicine Graduate School of Medical Sciences, Cornell University, New York, NY 10065, USA; Cell Biology Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Marina Marcet-Ortega
- Cell Biology Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Paolo Cifani
- Molecular Pharmacology Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Alex Kentsis
- Molecular Pharmacology Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Emily A Foley
- Cell Biology Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA.
| |
Collapse
|
210
|
Gheiratmand L, Coyaud E, Gupta GD, Laurent EMN, Hasegan M, Prosser SL, Gonçalves J, Raught B, Pelletier L. Spatial and proteomic profiling reveals centrosome-independent features of centriolar satellites. EMBO J 2019; 38:e101109. [PMID: 31304627 PMCID: PMC6627244 DOI: 10.15252/embj.2018101109] [Citation(s) in RCA: 67] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2018] [Revised: 05/09/2019] [Accepted: 05/10/2019] [Indexed: 12/19/2022] Open
Abstract
Centriolar satellites are small electron-dense granules that cluster in the vicinity of centrosomes. Satellites have been implicated in multiple critical cellular functions including centriole duplication, centrosome maturation, and ciliogenesis, but their precise composition and assembly properties have remained poorly explored. Here, we perform in vivo proximity-dependent biotin identification (BioID) on 22 human satellite proteins, to identify 2,113 high-confidence interactions among 660 unique polypeptides. Mining this network, we validate six additional satellite components. Analysis of the satellite interactome, combined with subdiffraction imaging, reveals the existence of multiple unique microscopically resolvable satellite populations that display distinct protein interaction profiles. We further show that loss of satellites in PCM1-depleted cells results in a dramatic change in the satellite interaction landscape. Finally, we demonstrate that satellite composition is largely unaffected by centriole depletion or disruption of microtubules, indicating that satellite assembly is centrosome-independent. Together, our work offers the first systematic spatial and proteomic profiling of human centriolar satellites and paves the way for future studies aimed at better understanding the biogenesis and function(s) of these enigmatic structures.
Collapse
Affiliation(s)
- Ladan Gheiratmand
- Lunenfeld‐Tanenbaum Research InstituteMount Sinai HospitalTorontoONCanada
| | - Etienne Coyaud
- Princess Margaret Cancer CentreUniversity Health NetworkTorontoONCanada
| | - Gagan D Gupta
- Lunenfeld‐Tanenbaum Research InstituteMount Sinai HospitalTorontoONCanada
- Present address:
Department of Chemistry and BiologyRyerson UniversityTorontoONCanada
| | | | - Monica Hasegan
- Lunenfeld‐Tanenbaum Research InstituteMount Sinai HospitalTorontoONCanada
| | - Suzanna L Prosser
- Lunenfeld‐Tanenbaum Research InstituteMount Sinai HospitalTorontoONCanada
| | - João Gonçalves
- Lunenfeld‐Tanenbaum Research InstituteMount Sinai HospitalTorontoONCanada
| | - Brian Raught
- Princess Margaret Cancer CentreUniversity Health NetworkTorontoONCanada
- Department of Medical BiophysicsUniversity of TorontoTorontoONCanada
| | - Laurence Pelletier
- Lunenfeld‐Tanenbaum Research InstituteMount Sinai HospitalTorontoONCanada
- Department of Molecular GeneticsUniversity of TorontoTorontoONCanada
| |
Collapse
|
211
|
Joukov V, De Nicolo A. The Centrosome and the Primary Cilium: The Yin and Yang of a Hybrid Organelle. Cells 2019; 8:E701. [PMID: 31295970 PMCID: PMC6678760 DOI: 10.3390/cells8070701] [Citation(s) in RCA: 65] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2019] [Revised: 07/04/2019] [Accepted: 07/06/2019] [Indexed: 12/27/2022] Open
Abstract
Centrosomes and primary cilia are usually considered as distinct organelles, although both are assembled with the same evolutionary conserved, microtubule-based templates, the centrioles. Centrosomes serve as major microtubule- and actin cytoskeleton-organizing centers and are involved in a variety of intracellular processes, whereas primary cilia receive and transduce environmental signals to elicit cellular and organismal responses. Understanding the functional relationship between centrosomes and primary cilia is important because defects in both structures have been implicated in various diseases, including cancer. Here, we discuss evidence that the animal centrosome evolved, with the transition to complex multicellularity, as a hybrid organelle comprised of the two distinct, but intertwined, structural-functional modules: the centriole/primary cilium module and the pericentriolar material/centrosome module. The evolution of the former module may have been caused by the expanding cellular diversification and intercommunication, whereas that of the latter module may have been driven by the increasing complexity of mitosis and the requirement for maintaining cell polarity, individuation, and adhesion. Through its unique ability to serve both as a plasma membrane-associated primary cilium organizer and a juxtanuclear microtubule-organizing center, the animal centrosome has become an ideal integrator of extracellular and intracellular signals with the cytoskeleton and a switch between the non-cell autonomous and the cell-autonomous signaling modes. In light of this hypothesis, we discuss centrosome dynamics during cell proliferation, migration, and differentiation and propose a model of centrosome-driven microtubule assembly in mitotic and interphase cells. In addition, we outline the evolutionary benefits of the animal centrosome and highlight the hierarchy and modularity of the centrosome biogenesis networks.
Collapse
Affiliation(s)
- Vladimir Joukov
- N.N. Petrov National Medical Research Center of Oncology, 197758 Saint-Petersburg, Russia.
| | | |
Collapse
|
212
|
Luo Y, Barrios-Rodiles M, Gupta GD, Zhang YY, Ogunjimi AA, Bashkurov M, Tkach JM, Underhill AQ, Zhang L, Bourmoum M, Wrana JL, Pelletier L. Atypical function of a centrosomal module in WNT signalling drives contextual cancer cell motility. Nat Commun 2019; 10:2356. [PMID: 31142743 PMCID: PMC6541620 DOI: 10.1038/s41467-019-10241-w] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2018] [Accepted: 04/29/2019] [Indexed: 02/06/2023] Open
Abstract
Centrosomes control cell motility, polarity and migration that is thought to be mediated by their microtubule-organizing capacity. Here we demonstrate that WNT signalling drives a distinct form of non-directional cell motility that requires a key centrosome module, but not microtubules or centrosomes. Upon exosome mobilization of PCP-proteins, we show that DVL2 orchestrates recruitment of a CEP192-PLK4/AURKB complex to the cell cortex where PLK4/AURKB act redundantly to drive protrusive activity and cell motility. This is mediated by coordination of formin-dependent actin remodelling through displacement of cortically localized DAAM1 for DAAM2. Furthermore, abnormal expression of PLK4, AURKB and DAAM1 is associated with poor outcomes in breast and bladder cancers. Thus, a centrosomal module plays an atypical function in WNT signalling and actin nucleation that is critical for cancer cell motility and is associated with more aggressive cancers. These studies have broad implications in how contextual signalling controls distinct modes of cell migration.
Collapse
Affiliation(s)
- Yi Luo
- Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, ON, M5G 1X5, Canada
| | - Miriam Barrios-Rodiles
- Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, ON, M5G 1X5, Canada
| | - Gagan D Gupta
- Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, ON, M5G 1X5, Canada
- Department of Chemistry and Biology, Ryerson University, Toronto, ON, M5B 2K3, Canada
| | - Ying Y Zhang
- Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, ON, M5G 1X5, Canada
- Department of Molecular Genetics, University of Toronto, Toronto, ON, M5S 1A8, Canada
| | - Abiodun A Ogunjimi
- Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, ON, M5G 1X5, Canada
| | - Mikhail Bashkurov
- Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, ON, M5G 1X5, Canada
| | - Johnny M Tkach
- Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, ON, M5G 1X5, Canada
| | - Ainsley Q Underhill
- Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, ON, M5G 1X5, Canada
- Department of Molecular Genetics, University of Toronto, Toronto, ON, M5S 1A8, Canada
| | - Liang Zhang
- Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, ON, M5G 1X5, Canada
- Department of Biomedical Sciences, City University of Hong Kong, Hong Kong, China
| | - Mohamed Bourmoum
- Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, ON, M5G 1X5, Canada
| | - Jeffrey L Wrana
- Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, ON, M5G 1X5, Canada
- Department of Molecular Genetics, University of Toronto, Toronto, ON, M5S 1A8, Canada
| | - Laurence Pelletier
- Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, ON, M5G 1X5, Canada.
- Department of Molecular Genetics, University of Toronto, Toronto, ON, M5S 1A8, Canada.
| |
Collapse
|
213
|
Moyer TC, Holland AJ. PLK4 promotes centriole duplication by phosphorylating STIL to link the procentriole cartwheel to the microtubule wall. eLife 2019; 8:46054. [PMID: 31115335 PMCID: PMC6570480 DOI: 10.7554/elife.46054] [Citation(s) in RCA: 56] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2019] [Accepted: 05/22/2019] [Indexed: 12/14/2022] Open
Abstract
Centrioles play critical roles in organizing the assembly of the mitotic spindle and templating the formation of primary cilia. Centriole duplication occurs once per cell cycle and is regulated by Polo-like kinase 4 (PLK4). Although significant progress has been made in understanding centriole composition, we have limited knowledge of how PLK4 activity controls specific steps in centriole formation. Here, we show that PLK4 phosphorylates its centriole substrate STIL on a conserved site, S428, to promote STIL binding to CPAP. This phospho-dependent binding interaction is conserved in Drosophila and facilitates the stable incorporation of both STIL and CPAP into the centriole. We propose that procentriole assembly requires PLK4 to phosphorylate STIL in two different regions: phosphorylation of residues in the STAN motif allow STIL to bind SAS6 and initiate cartwheel assembly, while phosphorylation of S428 promotes the binding of STIL to CPAP, linking the cartwheel to microtubules of the centriole wall. A cell’s DNA is the chemical instruction manual for everything it does. Each cell in our bodies contains over two meters of DNA, which is divided into 46 packages of information called chromosomes. When the body needs to make more cells, for example during growth or repair, existing cells divide in two in order to replicate themselves. This means that they also need to copy all of their DNA and then deliver identical sets of chromosomes to each new cell. Animal cells use structures called centrioles to help them divide their sets of chromosomes accurately. When cells are about to divide, they make a new set of centrioles by assembling a variety of proteins. This assembly process must be carefully controlled; if too many or too few centrioles are built, cell division errors can occur that lead to the generation of new cells with abnormal numbers of chromosomes. The enzyme PLK4 helps to assemble centrioles, but its exact role in the construction process has remained largely unknown. For example, how it might modify different components of the centriole, and why this matters, is poorly understood. By performing cell biological and biochemical experiments using human cells, Moyer and Holland show that PLK4 interacts with a protein called STIL that is found in the central part of the centriole. The modification of STIL at a specific location by PLK4 was needed to link it to another protein in the outer wall of the centriole, and was also necessary for the cells to build new centrioles. Cells in which PLK4 was unable to modify STIL had too few centrioles when they were beginning to divide. Testing the activity of PLK4 in fruit flies revealed that it plays a similar role as in human cells. This suggests that the modification of STIL by PLK4 is important for normal cell division across different species. The results presented by Moyer and Holland help us to understand how dividing cells build the complex machinery that enables them to pass on their genetic material accurately. Future work that builds on these findings could provide insight into human diseases, such as brain development disorders and cancer, where centrioles are either defective or present in the wrong number.
