201
|
Dong W, Wang Y, Zhang Y, Song X, Peng H, Jiang H. Bilayer rGO-Based Photothermal Evaporator for Efficient Solar-Driven Water Purification [ ] *. Chemistry 2021; 27:17428-17436. [PMID: 34623718 DOI: 10.1002/chem.202103187] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2021] [Indexed: 01/19/2023]
Abstract
Interfacial evaporation has emerged as a promising approach to produce freshwater. However, an urgent concern is that, due to the illegal discharge of industrial wastewater, most water bodies are polluted by trace volatile organic compounds (VOCs), which are easily volatilized and enriched in the collected water during the interfacial evaporation process. Herein, a bilayer photothermal evaporator was reasonably designed for contaminated water purification. The bottom hydrophilic rGO-sodium alginate (SA) sheets purposefully disintegrate water transport channels, thus quickly removing VOCs through physical adsorption. The rGO-SA-TiO2 upper layer sufficiently absorbs incident light and therefore persistently generates reactive oxidizing species to degrade upward VOCs. Notably, the oriented microchannels inside the evaporator allow sustained light reflections to improve the utilization of solar energy. The evaporation rate can reach 1.63 kg m-2 h-1 with a considerably high VOC removal efficiency of up to 96 %. Such an integrated bilayer evaporator provides an effective strategy to obtain clean water via solar distillation.
Collapse
Affiliation(s)
- Weichao Dong
- Key Laboratory of Biobased Materials, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, 266101, P.R. China.,University of Chinese Academy of Sciences, Beijing, 100049, P.R. China
| | - Yuchao Wang
- Key Laboratory of Biobased Materials, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, 266101, P.R. China.,School of Chemical Engineering, Dalian University of Technology, Dalian, 116024, P.R. China
| | - Yajing Zhang
- Key Laboratory of Biobased Materials, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, 266101, P.R. China.,School of Materials Science and Engineering, Ocean University of China, Qingdao, 266100, P.R. China
| | - Xiangju Song
- Key Laboratory of Biobased Materials, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, 266101, P.R. China.,University of Chinese Academy of Sciences, Beijing, 100049, P.R. China
| | - Hui Peng
- Key Laboratory of Biobased Materials, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, 266101, P.R. China
| | - Heqing Jiang
- Key Laboratory of Biobased Materials, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, 266101, P.R. China
| |
Collapse
|
202
|
Mohammadi P, Gandier J, Nonappa, Wagermaier W, Miserez A, Penttilä M. Bioinspired Functionally Graded Composite Assembled Using Cellulose Nanocrystals and Genetically Engineered Proteins with Controlled Biomineralization. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2021; 33:e2102658. [PMID: 34467572 PMCID: PMC11469223 DOI: 10.1002/adma.202102658] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/07/2021] [Revised: 07/02/2021] [Indexed: 06/13/2023]
Abstract
Nature provides unique insights into design strategies evolved by living organisms to construct robust materials with a combination of mechanical properties that are challenging to replicate synthetically. Hereby, inspired by the impact-resistant dactyl club of the stomatopod, a mineralized biocomposite is rationally designed and produced in the complex shapes of dental implant crowns exhibiting high strength, stiffness, and fracture toughness. This material consists of an expanded helicoidal organization of cellulose nanocrystals (CNCs) mixed with genetically engineered proteins that regulate both binding to CNCs and in situ growth of reinforcing apatite crystals. Critically, the structural properties emerge from controlled self-assembly across multiple length scales regulated by rational engineering and phase separation of the protein components. This work replicates multiscale biomanufacturing of a model biological material and also offers an innovative platform to synthesize multifunctional biocomposites whose properties can be finely regulated by colloidal self-assembly and engineering of its constitutive protein building blocks.
Collapse
Affiliation(s)
| | - Julie‐Anne Gandier
- Department of Bioproducts and BiosystemsSchool of Chemical EngineeringAalto UniversityP.O. Box 16100EspooFI‐16100Finland
| | - Nonappa
- Faculty of Engineering and Natural SciencesTampere UniversityKorkeakoulunkatu 6TampereFI‐33720Finland
| | - Wolfgang Wagermaier
- Department of BiomaterialsMax Planck Institute of Colloids and InterfacesAm Mühlenberg114476PotsdamGermany
| | - Ali Miserez
- Centre for Sustainable Materials (SusMat)School of Materials Science and EngineeringNanyang Technological University (NTU)50 Nanyang AvenueSingapore639798Singapore
- School of Biological Sciences60 Nanyang Drive, NTUSingapore637551Singapore
| | - Merja Penttilä
- VTT Technical Research Centre of Finland LtdVTTEspooFI‐02044Finland
| |
Collapse
|
203
|
Li J, Yang F, Long Y, Dong Y, Wang Y, Wang X. Bulk Ferroelectric Metamaterial with Enhanced Piezoelectric and Biomimetic Mechanical Properties from Additive Manufacturing. ACS NANO 2021; 15:14903-14914. [PMID: 34405669 PMCID: PMC8504073 DOI: 10.1021/acsnano.1c05003] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Three-dimensional (3D) ferroelectric materials are electromechanical building blocks for achieving human-machine interfacing, energy sustainability, and enhanced therapeutics. However, current natural or synthetic materials cannot offer both a high piezoelectric response and desired mechanical toughness at the same time to meet the practicality. Here, a lamellar ferroelectric metamaterial was created with a ceramic-like piezoelectric property and a bone-like fracture toughness through a low-voltage-assisted 3D printing technology. The one-step printed bulk structure, consisting of periodically intercalated soft ferroelectric and hard electrode layers, exhibited a significantly enhanced longitudinal piezoelectric charge coefficient (d33) of over 150 pC N-1, as well as a superior fracture resistance of ∼5.5 MPa·m1/2, more than three times higher than conventional piezo-ceramics. The excellent printability together with the combination of both high piezoelectric and mechanical behaviors allowed us to create a bone-like structure with tunable anisotropic piezoelectricity and bone-comparable mechanical properties, showing a potential of manufacturing practical, high-performance, and smart biological systems.
Collapse
Affiliation(s)
- Jun Li
- Department of Materials Science and Engineering, University of Wisconsin, Madison, Wisconsin 53706, United States
| | - Fan Yang
- Department of Materials Science and Engineering, University of Wisconsin, Madison, Wisconsin 53706, United States
| | - Yin Long
- Department of Materials Science and Engineering, University of Wisconsin, Madison, Wisconsin 53706, United States
| | - Yutao Dong
- Department of Materials Science and Engineering, University of Wisconsin, Madison, Wisconsin 53706, United States
| | - Yizhan Wang
- Department of Materials Science and Engineering, University of Wisconsin, Madison, Wisconsin 53706, United States
| | - Xudong Wang
- Department of Materials Science and Engineering, University of Wisconsin, Madison, Wisconsin 53706, United States
| |
Collapse
|
204
|
Ran J, Su X, Zhang J, Zhang J, Chen J, Liu K, Liu Z, Hu Y, Sun L, Jiang D. Continuous, Large-Scale, and High Proportion of Bioinspired Phosphogypsum Composites via Reactive Extrusion. MATERIALS 2021; 14:ma14195601. [PMID: 34639998 PMCID: PMC8509489 DOI: 10.3390/ma14195601] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/09/2021] [Revised: 09/16/2021] [Accepted: 09/22/2021] [Indexed: 11/16/2022]
Abstract
Biological matter evolution provides an idea for the human design and synthesis of new materials. However, biomimetic materials only stay in laboratory-scale models, and their large-scale industrial applications are yet to be realized. Here, inspired by nacre's architecture, we report a continuous, large-scale method to fabricate phosphogypsum composites by reactive extrusion strategy. After curing for seven days, with more than 50 wt% of beta-hemihydrate phosphogypsum (β-HPG), the compressive strength and softening coefficient were 24.98 MPa and 0.78, increasing by 110.0% and 20.0%, respectively, compared to the pouring method. The results show that the screw extrusion process can improve the mechanical strength and waterproof properties of β-HPG hydration specimens without any special chemical admixtures and cements.
Collapse
Affiliation(s)
- Jingyu Ran
- Guizhou Phosphogypsum Institute, Guizhou Institute of Technology, Guiyang 550003, China; (J.Z.); (J.C.); (K.L.)
- Correspondence: (J.R.); (X.S.)
| | - Xiangdong Su
- Key Laboratory of Light Metal Materials Processing of Guizhou Province, Guizhou Institute of Technology, Guiyang 550003, China;
- Correspondence: (J.R.); (X.S.)
| | - Jiangang Zhang
- Key Laboratory of Light Metal Materials Processing of Guizhou Province, Guizhou Institute of Technology, Guiyang 550003, China;
| | - Jie Zhang
- Guizhou Phosphogypsum Institute, Guizhou Institute of Technology, Guiyang 550003, China; (J.Z.); (J.C.); (K.L.)
| | - Jiajun Chen
- Guizhou Phosphogypsum Institute, Guizhou Institute of Technology, Guiyang 550003, China; (J.Z.); (J.C.); (K.L.)
| | - Kun Liu
- Guizhou Phosphogypsum Institute, Guizhou Institute of Technology, Guiyang 550003, China; (J.Z.); (J.C.); (K.L.)
| | - Zhao Liu
- Guizhou Haobainian Housing Industry Co., Ltd., Guiyang 550000, China;
| | - Yi Hu
- Bijie Yuyuan New Materials Co., Ltd., Bijie 551700, China;
| | - Liqun Sun
- Guizhou Building Material Quality Supervision Testing Center, Guiyang 550014, China; (L.S.); (D.J.)
| | - Deyong Jiang
- Guizhou Building Material Quality Supervision Testing Center, Guiyang 550014, China; (L.S.); (D.J.)
| |
Collapse
|
205
|
Chen J, Xin W, Chen W, Zhao X, Qian Y, Kong XY, Jiang L, Wen L. Biomimetic Nanocomposite Membranes with Ultrahigh Ion Selectivity for Osmotic Power Conversion. ACS CENTRAL SCIENCE 2021; 7:1486-1492. [PMID: 34584949 PMCID: PMC8461767 DOI: 10.1021/acscentsci.1c00633] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/26/2021] [Indexed: 05/09/2023]
Abstract
Ion transport in nanoconfinement exhibits significant features such as ionic rectification, ionic selectivity, and ionic gating properties, leading to the potential applications in desalination, water treatment, and energy conversion. Two-dimensional nanofluidics provide platforms to utilize this phenomenon for capturing osmotic energy. However, it is challenging to further improve the power output with inadequate charge density. Here we demonstrate a feasible strategy by employing Kevlar nanofiber as space charge donor and cross-linker to fabricate graphene oxide composite membranes. The coupling of space charge and surface charge, enabled by the stabilization of interlayer spacing, plays a key role in realizing high ion selectivity and the derived high-performance osmotic power conversion up to 5.06 W/m2. Furthermore, the output voltage of an ensemble of the membranes in series could reach 1.61 V, which can power electronic devices. The system contributes a further step toward the application of energy conversion.
Collapse
Affiliation(s)
- Jianjun Chen
- CAS
Key Laboratory of Bio-inspired Materials and Interfacial Science, Technical Institute of Physics and Chemistry, Chinese
Academy of Sciences, Beijing 100190, People’s Republic
of China
| | - Weiwen Xin
- CAS
Key Laboratory of Bio-inspired Materials and Interfacial Science, Technical Institute of Physics and Chemistry, Chinese
Academy of Sciences, Beijing 100190, People’s Republic
of China
- School
of Future Technology, University of Chinese
Academy of Sciences, Beijing 100049, People’s Republic
of China
| | - Weipeng Chen
- CAS
Key Laboratory of Bio-inspired Materials and Interfacial Science, Technical Institute of Physics and Chemistry, Chinese
Academy of Sciences, Beijing 100190, People’s Republic
of China
| | - Xiaolu Zhao
- CAS
Key Laboratory of Bio-inspired Materials and Interfacial Science, Technical Institute of Physics and Chemistry, Chinese
Academy of Sciences, Beijing 100190, People’s Republic
of China
| | - Yongchao Qian
- CAS
Key Laboratory of Bio-inspired Materials and Interfacial Science, Technical Institute of Physics and Chemistry, Chinese
Academy of Sciences, Beijing 100190, People’s Republic
of China
| | - Xiang-Yu Kong
- CAS
Key Laboratory of Bio-inspired Materials and Interfacial Science, Technical Institute of Physics and Chemistry, Chinese
Academy of Sciences, Beijing 100190, People’s Republic
of China
| | - Lei Jiang
- CAS
Key Laboratory of Bio-inspired Materials and Interfacial Science, Technical Institute of Physics and Chemistry, Chinese
Academy of Sciences, Beijing 100190, People’s Republic
of China
- School
of Future Technology, University of Chinese
Academy of Sciences, Beijing 100049, People’s Republic
of China
| | - Liping Wen
- CAS
Key Laboratory of Bio-inspired Materials and Interfacial Science, Technical Institute of Physics and Chemistry, Chinese
Academy of Sciences, Beijing 100190, People’s Republic
of China
- School
of Future Technology, University of Chinese
Academy of Sciences, Beijing 100049, People’s Republic
of China
| |
Collapse
|
206
|
Mao LB, Yu SH. Biomimetic Nacrelike Membranes for Selective Ion Transport. ACS CENTRAL SCIENCE 2021; 7:1467-1469. [PMID: 34584946 PMCID: PMC8461632 DOI: 10.1021/acscentsci.1c00968] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Affiliation(s)
- Li-Bo Mao
- Division of Nanomaterials
& Chemistry, Hefei National Laboratory for Physical Sciences at
the Microscale, CAS Center for Excellence in Nanoscience, Department
of Chemistry, University of Science and
Technology of China, Hefei 230026, China
| | - Shu-Hong Yu
- Division of Nanomaterials
& Chemistry, Hefei National Laboratory for Physical Sciences at
the Microscale, CAS Center for Excellence in Nanoscience, Department
of Chemistry, University of Science and
Technology of China, Hefei 230026, China
| |
Collapse
|
207
|
Parisi C, Qin K, Fernandes FM. Colonization versus encapsulation in cell-laden materials design: porosity and process biocompatibility determine cellularization pathways. PHILOSOPHICAL TRANSACTIONS. SERIES A, MATHEMATICAL, PHYSICAL, AND ENGINEERING SCIENCES 2021; 379:20200344. [PMID: 34334019 DOI: 10.1098/rsta.2020.0344] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 03/28/2021] [Indexed: 06/13/2023]
Abstract
Seeding materials with living cells has been-and still is-one of the most promising approaches to reproduce the complexity and the functionality of living matter. The strategies to associate living cells with materials are limited to cell encapsulation and colonization, however, the requirements for these two approaches have been seldom discussed systematically. Here we propose a simple two-dimensional map based on materials' pore size and the cytocompatibility of their fabrication process to draw, for the first time, a guide to building cellularized materials. We believe this approach may serve as a straightforward guideline to design new, more relevant materials, able to seize the complexity and the function of biological materials. This article is part of the theme issue 'Bio-derived and bioinspired sustainable advanced materials for emerging technologies (part 1)'.
Collapse
Affiliation(s)
- Cleo Parisi
- Laboratoire de Chimie de la Matière Condensée de Paris, Sorbonne Université, UMR7574, 4 Place Jussieu, 75005 Paris, France
| | - Kankan Qin
- Laboratoire de Chimie de la Matière Condensée de Paris, Sorbonne Université, UMR7574, 4 Place Jussieu, 75005 Paris, France
| | - Francisco M Fernandes
- Laboratoire de Chimie de la Matière Condensée de Paris, Sorbonne Université, UMR7574, 4 Place Jussieu, 75005 Paris, France
| |
Collapse
|
208
|
Wong HM, Zhang YY, Li QL. An enamel-inspired bioactive material with multiscale structure and antibacterial adhesion property. Bioact Mater 2021; 7:491-503. [PMID: 34466748 PMCID: PMC8379364 DOI: 10.1016/j.bioactmat.2021.05.035] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2021] [Revised: 05/21/2021] [Accepted: 05/24/2021] [Indexed: 12/22/2022] Open
Abstract
Conventional dental materials lack of the hierarchical architecture of enamel that exhibits excellent intrinsic-extrinsic mechanical properties. Moreover, restorative failures frequently occur due to physical and chemical mismatch between artificial materials and native dental hard tissue followed by recurrent caries which is caused by sugar-fermenting, acidogenic bacteria invasion of the defective cite. In order to resolve the limitations of the conventional dental materials, the aim of this study was to establish a non-cell-based biomimetic strategy to fabricate a novel bioactive material with enamel-like structure and antibacterial adhesion property. The evaporation-based, bottom-up and self-assembly method with layer-by-layer technique were used to form a large-area fluorapatite crystal layer containing antibacterial components. The multilayered structure was constructed by hydrothermal growth of the fluorapatite crystal layer and highly conformal adsorption to the crystal surface of a polyelectrolyte matrix film. Characterization and mechanical assessment demonstrated that the synthesized bioactive material resembled the native enamel in chemical components, mechanical properties and crystallographic structure. Antibacterial and cytocompatibility evaluation demonstrated that this material had the antibacterial adhesion property and biocompatibility. In combination with the molecular dynamics simulations to reveal the effects of variables on the crystallization mechanism, this study brings new prospects for the synthesis of enamel-inspired materials. A simple chemistry approach was offered to synthesize a enamel-like material without using cells or proteins. A macroscopic bioactive material resembled the native enamel with the antibacterial adhension propery was fabricated. Combining experiments and molecular dynamics simulations revealed effects of variables on the crystallization mechanism.
