201
|
Xia W, Li M, Jiang X, Huang X, Gu S, Ye J, Zhu L, Hou M, Zan T. Young fibroblast-derived exosomal microRNA-125b transfers beneficial effects on aged cutaneous wound healing. J Nanobiotechnology 2022; 20:144. [PMID: 35305652 PMCID: PMC9744129 DOI: 10.1186/s12951-022-01348-2] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2021] [Accepted: 03/02/2022] [Indexed: 02/08/2023] Open
Abstract
Aged skin wounds heal poorly, resulting in medical, economic, and social burdens posed by nonhealing wounds. Age-related defects in repair are associated with reduced myofibroblasts and dysfunctional extracellular matrix (ECM) deposition. Bidirectional cell-cell communication involving exosome-borne cargo such as micro RNAs (miRs) has emerged as a critical mechanism for wound healing and aged tissue regeneration. Here we report that at the wound edge, aged fibroblasts display reduced migration and differentiation into myofibroblasts, with impaired ECM deposition, when compared with young tissue. Proper activation of fibroblasts to myofibroblasts may alleviate age-related defects in wound healing. Herein, an exosome-guided cell technique was performed to induce effective wound healing. Supplementing wounds with exosomes isolated from young mouse wound-edge fibroblasts (exosomesYoung) significantly improved the abundance of myofibroblasts and wound healing in aged mice and caused fibroblasts to migrate and transition to myofibroblasts in vitro. To determine the underlying mechanism, we found that exosomal transfer of miR-125b to fibroblasts inhibited sirtuin 7 (Sirt7), thus accelerating myofibroblast differentiation and wound healing in aged mice. Notably, after epidermal inhibition of miR-125b or overexpression of Sirt7 in fibroblasts, migration and myofibroblast transition were perturbed. Our findings thus reveal that miR-125b is transferred through exosomes from young fibroblasts to old fibroblasts contributes to promoting fibroblast migration and transition to counteract aging, suggesting a potential avenue for anti-aging interventions in wound healing.
Collapse
Affiliation(s)
- Wenzheng Xia
- grid.16821.3c0000 0004 0368 8293Department of Plastic and Reconstructive Surgery, Shanghai Ninth People’s Hospital, Shanghai Jiao Tong University School of Medicine, 200011 Shanghai, China
| | - Minxiong Li
- grid.16821.3c0000 0004 0368 8293Department of Plastic and Reconstructive Surgery, Shanghai Ninth People’s Hospital, Shanghai Jiao Tong University School of Medicine, 200011 Shanghai, China
| | - Xingyu Jiang
- grid.410745.30000 0004 1765 1045School of Chinese Materia Medica, Nanjing University of Chinese Medicine, Nanjing, China
| | - Xin Huang
- grid.16821.3c0000 0004 0368 8293Department of Plastic and Reconstructive Surgery, Shanghai Ninth People’s Hospital, Shanghai Jiao Tong University School of Medicine, 200011 Shanghai, China
| | - Shuchen Gu
- grid.16821.3c0000 0004 0368 8293Department of Plastic and Reconstructive Surgery, Shanghai Ninth People’s Hospital, Shanghai Jiao Tong University School of Medicine, 200011 Shanghai, China
| | - Jiaqi Ye
- grid.268099.c0000 0001 0348 3990Department of Radiation Oncology, First Affiliated Hospital, Wenzhou Medical University, No. 2 Fuxue Lane, 325000 Wenzhou, People’s Republic of China
| | - Liaoxiang Zhu
- grid.268099.c0000 0001 0348 3990Department of Radiation Oncology, First Affiliated Hospital, Wenzhou Medical University, No. 2 Fuxue Lane, 325000 Wenzhou, People’s Republic of China
| | - Meng Hou
