201
|
Young-Pearse TL, Lee H, Hsieh YC, Chou V, Selkoe DJ. Moving beyond amyloid and tau to capture the biological heterogeneity of Alzheimer's disease. Trends Neurosci 2023; 46:426-444. [PMID: 37019812 PMCID: PMC10192069 DOI: 10.1016/j.tins.2023.03.005] [Citation(s) in RCA: 41] [Impact Index Per Article: 20.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2023] [Revised: 02/28/2023] [Accepted: 03/09/2023] [Indexed: 04/05/2023]
Abstract
Alzheimer's disease (AD) manifests along a spectrum of cognitive deficits and levels of neuropathology. Genetic studies support a heterogeneous disease mechanism, with around 70 associated loci to date, implicating several biological processes that mediate risk for AD. Despite this heterogeneity, most experimental systems for testing new therapeutics are not designed to capture the genetically complex drivers of AD risk. In this review, we first provide an overview of those aspects of AD that are largely stereotyped and those that are heterogeneous, and we review the evidence supporting the concept that different subtypes of AD are important to consider in the design of agents for the prevention and treatment of the disease. We then dive into the multifaceted biological domains implicated to date in AD risk, highlighting studies of the diverse genetic drivers of disease. Finally, we explore recent efforts to identify biological subtypes of AD, with an emphasis on the experimental systems and data sets available to support progress in this area.
Collapse
Affiliation(s)
- Tracy L Young-Pearse
- Ann Romney Center for Neurologic Diseases, Department of Neurology, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA.
| | - Hyo Lee
- Ann Romney Center for Neurologic Diseases, Department of Neurology, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
| | - Yi-Chen Hsieh
- Ann Romney Center for Neurologic Diseases, Department of Neurology, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
| | - Vicky Chou
- Ann Romney Center for Neurologic Diseases, Department of Neurology, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
| | - Dennis J Selkoe
- Ann Romney Center for Neurologic Diseases, Department of Neurology, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
202
|
Watson LA, Meharena HS. From neurodevelopment to neurodegeneration: utilizing human stem cell models to gain insight into Down syndrome. Front Genet 2023; 14:1198129. [PMID: 37323671 PMCID: PMC10267712 DOI: 10.3389/fgene.2023.1198129] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Accepted: 05/09/2023] [Indexed: 06/17/2023] Open
Abstract
Down syndrome (DS), caused by triplication of chromosome 21, is the most frequent aneuploidy observed in the human population and represents the most common genetic form of intellectual disability and early-onset Alzheimer's disease (AD). Individuals with DS exhibit a wide spectrum of clinical presentation, with a number of organs implicated including the neurological, immune, musculoskeletal, cardiac, and gastrointestinal systems. Decades of DS research have illuminated our understanding of the disorder, however many of the features that limit quality of life and independence of individuals with DS, including intellectual disability and early-onset dementia, remain poorly understood. This lack of knowledge of the cellular and molecular mechanisms leading to neurological features of DS has caused significant roadblocks in developing effective therapeutic strategies to improve quality of life for individuals with DS. Recent technological advances in human stem cell culture methods, genome editing approaches, and single-cell transcriptomics have provided paradigm-shifting insights into complex neurological diseases such as DS. Here, we review novel neurological disease modeling approaches, how they have been used to study DS, and what questions might be addressed in the future using these innovative tools.
Collapse
Affiliation(s)
- L. Ashley Watson
- Developmental and Cognitive Genomics Research Laboratory, Division of Biological Sciences, Section of Neurobiology, University of California, San Diego, La Jolla, CA, United States
| | - Hiruy S. Meharena
- Developmental and Cognitive Genomics Research Laboratory, Division of Biological Sciences, Section of Neurobiology, University of California, San Diego, La Jolla, CA, United States
| |
Collapse
|
203
|
Yaqubi M, Groh AMR, Dorion MF, Afanasiev E, Luo JXX, Hashemi H, Sinha S, Kieran NW, Blain M, Cui QL, Biernaskie J, Srour M, Dudley R, Hall JA, Sonnen JA, Arbour N, Prat A, Stratton JA, Antel J, Healy LM. Analysis of the microglia transcriptome across the human lifespan using single cell RNA sequencing. J Neuroinflammation 2023; 20:132. [PMID: 37254100 DOI: 10.1186/s12974-023-02809-7] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2022] [Accepted: 05/17/2023] [Indexed: 06/01/2023] Open
Abstract
BACKGROUND Microglia are tissue resident macrophages with a wide range of critically important functions in central nervous system development and homeostasis. METHOD In this study, we aimed to characterize the transcriptional landscape of ex vivo human microglia across different developmental ages using cells derived from pre-natal, pediatric, adolescent, and adult brain samples. We further confirmed our transcriptional observations using ELISA and RNAscope. RESULTS We showed that pre-natal microglia have a distinct transcriptional and regulatory signature relative to their post-natal counterparts that includes an upregulation of phagocytic pathways. We confirmed upregulation of CD36, a positive regulator of phagocytosis, in pre-natal samples compared to adult samples in situ. Moreover, we showed adult microglia have more pro-inflammatory signature compared to microglia from other developmental ages. We indicated that adult microglia are more immune responsive by secreting increased levels of pro-inflammatory cytokines in response to LPS treatment compared to the pre-natal microglia. We further validated in situ up-regulation of IL18 and CXCR4 in human adult brain section compared to the pre-natal brain section. Finally, trajectory analysis indicated that the transcriptional signatures adopted by microglia throughout development are in response to a changing brain microenvironment and do not reflect predetermined developmental states. CONCLUSION In all, this study provides unique insight into the development of human microglia and a useful reference for understanding microglial contribution to developmental and age-related human disease.
Collapse
Affiliation(s)
- Moein Yaqubi
- Neuroimmunology Unit, Department of Neurology and Neurosurgery, Montreal Neurological Institute and Hospital, McGill University, Montreal, QC, Canada
| | - Adam M R Groh
- Neuroimmunology Unit, Department of Neurology and Neurosurgery, Montreal Neurological Institute and Hospital, McGill University, Montreal, QC, Canada
| | - Marie-France Dorion
- Neuroimmunology Unit, Department of Neurology and Neurosurgery, Montreal Neurological Institute and Hospital, McGill University, Montreal, QC, Canada
| | - Elia Afanasiev
- Neuroimmunology Unit, Department of Neurology and Neurosurgery, Montreal Neurological Institute and Hospital, McGill University, Montreal, QC, Canada
| | - Julia Xiao Xuan Luo
- Department of Microbiology and Immunology, Montreal Neurological Institute and Hospital, McGill University, Montreal, QC, Canada
| | - Hadi Hashemi
- Department of Electrical and Electronic Engineering, Shiraz University of Technology, Shiraz, Fars, Iran
| | - Sarthak Sinha
- Department of Comparative Biology and Experimental Medicine, University of Calgary, Calgary, AB, Canada
| | - Nicholas W Kieran
- Neuroimmunology Unit, Department of Neurology and Neurosurgery, Montreal Neurological Institute and Hospital, McGill University, Montreal, QC, Canada
| | - Manon Blain
- Neuroimmunology Unit, Department of Neurology and Neurosurgery, Montreal Neurological Institute and Hospital, McGill University, Montreal, QC, Canada
| | - Qiao-Ling Cui
- Neuroimmunology Unit, Department of Neurology and Neurosurgery, Montreal Neurological Institute and Hospital, McGill University, Montreal, QC, Canada
| | - Jeff Biernaskie
- Department of Comparative Biology and Experimental Medicine, University of Calgary, Calgary, AB, Canada
| | - Myriam Srour
- Neuroimmunology Unit, Department of Neurology and Neurosurgery, Montreal Neurological Institute and Hospital, McGill University, Montreal, QC, Canada
- Department of Pediatric Neurosurgery, Montreal Children's Hospital, Montreal, QC, Canada
| | - Roy Dudley
- Neuroimmunology Unit, Department of Neurology and Neurosurgery, Montreal Neurological Institute and Hospital, McGill University, Montreal, QC, Canada
- Department of Pediatric Neurosurgery, Montreal Children's Hospital, Montreal, QC, Canada
| | - Jeffery A Hall
- Neuroimmunology Unit, Department of Neurology and Neurosurgery, Montreal Neurological Institute and Hospital, McGill University, Montreal, QC, Canada
| | - Joshua A Sonnen
- Departments of Pathology, Neurology and Neurosurgery, McGill University, Montreal, QC, Canada
| | - Nathalie Arbour
- Neuroimmunology Research Laboratory, Centre de Recherche du Centre Hospitalier de L, Université de Montréal (CRCHUM), Montreal, QC, Canada
- Department of Neurosciences, Université de Montréal, Montreal, QC, Canada
| | - Alexandre Prat
- Department of Neurosciences, Université de Montréal, Montreal, QC, Canada
| | - Jo Anne Stratton
- Neuroimmunology Unit, Department of Neurology and Neurosurgery, Montreal Neurological Institute and Hospital, McGill University, Montreal, QC, Canada
| | - Jack Antel
- Neuroimmunology Unit, Department of Neurology and Neurosurgery, Montreal Neurological Institute and Hospital, McGill University, Montreal, QC, Canada
| | - Luke M Healy
- Neuroimmunology Unit, Department of Neurology and Neurosurgery, Montreal Neurological Institute and Hospital, McGill University, Montreal, QC, Canada.
| |
Collapse
|
204
|
Berriat F, Lobsiger CS, Boillée S. The contribution of the peripheral immune system to neurodegeneration. Nat Neurosci 2023:10.1038/s41593-023-01323-6. [PMID: 37231108 DOI: 10.1038/s41593-023-01323-6] [Citation(s) in RCA: 40] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2022] [Accepted: 04/05/2023] [Indexed: 05/27/2023]
Abstract
Microglial cells are the major immune cells of the central nervous system (CNS), and directly react to neurodegeneration, but other immune cell types are also able to react to pathology and can modify the course of neurodegenerative processes. These mainly include monocytes/macrophages and lymphocytes. While these peripheral immune cells were initially considered to act only after infiltrating the CNS, recent evidence suggests that some of them can also act directly from the periphery. We will review the existing and emerging evidence for a role of peripheral immune cells in neurodegenerative diseases, both with and without CNS infiltration. Our focus will be on amyotrophic lateral sclerosis, but we will also compare to Alzheimer's disease and Parkinson's disease to highlight similarities or differences. Peripheral immune cells are easily accessible, and therefore may be an attractive therapeutic target for neurodegenerative diseases. Thus, understanding how these peripheral immune cells communicate with the CNS deserves deeper investigation.
Collapse
Affiliation(s)
- Félix Berriat
- Sorbonne Université, Institut du Cerveau - Paris Brain Institute - ICM, Inserm, CNRS, APHP, Hôpital de la Pitié-Salpêtrière, Paris, France
| | - Christian S Lobsiger
- Sorbonne Université, Institut du Cerveau - Paris Brain Institute - ICM, Inserm, CNRS, APHP, Hôpital de la Pitié-Salpêtrière, Paris, France
| | - Séverine Boillée
- Sorbonne Université, Institut du Cerveau - Paris Brain Institute - ICM, Inserm, CNRS, APHP, Hôpital de la Pitié-Salpêtrière, Paris, France.
| |
Collapse
|
205
|
Walsh AD, Stone S, Freytag S, Aprico A, Kilpatrick TJ, Ansell BRE, Binder MD. Mouse microglia express unique miRNA-mRNA networks to facilitate age-specific functions in the developing central nervous system. Commun Biol 2023; 6:555. [PMID: 37217597 DOI: 10.1038/s42003-023-04926-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Accepted: 05/11/2023] [Indexed: 05/24/2023] Open
Abstract
Microglia regulate multiple processes in the central nervous system, exhibiting a considerable level of cellular plasticity which is facilitated by an equally dynamic transcriptional environment. While many gene networks that regulate microglial functions have been characterised, the influence of epigenetic regulators such as small non-coding microRNAs (miRNAs) is less well defined. We have sequenced the miRNAome and mRNAome of mouse microglia during brain development and adult homeostasis, identifying unique profiles of known and novel miRNAs. Microglia express both a consistently enriched miRNA signature as well as temporally distinctive subsets of miRNAs. We generated robust miRNA-mRNA networks related to fundamental developmental processes, in addition to networks associated with immune function and dysregulated disease states. There was no apparent influence of sex on miRNA expression. This study reveals a unique developmental trajectory of miRNA expression in microglia during critical stages of CNS development, establishing miRNAs as important modulators of microglial phenotype.
Collapse
Affiliation(s)
- Alexander D Walsh
- The Florey Institute of Neuroscience and Mental Health, Parkville, Melbourne, VIC, 3052, Australia
- Cognitive Neuroepigenetics Laboratory, Queensland Brain Institute, The University of Queensland, Brisbane, QLD, Australia
| | - Sarrabeth Stone
- The Florey Institute of Neuroscience and Mental Health, Parkville, Melbourne, VIC, 3052, Australia
| | - Saskia Freytag
- Personalised Oncology Division, The Walter and Eliza Hall Institute of Medical Research, Parkville, VIC, 3052, Australia
- Department of Medical Biology, University of Melbourne, Parkville, VIC, 3052, Australia
| | - Andrea Aprico
- The Florey Institute of Neuroscience and Mental Health, Parkville, Melbourne, VIC, 3052, Australia
| | - Trevor J Kilpatrick
- The Florey Institute of Neuroscience and Mental Health, Parkville, Melbourne, VIC, 3052, Australia
| | - Brendan R E Ansell
- Department of Medical Biology, University of Melbourne, Parkville, VIC, 3052, Australia
- Population Health and Immunity Division, The Walter and Eliza Hall Institute of Medical Research, Parkville, VIC, 3052, Australia
| | - Michele D Binder
- Population Health and Immunity Division, The Walter and Eliza Hall Institute of Medical Research, Parkville, VIC, 3052, Australia.
- Department of Anatomy and Physiology, University of Melbourne, Parkville, Melbourne, VIC, 3052, Australia.
| |
Collapse
|
206
|
Chatila ZK, Yadav A, Mares J, Flowers X, Yun TD, Rashid M, Talcoff R, Pelly Z, Zhang Y, De Jager PL, Teich A, Costa R, Gomez EA, Martins G, Alcalay R, Vonsattel JP, Menon V, Bradshaw EM, Przedborski S. RNA- and ATAC-sequencing Reveals a Unique CD83+ Microglial Population Focally Depleted in Parkinson's Disease. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.05.17.540842. [PMID: 37292857 PMCID: PMC10245789 DOI: 10.1101/2023.05.17.540842] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
All brain areas affected in Parkinson's disease (PD) show an abundance of microglia with an activated morphology together with increased expression of pro-inflammatory cytokines, suggesting that neuroinflammation may contribute to the neurodegenerative process in this common and incurable disorder. We applied a single nucleus RNA- and ATAC-sequencing approach using the 10x Genomics Chromium platform to postmortem PD samples to investigate microglial heterogeneity in PD. We created a multiomic dataset using substantia nigra (SN) tissues from 19 PD donors and 14 non-PD controls (NPCs), as well as three other brain regions from the PD donors which are differentially affected in this disease: the ventral tegmental area (VTA), substantia inominata (SI), and hypothalamus (HypoTs). We identified thirteen microglial subpopulations within these tissues as well as a perivascular macrophage and a monocyte population, of which we characterized the transcriptional and chromatin repertoires. Using this data, we investigated whether these microglial subpopulations have any association with PD and whether they have regional specificity. We uncovered several changes in microglial subpopulations in PD, which appear to parallel the magnitude of neurodegeneration across these four selected brain regions. Specifically, we identified that inflammatory microglia in PD are more prevalent in the SN and differentially express PD-associated markers. Our analysis revealed the depletion of a CD83 and HIF1A- expressing microglial subpopulation, specifically in the SN in PD, that has a unique chromatin signature compared to other microglial subpopulations. Interestingly, this microglial subpopulation has regional specificity to the brainstem in non-disease tissues. Furthermore, it is highly enriched for transcripts of proteins involved in antigen presentation and heat-shock proteins, and its depletion in the PD SN may have implications for neuronal vulnerability in disease.
Collapse
|
207
|
Schafer ST, Mansour AA, Schlachetzki JCM, Pena M, Ghassemzadeh S, Mitchell L, Mar A, Quang D, Stumpf S, Ortiz IS, Lana AJ, Baek C, Zaghal R, Glass CK, Nimmerjahn A, Gage FH. An in vivo neuroimmune organoid model to study human microglia phenotypes. Cell 2023; 186:2111-2126.e20. [PMID: 37172564 PMCID: PMC10284271 DOI: 10.1016/j.cell.2023.04.022] [Citation(s) in RCA: 102] [Impact Index Per Article: 51.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2022] [Revised: 12/18/2022] [Accepted: 04/14/2023] [Indexed: 05/15/2023]
Abstract
Microglia are specialized brain-resident macrophages that play crucial roles in brain development, homeostasis, and disease. However, until now, the ability to model interactions between the human brain environment and microglia has been severely limited. To overcome these limitations, we developed an in vivo xenotransplantation approach that allows us to study functionally mature human microglia (hMGs) that operate within a physiologically relevant, vascularized immunocompetent human brain organoid (iHBO) model. Our data show that organoid-resident hMGs gain human-specific transcriptomic signatures that closely resemble their in vivo counterparts. In vivo two-photon imaging reveals that hMGs actively engage in surveilling the human brain environment, react to local injuries, and respond to systemic inflammatory cues. Finally, we demonstrate that the transplanted iHBOs developed here offer the unprecedented opportunity to study functional human microglia phenotypes in health and disease and provide experimental evidence for a brain-environment-induced immune response in a patient-specific model of autism with macrocephaly.