Collapse
Affiliation(s)
- Hai Ming Wong
- Paediatric Dentistry and Orthodontics, Faculty of Dentistry, The University of Hong Kong, 34 Hospital Road, Hong Kong
| | - Yu Yuan Zhang
- Paediatric Dentistry and Orthodontics, Faculty of Dentistry, The University of Hong Kong, 34 Hospital Road, Hong Kong
| | - Quan Li Li
- Collage and Hospital of Stomatology, Anhui Medical University, No. 69, Meishan Road, Heifei, China
| |
Collapse
|
209
|
Padole M, Gharde S, Kandasubramanian B. Three-dimensional printing of molluscan shell inspired architectures via fused deposition modeling. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2021; 28:46356-46366. [PMID: 32617818 DOI: 10.1007/s11356-020-09799-6] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/21/2019] [Accepted: 06/18/2020] [Indexed: 06/11/2023]
Abstract
Nature always astonishes us with its marvelous creations which act as a model for acquiring a solution to complex human problems, this practice of designing and manufacturing the product replicating processes that occur in nature is referred to as biomimicking. Molluscan shell is nature's one such offering that delivers remarkable mechanical properties by virtue of its hierarchical multi-layered structure. In this work, a peculiar avenue for facile biomimicking multitudinous molluscan shell architectures such as complex cross lamellar, cross lamellar, foliated, prismatic, columnar nacre, and sheet nacre structure are manufactured by 3D prototyping of biodegradable, biocompatible polylactic acid (PLA). Here, the reliance of mechanical attributes of PLA on various architectures is studied and demonstrated that the nacre, owing to its complex structure, leads to high energy dissipation (12.5094 J/m) imparting high toughness.
Collapse
Affiliation(s)
- Mrunalini Padole
- Department of Polymer and Surface Engineering, Institute of Chemical Technology, Mumbai, 400019, India
| | - Swaroop Gharde
- Rapid Prototype Laboratory, Department of Metallurgical and Materials Engineering, Defence Institute of Advanced Technology (DU), Pune, 411025, India
| | - Balasubramanian Kandasubramanian
- Rapid Prototype Laboratory, Department of Metallurgical and Materials Engineering, Defence Institute of Advanced Technology (DU), Pune, 411025, India.
| |
Collapse
|
210
|
Xie C, Guo ZX, Qiu T, Tuo X. Construction of Aramid Engineering Materials via Polymerization-Induced para-Aramid Nanofiber Hydrogel. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2021; 33:e2101280. [PMID: 34176178 DOI: 10.1002/adma.202101280] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/14/2021] [Revised: 04/20/2021] [Indexed: 06/13/2023]
Abstract
The processing of poly(p-phenylene terephthalamide) (PPTA) has long been a great challenge. This work reports a simple "monomers-nanofibers-macroscopic product" (MNM) hierarchical self-assembly approach to build 3D all-PPTA engineering materials. This approach mainly includes the preparation of polymerization-induced aramid nanofibers (PANFs) from monomers and the fabrication of all-PPTA materials from PANF hydrogel. Various 3D architectures, including simple solid bulks and sophisticated honeycombs (HCs), are obtained after the dehydration and shrinking of the PANF hydrogel. The tensile strength and compressive yield strength of PANF bulk are more than 62 and 90 MPa, respectively, which are comparable to typical engineering plastics. The compressive strength of PANF HC with a density of 360 kg m-3 is more than 24 MPa. The thermal stability of PANF bulk and PANF HC are as good as that of Kevlar fiber and almost no decomposition occurred before 500 °C in a nitrogen atmosphere. Furthermore, the MNM process is performed under mild conditions, without high temperature, high pressure, or corrosive solvent. The MNM process is a novel strategy for the processing of all aromatic polyamide materials with complex structures and high performances and would be another development since the breakthrough of liquid crystal spinning technology of PPTA.
Collapse
Affiliation(s)
- Chunjie Xie
- Key Laboratory of Advanced Materials, Ministry of Education, Department of Chemical Engineering, Tsinghua University, No. 1, Tsinghua Garden, Haidian District, Beijing, 100084, P. R. China
| | - Zhao-Xia Guo
- Key Laboratory of Advanced Materials, Ministry of Education, Department of Chemical Engineering, Tsinghua University, No. 1, Tsinghua Garden, Haidian District, Beijing, 100084, P. R. China
| | - Teng Qiu
- Key Laboratory of Carbon Fiber and Functional Polymers, Ministry of Education, College of Materials Science and Engineering, Beijing University of Chemical Technology, No. 15, North Third Ring Road, Chaoyang District, Beijing, 100029, P. R. China
| | - Xinlin Tuo
- Key Laboratory of Advanced Materials, Ministry of Education, Department of Chemical Engineering, Tsinghua University, No. 1, Tsinghua Garden, Haidian District, Beijing, 100084, P. R. China
| |
Collapse
|
211
|
Huang QQ, Wen YE, Bai H, Zhang Z, Jiang Y. Spontaneous Adsorption of Graphene Oxide on Multiple Polymeric Surfaces. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2021; 37:8829-8839. [PMID: 34270266 DOI: 10.1021/acs.langmuir.1c01214] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
The controllable integration of low-dimensional nanomaterials on solid surfaces is pivotal for the fabrication of next-generation miniaturized electronic and optoelectronic devices. For instance, organization of two-dimensional (2D) nanomaterials on polymeric surfaces paves the way for the development of flexible electronics for applications in wearable devices. Nevertheless, the understanding of the molecular interactions between these nanomaterials and the polymeric surfaces remains limited, which impedes the rational design of 2D nanomaterial-based functional coatings. In the current work, we report that graphene oxide (GO) nanosheets, in their dispersion phase, can be adsorbed on multiple polymeric surfaces in a spontaneous manner. Both experimental findings and simulational results indicate that the main driving force is hydrogen bonding interactions, although other molecular interactions such as polarity and dispersion ones contribute to the adsorption as well. The relatively high hydrogen bonding interactions cause not only increased GO surface coverage but also enhanced GO adsorption kinetics on polymeric surfaces. The adsorbed GO layers are robust, which can be explained by the large aspect ratios of GO nanosheets and the presence of multiple spots for molecular interactions. As a proof of concept, GO-covered polymethyl methacrylate effectively decreases surface static charges when compared with its pristine counterpart. The integration of the GO constituents turns many inert polymeric substrates into multifunctional hybrids, and the functional groups on GO can be used further to bridge with additional functional materials for the development of high-performance electronic devices.
Collapse
Affiliation(s)
- Qi-Qi Huang
- College of Materials, Department of Physics, Research Institute for Biomimetics and Soft Matter, Xiamen University, Graphene Industry and Engineering Research Institute, Xiamen University, Xiamen 361005, China
| | - Yue-E Wen
- College of Materials, Department of Physics, Research Institute for Biomimetics and Soft Matter, Xiamen University, Graphene Industry and Engineering Research Institute, Xiamen University, Xiamen 361005, China
| | - Hua Bai
- College of Materials, Department of Physics, Research Institute for Biomimetics and Soft Matter, Xiamen University, Graphene Industry and Engineering Research Institute, Xiamen University, Xiamen 361005, China
| | - Zhisen Zhang
- College of Materials, Department of Physics, Research Institute for Biomimetics and Soft Matter, Xiamen University, Graphene Industry and Engineering Research Institute, Xiamen University, Xiamen 361005, China
| | - Yuan Jiang
- College of Materials, Department of Physics, Research Institute for Biomimetics and Soft Matter, Xiamen University, Graphene Industry and Engineering Research Institute, Xiamen University, Xiamen 361005, China
| |
Collapse
|
212
|
Peng J, Tomsia AP, Jiang L, Tang BZ, Cheng Q. Stiff and tough PDMS-MMT layered nanocomposites visualized by AIE luminogens. Nat Commun 2021; 12:4539. [PMID: 34315892 PMCID: PMC8316440 DOI: 10.1038/s41467-021-24835-w] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2020] [Accepted: 07/09/2021] [Indexed: 12/16/2022] Open
Abstract
Polydimethylsiloxane (PDMS) is a widely used soft material that exhibits excellent stability and transparency. But the difficulty of fine-tuning its Young's modulus and its low toughness significantly hinder its application in fields such as tissue engineering and flexible devices. Inspired by nacre, here we report on the development of PDMS-montmorillonite layered (PDMS-MMT-L) nanocomposites via the ice-templating technique, resulting in 23 and 12 times improvement in Young's modulus and toughness as compared with pure PDMS. Confocal fluorescence microscopy assisted by aggregation-induced emission (AIE) luminogens reveals three-dimensional reconstruction and in situ crack tracing of the nacre-inspired PDMS-MMT-L nanocomposite. The PDMS-MMT-L nanocomposite is toughened with mechanisms such as crack deflection and bridging. The AIE-assisted visualization of the crack propagation for nacre-inspired layered nanocomposites provides an advanced and universal characterization technique for organic-inorganic nanocomposites.
Collapse
Affiliation(s)
- Jingsong Peng
- School of Chemistry, Key Laboratory of Bio-inspired Smart Interfacial Science and Technology of Ministry of Education, Beijing Advanced Innovation Center for Biomedical Engineering, Beihang University, Beijing, China
| | - Antoni P Tomsia
- School of Chemistry, Key Laboratory of Bio-inspired Smart Interfacial Science and Technology of Ministry of Education, Beijing Advanced Innovation Center for Biomedical Engineering, Beihang University, Beijing, China
| | - Lei Jiang
- School of Chemistry, Key Laboratory of Bio-inspired Smart Interfacial Science and Technology of Ministry of Education, Beijing Advanced Innovation Center for Biomedical Engineering, Beihang University, Beijing, China
| | - Ben Zhong Tang
- Department of Chemistry, The Hong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration and Reconstruction, Institute of Molecular Functional Materials, Division of Life Science and State Key Laboratory of Molecular Neuroscience, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, China.
| | - Qunfeng Cheng
- School of Chemistry, Key Laboratory of Bio-inspired Smart Interfacial Science and Technology of Ministry of Education, Beijing Advanced Innovation Center for Biomedical Engineering, Beihang University, Beijing, China.
- School of Materials Science and Engineering, Zhengzhou University, Zhengzhou, China.
| |
Collapse
|
213
|
Liang X, Chen G, Lin S, Zhang J, Wang L, Zhang P, Wang Z, Wang Z, Lan Y, Ge Q, Liu J. Anisotropically Fatigue-Resistant Hydrogels. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2021; 33:e2102011. [PMID: 34110665 DOI: 10.1002/adma.202102011] [Citation(s) in RCA: 109] [Impact Index Per Article: 27.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/13/2021] [Revised: 04/02/2021] [Indexed: 06/12/2023]
Abstract
Nature builds biological materials from limited ingredients, however, with unparalleled mechanical performances compared to artificial materials, by harnessing inherent structures across multi-length-scales. In contrast, synthetic material design overwhelmingly focuses on developing new compounds, and fails to reproduce the mechanical properties of natural counterparts, such as fatigue resistance. Here, a simple yet general strategy to engineer conventional hydrogels with a more than 100-fold increase in fatigue thresholds is reported. This strategy is proven to be universally applicable to various species of hydrogel materials, including polysaccharides (i.e., alginate, cellulose), proteins (i.e., gelatin), synthetic polymers (i.e., poly(vinyl alcohol)s), as well as corresponding polymer composites. These fatigue-resistant hydrogels exhibit a record-high fatigue threshold over most synthetic soft materials, making them low-cost, high-performance, and durable alternatives to soft materials used in those circumstances including robotics, artificial muscles, etc.
Collapse
Affiliation(s)
- Xiangyu Liang
- Department of Mechanical and Energy Engineering, Southern University of Science and Technology, Shenzhen, 518055, China
| | - Guangda Chen
- Department of Mechanical and Energy Engineering, Southern University of Science and Technology, Shenzhen, 518055, China
| | - Shaoting Lin
- Department of Mechanical Engineering, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
| | - Jiajun Zhang
- Department of Mechanical and Energy Engineering, Southern University of Science and Technology, Shenzhen, 518055, China
| | - Liu Wang
- Department of Material Science and Engineering, Southern University of Science and Technology, Shenzhen, 518055, China
| | - Pei Zhang
- Department of Mechanical and Energy Engineering, Southern University of Science and Technology, Shenzhen, 518055, China
| | - Zeyu Wang
- Ningbo Key Laboratory of Specialty Polymers Faculty of Materials Science and Chemical Engineering, Ningbo University, Ningbo, 315211, China
| | - Zongbao Wang
- Ningbo Key Laboratory of Specialty Polymers Faculty of Materials Science and Chemical Engineering, Ningbo University, Ningbo, 315211, China
| | - Yang Lan
- Department of Chemical Engineering, University College London, London, WC1E 7JE, UK
| | - Qi Ge
- Department of Mechanical and Energy Engineering, Southern University of Science and Technology, Shenzhen, 518055, China
| | - Ji Liu
- Department of Mechanical and Energy Engineering, Southern University of Science and Technology, Shenzhen, 518055, China
- Shenzhen Key Laboratory of Biomimetic Robotics and Intelligent Systems, Department of Mechanical and Energy Engineering, Southern University of Science and Technology, Shenzhen, 518055, China
- Guangdong Provincial Key Laboratory of Human-Augmentation and Rehabilitation Robotics in Universities, Southern University of Science and Technology, Shenzhen, 518055, China
| |
Collapse
|
214
|
Guan QF, Han ZM, Yang HB, Ling ZC, Yu SH. Regenerated isotropic wood. Natl Sci Rev 2021; 8:nwaa230. [PMID: 34691687 PMCID: PMC8310772 DOI: 10.1093/nsr/nwaa230] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2020] [Revised: 07/30/2020] [Accepted: 07/30/2020] [Indexed: 12/24/2022] Open
Abstract
Construction of sustainable high-performance structural materials is a core part of the key global sustainability goal. Many efforts have been made in this field; however, challenges remain in terms of lowering costs by using all-green basic building blocks and improving mechanical properties to meet the demand of practical applications. Here, we report a robust and efficient bottom-up strategy with micro/nanoscale structure design to regenerate an isotropic wood from natural wood particles as a high-performance sustainable structural material. Regenerated isotropic wood (RGI-wood) exceeds the limitations of the anisotropic and inconsistent mechanical properties of natural wood, having isotropic flexural strength of ∼170 MPa and flexural modulus of ∼10 GPa. RGI-wood also shows superior water resistance and fire retardancy properties to natural pine wood. Mass production of large sized RGI-wood and functional RGI-wood nanocomposites can also be achieved.