- grid.268099.c0000 0001 0348 3990Department of Radiation Oncology, First Affiliated Hospital, Wenzhou Medical University, No. 2 Fuxue Lane, 325000 Wenzhou, People’s Republic of China
| | - Tao Zan
- grid.16821.3c0000 0004 0368 8293Department of Plastic and Reconstructive Surgery, Shanghai Ninth People’s Hospital, Shanghai Jiao Tong University School of Medicine, 200011 Shanghai, China
| |
Collapse
|
202
|
Sharma V, Letson J, Furuta S. Fibrous stroma: Driver and passenger in cancer development. Sci Signal 2022; 15:eabg3449. [PMID: 35258999 DOI: 10.1126/scisignal.abg3449] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Cumulative evidence shows that fibrogenic stroma and stiff extracellular matrix (ECM) not only result from tumor growth but also play pivotal roles in cellular transformation and tumor initiation. This emerging concept may largely account for the increased cancer risk associated with environmental fibrogenic agents, such as asbestos and silica, and with chronic conditions that are fibrogenic, such as obesity and diabetes. It may also contribute to poor outcomes in patients treated with certain chemotherapeutics that can promote fibrosis, such as bleomycin and methotrexate. Although the mechanistic details of this phenomenon are still being unraveled, we provide an overview of the experimental evidence linking fibrogenic stroma and tumor initiation. In this Review, we will summarize the causes and consequences of fibrous stroma and how this stromal cue is transmitted to the nuclei of parenchymal cells through a physical continuum from the ECM to chromatin, as well as ECM-dependent biochemical signaling that contributes to cellular transformation.
Collapse
Affiliation(s)
- Vandana Sharma
- Department of Cancer Biology, College of Medicine and Life Sciences, University of Toledo Health Science Campus, 3000 Arlington Ave., Toledo, OH 43614, USA
| | - Joshua Letson
- Department of Cancer Biology, College of Medicine and Life Sciences, University of Toledo Health Science Campus, 3000 Arlington Ave., Toledo, OH 43614, USA
| | - Saori Furuta
- Department of Cancer Biology, College of Medicine and Life Sciences, University of Toledo Health Science Campus, 3000 Arlington Ave., Toledo, OH 43614, USA
| |
Collapse
|
203
|
Abstract
Chronic skin wounds are commonly found in older individuals who have impaired circulation due to diabetes or are immobilized due to physical disability. Chronic wounds pose a severe burden to the health-care system and are likely to become increasingly prevalent in aging populations. Various treatment approaches exist to help the healing process, although the healed tissue does not generally recapitulate intact skin but rather forms a scar that has inferior mechanical properties and that lacks appendages such as hair or sweat glands. This article describes new experimental avenues for attempting to improve the regenerative response of skin using biophysical techniques as well as biochemical methods, in some cases by trying to harness the potential of stem cells, either endogenous to the host or provided exogenously, to regenerate the skin. These approaches primarily address the local wound environment and should likely be combined with other modalities to address regional and systemic disease, as well as social determinants of health. Expected final online publication date for the Annual Review of Biomedical Engineering, Volume 24 is June 2022. Please see http://www.annualreviews.org/page/journal/pubdates for revised estimates.