Collapse
Affiliation(s)
- Simon T Schafer
- Laboratory of Genetics, The Salk Institute for Biological Studies, La Jolla, CA 92037, USA; Department of Psychiatry and Psychotherapy, School of Medicine, Technical University of Munich, 81675 Munich, Germany; Center for Organoid Systems, Technical University of Munich, 85748 Garching, Germany; TranslaTUM - Organoid Hub, Technical University of Munich, 81675 Munich, Germany.
| | - Abed AlFatah Mansour
- Laboratory of Genetics, The Salk Institute for Biological Studies, La Jolla, CA 92037, USA; Department of Medical Neurobiology, Institute for Medical Research Israel-Canada, Faculty of Medicine, Hebrew University of Jerusalem, Jerusalem 9112102, Israel.
| | - Johannes C M Schlachetzki
- Department of Cellular and Molecular Medicine, University of California, San Diego, La Jolla, CA 92093, USA
| | - Monique Pena
- Laboratory of Genetics, The Salk Institute for Biological Studies, La Jolla, CA 92037, USA; Department of Psychiatry and Psychotherapy, School of Medicine, Technical University of Munich, 81675 Munich, Germany; Center for Organoid Systems, Technical University of Munich, 85748 Garching, Germany; TranslaTUM - Organoid Hub, Technical University of Munich, 81675 Munich, Germany
| | - Saeed Ghassemzadeh
- Laboratory of Genetics, The Salk Institute for Biological Studies, La Jolla, CA 92037, USA
| | - Lisa Mitchell
- Laboratory of Genetics, The Salk Institute for Biological Studies, La Jolla, CA 92037, USA
| | - Amanda Mar
- Laboratory of Genetics, The Salk Institute for Biological Studies, La Jolla, CA 92037, USA
| | - Daphne Quang
- Laboratory of Genetics, The Salk Institute for Biological Studies, La Jolla, CA 92037, USA
| | - Sarah Stumpf
- Laboratory of Genetics, The Salk Institute for Biological Studies, La Jolla, CA 92037, USA
| | - Irene Santisteban Ortiz
- Department of Psychiatry and Psychotherapy, School of Medicine, Technical University of Munich, 81675 Munich, Germany; Center for Organoid Systems, Technical University of Munich, 85748 Garching, Germany; TranslaTUM - Organoid Hub, Technical University of Munich, 81675 Munich, Germany
| | - Addison J Lana
- Department of Cellular and Molecular Medicine, University of California, San Diego, La Jolla, CA 92093, USA
| | - Clara Baek
- Laboratory of Genetics, The Salk Institute for Biological Studies, La Jolla, CA 92037, USA
| | - Raghad Zaghal
- Department of Medical Neurobiology, Institute for Medical Research Israel-Canada, Faculty of Medicine, Hebrew University of Jerusalem, Jerusalem 9112102, Israel
| | - Christopher K Glass
- Department of Cellular and Molecular Medicine, University of California, San Diego, La Jolla, CA 92093, USA
| | - Axel Nimmerjahn
- Waitt Advanced Biophotonics Center, The Salk Institute for Biological Studies, La Jolla, CA 92037, USA
| | - Fred H Gage
- Laboratory of Genetics, The Salk Institute for Biological Studies, La Jolla, CA 92037, USA.
| |
Collapse
|
208
|
Temple S. Advancing cell therapy for neurodegenerative diseases. Cell Stem Cell 2023; 30:512-529. [PMID: 37084729 PMCID: PMC10201979 DOI: 10.1016/j.stem.2023.03.017] [Citation(s) in RCA: 80] [Impact Index Per Article: 40.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2023] [Revised: 03/20/2023] [Accepted: 03/28/2023] [Indexed: 04/23/2023]
Abstract
Cell-based therapies are being developed for various neurodegenerative diseases that affect the central nervous system (CNS). Concomitantly, the roles of individual cell types in neurodegenerative pathology are being uncovered by genetic and single-cell studies. With a greater understanding of cellular contributions to health and disease and with the arrival of promising approaches to modulate them, effective therapeutic cell products are now emerging. This review examines how the ability to generate diverse CNS cell types from stem cells, along with a deeper understanding of cell-type-specific functions and pathology, is advancing preclinical development of cell products for the treatment of neurodegenerative diseases.
Collapse
Affiliation(s)
- Sally Temple
- Neural Stem Cell Institute, Rensselaer, NY 12144, USA.
| |
Collapse
|
209
|
Dorion MF, Yaqubi M, Murdoch HJ, Hall JA, Dudley R, Antel JP, Durcan TM, Healy LM. Systematic comparison of culture media uncovers phenotypic shift of primary human microglia defined by reduced reliance to CSF1R signaling. Glia 2023; 71:1278-1293. [PMID: 36680780 DOI: 10.1002/glia.24338] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2022] [Revised: 11/17/2022] [Accepted: 01/02/2023] [Indexed: 01/22/2023]
Abstract
Efforts to understand microglia function in health and diseases have been hindered by the lack of culture models that recapitulate in situ cellular properties. In recent years, the use of serum-free media with brain-derived growth factors (colony stimulating factor 1 receptor [CSF1R] ligands and TGF-β1/2) have been favored for the maintenance of rodent microglia as they promote morphological features observed in situ. Here we study the functional and transcriptomic impacts of such media on human microglia (hMGL). Media formulation had little impact on microglia transcriptome assessed by RNA sequencing which was sufficient to significantly alter microglia capacity to phagocytose myelin debris and to elicit an inflammatory response to lipopolysaccharide. When compared to immediately ex vivo microglia from the same donors, the addition of fetal bovine serum to culture media, but not growth factors, was found to aid in the maintenance of key signature genes including those involved in phagocytic processes. A phenotypic shift characterized by CSF1R downregulation in culture correlated with a lack of reliance on CSF1R signaling for survival. Consequently, no improvement in cell survival was observed following culture supplementation with CSF1R ligands. Our study provides better understanding of hMGL in culture, with observations that diverge from those previously made in rodent microglia.
Collapse
Affiliation(s)
- Marie-France Dorion
- Department of Neurology and Neurosurgery, Montreal Neurological Institute, McGill University, Québec, Canada
| | - Moein Yaqubi
- Department of Neurology and Neurosurgery, Montreal Neurological Institute, McGill University, Québec, Canada
| | - Hunter J Murdoch
- Department of Neurology and Neurosurgery, Montreal Neurological Institute, McGill University, Québec, Canada
| | - Jeffery A Hall
- Department of Neurology and Neurosurgery, Montreal Neurological Institute, McGill University, Québec, Canada
| | - Roy Dudley
- Department of Pediatric Neurosurgery, Montreal Children's Hospital, Montreal, Canada
| | - Jack P Antel
- Department of Neurology and Neurosurgery, Montreal Neurological Institute, McGill University, Québec, Canada
| | - Thomas Martin Durcan
- Department of Neurology and Neurosurgery, Montreal Neurological Institute, McGill University, Québec, Canada
| | - Luke Michael Healy
- Department of Neurology and Neurosurgery, Montreal Neurological Institute, McGill University, Québec, Canada
| |
Collapse
|
210
|
McMillan RE, Wang E, Carlin AF, Coufal NG. Human microglial models to study host-virus interactions. Exp Neurol 2023; 363:114375. [PMID: 36907350 PMCID: PMC10521930 DOI: 10.1016/j.expneurol.2023.114375] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Revised: 02/13/2023] [Accepted: 03/02/2023] [Indexed: 03/14/2023]
Abstract
Microglia, the resident macrophage of the central nervous system, are increasingly recognized as contributing to diverse aspects of human development, health, and disease. In recent years, numerous studies in both mouse and human models have identified microglia as a "double edged sword" in the progression of neurotropic viral infections: protecting against viral replication and cell death in some contexts, while acting as viral reservoirs and promoting excess cellular stress and cytotoxicity in others. It is imperative to understand the diversity of human microglial responses in order to therapeutically modulate them; however, modeling human microglia has been historically challenging due to significant interspecies differences in innate immunity and rapid transformation upon in vitro culture. In this review, we discuss the contribution of microglia to the neuropathogenesis of key neurotropic viral infections: human immunodeficiency virus 1 (HIV-1), Zika virus (ZIKV), Japanese encephalitis virus (JEV), West Nile virus (WNV), Herpes simplex virus (HSV), and severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). We pay special attention to recent work with human stem cell-derived microglia and propose strategies to leverage these powerful models to further uncover species- and disease-specific microglial responses and novel therapeutic interventions for neurotropic viral infections.
Collapse
Affiliation(s)
- Rachel E McMillan
- Biomedical Sciences Graduate Program, University of California, San Diego, La Jolla, CA 92093, United States of America; Department of Pathology and Medicine, University of California, San Diego, School of Medicine, La Jolla, CA 92093, United States of America
| | - Ellen Wang
- Department of Pediatrics, University of California, San Diego, School of Medicine, La Jolla, CA 92093, United States of America; Sanford Consortium for Regenerative Medicine, La Jolla, CA 92093, United States of America
| | - Aaron F Carlin
- Department of Pathology and Medicine, University of California, San Diego, School of Medicine, La Jolla, CA 92093, United States of America.
| | - Nicole G Coufal
- Department of Pediatrics, University of California, San Diego, School of Medicine, La Jolla, CA 92093, United States of America; Sanford Consortium for Regenerative Medicine, La Jolla, CA 92093, United States of America.
| |
Collapse
|
211
|
Baker E, Leonenko G, Schmidt KM, Hill M, Myers AJ, Shoai M, de Rojas I, Tesi N, Holstege H, van der Flier WM, Pijnenburg YAL, Ruiz A, Hardy J, van der Lee S, Escott-Price V. What does heritability of Alzheimer's disease represent? PLoS One 2023; 18:e0281440. [PMID: 37115753 PMCID: PMC10146480 DOI: 10.1371/journal.pone.0281440] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Accepted: 01/24/2023] [Indexed: 04/29/2023] Open
Abstract
INTRODUCTION Both late-onset Alzheimer's disease (AD) and ageing have a strong genetic component. In each case, many associated variants have been discovered, but how much missing heritability remains to be discovered is debated. Variability in the estimation of SNP-based heritability could explain the differences in reported heritability. METHODS We compute heritability in five large independent cohorts (N = 7,396, 1,566, 803, 12,528 and 3,963) to determine whether a consensus for the AD heritability estimate can be reached. These cohorts vary by sample size, age of cases and controls and phenotype definition. We compute heritability a) for all SNPs, b) excluding APOE region, c) excluding both APOE and genome-wide association study hit regions, and d) SNPs overlapping a microglia gene-set. RESULTS SNP-based heritability of late onset Alzheimer's disease is between 38 and 66% when age and genetic disease architecture are correctly accounted for. The heritability estimates decrease by 12% [SD = 8%] on average when the APOE region is excluded and an additional 1% [SD = 3%] when genome-wide significant regions were removed. A microglia gene-set explains 69-84% of our estimates of SNP-based heritability using only 3% of total SNPs in all cohorts. CONCLUSION The heritability of neurodegenerative disorders cannot be represented as a single number, because it is dependent on the ages of cases and controls. Genome-wide association studies pick up a large proportion of total AD heritability when age and genetic architecture are correctly accounted for. Around 13% of SNP-based heritability can be explained by known genetic loci and the remaining heritability likely resides around microglial related genes.
Collapse
Affiliation(s)
- Emily Baker
- Division of Neuroscience and Mental Health, School of Medicine, Cardiff University, Cardiff, United Kingdom
- Dementia Research Institute, School of Medicine, Cardiff University, Cardiff, United Kingdom
| | - Ganna Leonenko
- Division of Neuroscience and Mental Health, School of Medicine, Cardiff University, Cardiff, United Kingdom
- Dementia Research Institute, School of Medicine, Cardiff University, Cardiff, United Kingdom
| | | | - Matthew Hill
- Dementia Research Institute, School of Medicine, Cardiff University, Cardiff, United Kingdom
| | - Amanda J. Myers
- Department of Cell Biology, Miller School of Medicine, University of Miami, Coral Gables, FL, United States of America
| | - Maryam Shoai
- Institute of Neurology, University College London, London, United Kingdom
| | - Itziar de Rojas
- Research Center and Memory Clinic, ACE Alzheimer Center Barcelona, Universitat Internacional de Catalunya, Barcelona, Spain
- Networking Research Center on Neurodegenerative Diseases (CIBERNED), Instituto de Salud Carlos III, Madrid, Spain
| | - Niccoló Tesi
- Genomics of Neurodegenerative Diseases and Aging, Human Genetics, Vrije Universiteit Amsterdam, Amsterdam UMC location VUmc, Amsterdam, The Netherlands
- Amsterdam Neuroscience, Neurodegeneration, Amsterdam, The Netherlands
- Delft Bioinformatics Lab, Delft University of Technology, Delft, The Netherlands
| | - Henne Holstege
- Genomics of Neurodegenerative Diseases and Aging, Human Genetics, Vrije Universiteit Amsterdam, Amsterdam UMC location VUmc, Amsterdam, The Netherlands
- Amsterdam Neuroscience, Neurodegeneration, Amsterdam, The Netherlands
- Delft Bioinformatics Lab, Delft University of Technology, Delft, The Netherlands
- Alzheimer Center Amsterdam, Neurology, Vrije Universiteit Amsterdam, Amsterdam UMC location VUmc, Amsterdam, The Netherlands
| | - Wiesje M. van der Flier
- Amsterdam Neuroscience, Neurodegeneration, Amsterdam, The Netherlands
- Alzheimer Center Amsterdam, Neurology, Vrije Universiteit Amsterdam, Amsterdam UMC location VUmc, Amsterdam, The Netherlands
| | - Yolande A. L. Pijnenburg
- Amsterdam Neuroscience, Neurodegeneration, Amsterdam, The Netherlands
- Alzheimer Center Amsterdam, Neurology, Vrije Universiteit Amsterdam, Amsterdam UMC location VUmc, Amsterdam, The Netherlands
| | - Agustin Ruiz
- Research Center and Memory Clinic, ACE Alzheimer Center Barcelona, Universitat Internacional de Catalunya, Barcelona, Spain
- Networking Research Center on Neurodegenerative Diseases (CIBERNED), Instituto de Salud Carlos III, Madrid, Spain
| | - John Hardy
- Institute of Neurology, University College London, London, United Kingdom
| | - Sven van der Lee
- Genomics of Neurodegenerative Diseases and Aging, Human Genetics, Vrije Universiteit Amsterdam, Amsterdam UMC location VUmc, Amsterdam, The Netherlands
- Amsterdam Neuroscience, Neurodegeneration, Amsterdam, The Netherlands
- Alzheimer Center Amsterdam, Neurology, Vrije Universiteit Amsterdam, Amsterdam UMC location VUmc, Amsterdam, The Netherlands
| | - Valentina Escott-Price
- Division of Neuroscience and Mental Health, School of Medicine, Cardiff University, Cardiff, United Kingdom
| |
Collapse
|
212
|
Kadlecova M, Freude K, Haukedal H. Complexity of Sex Differences and Their Impact on Alzheimer's Disease. Biomedicines 2023; 11:biomedicines11051261. [PMID: 37238932 DOI: 10.3390/biomedicines11051261] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Revised: 04/05/2023] [Accepted: 04/19/2023] [Indexed: 05/28/2023] Open
Abstract
Sex differences are present in brain morphology, sex hormones, aging processes and immune responses. These differences need to be considered for proper modelling of neurological diseases with clear sex differences. This is the case for Alzheimer's disease (AD), a fatal neurodegenerative disorder with two-thirds of cases diagnosed in women. It is becoming clear that there is a complex interplay between the immune system, sex hormones and AD. Microglia are major players in the neuroinflammatory process occurring in AD and have been shown to be directly affected by sex hormones. However, many unanswered questions remain as the importance of including both sexes in research studies has only recently started receiving attention. In this review, we provide a summary of sex differences and their implications in AD, with a focus on microglia action. Furthermore, we discuss current available study models, including emerging complex microfluidic and 3D cellular models and their usefulness for studying hormonal effects in this disease.
Collapse
Affiliation(s)
- Marion Kadlecova
- Department of Veterinary and Animal Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, 1870 C Frederiksberg, Denmark
| | - Kristine Freude
- Department of Veterinary and Animal Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, 1870 C Frederiksberg, Denmark
| | - Henriette Haukedal
- Department of Veterinary and Animal Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, 1870 C Frederiksberg, Denmark
| |
Collapse
|
213
|
Pinho AG, Monteiro A, Fernandes S, de Sousa N, Salgado AJ, Silva NA, Monteiro S. The Central Nervous System Source Modulates Microglia Function and Morphology In Vitro. Int J Mol Sci 2023; 24:ijms24097685. [PMID: 37175391 PMCID: PMC10177862 DOI: 10.3390/ijms24097685] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Revised: 04/13/2023] [Accepted: 04/19/2023] [Indexed: 05/15/2023] Open
Abstract
The regional heterogeneity of microglia was first described a century ago by Pio del Rio Hortega. Currently, new information on microglia heterogeneity throughout central nervous system (CNS) regions is being revealed by high-throughput techniques. It remains unclear whether these spatial specificities translate into different microglial behaviors in vitro. We cultured microglia isolated from the cortex and spinal cord and analyzed the effect of the CNS spatial source on behavior in vitro by applying the same experimental protocol and culture conditions. We analyzed the microglial cell numbers, function, and morphology and found a distinctive in vitro phenotype. We found that microglia were present in higher numbers in the spinal-cord-derived glial cultures, presenting different expressions of inflammatory genes and a lower phagocytosis rate under basal conditions or after activation with LPS and IFN-γ. Morphologically, the cortical microglial cells were more complex and presented longer ramifications, which were also observed in vivo in CX3CR1+/GFP transgenic reporter mice. Collectively, our data demonstrated that microglial behavior in vitro is defined according to specific spatial characteristics acquired by the tissue. Thus, our study highlights the importance of microglia as a source of CNS for in vitro studies.
Collapse
Affiliation(s)
- Andreia G Pinho
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Campus de Gualtar, 4710-057 Braga, Portugal
- ICVS/3B's-PT Government Associate Laboratory, 4710-057 Braga, Portugal
| | - Andreia Monteiro
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Campus de Gualtar, 4710-057 Braga, Portugal
- ICVS/3B's-PT Government Associate Laboratory, 4710-057 Braga, Portugal
| | - Sara Fernandes
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Campus de Gualtar, 4710-057 Braga, Portugal
- ICVS/3B's-PT Government Associate Laboratory, 4710-057 Braga, Portugal
| | - Nídia de Sousa
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Campus de Gualtar, 4710-057 Braga, Portugal
- ICVS/3B's-PT Government Associate Laboratory, 4710-057 Braga, Portugal
| | - António J Salgado
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Campus de Gualtar, 4710-057 Braga, Portugal
- ICVS/3B's-PT Government Associate Laboratory, 4710-057 Braga, Portugal
| | - Nuno A Silva
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Campus de Gualtar, 4710-057 Braga, Portugal
- ICVS/3B's-PT Government Associate Laboratory, 4710-057 Braga, Portugal
| | - Susana Monteiro
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Campus de Gualtar, 4710-057 Braga, Portugal
- ICVS/3B's-PT Government Associate Laboratory, 4710-057 Braga, Portugal
| |
Collapse
|
214
|
Spiteri AG, Wishart CL, Ni D, Viengkhou B, Macia L, Hofer MJ, King NJC. Temporal tracking of microglial and monocyte single-cell transcriptomics in lethal flavivirus infection. Acta Neuropathol Commun 2023; 11:60. [PMID: 37016414 PMCID: PMC10074823 DOI: 10.1186/s40478-023-01547-4] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2023] [Accepted: 03/08/2023] [Indexed: 04/06/2023] Open
Abstract
As the resident parenchymal myeloid population in the central nervous system (CNS), microglia are strategically positioned to respond to neurotropic virus invasion and have been implicated in promoting both disease resolution and progression in the acute and post-infectious phase of virus encephalitis. In a mouse model of West Nile virus encephalitis (WNE), infection of the CNS results in recruitment of large numbers of peripheral immune cells into the brain, the majority being nitric oxide (NO)-producing Ly6Chi inflammatory monocyte-derived cells (MCs). In this model, these cells enhance immunopathology and mortality. However, the contribution of microglia to this response is currently undefined. Here we used a combination of experimental tools, including single-cell RNA sequencing (scRNA-seq), microglia and MC depletion reagents, high-dimensional spectral cytometry and computational algorithms to dissect the differential contribution of microglia and MCs to the anti-viral immune response in severe neuroinflammation seen in WNE. Intriguingly, analysis of scRNA-seq data revealed 6 unique microglia and 3 unique MC clusters that were predominantly timepoint-specific, demonstrating substantial transcriptional adaptation with disease progression over the course of WNE. While microglia and MC adopted unique gene expression profiles, gene ontology enrichment analysis, coupled with microglia and MC depletion studies, demonstrated a role for both of these cells in the trafficking of peripheral immune cells into the CNS, T cell responses and viral clearance. Over the course of infection, microglia transitioned from a homeostatic to an anti-viral and then into an immune cell-recruiting phenotype. Conversely, MC adopted antigen-presenting, immune cell-recruiting and NO-producing phenotypes, which all had anti-viral function. Overall, this study defines for the first time the single-cell transcriptomic responses of microglia and MCs over the course of WNE, demonstrating both protective and pathological roles of these cells that could potentially be targeted for differential therapeutic intervention to dampen immune-mediated pathology, while maintaining viral clearance functions.