Collapse
Affiliation(s)
- Tyler Chistopher Moyer
- Department of Molecular Biology and Genetics, Johns Hopkins University School of Medicine, Baltimore, United States
| | - Andrew Jon Holland
- Department of Molecular Biology and Genetics, Johns Hopkins University School of Medicine, Baltimore, United States
| |
Collapse
|
214
|
Abstract
The mitotic protein polo-like kinase 4 (PLK4) plays a critical role in centrosome duplication for cell division. By using immunofluorescence, we confirm that PLK4 is localized to centrosomes. In addition, we find that phospho-PLK4 (pPLK4) is cleaved and distributed to kinetochores (metaphase and anaphase), spindle midzone/cleavage furrow (anaphase and telophase), and midbody (cytokinesis) during cell division in immortalized epithelial cells as well as breast, ovarian, and colorectal cancer cells. The distribution of pPLK4 midzone/cleavage furrow and midbody positions pPLK4 to play a functional role in cytokinesis. Indeed, we found that inhibition of PLK4 kinase activity with a small-molecule inhibitor, CFI-400945, prevents translocation to the spindle midzone/cleavage furrow and prevents cellular abscission, leading to the generation of cells with polyploidy, increased numbers of duplicated centrosomes, and vulnerability to anaphase or mitotic catastrophe. The regulatory role of PLK4 in cytokinesis makes it a potential target for therapeutic intervention in appropriately selected cancers.
Collapse
|
215
|
Suri A, Bailey AW, Tavares MT, Gunosewoyo H, Dyer CP, Grupenmacher AT, Piper DR, Horton RA, Tomita T, Kozikowski AP, Roy SM, Sredni ST. Evaluation of Protein Kinase Inhibitors with PLK4 Cross-Over Potential in a Pre-Clinical Model of Cancer. Int J Mol Sci 2019; 20:E2112. [PMID: 31035676 PMCID: PMC6540285 DOI: 10.3390/ijms20092112] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2019] [Revised: 04/26/2019] [Accepted: 04/26/2019] [Indexed: 12/16/2022] Open
Abstract
Polo-like kinase 4 (PLK4) is a cell cycle-regulated protein kinase (PK) recruited at the centrosome in dividing cells. Its overexpression triggers centrosome amplification, which is associated with genetic instability and carcinogenesis. In previous work, we established that PLK4 is overexpressed in pediatric embryonal brain tumors (EBT). We also demonstrated that PLK4 inhibition exerted a cytostatic effect in EBT cells. Here, we examined an array of PK inhibitors (CFI-400945, CFI-400437, centrinone, centrinone-B, R-1530, axitinib, KW-2449, and alisertib) for their potential crossover to PLK4 by comparative structural docking and activity inhibition in multiple established embryonal tumor cell lines (MON, BT-12, BT-16, DAOY, D283). Our analyses demonstrated that: (1) CFI-400437 had the greatest impact overall, but similar to CFI-400945, it is not optimal for brain exposure. Also, their phenotypic anti-cancer impact may, in part, be a consequence of the inhibition of Aurora kinases (AURKs). (2) Centrinone and centrinone B are the most selective PLK4 inhibitors but they are the least likely to penetrate the brain. (3) KW-2449, R-1530 and axitinib are the ones predicted to have moderate-to-good brain penetration. In conclusion, a new selective PLK4 inhibitor with favorable physiochemical properties for optimal brain exposure can be beneficial for the treatment of EBT.
Collapse
Affiliation(s)
- Amreena Suri
- Division of Pediatric Neurosurgery, Ann and Robert H. Lurie Children's Hospital of Chicago, Chicago, IL 60611, USA.
- Cancer Biology and Epigenomics Program, Stanley Manne Children's Research Institute, Chicago, IL 60614, USA.
| | - Anders W Bailey
- Division of Pediatric Neurosurgery, Ann and Robert H. Lurie Children's Hospital of Chicago, Chicago, IL 60611, USA.
- Cancer Biology and Epigenomics Program, Stanley Manne Children's Research Institute, Chicago, IL 60614, USA.
| | - Maurício T Tavares
- Department of Pharmacy, University of São Paulo, São Paulo, SP 05508-900, Brazil.
| | - Hendra Gunosewoyo
- School of Pharmacy and Biomedical Sciences, Curtin University, Bentley, Perth, WA 6102, Australia.
| | - Connor P Dyer
- Division of Pediatric Neurosurgery, Ann and Robert H. Lurie Children's Hospital of Chicago, Chicago, IL 60611, USA.
- Cancer Biology and Epigenomics Program, Stanley Manne Children's Research Institute, Chicago, IL 60614, USA.
| | - Alex T Grupenmacher
- Department of Ophtalmology, Universidade Federal de São Paulo, São Paulo, SP 04023-062, Brazil.
| | - David R Piper
- Thermo Fisher Scientific, Research and Development, Biosciences Division, Carlsbad, CA 92008, USA.
| | - Robert A Horton
- Thermo Fisher Scientific, Research and Development, Biosciences Division, Carlsbad, CA 92008, USA.
| | - Tadanori Tomita
- Division of Pediatric Neurosurgery, Ann and Robert H. Lurie Children's Hospital of Chicago, Chicago, IL 60611, USA.
- Cancer Biology and Epigenomics Program, Stanley Manne Children's Research Institute, Chicago, IL 60614, USA.
- Department of Surgery, Northwestern University, Feinberg School of Medicine, Chicago, IL 60611, USA.
| | | | - Saktimayee M Roy
- Department of Pharmacology, Northwestern University, Feinberg School of Medicine, Chicago, IL 60611, USA.
| | - Simone T Sredni
- Division of Pediatric Neurosurgery, Ann and Robert H. Lurie Children's Hospital of Chicago, Chicago, IL 60611, USA.
- Cancer Biology and Epigenomics Program, Stanley Manne Children's Research Institute, Chicago, IL 60614, USA.
- Department of Surgery, Northwestern University, Feinberg School of Medicine, Chicago, IL 60611, USA.
| |
Collapse
|
216
|
Pallavicini G, Berto GE, Di Cunto F. Precision Revisited: Targeting Microcephaly Kinases in Brain Tumors. Int J Mol Sci 2019; 20:ijms20092098. [PMID: 31035417 PMCID: PMC6539168 DOI: 10.3390/ijms20092098] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2019] [Revised: 04/24/2019] [Accepted: 04/26/2019] [Indexed: 12/18/2022] Open
Abstract
Glioblastoma multiforme and medulloblastoma are the most frequent high-grade brain tumors in adults and children, respectively. Standard therapies for these cancers are mainly based on surgical resection, radiotherapy, and chemotherapy. However, intrinsic or acquired resistance to treatment occurs almost invariably in the first case, and side effects are unacceptable in the second. Therefore, the development of new, effective drugs is a very important unmet medical need. A critical requirement for developing such agents is to identify druggable targets required for the proliferation or survival of tumor cells, but not of other cell types. Under this perspective, genes mutated in congenital microcephaly represent interesting candidates. Congenital microcephaly comprises a heterogeneous group of disorders in which brain volume is reduced, in the absence or presence of variable syndromic features. Genetic studies have clarified that most microcephaly genes encode ubiquitous proteins involved in mitosis and in maintenance of genomic stability, but the effects of their inactivation are particularly strong in neural progenitors. It is therefore conceivable that the inhibition of the function of these genes may specifically affect the proliferation and survival of brain tumor cells. Microcephaly genes encode for a few kinases, including CITK, PLK4, AKT3, DYRK1A, and TRIO. In this review, we summarize the evidence indicating that the inhibition of these molecules could exert beneficial effects on different aspects of brain cancer treatment.
Collapse
Affiliation(s)
- Gianmarco Pallavicini
- Neuroscience Institute Cavalieri Ottolenghi, 10126 Turin, Italy.
- Department of Neurosciences, University of Turin, 10126 Turin, Italy.
- Department of Molecular Biotechnology and Health Sciences, University of Turin, 10126 Turin, Italy.
| | - Gaia E Berto
- Neuroscience Institute Cavalieri Ottolenghi, 10126 Turin, Italy.
- Department of Neurosciences, University of Turin, 10126 Turin, Italy.
| | - Ferdinando Di Cunto
- Neuroscience Institute Cavalieri Ottolenghi, 10126 Turin, Italy.
- Department of Neurosciences, University of Turin, 10126 Turin, Italy.
- Neuroscience Institute of Turin (NIT), 10126 Turin, Italy.
| |
Collapse
|
217
|
Nanjundappa R, Kong D, Shim K, Stearns T, Brody SL, Loncarek J, Mahjoub MR. Regulation of cilia abundance in multiciliated cells. eLife 2019; 8:e44039. [PMID: 31025935 PMCID: PMC6504233 DOI: 10.7554/elife.44039] [Citation(s) in RCA: 47] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2018] [Accepted: 04/25/2019] [Indexed: 12/14/2022] Open
Abstract
Multiciliated cells (MCC) contain hundreds of motile cilia used to propel fluid over their surface. To template these cilia, each MCC produces between 100-600 centrioles by a process termed centriole amplification. Yet, how MCC regulate the precise number of centrioles and cilia remains unknown. Airway progenitor cells contain two parental centrioles (PC) and form structures called deuterosomes that nucleate centrioles during amplification. Using an ex vivo airway culture model, we show that ablation of PC does not perturb deuterosome formation and centriole amplification. In contrast, loss of PC caused an increase in deuterosome and centriole abundance, highlighting the presence of a compensatory mechanism. Quantification of centriole abundance in vitro and in vivo identified a linear relationship between surface area and centriole number. By manipulating cell size, we discovered that centriole number scales with surface area. Our results demonstrate that a cell-intrinsic surface area-dependent mechanism controls centriole and cilia abundance in multiciliated cells.
Collapse
Affiliation(s)
- Rashmi Nanjundappa
- Nephrology Division, Department of MedicineWashington UniversitySt LouisUnited States
| | - Dong Kong
- Center for Cancer Research, National Cancer InstituteFrederickUnited States
| | - Kyuhwan Shim
- Nephrology Division, Department of MedicineWashington UniversitySt LouisUnited States
| | - Tim Stearns
- Department of BiologyStanford UniversityStanfordUnited States
| | - Steven L Brody
- Pulmonary Division, Department of MedicineWashington UniversitySt LouisUnited States
| | - Jadranka Loncarek
- Center for Cancer Research, National Cancer InstituteFrederickUnited States
| | - Moe R Mahjoub
- Nephrology Division, Department of MedicineWashington UniversitySt LouisUnited States
- Department of Cell Biology and PhysiologyWashington UniversitySt LouisUnited States
| |
Collapse
|
218
|
Denu RA, Sass MM, Johnson JM, Potts GK, Choudhary A, Coon JJ, Burkard ME. Polo-like kinase 4 maintains centriolar satellite integrity by phosphorylation of centrosomal protein 131 (CEP131). J Biol Chem 2019; 294:6531-6549. [PMID: 30804208 PMCID: PMC6484138 DOI: 10.1074/jbc.ra118.004867] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2018] [Revised: 02/07/2019] [Indexed: 11/06/2022] Open
Abstract
The centrosome, consisting of two centrioles surrounded by a dense network of proteins, is the microtubule-organizing center of animal cells. Polo-like kinase 4 (PLK4) is a Ser/Thr protein kinase and the master regulator of centriole duplication, but it may play additional roles in centrosome function. To identify additional proteins regulated by PLK4, we generated an RPE-1 human cell line with a genetically engineered "analog-sensitive" PLK4AS, which genetically encodes chemical sensitivity to competitive inhibition via a bulky ATP analog. We used this transgenic line in an unbiased multiplex phosphoproteomic screen. Several hits were identified and validated as direct PLK4 substrates by in vitro kinase assays. Among them, we confirmed Ser-78 in centrosomal protein 131 (CEP131, also known as AZI1) as a direct substrate of PLK4. Using immunofluorescence microscopy, we observed that although PLK4-mediated phosphorylation of Ser-78 is dispensable for CEP131 localization, ciliogenesis, and centriole duplication, it is essential for maintaining the integrity of centriolar satellites. We also found that PLK4 inhibition or use of a nonphosphorylatable CEP131 variant results in dispersed centriolar satellites. Moreover, replacement of endogenous WT CEP131 with an S78D phosphomimetic variant promoted aggregation of centriolar satellites. We conclude that PLK4 phosphorylates CEP131 at Ser-78 to maintain centriolar satellite integrity.