Collapse
Affiliation(s)
- François Berthiaume
- Department of Biomedical Engineering, Rutgers University, Piscataway, New Jersey, USA;
| | - Henry C Hsia
- Department of Surgery, Yale University School of Medicine, and Department of Biomedical Engineering, Yale University, New Haven, Connecticut, USA
| |
Collapse
|
204
|
McAndrews KM, Miyake T, Ehsanipour EA, Kelly PJ, Becker LM, McGrail DJ, Sugimoto H, LeBleu VS, Ge Y, Kalluri R. Dermal αSMA + myofibroblasts orchestrate skin wound repair via β1 integrin and independent of type I collagen production. EMBO J 2022; 41:e109470. [PMID: 35212000 PMCID: PMC8982612 DOI: 10.15252/embj.2021109470] [Citation(s) in RCA: 41] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2021] [Revised: 01/20/2022] [Accepted: 01/21/2022] [Indexed: 12/22/2022] Open
Abstract
Skin wound repair is essential for organismal survival and failure of which leads to non-healing wounds, a leading health issue worldwide. However, mechanistic understanding of chronic wounds remains a major challenge due to lack of appropriate genetic mouse models. αSMA+ myofibroblasts, a unique class of dermal fibroblasts, are associated with cutaneous wound healing but their precise function remains unknown. We demonstrate that genetic depletion of αSMA+ myofibroblasts leads to pleiotropic wound healing defects, including lack of reepithelialization and granulation, dampened angiogenesis, and heightened hypoxia, hallmarks of chronic non-healing wounds. Other wound-associated FAP+ and FSP1+ fibroblasts do not exhibit such dominant functions. While type I collagen (COL1) expressing cells play a role in the repair process, COL1 produced by αSMA+ myofibroblasts is surprisingly dispensable for wound repair. In contrast, we show that β1 integrin from αSMA+ myofibroblasts, but not TGFβRII, is essential for wound healing, facilitating contractility, reepithelization, and vascularization. Collectively, our study provides evidence for the functions of myofibroblasts in β1 integrin-mediated wound repair with potential implications for treating chronic non-healing wounds.
Collapse
Affiliation(s)
- Kathleen M McAndrews
- Department of Cancer BiologyMetastasis Research CenterUniversity of Texas MD Anderson Cancer CenterHoustonTXUSA
| | - Toru Miyake
- Department of Cancer BiologyMetastasis Research CenterUniversity of Texas MD Anderson Cancer CenterHoustonTXUSA
| | - Ehsan A Ehsanipour
- Department of Cancer BiologyMetastasis Research CenterUniversity of Texas MD Anderson Cancer CenterHoustonTXUSA
| | - Patience J Kelly
- Department of Cancer BiologyMetastasis Research CenterUniversity of Texas MD Anderson Cancer CenterHoustonTXUSA
| | - Lisa M Becker
- Department of Cancer BiologyMetastasis Research CenterUniversity of Texas MD Anderson Cancer CenterHoustonTXUSA
| | - Daniel J McGrail
- Department of Systems BiologyUniversity of Texas MD Anderson Cancer CenterHoustonTXUSA
| | - Hikaru Sugimoto
- Department of Cancer BiologyMetastasis Research CenterUniversity of Texas MD Anderson Cancer CenterHoustonTXUSA
| | - Valerie S LeBleu
- Department of Cancer BiologyMetastasis Research CenterUniversity of Texas MD Anderson Cancer CenterHoustonTXUSA,Feinberg School of MedicineNorthwestern UniversityChicagoILUSA,Kellogg School of ManagementNorthwestern UniversityEvanstonILUSA
| | - Yejing Ge
- Department of Cancer BiologyMetastasis Research CenterUniversity of Texas MD Anderson Cancer CenterHoustonTXUSA
| | - Raghu Kalluri
- Department of Cancer BiologyMetastasis Research CenterUniversity of Texas MD Anderson Cancer CenterHoustonTXUSA,Department of BioengineeringRice UniversityHoustonTXUSA,Department of Molecular and Cellular BiologyBaylor College of MedicineHoustonTXUSA
| |
Collapse
|
205
|
Peñin-Franch A, García-Vidal JA, Martínez CM, Escolar-Reina P, Martínez-Ojeda RM, Gómez AI, Bueno JM, Minaya-Muñoz F, Valera-Garrido F, Medina-Mirapeix F, Pelegrín P. Galvanic current activates the NLRP3 inflammasome to promote type I collagen production in tendon. eLife 2022; 11:73675. [PMID: 35199642 PMCID: PMC8896827 DOI: 10.7554/elife.73675] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2021] [Accepted: 02/23/2022] [Indexed: 11/25/2022] Open
Abstract
The NLRP3 inflammasome coordinates inflammation in response to different pathogen- and damage-associated molecular patterns, being implicated in different infectious, chronic inflammatory, metabolic and degenerative diseases. In chronic tendinopathic lesions, different non-resolving mechanisms produce a degenerative condition that impairs tissue healing and which therefore complicates their clinical management. Percutaneous needle electrolysis consists of the application of a galvanic current and is an emerging treatment for tendinopathies. In the present study, we found that galvanic current activates the NLRP3 inflammasome and induces an inflammatory response that promotes a collagen-mediated regeneration of the tendon in mice. This study establishes the molecular mechanism of percutaneous electrolysis that can be used to treat chronic lesions and describes the beneficial effects of an induced inflammasome-related response.