Collapse
Affiliation(s)
- Qing-Fang Guan
- Division of Nanomaterials & Chemistry, Hefei National Laboratory for Physical Sciences at the Microscale, Institute of Energy, Hefei Comprehensive National Science Center, CAS Center for Excellence in Nanoscience, Department of Chemistry, Institute of Biomimetic Materials & Chemistry, University of Science and Technology of China, Hefei 230026, China
| | - Zi-Meng Han
- Division of Nanomaterials & Chemistry, Hefei National Laboratory for Physical Sciences at the Microscale, Institute of Energy, Hefei Comprehensive National Science Center, CAS Center for Excellence in Nanoscience, Department of Chemistry, Institute of Biomimetic Materials & Chemistry, University of Science and Technology of China, Hefei 230026, China
| | - Huai-Bin Yang
- Division of Nanomaterials & Chemistry, Hefei National Laboratory for Physical Sciences at the Microscale, Institute of Energy, Hefei Comprehensive National Science Center, CAS Center for Excellence in Nanoscience, Department of Chemistry, Institute of Biomimetic Materials & Chemistry, University of Science and Technology of China, Hefei 230026, China
| | - Zhang-Chi Ling
- Division of Nanomaterials & Chemistry, Hefei National Laboratory for Physical Sciences at the Microscale, Institute of Energy, Hefei Comprehensive National Science Center, CAS Center for Excellence in Nanoscience, Department of Chemistry, Institute of Biomimetic Materials & Chemistry, University of Science and Technology of China, Hefei 230026, China
| | - Shu-Hong Yu
- Division of Nanomaterials & Chemistry, Hefei National Laboratory for Physical Sciences at the Microscale, Institute of Energy, Hefei Comprehensive National Science Center, CAS Center for Excellence in Nanoscience, Department of Chemistry, Institute of Biomimetic Materials & Chemistry, University of Science and Technology of China, Hefei 230026, China
| |
Collapse
|
215
|
Ma Z, Li B, Tang R. Biomineralization: Biomimetic Synthesis of Materials and Biomimetic Regulation of Organisms. CHINESE J CHEM 2021. [DOI: 10.1002/cjoc.202100119] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Affiliation(s)
- Zaiqiang Ma
- Department of Chemistry, Zhejiang University Hangzhou Zhejiang 310027 China
| | - Benke Li
- Department of Chemistry, Zhejiang University Hangzhou Zhejiang 310027 China
| | - Ruikang Tang
- Department of Chemistry, Zhejiang University Hangzhou Zhejiang 310027 China
- Qiushi Academy for Advanced Studies, Zhejiang University Hangzhou Zhejiang 310027 China
| |
Collapse
|
216
|
Cai G, Yin Y, Xia D, Chen AA, Holoubek J, Scharf J, Yang Y, Koh KH, Li M, Davies DM, Mayer M, Han TH, Meng YS, Pascal TA, Chen Z. Sub-nanometer confinement enables facile condensation of gas electrolyte for low-temperature batteries. Nat Commun 2021; 12:3395. [PMID: 34099643 PMCID: PMC8184934 DOI: 10.1038/s41467-021-23603-0] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2020] [Accepted: 05/05/2021] [Indexed: 12/19/2022] Open
Abstract
Confining molecules in the nanoscale environment can lead to dramatic changes of their physical and chemical properties, which opens possibilities for new applications. There is a growing interest in liquefied gas electrolytes for electrochemical devices operating at low temperatures due to their low melting point. However, their high vapor pressure still poses potential safety concerns for practical usages. Herein, we report facile capillary condensation of gas electrolyte by strong confinement in sub-nanometer pores of metal-organic framework (MOF). By designing MOF-polymer membranes (MPMs) that present dense and continuous micropore (~0.8 nm) networks, we show significant uptake of hydrofluorocarbon molecules in MOF pores at pressure lower than the bulk counterpart. This unique property enables lithium/fluorinated graphite batteries with MPM-based electrolytes to deliver a significantly higher capacity than those with commercial separator membranes (~500 mAh g-1 vs. <0.03 mAh g-1) at -40 °C under reduced pressure of the electrolyte.
Collapse
Affiliation(s)
- Guorui Cai
- Department of NanoEngineering, University of California, San Diego, CA, USA
| | - Yijie Yin
- Program of Materials Science and Engineering, University of California, San Diego, CA, USA
| | - Dawei Xia
- Program of Chemical Engineering, University of California, San Diego, CA, USA
| | - Amanda A Chen
- Department of NanoEngineering, University of California, San Diego, CA, USA
- Program of Chemical Engineering, University of California, San Diego, CA, USA
| | - John Holoubek
- Department of NanoEngineering, University of California, San Diego, CA, USA
| | - Jonathan Scharf
- Department of NanoEngineering, University of California, San Diego, CA, USA
| | - Yangyuchen Yang
- Program of Materials Science and Engineering, University of California, San Diego, CA, USA
| | - Ki Hwan Koh
- Department of NanoEngineering, University of California, San Diego, CA, USA
| | - Mingqian Li
- Program of Chemical Engineering, University of California, San Diego, CA, USA
| | - Daniel M Davies
- Department of NanoEngineering, University of California, San Diego, CA, USA
| | - Matthew Mayer
- Department of NanoEngineering, University of California, San Diego, CA, USA
| | - Tae Hee Han
- Department of Organic and Nano Engineering, Hanyang University, Seoul, Republic of Korea
| | - Ying Shirley Meng
- Department of NanoEngineering, University of California, San Diego, CA, USA
- Program of Materials Science and Engineering, University of California, San Diego, CA, USA
- Sustainable Power and Energy Center, University of California, San Diego, CA, USA
| | - Tod A Pascal
- Department of NanoEngineering, University of California, San Diego, CA, USA
- Program of Materials Science and Engineering, University of California, San Diego, CA, USA
- Program of Chemical Engineering, University of California, San Diego, CA, USA
- Sustainable Power and Energy Center, University of California, San Diego, CA, USA
| | - Zheng Chen
- Department of NanoEngineering, University of California, San Diego, CA, USA.
- Program of Materials Science and Engineering, University of California, San Diego, CA, USA.
- Program of Chemical Engineering, University of California, San Diego, CA, USA.
- Sustainable Power and Energy Center, University of California, San Diego, CA, USA.
| |
Collapse
|
217
|
Li Y, Ping H, Wei J, Zou Z, Zhang P, Xie J, Jia Y, Xie H, Wang W, Wang K, Fu Z. Bioprocess-Inspired Room-Temperature Synthesis of Enamel-like Fluorapatite/Polymer Nanocomposites Controlled by Magnesium Ions. ACS APPLIED MATERIALS & INTERFACES 2021; 13:25260-25269. [PMID: 34018714 DOI: 10.1021/acsami.1c04575] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Tooth enamel is composed of arrayed fluorapatite (FAP) or hydroxyapatite nanorods modified with Mg-rich amorphous layers. Although it is known that Mg2+ plays an important role in the formation of enamel, there is limited research on the regulatory role of Mg2+ in the synthesis of enamel-like materials. Therefore, we focus on the regulatory behavior of Mg2+ in the fabrication of biomimetic mineralized enamel-like structural materials. In the present study, we adopt a bioprocess-inspired room-temperature mineralization technique to synthesize a multilayered array of enamel-like columnar FAP/polymer nanocomposites controlled by Mg2+ (FPN-M). The results reveal that the presence of Mg2+ induced the compaction of the array and the formation of a unique Mg-rich amorphous-reinforced architecture. Therefore, the FPN-M array exhibits excellent mechanical properties. The hardness (2.42 ± 0.01 GPa) and Young's modulus (81.5 ± 0.6 GPa) of the as-prepared FPN-M array are comparable to those of its biological counterparts; furthermore, the enamel-like FPN-M array is translucent. The hardness and Young's modulus of the synthetic array of FAP/polymer nanocomposites without Mg2+ control (FPN) are 0.51 ± 0.04 and 43.5 ± 1.6 GPa, respectively. The present study demonstrates a reliable bioprocess-inspired room-temperature fabrication technique for the development of advanced high-performance composite materials.
Collapse
Affiliation(s)
- Yidi Li
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, 122 Luoshi Road, Wuhan 430070, P. R. China
| | - Hang Ping
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, 122 Luoshi Road, Wuhan 430070, P. R. China
| | - Jingjiang Wei
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, 122 Luoshi Road, Wuhan 430070, P. R. China
| | - Zhaoyong Zou
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, 122 Luoshi Road, Wuhan 430070, P. R. China
| | - Pengchao Zhang
- School of Materials Science and Engineering, Wuhan University of Technology, 122 Luoshi Road, Wuhan 430070, P. R. China
| | - Jingjing Xie
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, 122 Luoshi Road, Wuhan 430070, P. R. China
| | - Yuhang Jia
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, 122 Luoshi Road, Wuhan 430070, P. R. China
| | - Hao Xie
- School of Chemistry, Chemical Engineering and Life Sciences, Wuhan University of Technology, 122 Luoshi Road, Wuhan 430070, P. R. China
| | - Weimin Wang
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, 122 Luoshi Road, Wuhan 430070, P. R. China
| | - Kun Wang
- State Key Laboratory of Silicate Materials for Architectures, Wuhan University of Technology, 122 Luoshi Road, Wuhan, P. R. China
| | - Zhengyi Fu
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, 122 Luoshi Road, Wuhan 430070, P. R. China
| |
Collapse
|
218
|
Zhao Z, Wang X, Jing X, Zhao Y, Lan K, Zhang W, Duan L, Guo D, Wang C, Peng L, Zhang X, An Z, Li W, Nie Z, Fan C, Zhao D. General Synthesis of Ultrafine Monodispersed Hybrid Nanoparticles from Highly Stable Monomicelles. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2021; 33:e2100820. [PMID: 33914372 DOI: 10.1002/adma.202100820] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/31/2021] [Revised: 03/02/2021] [Indexed: 05/23/2023]
Abstract
Ultrafine nanoparticles with organic-inorganic hybridization have essential roles in myriad applications. Over the past three decades, although various efforts on the formation of organic or inorganic ultrasmall nanoparticles have been made, ultrafine organic-inorganic hybrid nanoparticles have scarcely been achieved. Herein, a family of ultrasmall hybrid nanoparticles with a monodisperse, uniform size is synthesized by a facile thermo-kinetics-mediated copolymer monomicelle approach. These thermo-kinetics-mediated monomicelles with amphiphilic ABC triblock copolymers are structurally robust due to their solidified polystyrene core, endowing them with ultrahigh thermodynamic stability, which is difficult to achieve using Pluronic surfactant-based micelles (e.g., F127). This great stability combined with a core-shell-corona structure makes the monodispersed monomicelles a robust template for the precise synthesis of ultrasmall hybrid nanoparticles with a highly uniform size. As a demonstration, the obtained micelles/SiO2 hybrid nanoparticles display ultrafine sizes, excellent uniformity, monodispersity, and tunable structural parameters (diameters: 24-47 nm and thin shell thickness: 2.0-4.0 nm). Notably, this approach is universal for creating a variety of multifunctional ultrasmall hybrid nanostructures, involving organic/organic micelle/polymers (polydopamine) nanoparticles, organic/inorganic micelle/metal oxides (ZnO, TiO2 , Fe2 O3 ), micelle/hydroxides (Co(OH)2 ), micelle/noble metals (Ag), and micelle/TiO2 /SiO2 hybrid composites. As a proof of concept, the ultrasmall micelle/SiO2 hybrid nanoparticles demonstrate superior toughness as biomimetic materials.
Collapse
Affiliation(s)
- Zaiwang Zhao
- Department of Chemistry, Laboratory of Advanced Materials, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, iChEM and State Key Laboratory of Molecular Engineering of Polymers, Fudan University, Shanghai, 200433, P. R. China
| | - Xiao Wang
- State Key Laboratory of Coal Resources and Safe Mining, School of Mines, China University of Mining and Technology, Xuzhou, 221116, P. R. China
| | - Xinxin Jing
- Institute of Molecular Medicine, Shanghai Key Laboratory for Nucleic Acids Chemistry and Nanomedicine, Renji Hospital, School of Medicine and School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules and National Center for Translational Medicine, Shanghai Jiao Tong University, Shanghai, 200127, P. R. China
| | - Yujuan Zhao
- Centre for High-Resolution Electron Microscopy (CћEM), School of Physical Science and Technology, ShanghaiTech University, 393 Middle Huaxia Road, Pudong, Shanghai, 201210, P. R. China
| | - Kun Lan
- Department of Chemistry, Laboratory of Advanced Materials, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, iChEM and State Key Laboratory of Molecular Engineering of Polymers, Fudan University, Shanghai, 200433, P. R. China
| | - Wei Zhang
- Department of Chemistry, Laboratory of Advanced Materials, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, iChEM and State Key Laboratory of Molecular Engineering of Polymers, Fudan University, Shanghai, 200433, P. R. China
| | - Linlin Duan
- Department of Chemistry, Laboratory of Advanced Materials, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, iChEM and State Key Laboratory of Molecular Engineering of Polymers, Fudan University, Shanghai, 200433, P. R. China
| | - Dingyi Guo
- Department of Chemistry, Laboratory of Advanced Materials, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, iChEM and State Key Laboratory of Molecular Engineering of Polymers, Fudan University, Shanghai, 200433, P. R. China
| | - Changyao Wang
- Department of Chemistry, Laboratory of Advanced Materials, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, iChEM and State Key Laboratory of Molecular Engineering of Polymers, Fudan University, Shanghai, 200433, P. R. China
| | - Liang Peng
- Department of Chemistry, Laboratory of Advanced Materials, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, iChEM and State Key Laboratory of Molecular Engineering of Polymers, Fudan University, Shanghai, 200433, P. R. China
| | - Xingmiao Zhang
- Department of Chemistry, Laboratory of Advanced Materials, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, iChEM and State Key Laboratory of Molecular Engineering of Polymers, Fudan University, Shanghai, 200433, P. R. China
| | - Zesheng An
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Key Laboratory for Molecular Enzymology and Engineering of Ministry of Education, School of Life Sciences, Jilin University, Changchun, 130012, P. R. China
| | - Wei Li
- Department of Chemistry, Laboratory of Advanced Materials, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, iChEM and State Key Laboratory of Molecular Engineering of Polymers, Fudan University, Shanghai, 200433, P. R. China
| | - Zhihong Nie
- Department of Chemistry, Laboratory of Advanced Materials, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, iChEM and State Key Laboratory of Molecular Engineering of Polymers, Fudan University, Shanghai, 200433, P. R. China
| | - Chunhai Fan
- Institute of Molecular Medicine, Shanghai Key Laboratory for Nucleic Acids Chemistry and Nanomedicine, Renji Hospital, School of Medicine and School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules and National Center for Translational Medicine, Shanghai Jiao Tong University, Shanghai, 200127, P. R. China
| | - Dongyuan Zhao
- Department of Chemistry, Laboratory of Advanced Materials, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, iChEM and State Key Laboratory of Molecular Engineering of Polymers, Fudan University, Shanghai, 200433, P. R. China
| |
Collapse
|
219
|
Sun B, Lin J, Wang T, Liu M, Yang L, Ma B, Chaudhary JP, Chen C, Sun D. Gas assisted in situ biomimetic mineralization of bacterial cellulose/calcium carbonate bio composites by bacterial. Int J Biol Macromol 2021; 182:1690-1696. [PMID: 34058205 DOI: 10.1016/j.ijbiomac.2021.05.171] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2021] [Revised: 05/24/2021] [Accepted: 05/25/2021] [Indexed: 11/15/2022]
Abstract
Biomineralization inspired process to produce polymer of desired need is a promising approach in the field of research. In the present work, the bacterial cellulose (BC) based nanocomposites with a 3D network were synthesized via a biological route by choosing the calcium salt of primary metabolites (calcium gluconate) as the carbon source. The BC based composites were characterized by employing with Scanning Electron Microscopy (SEM) and Transmission Electron Microscopy (TEM). During the preparation of nanocomposites, the calcium ions embedded on the cellulose fibrils were served as the nucleation center and calcium carbonate was deposited into BC network in the assistance of CO2. The uniform distribution of embedded objects on the cellulose nanofibers between internal and external was achieved. The exploitation of organisms for inorganic growth, shape and self-assembling explores new opportunities to the design of original nanostructures.