Collapse
Affiliation(s)
- Ryan A Denu
- From the Medical Scientist Training Program
- the Division of Hematology/Oncology, Department of Medicine
- the University of Wisconsin Carbone Cancer Center, University of Wisconsin, Madison, Wisconsin 53705
| | - Madilyn M Sass
- the Division of Hematology/Oncology, Department of Medicine
- the University of Wisconsin Carbone Cancer Center, University of Wisconsin, Madison, Wisconsin 53705
| | - James M Johnson
- the Division of Hematology/Oncology, Department of Medicine
- the University of Wisconsin Carbone Cancer Center, University of Wisconsin, Madison, Wisconsin 53705
| | - Gregory K Potts
- the Department of Chemistry
- the Department of Biomolecular Chemistry
- the Genome Center, and
| | - Alka Choudhary
- the Division of Hematology/Oncology, Department of Medicine
- the University of Wisconsin Carbone Cancer Center, University of Wisconsin, Madison, Wisconsin 53705
| | - Joshua J Coon
- the Department of Chemistry
- the Department of Biomolecular Chemistry
- the Genome Center, and
| | - Mark E Burkard
- the Division of Hematology/Oncology, Department of Medicine,
- the University of Wisconsin Carbone Cancer Center, University of Wisconsin, Madison, Wisconsin 53705
| |
Collapse
|
219
|
Yamamoto S, Kitagawa D. Self-organization of Plk4 regulates symmetry breaking in centriole duplication. Nat Commun 2019; 10:1810. [PMID: 31000710 PMCID: PMC6472344 DOI: 10.1038/s41467-019-09847-x] [Citation(s) in RCA: 43] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2018] [Accepted: 04/01/2019] [Indexed: 01/01/2023] Open
Abstract
During centriole duplication, a single daughter centriole is formed next to the mother centriole. The molecular mechanism that determines a single duplication site remains a long-standing question. Here, we show that intrinsic self-organization of Plk4 is implicated in symmetry breaking in the process of centriole duplication. We demonstrate that Plk4 has an ability to phase-separate into condensates via an intrinsically disordered linker and that the condensation properties of Plk4 are regulated by autophosphorylation. Consistently, the dissociation dynamics of centriolar Plk4 are controlled by autophosphorylation. We further found that autophosphorylated Plk4 is already distributed as a single focus around the mother centriole before the initiation of procentriole formation, and is subsequently targeted for STIL-HsSAS6 loading. Perturbation of Plk4 self-organization affects the asymmetry of centriolar Plk4 distribution and proper centriole duplication. Overall, we propose that the spatial pattern formation of Plk4 is a determinant of a single duplication site per mother centriole.
Collapse
Affiliation(s)
- Shohei Yamamoto
- Graduate School of Pharmaceutical Sciences, The University of Tokyo, Hongo, Tokyo, 113-0033, Japan
- Department of Biological Science, Graduate School of Science, The University of Tokyo, Hongo, Tokyo, 113-0033, Japan
| | - Daiju Kitagawa
- Graduate School of Pharmaceutical Sciences, The University of Tokyo, Hongo, Tokyo, 113-0033, Japan.
| |
Collapse
|
220
|
Zhao H, Chen Q, Fang C, Huang Q, Zhou J, Yan X, Zhu X. Parental centrioles are dispensable for deuterosome formation and function during basal body amplification. EMBO Rep 2019; 20:e46735. [PMID: 30833343 PMCID: PMC6446193 DOI: 10.15252/embr.201846735] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2018] [Revised: 01/28/2019] [Accepted: 02/06/2019] [Indexed: 12/12/2022] Open
Abstract
Mammalian epithelial cells use a pair of parental centrioles and numerous deuterosomes as platforms for efficient basal body production during multiciliogenesis. How deuterosomes form and function, however, remain controversial. They are proposed to arise either spontaneously for massive de novo centriole biogenesis or in a daughter centriole-dependent manner as shuttles to carry away procentrioles assembled at the centriole. Here, we show that both parental centrioles are dispensable for deuterosome formation. In both mouse tracheal epithelial and ependymal cells (mTECs and mEPCs), discrete deuterosomes in the cytoplasm are initially procentriole-free. They emerge at widely dispersed positions in the cytoplasm and then enlarge, concomitant with their increased ability to form procentrioles. More importantly, deuterosomes still form efficiently in mEPCs whose daughter centriole or even both parental centrioles are eliminated through shRNA-mediated depletion or drug inhibition of Plk4, a kinase essential to centriole biogenesis in both cycling cells and multiciliated cells. Therefore, deuterosomes can be assembled autonomously to mediate de novo centriole amplification in multiciliated cells.
Collapse
Affiliation(s)
- Huijie Zhao
- State Key Laboratory of Cell Biology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences University of Chinese Academy of Sciences, Shanghai, China
| | - Qingxia Chen
- School of Life Science and Technology, ShanghaiTech University, Shanghai, China
| | - Chuyu Fang
- State Key Laboratory of Cell Biology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences University of Chinese Academy of Sciences, Shanghai, China
| | - Qiongping Huang
- State Key Laboratory of Cell Biology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences University of Chinese Academy of Sciences, Shanghai, China
| | - Jun Zhou
- Key Laboratory of Animal Resistance Biology of Shandong Province, Institute of Biomedical Sciences, College of Life Sciences, Collaborative Innovation Center of Cell Biology in Universities of Shandong, Shandong Normal University, Jinan, Shandong, China
| | - Xiumin Yan
- State Key Laboratory of Cell Biology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences University of Chinese Academy of Sciences, Shanghai, China
| | - Xueliang Zhu
- State Key Laboratory of Cell Biology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences University of Chinese Academy of Sciences, Shanghai, China
- School of Life Science and Technology, ShanghaiTech University, Shanghai, China
| |
Collapse
|
221
|
Abstract
The centriole organelle consists of microtubules (MTs) that exhibit a striking 9-fold radial symmetry. Centrioles play fundamental roles across eukaryotes, notably in cell signaling, motility and division. In this Cell Science at a Glance article and accompanying poster, we cover the cellular life cycle of this organelle - from assembly to disappearance - focusing on human centrioles. The journey begins at the end of mitosis when centriole pairs disengage and the newly formed centrioles mature to begin a new duplication cycle. Selection of a single site of procentriole emergence through focusing of polo-like kinase 4 (PLK4) and the resulting assembly of spindle assembly abnormal protein 6 (SAS-6) into a cartwheel element are evoked next. Subsequently, we cover the recruitment of peripheral components that include the pinhead structure, MTs and the MT-connecting A-C linker. The function of centrioles in recruiting pericentriolar material (PCM) and in forming the template of the axoneme are then introduced, followed by a mention of circumstances in which centrioles form de novo or are eliminated.
Collapse
Affiliation(s)
- Pierre Gönczy
- Swiss Institute for Experimental Cancer Research (ISREC), School of Life Sciences, Swiss Federal Institute of Technology (EPFL), CH-1015 Lausanne, Switzerland
| | - Georgios N Hatzopoulos
- Swiss Institute for Experimental Cancer Research (ISREC), School of Life Sciences, Swiss Federal Institute of Technology (EPFL), CH-1015 Lausanne, Switzerland
| |
Collapse
|
222
|
Zhang Z, Wang Z, Huang K, Liu Y, Wei C, Zhou J, Zhang W, Wang Q, Liang H, Zhang A, Wang G, Zhen Y, Han L. PLK4 is a determinant of temozolomide sensitivity through phosphorylation of IKBKE in glioblastoma. Cancer Lett 2019; 443:91-107. [DOI: 10.1016/j.canlet.2018.11.034] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2018] [Revised: 11/22/2018] [Accepted: 11/26/2018] [Indexed: 01/11/2023]
|
223
|
Wang M, Knudsen BS, Nagle RB, Rogers GC, Cress AE. A method of quantifying centrosomes at the single-cell level in human normal and cancer tissue. Mol Biol Cell 2019; 30:811-819. [PMID: 30699045 PMCID: PMC6589791 DOI: 10.1091/mbc.e18-10-0651] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Centrosome abnormalities are emerging hallmarks of cancer. The overproduction of centrosomes (known as centrosome amplification) has been reported in a variety of cancers and is currently being explored as a promising target for therapy. However, to understand different types of centrosome abnormalities and their impact on centrosome function during tumor progression, as well as to identify tumor subtypes that would respond to the targeting of a centrosome abnormality, a reliable method for accurately quantifying centrosomes in human tissue samples is needed. Here, we established a method of quantifying centrosomes at a single-cell level in different types of human tissue samples. We tested multiple anti-centriole and pericentriolar-material antibodies to identify bona fide centrosomes and multiplexed these with cell border markers to identify individual cells within the tissue. High-resolution microscopy was used to generate multiple Z-section images, allowing us to acquire whole cell volumes in which to scan for centrosomes. The normal cells within the tissue serve as internal positive controls. Our method provides a simple, accurate way to distinguish alterations in centrosome numbers at the level of single cells.
Collapse
Affiliation(s)
- Mengdie Wang
- Cancer Biology Research Program, University of Arizona, Tucson, AZ 85724
| | - Beatrice S Knudsen
- Department of Pathology and Laboratory Medicine, Cedars Sinai Medical Center, Los Angeles, CA 90048
| | - Raymond B Nagle
- Department of Pathology, University of Arizona, Tucson, AZ 85724
| | - Gregory C Rogers
- Department of Cellular and Molecular Medicine, University of Arizona, Tucson, AZ 85724.,University of Arizona Cancer Center, University of Arizona, Tucson, AZ 85724
| | - Anne E Cress
- Department of Cellular and Molecular Medicine, University of Arizona, Tucson, AZ 85724.,University of Arizona Cancer Center, University of Arizona, Tucson, AZ 85724
| |
Collapse
|
224
|
Vitiello E, Moreau P, Nunes V, Mettouchi A, Maiato H, Ferreira JG, Wang I, Balland M. Acto-myosin force organization modulates centriole separation and PLK4 recruitment to ensure centriole fidelity. Nat Commun 2019; 10:52. [PMID: 30604763 PMCID: PMC6318293 DOI: 10.1038/s41467-018-07965-6] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2017] [Accepted: 11/19/2018] [Indexed: 01/09/2023] Open
Abstract
The presence of aberrant number of centrioles is a recognized cause of aneuploidy and hallmark of cancer. Hence, centriole duplication needs to be tightly regulated. It has been proposed that centriole separation limits centrosome duplication. The mechanism driving centriole separation is poorly understood and little is known on how this is linked to centriole duplication. Here, we propose that actin-generated forces regulate centriole separation. By imposing geometric constraints via micropatterns, we were able to prove that precise acto-myosin force arrangements control direction, distance and time of centriole separation. Accordingly, inhibition of acto-myosin contractility impairs centriole separation. Alongside, we observed that organization of acto-myosin force modulates specifically the length of S-G2 phases of the cell cycle, PLK4 recruitment at the centrosome and centriole fidelity. These discoveries led us to suggest that acto-myosin forces might act in fundamental mechanisms of aneuploidy prevention.