Collapse
Affiliation(s)
- Alanna G Spiteri
- Viral Immunopathology Laboratory, Infection, Immunity and Inflammation Research Theme, School of Medical Sciences, Faculty of Medicine and Health, The University of Sydney, Sydney, NSW, 2006, Australia
- Sydney Cytometry, The University of Sydney and Centenary Institute, Sydney, NSW, 2006, Australia
- Ramaciotti Facility for Human Systems Biology, The University of Sydney and Centenary Institute, Sydney, NSW, 2006, Australia
- Charles Perkins Centre, The University of Sydney, Sydney, NSW, 2006, Australia
| | - Claire L Wishart
- Viral Immunopathology Laboratory, Infection, Immunity and Inflammation Research Theme, School of Medical Sciences, Faculty of Medicine and Health, The University of Sydney, Sydney, NSW, 2006, Australia
- Sydney Cytometry, The University of Sydney and Centenary Institute, Sydney, NSW, 2006, Australia
- Ramaciotti Facility for Human Systems Biology, The University of Sydney and Centenary Institute, Sydney, NSW, 2006, Australia
- Charles Perkins Centre, The University of Sydney, Sydney, NSW, 2006, Australia
| | - Duan Ni
- Charles Perkins Centre, The University of Sydney, Sydney, NSW, 2006, Australia
- Chronic Diseases Research Theme, School of Medical Sciences, Faculty of Medicine and Health, The University of Sydney, Sydney, NSW, 2006, Australia
| | - Barney Viengkhou
- Charles Perkins Centre, The University of Sydney, Sydney, NSW, 2006, Australia
- School of Life and Environmental Sciences, The University of Sydney, Sydney, NSW, 2006, Australia
| | - Laurence Macia
- Sydney Cytometry, The University of Sydney and Centenary Institute, Sydney, NSW, 2006, Australia
- Charles Perkins Centre, The University of Sydney, Sydney, NSW, 2006, Australia
- Chronic Diseases Research Theme, School of Medical Sciences, Faculty of Medicine and Health, The University of Sydney, Sydney, NSW, 2006, Australia
| | - Markus J Hofer
- Charles Perkins Centre, The University of Sydney, Sydney, NSW, 2006, Australia
- School of Life and Environmental Sciences, The University of Sydney, Sydney, NSW, 2006, Australia
- The University of Sydney Institute for Infectious Diseases, The University of Sydney, Sydney, NSW, 2006, Australia
| | - Nicholas J C King
- Viral Immunopathology Laboratory, Infection, Immunity and Inflammation Research Theme, School of Medical Sciences, Faculty of Medicine and Health, The University of Sydney, Sydney, NSW, 2006, Australia.
- Sydney Cytometry, The University of Sydney and Centenary Institute, Sydney, NSW, 2006, Australia.
- Ramaciotti Facility for Human Systems Biology, The University of Sydney and Centenary Institute, Sydney, NSW, 2006, Australia.
- Charles Perkins Centre, The University of Sydney, Sydney, NSW, 2006, Australia.
- The University of Sydney Institute for Infectious Diseases, The University of Sydney, Sydney, NSW, 2006, Australia.
- Sydney Nano, The University of Sydney, Sydney, NSW, 2006, Australia.
| |
Collapse
|
215
|
Liu J, Tian J, Xie R, Chen L. CK2 inhibitor DMAT ameliorates spinal cord injury by increasing autophagy and inducing anti-inflammatory microglial polarization. Neurosci Lett 2023; 805:137222. [PMID: 37019269 DOI: 10.1016/j.neulet.2023.137222] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2022] [Revised: 03/27/2023] [Accepted: 03/31/2023] [Indexed: 04/05/2023]
Abstract
Spinal cord injury (SCI) is a destructive and disabling nerve injury from which complete recovery has not yet been achieved due to complex pathology. Casein kinase II (CK2) is a pleiotropic serine/threonine protein kinase that plays an essential role in the nervous system. This study aimed to investigate the role of CK2 in SCI to understand the pathogenesis of SCI and explore new therapeutic methods. The SCI rat model of C5 unilateral clamp was established by modified clamp method in male adult SD rats. Then, CK2 inhibitor DMAT was used to treat SCI rats, and the behaviour, pathological changes in the spinal cord and microglial polarization were analysed. Additionally, the effects of DMAT on the polarization and autophagy of microglial BV-2 cells were investigated in vitro, and the effects of BV-2 polarization on spinal cord neuronal cells were analysed by Transwell coculture. Results showed that DMAT significantly increased the BBB score, improved histopathological injury, decreased the expression of inflammatory cytokines, and promoted M2 polarization of microglia in SCI rats. In vitro experiments further confirmed that DMAT could promote the polarization of BV-2 to the M2 type, promote autophagy, and reverse the LPS-induced decline in cell viability and increase in apoptosis of neuronal cells. The use of 3-MA confirmed that autophagy plays an important role in DMAT promoting M2 polarization of BV-2 to improve neuronal cell viability. In conclusion, CK2 inhibitor DMAT improved SCI by inducing anti-inflammatory polarization of microglia through autophagy and is a potential therapeutic target for SCI.
Collapse
|
216
|
Garcia-Epelboim A, Christian KM. Modeling neuro-immune interactions using human pluripotent stem cells. Curr Opin Neurobiol 2023; 79:102672. [PMID: 36634408 DOI: 10.1016/j.conb.2022.102672] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2022] [Revised: 11/30/2022] [Accepted: 12/05/2022] [Indexed: 01/11/2023]
Abstract
Human pluripotent stem cells can be differentiated into cell types that are representative of the central nervous system. Under specific culture conditions, these cells can be induced to self-organize into 3D organoids that are reminiscent of the developing brain. Microglia are the resident immune cells of the brain but are derived from a different lineage than neural cells, which presents a challenge to modeling neuroimmune interactions. Although human microglia-like cells can be differentiated from pluripotent stem cells, important considerations include ensuring the identity of microglia, which can be influenced by both the lineage and the local environment, and developing culture methods that promote the integration and survival of diverse cell types in a physiologically relevant model. Recently, several strategies to generate neural organoids with integrated microglia have been demonstrated and provide new opportunities to interrogate interactions among microglia and neurons during development and in response to injury and disease.
Collapse
Affiliation(s)
- Alan Garcia-Epelboim
- Mahoney Institute for Neurosciences, Department of Neuroscience, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA; Vagelos College of Physicians and Surgeons, Columbia University, New York, NY, USA
| | - Kimberly M Christian
- Mahoney Institute for Neurosciences, Department of Neuroscience, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA.
| |
Collapse
|
217
|
Parajuli B, Koizumi S. Strategies for Manipulating Microglia to Determine Their Role in the Healthy and Diseased Brain. Neurochem Res 2023; 48:1066-1076. [PMID: 36085395 PMCID: PMC9462627 DOI: 10.1007/s11064-022-03742-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2022] [Revised: 08/08/2022] [Accepted: 08/29/2022] [Indexed: 11/30/2022]
Abstract
Microglia are the specialized macrophages of the central nervous system and play an important role in neural circuit development, modulating neurotransmission, and maintaining brain homeostasis. Microglia in normal brain is quiescent and show ramified morphology with numerous branching processes. They constantly survey their surrounding microenvironment through the extension and retraction of their processes and interact with neurons, astrocytes, and blood vessels using these processes. Microglia respond quickly to any pathological event in the brain by assuming ameboid morphology devoid of branching processes and restore homeostasis. However, when there is chronic inflammation, microglia may lose their homeostatic functions and secrete various proinflammatory cytokines and mediators that initiate neural dysfunction and neurodegeneration. In this article, we review the role of microglia in the normal brain and in various pathological brain conditions, such as Alzheimer's disease and multiple sclerosis. We describe strategies to manipulate microglia, focusing on depletion, repopulation, and replacement, and we discuss their therapeutic potential.
Collapse
Affiliation(s)
- Bijay Parajuli
- Department of Neuropharmacology, Interdisciplinary Graduate School of Medicine, University of Yamanashi, 1110 Shimokato, Chuo, Yamanashi, 409-3898, Japan
- GLIA Center, University of Yamanashi, 1110 Shimokato, Chuo, Yamanashi, 409-3898, Japan
| | - Schuichi Koizumi
- Department of Neuropharmacology, Interdisciplinary Graduate School of Medicine, University of Yamanashi, 1110 Shimokato, Chuo, Yamanashi, 409-3898, Japan.
- GLIA Center, University of Yamanashi, 1110 Shimokato, Chuo, Yamanashi, 409-3898, Japan.
| |
Collapse
|
218
|
Wei J, Arber C, Wray S, Hardy J, Piers TM, Pocock JM. Human myeloid progenitor glucocorticoid receptor activation causes genomic instability, type 1 IFN- response pathway activation and senescence in differentiated microglia; an early life stress model. Glia 2023; 71:1036-1056. [PMID: 36571248 DOI: 10.1002/glia.24325] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2022] [Revised: 10/26/2022] [Accepted: 12/09/2022] [Indexed: 12/27/2022]
Abstract
One form of early life stress, prenatal exposure to glucocorticoids (GCs), confers a higher risk of psychiatric and neurodevelopmental disorders in later life. Increasingly, the importance of microglia in these disorders is recognized. Studies on GCs exposure during microglial development have been limited, and there are few, if any, human studies. We established an in vitro model of ELS by continuous pre-exposure of human iPS-microglia to GCs during primitive hematopoiesis (the critical stage of iPS-microglial differentiation) and then examined how this exposure affected the microglial phenotype as they differentiated and matured to microglia, using RNA-seq analyses and functional assays. The iPS-microglia predominantly expressed glucocorticoid receptors over mineralocorticoid receptors, and in particular, the GR-α splice variant. Chronic GCs exposure during primitive hematopoiesis was able to recapitulate in vivo ELS effects. Thus, pre-exposure to prolonged GCs resulted in increased type I interferon signaling, the presence of Cyclic GMP-AMP synthase-positive (cGAS) micronuclei, cellular senescence and reduced proliferation in the matured iPS-microglia. The findings from this in vitro ELS model have ramifications for the responses of microglia in the pathogenesis of GC- mediated ELS-associated disorders such as schizophrenia, attention-deficit hyperactivity disorder and autism spectrum disorder.
Collapse
Affiliation(s)
- Jingzhang Wei
- Department of Neuroinflammation, University College London Institute of Neurology, London, UK
| | - Charles Arber
- Department of Molecular Neuroscience, University College London Institute of Neurology, London, UK
| | - Selina Wray
- Department of Molecular Neuroscience, University College London Institute of Neurology, London, UK
| | - John Hardy
- Department of Molecular Neuroscience, University College London Institute of Neurology, London, UK
| | - Thomas M Piers
- Department of Neuroinflammation, University College London Institute of Neurology, London, UK
| | - Jennifer M Pocock
- Department of Neuroinflammation, University College London Institute of Neurology, London, UK
| |
Collapse
|
219
|
Escoubas CC, Dorman LC, Nguyen PT, Lagares-Linares C, Nakajo H, Anderson SR, Cuevas B, Vainchtein ID, Silva NJ, Xiao Y, Lidsky PV, Wang EY, Taloma SE, Nakao-Inoue H, Schwer B, Andino R, Nowakowski TJ, Molofsky AV. Type I interferon responsive microglia shape cortical development and behavior. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2021.04.29.441889. [PMID: 35233577 PMCID: PMC8887080 DOI: 10.1101/2021.04.29.441889] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Microglia are brain resident phagocytes that can engulf synaptic components and extracellular matrix as well as whole neurons. However, whether there are unique molecular mechanisms that regulate these distinct phagocytic states is unknown. Here we define a molecularly distinct microglial subset whose function is to engulf neurons in the developing brain. We transcriptomically identified a cluster of Type I interferon (IFN-I) responsive microglia that expanded 20-fold in the postnatal day 5 somatosensory cortex after partial whisker deprivation, a stressor that accelerates neural circuit remodeling. In situ, IFN-I responsive microglia were highly phagocytic and actively engulfed whole neurons. Conditional deletion of IFN-I signaling (Ifnar1fl/fl) in microglia but not neurons resulted in dysmorphic microglia with stalled phagocytosis and an accumulation of neurons with double strand DNA breaks, a marker of cell stress. Conversely, exogenous IFN-I was sufficient to drive neuronal engulfment by microglia and restrict the accumulation of damaged neurons. IFN-I deficient mice had excess excitatory neurons in the developing somatosensory cortex as well as tactile hypersensitivity to whisker stimulation. These data define a molecular mechanism through which microglia engulf neurons during a critical window of brain development. More broadly, they reveal key homeostatic roles of a canonical antiviral signaling pathway in brain development.
Collapse
Affiliation(s)
- Caroline C. Escoubas
- Department of Psychiatry and Behavioral Sciences/ Weill Institute for Neurosciences, University of California, San Francisco, San Francisco, CA
| | - Leah C. Dorman
- Department of Psychiatry and Behavioral Sciences/ Weill Institute for Neurosciences, University of California, San Francisco, San Francisco, CA
- Department of Neuroscience Graduate Program, University of California, San Francisco, San Francisco, CA
| | - Phi T. Nguyen
- Department of Psychiatry and Behavioral Sciences/ Weill Institute for Neurosciences, University of California, San Francisco, San Francisco, CA
- Department of Biomedical Sciences Graduate Program, University of California, San Francisco, San Francisco, CA
| | - Christian Lagares-Linares
- Department of Psychiatry and Behavioral Sciences/ Weill Institute for Neurosciences, University of California, San Francisco, San Francisco, CA
| | - Haruna Nakajo
- Department of Psychiatry and Behavioral Sciences/ Weill Institute for Neurosciences, University of California, San Francisco, San Francisco, CA
| | - Sarah R. Anderson
- Department of Psychiatry and Behavioral Sciences/ Weill Institute for Neurosciences, University of California, San Francisco, San Francisco, CA
| | - Beatriz Cuevas
- Department of Psychiatry and Behavioral Sciences/ Weill Institute for Neurosciences, University of California, San Francisco, San Francisco, CA
- Department of Neuroscience Graduate Program, University of California, San Francisco, San Francisco, CA
| | - Ilia D. Vainchtein
- Department of Psychiatry and Behavioral Sciences/ Weill Institute for Neurosciences, University of California, San Francisco, San Francisco, CA
| | - Nicholas J. Silva
- Department of Psychiatry and Behavioral Sciences/ Weill Institute for Neurosciences, University of California, San Francisco, San Francisco, CA
| | - Yinghong Xiao
- Department of Microbiology and Immunology, University of California, San Francisco, San Francisco, CA
| | - Peter V. Lidsky
- Department of Microbiology and Immunology, University of California, San Francisco, San Francisco, CA
| | - Ellen Y. Wang
- Department of Psychiatry and Behavioral Sciences/ Weill Institute for Neurosciences, University of California, San Francisco, San Francisco, CA
- UCSF SRTP program, University of California, San Francisco, San Francisco, CA
| | - Sunrae E. Taloma
- Department of Psychiatry and Behavioral Sciences/ Weill Institute for Neurosciences, University of California, San Francisco, San Francisco, CA
- Department of Neuroscience Graduate Program, University of California, San Francisco, San Francisco, CA
| | - Hiromi Nakao-Inoue
- Department of Psychiatry and Behavioral Sciences/ Weill Institute for Neurosciences, University of California, San Francisco, San Francisco, CA
| | - Bjoern Schwer
- Kavli Institute for Fundamental Neuroscience, University of California, San Francisco, San Francisco, CA
- Department of Neurosurgery, University of California, San Francisco, San Francisco, CA
| | - Raul Andino
- Department of Microbiology and Immunology, University of California, San Francisco, San Francisco, CA
| | - Tomasz J. Nowakowski
- Department of Psychiatry and Behavioral Sciences/ Weill Institute for Neurosciences, University of California, San Francisco, San Francisco, CA
- Kavli Institute for Fundamental Neuroscience, University of California, San Francisco, San Francisco, CA
- Department of Anatomy, University of California, San Francisco, San Francisco, CA
- Eli and Edythe Broad Center for Regeneration Medicine and Stem Cell Research, University of California, San Francisco, San Francisco, CA
- Chan-Zuckerberg Biohub, San Francisco, CA
| | - Anna V. Molofsky
- Department of Psychiatry and Behavioral Sciences/ Weill Institute for Neurosciences, University of California, San Francisco, San Francisco, CA
- Kavli Institute for Fundamental Neuroscience, University of California, San Francisco, San Francisco, CA
- Eli and Edythe Broad Center for Regeneration Medicine and Stem Cell Research, University of California, San Francisco, San Francisco, CA
| |
Collapse
|
220
|
Balbi M, Bonanno G, Bonifacino T, Milanese M. The Physio-Pathological Role of Group I Metabotropic Glutamate Receptors Expressed by Microglia in Health and Disease with a Focus on Amyotrophic Lateral Sclerosis. Int J Mol Sci 2023; 24:5240. [PMID: 36982315 PMCID: PMC10048889 DOI: 10.3390/ijms24065240] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2023] [Revised: 03/03/2023] [Accepted: 03/06/2023] [Indexed: 03/30/2023] Open
Abstract
Microglia cells are the resident immune cells of the central nervous system. They act as the first-line immune guardians of nervous tissue and central drivers of neuroinflammation. Any homeostatic alteration that can compromise neuron and tissue integrity could activate microglia. Once activated, microglia exhibit highly diverse phenotypes and functions related to either beneficial or harmful consequences. Microglia activation is associated with the release of protective or deleterious cytokines, chemokines, and growth factors that can in turn determine defensive or pathological outcomes. This scenario is complicated by the pathology-related specific phenotypes that microglia can assume, thus leading to the so-called disease-associated microglia phenotypes. Microglia express several receptors that regulate the balance between pro- and anti-inflammatory features, sometimes exerting opposite actions on microglial functions according to specific conditions. In this context, group I metabotropic glutamate receptors (mGluRs) are molecular structures that may contribute to the modulation of the reactive phenotype of microglia cells, and this is worthy of exploration. Here, we summarize the role of group I mGluRs in shaping microglia cells' phenotype in specific physio-pathological conditions, including some neurodegenerative disorders. A significant section of the review is specifically focused on amyotrophic lateral sclerosis (ALS) since it represents an entirely unexplored topic of research in the field.
Collapse
Affiliation(s)
- Matilde Balbi
- Department of Pharmacy (DIFAR), University of Genoa, Viale Cembrano 4, 16148 Genova, Italy (M.M.)
| | - Giambattista Bonanno
- Department of Pharmacy (DIFAR), University of Genoa, Viale Cembrano 4, 16148 Genova, Italy (M.M.)