Collapse
|
206
|
Hung CF, Wilson CL, Chow YH, Liles WC, Gharib S, Altemeier W, Schnapp LM. Effect of lung pericyte-like cell ablation on the bleomycin model of injury and repair. Am J Physiol Lung Cell Mol Physiol 2022; 322:L607-L616. [PMID: 35196901 PMCID: PMC8993536 DOI: 10.1152/ajplung.00392.2021] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
We previously showed that pericyte-like cells derived from the FoxD1-lineage contribute to myofibroblasts following bleomycin-induced lung injury. However, their functional significance in lung fibrosis remains unknown. In this study, we used a model of lung pericyte-like cell ablation to test the hypothesis that pericyte-like cell ablation attenuates lung fibrosis in bleomycin-induced lung injury. Lung fibrosis was induced by intratracheal instillation of bleomycin. To ablate pericyte-like cells in the lung, diphtheria toxin (DT) was administered to Foxd1-Cre;Rosa26-iDTR mice at two different phases of bleomycin-induced lung injury. For early ablation, we coadministered bleomycin with DT and harvested mice at days 7 and 21. To test the effect of ablation after acute injury, we delivered DT 7 days after bleomycin administration. We assessed fibrosis by lung hydroxyproline content and semiquantitative analysis of picrosirius red staining. We performed bronchoalveolar lavage to determine cell count and differential. We also interrogated mRNA expression of fibrosis-related genes in whole lung RNA. Compared with DT-insensitive littermates where pericyte-like cells were not ablated, DT-sensitive animals exhibited no difference in fibrosis at day 21 both in the early and late pericyte ablation models. However, early ablation of pericytes reduced acute lung inflammation, as indicated by decreased inflammatory cells. Our data confirm a role for pericytes in regulating pulmonary inflammation in early lung injury.
Collapse
Affiliation(s)
- Chi F Hung
- Medicine, grid.471394.cUniversity of Washington School of Medicine, Seattle, WA, United States
| | - Carole L Wilson
- Medicine, grid.14003.36University of Wisconsin-Madison, Madison, WI, United States
| | - Yu-Hua Chow
- Pulmonary,Critical Care and Sleep Medicine, grid.34477.33University of Washington, Seattle, WA, United States
| | - W Conrad Liles
- medicine, grid.34477.33University of Washington, Seattle, WA, United States
| | - Sina Gharib
- Medicine, grid.471394.cUniversity of Washington School of Medicine, Seattle, WA, United States
| | - William Altemeier
- Medicine, grid.34477.33University of Washington, Seattle, WA, United States
| | - Lynn M Schnapp
- Medicine, grid.471391.9University of Wisconsin School of Medicine and Public Health, Madison, WA, United States
| |
Collapse
|
207
|
Li S, Ding X, Zhang H, Ding Y, Tan Q. IL-25 improves diabetic wound healing through stimulating M2 macrophage polarization and fibroblast activation. Int Immunopharmacol 2022; 106:108605. [PMID: 35149293 DOI: 10.1016/j.intimp.2022.108605] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Revised: 01/22/2022] [Accepted: 01/31/2022] [Indexed: 12/28/2022]
Abstract
BACKGROUND Persistent chronic inflammation is one of the main pathogenic characteristics of diabetic wounds. The resolution of inflammation is important for wound healing and extracellular matrix (ECM) formation. Interleukin (IL)-25 can modulate the function of macrophage and fibroblast, but its role and mechanism of action in the treatment of diabetic wounds remain largely unclear. METHODS The mice were categorized into diabetic, diabetic + IL-25 and control groups. Human monocytic THP-1 cell line and human dermal fibroblast (HDF) were stimulated under different IL-25 conditions. Then, flow cytometry, real-time quantitative PCR (RT-qPCR), Western blot (WB), and immunofluorescence (IF) assays were carried out. RESULTS The mice in diabetes group (DG) had a slower wound healing rate, more severe inflammation, less blood vessels and more disordered collagen than those in control group (CG). Intradermal injection of IL-25 could improve these conditions. IL-25 promoted M2 macrophage polarization and fibroblast activation in DG and high-glucose environment. The phenomenon, which was dependent on PI3K/AKT/mTOR and TGF-β/SMAD signaling, could be blocked by LY294002 and LY2109761. CONCLUSION IL-25 may serve as a therapeutic target to improve wound healing in diabetic mice.