Collapse
Affiliation(s)
- Bianjing Sun
- Institute of Chemicobiology and Functional Materials, School of Chemical Engineering, Nanjing University of Science and Technology, 200 Xiao Ling Wei Street, Nanjing, Jiangsu Province 210094, China
| | - Jianbin Lin
- Institute of Chemicobiology and Functional Materials, School of Chemical Engineering, Nanjing University of Science and Technology, 200 Xiao Ling Wei Street, Nanjing, Jiangsu Province 210094, China
| | - Tao Wang
- Institute of Chemicobiology and Functional Materials, School of Chemical Engineering, Nanjing University of Science and Technology, 200 Xiao Ling Wei Street, Nanjing, Jiangsu Province 210094, China
| | - Mengdi Liu
- Institute of Chemicobiology and Functional Materials, School of Chemical Engineering, Nanjing University of Science and Technology, 200 Xiao Ling Wei Street, Nanjing, Jiangsu Province 210094, China
| | - Lei Yang
- Institute of Chemicobiology and Functional Materials, School of Chemical Engineering, Nanjing University of Science and Technology, 200 Xiao Ling Wei Street, Nanjing, Jiangsu Province 210094, China
| | - Bo Ma
- Department of Life Science of Lianyungang Teacher's College, Sheng Hu Lu 28, Lianyungang 222006, China
| | - Jai Prakash Chaudhary
- Institute of Chemicobiology and Functional Materials, School of Chemical Engineering, Nanjing University of Science and Technology, 200 Xiao Ling Wei Street, Nanjing, Jiangsu Province 210094, China
| | - Chuntao Chen
- Institute of Chemicobiology and Functional Materials, School of Chemical Engineering, Nanjing University of Science and Technology, 200 Xiao Ling Wei Street, Nanjing, Jiangsu Province 210094, China
| | - Dongping Sun
- Institute of Chemicobiology and Functional Materials, School of Chemical Engineering, Nanjing University of Science and Technology, 200 Xiao Ling Wei Street, Nanjing, Jiangsu Province 210094, China.
| |
Collapse
|
220
|
Huang J, Jiang T, Liu C, Liu Y, Zheng G, Wang H, Zhang G, Xie L, Zhang R. Transition from horizontal expansion to vertical growth in the oyster prismatic layer. Biochem Biophys Res Commun 2021; 563:47-53. [PMID: 34058474 DOI: 10.1016/j.bbrc.2021.05.067] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2021] [Accepted: 05/19/2021] [Indexed: 12/01/2022]
Abstract
Biomimetic materials inspired by biominerals have substantial applications in various fields. The prismatic layer of bivalve molluscs has extraordinary flexibility compared to inorganic CaCO3. Previous studies showed that in the early stage, minerals expanded horizontally and formed prism domains as a Voronoi division, while the evolution of the mature prisms were thermodynamically driven, which was similar to grain growth. However, it was unclear how the two processes were correlated during shell formation. In this study, we used scanning electronic microscopy and laser confocal scanning microscopy to look into the microstructure of the columnar prismatic layer in the pearl oyster Pinctada fucata. The Dirichlet centers of the growing domains in mature prisms were calculated, and the corresponding Voronoi division was reconstructed. It was found that the domain pattern did not fit the Voronoi division, indicating the driving forces of the mature prisms evolution and the initiation stage were different. During the transition from horizontal expansion to vertical growth, the minerals broke through the inner periostracum and squeezed out the organic materials to the inter-prism space. Re-arrangement of the organic framework pattern was driven by elastic relaxation at the vertices, indicating the transition process was thermodynamically driven. Our study provided insights into shell growth in bivalves and pave the way to synthesize three-dimensional material biomimetically.
Collapse
Affiliation(s)
- Jingliang Huang
- Protein Science Laboratory of the Ministry of Education, School of Life Science, Tsinghua University, Beijing, 100084, China
| | - Taifeng Jiang
- Protein Science Laboratory of the Ministry of Education, School of Life Science, Tsinghua University, Beijing, 100084, China
| | - Chuang Liu
- Protein Science Laboratory of the Ministry of Education, School of Life Science, Tsinghua University, Beijing, 100084, China
| | - Yangjia Liu
- Protein Science Laboratory of the Ministry of Education, School of Life Science, Tsinghua University, Beijing, 100084, China
| | - Guilan Zheng
- Protein Science Laboratory of the Ministry of Education, School of Life Science, Tsinghua University, Beijing, 100084, China
| | - Hongzhong Wang
- Protein Science Laboratory of the Ministry of Education, School of Life Science, Tsinghua University, Beijing, 100084, China
| | - Guiyou Zhang
- Protein Science Laboratory of the Ministry of Education, School of Life Science, Tsinghua University, Beijing, 100084, China
| | - Liping Xie
- Protein Science Laboratory of the Ministry of Education, School of Life Science, Tsinghua University, Beijing, 100084, China
| | - Rongqing Zhang
- Protein Science Laboratory of the Ministry of Education, School of Life Science, Tsinghua University, Beijing, 100084, China; Department of Biotechnology and Biomedicine, Yangtze Delta Region Institute of Tsinghua University, Jiaxing, Zhejiang Province, 314006, China.
| |
Collapse
|
221
|
Guan QF, Yang HB, Han ZM, Ling ZC, Yin CH, Yang KP, Zhao YX, Yu SH. Sustainable Cellulose-Nanofiber-Based Hydrogels. ACS NANO 2021; 15:7889-7898. [PMID: 33979147 DOI: 10.1021/acsnano.1c01247] [Citation(s) in RCA: 56] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Hydrogel materials have many excellent properties and a wide range of applications. Recently, a new type of hydrogel has emerged: cellulose nanofiber (CNF)-based hydrogels, which have three-dimensional nanofiber networks and unique physical properties. Because CNFs are abundant, renewable, and biodegradable, they are green and eco-friendly nanoscale building blocks. In addition, CNF-based hydrogel materials exhibit excellent mechanical properties and designable functions by different preparation methods and structure designs, demonstrating huge development potential. In this Perspective, we summarize the recent progress in the development of CNF-based hydrogels and introduce their applications in elastic hydrogels, ionic conduction, water purification, and biomedicine, highlighting future trends and opportunities for the further development of CNF-based hydrogels as emerging materials systems.
Collapse
Affiliation(s)
- Qing-Fang Guan
- Division of Nanomaterials and Chemistry, Hefei National Laboratory for Physical Sciences at the Microscale, Institute of Energy, Hefei Comprehensive National Science Center, CAS Center for Excellence in Nanoscience, Department of Chemistry, Institute of Biomimetic Materials and Chemistry, Anhui Engineering Laboratory of Biomimetic Materials, University of Science and Technology of China, Hefei 230026, China
| | - Huai-Bin Yang
- Division of Nanomaterials and Chemistry, Hefei National Laboratory for Physical Sciences at the Microscale, Institute of Energy, Hefei Comprehensive National Science Center, CAS Center for Excellence in Nanoscience, Department of Chemistry, Institute of Biomimetic Materials and Chemistry, Anhui Engineering Laboratory of Biomimetic Materials, University of Science and Technology of China, Hefei 230026, China
| | - Zi-Meng Han
- Division of Nanomaterials and Chemistry, Hefei National Laboratory for Physical Sciences at the Microscale, Institute of Energy, Hefei Comprehensive National Science Center, CAS Center for Excellence in Nanoscience, Department of Chemistry, Institute of Biomimetic Materials and Chemistry, Anhui Engineering Laboratory of Biomimetic Materials, University of Science and Technology of China, Hefei 230026, China
| | - Zhang-Chi Ling
- Division of Nanomaterials and Chemistry, Hefei National Laboratory for Physical Sciences at the Microscale, Institute of Energy, Hefei Comprehensive National Science Center, CAS Center for Excellence in Nanoscience, Department of Chemistry, Institute of Biomimetic Materials and Chemistry, Anhui Engineering Laboratory of Biomimetic Materials, University of Science and Technology of China, Hefei 230026, China
| | - Chong-Han Yin
- Division of Nanomaterials and Chemistry, Hefei National Laboratory for Physical Sciences at the Microscale, Institute of Energy, Hefei Comprehensive National Science Center, CAS Center for Excellence in Nanoscience, Department of Chemistry, Institute of Biomimetic Materials and Chemistry, Anhui Engineering Laboratory of Biomimetic Materials, University of Science and Technology of China, Hefei 230026, China
| | - Kun-Peng Yang
- Division of Nanomaterials and Chemistry, Hefei National Laboratory for Physical Sciences at the Microscale, Institute of Energy, Hefei Comprehensive National Science Center, CAS Center for Excellence in Nanoscience, Department of Chemistry, Institute of Biomimetic Materials and Chemistry, Anhui Engineering Laboratory of Biomimetic Materials, University of Science and Technology of China, Hefei 230026, China
| | - Yu-Xiang Zhao
- Division of Nanomaterials and Chemistry, Hefei National Laboratory for Physical Sciences at the Microscale, Institute of Energy, Hefei Comprehensive National Science Center, CAS Center for Excellence in Nanoscience, Department of Chemistry, Institute of Biomimetic Materials and Chemistry, Anhui Engineering Laboratory of Biomimetic Materials, University of Science and Technology of China, Hefei 230026, China
| | - Shu-Hong Yu
- Division of Nanomaterials and Chemistry, Hefei National Laboratory for Physical Sciences at the Microscale, Institute of Energy, Hefei Comprehensive National Science Center, CAS Center for Excellence in Nanoscience, Department of Chemistry, Institute of Biomimetic Materials and Chemistry, Anhui Engineering Laboratory of Biomimetic Materials, University of Science and Technology of China, Hefei 230026, China
| |
Collapse
|
222
|
Yin Z, Liang X, Zhou K, Li S, Lu H, Zhang M, Wang H, Xu Z, Zhang Y. Biomimetic Mechanically Enhanced Carbon Nanotube Fibers by Silk Fibroin Infiltration. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2021; 17:e2100066. [PMID: 33792159 DOI: 10.1002/smll.202100066] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/05/2021] [Revised: 02/09/2021] [Indexed: 06/12/2023]
Abstract
Natural materials, such as silk, nacre, and bone, possess superior mechanical properties which are derived from their unique hierarchical structures. Individual carbon nanotubes (CNTs) are considered as one of the strongest materials. However, macroscopic CNT fibers usually have breaking strength far below that of individual CNTs. In this work, by mimicking the structure of natural silk fibers, strong and stiff CNT fibers are prepared by infiltrating silk fibroin (SF) into CNT fibers. There are abundant hydrogen bonds in SF, contributing to the enhanced interactions between neighboring CNTs. Glycerol is selected to promote the formation of β-sheet conformation in SF, leading to further enhanced strength and modulus. Remarkably, the SF infiltrated CNT fibers show breaking strength of 1023 MPa, toughness of 10.3 MJ m-3 , and Young's modulus of 81.3 GPa, which are 250%, 132%, and 442% of the pristine CNT fibers. The structure of the SF and the interactions between CNTs and SF are studied via Fourier transformed infrared spectroscopy and molecular dynamics simulation. Mimicking the hierarchical structures of natural silk fibers and enhance the interfacial load transfer by infiltrating SF are effective for reinforcing CNT fibers, which may be useful in the design and preparation of other structural materials.
Collapse
Affiliation(s)
- Zhe Yin
- Key Laboratory of Organic Optoelectronics and Molecular Engineering of the Ministry of Education, Department of Chemistry and Center for Nano and Micro Mechanics, Tsinghua University, Beijing, 100084, P. R. China
| | - Xiaoping Liang
- Key Laboratory of Organic Optoelectronics and Molecular Engineering of the Ministry of Education, Department of Chemistry, Tsinghua University, Beijing, 100084, P. R. China
| | - Ke Zhou
- Department of Engineering Mechanics, School of Aerospace Engineering, Center for Nano and Micro Mechanic, Tsinghua University, Beijing, 100084, P. R. China
| | - Shuo Li
- Key Laboratory of Organic Optoelectronics and Molecular Engineering of the Ministry of Education, Department of Chemistry, Tsinghua University, Beijing, 100084, P. R. China
| | - Haojie Lu
- Key Laboratory of Organic Optoelectronics and Molecular Engineering of the Ministry of Education, Department of Chemistry, Tsinghua University, Beijing, 100084, P. R. China
| | - Mingchao Zhang
- Key Laboratory of Organic Optoelectronics and Molecular Engineering of the Ministry of Education, Department of Chemistry and Center for Nano and Micro Mechanics, Tsinghua University, Beijing, 100084, P. R. China
| | - Haomin Wang
- Key Laboratory of Organic Optoelectronics and Molecular Engineering of the Ministry of Education, Department of Chemistry, Tsinghua University, Beijing, 100084, P. R. China
| | - Zhiping Xu
- Department of Engineering Mechanics, School of Aerospace Engineering, Center for Nano and Micro Mechanic, Tsinghua University, Beijing, 100084, P. R. China
| | - Yingying Zhang
- Key Laboratory of Organic Optoelectronics and Molecular Engineering of the Ministry of Education, Department of Chemistry and Center for Nano and Micro Mechanics, Tsinghua University, Beijing, 100084, P. R. China
| |
Collapse
|
223
|
Xin A, Su Y, Feng S, Yan M, Yu K, Feng Z, Hoon Lee K, Sun L, Wang Q. Growing Living Composites with Ordered Microstructures and Exceptional Mechanical Properties. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2021; 33:e2006946. [PMID: 33604942 DOI: 10.1002/adma.202006946] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/12/2020] [Revised: 12/14/2020] [Indexed: 06/12/2023]
Abstract
Living creatures are continuous sources of inspiration for designing synthetic materials. However, living creatures are typically different from synthetic materials because the former consist of living cells to support their growth and regeneration. Although natural systems can grow materials with sophisticated microstructures, how to harness living cells to grow materials with predesigned microstructures in engineering systems remains largely elusive. Here, an attempt to exploit living bacteria and 3D-printed materials to grow bionic mineralized composites with ordered microstructures is reported. The bionic composites exhibit outstanding specific strength and fracture toughness, which are comparable to natural composites, and exceptional energy absorption capability superior to both natural and artificial counterparts. This report opens the door for 3D-architectured hybrid synthetic-living materials with living ordered microstructures and exceptional properties.
Collapse
Affiliation(s)
- An Xin
- Sonny Astani Department of Civil and Environmental Engineering, University of Southern California, Los Angeles, CA, 90089, USA
| | - Yipin Su
- Sonny Astani Department of Civil and Environmental Engineering, University of Southern California, Los Angeles, CA, 90089, USA
| | - Shengwei Feng
- Department of Civil and Environmental Engineering, University of California, Irvine, Irvine, CA, 92697, USA
| | - Minliang Yan
- Sonny Astani Department of Civil and Environmental Engineering, University of Southern California, Los Angeles, CA, 90089, USA
| | - Kunhao Yu
- Sonny Astani Department of Civil and Environmental Engineering, University of Southern California, Los Angeles, CA, 90089, USA
| | - Zhangzhengrong Feng
- Sonny Astani Department of Civil and Environmental Engineering, University of Southern California, Los Angeles, CA, 90089, USA
| | - Kyung Hoon Lee
- Sonny Astani Department of Civil and Environmental Engineering, University of Southern California, Los Angeles, CA, 90089, USA
| | - Lizhi Sun
- Department of Civil and Environmental Engineering, University of California, Irvine, Irvine, CA, 92697, USA
| | - Qiming Wang
- Sonny Astani Department of Civil and Environmental Engineering, University of Southern California, Los Angeles, CA, 90089, USA
| |
Collapse
|
224
|
Guan QF, Han ZM, Yang KP, Yang HB, Ling ZC, Yin CH, Yu SH. Sustainable Double-Network Structural Materials for Electromagnetic Shielding. NANO LETTERS 2021; 21:2532-2537. [PMID: 33683886 DOI: 10.1021/acs.nanolett.0c05081] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Electromagnetic interference (EMI) shielding materials with excellent EMI shielding efficiency (SE), lightweight property, and superb mechanical performance are vitally important for modern society, but it is still a challenge to realize these performances simultaneously on one material. Here, we report a sustainable bioinspired double-network structural material with excellent specific strength (146 MPa g-1 cm3) and remarkable EMI SE (100 dB) from cellulose nanofiber (CNF) and carbon nanotubes (CNTs), which demonstrates remarkable and outstanding performance to both typical metal materials and reported polymer composites. In particular, the bioinspired double-network structure design simultaneously achieves an extremely high electrical conductivity and mechanical strength, which makes it a lightweight, high shielding efficiency, and sustainable structural material for real-life electromagnetic wave shielding applications.