- IRCCS Ospedale Policlinico San Martino, Largo Rosanna Benzi 10, 16132 Genoa, Italy
| | - Tiziana Bonifacino
- Department of Pharmacy (DIFAR), University of Genoa, Viale Cembrano 4, 16148 Genova, Italy (M.M.)
- Inter-University Center for the Promotion of the 3Rs Principles in Teaching & Research (Centro 3R), 56122 Pisa, Italy
| | - Marco Milanese
- Department of Pharmacy (DIFAR), University of Genoa, Viale Cembrano 4, 16148 Genova, Italy (M.M.)
- IRCCS Ospedale Policlinico San Martino, Largo Rosanna Benzi 10, 16132 Genoa, Italy
| |
Collapse
|
221
|
McCoy AM, Lakhdari O, Shome S, Caoili K, Hernandez GE, Aghaeepour N, Butcher LD, Fisch K, Prince LS. Sp3 is essential for normal lung morphogenesis and cell cycle progression during mouse embryonic development. Development 2023; 150:dev200839. [PMID: 36762637 PMCID: PMC10110423 DOI: 10.1242/dev.200839] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2022] [Accepted: 01/18/2023] [Indexed: 02/11/2023]
Abstract
Members of the Sp family of transcription factors regulate gene expression via binding GC boxes within promoter regions. Unlike Sp1, which stimulates transcription, the closely related Sp3 can either repress or activate gene expression and is required for perinatal survival in mice. Here, we use RNA-seq and cellular phenotyping to show how Sp3 regulates murine fetal cell differentiation and proliferation. Homozygous Sp3-/- mice were smaller than wild-type and Sp+/- littermates, died soon after birth and had abnormal lung morphogenesis. RNA-seq of Sp3-/- fetal lung mesenchymal cells identified alterations in extracellular matrix production, developmental signaling pathways and myofibroblast/lipofibroblast differentiation. The lungs of Sp3-/- mice contained multiple structural defects, with abnormal endothelial cell morphology, lack of elastic fiber formation, and accumulation of lipid droplets within mesenchymal lipofibroblasts. Sp3-/- cells and mice also displayed cell cycle arrest, with accumulation in G0/G1 and reduced expression of numerous cell cycle regulators including Ccne1. These data detail the global impact of Sp3 on in vivo mouse gene expression and development.
Collapse
Affiliation(s)
- Alyssa M. McCoy
- Department of Pediatrics, University of California, San Diego, La Jolla, CA 92093, USA
- Department of Pharmacology, Meharry Medical College, Nashville, TN 37208, USA
| | - Omar Lakhdari
- Department of Pediatrics, University of California, San Diego, La Jolla, CA 92093, USA
| | - Sayane Shome
- Department of Pediatrics, Stanford University, Palo Alto, CA 94304, USA
- Department of Anesthesiology, Perioperative and Pain Management, Stanford University, Palo Alto, CA 94305, USA
| | - Kaitlin Caoili
- Department of Pediatrics, Stanford University, Palo Alto, CA 94304, USA
| | - Gilberto E. Hernandez
- Department of Pediatrics, University of California, San Diego, La Jolla, CA 92093, USA
| | - Nima Aghaeepour
- Department of Pediatrics, Stanford University, Palo Alto, CA 94304, USA
- Department of Anesthesiology, Perioperative and Pain Management, Stanford University, Palo Alto, CA 94305, USA
| | | | - Kathleen Fisch
- Department of Obstetrics, Gynecology, and Reproductive Services, University of California, San Diego, La Jolla, CA 92093, USA
- Center for Computational Biology & Bioinformatics, University of California, San Diego, La Jolla, CA 92093, USA
| | | |
Collapse
|
222
|
Wenzel TJ, Le J, He J, Alcorn J, Mousseau DD. Fundamental Neurochemistry Review: Incorporating a greater diversity of cell types, including microglia, in brain organoid cultures improves clinical translation. J Neurochem 2023; 164:560-582. [PMID: 36517959 DOI: 10.1111/jnc.15741] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2022] [Revised: 12/03/2022] [Accepted: 12/07/2022] [Indexed: 12/23/2022]
Abstract
Brain organoids have the potential to improve clinical translation, with the added benefit of reducing any extraneous use of experimental animals. As brain organoids are three-dimensional in vitro constructs that emulate the human brain, they bridge in vitro and in vivo studies more appropriately than monocultures. Although many factors contribute to the failure of extrapolating monoculture-based information to animal-based experiments and clinical trials, for the purpose of this review, we will focus on glia (non-neuronal brain cells), whose functions and transcriptome are particularly abnormal in monocultures. As discussed herein, glia require signals from-and contact with-other cell types to exist in their homeostatic state, which likely contributes to some of the differences between data derived from monocultures and data derived from brain organoids and even two-dimensional co-cultures. Furthermore, we highlight transcriptomic differences between humans and mice in regard to aging and Alzheimer's disease, emphasizing need for a model using the human genome-again, a benefit of brain organoids-to complement data derived from animals. We also identify an urgency for guidelines to improve the reporting and transparency of research using organoids. The lack of reporting standards creates challenges for the comparison and discussion of data from different articles. Importantly, brain organoids mark the first human model enabling the study of brain cytoarchitecture and development.
Collapse
Affiliation(s)
- Tyler J Wenzel
- Cell Signalling Laboratory, Department of Psychiatry, College of Medicine, University of Saskatchewan, Saskatoon, Saskatchewan, Canada.,College of Pharmacy and Nutrition, University of Saskatchewan, Saskatoon, Saskatchewan, Canada
| | - Jennifer Le
- Toxicology Centre, University of Saskatchewan, Saskatoon, Saskatchewan, Canada
| | - Jim He
- Toxicology Centre, University of Saskatchewan, Saskatoon, Saskatchewan, Canada
| | - Jane Alcorn
- College of Pharmacy and Nutrition, University of Saskatchewan, Saskatoon, Saskatchewan, Canada
| | - Darrell D Mousseau
- Cell Signalling Laboratory, Department of Psychiatry, College of Medicine, University of Saskatchewan, Saskatoon, Saskatchewan, Canada
| |
Collapse
|
223
|
Harris VK, Bishop D, Wollowitz J, Carling G, Carlson AL, Daviaud N, Sadiq SA. Mesenchymal stem cell-derived neural progenitors attenuate proinflammatory microglial activation via paracrine mechanisms. Regen Med 2023; 18:259-273. [PMID: 36852422 DOI: 10.2217/rme-2023-0005] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/01/2023] Open
Abstract
Background: Mesenchymal stem cell-derived neural progenitor cell (MSC-NP) therapy is an experimental approach to treat multiple sclerosis. The influence of MSC-NPs on microglial activation was investigated. Methods: Microglia were stimulated in the presence of MSC-NP-conditioned media, and proinflammatory or proregenerative marker expression was assessed by quantitative PCR and ELISA. Results: Microglia stimulated in the presence of MSC-NP-conditioned media displayed reduced expression of proinflammatory markers including CCL2, increased expression of proregenerative markers and reduced phagocytic activity. The paracrine effects of MSC-NPs from multiple donors correlated with TGF-β3 gene expression and was reversed by TGF-β signaling inhibition. Conclusion: MSC-NPs promote beneficial microglial polarization through secreted factors. This study suggests that microglia are a potential therapeutic target of MSC-NP cell therapy.
Collapse
Affiliation(s)
| | - Derek Bishop
- Tisch Multiple Sclerosis Research Center of New York, NY 10019, USA
| | - Jaina Wollowitz
- Tisch Multiple Sclerosis Research Center of New York, NY 10019, USA
| | - Gillian Carling
- Tisch Multiple Sclerosis Research Center of New York, NY 10019, USA
| | - Alyssa L Carlson
- Tisch Multiple Sclerosis Research Center of New York, NY 10019, USA
| | - Nicolas Daviaud
- Tisch Multiple Sclerosis Research Center of New York, NY 10019, USA
| | - Saud A Sadiq
- Tisch Multiple Sclerosis Research Center of New York, NY 10019, USA
| |
Collapse
|
224
|
De Schepper S, Ge JZ, Crowley G, Ferreira LSS, Garceau D, Toomey CE, Sokolova D, Rueda-Carrasco J, Shin SH, Kim JS, Childs T, Lashley T, Burden JJ, Sasner M, Sala Frigerio C, Jung S, Hong S. Perivascular cells induce microglial phagocytic states and synaptic engulfment via SPP1 in mouse models of Alzheimer's disease. Nat Neurosci 2023; 26:406-415. [PMID: 36747024 PMCID: PMC9991912 DOI: 10.1038/s41593-023-01257-z] [Citation(s) in RCA: 117] [Impact Index Per Article: 58.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2022] [Accepted: 01/10/2023] [Indexed: 02/08/2023]
Abstract
Alzheimer's disease (AD) is characterized by synaptic loss, which can result from dysfunctional microglial phagocytosis and complement activation. However, what signals drive aberrant microglia-mediated engulfment of synapses in AD is unclear. Here we report that secreted phosphoprotein 1 (SPP1/osteopontin) is upregulated predominantly by perivascular macrophages and, to a lesser extent, by perivascular fibroblasts. Perivascular SPP1 is required for microglia to engulf synapses and upregulate phagocytic markers including C1qa, Grn and Ctsb in presence of amyloid-β oligomers. Absence of Spp1 expression in AD mouse models results in prevention of synaptic loss. Furthermore, single-cell RNA sequencing and putative cell-cell interaction analyses reveal that perivascular SPP1 induces microglial phagocytic states in the hippocampus of a mouse model of AD. Altogether, we suggest a functional role for SPP1 in perivascular cells-to-microglia crosstalk, whereby SPP1 modulates microglia-mediated synaptic engulfment in mouse models of AD.
Collapse
Affiliation(s)
- Sebastiaan De Schepper
- UK Dementia Research Institute, Institute of Neurology, University College London, London, UK
| | - Judy Z Ge
- UK Dementia Research Institute, Institute of Neurology, University College London, London, UK
| | - Gerard Crowley
- UK Dementia Research Institute, Institute of Neurology, University College London, London, UK
| | - Laís S S Ferreira
- UK Dementia Research Institute, Institute of Neurology, University College London, London, UK
| | | | - Christina E Toomey
- The Queen Square Brain Bank for Neurological Disorders, Department of Clinical and Movement Neuroscience, UCL Queen Square Institute of Neurology, London, UK
- Department of Clinical and Movement Neuroscience, UCL Queen Square Institute of Neurology, London, UK
| | - Dimitra Sokolova
- UK Dementia Research Institute, Institute of Neurology, University College London, London, UK
| | - Javier Rueda-Carrasco
- UK Dementia Research Institute, Institute of Neurology, University College London, London, UK
| | - Sun-Hye Shin
- Department of Immunology and Regenerative Biology (IRB), Weizmann Institute of Science, Rehovot, Israel
| | - Jung-Seok Kim
- Department of Immunology and Regenerative Biology (IRB), Weizmann Institute of Science, Rehovot, Israel
| | - Thomas Childs
- UK Dementia Research Institute, Institute of Neurology, University College London, London, UK
| | - Tammaryn Lashley
- The Queen Square Brain Bank for Neurological Disorders, Department of Clinical and Movement Neuroscience, UCL Queen Square Institute of Neurology, London, UK
- Department of Neurodegenerative diseases, UCL Queen Square Institute of Neurology, London, UK
| | - Jemima J Burden
- Laboratory for Molecular Cell Biology, University College London, London, UK
| | | | - Carlo Sala Frigerio
- UK Dementia Research Institute, Institute of Neurology, University College London, London, UK
| | - Steffen Jung
- Department of Immunology and Regenerative Biology (IRB), Weizmann Institute of Science, Rehovot, Israel
| | - Soyon Hong
- UK Dementia Research Institute, Institute of Neurology, University College London, London, UK.
| |
Collapse
|
225
|
Rheinberger M, Costa AL, Kampmann M, Glavas D, Shytaj IL, Sreeram S, Penzo C, Tibroni N, Garcia-Mesa Y, Leskov K, Fackler OT, Vlahovicek K, Karn J, Lucic B, Herrmann C, Lusic M. Genomic profiling of HIV-1 integration in microglia cells links viral integration to the topologically associated domains. Cell Rep 2023; 42:112110. [PMID: 36790927 DOI: 10.1016/j.celrep.2023.112110] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2022] [Revised: 12/15/2022] [Accepted: 01/30/2023] [Indexed: 02/16/2023] Open
Abstract
HIV-1 encounters the hierarchically organized host chromatin to stably integrate and persist in anatomically distinct latent reservoirs. The contribution of genome organization in HIV-1 infection has been largely understudied across different HIV-1 targets. Here, we determine HIV-1 integration sites (ISs), associate them with chromatin and expression signatures at different genomic scales in a microglia cell model, and profile them together with the primary T cell reservoir. HIV-1 insertions into introns of actively transcribed genes with IS hotspots in genic and super-enhancers, characteristic of blood cells, are maintained in the microglia cell model. Genome organization analysis reveals dynamic CCCTC-binding factor (CTCF) clusters in cells with active and repressed HIV-1 transcription, whereas CTCF removal impairs viral integration. We identify CTCF-enriched topologically associated domain (TAD) boundaries with signatures of transcriptionally active chromatin as HIV-1 integration determinants in microglia and CD4+ T cells, highlighting the importance of host genome organization in HIV-1 infection.
Collapse
Affiliation(s)
- Mona Rheinberger
- Department of Infectious Diseases, Integrative Virology, Heidelberg University Hospital, 69120 Heidelberg, Germany; German Center for Infection Research (DZIF), 69120 Heidelberg, Germany
| | - Ana Luisa Costa
- Health Data Science Unit, Medical Faculty University Heidelberg and BioQuant, 69120 Heidelberg, Germany
| | - Martin Kampmann
- Department of Infectious Diseases, Integrative Virology, Heidelberg University Hospital, 69120 Heidelberg, Germany
| | - Dunja Glavas
- Bioinformatics Group, Division of Molecular Biology, Department of Biology, Faculty of Science, University of Zagreb, 10000 Zagreb, Croatia
| | - Iart Luca Shytaj
- Department of Infectious Diseases, Integrative Virology, Heidelberg University Hospital, 69120 Heidelberg, Germany; German Center for Infection Research (DZIF), 69120 Heidelberg, Germany
| | - Sheetal Sreeram
- Department of Molecular Biology and Microbiology, Case Western Reserve University, Cleveland, OH 44106, USA
| | - Carlotta Penzo
- Department of Infectious Diseases, Integrative Virology, Heidelberg University Hospital, 69120 Heidelberg, Germany
| | - Nadine Tibroni
- Department of Infectious Diseases, Integrative Virology, Heidelberg University Hospital, 69120 Heidelberg, Germany
| | - Yoelvis Garcia-Mesa
- Department of Molecular Biology and Microbiology, Case Western Reserve University, Cleveland, OH 44106, USA
| | - Konstantin Leskov
- Department of Molecular Biology and Microbiology, Case Western Reserve University, Cleveland, OH 44106, USA
| | - Oliver T Fackler
- Department of Infectious Diseases, Integrative Virology, Heidelberg University Hospital, 69120 Heidelberg, Germany; German Center for Infection Research (DZIF), 69120 Heidelberg, Germany
| | - Kristian Vlahovicek
- Bioinformatics Group, Division of Molecular Biology, Department of Biology, Faculty of Science, University of Zagreb, 10000 Zagreb, Croatia
| | - Jonathan Karn
- Department of Molecular Biology and Microbiology, Case Western Reserve University, Cleveland, OH 44106, USA
| | - Bojana Lucic
- Department of Infectious Diseases, Integrative Virology, Heidelberg University Hospital, 69120 Heidelberg, Germany; German Center for Infection Research (DZIF), 69120 Heidelberg, Germany.
| | - Carl Herrmann
- Health Data Science Unit, Medical Faculty University Heidelberg and BioQuant, 69120 Heidelberg, Germany.
| | - Marina Lusic
- Department of Infectious Diseases, Integrative Virology, Heidelberg University Hospital, 69120 Heidelberg, Germany; German Center for Infection Research (DZIF), 69120 Heidelberg, Germany.
| |
Collapse
|
226
|
Dello Russo C, Cappoli N, Tabolacci E, Sollazzi L, Navarra P, Aceto P. Remifentanil does not affect human microglial immune activation in response to pro-inflammatory cytokines. EXCLI JOURNAL 2023; 22:295-309. [PMID: 37220493 PMCID: PMC10201013 DOI: 10.17179/excli2022-5667] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Figures] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Accepted: 02/20/2023] [Indexed: 05/25/2023]
Abstract
Remifentanil is a potent ultra-short acting μ-opioid analgesic drug, frequently used in anaesthesia due to its favorable pharmacodynamic and pharmacokinetic profile. It may be associated with the occurrence of hyperalgesia. Preclinical studies suggest a potential role of microglia, although the molecular mechanisms have not been fully elucidated. Considering the role of microglia in brain inflammation and the relevant differences among species, the effects of remifentanil were studied on the human microglial C20 cells. The drug was tested at clinically relevant concentrations under basal and inflammatory conditions. In the C20 cells, the expression and secretion of interleukin 6, interleukin 8 and the monocyte chemotactic protein 1 were rapidly induced by a mixture of pro-inflammatory cytokines. This stimulatory effect was sustained up to 24 h. Remifentanil did not exert any toxic effect nor modify the production of these inflammatory mediators, thus suggesting the lack of direct immune modulatory actions on human microglia.