Collapse
Affiliation(s)
- Elisa Vitiello
- Laboratoire interdisciplinaire de Physique, Université Joseph Fourier (Grenoble 1), Domaine universitaire, Bat. E45 140, Rue de la physique, BP 87, 38402, Saint Martin d'Hères, Cedex 9, France.
| | - Philippe Moreau
- Laboratoire interdisciplinaire de Physique, Université Joseph Fourier (Grenoble 1), Domaine universitaire, Bat. E45 140, Rue de la physique, BP 87, 38402, Saint Martin d'Hères, Cedex 9, France
| | - Vanessa Nunes
- Chromosome Instability & Dynamics Laboratory, Instituto de Biologia Molecular e Celular, Universidade do Porto, Rua Alfredo Allen 208, 4200-135, Porto, Portugal
- Instituto de Investigação e Inovação em Saúde-i3S, Universidade do Porto, Rua Alfredo Allen 208, 4200-135, Porto, Portugal
| | - Amel Mettouchi
- Institut Pasteur, Département de Microbiologie, Unité des Toxines Bactériennes, Université Paris Descartes, 25-28 Rue du Dr Roux, 75015, Paris, France
| | - Helder Maiato
- Chromosome Instability & Dynamics Laboratory, Instituto de Biologia Molecular e Celular, Universidade do Porto, Rua Alfredo Allen 208, 4200-135, Porto, Portugal
- Instituto de Investigação e Inovação em Saúde-i3S, Universidade do Porto, Rua Alfredo Allen 208, 4200-135, Porto, Portugal
- Cell Division Group, Experimental Biology Unit, Department of Biomedicine, Faculdade de Medicina, Universidade do Porto, Alameda Prof. Hernâni Monteiro, 4200-319, Porto, Portugal
| | - Jorge G Ferreira
- Chromosome Instability & Dynamics Laboratory, Instituto de Biologia Molecular e Celular, Universidade do Porto, Rua Alfredo Allen 208, 4200-135, Porto, Portugal
- Instituto de Investigação e Inovação em Saúde-i3S, Universidade do Porto, Rua Alfredo Allen 208, 4200-135, Porto, Portugal
- Cell Division Group, Experimental Biology Unit, Department of Biomedicine, Faculdade de Medicina, Universidade do Porto, Alameda Prof. Hernâni Monteiro, 4200-319, Porto, Portugal
| | - Irène Wang
- Laboratoire interdisciplinaire de Physique, Université Joseph Fourier (Grenoble 1), Domaine universitaire, Bat. E45 140, Rue de la physique, BP 87, 38402, Saint Martin d'Hères, Cedex 9, France
| | - Martial Balland
- Laboratoire interdisciplinaire de Physique, Université Joseph Fourier (Grenoble 1), Domaine universitaire, Bat. E45 140, Rue de la physique, BP 87, 38402, Saint Martin d'Hères, Cedex 9, France
| |
Collapse
|
225
|
Abstract
Neurons are polarized cells with long branched axons and dendrites. Microtubule generation and organization machineries are crucial to grow and pattern these complex cellular extensions. Microtubule organizing centers (MTOCs) concentrate the molecular machinery for templating microtubules, stabilizing the nascent polymer, and organizing the resultant microtubules into higher-order structures. MTOC formation and function are well described at the centrosome, in the spindle, and at interphase Golgi; we review these studies and then describe recent results about how the machineries acting at these classic MTOCs are repurposed in the postmitotic neuron for axon and dendrite differentiation. We further discuss a constant tug-of-war interplay between different MTOC activities in the cell and how this process can be used as a substrate for transcription factor-mediated diversification of neuron types.
Collapse
Affiliation(s)
- Jason Y Tann
- Laboratory for Neurodiversity, RIKEN Centre for Brain Science, Saitama, Japan
| | - Adrian W Moore
- Laboratory for Neurodiversity, RIKEN Centre for Brain Science, Saitama, Japan.
| |
Collapse
|
226
|
Abstract
Formin homology proteins (formins) are a highly conserved family of cytoskeletal remodeling proteins that are involved in a diverse array of cellular functions. Formins are best known for their ability to regulate actin dynamics, but the same functional domains also govern stability and organization of microtubules. It is thought that this dual activity allows them to coordinate the activity of these two major cytoskeletal networks and thereby influence cellular architecture. Golgi ribbon assembly is dependent upon cooperative interactions between actin filaments and cytoplasmic microtubules originating both at the Golgi itself and from the centrosome. Similarly, centrosome assembly, centriole duplication, and centrosome positioning are also reliant on a dialogue between both cytoskeletal networks. As presented in this chapter, a growing body of evidence suggests that multiple formin proteins play essential roles in these central cellular processes.
Collapse
Affiliation(s)
- John Copeland
- Faculty of Medicine, Department of Cellular and Molecular Medicine, University of Ottawa, Ottawa, ON, Canada.
| |
Collapse
|
227
|
Yoshiba S, Tsuchiya Y, Ohta M, Gupta A, Shiratsuchi G, Nozaki Y, Ashikawa T, Fujiwara T, Natsume T, Kanemaki M, Kitagawa D. HsSAS-6-dependent cartwheel assembly ensures stabilization of centriole intermediates. J Cell Sci 2019; 132:jcs.217521. [DOI: 10.1242/jcs.217521] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2018] [Accepted: 05/28/2019] [Indexed: 12/23/2022] Open
Abstract
At the onset of procentriole formation, a structure called the cartwheel is formed adjacent to the pre-existing centriole. SAS-6 proteins are thought to constitute the hub of the cartwheel structure. However, the exact function of the cartwheel in the process of centriole formation has not been well characterized. In this study, we focused on the functions of human SAS-6 (HsSAS-6). Using in vitro reconstitution with recombinant HsSAS-6, we first observed its conserved molecular property forming the central part of the cartwheel structure. Furthermore, we uncovered critical functions of HsSAS-6 using a combination of an auxin-inducible SAS-6-degron system and super-resolution microscopy in human cells. Our results demonstrate that the HsSAS-6 is required not only for the initiation of centriole formation, but also for the stabilization of centriole intermediates. Moreover, after procentriole formation, HsSAS-6 is necessary for limiting Plk4 accumulation at the centrioles and thereby suppressing the formation of potential sites for extra procentrioles. Overall, these findings illustrate the conserved and fundamental functions of the cartwheel in centriole duplication.
Collapse
Affiliation(s)
- Satoko Yoshiba
- Division of Centrosome Biology, Department of Molecular Genetics, National Institute of Genetics, Mishima, Shizuoka, Japan
- Current affiliation: Laboratory of Physiological Chemistry, Graduate School of Pharmaceutical Sciences, The University of Tokyo, Japan
| | - Yuki Tsuchiya
- Division of Centrosome Biology, Department of Molecular Genetics, National Institute of Genetics, Mishima, Shizuoka, Japan
- Department of Genetics, School of Life Science, SOKENDAI, Mishima, Shizuoka 411-8540, Japan
| | - Midori Ohta
- Division of Centrosome Biology, Department of Molecular Genetics, National Institute of Genetics, Mishima, Shizuoka, Japan
| | - Akshari Gupta
- Division of Centrosome Biology, Department of Molecular Genetics, National Institute of Genetics, Mishima, Shizuoka, Japan
- Department of Genetics, School of Life Science, SOKENDAI, Mishima, Shizuoka 411-8540, Japan
| | - Gen Shiratsuchi
- Division of Centrosome Biology, Department of Molecular Genetics, National Institute of Genetics, Mishima, Shizuoka, Japan
| | - Yuka Nozaki
- Division of Centrosome Biology, Department of Molecular Genetics, National Institute of Genetics, Mishima, Shizuoka, Japan
| | - Tomoko Ashikawa
- Division of Centrosome Biology, Department of Molecular Genetics, National Institute of Genetics, Mishima, Shizuoka, Japan
| | - Takahiro Fujiwara
- Center for Meso-Bio Single-Molecule Imaging (CeMI), Institute for Integrated Cell-Material Sciences (iCeMS), Kyoto University, Kyoto, Japan
| | - Toyoaki Natsume
- Division of Molecular Cell Engineering, Department of Molecular Genetics, National Institute of Genetics, Mishima, Shizuoka, Japan
| | - Masato Kanemaki
- Division of Molecular Cell Engineering, Department of Molecular Genetics, National Institute of Genetics, Mishima, Shizuoka, Japan
| | - Daiju Kitagawa
- Division of Centrosome Biology, Department of Molecular Genetics, National Institute of Genetics, Mishima, Shizuoka, Japan
- Department of Genetics, School of Life Science, SOKENDAI, Mishima, Shizuoka 411-8540, Japan
- Current affiliation: Laboratory of Physiological Chemistry, Graduate School of Pharmaceutical Sciences, The University of Tokyo, Japan
| |
Collapse
|
228
|
Mariappan A, Soni K, Schorpp K, Zhao F, Minakar A, Zheng X, Mandad S, Macheleidt I, Ramani A, Kubelka T, Dawidowski M, Golfmann K, Wason A, Yang C, Simons J, Schmalz HG, Hyman AA, Aneja R, Ullrich R, Urlaub H, Odenthal M, Büttner R, Li H, Sattler M, Hadian K, Gopalakrishnan J. Inhibition of CPAP-tubulin interaction prevents proliferation of centrosome-amplified cancer cells. EMBO J 2018; 38:embj.201899876. [PMID: 30530478 PMCID: PMC6331730 DOI: 10.15252/embj.201899876] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2018] [Revised: 10/11/2018] [Accepted: 10/18/2018] [Indexed: 11/29/2022] Open
Abstract
Centrosome amplification is a hallmark of human cancers that can trigger cancer cell invasion. To survive, cancer cells cluster amplified extra centrosomes and achieve pseudobipolar division. Here, we set out to prevent clustering of extra centrosomes. Tubulin, by interacting with the centrosomal protein CPAP, negatively regulates CPAP‐dependent peri‐centriolar material recruitment, and concurrently microtubule nucleation. Screening for compounds that perturb CPAP–tubulin interaction led to the identification of CCB02, which selectively binds at the CPAP binding site of tubulin. Genetic and chemical perturbation of CPAP–tubulin interaction activates extra centrosomes to nucleate enhanced numbers of microtubules prior to mitosis. This causes cells to undergo centrosome de‐clustering, prolonged multipolar mitosis, and cell death. 3D‐organotypic invasion assays reveal that CCB02 has broad anti‐invasive activity in various cancer models, including tyrosine kinase inhibitor (TKI)‐resistant EGFR‐mutant non‐small‐cell lung cancers. Thus, we have identified a vulnerability of cancer cells to activation of extra centrosomes, which may serve as a global approach to target various tumors, including drug‐resistant cancers exhibiting high incidence of centrosome amplification.