Collapse
Affiliation(s)
- Qing-Fang Guan
- Division of Nanomaterials and Chemistry, Hefei National Laboratory for Physical Sciences at the Microscale, Institute of Energy, Hefei Comprehensive National Science Center, CAS Center for Excellence in Nanoscience, Department of Chemistry, Institute of Biomimetic Materials & Chemistry, Anhui Engineering Laboratory of Biomimetic Materials, University of Science and Technology of China, Hefei 230026, China
| | - Zi-Meng Han
- Division of Nanomaterials and Chemistry, Hefei National Laboratory for Physical Sciences at the Microscale, Institute of Energy, Hefei Comprehensive National Science Center, CAS Center for Excellence in Nanoscience, Department of Chemistry, Institute of Biomimetic Materials & Chemistry, Anhui Engineering Laboratory of Biomimetic Materials, University of Science and Technology of China, Hefei 230026, China
| | - Kun-Peng Yang
- Division of Nanomaterials and Chemistry, Hefei National Laboratory for Physical Sciences at the Microscale, Institute of Energy, Hefei Comprehensive National Science Center, CAS Center for Excellence in Nanoscience, Department of Chemistry, Institute of Biomimetic Materials & Chemistry, Anhui Engineering Laboratory of Biomimetic Materials, University of Science and Technology of China, Hefei 230026, China
| | - Huai-Bin Yang
- Division of Nanomaterials and Chemistry, Hefei National Laboratory for Physical Sciences at the Microscale, Institute of Energy, Hefei Comprehensive National Science Center, CAS Center for Excellence in Nanoscience, Department of Chemistry, Institute of Biomimetic Materials & Chemistry, Anhui Engineering Laboratory of Biomimetic Materials, University of Science and Technology of China, Hefei 230026, China
| | - Zhang-Chi Ling
- Division of Nanomaterials and Chemistry, Hefei National Laboratory for Physical Sciences at the Microscale, Institute of Energy, Hefei Comprehensive National Science Center, CAS Center for Excellence in Nanoscience, Department of Chemistry, Institute of Biomimetic Materials & Chemistry, Anhui Engineering Laboratory of Biomimetic Materials, University of Science and Technology of China, Hefei 230026, China
| | - Chong-Han Yin
- Division of Nanomaterials and Chemistry, Hefei National Laboratory for Physical Sciences at the Microscale, Institute of Energy, Hefei Comprehensive National Science Center, CAS Center for Excellence in Nanoscience, Department of Chemistry, Institute of Biomimetic Materials & Chemistry, Anhui Engineering Laboratory of Biomimetic Materials, University of Science and Technology of China, Hefei 230026, China
| | - Shu-Hong Yu
- Division of Nanomaterials and Chemistry, Hefei National Laboratory for Physical Sciences at the Microscale, Institute of Energy, Hefei Comprehensive National Science Center, CAS Center for Excellence in Nanoscience, Department of Chemistry, Institute of Biomimetic Materials & Chemistry, Anhui Engineering Laboratory of Biomimetic Materials, University of Science and Technology of China, Hefei 230026, China
| |
Collapse
|
225
|
Chen Y, Zhang L, Yang Y, Pang B, Xu W, Duan G, Jiang S, Zhang K. Recent Progress on Nanocellulose Aerogels: Preparation, Modification, Composite Fabrication, Applications. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2021; 33:e2005569. [PMID: 33538067 PMCID: PMC11468492 DOI: 10.1002/adma.202005569] [Citation(s) in RCA: 218] [Impact Index Per Article: 54.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/17/2020] [Revised: 10/25/2020] [Indexed: 05/26/2023]
Abstract
The rapid development of modern industry and excessive consumption of petroleum-based polymers have triggered a double crisis presenting a shortage of nonrenewable resources and environmental pollution. However, this has provided an opportunity to stimulate researchers to harness native biobased materials for novel advanced materials and applications. Nanocellulose-based aerogels, using abundant and sustainable cellulose as raw material, present a third-generation of aerogels that combine traditional aerogels with high porosity and large specific surface area, as well as the excellent properties of cellulose itself. Currently, nanocellulose aerogels provide a highly attention-catching platform for a wide range of functional applications in various fields, e.g., adsorption, separation, energy storage, thermal insulation, electromagnetic interference shielding, and biomedical applications. Here, the preparation methods, modification strategies, composite fabrications, and further applications of nanocellulose aerogels are summarized, with additional discussions regarding the prospects and potential challenges in future development.
Collapse
Affiliation(s)
- Yiming Chen
- Co‐Innovation Center of Efficient Processing and Utilization of Forest ResourcesCollege of Materials Science and EngineeringNanjing Forestry UniversityNanjing210037China
| | - Lin Zhang
- MIT Media LabMassachusetts Institute of TechnologyCambridgeMA02139USA
| | - Yang Yang
- Department of Wood Technology and Wood‐Based CompositesUniversity of GöttingenBüsgenweg 4Göttingen37077Germany
| | - Bo Pang
- Department of Wood Technology and Wood‐Based CompositesUniversity of GöttingenBüsgenweg 4Göttingen37077Germany
| | - Wenhui Xu
- School of PharmacyJiangxi University of Traditional Chinese MedicineNanchangJiangxi330004China
| | - Gaigai Duan
- Co‐Innovation Center of Efficient Processing and Utilization of Forest ResourcesCollege of Materials Science and EngineeringNanjing Forestry UniversityNanjing210037China
| | - Shaohua Jiang
- Co‐Innovation Center of Efficient Processing and Utilization of Forest ResourcesCollege of Materials Science and EngineeringNanjing Forestry UniversityNanjing210037China
| | - Kai Zhang
- Department of Wood Technology and Wood‐Based CompositesUniversity of GöttingenBüsgenweg 4Göttingen37077Germany
| |
Collapse
|
226
|
Liu C, Zhang R. Biomineral proteomics: A tool for multiple disciplinary studies. J Proteomics 2021; 238:104171. [PMID: 33652138 DOI: 10.1016/j.jprot.2021.104171] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2020] [Revised: 02/06/2021] [Accepted: 02/21/2021] [Indexed: 12/11/2022]
Abstract
The hard tissues of animals, such as skeletons and teeth, are constructed by a biologically controlled process called biomineralization. In invertebrate animals, biominerals are considered important for their evolutionary success. These biominerals are hieratical biocomposites with excellent mechanical properties, and their formation has intrigued researchers for decades. Although proteins account for ~5 wt% of biominerals, they are critical players in biomineralization. With the development of high-throughput analysis methods, such as proteomics, biomineral protein data are rapidly accumulating, thus necessitating a refined model for biomineralization. This review focuses on biomineral proteomics in invertebrate animals to highlight the diversity of biomineral proteins (generally 40-80 proteins), and the results indicate that biomineralization includes thermodynamic crystal growth as well as intense extracellular matrix activity and/or vesicle transport. Biominerals have multiple functions linked to biological immunity and antipathogen activity. A comparison of proteomes across species and biomineral types showed that von Willebrand factor type A and epidermal growth factor, which frequently couple with other extracellular domains, are the most common domains. Combined with species-specific repetitive low complexity domains, shell matrix proteins can be employed to predict biomineral types. Furthermore, this review discusses the applications of biomineral proteomics in diverse fields, such as tissue regeneration, developmental biology, archeology, environmental science, and material science.
Collapse
Affiliation(s)
- Chuang Liu
- College of Oceanography, Hohai University, Xikang Road, Nanjing, Jiangsu 210098, China.
| | - Rongqing Zhang
- Ministry of Education Key Laboratory of Protein Sciences, School of Life Sciences, Tsinghua University, Beijing 100084, China; Zhejiang Provincial Key Laboratory of Applied Enzymology, Yangtze Delta Region Institute of Tsinghua University, 705 Yatai Road, Jiaxing 314006, PR China; College of Biological, Chemical Sciences and Engineering, Jiaxing University, Jiaxing 314001, China.
| |
Collapse
|
227
|
Ma J, Cai B, Zhang S, Jian T, De Yoreo JJ, Chen CL, Baneyx F. Nanoparticle-Mediated Assembly of Peptoid Nanosheets Functionalized with Solid-Binding Proteins: Designing Heterostructures for Hierarchy. NANO LETTERS 2021; 21:1636-1642. [PMID: 33555891 DOI: 10.1021/acs.nanolett.0c04285] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
The fabrication of ordered architectures that intimately integrate polymer, protein, and inorganic components remains difficult. Two promising building blocks to tackle this challenge are peptoids, peptide mimics capable of self-assembly into well-defined structures, and solid-binding peptides, which offer a biological path to controlled inorganic assembly. Here, we report on the synthesis of 3.3-nm-thick thiol-reactive peptoid nanosheets from equimolar mixtures of unmodified and maleimide-derivatized versions of the Nbpe6Nce6 oligomer, optimize the location of engineered cysteine residues in silica-binding derivatives of superfolder green fluorescent protein for maleimide conjugation, and react the two components to form protein-peptoid hybrids exhibiting partial or uniform protein coverage on both of their sides. Using 10 nm silica nanoparticles, we trigger the stacking of these 2D structures into a multilayered material composed of alternating peptoid, protein, and organic layers. This simple and modular approach to hierarchical hybrid synthesis should prove useful in bioimaging and photocatalysis applications.
Collapse
Affiliation(s)
| | - Bin Cai
- Physical Sciences Division, Physical and Computational Sciences Directorate, Pacific Northwest National Laboratory, Richland, Washington 99354, United States
| | - Shuai Zhang
- Physical Sciences Division, Physical and Computational Sciences Directorate, Pacific Northwest National Laboratory, Richland, Washington 99354, United States
| | - Tengyue Jian
- Physical Sciences Division, Physical and Computational Sciences Directorate, Pacific Northwest National Laboratory, Richland, Washington 99354, United States
| | - James J De Yoreo
- Physical Sciences Division, Physical and Computational Sciences Directorate, Pacific Northwest National Laboratory, Richland, Washington 99354, United States
| | - Chun-Long Chen
- Physical Sciences Division, Physical and Computational Sciences Directorate, Pacific Northwest National Laboratory, Richland, Washington 99354, United States
| | | |
Collapse
|
228
|
Chang L, Peng Z, Zhang T, Yu C, Zhong W. Nacre-inspired composite films with high mechanical strength constructed from MXenes and wood-inspired hydrothermal cellulose-based nanofibers for high performance flexible supercapacitors. NANOSCALE 2021; 13:3079-3091. [PMID: 33522537 DOI: 10.1039/d0nr08090j] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Two dimensional MXenes with fascinating characteristics of high electrical conductivity, high density and electroactivity show promising applications in various fields. However, the direct applications of MXenes have been limited due to their inferior mechanical properties and easy restacking. Herein, a kind of nacre-like composite film constructed with Ti3C2Tx, cellulose nanofiber (HCNF) and sodium lignosulfonate (Lig) obtained through the hydrothermal process, named Ti3C2Tx/HCNF@Lig, has been successfully synthesized. The hydrothermal cellulose nanofiber (HCNF) film shows an enhanced mechanical strength (114 MPa) compared to that of the CNF film (95 MPa). Wood-inspired HCNF@Lig composite films present an enhanced mechanical tensile strength of up to 133 MPa. Nacre-like deformable Ti3C2Tx/HCNF@Lig(3@1) composite films exhibit high conductivity (up to 1.75 × 105 S m-1) and mechanical properties (up to 258 MPa). The electrodes of Ti3C2Tx/HCNF@Lig(3@1)97/3 composite film assembled flexible solid-state supercapacitors possess an excellent volumetric specific capacitance of 748.96 F cm-3. The corresponding deformable supercapacitors show an excellent energy density of 16.2 W h L-1 and outstanding electrochemical cycling stability. The as-prepared nacre-like Ti3C2Tx/HCNF@Lig composite films with high mechanical properties and electrochemical performance are expected to be practically applied in flexible/wearable energy storage devices.
Collapse
Affiliation(s)
- Libo Chang
- College of Materials Science and Engineering, Hunan University, Changsha, 410082, P. R. China.
| | - Zhiyuan Peng
- College of Materials Science and Engineering, Hunan University, Changsha, 410082, P. R. China.
| | - Tong Zhang
- Research Institute of Chemical Defense, Beijing, 102205, P. R. China.
| | - Chuying Yu
- College of Materials Science and Engineering, Hunan University, Changsha, 410082, P. R. China.
| | - Wenbin Zhong
- College of Materials Science and Engineering, Hunan University, Changsha, 410082, P. R. China.
| |
Collapse
|
229
|
Ghosh D, Ganayee MA, Som A, Srikrishnarka P, Murali N, Bose S, Chakraborty A, Mondal B, Ghosh P, Pradeep T. Hierarchical Assembly of Atomically Precise Metal Clusters as a Luminescent Strain Sensor. ACS APPLIED MATERIALS & INTERFACES 2021; 13:6496-6504. [PMID: 33512132 DOI: 10.1021/acsami.0c19239] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
We demonstrate the formation of a versatile luminescent organo-inorganic layered hybrid material, composed of bovine serum albumin (BSA)-protected Au30 clusters and aminoclay sheets. X-ray diffraction revealed the intercalation of Au30@BSA in the layered superstructure of aminoclay sheets. Coulombic attraction of the clusters and the clay initiates the interaction, and the appropriate size of the clusters allowed them to intercalate within the lamellar aminoclay galleries. Electron microscopy measurements confirmed the hierarchical structure of the material and also showed the cluster-attached clay sheets. Zeta potential measurement and dynamic light scattering probed the gradual formation of the ordered aggregates in solution. The hybrid material could be stretched up to 300% without fracture. The emergence of a new peak in the luminescence spectrum was observed during the course of mechanical stretching. This peak increased in intensity gradually with the degree of elongation or strain of the material. A mechanochromic luminescence response was further demonstrated with a writing experiment on a luminescent mat of the material, made by electrospinning.
Collapse
Affiliation(s)
- Debasmita Ghosh
- DST Unit of Nanoscience (DST UNS) and Thematic Unit of Excellence, Department of Chemistry, Indian Institute of Technology Madras, Chennai 600036, India
| | - Mohd Azhardin Ganayee
- DST Unit of Nanoscience (DST UNS) and Thematic Unit of Excellence, Department of Chemistry, Indian Institute of Technology Madras, Chennai 600036, India
| | - Anirban Som
- DST Unit of Nanoscience (DST UNS) and Thematic Unit of Excellence, Department of Chemistry, Indian Institute of Technology Madras, Chennai 600036, India
| | - Pillalamarri Srikrishnarka
- DST Unit of Nanoscience (DST UNS) and Thematic Unit of Excellence, Department of Chemistry, Indian Institute of Technology Madras, Chennai 600036, India
| | - Nidhi Murali
- Department of Applied Mechanics, Indian Institute of Technology Madras, Chennai 600036, India
| | - Sandeep Bose
- DST Unit of Nanoscience (DST UNS) and Thematic Unit of Excellence, Department of Chemistry, Indian Institute of Technology Madras, Chennai 600036, India
| | - Amrita Chakraborty
- DST Unit of Nanoscience (DST UNS) and Thematic Unit of Excellence, Department of Chemistry, Indian Institute of Technology Madras, Chennai 600036, India
| | - Biswajit Mondal
- DST Unit of Nanoscience (DST UNS) and Thematic Unit of Excellence, Department of Chemistry, Indian Institute of Technology Madras, Chennai 600036, India
| | - Pijush Ghosh
- Department of Applied Mechanics, Indian Institute of Technology Madras, Chennai 600036, India
| | - Thalappil Pradeep
- DST Unit of Nanoscience (DST UNS) and Thematic Unit of Excellence, Department of Chemistry, Indian Institute of Technology Madras, Chennai 600036, India
| |
Collapse
|
230
|
Zhang W, Wang D, Sun Z, Song J, Deng X. Robust superhydrophobicity: mechanisms and strategies. Chem Soc Rev 2021; 50:4031-4061. [PMID: 33554976 DOI: 10.1039/d0cs00751j] [Citation(s) in RCA: 185] [Impact Index Per Article: 46.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Superhydrophobic surfaces hold great prospects for extremely diverse applications owing to their water repellence property. The essential feature of superhydrophobicity is micro-/nano-scopic roughness to reserve a large portion of air under a liquid drop. However, the vulnerability of the delicate surface textures significantly impedes the practical applications of superhydrophobic surfaces. Robust superhydrophobicity is a must to meet the rigorous industrial requirements and standards for commercial products. In recent years, major advancements have been made in elucidating the mechanisms of wetting transitions, design strategies and fabrication techniques of superhydrophobicity. This review will first introduce the mechanisms of wetting transitions, including the thermodynamic stability of the Cassie state and its breakdown conditions. Then we highlight the development, current status and future prospects of robust superhydrophobicity, including characterization, design strategies and fabrication techniques. In particular, design strategies, which are classified into passive resistance and active regeneration for the first time, are proposed and discussed extensively.