Collapse
Affiliation(s)
- Cinzia Dello Russo
- Dipartimento di Sicurezza e Bioetica, Sezione di Farmacologia, Università Cattolica Del Sacro Cuore, Fondazione Policlinico Universitario A. Gemelli IRCCS, Rome, Italy
- Department of Pharmacology & Therapeutics, Institute of Systems Molecular and Integrative Biology (ISMIB), University of Liverpool, Liverpool, United Kingdom
| | - Natalia Cappoli
- Dipartimento di Sicurezza e Bioetica, Sezione di Farmacologia, Università Cattolica Del Sacro Cuore, Fondazione Policlinico Universitario A. Gemelli IRCCS, Rome, Italy
| | - Elisabetta Tabolacci
- Dipartimento di Scienze Della Vita e Sanità Pubblica, Sezione di Medicina Genomica, Università Cattolica del Sacro Cuore, Fondazione Policlinico Universitario A. Gemelli IRCCS, Rome, Italy
| | - Liliana Sollazzi
- Dipartimento di Scienze dell'Emergenza, Anestesiologiche e della Rianimazione, Fondazione Policlinico Universitario A. Gemelli IRCCS, Rome, Italy
- Dipartimento di Scienze Biotecnologiche di Base, Cliniche Intensivologiche e Perioperatorie, Università Cattolica del Sacro Cuore, Rome, Italy
| | - Pierluigi Navarra
- Dipartimento di Sicurezza e Bioetica, Sezione di Farmacologia, Università Cattolica Del Sacro Cuore, Fondazione Policlinico Universitario A. Gemelli IRCCS, Rome, Italy
| | - Paola Aceto
- Dipartimento di Scienze dell'Emergenza, Anestesiologiche e della Rianimazione, Fondazione Policlinico Universitario A. Gemelli IRCCS, Rome, Italy
- Dipartimento di Scienze Biotecnologiche di Base, Cliniche Intensivologiche e Perioperatorie, Università Cattolica del Sacro Cuore, Rome, Italy
| |
Collapse
|
227
|
Batenburg KL, Sestito C, Cornelissen-Steijger P, van Weering JRT, Price LS, Heine VM, Scheper W. A 3D human co-culture to model neuron-astrocyte interactions in tauopathies. Biol Proced Online 2023; 25:4. [PMID: 36814189 PMCID: PMC9948470 DOI: 10.1186/s12575-023-00194-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2022] [Accepted: 02/17/2023] [Indexed: 02/24/2023] Open
Abstract
BACKGROUND Intraneuronal tau aggregation is the major pathological hallmark of neurodegenerative tauopathies. It is now generally acknowledged that tau aggregation also affects astrocytes in a cell non-autonomous manner. However, mechanisms involved are unclear, partly because of the lack of models that reflect the situation in the human tauopathy brain. To accurately model neuron-astrocyte interaction in tauopathies, there is a need for a model that contains both human neurons and human astrocytes, intraneuronal tau pathology and mimics the three-dimensional architecture of the brain. RESULTS Here we established a novel 100-200 µm thick 3D human neuron/astrocyte co-culture model of tau pathology, comprising homogenous populations of hiPSC-derived neurons and primary human astrocytes in microwell format. Using confocal, electron and live microscopy, we validate the procedures by showing that neurons in the 3D co-culture form pre- and postsynapses and display spontaneous calcium transients within 4 weeks. Astrocytes in the 3D co-culture display bipolar and stellate morphologies with extensive processes that ensheath neuronal somas, spatially align with axons and dendrites and can be found perisynaptically. The complex morphology of astrocytes and the interaction with neurons in the 3D co-culture mirrors that in the human brain, indicating the model's potential to study physiological and pathological neuron-astrocyte interaction in vitro. Finally, we successfully implemented a methodology to introduce seed-independent intraneuronal tau aggregation in the 3D co-culture, enabling study of neuron-astrocyte interaction in early tau pathogenesis. CONCLUSIONS Altogether, these data provide proof-of-concept for the utility of this rapid, miniaturized, and standardized 3D model for cell type-specific manipulations, such as the intraneuronal pathology that is associated with neurodegenerative disorders.
Collapse
Affiliation(s)
- Kevin L. Batenburg
- grid.12380.380000 0004 1754 9227Department of Functional Genomics, Center for Neurogenomics and Cognitive Research, Vrije Universiteit Amsterdam, Amsterdam Neuroscience - Neurodegeneration, De Boelelaan 1085, 1081 HV Amsterdam, The Netherlands
| | - Claudia Sestito
- Crown Bioscience Netherlands B.V. (Formerly OcellO B.V.), Leiden, The Netherlands ,grid.484519.5Amsterdam UMC location Vrije Universiteit Amsterdam, Department of Child and Adolescent Psychiatry, Amsterdam Neuroscience, De Boelelaan 1085, 1081 HV Amsterdam, The Netherlands
| | - Paulien Cornelissen-Steijger
- grid.484519.5Amsterdam UMC location Vrije Universiteit Amsterdam, Department of Child and Adolescent Psychiatry, Amsterdam Neuroscience, De Boelelaan 1085, 1081 HV Amsterdam, The Netherlands ,grid.484519.5Department of Complex Trait Genetics, Center for Neurogenomics and Cognitive Research, Vrije Universiteit Amsterdam, Amsterdam Neuroscience, De Boelelaan 1085, 1081 HV Amsterdam, The Netherlands
| | - Jan R. T. van Weering
- grid.12380.380000 0004 1754 9227Department of Functional Genomics, Center for Neurogenomics and Cognitive Research, Vrije Universiteit Amsterdam, Amsterdam Neuroscience - Neurodegeneration, De Boelelaan 1085, 1081 HV Amsterdam, The Netherlands ,grid.484519.5Amsterdam UMC location Vrije Universiteit Amsterdam, Department of Human Genetics, Amsterdam Neuroscience - Neurodegeneration, De Boelelaan 1085, 1081 HV Amsterdam, The Netherlands
| | - Leo S. Price
- Crown Bioscience Netherlands B.V. (Formerly OcellO B.V.), Leiden, The Netherlands
| | - Vivi M. Heine
- grid.484519.5Amsterdam UMC location Vrije Universiteit Amsterdam, Department of Child and Adolescent Psychiatry, Amsterdam Neuroscience, De Boelelaan 1085, 1081 HV Amsterdam, The Netherlands ,grid.484519.5Department of Complex Trait Genetics, Center for Neurogenomics and Cognitive Research, Vrije Universiteit Amsterdam, Amsterdam Neuroscience, De Boelelaan 1085, 1081 HV Amsterdam, The Netherlands
| | - Wiep Scheper
- Department of Functional Genomics, Center for Neurogenomics and Cognitive Research, Vrije Universiteit Amsterdam, Amsterdam Neuroscience - Neurodegeneration, De Boelelaan 1085, 1081 HV, Amsterdam, The Netherlands. .,Amsterdam UMC location Vrije Universiteit Amsterdam, Department of Human Genetics, Amsterdam Neuroscience - Neurodegeneration, De Boelelaan 1085, 1081 HV, Amsterdam, The Netherlands.
| |
Collapse
|
228
|
Cuní-López C, Stewart R, White AR, Quek H. 3D in vitro modelling of human patient microglia: A focus on clinical translation and drug development in neurodegenerative diseases. J Neuroimmunol 2023; 375:578017. [PMID: 36657374 DOI: 10.1016/j.jneuroim.2023.578017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2022] [Revised: 12/28/2022] [Accepted: 01/08/2023] [Indexed: 01/13/2023]
Abstract
Microglia have an increasingly well-recognised role in the pathogenesis of neurodegenerative diseases, thereby becoming attractive therapeutic targets. However, the development of microglia-targeted therapeutics for neurodegeneration has had limited success. This stems partly from the lack of clinically relevant microglia model systems. To circumvent this translational gap, patient-derived microglial cell models established using conventional 2D in vitro techniques have emerged. Though promising, these models lack the microenvironment and multicellular interactions of the brain needed to maintain microglial homeostasis. In this review, we discuss the use of 3D in vitro platforms to improve microglia modelling and their potential benefits to fast-track drug development for neurodegenerative diseases.
Collapse
Affiliation(s)
- Carla Cuní-López
- Mental Health and Neuroscience, QIMR Berghofer Medical Research Institute, Brisbane 4006, QLD, Australia; Faculty of Medicine, The University of Queensland, Brisbane 4006, QLD, Australia.
| | - Romal Stewart
- Mental Health and Neuroscience, QIMR Berghofer Medical Research Institute, Brisbane 4006, QLD, Australia; UQ Centre for Clinical Research, The University of Queensland, Brisbane 4006, QLD, Australia.
| | - Anthony R White
- Mental Health and Neuroscience, QIMR Berghofer Medical Research Institute, Brisbane 4006, QLD, Australia; School of Biomedical Science, The University of Queensland, Brisbane 4072, QLD, Australia.
| | - Hazel Quek
- Mental Health and Neuroscience, QIMR Berghofer Medical Research Institute, Brisbane 4006, QLD, Australia; School of Biomedical Science, The University of Queensland, Brisbane 4072, QLD, Australia; School of Biomedical Science, Queensland University of Technology, Brisbane 4059, QLD, Australia.
| |
Collapse
|
229
|
Podlesny-Drabiniok A, Novikova G, Liu Y, Dunst J, Temizer R, Giannarelli C, Marro S, Kreslavsky T, Marcora E, Goate AM. BHLHE40/41 regulate macrophage/microglia responses associated with Alzheimer's disease and other disorders of lipid-rich tissues. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.02.13.528372. [PMID: 36824752 PMCID: PMC9948946 DOI: 10.1101/2023.02.13.528372] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/16/2023]
Abstract
Background Genetic and experimental evidence strongly implicates myeloid cells in the etiology of AD and suggests that AD-associated alleles and genes may modulate disease risk by altering the transcriptional and cellular responses of macrophages (like microglia) to damage of lipid-rich tissues (like the brain). Specifically, recent single-cell/nucleus RNA sequencing (sc/nRNA-seq) studies identified a transcriptionally distinct state of subsets of macrophages in aging or degenerating brains (usually referred to as disease-associated microglia or DAM) and in other diseased lipid-rich tissues (e.g., obese adipose tissue, fatty liver, and atherosclerotic plaques). We collectively refer to these subpopulations as lipid-associated macrophages or LAMs. Importantly, this particular activation state is characterized by increased expression of genes involved in the phagocytic clearance of lipid-rich cellular debris (efferocytosis), including several AD risk genes. Methods We used sc/nRNA-seq data from human and mouse microglia from healthy and diseased brains and macrophages from other lipid-rich tissues to reconstruct gene regulatory networks and identify transcriptional regulators whose regulons are enriched for LAM response genes (LAM TFs) across species. We then used gene knock-down/knock-out strategies to validate some of these LAM TFs in human THP-1 macrophages and iPSC-derived microglia in vitro, as well as mouse microglia in vivo. Results We nominate 11 strong candidate LAM TFs shared across human and mouse networks (BHLHE41, HIF1A, ID2, JUNB, MAF, MAFB, MEF2A, MEF2C, NACA, POU2F2 and SPI1). We also demonstrate a strong enrichment of AD risk alleles in the cistrome of BHLHE41 (and its close homolog BHLHE40), thus implicating its regulon in the modulation of disease susceptibility. Loss or reduction of BHLHE40/41 expression in human THP-1 macrophages and iPSC-derived microglia, as well as loss of Bhlhe40/41 in mouse microglia led to increased expression of LAM response genes, specifically those involved in cholesterol clearance and lysosomal processing, with a concomitant increase in cholesterol efflux and storage, as well as lysosomal mass and degradative capacity. Conclusions Taken together, this study nominates transcriptional regulators of the LAM response, experimentally validates BHLHE40/41 in human and mouse macrophages/microglia, and provides novel targets for therapeutic modulation of macrophage/microglia function in AD and other disorders of lipid-rich tissues.
Collapse
Affiliation(s)
- Anna Podlesny-Drabiniok
- Department of Genetics and Genomic Sciences, New York, NY, USA; Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Gloriia Novikova
- Department of Genetics and Genomic Sciences, New York, NY, USA; Icahn School of Medicine at Mount Sinai, New York, NY, USA
- OMNI Bioinformatics Department and Neuroscience Department, Genentech, Inc., South San Francisco, CA, USA
| | - Yiyuan Liu
- Department of Genetics and Genomic Sciences, New York, NY, USA; Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Josefine Dunst
- Department of Medicine, Division of Immunology and Allergy, Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden
- Center for Molecular Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Rose Temizer
- Department of Genetics and Genomic Sciences, New York, NY, USA; Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Chiara Giannarelli
- Department of Medicine (C.G.), Cardiology, NYU Grossman School of Medicine
- Department of Pathology (C.G.), Cardiology, NYU Grossman School of Medicine
| | - Samuele Marro
- Nash Family Department of Neuroscience, Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
- Black Family Stem Cell Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Taras Kreslavsky
- Department of Medicine, Division of Immunology and Allergy, Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden
- Center for Molecular Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Edoardo Marcora
- Department of Genetics and Genomic Sciences, New York, NY, USA; Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Nash Family Department of Neuroscience, Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Alison Mary Goate
- Department of Genetics and Genomic Sciences, New York, NY, USA; Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Nash Family Department of Neuroscience, Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
- Black Family Stem Cell Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| |
Collapse
|
230
|
Han RT, Vainchtein ID, Schlachetzki JC, Cho FS, Dorman LC, Ahn E, Kim DK, Barron JJ, Nakao-Inoue H, Molofsky AB, Glass CK, Paz JT, Molofsky AV. Microglial pattern recognition via IL-33 promotes synaptic refinement in developing corticothalamic circuits in mice. J Exp Med 2023; 220:e20220605. [PMID: 36520518 PMCID: PMC9757845 DOI: 10.1084/jem.20220605] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2022] [Revised: 09/21/2022] [Accepted: 11/28/2022] [Indexed: 12/23/2022] Open
Abstract
Microglia are critical regulators of brain development that engulf synaptic proteins during postnatal synapse remodeling. However, the mechanisms through which microglia sense the brain environment are not well defined. Here, we characterized the regulatory program downstream of interleukin-33 (IL-33), a cytokine that promotes microglial synapse remodeling. Exposing the developing brain to a supraphysiological dose of IL-33 altered the microglial enhancer landscape and increased binding of stimulus-dependent transcription factors including AP-1/FOS. This induced a gene expression program enriched for the expression of pattern recognition receptors, including the scavenger receptor MARCO. CNS-specific deletion of IL-33 led to increased excitatory/inhibitory synaptic balance, spontaneous absence-like epileptiform activity in juvenile mice, and increased seizure susceptibility in response to chemoconvulsants. We found that MARCO promoted synapse engulfment, and Marco-deficient animals had excess thalamic excitatory synapses and increased seizure susceptibility. Taken together, these data define coordinated epigenetic and functional changes in microglia and uncover pattern recognition receptors as potential regulators of postnatal synaptic refinement.
Collapse
Affiliation(s)
- Rafael T. Han
- Departments of Psychiatry and Behavioral Sciences/Weill Institute for Neurosciences, University of California, San Francisco, San Francisco, CA, USA
| | - Ilia D. Vainchtein
- Departments of Psychiatry and Behavioral Sciences/Weill Institute for Neurosciences, University of California, San Francisco, San Francisco, CA, USA
| | | | - Frances S. Cho
- Neuroscience Graduate Program, University of California, San Francisco, San Francisco, CA, USA
- Department of Neurology, University of California, San Francisco, San Francisco, CA, USA
- Gladstone Institute of Neurological Disease, San Francisco, CA, USA
| | - Leah C. Dorman
- Departments of Psychiatry and Behavioral Sciences/Weill Institute for Neurosciences, University of California, San Francisco, San Francisco, CA, USA
- Neuroscience Graduate Program, University of California, San Francisco, San Francisco, CA, USA
| | - Eunji Ahn
- Departments of Psychiatry and Behavioral Sciences/Weill Institute for Neurosciences, University of California, San Francisco, San Francisco, CA, USA
| | - Dong Kyu Kim
- Departments of Psychiatry and Behavioral Sciences/Weill Institute for Neurosciences, University of California, San Francisco, San Francisco, CA, USA
| | - Jerika J. Barron
- Departments of Psychiatry and Behavioral Sciences/Weill Institute for Neurosciences, University of California, San Francisco, San Francisco, CA, USA
| | - Hiromi Nakao-Inoue
- Departments of Psychiatry and Behavioral Sciences/Weill Institute for Neurosciences, University of California, San Francisco, San Francisco, CA, USA
| | - Ari B. Molofsky
- Department of Laboratory Medicine, University of California, San Francisco, San Francisco, CA, USA
| | - Christopher K. Glass
- Department of Cellular and Molecular Medicine, University of California, San Diego, La Jolla, CA, USA
- Department of Medicine, University of California, San Diego, La Jolla, CA, USA
| | - Jeanne T. Paz
- Neuroscience Graduate Program, University of California, San Francisco, San Francisco, CA, USA
- Department of Neurology, University of California, San Francisco, San Francisco, CA, USA
- Kavli Institute for Fundamental Neuroscience, University of California, San Francisco, San Francisco, CA, USA
- Gladstone Institute of Neurological Disease, San Francisco, CA, USA
| | - Anna V. Molofsky
- Departments of Psychiatry and Behavioral Sciences/Weill Institute for Neurosciences, University of California, San Francisco, San Francisco, CA, USA
- Neuroscience Graduate Program, University of California, San Francisco, San Francisco, CA, USA
- Kavli Institute for Fundamental Neuroscience, University of California, San Francisco, San Francisco, CA, USA
| |
Collapse
|
231
|
Zhou J, Wang Y, Huang G, Yang M, Zhu Y, Jin C, Jing D, Ji K, Shi Y. LilrB3 is a putative cell surface receptor of APOE4. Cell Res 2023; 33:116-130. [PMID: 36588123 PMCID: PMC9892561 DOI: 10.1038/s41422-022-00759-y] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2022] [Accepted: 11/03/2022] [Indexed: 01/03/2023] Open
Abstract
The three isoforms of apolipoprotein E (APOE2, APOE3, and APOE4) only differ in two amino acid positions but exert quite different immunomodulatory effects. The underlying mechanism of such APOE isoform dependence remains enigmatic. Here we demonstrate that APOE4, but not APOE2, specifically interacts with the leukocyte immunoglobulin-like receptor B3 (LilrB3). Two discrete immunoglobin-like domains of the LilrB3 extracellular domain (ECD) recognize a positively charged surface patch on the N-terminal domain (NTD) of APOE4. The atomic structure reveals how two APOE4 molecules specifically engage two LilrB3 molecules, bringing their intracellular signaling motifs into close proximity through formation of a hetero-tetrameric complex. Consistent with our biochemical and structural analyses, APOE4, but not APOE2, activates human microglia cells (HMC3) into a pro-inflammatory state in a LilrB3-dependent manner. Together, our study identifies LilrB3 as a putative immune cell surface receptor for APOE4, but not APOE2, and may have implications for understanding the biological functions as well as disease relevance of the APOE isoforms.
Collapse
Affiliation(s)
- Jiayao Zhou
- Key Laboratory of Structural Biology of Zhejiang Province, School of Life Sciences, Westlake University; Institute of Biology, Westlake Institute for Advanced Study, Hangzhou, Zhejiang, China.
- Zhejiang Provincial Laboratory of Life Sciences and Biomedicine, Hangzhou, Zhejiang, China.
| | - Yumeng Wang
- Advanced Research Center for Biological Structure & Beijing Advanced Innovation Center for Structural Biology, Tsinghua-Peking Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing, China
| | - Gaoxingyu Huang
- Key Laboratory of Structural Biology of Zhejiang Province, School of Life Sciences, Westlake University; Institute of Biology, Westlake Institute for Advanced Study, Hangzhou, Zhejiang, China
- Zhejiang Provincial Laboratory of Life Sciences and Biomedicine, Hangzhou, Zhejiang, China
| | - Min Yang
- Advanced Research Center for Biological Structure & Beijing Advanced Innovation Center for Structural Biology, Tsinghua-Peking Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing, China
| | - Yumin Zhu
- Department of Maternal, Child & Adolescent Health, School of Public Health, Anhui Medical University, MOE Key Laboratory of Population Health Across Life Cycle, Anhui Provincial Key Laboratory of Population Health and Aristogenics, Hefei, Anhui, China
| | - Chen Jin
- Advanced Research Center for Biological Structure & Beijing Advanced Innovation Center for Structural Biology, Tsinghua-Peking Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing, China
| | - Dan Jing
- Key Laboratory of Structural Biology of Zhejiang Province, School of Life Sciences, Westlake University; Institute of Biology, Westlake Institute for Advanced Study, Hangzhou, Zhejiang, China
- Zhejiang Provincial Laboratory of Life Sciences and Biomedicine, Hangzhou, Zhejiang, China
| | - Kai Ji
- Key Laboratory of Structural Biology of Zhejiang Province, School of Life Sciences, Westlake University; Institute of Biology, Westlake Institute for Advanced Study, Hangzhou, Zhejiang, China
- Zhejiang Provincial Laboratory of Life Sciences and Biomedicine, Hangzhou, Zhejiang, China
| | - Yigong Shi
- Key Laboratory of Structural Biology of Zhejiang Province, School of Life Sciences, Westlake University; Institute of Biology, Westlake Institute for Advanced Study, Hangzhou, Zhejiang, China.