Collapse
Affiliation(s)
- Shiyan Li
- Department of Burns and Plastic Surgery, Nanjing Drum Tower Hospital, the Affiliated Hospital of Nanjing University Medical School, NO. 321, Zhongshan Road, Nanjing, Jiangsu, China.
| | - Xiaofeng Ding
- Department of Burns and Plastic Surgery, Nanjing Drum Tower Hospital Clinical College of Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, NO. 321, Zhongshan Road, Nanjing, Jiangsu, China.
| | - Hao Zhang
- Department of Burns and Plastic Surgery, Nanjing Drum Tower Hospital, the Affiliated Hospital of Nanjing University Medical School, NO. 321, Zhongshan Road, Nanjing, Jiangsu, China.
| | - Youjun Ding
- Department of Burns and Plastic Surgery, Nanjing Drum Tower Hospital Clinical College of Jiangsu University, NO. 321, Zhongshan Road, Nanjing, Jiangsu, China.
| | - Qian Tan
- Department of Burns and Plastic Surgery, Nanjing Drum Tower Hospital, the Affiliated Hospital of Nanjing University Medical School, NO. 321, Zhongshan Road, Nanjing, Jiangsu, China; Department of Burns and Plastic Surgery, Anqing Shihua Hospital, Nanjing Drum Tower Hospital Group, Anqing 246002, China.
| |
Collapse
|
208
|
Abstract
Tissue repair in adult mammals lacks the regenerative ability of many tissues in other adult organisms like axolotl and newts. In this issue of Cell Stem Cell, Mascharak et al. use multi-omics approaches to identify an essential role for the transcription factor Trps1 in Yap-inhibited fibroblasts' tissue regenerative responses in murine skin.
Collapse
|
209
|
IL-34 Downregulation-associated M1/M2 Macrophage Imbalance is Related to Inflammaging in Sun-exposed Human Skin. JID INNOVATIONS 2022; 2:100112. [PMID: 35521044 PMCID: PMC9062483 DOI: 10.1016/j.xjidi.2022.100112] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2021] [Revised: 01/14/2022] [Accepted: 02/01/2022] [Indexed: 01/18/2023] Open
Abstract
Macrophages can be polarized into two subsets: a proinflammatory (M1) or an anti-inflammatory (M2) phenotype. In this study, we show that an increased M1-to-M2 ratio associated with a decrease in IL-34 induces skin inflammaging. The total number of macrophages in the dermis did not change, but the number of M2 macrophages was significantly decreased. Thus, the M1-to-M2 ratio was significantly increased in sun-exposed aged skin and positively correlated with the percentage of p21+ and p16+ senescent cells in the dermis. The supernatant of M1 macrophages increased the percentages of senescence-associated β-galactosidase‒positive cells, whereas the supernatant of M2 macrophages decreased the percentages of senescence-associated β-galactosidase‒positive cells in vitro. Among the mechanisms that could explain the increase in the M1-to-M2 ratio, we found that the number of IL-34+ cells was decreased in aged skin and negatively correlated with the M1-to-M2 ratio. Furthermore, IL-34 induced the expression of CD206 and IL-10, which are M2 macrophage markers, in an in vitro assay. Our results suggest that a reduction in epidermal IL-34 in aged skin may skew the M1/M2 balance in the dermis and lead to low-grade chronic inflammation and inflammaging.