Collapse
Affiliation(s)
- Wenluan Zhang
- Institute of Fundamental and Frontier Sciences, University of Electronic Science and Technology of China, Chengdu, China.
| | | | | | | | | |
Collapse
|
231
|
Lu H, Huang YC, Hunger J, Gebauer D, Cölfen H, Bonn M. Role of Water in CaCO 3 Biomineralization. J Am Chem Soc 2021; 143:1758-1762. [PMID: 33471507 PMCID: PMC7877725 DOI: 10.1021/jacs.0c11976] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
![]()
Biomineralization occurs in aqueous
environments. Despite the ubiquity
and relevance of CaCO3 biomineralization, the role of water
in the biomineralization process has remained elusive. Here, we demonstrate
that water reorganization accompanies CaCO3 biomineralization
for sea urchin spine generation in a model system. Using surface-specific
vibrational spectroscopy, we probe the water at the interface of the
spine-associated protein during CaCO3 mineralization. Our
results show that, while the protein structure remains unchanged,
the structure of interfacial water is perturbed differently in the
presence of both Ca2+ and CO32– compared to the addition of only Ca2+. This difference
is attributed to the condensation of prenucleation mineral species.
Our findings are consistent with a nonclassical mineralization pathway
for sea urchin spine generation and highlight the importance of protein
hydration in biomineralization.
Collapse
Affiliation(s)
- Hao Lu
- Max Planck Institute for Polymer Research, Ackermannweg 10, 55128 Mainz, Germany
| | - Yu-Chieh Huang
- Physical Chemistry, Department of Chemistry, University of Konstanz, Universitätsstrasse 10, Konstanz 78464, Germany
| | - Johannes Hunger
- Max Planck Institute for Polymer Research, Ackermannweg 10, 55128 Mainz, Germany
| | - Denis Gebauer
- Physical Chemistry, Department of Chemistry, University of Konstanz, Universitätsstrasse 10, Konstanz 78464, Germany.,Institute of Inorganic Chemistry, Leibniz University of Hannover, 30167 Hannover, Germany
| | - Helmut Cölfen
- Physical Chemistry, Department of Chemistry, University of Konstanz, Universitätsstrasse 10, Konstanz 78464, Germany
| | - Mischa Bonn
- Max Planck Institute for Polymer Research, Ackermannweg 10, 55128 Mainz, Germany
| |
Collapse
|
232
|
Wu Z, Yao Q, Liu Z, Xu H, Guo P, Liu L, Han Y, Zhang K, Lu Z, Li X, Zhang J, Xie J. Multiscale Assembly of [AgS 4 ] Tetrahedrons into Hierarchical Ag-S Networks for Robust Photonic Water. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2021; 33:e2006459. [PMID: 33475199 DOI: 10.1002/adma.202006459] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/21/2020] [Revised: 12/14/2020] [Indexed: 06/12/2023]
Abstract
There is an urgent need to assemble ultrasmall metal chalcogenides (with atomic precision) into functional materials with the required anisotropy and uniformity, on a micro- or even macroscale. Here, a delicate yet simple chemistry is developed to produce a silver-sulfur network microplate with a high monodispersity in size and morphology. Spanning from the atomic, molecular, to nanometer, to micrometer scale, the key structural evolution of the obtained microplates includes 2D confinement growth, edge-sharing growth mode, and thermodynamically driven layer-by-layer stacking, all of which are derived from the [AgS4 ] tetrahedron unit. The key to such a high hierarchical, complex, and accurate assembly is the dense deprotonated ligand layer on the surface of the microplates, forming an infinite surface with high negative charge density. This feature operates at an orderly distance to allow further hierarchical self-assembly on the microscale to generate columnar assemblies composed of microplate components, thereby endowing the feature of the 1D photonic reflector to water (i.e., photonic water). The reflective color of the resulting photonic water is highly dependent on the thickness of the building blocks (i.e., silver-sulfur microplates), and the coexistent order and fluidity help to form robust photonic water.
Collapse
Affiliation(s)
- Zhennan Wu
- Department of Chemical and Biomolecular Engineering, National University of Singapore, Singapore, 117585, Singapore
| | - Qiaofeng Yao
- Department of Chemical and Biomolecular Engineering, National University of Singapore, Singapore, 117585, Singapore
| | - Zhihe Liu
- Joint School of National University of Singapore and Tianjin University, International Campus of Tianjin University Binhai New City, Fuzhou, 350207, P. R. China
| | - Hongyi Xu
- Department of Materials and Environmental Chemistry, Stockholm University, Stockholm, SE-106 91, Sweden
| | - Peng Guo
- National Engineering Laboratory for Methanol to Olefins, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, P. R. China
| | - Lingmei Liu
- Advanced Membranes and Porous Materials (AMPM) Center, King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900, Saudi Arabia
| | - Yu Han
- Advanced Membranes and Porous Materials (AMPM) Center, King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900, Saudi Arabia
| | - Kuo Zhang
- State Key Laboratory of Supramolecular Structure and Materials, Jilin University, Changchun, 130012, P. R. China
| | - Zhongyuan Lu
- State Key Laboratory of Supramolecular Structure and Materials, Jilin University, Changchun, 130012, P. R. China
| | - Xuke Li
- Ningbo Key Laboratory of Specialty Polymers, Ningbo University, Ningbo, 315211, P. R. China
| | - Jiangwei Zhang
- Dalian National Laboratory for Clean Energy, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, P. R. China
| | - Jianping Xie
- Department of Chemical and Biomolecular Engineering, National University of Singapore, Singapore, 117585, Singapore
- Joint School of National University of Singapore and Tianjin University, International Campus of Tianjin University Binhai New City, Fuzhou, 350207, P. R. China
| |
Collapse
|
233
|
Chen XR, Zhao BC, Yan C, Zhang Q. Review on Li Deposition in Working Batteries: From Nucleation to Early Growth. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2021; 33:e2004128. [PMID: 33432664 DOI: 10.1002/adma.202004128] [Citation(s) in RCA: 104] [Impact Index Per Article: 26.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/17/2020] [Revised: 08/19/2020] [Indexed: 06/12/2023]
Abstract
Lithium (Li) metal is one of the most promising alternative anode materials of next-generation high-energy-density batteries demanded for advanced energy storage in the coming fourth industrial revolution. Nevertheless, disordered Li deposition easily causes short lifespan and safety concerns and thus severely hinders the practical applications of Li metal batteries. Tremendous efforts are devoted to understanding the mechanism for Li deposition, while the final deposition morphology tightly relies on the Li nucleation and early growth. Here, the recent progress in insightful and influential models proposed to understand the process of Li deposition from nucleation to early growth, including the heterogeneous model, surface diffusion model, crystallography model, space charge model, and Li-SEI model, are highlighted. Inspired by the abovementioned understanding on Li nucleation and early growth, diverse anode-design strategies, which contribute to better batteries with superior electrochemical performance and dendrite-free deposition behavior, are also summarized. This work broadens the horizon for practical Li metal batteries and also sheds light on more understanding of other important metal-based batteries involving the metal deposition process.
Collapse
Affiliation(s)
- Xiao-Ru Chen
- Beijing Key Laboratory of Green Chemical Reaction Engineering and Technology, Department of Chemical Engineering, Tsinghua University, Beijing, 100084, China
| | - Bo-Chen Zhao
- Beijing Key Laboratory of Green Chemical Reaction Engineering and Technology, Department of Chemical Engineering, Tsinghua University, Beijing, 100084, China
| | - Chong Yan
- Beijing Key Laboratory of Green Chemical Reaction Engineering and Technology, Department of Chemical Engineering, Tsinghua University, Beijing, 100084, China
| | - Qiang Zhang
- Beijing Key Laboratory of Green Chemical Reaction Engineering and Technology, Department of Chemical Engineering, Tsinghua University, Beijing, 100084, China
| |
Collapse
|
234
|
Zhou X, Yin L, Yang B, Chen C, Chen W, Xie Y, Yang X, Pham JT, Liu S, Xue L. Programmable Local Orientation of Micropores by Mold-Assisted Ice Templating. SMALL METHODS 2021; 5:e2000963. [PMID: 34927890 DOI: 10.1002/smtd.202000963] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/13/2020] [Revised: 10/31/2020] [Indexed: 06/14/2023]
Abstract
Pore geometry plays a crucial role in determining the properties and functions of porous materials. Various methods have been developed to prepare porous materials that have randomly distributed or well-aligned pores. However, a technique capable of fine regulation of local pore orientation is still highly desired but difficult to attain. A technique, termed mold-assisted ice templating (MIT), is reported to control and program the local orientation of micropores. MIT employs a copper mold of a particular shape (for instance a circle, square, hexagon, or star) and a cold finger to regulate the 3D orientation of a local temperature gradient, which directs the growth of ice crystals; this approach results in the formation of finely regulated patterns of lamellar pore structures. Moreover, the lamellar thickness and spacing can be tuned by controlling the solution concentration.
Collapse
Affiliation(s)
- Xiaohong Zhou
- School of Power and Mechanical Engineering, The Institute of Technological Science, Wuhan University, South Donghu Road 8, Wuhan, 430072, China
| | - Liang Yin
- School of Power and Mechanical Engineering, The Institute of Technological Science, Wuhan University, South Donghu Road 8, Wuhan, 430072, China
| | - Baisong Yang
- School of Power and Mechanical Engineering, The Institute of Technological Science, Wuhan University, South Donghu Road 8, Wuhan, 430072, China
| | - Chuyang Chen
- School of Power and Mechanical Engineering, The Institute of Technological Science, Wuhan University, South Donghu Road 8, Wuhan, 430072, China
| | - Wenhui Chen
- School of Power and Mechanical Engineering, The Institute of Technological Science, Wuhan University, South Donghu Road 8, Wuhan, 430072, China
| | - Yu Xie
- School of Power and Mechanical Engineering, The Institute of Technological Science, Wuhan University, South Donghu Road 8, Wuhan, 430072, China
| | - Xichen Yang
- School of Power and Mechanical Engineering, The Institute of Technological Science, Wuhan University, South Donghu Road 8, Wuhan, 430072, China
| | - Jonathan T Pham
- Department of Chemical and Material Engineering, University of Kentucky, Lexington, KY, 40506, USA
| | - Sheng Liu
- School of Power and Mechanical Engineering, The Institute of Technological Science, Wuhan University, South Donghu Road 8, Wuhan, 430072, China
| | - Longjian Xue
- School of Power and Mechanical Engineering, The Institute of Technological Science, Wuhan University, South Donghu Road 8, Wuhan, 430072, China
| |
Collapse
|
235
|
Abstract
Information recovery from incomplete measurements, typically performed by a numerical means, is beneficial in a variety of classical and quantum signal processing. Random and sparse sampling with nanophotonic and light scattering approaches has received attention to overcome the hardware limitations of conventional spectrometers and hyperspectral imagers but requires high-precision nanofabrications and bulky media. We report a simple spectral information processing scheme in which light transport through an Anderson-localized medium serves as an entropy source for compressive sampling directly in the frequency domain. As implied by the "lustrous" reflection originating from the exquisite multilayered nanostructures, a pearl (or mother-of-pearl) allows us to exploit the spatial and spectral intensity fluctuations originating from strong light localization for extracting salient spectral information with a compact and thin form factor. Pearl-inspired light localization in low-dimensional structures can offer an alternative of spectral information processing by hybridizing digital and physical properties at a material level.
Collapse
Affiliation(s)
- Yunsang Kwak
- Weldon School of Biomedical Engineering, Purdue University, West Lafayette, Indiana 47907, United States
| | - Sang Mok Park
- Weldon School of Biomedical Engineering, Purdue University, West Lafayette, Indiana 47907, United States
| | - Zahyun Ku
- Materials and Manufacturing Directorate, Air Force Research Laboratory, Wright-Patterson Air Force Base, Ohio 45433, United States
| | - Augustine Urbas
- Materials and Manufacturing Directorate, Air Force Research Laboratory, Wright-Patterson Air Force Base, Ohio 45433, United States
| | - Young L Kim
- Weldon School of Biomedical Engineering, Purdue University, West Lafayette, Indiana 47907, United States
- Purdue Quantum Science and Engineering Institute, West Lafayette, Indiana 47907, United States
- Regenstrief Center for Healthcare Engineering, West Lafayette, Indiana 47907, United States
- Purdue University Center for Cancer Research, West Lafayette, Indiana 47907, United States
| |
Collapse
|
236
|
Guan QF, Han ZM, Zhu Y, Xu WL, Yang HB, Ling ZC, Yan BB, Yang KP, Yin CH, Wu H, Yu SH. Bio-Inspired Lotus-Fiber-like Spiral Hydrogel Bacterial Cellulose Fibers. NANO LETTERS 2021; 21:952-958. [PMID: 33401909 DOI: 10.1021/acs.nanolett.0c03707] [Citation(s) in RCA: 67] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Hydrogel materials with high water content and good biocompatibility are drawing more and more attention now, especially for biomedical use. However, it still remains a challenge to construct hydrogel fibers with enough strength and toughness for practical applications. Herein, we report a bio-inspired lotus-fiber-mimetic spiral structure hydrogel bacterial cellulose fiber with high strength, high toughness, high stretchability, and energy dissipation, named biomimetic hydrogel fiber (BHF). The spiral-like structure endows BHF with excellent stretchability through plastic deformation and local failure, assisted by the breaking-reforming nature of the hydrogen bonding network among cellulose nanofibers. With the high strength, high stretchability, high energy dissipation, high hydrophilicity, porous structure, and excellent biocompatibility, BHF is a promising hydrogel fiber for biomedicine. The outstanding stretchability and energy dissipation of BHF allow it to absorb energy from the tissue deformation around a wound and effectively protect the wound from rupture, which makes BHF an ideal surgical suture.
Collapse
Affiliation(s)
- Qing-Fang Guan
- Division of Nanomaterials and Chemistry, Hefei National Laboratory for Physical Sciences at the Microscale, Institute of Energy, Hefei Comprehensive National Science Center, CAS Center for Excellence in Nanoscience, Department of Chemistry, Institute of Biomimetic Materials & Chemistry, University of Science and Technology of China, Hefei 230026, China
| | - Zi-Meng Han
- Division of Nanomaterials and Chemistry, Hefei National Laboratory for Physical Sciences at the Microscale, Institute of Energy, Hefei Comprehensive National Science Center, CAS Center for Excellence in Nanoscience, Department of Chemistry, Institute of Biomimetic Materials & Chemistry, University of Science and Technology of China, Hefei 230026, China
| | - YinBo Zhu
- CAS Key Laboratory of Mechanical Behavior and Design of Materials, Department of Modern Mechanics, CAS Center for Excellence in Complex System Mechanics, University of Science and Technology of China, Hefei 230027, China
| | - Wen-Long Xu
- CAS Key Laboratory of Mechanical Behavior and Design of Materials, Department of Modern Mechanics, CAS Center for Excellence in Complex System Mechanics, University of Science and Technology of China, Hefei 230027, China
| | - Huai-Bin Yang
- Division of Nanomaterials and Chemistry, Hefei National Laboratory for Physical Sciences at the Microscale, Institute of Energy, Hefei Comprehensive National Science Center, CAS Center for Excellence in Nanoscience, Department of Chemistry, Institute of Biomimetic Materials & Chemistry, University of Science and Technology of China, Hefei 230026, China
| | - Zhang-Chi Ling
- Division of Nanomaterials and Chemistry, Hefei National Laboratory for Physical Sciences at the Microscale, Institute of Energy, Hefei Comprehensive National Science Center, CAS Center for Excellence in Nanoscience, Department of Chemistry, Institute of Biomimetic Materials & Chemistry, University of Science and Technology of China, Hefei 230026, China
| | - Bei-Bei Yan
- Division of Nanomaterials and Chemistry, Hefei National Laboratory for Physical Sciences at the Microscale, Institute of Energy, Hefei Comprehensive National Science Center, CAS Center for Excellence in Nanoscience, Department of Chemistry, Institute of Biomimetic Materials & Chemistry, University of Science and Technology of China, Hefei 230026, China
| | - Kun-Peng Yang
- Division of Nanomaterials and Chemistry, Hefei National Laboratory for Physical Sciences at the Microscale, Institute of Energy, Hefei Comprehensive National Science Center, CAS Center for Excellence in Nanoscience, Department of Chemistry, Institute of Biomimetic Materials & Chemistry, University of Science and Technology of China, Hefei 230026, China
| | - Chong-Han Yin
- Division of Nanomaterials and Chemistry, Hefei National Laboratory for Physical Sciences at the Microscale, Institute of Energy, Hefei Comprehensive National Science Center, CAS Center for Excellence in Nanoscience, Department of Chemistry, Institute of Biomimetic Materials & Chemistry, University of Science and Technology of China, Hefei 230026, China
| | - HengAn Wu
- CAS Key Laboratory of Mechanical Behavior and Design of Materials, Department of Modern Mechanics, CAS Center for Excellence in Complex System Mechanics, University of Science and Technology of China, Hefei 230027, China
| | - Shu-Hong Yu
- Division of Nanomaterials and Chemistry, Hefei National Laboratory for Physical Sciences at the Microscale, Institute of Energy, Hefei Comprehensive National Science Center, CAS Center for Excellence in Nanoscience, Department of Chemistry, Institute of Biomimetic Materials & Chemistry, University of Science and Technology of China, Hefei 230026, China
| |
Collapse
|
237
|
Pan XF, Gao HL, Wu KJ, Chen SM, He T, Lu Y, Ni Y, Yu SH. Nacreous aramid-mica bulk materials with excellent mechanical properties and environmental stability. iScience 2021; 24:101971. [PMID: 33490890 PMCID: PMC7808947 DOI: 10.1016/j.isci.2020.101971] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2020] [Revised: 12/01/2020] [Accepted: 12/16/2020] [Indexed: 11/30/2022] Open
Abstract
Low density, high strength and toughness, together with good environmental stability are always desirable but hardly to achieve simultaneously for man-made structural materials. Replicating the design motifs of natural nacre clearly provides one promising route to obtain such kind of materials, but fundamental challenges remain. Herein, by choosing aramid nanofibers and mica microplatelets as building blocks, we produce a nacreous aramid-mica bulk material with a favorable combination of low density (∼1.7 g cm-3), high strength (∼387 MPa) and toughness (∼14.3 MPa m1/2), and impressive mechanical stability in some harsh environments, including acid/alkali solutions, strong ultraviolet radiation, boiling water, and liquid nitrogen, standing out from previously reported biomimetic bulk composites. Moreover, the obtained material outperforms other bulk nacre-mimetics and most engineering structural materials in terms of its specific strength (227 MPa/[Mg m-3]) and specific toughness (8.4 MPa m1/2/[Mg m-3]), making it a new promising engineering structural material for different technical fields.