- Zhejiang Provincial Laboratory of Life Sciences and Biomedicine, Hangzhou, Zhejiang, China.
- Advanced Research Center for Biological Structure & Beijing Advanced Innovation Center for Structural Biology, Tsinghua-Peking Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing, China.
| |
Collapse
|
232
|
Mathews M, Wißfeld J, Flitsch LJ, Shahraz A, Semkova V, Breitkreuz Y, Neumann H, Brüstle O. Reenacting Neuroectodermal Exposure of Hematopoietic Progenitors Enables Scalable Production of Cryopreservable iPSC-Derived Human Microglia. Stem Cell Rev Rep 2023; 19:455-474. [PMID: 35971018 PMCID: PMC9902330 DOI: 10.1007/s12015-022-10433-w] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/19/2022] [Indexed: 02/07/2023]
Abstract
Human microglia, as innate immune cells of the central nervous system (CNS), play a central role in the pathogenesis of a large number of neurological and psychiatric disorders. However, experimental access to primary human microglia for biomedical applications such as disease modeling is extremely limited. While induced pluripotent stem cells (iPSCs) could provide an alternative source of microglia, the reenactment of their complex ontogenesis with a yolk sac origin and subsequent priming upon CNS invasion has remained a challenge. Here, we report a developmentally informed in vitro differentiation method for large-scale production and cryopreservation of iPSC-derived microglia (iPSdMiG). Specifically, iPSCs were propagated in conditions yielding both yolk sac hematopoietic derivatives and early neuroepithelial cells. To enable large-scale production, we implemented 3D bioreactor-based dynamic culture conditions and the use of novel mesh macrocarriers. Under these conditions, microglia could be harvested across a time period of at least 6 weeks, with 1 × 106 iPSCs giving rise to up to 45 × 106 iPSdMiG. The transcriptomic profile of iPSdMiG showed high similarity to adult human microglia, and harvested cells were immunopositive for typical microglial markers. In addition, iPSdMiG were able to secrete pro-inflammatory cytokines, engaged in phagocytotic activity, produced reactive oxygen species and lent themselves to co-culture studies in neural 2D and 3D systems. Importantly, iPSdMiG were efficiently cryopreserved, enabling the establishment of donor-specific microglia cell banks for disease modeling, drug discovery and eventually cell therapy. Main points. Scalable generation of iPSC-derived multi-lineage embryoid bodies on macrocarriers, reproducibly releasing microglia exhibiting characteristic markers and function. Cells are transcriptomically similar to primary human microglia and cryopreservable.
Collapse
Affiliation(s)
- Mona Mathews
- LIFE & BRAIN GmbH, Venusberg-Campus 1, 53127, Bonn, Germany.,Institute of Reconstructive Neurobiology, University of Bonn Medical Faculty and University Hospital Bonn, Venusberg-Campus 1, 53127, Bonn, Germany
| | - Jannis Wißfeld
- Institute of Reconstructive Neurobiology, Neural Regeneration Group, University of Bonn Medical Faculty and University Hospital Bonn, Venusberg-Campus 1, 53127, Bonn, Germany
| | - Lea Jessica Flitsch
- Institute of Reconstructive Neurobiology, University of Bonn Medical Faculty and University Hospital Bonn, Venusberg-Campus 1, 53127, Bonn, Germany
| | - Anahita Shahraz
- Institute of Reconstructive Neurobiology, Neural Regeneration Group, University of Bonn Medical Faculty and University Hospital Bonn, Venusberg-Campus 1, 53127, Bonn, Germany
| | - Vesselina Semkova
- Institute of Reconstructive Neurobiology, University of Bonn Medical Faculty and University Hospital Bonn, Venusberg-Campus 1, 53127, Bonn, Germany
| | - Yannik Breitkreuz
- LIFE & BRAIN GmbH, Venusberg-Campus 1, 53127, Bonn, Germany.,Institute of Reconstructive Neurobiology, University of Bonn Medical Faculty and University Hospital Bonn, Venusberg-Campus 1, 53127, Bonn, Germany
| | - Harald Neumann
- Institute of Reconstructive Neurobiology, Neural Regeneration Group, University of Bonn Medical Faculty and University Hospital Bonn, Venusberg-Campus 1, 53127, Bonn, Germany
| | - Oliver Brüstle
- LIFE & BRAIN GmbH, Venusberg-Campus 1, 53127, Bonn, Germany. .,Institute of Reconstructive Neurobiology, University of Bonn Medical Faculty and University Hospital Bonn, Venusberg-Campus 1, 53127, Bonn, Germany.
| |
Collapse
|
233
|
Guzmán-Ruiz MA, Guerrero-Vargas NN, Lagunes-Cruz A, González-González S, García-Aviles JE, Hurtado-Alvarado G, Mendez-Hernández R, Chavarría-Krauser A, Morin JP, Arriaga-Avila V, Buijs RM, Guevara-Guzmán R. Circadian modulation of microglial physiological processes and immune responses. Glia 2023; 71:155-167. [PMID: 35971989 PMCID: PMC10087862 DOI: 10.1002/glia.24261] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Revised: 07/11/2022] [Accepted: 08/01/2022] [Indexed: 11/09/2022]
Abstract
Microglia is considered the central nervous system (CNS) resident macrophages that establish an innate immune response against pathogens and toxins. However, the recent studies have shown that microglial gene and protein expression follows a circadian pattern; several immune activation markers and clock genes are expressed rhythmically without the need for an immune stimulus. Furthermore, microglia responds to an immune challenge with different magnitudes depending on the time of the day. This review examines the circadian control of microglia function and the possible physiological implications. For example, we discuss that synaptic prune is performed in the cortex at a certain moment of the day. We also consider the implications of daily microglial function for maintaining biological rhythms like general activity, body temperature, and food intake. We conclude that the developmental stage, brain region, and pathological state are not the only factors to consider for the evaluation of microglial functions; instead, emerging evidence indicates that circadian time as an essential aspect for a better understanding of the role of microglia in CNS physiology.
Collapse
Affiliation(s)
- Mara A Guzmán-Ruiz
- Departamento de Fisiología, Facultad de Medicina, Universidad Nacional Autónoma de México, México City, Mexico
| | - Natalí N Guerrero-Vargas
- Departamento de Anatomía, Facultad de Medicina, Universidad Nacional Autónoma de México, México City, Mexico
| | - Alejandra Lagunes-Cruz
- Departamento de Fisiología, Facultad de Medicina, Universidad Nacional Autónoma de México, México City, Mexico
| | - Shellye González-González
- Departamento de Anatomía, Facultad de Medicina, Universidad Nacional Autónoma de México, México City, Mexico
| | - Jesús Enrique García-Aviles
- Área de Neurociencias, Departamento de Biología de la Reproducción, Ciencias Biológicas y de la Salud, Universidad Autónoma Metropolitana, México City, Mexico
| | | | - Rebeca Mendez-Hernández
- Instituto Investigaciones Biomédicas, Universidad Nacional Autónoma de México, México City, Mexico
| | - Anahí Chavarría-Krauser
- Unidad de Investigación en Medicina Experimental, Facultad de Medicina, Universidad Nacional Autónoma de México, México City, Mexico
| | - Jean-Pascal Morin
- Departamento de Fisiología, Facultad de Medicina, Universidad Nacional Autónoma de México, México City, Mexico
| | - Virginia Arriaga-Avila
- Departamento de Fisiología, Facultad de Medicina, Universidad Nacional Autónoma de México, México City, Mexico
| | - Ruud M Buijs
- Instituto Investigaciones Biomédicas, Universidad Nacional Autónoma de México, México City, Mexico
| | - Rosalinda Guevara-Guzmán
- Departamento de Fisiología, Facultad de Medicina, Universidad Nacional Autónoma de México, México City, Mexico
| |
Collapse
|
234
|
Wiseman JA, Dragunow M, I-H Park T. Cell Type-Specific Nuclei Markers: The Need for Human Brain Research to Go Nuclear. Neuroscientist 2023; 29:41-61. [PMID: 34459315 DOI: 10.1177/10738584211037351] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Identifying and interrogating cell type-specific populations within the heterogeneous milieu of the human brain is paramount to resolving the processes of normal brain homeostasis and the pathogenesis of neurological disorders. While brain cell type-specific markers are well established, most are localized on cellular membranes or within the cytoplasm, with limited literature describing those found in the nucleus. Due to the complex cytoarchitecture of the human brain, immunohistochemical studies require well-defined cell-specific nuclear markers for more precise and efficient quantification of the cellular populations. Furthermore, efficient nuclear markers are required for cell type-specific purification and transcriptomic interrogation of archived human brain tissue through nuclei isolation-based RNA sequencing. To sate the growing demand for robust cell type-specific nuclear markers, we thought it prudent to comprehensively review the current literature to identify and consolidate a novel series of robust cell type-specific nuclear markers that can assist researchers across a range of neuroscientific disciplines. The following review article collates and discusses several key and prospective cell type-specific nuclei markers for each of the major human brain cell types; it then concludes by discussing the potential applications of cell type-specific nuclear workflows and the power of nuclear-based neuroscientific research.
Collapse
Affiliation(s)
- James A Wiseman
- Department of Pharmacology, Faculty of Medical and Health Sciences, University of Auckland, Auckland, New Zealand.,Department of Anatomy and Medical Imaging, Faculty of Medical and Health Sciences, University of Auckland, Auckland, New Zealand
| | - Mike Dragunow
- Department of Pharmacology, Faculty of Medical and Health Sciences, University of Auckland, Auckland, New Zealand.,Neurosurgical Research Unit, The Centre for Brain Research, University of Auckland, Auckland, New Zealand.,Hugh Green Biobank, The Centre for Brain Research, University of Auckland, Auckland, New Zealand
| | - Thomas I-H Park
- Department of Pharmacology, Faculty of Medical and Health Sciences, University of Auckland, Auckland, New Zealand.,Department of Anatomy and Medical Imaging, Faculty of Medical and Health Sciences, University of Auckland, Auckland, New Zealand
| |
Collapse
|
235
|
Li Z, Chen K, Shao Q, Lu H, Zhang X, Pu Y, Sun X, He H, Cao L. Nanoparticulate MgH 2 ameliorates anxiety/depression-like behaviors in a mouse model of multiple sclerosis by regulating microglial polarization and oxidative stress. J Neuroinflammation 2023; 20:16. [PMID: 36710351 PMCID: PMC9885636 DOI: 10.1186/s12974-023-02696-y] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2022] [Accepted: 01/11/2023] [Indexed: 01/31/2023] Open
Abstract
Multiple sclerosis (MS) is an autoimmune demyelinating disease of the central nervous system (CNS). Anxiety and depression are the most common psychiatric comorbidities of MS, which seriously affect patients' quality of life, treatment compliance, and prognosis. However, current treatments for anxiety and depression in MS show low therapeutic efficacy and significant side effects. In the present study, we explored the therapeutic effects of a novel low-toxic anti-inflammatory drug, nanoparticulate magnesium hydride (MgH2), on mood disorders of MS. We observed that anxiety/depression-like behaviors in experimental autoimmune encephalomyelitis (EAE) mice were alleviated by MgH2 treatment. In addition, disease severity and inflammatory demyelination were also diminished. Furthermore, we confirmed the suppressive effect of MgH2 on depression in the acute restraint stress model. Mechanistically, MgH2 may play a therapeutic role by promoting microglial M2 polarization, inhibiting microglial M1 polarization, and reducing oxidative stress and mitochondrial damage. Therefore, nanoparticulate MgH2 may be a promising therapeutic drug for psychiatric comorbidities of MS.
Collapse
Affiliation(s)
- Zhenghao Li
- grid.73113.370000 0004 0369 1660Institute of Neuroscience and Key Laboratory of Molecular Neurobiology of Military of Education, Naval Medical University, Shanghai, 200433 China
| | - Kefu Chen
- grid.73113.370000 0004 0369 1660Institute of Neuroscience and Key Laboratory of Molecular Neurobiology of Military of Education, Naval Medical University, Shanghai, 200433 China
| | - Qi Shao
- grid.73113.370000 0004 0369 1660Institute of Neuroscience and Key Laboratory of Molecular Neurobiology of Military of Education, Naval Medical University, Shanghai, 200433 China
| | - Hongtao Lu
- grid.73113.370000 0004 0369 1660Department of Naval Medicine, Naval Medical University, Shanghai, 200433 China
| | - Xin Zhang
- grid.73113.370000 0004 0369 1660Institute of Neuroscience and Key Laboratory of Molecular Neurobiology of Military of Education, Naval Medical University, Shanghai, 200433 China
| | - Yingyan Pu
- grid.73113.370000 0004 0369 1660Institute of Neuroscience and Key Laboratory of Molecular Neurobiology of Military of Education, Naval Medical University, Shanghai, 200433 China
| | - Xuejun Sun
- grid.73113.370000 0004 0369 1660Department of Naval Medicine, Naval Medical University, Shanghai, 200433 China ,grid.16821.3c0000 0004 0368 8293Center of Hydrogen Science, Shanghai Jiao Tong University, Shanghai, 200030 China
| | - Hua He
- grid.73113.370000 0004 0369 1660Department of Neurosurgery, Third Affiliated Hospital, Naval Medical University, Shanghai, 200438 China
| | - Li Cao
- grid.73113.370000 0004 0369 1660Institute of Neuroscience and Key Laboratory of Molecular Neurobiology of Military of Education, Naval Medical University, Shanghai, 200433 China
| |
Collapse
|
236
|
Pitts KM, Margeta MA. Myeloid masquerade: Microglial transcriptional signatures in retinal development and disease. Front Cell Neurosci 2023; 17:1106547. [PMID: 36779012 PMCID: PMC9909491 DOI: 10.3389/fncel.2023.1106547] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Accepted: 01/12/2023] [Indexed: 01/27/2023] Open
Abstract
Microglia are dynamic guardians of neural tissue and the resident immune cells of the central nervous system (CNS). The disease-associated microglial signature (DAM), also known as the microglial neurodegenerative phenotype (MGnD), has gained significant attention in recent years as a fundamental microglial response common to various neurodegenerative disease pathologies. Interestingly, this signature shares many features in common with developmental microglia, suggesting the existence of recycled gene programs which play a role both in early neural circuit formation as well as in response to aging and disease. In addition, recent advances in single cell RNA sequencing have revealed significant heterogeneity within the original DAM signature, with contributions from both yolk sac-derived microglia as well as bone marrow-derived macrophages. In this review, we examine the role of the DAM signature in retinal development and disease, highlighting crosstalk between resident microglia and infiltrating monocytes which may critically contribute to the underlying mechanisms of age-related neurodegeneration.
Collapse
Affiliation(s)
- Kristen M. Pitts
- Department of Ophthalmology, Massachusetts Eye and Ear, Harvard Medical School, Boston, MA, United States
- Schepens Eye Research Institute of Mass, Eye and Ear, Boston, MA, United States
| | - Milica A. Margeta
- Department of Ophthalmology, Massachusetts Eye and Ear, Harvard Medical School, Boston, MA, United States
- Schepens Eye Research Institute of Mass, Eye and Ear, Boston, MA, United States
| |
Collapse
|
237
|
Fu X, Feng S, Qin H, Yan L, Zheng C, Yao K. Microglia: The breakthrough to treat neovascularization and repair blood-retinal barrier in retinopathy. Front Mol Neurosci 2023; 16:1100254. [PMID: 36756614 PMCID: PMC9899825 DOI: 10.3389/fnmol.2023.1100254] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Accepted: 01/03/2023] [Indexed: 01/24/2023] Open
Abstract
Microglia are the primary resident retinal macrophages that monitor neuronal activity in real-time and facilitate angiogenesis during retinal development. In certain retinal diseases, the activated microglia promote retinal angiogenesis in hypoxia stress through neurovascular coupling and guide neovascularization to avascular areas (e.g., the outer nuclear layer and macula lutea). Furthermore, continuously activated microglia secrete inflammatory factors and expedite the loss of the blood-retinal barrier which causes irreversible damage to the secondary death of neurons. In this review, we support microglia can be a potential cellular therapeutic target in retinopathy. We briefly describe the relevance of microglia to the retinal vasculature and blood-retinal barrier. Then we discuss the signaling pathway related to how microglia move to their destinations and regulate vascular regeneration. We summarize the properties of microglia in different retinal disease models and propose that reducing the number of pro-inflammatory microglial death and conversing microglial phenotypes from pro-inflammatory to anti-inflammatory are feasible for treating retinal neovascularization and the damaged blood-retinal barrier (BRB). Finally, we suppose that the unique properties of microglia may aid in the vascularization of retinal organoids.
Collapse
Affiliation(s)
- Xuefei Fu
- Institute of Visual Neuroscience and Stem Cell Engineering, Wuhan University of Science and Technology, Wuhan, China
| | - Shuyu Feng
- Institute of Visual Neuroscience and Stem Cell Engineering, Wuhan University of Science and Technology, Wuhan, China
| | - Huan Qin
- Institute of Visual Neuroscience and Stem Cell Engineering, Wuhan University of Science and Technology, Wuhan, China
| | - Lin Yan
- Institute of Visual Neuroscience and Stem Cell Engineering, Wuhan University of Science and Technology, Wuhan, China
| | - Caiyan Zheng
- Institute of Visual Neuroscience and Stem Cell Engineering, Wuhan University of Science and Technology, Wuhan, China
| | - Kai Yao
- Institute of Visual Neuroscience and Stem Cell Engineering, Wuhan University of Science and Technology, Wuhan, China,College of Life Sciences and Health, Wuhan University of Science and Technology, Wuhan, China,Hubei Province Key Laboratory of Occupational Hazard Identification and Control, Wuhan University of Science and Technology, Wuhan, China,*Correspondence: Kai Yao,
| |
Collapse
|
238
|
Kim S, Sharma C, Shin M, Kim HJ, Kim J, Kim SR. pKr-2 induces neurodegeneration via upregulation of microglial TLR4 in the hippocampus of AD brain. Brain Behav Immun Health 2023; 28:100593. [PMID: 36798617 PMCID: PMC9926212 DOI: 10.1016/j.bbih.2023.100593] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2022] [Revised: 12/19/2022] [Accepted: 01/16/2023] [Indexed: 01/19/2023] Open
Abstract
We recently demonstrated that prothrombin kringle-2 (pKr-2) derived from blood-brain barrier (BBB) disruption could induce hippocampal neurodegeneration and object recognition impairment through neurotoxic inflammatory responses in the five familial Alzheimer's disease mutation (5XFAD) mice. In the present study, we aimed to determine whether pKr-2 induces microglial activation by stimulating toll-like receptor 4 (TLR4) upregulation and examine whether this response contributes to pKr-2-induced neuroinflammatory damage in the hippocampi of mice models. We observed that inflammatory responses induced by pKr-2 administration in the hippocampi of wild-type mice were significantly abrogated in TLR4-deficient mice (TLR4-/-), and caffeine supply or rivaroxaban treatment that inhibits the overexpression of hippocampal pKr-2 reduced TLR4 upregulation in 5XFAD mice, resulting in the inhibition of neuroinflammatory responses. Similar to the expression patterns of pKr-2, TLR4, and the TLR4 transcription factors, PU.1 and p-c-Jun, seen in the postmortem hippocampal tissues of Alzheimer's disease (AD) patients, our results additionally showed the influence of transcriptional regulation on TLR4 expression following pKr-2 expression in triggering the production of neurotoxic inflammatory mediators. Therefore, we conclude that pKr-2 may play a role in initiating upregulation of microglial TLR4, consequently inducing hippocampal neurodegeneration. Furthermore, the control of pKr-2-induced microglial TLR4 could be a useful therapeutic strategy against hippocampal neurodegeneration in AD.