Collapse
|
210
|
Shim J, Oh SJ, Yeo E, Park JH, Bae JH, Kim SH, Lee D, Lee JH. Integrated analysis of single-cell and spatial transcriptomics in keloids: Highlights on fibro-vascular interactions in keloid pathogenesis. J Invest Dermatol 2022; 142:2128-2139.e11. [DOI: 10.1016/j.jid.2022.01.017] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2021] [Revised: 01/23/2022] [Accepted: 01/25/2022] [Indexed: 01/02/2023]
|
211
|
Xue M, Zhao R, March L, Jackson C. Dermal Fibroblast Heterogeneity and Its Contribution to the Skin Repair and Regeneration. Adv Wound Care (New Rochelle) 2022; 11:87-107. [PMID: 33607934 DOI: 10.1089/wound.2020.1287] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Significance: Dermal fibroblasts are the major cell type in the skin's dermal layer. These cells originate from distinct locations of the embryo and reside in unique niches in the dermis. Different dermal fibroblasts exhibit distinct roles in skin development, homeostasis, and wound healing. Therefore, these cells are becoming attractive candidates for cell-based therapies in wound healing. Recent Advances: Human skin dermis comprises multiple fibroblast subtypes, including papillary, reticular, and hair follicle-associated fibroblasts, and myofibroblasts after wounding. Recent studies reveal that these cells play distinct roles in wound healing and contribute to diverse healing outcomes, including nonhealing chronic wound or excessive scar formation, such as hypertrophic scars (HTS) and keloids, with papillary fibroblasts having antiscarring and reticular fibroblast scar-forming properties. Critical Issues: The identities and functions of dermal fibroblast subpopulations in many respects remain unknown. In this review, we summarize the current understanding of dermal fibroblast heterogeneity, including their defined cell markers and dermal niches, dynamic changes, and contributions to skin wound healing, with the emphasis on scarless healing, healing with excessive scars (HTS and keloids), chronic wounds, and the potential application of this heterogeneity for developing cell-based therapies that allow wounds to heal faster with less scarring. Future Directions: Heterogeneous dermal fibroblast populations and their functions are poorly characterized. Refining and advancing our understanding of dermal fibroblast heterogeneity and their participation in skin homeostasis and wound healing may create potential therapeutic applications for nonhealing chronic wounds or wounds that heal with excessive scarring.
Collapse
Affiliation(s)
- Meilang Xue
- Sutton Arthritis Research Laboratory, Institute of Bone and Joint Research, Kolling Institute of Medical Research, The University of Sydney at Royal North Shore Hospital, St Leonards, New South Wales, Australia
| | - Ruilong Zhao
- Sutton Arthritis Research Laboratory, Institute of Bone and Joint Research, Kolling Institute of Medical Research, The University of Sydney at Royal North Shore Hospital, St Leonards, New South Wales, Australia
| | - Lyn March
- Sutton Arthritis Research Laboratory, Institute of Bone and Joint Research, Kolling Institute of Medical Research, The University of Sydney at Royal North Shore Hospital, St Leonards, New South Wales, Australia
| | - Christopher Jackson
- Sutton Arthritis Research Laboratory, Institute of Bone and Joint Research, Kolling Institute of Medical Research, The University of Sydney at Royal North Shore Hospital, St Leonards, New South Wales, Australia
| |
Collapse
|
212
|
Wang J, Zhao Q, Fu L, Zheng S, Wang C, Han L, Gong Z, Wang Z, Tang H, Zhang Y. CD301b+ macrophages mediate angiogenesis of calcium phosphate bioceramics by CaN/NFATc1/VEGF axis. Bioact Mater 2022; 15:446-455. [PMID: 35386349 PMCID: PMC8958385 DOI: 10.1016/j.bioactmat.2022.02.004] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2021] [Revised: 02/05/2022] [Accepted: 02/05/2022] [Indexed: 12/16/2022] Open
Abstract