Collapse
Affiliation(s)
- Aruljothi Mariappan
- Institute für Humangenetik, Universitätsklinikum Düsseldorf, Heinrich-Heine-Universität, Düsseldorf, Germany.,Center for Molecular Medicine of the University of Cologne, Cologne, Germany
| | - Komal Soni
- Institute of Structural Biology, Helmholtz Zentrum München, Neuherberg, Germany.,Biomolecular NMR at Center for Integrated Protein Science Munich and Department Chemie, Technische Universität München, Garching, Germany
| | - Kenji Schorpp
- Assay Development and Screening Platform, Institute of molecular Toxicology and Pharmacology, Helmholtz Zentrum München-German Research Center for Environmental Health, Neuherberg, Germany
| | - Fan Zhao
- Department of Basic Medical Sciences, Center for Structural Biology, School of Medicine, Beijing, China.,MOE Key Laboratory of Protein Sciences, School of Life Sciences, Beijing, China.,Tsinghua-Peking Center for Life Sciences, Tsinghua University, Beijing, China
| | - Amin Minakar
- Department of Chemistry, University of Cologne, Cologne, Germany
| | - Xiangdong Zheng
- Department of Basic Medical Sciences, Center for Structural Biology, School of Medicine, Beijing, China.,MOE Key Laboratory of Protein Sciences, School of Life Sciences, Beijing, China.,Tsinghua-Peking Center for Life Sciences, Tsinghua University, Beijing, China
| | - Sunit Mandad
- Bioanalytical Mass Spectrometry Group, Max Planck Institute for Biophysical Chemistry, Göttingen, Germany.,Bioanalytics, University Medical Center Goettingen, Goettingen, Germany.,Department of Neuro- and Sensory Physiology, University Medical Center Göttingen, Göttingen, Germany
| | - Iris Macheleidt
- Institute of Pathology and Center for Molecular Medicine of the University of Cologne, Cologne, Germany
| | - Anand Ramani
- Institute für Humangenetik, Universitätsklinikum Düsseldorf, Heinrich-Heine-Universität, Düsseldorf, Germany.,IUF-Leibniz Research Institute for Environmental Medicine, Düsseldorf, Germany
| | - Tomáš Kubelka
- Biomolecular NMR at Center for Integrated Protein Science Munich and Department Chemie, Technische Universität München, Garching, Germany
| | - Maciej Dawidowski
- Institute of Structural Biology, Helmholtz Zentrum München, Neuherberg, Germany.,Biomolecular NMR at Center for Integrated Protein Science Munich and Department Chemie, Technische Universität München, Garching, Germany.,Department of Drug Technology and Pharmaceutical Biotechnology, Faculty of Pharmacy, Medical University of Warsaw, Warsaw, Poland
| | - Kristina Golfmann
- Center for Molecular Medicine of the University of Cologne, Cologne, Germany
| | - Arpit Wason
- Center for Molecular Medicine of the University of Cologne, Cologne, Germany
| | - Chunhua Yang
- Department of Biology, Georgia State University, Atlanta, GA, USA
| | - Judith Simons
- Center for Molecular Medicine of the University of Cologne, Cologne, Germany
| | | | - Anthony A Hyman
- Max Planck Institute of Molecular Cell Biology and Genetics, Dresden, Germany
| | - Ritu Aneja
- Department of Biology, Georgia State University, Atlanta, GA, USA
| | - Roland Ullrich
- Center for Molecular Medicine of the University of Cologne, Cologne, Germany
| | - Henning Urlaub
- Bioanalytical Mass Spectrometry Group, Max Planck Institute for Biophysical Chemistry, Göttingen, Germany.,Bioanalytics, University Medical Center Goettingen, Goettingen, Germany
| | - Margarete Odenthal
- Institute of Pathology and Center for Molecular Medicine of the University of Cologne, Cologne, Germany
| | - Reinhardt Büttner
- Institute of Pathology and Center for Molecular Medicine of the University of Cologne, Cologne, Germany
| | - Haitao Li
- Department of Basic Medical Sciences, Center for Structural Biology, School of Medicine, Beijing, China.,MOE Key Laboratory of Protein Sciences, School of Life Sciences, Beijing, China.,Tsinghua-Peking Center for Life Sciences, Tsinghua University, Beijing, China
| | - Michael Sattler
- Institute of Structural Biology, Helmholtz Zentrum München, Neuherberg, Germany.,Biomolecular NMR at Center for Integrated Protein Science Munich and Department Chemie, Technische Universität München, Garching, Germany
| | - Kamyar Hadian
- Assay Development and Screening Platform, Institute of molecular Toxicology and Pharmacology, Helmholtz Zentrum München-German Research Center for Environmental Health, Neuherberg, Germany
| | - Jay Gopalakrishnan
- Institute für Humangenetik, Universitätsklinikum Düsseldorf, Heinrich-Heine-Universität, Düsseldorf, Germany .,Center for Molecular Medicine of the University of Cologne, Cologne, Germany.,IUF-Leibniz Research Institute for Environmental Medicine, Düsseldorf, Germany
| |
Collapse
|
229
|
Ignacio DP, Coffman VC, Dawes AT. Centriole Biogenesis: Symmetry Breaking and Site Selection. Trends Cell Biol 2018; 29:3-5. [PMID: 30470626 DOI: 10.1016/j.tcb.2018.11.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2018] [Accepted: 11/02/2018] [Indexed: 10/27/2022]
Abstract
Centrioles must duplicate as cells progress through the cell cycle but it is unclear how the site of duplication is selected. A recent computational study demonstrates that two separate but interacting feedback mechanisms (autocatalytic activation and substrate depletion) are capable of selecting a single site for centriole biogenesis.
Collapse
Affiliation(s)
- David P Ignacio
- Molecular, Cellular and Developmental Biology Graduate Program, The Ohio State University, Columbus, OH 43210, USA
| | - Valerie C Coffman
- Department of Molecular Genetics, The Ohio State University, Columbus, OH 43210, USA
| | - Adriana T Dawes
- Department of Molecular Genetics, The Ohio State University, Columbus, OH 43210, USA; Department of Mathematics, The Ohio State University, Columbus, OH 43210, USA.
| |
Collapse
|
230
|
Boese CJ, Nye J, Buster DW, McLamarrah TA, Byrnes AE, Slep KC, Rusan NM, Rogers GC. Asterless is a Polo-like kinase 4 substrate that both activates and inhibits kinase activity depending on its phosphorylation state. Mol Biol Cell 2018; 29:2874-2886. [PMID: 30256714 PMCID: PMC6249866 DOI: 10.1091/mbc.e18-07-0445] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2018] [Revised: 09/13/2018] [Accepted: 09/19/2018] [Indexed: 11/26/2022] Open
Abstract
Centriole assembly initiates when Polo-like kinase 4 (Plk4) interacts with a centriole "targeting-factor." In Drosophila, Asterless/Asl (Cep152 in humans) fulfills the targeting role. Interestingly, Asl also regulates Plk4 levels. The N-terminus of Asl (Asl-A; amino acids 1-374) binds Plk4 and promotes Plk4 self-destruction, although it is unclear how this is achieved. Moreover, Plk4 phosphorylates the Cep152 N-terminus, but the functional consequence is unknown. Here, we show that Plk4 phosphorylates Asl and mapped 13 phospho-residues in Asl-A. Nonphosphorylatable alanine (13A) and phosphomimetic (13PM) mutants did not alter Asl function, presumably because of the dominant role of the Asl C-terminus in Plk4 stabilization and centriolar targeting. To address how Asl-A phosphorylation specifically affects Plk4 regulation, we generated Asl-A fragment phospho-mutants and expressed them in cultured Drosophila cells. Asl-A-13A stimulated kinase activity by relieving Plk4 autoinhibition. In contrast, Asl-A-13PM inhibited Plk4 activity by a novel mechanism involving autophosphorylation of Plk4's kinase domain. Thus, Asl-A's phosphorylation state determines which of Asl-A's two opposing effects are exerted on Plk4. Initially, nonphosphorylated Asl binds Plk4 and stimulates its kinase activity, but after Asl is phosphorylated, a negative-feedback mechanism suppresses Plk4 activity. This dual regulatory effect by Asl-A may limit Plk4 to bursts of activity that modulate centriole duplication.
Collapse
Affiliation(s)
- Cody J. Boese
- Department of Cellular and Molecular Medicine, University of Arizona Cancer Center, University of Arizona, Tucson, AZ 85724
| | - Jonathan Nye
- Department of Cellular and Molecular Medicine, University of Arizona Cancer Center, University of Arizona, Tucson, AZ 85724
| | - Daniel W. Buster
- Department of Cellular and Molecular Medicine, University of Arizona Cancer Center, University of Arizona, Tucson, AZ 85724
| | - Tiffany A. McLamarrah
- Department of Cellular and Molecular Medicine, University of Arizona Cancer Center, University of Arizona, Tucson, AZ 85724
| | - Amy E. Byrnes
- Department of Biology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599
| | - Kevin C. Slep
- Department of Biology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599
| | - Nasser M. Rusan
- National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD 20892
| | - Gregory C. Rogers
- Department of Cellular and Molecular Medicine, University of Arizona Cancer Center, University of Arizona, Tucson, AZ 85724
| |
Collapse
|
231
|
Montenegro Gouveia S, Zitouni S, Kong D, Duarte P, Ferreira Gomes B, Sousa AL, Tranfield EM, Hyman A, Loncarek J, Bettencourt-Dias M. PLK4 is a microtubule-associated protein that self-assembles promoting de novo MTOC formation. J Cell Sci 2018; 132:jcs.219501. [PMID: 30237222 PMCID: PMC6398482 DOI: 10.1242/jcs.219501] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2018] [Accepted: 09/10/2018] [Indexed: 01/09/2023] Open
Abstract
The centrosome is an important microtubule-organising centre (MTOC) in animal cells. It consists of two barrel-shaped structures, the centrioles, surrounded by the pericentriolar material (PCM), which nucleates microtubules. Centrosomes can form close to an existing structure (canonical duplication) or de novo. How centrosomes form de novo is not known. The master driver of centrosome biogenesis, PLK4, is critical for the recruitment of several centriole components. Here, we investigate the beginning of centrosome biogenesis, taking advantage of Xenopus egg extracts, where PLK4 can induce de novo MTOC formation (
Eckerdt et al., 2011; Zitouni et al., 2016). Surprisingly, we observe that in vitro, PLK4 can self-assemble into condensates that recruit α- and β-tubulins. In Xenopus extracts, PLK4 assemblies additionally recruit STIL, a substrate of PLK4, and the microtubule nucleator γ-tubulin, forming acentriolar MTOCs de novo. The assembly of these robust microtubule asters is independent of dynein, similar to what is found for centrosomes. We suggest a new mechanism of action for PLK4, where it forms a self-organising catalytic scaffold that recruits centriole components, PCM factors and α- and β-tubulins, leading to MTOC formation. This article has an associated First Person interview with the first author of the paper. Summary: PLK4 binds to microtubules and self-assembles into condensates that recruit tubulin and trigger de novo microtubule-organising centre formation in vitro.
Collapse
Affiliation(s)
- Susana Montenegro Gouveia
- Cell Cycle Regulation Laboratory, Instituto Gulbenkian de Ciência, Rua da Quinta Grande 6, Oeiras, 2780-156, Portugal
| | - Sihem Zitouni
- Cell Cycle Regulation Laboratory, Instituto Gulbenkian de Ciência, Rua da Quinta Grande 6, Oeiras, 2780-156, Portugal
| | - Dong Kong
- Laboratory of Protein Dynamics and Signalling, National Institutes of Health/National Cancer Institute/Center for Cancer Research, Frederick, MD 21702, USA
| | - Paulo Duarte
- Cell Cycle Regulation Laboratory, Instituto Gulbenkian de Ciência, Rua da Quinta Grande 6, Oeiras, 2780-156, Portugal
| | - Beatriz Ferreira Gomes
- Max Planck Institute of Molecular Biology and Genetics, Pfotenhauerstrasse 108, 01307 Dresden, Germany
| | - Ana Laura Sousa
- Cell Cycle Regulation Laboratory, Instituto Gulbenkian de Ciência, Rua da Quinta Grande 6, Oeiras, 2780-156, Portugal
| | - Erin M Tranfield
- Cell Cycle Regulation Laboratory, Instituto Gulbenkian de Ciência, Rua da Quinta Grande 6, Oeiras, 2780-156, Portugal
| | - Anthony Hyman
- Max Planck Institute of Molecular Biology and Genetics, Pfotenhauerstrasse 108, 01307 Dresden, Germany
| | - Jadranka Loncarek
- Laboratory of Protein Dynamics and Signalling, National Institutes of Health/National Cancer Institute/Center for Cancer Research, Frederick, MD 21702, USA
| | - Monica Bettencourt-Dias
- Cell Cycle Regulation Laboratory, Instituto Gulbenkian de Ciência, Rua da Quinta Grande 6, Oeiras, 2780-156, Portugal
| |
Collapse
|
232
|
Colicino EG, Hehnly H. Regulating a key mitotic regulator, polo-like kinase 1 (PLK1). Cytoskeleton (Hoboken) 2018; 75:481-494. [PMID: 30414309 PMCID: PMC7113694 DOI: 10.1002/cm.21504] [Citation(s) in RCA: 60] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2018] [Revised: 10/08/2018] [Accepted: 10/26/2018] [Indexed: 12/13/2022]
Abstract
During cell division, duplicated genetic material is separated into two distinct daughter cells. This process is essential for initial tissue formation during development and to maintain tissue integrity throughout an organism's lifetime. To ensure the efficacy and efficiency of this process, the cell employs a variety of regulatory and signaling proteins that function as mitotic regulators and checkpoint proteins. One vital mitotic regulator is polo-like kinase 1 (PLK1), a highly conserved member of the polo-like kinase family. Unique from its paralogues, it functions specifically during mitosis as a regulator of cell division. PLK1 is spatially and temporally enriched at three distinct subcellular locales; the mitotic centrosomes, kinetochores, and the cytokinetic midbody. These localization patterns allow PLK1 to phosphorylate specific downstream targets to regulate mitosis. In this review, we will explore how polo-like kinases were originally discovered and diverged into the five paralogues (PLK1-5) in mammals. We will then focus specifically on the most conserved, PLK1, where we will discuss what is known about how its activity is modulated, its role during the cell cycle, and new, innovative tools that have been developed to examine its function and interactions in cells.