Collapse
Affiliation(s)
- Xiao-Feng Pan
- Division of Nanomaterials & Chemistry, Hefei National Laboratory for Physical Sciences at the Microscale, Institute of Energy, Hefei Comprehensive National Science Center, CAS Center for Excellence in Nanoscience, Department of Chemistry, Institute of Biomimetic Materials & Chemistry, University of Science and Technology of China, Hefei 230026, China
| | - Huai-Ling Gao
- Division of Nanomaterials & Chemistry, Hefei National Laboratory for Physical Sciences at the Microscale, Institute of Energy, Hefei Comprehensive National Science Center, CAS Center for Excellence in Nanoscience, Department of Chemistry, Institute of Biomimetic Materials & Chemistry, University of Science and Technology of China, Hefei 230026, China
| | - Kai-Jin Wu
- CAS Key Laboratory of Mechanical Behavior and Design of Materials, Department of Modern Mechanics, University of Science and Technology of China, Hefei 230026, China
| | - Si-Ming Chen
- Division of Nanomaterials & Chemistry, Hefei National Laboratory for Physical Sciences at the Microscale, Institute of Energy, Hefei Comprehensive National Science Center, CAS Center for Excellence in Nanoscience, Department of Chemistry, Institute of Biomimetic Materials & Chemistry, University of Science and Technology of China, Hefei 230026, China
| | - Tao He
- School of Chemistry and Chemical Engineering, Hefei University of Technology, Hefei 230009, China
| | - Yang Lu
- School of Chemistry and Chemical Engineering, Hefei University of Technology, Hefei 230009, China
| | - Yong Ni
- CAS Key Laboratory of Mechanical Behavior and Design of Materials, Department of Modern Mechanics, University of Science and Technology of China, Hefei 230026, China
| | - Shu-Hong Yu
- Division of Nanomaterials & Chemistry, Hefei National Laboratory for Physical Sciences at the Microscale, Institute of Energy, Hefei Comprehensive National Science Center, CAS Center for Excellence in Nanoscience, Department of Chemistry, Institute of Biomimetic Materials & Chemistry, University of Science and Technology of China, Hefei 230026, China
- CAS Key Laboratory of Mechanical Behavior and Design of Materials, Department of Modern Mechanics, University of Science and Technology of China, Hefei 230026, China
| |
Collapse
|
238
|
Zhao Y, Tang R. Improvement of organisms by biomimetic mineralization: A material incorporation strategy for biological modification. Acta Biomater 2021; 120:57-80. [PMID: 32629191 DOI: 10.1016/j.actbio.2020.06.038] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2020] [Revised: 06/19/2020] [Accepted: 06/25/2020] [Indexed: 12/18/2022]
Abstract
Biomineralization, a bio-organism controlled mineral formation process, plays an important role in linking biological organisms and mineral materials in nature. Inspired by biomineralization, biomimetic mineralization is used as a bridge tool to integrate biological organisms and functional materials together, which can be beneficial for the development of diversified functional organism-material hybrids. In this review, recent progresses on the techniques of biomimetic mineralization for organism-material combinations are summarized and discussed. Based upon these techniques, the preparations and applications of virus-, prokaryotes-, and eukaryotes-material hybrids have been presented and they demonstrate the great potentials in the fields of vaccine improvement, cell protection, energy production, environmental and biomedical treatments, etc. We suggest that more researches about functional organism and material combination with more biocompatible techniques should be developed to improve the design and applications of specific organism-material hybrids. These rationally designed organism-material hybrids will shed light on the production of "live materials" with more advanced functions in future. STATEMENT OF SIGNIFICANCE: This review summaries the recent attempts on improving biological organisms by their integrations with functional materials, which can be achieved by biomimetic mineralization as the combination tool. The integrated materials, as the artificial shells or organelles, confer diversified functions on the enclosed organisms. The successful constructions of various virus-, prokaryotes-, and eukaryotes-material hybrids have demonstrated the great potentials of the material incorporation strategy in vaccine development, cancer treatment, biological photosynthesis and environment protection etc. The suggested challenges and perspectives indicate more inspirations for the future development of organism-material hybrids.
Collapse
Affiliation(s)
- Yueqi Zhao
- Center for Biomaterials and Biopathways, Department of Chemistry, Zhejiang University, Hangzhou 310027 China
| | - Ruikang Tang
- Center for Biomaterials and Biopathways, Department of Chemistry, Zhejiang University, Hangzhou 310027 China; Qiushi Academy for Advanced Studies, Zhejiang University, Hangzhou 310027 China.
| |
Collapse
|
239
|
Wang YY, Wang XQ, Li YQ, Huang P, Yang B, Hu N, Fu SY. High-Performance Bamboo Steel Derived from Natural Bamboo. ACS APPLIED MATERIALS & INTERFACES 2021; 13:1431-1440. [PMID: 33356105 DOI: 10.1021/acsami.0c18239] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
It is highly desirable to develop green and renewable structural materials from biomaterials to replace synthetic materials involved from civil engineering to aerospace industries. Herein, we put forward a facile but effective top-down strategy to convert natural bamboo into bamboo steel. The fabrication process of bamboo steel involves the removal of lignin and hemicellulose, freeze-drying followed by epoxy infiltration, and densification combined with in situ solidification. The prepared bamboo steel is a super-strong composite material with a high specific tensile strength (302 MPa g-1 cm3), which is higher than that (227 MPa g-1 cm3) of conventional high specific strength steel. The bamboo steel demonstrates a high tensile strength of 407.6 MPa, a record flexural strength of 513.8 MPa, and a high toughness of 14.08 MJ/m3, which is improved by 360, 290, and 380% over those of natural bamboo, respectively. Particularly, the mechanical properties of the bamboo steel are the highest among the biofiber-reinforced polymer composites reported previously. The well-preserved bamboo scaffolds assure the integrity of bamboo fibers, while the densification under high pressure results in a high-fiber volume fraction with an improved hydrogen bonding among the adjacent bamboo fibers, and the epoxy resin impregnated enhances the stress transfer because of its chemical crosslinking with cellulose molecules. These endow the bamboo steel with superior mechanical performance. Furthermore, the bamboo steel demonstrates an excellent thermal insulating capability with a low thermal conductivity (about 0.29 W/mK). In addition, the bamboo steel shows a low coefficient of thermal expansion (about 6.3 × 10-6 K-1) and a very high-dimensional stability to moisture attack. The strategy of fabricating high-performance bamboo steel with green and abundant natural bamboo as raw materials is highly attractive for the sustainable development of structural engineering materials.
Collapse
Affiliation(s)
- You-Yong Wang
- College of Aerospace Engineering, Chongqing University, Chongqing 400044, China
| | - Xiang-Qian Wang
- College of Aerospace Engineering, Chongqing University, Chongqing 400044, China
| | - Yuan-Qing Li
- College of Aerospace Engineering, Chongqing University, Chongqing 400044, China
- State Key Laboratory of Power Transmission Equipment & System Security and New Technology, Chongqing University, Chongqing 400044, China
| | - Pei Huang
- College of Aerospace Engineering, Chongqing University, Chongqing 400044, China
- State Key Laboratory of Power Transmission Equipment & System Security and New Technology, Chongqing University, Chongqing 400044, China
| | - Bo Yang
- School of Civil Engineering, Chongqing University, Chongqing 400044, China
| | - Ning Hu
- State Key Laboratory of Reliability and Intelligence Electrical Equipment, Hebei University of Technology, Tianjin 300130, China
- National Engineering Research Center for Technological Innovation Method and Tool, and School of Mechanical Engineering, Hebei University of Technology, Tianjin 300401, China
| | - Shao-Yun Fu
- College of Aerospace Engineering, Chongqing University, Chongqing 400044, China
- State Key Laboratory of Power Transmission Equipment & System Security and New Technology, Chongqing University, Chongqing 400044, China
| |
Collapse
|
240
|
Wang L, Wang Y, Dai J, Tian S, Xie A, Dai X, Pan J. Coordination-driven interfacial cross-linked graphene oxide-alginate nacre mesh with underwater superoleophobicity for oil-water separation. Carbohydr Polym 2021; 251:117097. [PMID: 33142635 DOI: 10.1016/j.carbpol.2020.117097] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2020] [Revised: 09/09/2020] [Accepted: 09/09/2020] [Indexed: 11/17/2022]
Abstract
Inspired by the seashell nacre and seaweed, a novel GO-Ca2+-SA nacre-inspired hybrid mesh was prepared via an interfacial layer-by-layer self-assembly and cross-linking, using graphene oxide (GO) and sodium alginate (SA) as the building blocks and calcium chloride as the coordination agent, respectively. Hybrid mesh was characterized by FTIR, XPS, XRD, SEM and contact angel instrument, showing superhydrophilic and underwater superoleophobic property and low oil adhesion, due to its wrinkle and rough surface, and high hydration ability of GO-Ca-alginate nanohydrogels. The separation efficiencies of various oil-water mixtures were above 99 %, with a highest flux of 119,426 L m-2 h-1. Hybrid mesh showed an orderly layered "brick and mortar" microstructure with many ultrasmall nanoscaled protuberances. Ca2+ ions could chelate with SA to form the "egg-box" structure, and interact with GO nanosheets. Hybrid mesh possessed high salt/acid/alkaline tolerance, abrasion resistance, mechanical property with Young's modulus of 35.8 ± 4.9 GPa, and excellent cycling stability.
Collapse
Affiliation(s)
- Lulu Wang
- Institute of Green Chemistry and Chemical Technology, Advanced Chemical Engineering Laboratory of Green Materials and Energy of Jiangsu Province, School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang, 212013, China
| | - Yi Wang
- State Key Laboratory of NBC Protection for Civilian, Beijing, 102205, China
| | - Jiangdong Dai
- Institute of Green Chemistry and Chemical Technology, Advanced Chemical Engineering Laboratory of Green Materials and Energy of Jiangsu Province, School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang, 212013, China.
| | - Sujun Tian
- Institute of Green Chemistry and Chemical Technology, Advanced Chemical Engineering Laboratory of Green Materials and Energy of Jiangsu Province, School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang, 212013, China
| | - Atian Xie
- Institute of Green Chemistry and Chemical Technology, Advanced Chemical Engineering Laboratory of Green Materials and Energy of Jiangsu Province, School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang, 212013, China
| | - Xiaohui Dai
- Institute of Green Chemistry and Chemical Technology, Advanced Chemical Engineering Laboratory of Green Materials and Energy of Jiangsu Province, School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang, 212013, China.
| | - Jianming Pan
- Institute of Green Chemistry and Chemical Technology, Advanced Chemical Engineering Laboratory of Green Materials and Energy of Jiangsu Province, School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang, 212013, China.
| |
Collapse
|
241
|
Qin K, Parisi C, Fernandes FM. Recent advances in ice templating: from biomimetic composites to cell culture scaffolds and tissue engineering. J Mater Chem B 2021; 9:889-907. [DOI: 10.1039/d0tb02506b] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
We review the evolution of ice-templating process from initial inorganic materials to recent developments in shaping increasingly labile biological matter.
Collapse
Affiliation(s)
- Kankan Qin
- Laboratoire de Chimie de la Matière Condensée de Paris
- Sorbonne Université
- 75005 Paris
- France
| | - Cleo Parisi
- Laboratoire de Chimie de la Matière Condensée de Paris
- Sorbonne Université
- 75005 Paris
- France
| | - Francisco M. Fernandes
- Laboratoire de Chimie de la Matière Condensée de Paris
- Sorbonne Université
- 75005 Paris
- France
| |
Collapse
|
242
|
Li Y, Ping H, Zou Z, Xie J, Wang W, Wang K, Fu Z. Bioprocess-inspired synthesis of multilayered chitosan/CaCO 3 composites with nacre-like structures and high mechanical properties. J Mater Chem B 2021; 9:5691-5697. [PMID: 34212172 DOI: 10.1039/d1tb01061a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The formation of natural structures found in biological systems is wonderful and can be completed at ambient temperatures in contrast to artificial technologies wherein harsh conditions are common prerequisites. A new research direction, "bioprocess inspired manufacturing", is proposed for fabricating advanced materials with novel structures and functions. Nacre consists of an ordered multilayer structure of crystalline calcium carbonate lamellae separated by organic layers exhibiting mechanical toughness, which transcends that of its constituent components. Inspired by the nacre formation process, a microscale additive manufacturing mineralization method is proposed for achieving a multilayered organic-inorganic layered structure. In this work, layered calcite was synthesized on the surface of chitosan (CS) films at room temperature under the coordinated control of magnesium ions (Mg2+) and polyacrylic acid (PAA). The CS films and layered calcite are sequentially assembled in a layer-by-layer deposition approach to form an organic-inorganic hybrid structure. The nacre-like chitosan/CaCO3 (CS/CaCO3) composites exhibit high transparency and underwater superoleophobicity. Impressively, the hardness (2.35 ± 0.03 GPa) and Young's modulus (58.1 ± 0.5 GPa) of the as-prepared (CS/CaCO3) composites are comparable to those of their biological counterparts. This study provides a rational bioprocess-inspired room-temperature mineralization method to develop advanced composite materials with good performance.
Collapse
Affiliation(s)
- Yidi Li
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Luoshi Road No. 122, Wuhan, 430070, China.
| | - Hang Ping
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Luoshi Road No. 122, Wuhan, 430070, China.
| | - Zhaoyong Zou
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Luoshi Road No. 122, Wuhan, 430070, China.
| | - Jingjing Xie
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Luoshi Road No. 122, Wuhan, 430070, China.
| | - Weimin Wang
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Luoshi Road No. 122, Wuhan, 430070, China.
| | - Kun Wang
- State Key Laboratory of Silicate Materials for Architectures, Wuhan University of Technology, 122 Luoshi Road, Wuhan, P. R. China
| | - Zhengyi Fu
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Luoshi Road No. 122, Wuhan, 430070, China.
| |
Collapse
|
243
|
Living materials fabricated via gradient mineralization of light-inducible biofilms. Nat Chem Biol 2020; 17:351-359. [PMID: 33349707 DOI: 10.1038/s41589-020-00697-z] [Citation(s) in RCA: 74] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2020] [Accepted: 10/15/2020] [Indexed: 11/08/2022]
Abstract
Living organisms have evolved sophisticated cell-mediated biomineralization mechanisms to build structurally ordered, environmentally adaptive composite materials. Despite advances in biomimetic mineralization research, it remains difficult to produce mineralized composites that integrate the structural features and 'living' attributes of their natural counterparts. Here, inspired by natural graded materials, we developed living patterned and gradient composites by coupling light-inducible bacterial biofilm formation with biomimetic hydroxyapatite (HA) mineralization. We showed that both the location and the degree of mineralization could be regulated by tailoring functional biofilm growth with spatial and biomass density control. The cells in the composites remained viable and could sense and respond to environmental signals. Additionally, the composites exhibited a maximum 15-fold increase in Young's modulus after mineralization and could be applied to repair damage in a spatially controlled manner. Beyond insights into the mechanism of formation of natural graded composites, our study provides a viable means of fabricating living composites with dynamic responsiveness and environmental adaptability.