Collapse
Affiliation(s)
- Sehwan Kim
- School of Life Sciences, Kyungpook National University, Daegu, 41566, South Korea
- Brain Science and Engineering Institute, Kyungpook National University, Daegu, 41944, South Korea
| | - Chanchal Sharma
- School of Life Sciences, Kyungpook National University, Daegu, 41566, South Korea
- BK21 FOUR KNU Creative BioResearch Group, Kyungpook National University, Daegu, 41566, South Korea
| | - Minsang Shin
- Department of Microbiology, School of Medicine, Kyungpook National University, Daegu, 41944, Republic of Korea
| | - Hyung-Jun Kim
- Dementia Research Group, Korea Brain Research Institute, Daegu, 41068, Republic of Korea
| | - Jaekwang Kim
- Dementia Research Group, Korea Brain Research Institute, Daegu, 41068, Republic of Korea
| | - Sang Ryong Kim
- School of Life Sciences, Kyungpook National University, Daegu, 41566, South Korea
- Brain Science and Engineering Institute, Kyungpook National University, Daegu, 41944, South Korea
- BK21 FOUR KNU Creative BioResearch Group, Kyungpook National University, Daegu, 41566, South Korea
- Corresponding author. School of Life Sciences, Kyungpook National University, Daegu, 41566, South Korea.
| |
Collapse
|
239
|
Zheng A, Shen Z, Glass CK, Gymrek M. Deep learning predicts the impact of regulatory variants on cell-type-specific enhancers in the brain. BIOINFORMATICS ADVANCES 2023; 3:vbad002. [PMID: 36726730 PMCID: PMC9887460 DOI: 10.1093/bioadv/vbad002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Revised: 11/11/2022] [Accepted: 01/11/2023] [Indexed: 01/13/2023]
Abstract
Motivation Previous studies have shown that the heritability of multiple brain-related traits and disorders is highly enriched in transcriptional enhancer regions. However, these regions often contain many individual variants, while only a subset of them are likely to causally contribute to a trait. Statistical fine-mapping techniques can identify putative causal variants, but their resolution is often limited, especially in regions with multiple variants in high linkage disequilibrium. In these cases, alternative computational methods to estimate the impact of individual variants can aid in variant prioritization. Results Here, we develop a deep learning pipeline to predict cell-type-specific enhancer activity directly from genomic sequences and quantify the impact of individual genetic variants in these regions. We show that the variants highlighted by our deep learning models are targeted by purifying selection in the human population, likely indicating a functional role. We integrate our deep learning predictions with statistical fine-mapping results for 8 brain-related traits, identifying 63 distinct candidate causal variants predicted to contribute to these traits by modulating enhancer activity, representing 6% of all genome-wide association study signals analyzed. Overall, our study provides a valuable computational method that can prioritize individual variants based on their estimated regulatory impact, but also highlights the limitations of existing methods for variant prioritization and fine-mapping. Availability and implementation The data underlying this article, nucleotide-level importance scores, and code for running the deep learning pipeline are available at https://github.com/Pandaman-Ryan/AgentBind-brain. Contact mgymrek@ucsd.edu. Supplementary information Supplementary data are available at Bioinformatics Advances online.
Collapse
Affiliation(s)
- An Zheng
- Department of Computer Science and Engineering, University of California San Diego, La Jolla, CA 92093, USA
| | - Zeyang Shen
- Department of Cellular and Molecular Medicine, University of California San Diego, La Jolla, CA 92093, USA
- Department of Bioengineering, University of California San Diego, La Jolla, CA 92093, USA
| | - Christopher K Glass
- Department of Cellular and Molecular Medicine, University of California San Diego, La Jolla, CA 92093, USA
- Department of Medicine, University of California San Diego, La Jolla, CA 92093, USA
| | - Melissa Gymrek
- Department of Computer Science and Engineering, University of California San Diego, La Jolla, CA 92093, USA
- Department of Medicine, University of California San Diego, La Jolla, CA 92093, USA
| |
Collapse
|
240
|
Ramamurthy E, Welch G, Cheng J, Yuan Y, Gunsalus L, Bennett DA, Tsai LH, Pfenning AR. Cell type-specific histone acetylation profiling of Alzheimer's disease subjects and integration with genetics. Front Mol Neurosci 2023; 15:948456. [PMID: 36683855 PMCID: PMC9853565 DOI: 10.3389/fnmol.2022.948456] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2022] [Accepted: 08/11/2022] [Indexed: 01/07/2023] Open
Abstract
We profile genome-wide histone 3 lysine 27 acetylation (H3K27ac) of 3 major brain cell types from hippocampus and dorsolateral prefrontal cortex (dlPFC) of subjects with and without Alzheimer's Disease (AD). We confirm that single nucleotide polymorphisms (SNPs) associated with late onset AD (LOAD) show a strong tendency to reside in microglia-specific gene regulatory elements. Despite this significant colocalization, we find that microglia harbor more acetylation changes associated with age than with amyloid-β (Aβ) load. In contrast, we detect that an oligodendrocyte-enriched glial (OEG) population contains the majority of differentially acetylated peaks associated with Aβ load. These differential peaks reside near both early onset risk genes (APP, PSEN1, PSEN2) and late onset AD risk loci (including BIN1, PICALM, CLU, ADAM10, ADAMTS4, SORL1, FERMT2), Aβ processing genes (BACE1), as well as genes involved in myelinating and oligodendrocyte development processes. Interestingly, a number of LOAD risk loci associated with differentially acetylated risk genes contain H3K27ac peaks that are specifically enriched in OEG. These findings implicate oligodendrocyte gene regulation as a potential mechanism by which early onset and late onset risk genes mediate their effects, and highlight the deregulation of myelinating processes in AD. More broadly, our dataset serves as a resource for the study of functional effects of genetic variants and cell type specific gene regulation in AD.
Collapse
Affiliation(s)
- Easwaran Ramamurthy
- Computational Biology Department, School of Computer Science, Carnegie Mellon University, Pittsburgh, PA, United States
| | - Gwyneth Welch
- Department of Brain and Cognitive Sciences, Picower Institute for Learning and Memory, Massachusetts Institute of Technology, Cambridge, MA, United States
| | - Jemmie Cheng
- Department of Brain and Cognitive Sciences, Picower Institute for Learning and Memory, Massachusetts Institute of Technology, Cambridge, MA, United States
| | - Yixin Yuan
- Computational Biology Department, School of Computer Science, Carnegie Mellon University, Pittsburgh, PA, United States
| | - Laura Gunsalus
- Computational Biology Department, School of Computer Science, Carnegie Mellon University, Pittsburgh, PA, United States
| | - David A. Bennett
- Rush Alzheimer’s Disease Center, Rush University Medical Center, Chicago, IL, United States
| | - Li-Huei Tsai
- Department of Brain and Cognitive Sciences, Picower Institute for Learning and Memory, Massachusetts Institute of Technology, Cambridge, MA, United States
- Broad Institute of MIT and Harvard, Cambridge, MA, United States
| | - Andreas R. Pfenning
- Computational Biology Department, School of Computer Science, Carnegie Mellon University, Pittsburgh, PA, United States
| |
Collapse
|
241
|
Rawji KS, Neumann B, Franklin RJM. Glial aging and its impact on central nervous system myelin regeneration. Ann N Y Acad Sci 2023; 1519:34-45. [PMID: 36398864 DOI: 10.1111/nyas.14933] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Aging is a major risk factor for several neurodegenerative diseases and is associated with cognitive decline. In addition to affecting neuronal function, the aging process significantly affects the functional phenotype of the glial cell compartment, comprising oligodendrocyte lineage cells, astrocytes, and microglia. These changes result in a more inflammatory microenvironment, resulting in a condition that is favorable for neuron and synapse loss. In addition to facilitating neurodegeneration, the aging glial cell population has negative implications for central nervous system remyelination, a regenerative process that is of particular importance to the chronic demyelinating disease multiple sclerosis. This review will discuss the changes that occur with aging in the three main glial populations and provide an overview of the studies documenting the impact these changes have on remyelination.
Collapse
Affiliation(s)
- Khalil S Rawji
- Altos Labs, Cambridge Institute of Science, Cambridge, UK
| | - Björn Neumann
- Altos Labs, Cambridge Institute of Science, Cambridge, UK
| | | |
Collapse
|
242
|
Zhang W, Jiang J, Xu Z, Yan H, Tang B, Liu C, Chen C, Meng Q. Microglia-containing human brain organoids for the study of brain development and pathology. Mol Psychiatry 2023; 28:96-107. [PMID: 36474001 PMCID: PMC9734443 DOI: 10.1038/s41380-022-01892-1] [Citation(s) in RCA: 63] [Impact Index Per Article: 31.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Revised: 11/16/2022] [Accepted: 11/16/2022] [Indexed: 12/12/2022]
Abstract
Microglia are resident immune cells in the central nervous system, playing critical roles in brain development and homeostasis. Increasing evidence has implicated microglia dysfunction in the pathogenesis of various brain disorders ranging from psychiatric disorders to neurodegenerative diseases. Using a human cell-based model to illuminate the functional mechanisms of microglia will promote pathological studies and drug development. The recently developed microglia-containing human brain organoids (MC-HBOs), in-vitro three-dimensional cell cultures that recapitulate key features of the human brain, have provided a new avenue to model brain development and pathology. However, MC-HBOs generated from different methods differ in the origin, proportion, and fidelity of microglia within the organoids, and may have produced inconsistent results. To help researchers to develop a robust and reproducible model that recapitulates in-vivo signatures of human microglia to study brain development and pathology, this review summarized the current methods used to generate MC-HBOs and provided opinions on the use of MC-HBOs for disease modeling and functional studies.
Collapse
Affiliation(s)
- Wendiao Zhang
- The First Affiliated Hospital, Multi-Omics Research Center for Brain Disorders, Hengyang Medical School, University of South China, 421001, Hengyang, Hunan, China
- Center for Medical Genetics & Hunan Key Laboratory of Medical Genetics, School of Life Sciences, and Department of Psychiatry, The Second Xiangya Hospital, Central South University, 410008, Changsha, Hunan, China
- The First Affiliated Hospital, Clinical Research Center for Immune-Related Encephalopathy of Hunan Province, Hengyang Medical School, University of South China, 421001, Hengyang, Hunan, China
| | - Jiamei Jiang
- The First Affiliated Hospital, Multi-Omics Research Center for Brain Disorders, Hengyang Medical School, University of South China, 421001, Hengyang, Hunan, China
- The First Affiliated Hospital, Clinical Research Center for Immune-Related Encephalopathy of Hunan Province, Hengyang Medical School, University of South China, 421001, Hengyang, Hunan, China
| | - Zhenhong Xu
- The First Affiliated Hospital, Multi-Omics Research Center for Brain Disorders, Hengyang Medical School, University of South China, 421001, Hengyang, Hunan, China
- The First Affiliated Hospital, Clinical Research Center for Immune-Related Encephalopathy of Hunan Province, Hengyang Medical School, University of South China, 421001, Hengyang, Hunan, China
- The First Affiliated Hospital, Department of Neurology, Hengyang Medical School, University of South China, 421001, Hengyang, Hunan, China
| | - Hongye Yan
- The First Affiliated Hospital, Multi-Omics Research Center for Brain Disorders, Hengyang Medical School, University of South China, 421001, Hengyang, Hunan, China
- The First Affiliated Hospital, Clinical Research Center for Immune-Related Encephalopathy of Hunan Province, Hengyang Medical School, University of South China, 421001, Hengyang, Hunan, China
- The First Affiliated Hospital, Department of Neurology, Hengyang Medical School, University of South China, 421001, Hengyang, Hunan, China
| | - Beisha Tang
- The First Affiliated Hospital, Multi-Omics Research Center for Brain Disorders, Hengyang Medical School, University of South China, 421001, Hengyang, Hunan, China
- Department of Neurology, Xiangya Hospital, Central South University, 410008, Changsha, Hunan, China
| | - Chunyu Liu
- Department of Psychiatry, SUNY Upstate Medical University, Syracuse, NY, 13210, USA.
| | - Chao Chen
- Center for Medical Genetics & Hunan Key Laboratory of Medical Genetics, School of Life Sciences, and Department of Psychiatry, The Second Xiangya Hospital, Central South University, 410008, Changsha, Hunan, China.
- Hunan Key Laboratory of Animal Models for Human Diseases, Central South University, 410008, Changsha, Hunan, China.
- Hunan Key Laboratory of Molecular Precision Medicine, Central South University, 410008, Changsha, Hunan, China.
| | - Qingtuan Meng
- The First Affiliated Hospital, Multi-Omics Research Center for Brain Disorders, Hengyang Medical School, University of South China, 421001, Hengyang, Hunan, China.
- The First Affiliated Hospital, Clinical Research Center for Immune-Related Encephalopathy of Hunan Province, Hengyang Medical School, University of South China, 421001, Hengyang, Hunan, China.
- The First Affiliated Hospital, Department of Neurology, Hengyang Medical School, University of South China, 421001, Hengyang, Hunan, China.
| |
Collapse
|
243
|
Sargeant TJ, Fourrier C. Human monocyte-derived microglia-like cell models: A review of the benefits, limitations and recommendations. Brain Behav Immun 2023; 107:98-109. [PMID: 36202170 DOI: 10.1016/j.bbi.2022.09.015] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/19/2022] [Revised: 09/09/2022] [Accepted: 09/30/2022] [Indexed: 11/05/2022] Open
Abstract
In the last few decades, mounting evidence has highlighted that microglia have crucial roles in both health and disease. This has led to a growing interest in studying human microglia in disease-relevant models. However, current models present limitations that can make them unsuitable for moderate throughput studies in human cohorts. Primary human microglia are ethically and technically difficult to obtain and only allow low throughput studies; immortalized cell lines have been shown to differ too greatly from primary human microglia; and induced pluripotent stem cell-derived microglia, although physiologically relevant in most contexts, have limited potential for use in large cohorts of people or for personalised drug screening. In this review, we discuss monocyte-derived microglia-like (MDMi) cells, a model that has been developed and increasingly used in the last decade, using human monocytes isolated from blood samples. We describe the variety of protocols that have been used to develop MDMi cell models and highlight a need for standardization across protocols. We then summarize data that validate MDMi cells as an appropriate model to study human microglia in health and disease. We also present the benefits and limitations of using this approach to study human microglia compared with other microglial models, when used in combination with the relevant downstream applications and with cross-validation of findings in other systems. Finally, we summarize the paradigms in which MDMi models have been used to advance research on microglia in immune-related disease. This review is an important reference for scientists who seek to establish MDMi cells as a microglial model for the advancement of our understanding of microglia in human health and disease.
Collapse
Affiliation(s)
- Timothy J Sargeant
- Lysosomal Health in Ageing, Hopwood Centre for Neurobiology, Lifelong Health Theme, South Australian Health and Medical Research Institute, North Terrace, Adelaide, South Australia, Australia.
| | - Célia Fourrier
- Lysosomal Health in Ageing, Hopwood Centre for Neurobiology, Lifelong Health Theme, South Australian Health and Medical Research Institute, North Terrace, Adelaide, South Australia, Australia; Adelaide Medical School, Faculty of Health and Medical Sciences, The University of Adelaide, Adelaide, South Australia, Australia.
| |
Collapse
|
244
|
Var SR, Strell P, Johnson ST, Roman A, Vasilakos Z, Low WC. Transplanting Microglia for Treating CNS Injuries and Neurological Diseases and Disorders, and Prospects for Generating Exogenic Microglia. Cell Transplant 2023; 32:9636897231171001. [PMID: 37254858 PMCID: PMC10236244 DOI: 10.1177/09636897231171001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2023] [Revised: 03/18/2023] [Accepted: 04/05/2023] [Indexed: 06/01/2023] Open
Abstract
Microglia are associated with a wide range of both neuroprotective and neuroinflammatory functions in the central nervous system (CNS) during development and throughout lifespan. Chronically activated and dysfunctional microglia are found in many diseases and disorders, such as Alzheimer's disease, Parkinson's disease, and CNS-related injuries, and can accelerate or worsen the condition. Transplantation studies designed to replace and supplement dysfunctional microglia with healthy microglia offer a promising strategy for addressing microglia-mediated neuroinflammation and pathologies. This review will cover microglial involvement in neurological diseases and disorders and CNS-related injuries, current microglial transplantation strategies, and different approaches and considerations for generating exogenic microglia.
Collapse
Affiliation(s)
- Susanna R. Var
- Department of Neurosurgery, Medical
School, University of Minnesota, Minneapolis, MN, USA
- Stem Cell Institute, Medical School,
University of Minnesota, Minneapolis, MN, USA
| | - Phoebe Strell
- Stem Cell Institute, Medical School,
University of Minnesota, Minneapolis, MN, USA
- Department of Veterinary and Biomedical
Sciences, University of Minnesota, Minneapolis, MN, USA
| | - Sether T. Johnson
- Department of Neurosurgery, Medical
School, University of Minnesota, Minneapolis, MN, USA
- Stem Cell Institute, Medical School,
University of Minnesota, Minneapolis, MN, USA
| | - Alex Roman
- Department of Neuroscience, University
of Minnesota, Minneapolis, MN, USA
| | - Zoey Vasilakos
- Stem Cell Institute, Medical School,
University of Minnesota, Minneapolis, MN, USA
- Department of Neuroscience, University
of Minnesota, Minneapolis, MN, USA
| | - Walter C. Low
- Department of Neurosurgery, Medical
School, University of Minnesota, Minneapolis, MN, USA
- Stem Cell Institute, Medical School,
University of Minnesota, Minneapolis, MN, USA
- Department of Veterinary and Biomedical
Sciences, University of Minnesota, Minneapolis, MN, USA
| |
Collapse
|
245
|
St-Pierre MK, Šimončičová E, Carrier M, Tremblay MÈ. Microglia in Human Postmortem Brain Samples: Quantitative Ultrastructural Analysis of Scanning Electron Microscopy Images. Methods Mol Biol 2023; 2561:63-85. [PMID: 36399265 DOI: 10.1007/978-1-0716-2655-9_4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
In this protocol, we describe the specific steps required to prepare human postmortem brain samples for ultrastructural microglial analysis. A detailed procedure is provided to improve the ultrastructural quality of the samples, using aldehyde fixatives followed by immunoperoxidase staining of allograft inflammatory factor 1 (AIF1, also known as IBA1), a marker of myeloid cells, and cluster of differentiation 68 (CD68), a marker of phagolysosomal activity. Additionally, we describe an osmium-thiocarbohydrazide-osmium (OTO) post-fixation method that preserves and increases the contrast of cellular membranes in human postmortem brain samples, as well as the steps necessary to acquire scanning electron microscopy (SEM) images of microglial cell bodies. In the last section, we cover the quantitative analysis of various microglial cytoplasmic organelles and their interactions with other parenchymal elements.