Collapse
Affiliation(s)
- Erica G. Colicino
- Department of Cell and Developmental BiologyUpstate Medical UniversitySyracuseNew York
| | - Heidi Hehnly
- Department of Cell and Developmental BiologyUpstate Medical UniversitySyracuseNew York
- Department of BiologySyracuse UniversitySyracuseNew York
| |
Collapse
|
233
|
Reply to Oegema et al.: CFI-400945 and Polo-like kinase 4 inhibition. Proc Natl Acad Sci U S A 2018; 115:E10810-E10811. [PMID: 30377273 DOI: 10.1073/pnas.1813967115] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
|
234
|
|
235
|
Leda M, Holland AJ, Goryachev AB. Autoamplification and Competition Drive Symmetry Breaking: Initiation of Centriole Duplication by the PLK4-STIL Network. iScience 2018; 8:222-235. [PMID: 30340068 PMCID: PMC6197440 DOI: 10.1016/j.isci.2018.10.003] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2018] [Revised: 09/26/2018] [Accepted: 10/04/2018] [Indexed: 12/17/2022] Open
Abstract
Centrioles, the cores of centrosomes and cilia, duplicate every cell cycle to ensure their faithful inheritance. How only a single procentriole is produced on each mother centriole remains enigmatic. We propose the first mechanistic biophysical model for procentriole initiation which posits that interactions between kinase PLK4 and its activator-substrate STIL are central for procentriole initiation. The model recapitulates the transition from a uniform "ring" of PLK4 surrounding the mother centriole to a single PLK4 "spot" that initiates procentriole assembly. This symmetry breaking requires autocatalytic activation of PLK4 and enhanced centriolar anchoring of PLK4 by phosphorylated STIL. We find that in situ degradation of active PLK4 cannot break symmetry. The model predicts that competition between transient PLK4 activity maxima for PLK4-STIL complexes destabilizes the PLK4 ring and produces instead a single PLK4 spot. Weakening of competition by overexpression of PLK4 and STIL causes progressive addition of supernumerary procentrioles, as observed experimentally.
Collapse
Affiliation(s)
- Marcin Leda
- Centre for Synthetic and Systems Biology, School of Biological Sciences, University of Edinburgh, Edinburgh, EH9 3BF UK
| | - Andrew J Holland
- Department of Molecular Biology and Genetics, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Andrew B Goryachev
- Centre for Synthetic and Systems Biology, School of Biological Sciences, University of Edinburgh, Edinburgh, EH9 3BF UK.
| |
Collapse
|
236
|
YLT-11, a novel PLK4 inhibitor, inhibits human breast cancer growth via inducing maladjusted centriole duplication and mitotic defect. Cell Death Dis 2018; 9:1066. [PMID: 30337519 PMCID: PMC6194023 DOI: 10.1038/s41419-018-1071-2] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2018] [Revised: 05/24/2018] [Accepted: 05/31/2018] [Indexed: 02/05/2023]
Abstract
Polo-like kinase 4 (PLK4) is indispensable for precise control of centriole duplication. Abnormal expression of PLK4 has been reported in many human cancers, and inhibition of PLK4 activity results in their mitotic arrest and apoptosis. Therefore, PLK4 may be a valid therapeutic target for antitumor therapy. However, clinically available small-molecule inhibitors targeting PLK4 are deficient and their underlying mechanisms still remain not fully clear. Herein, the effects of YLT-11 on breast cancer cells and the associated mechanism were investigated. In vitro, YLT-11 exhibited significant antiproliferation activities against breast cancer cells. Meanwhile, cells treated with YLT-11 exhibited effects consistent with PLK4 kinase inhibition, including dysregulated centriole duplication and mitotic defects, sequentially making tumor cells more vulnerable to chemotherapy. Furthermore, YLT-11 could strongly regulate downstream factors of PLK4, which was involved in cell cycle regulation, ultimately inducing apoptosis of breast cancer cell. In vivo, oral administration of YLT-11 significantly suppressed the tumor growth in human breast cancer xenograft models at doses that are well tolerated. In summary, the preclinical data show that YLT-11 could be a promising candidate drug for breast tumor therapy.
Collapse
|
237
|
Gavilan MP, Gandolfo P, Balestra FR, Arias F, Bornens M, Rios RM. The dual role of the centrosome in organizing the microtubule network in interphase. EMBO Rep 2018; 19:embr.201845942. [PMID: 30224411 DOI: 10.15252/embr.201845942] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2018] [Revised: 08/27/2018] [Accepted: 08/29/2018] [Indexed: 11/09/2022] Open
Abstract
Here, we address the regulation of microtubule nucleation during interphase by genetically ablating one, or two, of three major mammalian γ-TuRC-binding factors namely pericentrin, CDK5Rap2, and AKAP450. Unexpectedly, we find that while all of them participate in microtubule nucleation at the Golgi apparatus, they only modestly contribute at the centrosome where CEP192 has a more predominant function. We also show that inhibiting microtubule nucleation at the Golgi does not affect centrosomal activity, whereas manipulating the number of centrosomes with centrinone modifies microtubule nucleation activity of the Golgi apparatus. In centrosome-free cells, inhibition of Golgi-based microtubule nucleation triggers pericentrin-dependent formation of cytoplasmic-nucleating structures. Further depletion of pericentrin under these conditions leads to the generation of individual microtubules in a γ-tubulin-dependent manner. In all cases, a conspicuous MT network forms. Strikingly, centrosome loss increases microtubule number independently of where they were growing from. Our results lead to an unexpected view of the interphase centrosome that would control microtubule network organization not only by nucleating microtubules, but also by modulating the activity of alternative microtubule-organizing centers.
Collapse
Affiliation(s)
- Maria P Gavilan
- Centro Andaluz de Biología Molecular y Medicina Regenerativa CABIMER, Universidad de Sevilla-CSIC-Universidad Pablo de Olavide, Seville, Spain
| | - Pablo Gandolfo
- Centro Andaluz de Biología Molecular y Medicina Regenerativa CABIMER, Universidad de Sevilla-CSIC-Universidad Pablo de Olavide, Seville, Spain
| | - Fernando R Balestra
- Centro Andaluz de Biología Molecular y Medicina Regenerativa CABIMER, Universidad de Sevilla-CSIC-Universidad Pablo de Olavide, Seville, Spain
| | - Francisco Arias
- Centro Andaluz de Biología Molecular y Medicina Regenerativa CABIMER, Universidad de Sevilla-CSIC-Universidad Pablo de Olavide, Seville, Spain
| | | | - Rosa M Rios
- Centro Andaluz de Biología Molecular y Medicina Regenerativa CABIMER, Universidad de Sevilla-CSIC-Universidad Pablo de Olavide, Seville, Spain
| |
Collapse
|
238
|
Renzova T, Bohaciakova D, Esner M, Pospisilova V, Barta T, Hampl A, Cajanek L. Inactivation of PLK4-STIL Module Prevents Self-Renewal and Triggers p53-Dependent Differentiation in Human Pluripotent Stem Cells. Stem Cell Reports 2018; 11:959-972. [PMID: 30197118 PMCID: PMC6178195 DOI: 10.1016/j.stemcr.2018.08.008] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2017] [Revised: 08/08/2018] [Accepted: 08/08/2018] [Indexed: 12/25/2022] Open
Abstract
Centrioles account for centrosomes and cilia formation. Recently, a link between centrosomal components and human developmental disorders has been established. However, the exact mechanisms how centrosome abnormalities influence embryogenesis and cell fate are not understood. PLK4-STIL module represents a key element of centrosome duplication cycle. We analyzed consequences of inactivation of the module for early events of embryogenesis in human embryonic stem cells (hESCs) and human induced pluripotent stem cells (hiPSCs). We demonstrate that blocking of PLK4 or STIL functions leads to centrosome loss followed by both p53-dependent and -independent defects, including prolonged cell divisions, upregulation of p53, chromosome instability, and, importantly, reduction of pluripotency markers and induction of differentiation. We show that the observed loss of key stem cells properties is connected to alterations in mitotic timing and protein turnover. In sum, our data define a link between centrosome, its regulators, and the control of pluripotency and differentiation in PSCs. Blocking of PLK4-STIL module in hESCs/hiPSCs leads to: Centrosome loss, prolonged and error-prone mitosis; p53-dependent differentiation; Reduction of pluripotency linked to altered protein turnover
Collapse
Affiliation(s)
- Tereza Renzova
- Department of Histology and Embryology, Masaryk University, Faculty of Medicine, Brno 625 00, Czech Republic
| | - Dasa Bohaciakova
- Department of Histology and Embryology, Masaryk University, Faculty of Medicine, Brno 625 00, Czech Republic
| | - Milan Esner
- Department of Histology and Embryology, Masaryk University, Faculty of Medicine, Brno 625 00, Czech Republic; Cellular Imaging Core Facility, Central European Institute of Technology (CEITEC), Masaryk University, Brno 625 00, Czech Republic
| | - Veronika Pospisilova
- Department of Histology and Embryology, Masaryk University, Faculty of Medicine, Brno 625 00, Czech Republic
| | - Tomas Barta
- Department of Histology and Embryology, Masaryk University, Faculty of Medicine, Brno 625 00, Czech Republic
| | - Ales Hampl
- Department of Histology and Embryology, Masaryk University, Faculty of Medicine, Brno 625 00, Czech Republic; International Clinical Research Center, St. Anne's University Hospital, Brno 656 91, Czech Republic
| | - Lukas Cajanek
- Department of Histology and Embryology, Masaryk University, Faculty of Medicine, Brno 625 00, Czech Republic.
| |
Collapse
|
239
|
Uzbekov R, Garanina A, Bressac C. Centrioles without microtubules: a new morphological type of centriole. Biol Open 2018; 7:bio036012. [PMID: 29997243 PMCID: PMC6124565 DOI: 10.1242/bio.036012] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2018] [Accepted: 07/03/2018] [Indexed: 12/21/2022] Open
Abstract
The centrosome is the organizing center of microtubules in the cell, the basis for the origin of cilia and flagella and a site for the concentration of a regulatory proteins multitude. The centrosome comprises two centrioles surrounded by pericentriolar material. Centrioles in the cells of different organisms can contain nine triplets, doublets or singlets of microtubules. Here, we show that in somatic cells of male wasp larvae Anisopteromalus calandrae, centrioles do not contain microtubules and are composed of nine electron-dense prongs, which together form a cogwheel structure. These microtubule-free centrioles can be the platform for procentriole formation and form microtubule-free cilia-like structures. In nymph and imago cells centrioles have a microtubule triplet structure. Our study describes how centriole structure differs in a development-stage-dependent and a cell-type-dependent manner. The discovery of a centriole without microtubules casts a new light on the centriole formation process and the evolution of this organelle.