Collapse
|
244
|
Yu Y, Kong K, Mu Z, Zhao Y, Liu Z, Tang R. Muscle-like Ultratough Hybrid Hydrogel Constructed by Heterogeneous Inorganic Polymerization on an Organic Network. ACS APPLIED MATERIALS & INTERFACES 2020; 12:54212-54221. [PMID: 33201667 DOI: 10.1021/acsami.0c18242] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Inspired by inorganic oligomers and their polymerization, we herein develop a heterogeneous inorganic polymerization tactic that can be used to prepare a muscle-like hybrid hydrogel by inducing the polymerization of calcium phosphate oligomers (CPO) onto a polyvinyl alcohol (PVA) molecular chain network. In this heterogeneous process, the CPO units bond with PVA molecules via assistance from sodium alginate (SA), and then gradually polymerize along the organic chains to form ultrafine hydroxyapatite nanolines with a diameter of ∼1 nm. Because of the well integration of organic and inorganic phases from the heterogeneous polymerization, the hierarchical structured hydrogel can exhibit ultratough mechanical properties of ∼17.84 MPa in strength and ∼8.97 kJ m-2 in fracture energy, which exceed natural muscles and almost synthetic hydrogels. Moreover, the damaged hydrogel can be repaired readily by adding the precursors of CPO, PVA, and SA, which can induce in situ re-polymerization. The hydrogel also exhibits muscle-like rotational motion under aqueous conditions, which can be developed into a water-driven biomimetic motor. This study indicates that inorganic polymerization can achieve a novel organic-inorganic integration rather than conventional organic-inorganic composition, and it provides a novel tactic for design and manufacture of advanced materials.
Collapse
Affiliation(s)
- Yadong Yu
- Department of Chemistry, Zhejiang University, Hangzhou, Zhejiang 310027, China
| | - Kangren Kong
- Department of Chemistry, Zhejiang University, Hangzhou, Zhejiang 310027, China
| | - Zhao Mu
- Department of Chemistry, Zhejiang University, Hangzhou, Zhejiang 310027, China
| | - Yueqi Zhao
- Department of Chemistry, Zhejiang University, Hangzhou, Zhejiang 310027, China
| | - Zhaoming Liu
- Department of Chemistry, Zhejiang University, Hangzhou, Zhejiang 310027, China
| | - Ruikang Tang
- Department of Chemistry, Zhejiang University, Hangzhou, Zhejiang 310027, China
- State Key Laboratory for Silicon Materials, Zhejiang University, Hangzhou, Zhejiang 310027, China
| |
Collapse
|
245
|
Cano M, Giner-Casares JJ. Biomineralization at fluid interfaces. Adv Colloid Interface Sci 2020; 286:102313. [PMID: 33181402 DOI: 10.1016/j.cis.2020.102313] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2020] [Revised: 10/30/2020] [Accepted: 10/30/2020] [Indexed: 12/16/2022]
Abstract
Biomineralization is of paramount importance for life on Earth. The delicate balance of physicochemical interactions at the interface between organic and inorganic matter during all stages of biomineralization resembles an extremely high complexity. The coordination of this sophisticated biological machinery and physicochemical scenarios is certainly a wonderful show of nature. Understanding of the biomineralization processes is still far from complete. The recent advances in biomineralization research from the Colloid and Interface Science perspective are reviewed herein. The synergy between this two fields of research is demonstrated. The unique opportunities offered by purposefully designed fluid interfaces, mainly Langmuir monolayers are presented. Biomedical applications of biomineral-based nanostructures are discussed, showing their improved biocompatibility and on-demand delivery features. A brief guide to the array of state-of-the-art experimental techniques for unraveling the mechanisms of biomineralization using fluid interfaces is included. In summary, the fruitful and exciting crossroad between Colloid and Interface Science with Biomineralization is exhibited.
Collapse
|
246
|
Li T, Chang J, Zhu Y, Wu C. 3D Printing of Bioinspired Biomaterials for Tissue Regeneration. Adv Healthc Mater 2020; 9:e2000208. [PMID: 32338464 DOI: 10.1002/adhm.202000208] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2020] [Revised: 03/14/2020] [Accepted: 03/25/2020] [Indexed: 02/06/2023]
Abstract
Biological systems, which possess remarkable functions and excellent properties, are gradually becoming a source of inspiration for the fabrication of advanced tissue regeneration biomaterials due to their hierarchical structures and novel compositions. It would be meaningful to learn and transfer the characteristics of creatures to biomaterials design. However, traditional strategies cannot satisfy the design requirements of the complicated bioinspired materials for tissue regeneration. 3D printing, as a rapidly developing new technology that can accurately achieve multimaterial and multiscale fabrication, is capable of optimizing the fabrication of bioinspired materials with complex composition and structure. This review summarizes the recent developments in 3D-printed bioinspired biomaterials for multiple tissue regeneration, and especially highlights the progresses on i) traditional bioinspired designs for biomaterials fabrication, ii) biological composition inspired designs for the 3D-printed biomaterials, and iii) biological structure inspired designs for the 3D-printed biomaterials. Finally, the challenges and prospects for the development of 3D-printed bioinspired biomaterials are discussed.
Collapse
Affiliation(s)
- Tian Li
- State Key Laboratory of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, No. 1295 Dingxi Road, Shanghai, 200050, P. R. China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, No. 19(A) Yuquan Road, Beijing, 100049, P. R. China
| | - Jiang Chang
- State Key Laboratory of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, No. 1295 Dingxi Road, Shanghai, 200050, P. R. China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, No. 19(A) Yuquan Road, Beijing, 100049, P. R. China
| | - Yufang Zhu
- State Key Laboratory of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, No. 1295 Dingxi Road, Shanghai, 200050, P. R. China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, No. 19(A) Yuquan Road, Beijing, 100049, P. R. China
| | - Chengtie Wu
- State Key Laboratory of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, No. 1295 Dingxi Road, Shanghai, 200050, P. R. China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, No. 19(A) Yuquan Road, Beijing, 100049, P. R. China
| |
Collapse
|
247
|
Chen C, Liu D, Qing X, Yang G, Wang X, Lei W. Robust Membrane for Osmotic Energy Harvesting from Organic Solutions. ACS APPLIED MATERIALS & INTERFACES 2020; 12:52771-52778. [PMID: 33181016 DOI: 10.1021/acsami.0c16344] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
Using particulate nanochannels for desired ions transport is a potential technology for nanofluidic osmotic energy harvesting. However, the finite fresh water as an essential part of this harvesting system limits its development. Therefore, developing a robust membrane for harvesting energy from other solutions such as waste organic solutions is attractive. Here, we develop bioinspired membrane based on boron nitride flakes and aramid nanofibers with nanochannels via a layer-by-layer assembly technique for harvesting nanofluidic energy from organic solutions directly. Enhancement of the synergistic effect of the boron nitride flakes and aramid nanofibers endows the aramid-boron nitride (ABN) membrane with a superstrong mechanical performance (360 MPa). The ABN membrane showed a pressured-induced current in LiCl-methanol solution and NaCl-ethanol solution, respectively. More importantly, the ABN membrane exhibited outstanding stable and high-energy harvesting with salinity gradient dependence in LiCl-methanol, LiCl-ethanol, and NaCl-ethanol solutions, respectively. Impressively, the voltage produced from the organic solutions (LiCl-methanol, Ch/Cl = 1000) can power the transistor and it works well for 1 h as a gate voltage. The design of bioinspired membrane enables a robust and efficient harvesting of osmotic energy from organic solutions.
Collapse
Affiliation(s)
- Cheng Chen
- Institute for Frontier Materials, Deakin University, Locked Bag 2000, Geelong, Victoria 3220, Australia
| | - Dan Liu
- Institute for Frontier Materials, Deakin University, Locked Bag 2000, Geelong, Victoria 3220, Australia
| | - Xing Qing
- Institute for Frontier Materials, Deakin University, Locked Bag 2000, Geelong, Victoria 3220, Australia
| | - Guoliang Yang
- Institute for Frontier Materials, Deakin University, Locked Bag 2000, Geelong, Victoria 3220, Australia
| | - Xungai Wang
- Institute for Frontier Materials, Deakin University, Locked Bag 2000, Geelong, Victoria 3220, Australia
| | - Weiwei Lei
- Institute for Frontier Materials, Deakin University, Locked Bag 2000, Geelong, Victoria 3220, Australia
| |
Collapse
|
248
|
Moussa H, Jiang W, El Hadad A, Alsheghri AA, Basiri T, Taqi D, Song J, Tamimi F. Selective Crystal Growth Regulation by Chiral α-Hydroxycarboxylic Acids Improves the Strength and Toughness of Calcium Sulfate Cements. ACS APPLIED BIO MATERIALS 2020; 3:8559-8566. [DOI: 10.1021/acsabm.0c00918] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Affiliation(s)
- Hanan Moussa
- Faculty of Dentistry, McGill University, Montreal, Quebec H3A 0C7, Canada
- Faculty of Dentistry, Benghazi University, Benghazi 9504, Libya
| | - Wenge Jiang
- Faculty of Dentistry, McGill University, Montreal, Quebec H3A 0C7, Canada
- Department of Chemistry, Tianjin Key Laboratory of Molecular Optoelectronic Sciences, and Tianjin Collaborative Innovation Center of Chemical Science & Engineering, Tianjin University, Tianjin 300072, P. R. China
| | - Amir El Hadad
- Faculty of Dentistry, McGill University, Montreal, Quebec H3A 0C7, Canada
- Physics Department, Faculty of Science, Al-Azhar University, Nasr City, Cairo 11884, Egypt
| | - Ammar A. Alsheghri
- Department of Mining and Materials Engineering, McGill University, Montreal, Quebec H3A 0C5, Canada
| | - Tayebeh Basiri
- Faculty of Dentistry, McGill University, Montreal, Quebec H3A 0C7, Canada
| | - Doaa Taqi
- Faculty of Dentistry, McGill University, Montreal, Quebec H3A 0C7, Canada
| | - Jun Song
- Department of Mining and Materials Engineering, McGill University, Montreal, Quebec H3A 0C5, Canada
| | - Faleh Tamimi
- Faculty of Dentistry, McGill University, Montreal, Quebec H3A 0C7, Canada
- College of Dental Medicine, Qatar University, Doha, Qatar
| |
Collapse
|
249
|
Chang Y, Han H, Liu T, Yuan S, Chen S, Guo Y, Yang L, Ma X. Cell-tailored calcium carbonate particles with different crystal forms from nanoparticle to nano/microsphere. RSC Adv 2020; 10:43233-43241. [PMID: 35514929 PMCID: PMC9058178 DOI: 10.1039/d0ra07393h] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2020] [Accepted: 11/06/2020] [Indexed: 12/30/2022] Open
Abstract
Inspired by biomineralization, the first synthesis of size-tunable calcium carbonates from nanoparticles (YC-CaCO3 NPs) to nano/microspheres (YC-CaCO3 N/MSs) with a porous structure was accomplished using a facile method under the mediation of the secretion from yeast cells (YCs). The biomolecules derived from the secretion of YCs were used as conditioning and stabilizing agents to control the biosynthesis of the YC-CaCO3 materials. The morphology and crystal forms of YC-CaCO3 materials can be affected by the biomolecules from the secretion of YCs. With increasing concentrations of biomolecules, the morphologies of the obtained CaCO3 materials changed from nanoparticles to nano/microspheres with a porous structure, while the crystal forms transformed from amorphous to calcite. Functional investigations showed that YC-CaCO3 NSs with a porous structure effectively acted as anticancer drug carriers with accurate and selective drug release in tumor tissue, which suggests that they have great potential to function as a therapeutic delivery system. These application features are mainly attributed to the satisfactory biocompatibility and biodegradability, high drug-loading capacity, and pH-dependent sustained drug release performance of the porous YC-CaCO3 NSs. The biomimetic synthesis strategy of YC-CaCO3 materials mediated by YC secretion not only helps to shed light on the biomineralization mechanism in organisms, but may also lead to a new means of biosynthesizing organic-inorganic nanocomposites.
Collapse
Affiliation(s)
- Yi Chang
- Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, Henan Normal University Xinxiang Henan 453007 P. R. China
| | - Huijuan Han
- School of Chemistry and Chemical Engineering, Henan Institute of Science and Technology Xinxiang Henan 453007 P. R. China
| | - Tingting Liu
- Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, Henan Normal University Xinxiang Henan 453007 P. R. China
| | - Shibao Yuan
- Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals, School of Chemistry and Chemical Engineering, Henan Normal University Xinxiang Henan 453007 P. R. China
| | - Shuting Chen
- Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, Henan Normal University Xinxiang Henan 453007 P. R. China
| | - Yuming Guo
- Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals, School of Chemistry and Chemical Engineering, Henan Normal University Xinxiang Henan 453007 P. R. China
| | - Lin Yang
- Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, Henan Normal University Xinxiang Henan 453007 P. R. China
| | - Xiaoming Ma
- Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, Henan Normal University Xinxiang Henan 453007 P. R. China
| |
Collapse
|
250
|
Dong X, Zhao H, Li J, Tian Y, Zeng H, Ramos MA, Hu TS, Xu Q. Progress in Bioinspired Dry and Wet Gradient Materials from Design Principles to Engineering Applications. iScience 2020; 23:101749. [PMID: 33241197 PMCID: PMC7672307 DOI: 10.1016/j.isci.2020.101749] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
Nature does nothing in vain. Through millions of years of revolution, living organisms have evolved hierarchical and anisotropic structures to maximize their survival in complex and dynamic environments. Many of these structures are intrinsically heterogeneous and often with functional gradient distributions. Understanding the convergent and divergent gradient designs in the natural material systems may lead to a new paradigm shift in the development of next-generation high-performance bio-/nano-materials and devices that are critically needed in energy, environmental remediation, and biomedical fields. Herein, we review the basic design principles and highlight some of the prominent examples of gradient biological materials/structures discovered over the past few decades. Interestingly, despite the anisotropic features in one direction (i.e., in terms of gradient compositions and properties), these natural structures retain certain levels of symmetry, including point symmetry, axial symmetry, mirror symmetry, and 3D symmetry. We further demonstrate the state-of-the-art fabrication techniques and procedures in making the biomimetic counterparts. Some prototypes showcase optimized properties surpassing those seen in the biological model systems. Finally, we summarize the latest applications of these synthetic functional gradient materials and structures in robotics, biomedical, energy, and environmental fields, along with their future perspectives. This review may stimulate scientists, engineers, and inventors to explore this emerging and disruptive research methodology and endeavors.
Collapse
Affiliation(s)
- Xiaoxiao Dong
- State Key Laboratory of Heavy Oil Processing, China University of Petroleum-Beijing, Beijing 102249, China
| | - Hong Zhao
- State Key Laboratory of Heavy Oil Processing, China University of Petroleum-Beijing, Beijing 102249, China
| | - Jiapeng Li
- State Key Laboratory of Heavy Oil Processing, China University of Petroleum-Beijing, Beijing 102249, China
| | - Yu Tian
- State Key Laboratory of Tribology, Tsinghua University, Beijing 100084, China
| | - Hongbo Zeng
- Department of Chemical and Materials Engineering, University of Alberta, Edmonton, AB T6G 1H9, Canada
| | - Melvin A Ramos
- Department of Mechanical Engineering, California State University, Los Angeles, CA 90032, USA
| | - Travis Shihao Hu
- Department of Mechanical Engineering, California State University, Los Angeles, CA 90032, USA
| | - Quan Xu
- State Key Laboratory of Heavy Oil Processing, China University of Petroleum-Beijing, Beijing 102249, China
| |
Collapse
|