Collapse
Affiliation(s)
- Marie-Kim St-Pierre
- Axe neurosciences, Centre de recherche du CHU de Québec-Université Laval, Québec, QC, Canada
- Département de médecine moléculaire, Faculté de médecine, Université Laval, Québec, QC, Canada
- Division of Medical Sciences, University of Victoria, Victoria, BC, Canada
| | - Eva Šimončičová
- Division of Medical Sciences, University of Victoria, Victoria, BC, Canada
- Neuroscience Graduate Program, University of Victoria, Victoria, Canada
| | - Micaël Carrier
- Axe neurosciences, Centre de recherche du CHU de Québec-Université Laval, Québec, QC, Canada
- Département de médecine moléculaire, Faculté de médecine, Université Laval, Québec, QC, Canada
- Division of Medical Sciences, University of Victoria, Victoria, BC, Canada
| | - Marie-Ève Tremblay
- Axe neurosciences, Centre de recherche du CHU de Québec-Université Laval, Québec, QC, Canada.
- Département de médecine moléculaire, Faculté de médecine, Université Laval, Québec, QC, Canada.
- Division of Medical Sciences, University of Victoria, Victoria, BC, Canada.
- Department of Biochemistry and Molecular Biology, University of British Columbia, Vancouver, BC, Canada.
- Department of Neurology and Neurosurgery, McGill University, Montréal, QC, Canada.
- Centre for Advanced Materials and Related Technology (CAMTEC), University of Victoria, Victoria, Canada.
| |
Collapse
|
246
|
Yeh H, Woodbury ME, Ingraham Dixie KL, Ikezu T, Ikezu S. Microglial WNT5A supports dendritic spines maturation and neuronal firing. Brain Behav Immun 2023; 107:403-413. [PMID: 36395958 PMCID: PMC10588768 DOI: 10.1016/j.bbi.2022.11.003] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/10/2022] [Revised: 10/13/2022] [Accepted: 11/11/2022] [Indexed: 11/16/2022] Open
Abstract
There is increasing evidence showing that microglia play a critical role in mediating synapse formation and spine growth, although the molecular mechanism remains elusive. Here, we demonstrate that the secreted morphogen WNT family member 5A (WNT5A) is the most abundant WNT expressed in microglia and that it promotes neuronal maturation. Co-culture of microglia with Thy1-YFP+ differentiated neurons significantly increased neuronal spine density and reduced dendritic spine turnover rate, which was diminished by silencing microglial Wnt5a in vitro. Co-cultured microglia increased post-synaptic marker PSD95 and synaptic density as determined by the co-localization of PSD95 with pre-synaptic marker VGLUT2 in vitro. The silencing of Wnt5a expression in microglia partially reduced both PSD95 and synaptic densities. Co-culture of differentiated neurons with microglia significantly enhanced neuronal firing rate as measured by multiple electrode array, which was significantly reduced by silencing microglial Wnt5a at 23 days differentiation in vitro. These findings demonstrate that microglia can mediate spine maturation and regulate neuronal excitability via WNT5A secretion indicating possible pathological roles of dysfunctional microglia in developmental disorders.
Collapse
Affiliation(s)
- Hana Yeh
- Graduate Program in Neuroscience, Boston University, United States; Department of Pharmacology and Experimental Therapeutics, Boston University School of Medicine, Boston, MA, United States
| | - Maya E Woodbury
- Graduate Program in Neuroscience, Boston University, United States; Department of Pharmacology and Experimental Therapeutics, Boston University School of Medicine, Boston, MA, United States
| | - Kaitlin L Ingraham Dixie
- Department of Pharmacology and Experimental Therapeutics, Boston University School of Medicine, Boston, MA, United States; Center for Education Innovation and Learning in the Sciences, University of California, Los Angeles, CA, United States
| | - Tsuneya Ikezu
- Department of Pharmacology and Experimental Therapeutics, Boston University School of Medicine, Boston, MA, United States; Department of Neuroscience, Molecular Neurotherapeutics Laboratory, Mayo Clinic, Jacksonville, FL, United States.
| | - Seiko Ikezu
- Department of Pharmacology and Experimental Therapeutics, Boston University School of Medicine, Boston, MA, United States; Department of Neuroscience, Molecular Neurotherapeutics Laboratory, Mayo Clinic, Jacksonville, FL, United States.
| |
Collapse
|
247
|
Warden AS, Han C, Hansen E, Trescott S, Nguyen C, Kim R, Schafer D, Johnson A, Wright M, Ramirez G, Lopez-Sanchez M, Coufal NG. Tools for studying human microglia: In vitro and in vivo strategies. Brain Behav Immun 2023; 107:369-382. [PMID: 36336207 PMCID: PMC9810377 DOI: 10.1016/j.bbi.2022.10.008] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/05/2022] [Revised: 09/11/2022] [Accepted: 10/13/2022] [Indexed: 11/06/2022] Open
Abstract
Microglia may only represent 10% of central nervous system (CNS) cells but they perform critical roles in development, homeostasis and neurological disease. Microglia are also environmentally regulated, quickly losing their transcriptomic and epigenetic signature after leaving the CNS. This facet of microglia biology is both fascinating and technically challenging influencing the study of the genetics and function of human microglia in a manner that recapitulates the CNS environment. In this review we provide a comprehensive overview of existing in vitro and in vivo methodology to study human microglia, such as immortalized cells lines, stem cell-derived microglia, cerebral organoids and xenotransplantation. Since there is currently no single method that completely recapitulates all hallmarks of human ex vivo adult homeostatic microglia, we also discuss the advantages and limitations of each existing model as a practical guide for researchers.
Collapse
Affiliation(s)
- Anna S Warden
- Department of Cellular and Molecular Medicine, University of California, San Diego, La Jolla, CA 92093, USA; Sanford Consortium for Regenerative Medicine, La Jolla, CA 92037, USA; Department of Pediatrics, University of California, San Diego, La Jolla, CA 92093, USA
| | - Claudia Han
- Department of Cellular and Molecular Medicine, University of California, San Diego, La Jolla, CA 92093, USA
| | - Emily Hansen
- Sanford Consortium for Regenerative Medicine, La Jolla, CA 92037, USA; Department of Pediatrics, University of California, San Diego, La Jolla, CA 92093, USA
| | - Samantha Trescott
- Sanford Consortium for Regenerative Medicine, La Jolla, CA 92037, USA; Department of Pediatrics, University of California, San Diego, La Jolla, CA 92093, USA
| | - Celina Nguyen
- Sanford Consortium for Regenerative Medicine, La Jolla, CA 92037, USA
| | - Roy Kim
- Sanford Consortium for Regenerative Medicine, La Jolla, CA 92037, USA; Department of Pediatrics, University of California, San Diego, La Jolla, CA 92093, USA
| | - Danielle Schafer
- Department of Cellular and Molecular Medicine, University of California, San Diego, La Jolla, CA 92093, USA; Sanford Consortium for Regenerative Medicine, La Jolla, CA 92037, USA
| | - Avalon Johnson
- Sanford Consortium for Regenerative Medicine, La Jolla, CA 92037, USA; Department of Pediatrics, University of California, San Diego, La Jolla, CA 92093, USA
| | - Madison Wright
- Sanford Consortium for Regenerative Medicine, La Jolla, CA 92037, USA; Department of Pediatrics, University of California, San Diego, La Jolla, CA 92093, USA
| | - Gabriela Ramirez
- Sanford Consortium for Regenerative Medicine, La Jolla, CA 92037, USA; Department of Pediatrics, University of California, San Diego, La Jolla, CA 92093, USA
| | - Mark Lopez-Sanchez
- Sanford Consortium for Regenerative Medicine, La Jolla, CA 92037, USA; Department of Pediatrics, University of California, San Diego, La Jolla, CA 92093, USA
| | - Nicole G Coufal
- Sanford Consortium for Regenerative Medicine, La Jolla, CA 92037, USA; Department of Pediatrics, University of California, San Diego, La Jolla, CA 92093, USA.
| |
Collapse
|
248
|
Zhu Y, Chen X, Lu Y, Xia L, Fan S, Huang Q, Liu X, Peng X. Glutamine mitigates murine burn sepsis by supporting macrophage M2 polarization through repressing the SIRT5-mediated desuccinylation of pyruvate dehydrogenase. BURNS & TRAUMA 2022; 10:tkac041. [PMID: 36601059 PMCID: PMC9801296 DOI: 10.1093/burnst/tkac041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/14/2022] [Revised: 06/20/2022] [Indexed: 12/31/2022]
Abstract
Background Alternative (M2)-activated macrophages drive the anti-inflammatory response against sepsis, a leading cause of death in patients suffering from burn injury. Macrophage M2 polarization is intrinsically linked with dominant oxidative phosphorylation (OXPHOS). Glutamine serves as a major anaplerotic source to fuel OXPHOS, but it remains unknown whether glutamine can modulate metabolic checkpoints in OXPHOS that favour M2 polarization. The study aims to explore whether glutamine essentially supports M2 polarization in IL-4-stimulated murine macrophages by sustaining the activity of PDH and whether glutamine augments macrophage M2 polarization and thus alleviates inflammation and organ injury in a murine burn sepsis model. Methods To understand how glutamine promotes M2 activation in interleukin (IL-4)-treated murine macrophages, we detected glutamine-dependent M2 polarization and its relationship with the pyruvate dehydrogenase (PDH) complex by RT-PCR, flow cytometry and western blot. To explore how glutamine modulates PDH activity and thus supports M2 polarization, we compared the expression, phosphorylation and succinylation status of PDHA1 and then examined sirtuin SIRT5-dependent desuccinylation of PDHA1 and the effects of SIRT5 overexpression on M2 polarization by RT-PCR, flow cytometry and western blot. To determine whether glutamine or its metabolites affect M2 polarization, macrophages were cocultured with metabolic inhibitors, and then SIRT5 expression and M2 phenotype markers were examined by RT-PCR, flow cytometry and western blot. Finally, to confirm the in vivo effect of glutamine, we established a burn sepsis model by injecting Pseudomonas aeruginosa into burn wounds and observing whether glutamine alleviated proinflammatory injuries by RT-PCR, flow cytometry, western blot, immunofluorescent staining, hematoxylin-eosin staining and enzyme-linked immuno sorbent assay. Results We showed that consumption of glutamine supported M2 activation in IL-4-treated murine macrophages by upregulating the activity of PDH. Mechanistically, glutamine did not affect the expression or alter the phosphorylation status of PDHA1 but instead downregulated the expression of SIRT5 and repressed SIRT5-dependent desuccinylation on PDHA1, which in turn recovered PDH activity and supported M2 polarization. This effect was implemented by its secondary metabolite α-ketoglutarate (αKG) rather than glutamine itself. Finally, we demonstrated that glutamine promoted macrophage M2 polarization in a murine burn sepsis model, thereby repressing excessive inflammation and alleviating organ injury in model mice. Conclusions Glutamine mitigates murine burn sepsis by essentially supporting macrophage M2 polarization, with a mechanism involving the repression of the SIRT5-mediated desuccinylation of pyruvate dehydrogenase that replenishes OXPHOS and sustains M2 macrophages.
Collapse
Affiliation(s)
- Yuanfeng Zhu
- Clinical Medical Research Center, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, 400038, China
| | - Xiaoli Chen
- Clinical Medical Research Center, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, 400038, China
| | - Yongling Lu
- Clinical Medical Research Center, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, 400038, China
| | - Lin Xia
- Clinical Medical Research Center, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, 400038, China
| | - Shijun Fan
- Clinical Medical Research Center, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, 400038, China
| | - Qianying Huang
- Clinical Medical Research Center, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, 400038, China
| | - Xin Liu
- Clinical Medical Research Center, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, 400038, China
| | - Xi Peng
- Clinical Medical Research Center, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, 400038, China
- State Key Laboratory of Trauma, Burns and Combined Injury, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, 400038, China
| |
Collapse
|
249
|
Piehl N, van Olst L, Ramakrishnan A, Teregulova V, Simonton B, Zhang Z, Tapp E, Channappa D, Oh H, Losada PM, Rutledge J, Trelle AN, Mormino EC, Elahi F, Galasko DR, Henderson VW, Wagner AD, Wyss-Coray T, Gate D. Cerebrospinal fluid immune dysregulation during healthy brain aging and cognitive impairment. Cell 2022; 185:5028-5039.e13. [PMID: 36516855 PMCID: PMC9815831 DOI: 10.1016/j.cell.2022.11.019] [Citation(s) in RCA: 81] [Impact Index Per Article: 27.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2022] [Revised: 09/27/2022] [Accepted: 11/17/2022] [Indexed: 12/15/2022]
Abstract
Cerebrospinal fluid (CSF) contains a tightly regulated immune system. However, knowledge is lacking about how CSF immunity is altered with aging or neurodegenerative disease. Here, we performed single-cell RNA sequencing on CSF from 45 cognitively normal subjects ranging from 54 to 82 years old. We uncovered an upregulation of lipid transport genes in monocytes with age. We then compared this cohort with 14 cognitively impaired subjects. In cognitively impaired subjects, downregulation of lipid transport genes in monocytes occurred concomitantly with altered cytokine signaling to CD8 T cells. Clonal CD8 T effector memory cells upregulated C-X-C motif chemokine receptor 6 (CXCR6) in cognitively impaired subjects. The CXCR6 ligand, C-X-C motif chemokine ligand 16 (CXCL16), was elevated in the CSF of cognitively impaired subjects, suggesting CXCL16-CXCR6 signaling as a mechanism for antigen-specific T cell entry into the brain. Cumulatively, these results reveal cerebrospinal fluid immune dysregulation during healthy brain aging and cognitive impairment.
Collapse
Affiliation(s)
- Natalie Piehl
- The Ken & Ruth Davee Department of Neurology, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Lynn van Olst
- The Ken & Ruth Davee Department of Neurology, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Abhirami Ramakrishnan
- The Ken & Ruth Davee Department of Neurology, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Victoria Teregulova
- The Ken & Ruth Davee Department of Neurology, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Brooke Simonton
- The Ken & Ruth Davee Department of Neurology, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Ziyang Zhang
- The Ken & Ruth Davee Department of Neurology, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Emma Tapp
- Department of Neurology and Neurological Sciences, Stanford University School of Medicine, Stanford, CA, USA
| | - Divya Channappa
- Department of Neurology and Neurological Sciences, Stanford University School of Medicine, Stanford, CA, USA
| | - Hamilton Oh
- Wu Tsai Neurosciences Institute, Stanford University, Stanford, CA, USA; Paul F. Glenn Center for the Biology of Aging, Stanford University School of Medicine, Stanford, CA, USA; Graduate Program in Stem Cell and Regenerative Medicine, Stanford University, Stanford, CA, USA
| | - Patricia M Losada
- Department of Neurology and Neurological Sciences, Stanford University School of Medicine, Stanford, CA, USA; Wu Tsai Neurosciences Institute, Stanford University, Stanford, CA, USA
| | - Jarod Rutledge
- Wu Tsai Neurosciences Institute, Stanford University, Stanford, CA, USA; Paul F. Glenn Center for the Biology of Aging, Stanford University School of Medicine, Stanford, CA, USA; Department of Genetics, Stanford University, Stanford, CA, USA
| | | | - Elizabeth C Mormino
- Wu Tsai Neurosciences Institute, Stanford University, Stanford, CA, USA; Department of Psychology, Stanford University, Stanford, CA, USA
| | - Fanny Elahi
- Departments of Neurology and Neuroscience, Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, La Jolla, CA, USA
| | - Douglas R Galasko
- Department of Neurosciences, University of California at San Diego, La Jolla, CA, USA
| | - Victor W Henderson
- Department of Neurology and Neurological Sciences, Stanford University School of Medicine, Stanford, CA, USA
| | - Anthony D Wagner
- Wu Tsai Neurosciences Institute, Stanford University, Stanford, CA, USA; Department of Psychology, Stanford University, Stanford, CA, USA
| | - Tony Wyss-Coray
- Department of Neurology and Neurological Sciences, Stanford University School of Medicine, Stanford, CA, USA; Wu Tsai Neurosciences Institute, Stanford University, Stanford, CA, USA; Paul F. Glenn Center for the Biology of Aging, Stanford University School of Medicine, Stanford, CA, USA; The Phil and Penny Initiative for Brain Resilience, Stanford University, Stanford, CA, USA; Chemistry, Engineering, and Medicine for Human Health (ChEM-H), Stanford University, Stanford, CA, USA
| | - David Gate
- The Ken & Ruth Davee Department of Neurology, Northwestern University Feinberg School of Medicine, Chicago, IL, USA.
| |
Collapse
|
250
|
Bartolo ND, Mortimer N, Manter MA, Sanchez N, Riley M, O'Malley TT, Hooker JM. Identification and Prioritization of PET Neuroimaging Targets for Microglial Phenotypes Associated with Microglial Activity in Alzheimer's Disease. ACS Chem Neurosci 2022; 13:3641-3660. [PMID: 36473177 DOI: 10.1021/acschemneuro.2c00607] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Activation of microglial cells accompanies the progression of many neurodegenerative disorders, including Alzheimer's disease (AD). Development of molecular imaging tools specific to microglia can help elucidate the mechanism through which microglia contribute to the pathogenesis and progression of neurodegenerative disorders. Through analysis of published genetic, transcriptomic, and proteomic data sets, we identified 19 genes with microglia-specific expression that we then ranked based on association with the AD characteristics, change in expression, and potential druggability of the target. We believe that the process we used to identify and rank microglia-specific genes is broadly applicable to the identification and evaluation of targets in other disease areas and for applications beyond molecular imaging.
Collapse
Affiliation(s)
- Nicole D Bartolo
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Harvard Medical School, 149 13th Street, Charlestown, Massachusetts 02129, United States
| | - Niall Mortimer
- Human Biology and Data Science, Eisai Center for Genetics Guided Dementia Discovery, 35 Cambridgepark Drive, Cambridge, Massachusetts 02140, United States
| | - Mariah A Manter
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Harvard Medical School, 149 13th Street, Charlestown, Massachusetts 02129, United States
| | - Nicholas Sanchez
- Human Biology and Data Science, Eisai Center for Genetics Guided Dementia Discovery, 35 Cambridgepark Drive, Cambridge, Massachusetts 02140, United States
| | - Misha Riley
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Harvard Medical School, 149 13th Street, Charlestown, Massachusetts 02129, United States
| | - Tiernan T O'Malley
- Human Biology and Data Science, Eisai Center for Genetics Guided Dementia Discovery, 35 Cambridgepark Drive, Cambridge, Massachusetts 02140, United States
| | - Jacob M Hooker
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Harvard Medical School, 149 13th Street, Charlestown, Massachusetts 02129, United States
| |
Collapse
|