Collapse
Affiliation(s)
- Rustem Uzbekov
- Department of Microscopy, University of Tours, Tours 37032, France
- Faculty of Bioengineering and Bioinformatics, Moscow State University, Moscow 119992, Russia
| | | | - Christophe Bressac
- Institute of Research on Insect Biology, IMIP research team UMR CNRS 7261, University of AQ1 Tours, Tours 37200, France
| |
Collapse
|
240
|
Kawakami M, Liu X, Dmitrovsky E. New Cell Cycle Inhibitors Target Aneuploidy in Cancer Therapy. Annu Rev Pharmacol Toxicol 2018; 59:361-377. [PMID: 30110577 DOI: 10.1146/annurev-pharmtox-010818-021649] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Aneuploidy is a hallmark of cancer. Defects in chromosome segregation result in aneuploidy. Multiple pathways are engaged in this process, including errors in kinetochore-microtubule attachments, supernumerary centrosomes, spindle assembly checkpoint (SAC) defects, and chromosome cohesion defects. Although aneuploidy provides an adaptation and proliferative advantage in affected cells, excessive aneuploidy beyond a critical level can be lethal to cancer cells. Given this, enhanced chromosome missegregation is hypothesized to limit survival of aneuploid cancer cells, especially when compared to diploid cells. Based on this concept, proteins and pathways engaged in chromosome segregation are being exploited as candidate therapeutic targets for aneuploid cancers. Agents that induce chromosome missegregation and aneuploidy now exist, including SAC inhibitors, those that alter centrosome fidelity and others that are under active study in preclinical and clinical contexts. This review explores the therapeutic potentials of such new agents, including the benefits of combining them with other antineoplastic agents.
Collapse
Affiliation(s)
- Masanori Kawakami
- Department of Thoracic/Head and Neck Medical Oncology, MD Anderson Cancer Center, The University of Texas, Houston, Texas 77030, USA
| | - Xi Liu
- Department of Thoracic/Head and Neck Medical Oncology, MD Anderson Cancer Center, The University of Texas, Houston, Texas 77030, USA
| | - Ethan Dmitrovsky
- Department of Thoracic/Head and Neck Medical Oncology, MD Anderson Cancer Center, The University of Texas, Houston, Texas 77030, USA.,Department of Cancer Biology, MD Anderson Cancer Center, The University of Texas, Houston, Texas 77030, USA.,Current affiliation: Frederick National Laboratory for Cancer Research, Frederick, Maryland 21701, USA;
| |
Collapse
|
241
|
Hoque M, Abbassi RH, Froio D, Man J, Johns TG, Stringer BW, Day BW, Pajic M, Kassiou M, Munoz L. Changes in cell morphology guide identification of tubulin as the off-target for protein kinase inhibitors. Pharmacol Res 2018; 134:166-178. [DOI: 10.1016/j.phrs.2018.06.023] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/22/2018] [Revised: 06/13/2018] [Accepted: 06/22/2018] [Indexed: 10/28/2022]
|
242
|
Visweshwaran SP, Thomason PA, Guerois R, Vacher S, Denisov EV, Tashireva LA, Lomakina ME, Lazennec-Schurdevin C, Lakisic G, Lilla S, Molinie N, Henriot V, Mechulam Y, Alexandrova AY, Cherdyntseva NV, Bièche I, Schmitt E, Insall RH, Gautreau A. The trimeric coiled-coil HSBP1 protein promotes WASH complex assembly at centrosomes. EMBO J 2018; 37:e97706. [PMID: 29844016 PMCID: PMC6028030 DOI: 10.15252/embj.201797706] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2017] [Revised: 04/23/2018] [Accepted: 04/25/2018] [Indexed: 12/11/2022] Open
Abstract
The Arp2/3 complex generates branched actin networks that exert pushing forces onto different cellular membranes. WASH complexes activate Arp2/3 complexes at the surface of endosomes and thereby fission transport intermediates containing endocytosed receptors, such as α5β1 integrins. How WASH complexes are assembled in the cell is unknown. Here, we identify the small coiled-coil protein HSBP1 as a factor that specifically promotes the assembly of a ternary complex composed of CCDC53, WASH, and FAM21 by dissociating the CCDC53 homotrimeric precursor. HSBP1 operates at the centrosome, which concentrates the building blocks. HSBP1 depletion in human cancer cell lines and in Dictyostelium amoebae phenocopies WASH depletion, suggesting a critical role of the ternary WASH complex for WASH functions. HSBP1 is required for the development of focal adhesions and of cell polarity. These defects impair the migration and invasion of tumor cells. Overexpression of HSBP1 in breast tumors is associated with increased levels of WASH complexes and with poor prognosis for patients.
Collapse
Affiliation(s)
- Sai P Visweshwaran
- Ecole Polytechnique, CNRS UMR7654, Université Paris-Saclay, Palaiseau, France
| | | | - Raphael Guerois
- Institute for Integrative Biology of the Cell (I2BC), CEA, CNRS, Université Paris-Saclay, Gif-sur-Yvette, France
| | - Sophie Vacher
- Pharmacogenomics Unit, Department of Genetics, Institut Curie, Paris, France
| | - Evgeny V Denisov
- Laboratory of Molecular Oncology and Immunology, Cancer Research Institute, Tomsk National Research Medical Center, Tomsk, Russia
- Laboratory for Translational Cellular and Molecular Biomedicine, Tomsk State University, Tomsk, Russia
| | - Lubov A Tashireva
- Department of General and Molecular Pathology, Cancer Research Institute, Tomsk National Research Medical Center, Tomsk, Russia
| | - Maria E Lomakina
- Institute of Carcinogenesis, N.N. Blokhin Cancer Research Center, Moscow, Russia
| | | | - Goran Lakisic
- Ecole Polytechnique, CNRS UMR7654, Université Paris-Saclay, Palaiseau, France
| | - Sergio Lilla
- Beatson Institute for Cancer Research, Bearsden, UK
| | - Nicolas Molinie
- Ecole Polytechnique, CNRS UMR7654, Université Paris-Saclay, Palaiseau, France
| | - Veronique Henriot
- Ecole Polytechnique, CNRS UMR7654, Université Paris-Saclay, Palaiseau, France
| | - Yves Mechulam
- Ecole Polytechnique, CNRS UMR7654, Université Paris-Saclay, Palaiseau, France
| | | | - Nadezhda V Cherdyntseva
- Laboratory of Molecular Oncology and Immunology, Cancer Research Institute, Tomsk National Research Medical Center, Tomsk, Russia
| | - Ivan Bièche
- Pharmacogenomics Unit, Department of Genetics, Institut Curie, Paris, France
| | - Emmanuelle Schmitt
- Ecole Polytechnique, CNRS UMR7654, Université Paris-Saclay, Palaiseau, France
| | | | - Alexis Gautreau
- Ecole Polytechnique, CNRS UMR7654, Université Paris-Saclay, Palaiseau, France
- School of Biological and Medical Physics, Moscow Institute of Physics and Technology, Dolgoprudny, Russia
| |
Collapse
|
243
|
Lopes CAM, Mesquita M, Cunha AI, Cardoso J, Carapeta S, Laranjeira C, Pinto AE, Pereira-Leal JB, Dias-Pereira A, Bettencourt-Dias M, Chaves P. Centrosome amplification arises before neoplasia and increases upon p53 loss in tumorigenesis. J Cell Biol 2018; 217:2353-2363. [PMID: 29739803 PMCID: PMC6028540 DOI: 10.1083/jcb.201711191] [Citation(s) in RCA: 47] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2017] [Revised: 04/07/2018] [Accepted: 04/17/2018] [Indexed: 12/16/2022] Open
Abstract
Centrosome abnormalities are a typical hallmark of human cancers. However, the origin and dynamics of such abnormalities in human cancer are not known. In this study, we examined centrosomes in Barrett's esophagus tumorigenesis, a well-characterized multistep pathway of progression, from the premalignant condition to the metastatic disease. This human cancer model allows the study of sequential steps of progression within the same patient and has representative cell lines from all stages of disease. Remarkably, centrosome amplification was detected as early as the premalignant condition and was significantly expanded in dysplasia. It was then present throughout malignant transformation both in adenocarcinoma and metastasis. The early expansion of centrosome amplification correlated with and was dependent on loss of function of the tumor suppressor p53 both through loss of wild-type expression and hotspot mutations. Our work shows that centrosome amplification in human tumorigenesis can occur before transformation, being repressed by p53. These findings suggest centrosome amplification in humans can contribute to tumor initiation and progression.
Collapse
Affiliation(s)
- Carla A M Lopes
- Instituto Português de Oncologia de Lisboa Francisco Gentil, Lisbon, Portugal
- Instituto Gulbenkian de Ciência, Oeiras, Portugal
| | - Marta Mesquita
- Instituto Português de Oncologia de Lisboa Francisco Gentil, Lisbon, Portugal
- Faculdade de Ciências da Saúde, Universidade da Beira Interior, Covilhã, Portugal
| | - Ana Isabel Cunha
- Instituto Português de Oncologia de Lisboa Francisco Gentil, Lisbon, Portugal
| | | | | | - Cátia Laranjeira
- Instituto Português de Oncologia de Lisboa Francisco Gentil, Lisbon, Portugal
| | - António E Pinto
- Instituto Português de Oncologia de Lisboa Francisco Gentil, Lisbon, Portugal
| | | | - António Dias-Pereira
- Instituto Português de Oncologia de Lisboa Francisco Gentil, Lisbon, Portugal
- Faculdade de Ciências da Saúde, Universidade da Beira Interior, Covilhã, Portugal
| | | | - Paula Chaves
- Instituto Português de Oncologia de Lisboa Francisco Gentil, Lisbon, Portugal
- Faculdade de Ciências da Saúde, Universidade da Beira Interior, Covilhã, Portugal
| |
Collapse
|
244
|
Fishman EL, Jo K, Nguyen QPH, Kong D, Royfman R, Cekic AR, Khanal S, Miller AL, Simerly C, Schatten G, Loncarek J, Mennella V, Avidor-Reiss T. A novel atypical sperm centriole is functional during human fertilization. Nat Commun 2018; 9:2210. [PMID: 29880810 PMCID: PMC5992222 DOI: 10.1038/s41467-018-04678-8] [Citation(s) in RCA: 90] [Impact Index Per Article: 12.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2018] [Accepted: 05/15/2018] [Indexed: 11/18/2022] Open
Abstract
The inheritance of the centrosome during human fertilization remains mysterious. Here we show that the sperm centrosome contains, in addition to the known typical barrel-shaped centriole (the proximal centriole, PC), a surrounding matrix (pericentriolar material, PCM), and an atypical centriole (distal centriole, DC) composed of splayed microtubules surrounding previously undescribed rods of centriole luminal proteins. The sperm centrosome is remodeled by both reduction and enrichment of specific proteins and the formation of these rods during spermatogenesis. In vivo and in vitro investigations show that the flagellum-attached, atypical DC is capable of recruiting PCM, forming a daughter centriole, and localizing to the spindle pole during mitosis. Altogether, we show that the DC is compositionally and structurally remodeled into an atypical centriole, which functions as the zygote's second centriole. These findings now provide novel avenues for diagnostics and therapeutic strategies for male infertility, and insights into early embryo developmental defects.
Collapse
Affiliation(s)
- Emily L Fishman
- Department of Biological Sciences, University of Toledo, 2801W. Bancroft, Toledo, OH, 43607, USA
| | - Kyoung Jo
- Department of Biological Sciences, University of Toledo, 2801W. Bancroft, Toledo, OH, 43607, USA
| | - Quynh P H Nguyen
- Cell Biology Program, The Hospital for Sick Children, Department of Biochemistry, University of Toronto, 555 University Avenue, Toronto, ON, M5G 1X8, Canada
| | - Dong Kong
- Laboratory of Protein Dynamics and Signaling, Center for Cancer Research, National Cancer Institute, 1050 Boyles Street, Frederick, MD, 21702, USA
| | - Rachel Royfman
- Department of Biological Sciences, University of Toledo, 2801W. Bancroft, Toledo, OH, 43607, USA
| | - Anthony R Cekic
- Department of Biological Sciences, University of Toledo, 2801W. Bancroft, Toledo, OH, 43607, USA
| | - Sushil Khanal
- Department of Biological Sciences, University of Toledo, 2801W. Bancroft, Toledo, OH, 43607, USA
| | - Ann L Miller
- Department of Molecular, Cellular, and Developmental Biology, University of Michigan, 830 North University Ave, Ann Arbor, MI, 48109, USA
| | - Calvin Simerly
- Departments of Cell Biology; Obstetrics, Gynecology and Reproductive Sciences; and Bioengineering, Magee-Womens Research Institute, University of Pittsburgh School of Medicine, 204 Craft Avenue, Pittsburgh, PA, 15213, USA
| | - Gerald Schatten
- Departments of Cell Biology; Obstetrics, Gynecology and Reproductive Sciences; and Bioengineering, Magee-Womens Research Institute, University of Pittsburgh School of Medicine, 204 Craft Avenue, Pittsburgh, PA, 15213, USA
| | - Jadranka Loncarek
- Laboratory of Protein Dynamics and Signaling, Center for Cancer Research, National Cancer Institute, 1050 Boyles Street, Frederick, MD, 21702, USA
| | - Vito Mennella
- Cell Biology Program, The Hospital for Sick Children, Department of Biochemistry, University of Toronto, 555 University Avenue, Toronto, ON, M5G 1X8, Canada
| | - Tomer Avidor-Reiss
- Department of Biological Sciences, University of Toledo, 2801W. Bancroft, Toledo, OH, 43607, USA.
| |
Collapse
|
245
|
Ohta M, Watanabe K, Ashikawa T, Nozaki Y, Yoshiba S, Kimura A, Kitagawa D. Bimodal Binding of STIL to Plk4 Controls Proper Centriole Copy Number. Cell Rep 2018; 23:3160-3169.e4. [DOI: 10.1016/j.celrep.2018.05.030] [Citation(s) in RCA: 43] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2017] [Revised: 03/12/2018] [Accepted: 05/11/2018] [Indexed: 11/30/2022] Open
|
246
|
Joseph N, Al-Jassar C, Johnson CM, Andreeva A, Barnabas DD, Freund SMV, Gergely F, van Breugel M. Disease-Associated Mutations in CEP120 Destabilize the Protein and Impair Ciliogenesis. Cell Rep 2018; 23:2805-2818. [PMID: 29847808 PMCID: PMC5990496 DOI: 10.1016/j.celrep.2018.04.100] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2017] [Revised: 03/15/2018] [Accepted: 04/24/2018] [Indexed: 01/10/2023] Open
Abstract
Ciliopathies are a group of genetic disorders caused by a failure to form functional cilia. Due to a lack of structural information, it is currently poorly understood how ciliopathic mutations affect protein functionality to give rise to the underlying disease. Using X-ray crystallography, we show that the ciliopathy-associated centriolar protein CEP120 contains three C2 domains. The point mutations V194A and A199P, which cause Joubert syndrome (JS) and Jeune asphyxiating thoracic dystrophy (JATD), respectively, both reduce the thermostability of the second C2 domain by targeting residues that point toward its hydrophobic core. Genome-engineered cells homozygous for these mutations have largely normal centriole numbers but show reduced CEP120 levels, compromised recruitment of distal centriole markers, and deficient cilia formation. Our results provide insight into the disease mechanism of two ciliopathic mutations in CEP120, identify putative binding partners of CEP120 C2B, and suggest a complex genotype-phenotype relation of the CEP120 ciliopathy alleles.
Collapse
Affiliation(s)
- Nimesh Joseph
- Cancer Research UK Cambridge Institute, University of Cambridge, Li Ka Shing Centre, Robinson Way, Cambridge CB2 0RE, UK
| | - Caezar Al-Jassar
- Medical Research Council Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge CB2 0QH, UK
| | - Christopher M Johnson
- Medical Research Council Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge CB2 0QH, UK
| | - Antonina Andreeva
- Medical Research Council Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge CB2 0QH, UK
| | - Deepak D Barnabas
- Medical Research Council Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge CB2 0QH, UK
| | - Stefan M V Freund
- Medical Research Council Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge CB2 0QH, UK
| | - Fanni Gergely
- Cancer Research UK Cambridge Institute, University of Cambridge, Li Ka Shing Centre, Robinson Way, Cambridge CB2 0RE, UK.
| | - Mark van Breugel
- Medical Research Council Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge CB2 0QH, UK.
| |
Collapse
|
247
|
Asymmetric Centriole Numbers at Spindle Poles Cause Chromosome Missegregation in Cancer. Cell Rep 2018; 20:1906-1920. [PMID: 28834753 DOI: 10.1016/j.celrep.2017.08.005] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2016] [Revised: 04/12/2017] [Accepted: 07/28/2017] [Indexed: 12/28/2022] Open
Abstract
Chromosomal instability is a hallmark of cancer and correlates with the presence of extra centrosomes, which originate from centriole overduplication. Overduplicated centrioles lead to the formation of centriole rosettes, which mature into supernumerary centrosomes in the subsequent cell cycle. While extra centrosomes promote chromosome missegregation by clustering into pseudo-bipolar spindles, the contribution of centriole rosettes to chromosome missegregation is unknown. We used multi-modal imaging of cells with conditional centriole overduplication to show that mitotic rosettes in bipolar spindles frequently harbor unequal centriole numbers, leading to biased chromosome capture that favors binding to the prominent pole. This results in chromosome missegregation and aneuploidy. Rosette mitoses lead to viable offspring and significantly contribute to progeny production. We further show that centrosome abnormalities in primary human malignancies frequently consist of centriole rosettes. As asymmetric centriole rosettes generate mitotic errors that can be propagated, rosette mitoses are sufficient to cause chromosome missegregation in cancer.
Collapse
|
248
|
Duplication and Nuclear Envelope Insertion of the Yeast Microtubule Organizing Centre, the Spindle Pole Body. Cells 2018; 7:cells7050042. [PMID: 29748517 PMCID: PMC5981266 DOI: 10.3390/cells7050042] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2018] [Revised: 05/04/2018] [Accepted: 05/08/2018] [Indexed: 11/16/2022] Open
Abstract
The main microtubule organizing centre in the unicellular model organisms Saccharomyces cerevisiae and Schizosaccharomyces pompe is the spindle pole body (SPB). The SPB is a multilayer structure, which duplicates exactly once per cell cycle. Unlike higher eukaryotic cells, both yeast model organisms undergo mitosis without breakdown of the nuclear envelope (NE), a so-called closed mitosis. Therefore, in order to simultaneously nucleate nuclear and cytoplasmic MTs, it is vital to embed the SPB into the NE at least during mitosis, similarly to the nuclear pore complex (NPC). This review aims to embrace the current knowledge of the SPB duplication cycle with special emphasis on the critical step of the insertion of the new SPB into the NE.
Collapse
|
249
|
Nigg EA, Holland AJ. Once and only once: mechanisms of centriole duplication and their deregulation in disease. Nat Rev Mol Cell Biol 2018; 19:297-312. [PMID: 29363672 PMCID: PMC5969912 DOI: 10.1038/nrm.2017.127] [Citation(s) in RCA: 340] [Impact Index Per Article: 48.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Centrioles are conserved microtubule-based organelles that form the core of the centrosome and act as templates for the formation of cilia and flagella. Centrioles have important roles in most microtubule-related processes, including motility, cell division and cell signalling. To coordinate these diverse cellular processes, centriole number must be tightly controlled. In cycling cells, one new centriole is formed next to each pre-existing centriole in every cell cycle. Advances in imaging, proteomics, structural biology and genome editing have revealed new insights into centriole biogenesis, how centriole numbers are controlled and how alterations in these processes contribute to diseases such as cancer and neurodevelopmental disorders. Moreover, recent work has uncovered the existence of surveillance pathways that limit the proliferation of cells with numerical centriole aberrations. Owing to this progress, we now have a better understanding of the molecular mechanisms governing centriole biogenesis, opening up new possibilities for targeting these pathways in the context of human disease.
Collapse
Affiliation(s)
- Erich A. Nigg
- Biozentrum, University of Basel, Klingelbergstrasse 50/70, CH-4056 Basel, Switzerland
| | - Andrew J. Holland
- Department of Molecular Biology and Genetics, Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA
| |
Collapse
|
250
|
Yaguchi K, Yamamoto T, Matsui R, Tsukada Y, Shibanuma A, Kamimura K, Koda T, Uehara R. Uncoordinated centrosome cycle underlies the instability of non-diploid somatic cells in mammals. J Cell Biol 2018; 217:2463-2483. [PMID: 29712735 PMCID: PMC6028549 DOI: 10.1083/jcb.201701151] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2017] [Revised: 09/27/2017] [Accepted: 04/09/2018] [Indexed: 12/22/2022] Open
Abstract
Mammalian somatic cells are more stable as diploids, but the mechanisms underlying this stability are unclear. Yaguchi et al. show that changes in centriole licensing compromise the control of centrosome number in haploid or tetraploid human cells, suggesting that the ploidy-dependent control of the centrosome cycle explains the instability of non-diploid karyotypes. In animals, somatic cells are usually diploid and are unstable when haploid for unknown reasons. In this study, by comparing isogenic human cell lines with different ploidies, we found frequent centrosome loss specifically in the haploid state, which profoundly contributed to haploid instability through subsequent mitotic defects. We also found that the efficiency of centriole licensing and duplication changes proportionally to ploidy level, whereas that of DNA replication stays constant. This caused gradual loss or frequent overduplication of centrioles in haploid and tetraploid cells, respectively. Centriole licensing efficiency seemed to be modulated by astral microtubules, whose development scaled with ploidy level, and artificial enhancement of aster formation in haploid cells restored centriole licensing efficiency to diploid levels. The ploidy–centrosome link was observed in different mammalian cell types. We propose that incompatibility between the centrosome duplication and DNA replication cycles arising from different scaling properties of these bioprocesses upon ploidy changes underlies the instability of non-diploid somatic cells in mammals.
Collapse
Affiliation(s)
- Kan Yaguchi
- Graduate School of Life Science, Hokkaido University, Sapporo, Japan
| | - Takahiro Yamamoto
- Graduate School of Life Science, Hokkaido University, Sapporo, Japan
| | - Ryo Matsui
- Graduate School of Life Science, Hokkaido University, Sapporo, Japan
| | - Yuki Tsukada
- Division of Biological Science, Graduate School of Science, Nagoya University, Nagoya, Japan
| | - Atsuko Shibanuma
- Creative Research Institution, Hokkaido University, Sapporo, Japan
| | - Keiko Kamimura
- Graduate School of Life Science, Hokkaido University, Sapporo, Japan
| | - Toshiaki Koda
- Graduate School of Life Science, Hokkaido University, Sapporo, Japan.,Faculty of Advanced Life Science, Hokkaido University, Sapporo, Japan
| | - Ryota Uehara
- Graduate School of Life Science, Hokkaido University, Sapporo, Japan .,Creative Research Institution, Hokkaido University, Sapporo, Japan.,Faculty of Advanced Life Science, Hokkaido University, Sapporo, Japan
| |
Collapse
|