Calcium phosphate (CaP) bioceramics are important for tissue regeneration and immune response, yet how CaP bioceramics influence these biological processes remains unclear. Recently, the role of immune cells in biomaterial-mediated regeneration, especially macrophages, has been well concerned. CD301b+ macrophages were a new subset of macrophages we have discovered, which were required for bioceramics-mediated bone regeneration. Nevertheless, the impact of CD301b+ macrophages on angiogenesis, which is a vital prerequisite to bone formation is yet indistinct. Herein, we found that CD301b+ macrophages were closely correlated to angiogenesis of CaP bioceramics. Additionally, depletion of CD301b+ macrophages led to the failure of angiogenesis. We showed that store-operated Ca2+ entry and calcineurin signals regulated the VEGF expression of CD301b+ macrophages via the NFATc1/VEGF axis. Inhibition of calcineurin effectively impaired angiogenesis via decreasing the infiltration of CD301b+ macrophages. These findings provided a potential immunomodulatory strategy to optimize the integration of angiogenesis and bone tissue engineering scaffold materials. BCP bioceramics need the involvement of CD301b+ macrophages to promote angiogenesis. Surrounding BCP, CD301b+ macrophages are controlled by CaN and SOCE to express VEGF. BCP bioceramics direct CD301b+ macrophages' infiltration partly through calcineurin.
Collapse
Affiliation(s)
- Jiaolong Wang
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) and Key Laboratory of Oral Biomedicine, Ministry of Education, School & Hospital of Stomatology, Wuhan University, Wuhan, 430079, Hubei, PR China
| | - Qin Zhao
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) and Key Laboratory of Oral Biomedicine, Ministry of Education, School & Hospital of Stomatology, Wuhan University, Wuhan, 430079, Hubei, PR China
| | - Liangliang Fu
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) and Key Laboratory of Oral Biomedicine, Ministry of Education, School & Hospital of Stomatology, Wuhan University, Wuhan, 430079, Hubei, PR China
| | - Shihang Zheng
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) and Key Laboratory of Oral Biomedicine, Ministry of Education, School & Hospital of Stomatology, Wuhan University, Wuhan, 430079, Hubei, PR China
| | - Can Wang
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) and Key Laboratory of Oral Biomedicine, Ministry of Education, School & Hospital of Stomatology, Wuhan University, Wuhan, 430079, Hubei, PR China
| | - Litian Han
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) and Key Laboratory of Oral Biomedicine, Ministry of Education, School & Hospital of Stomatology, Wuhan University, Wuhan, 430079, Hubei, PR China
| | - Zijian Gong
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) and Key Laboratory of Oral Biomedicine, Ministry of Education, School & Hospital of Stomatology, Wuhan University, Wuhan, 430079, Hubei, PR China
| | - Ziming Wang
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) and Key Laboratory of Oral Biomedicine, Ministry of Education, School & Hospital of Stomatology, Wuhan University, Wuhan, 430079, Hubei, PR China
| | - Hua Tang
- Institute of Infection and Immunity, Science and Technology Innovation Center, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, 250000, Shandong, PR China
| | - Yufeng Zhang
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) and Key Laboratory of Oral Biomedicine, Ministry of Education, School & Hospital of Stomatology, Wuhan University, Wuhan, 430079, Hubei, PR China
- Medical Research Institute, School of Medicine, Wuhan University, Wuhan, 430071, Hubei, PR China
- Corresponding author. The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) and Key Laboratory of Oral Biomedicine, Ministry of Education, School & Hospital of Stomatology, Wuhan University, Wuhan, 430079, Hubei, PR China.
| |
Collapse
|
213
|
You DG, An JY, Um W, Jung JM, Oh BH, Nguyen VQ, Jeon J, Lee J, Jo DG, Cho YW, Park JH. Stem Cell-Derived Extracellular Vesicle-Bearing Dermal Filler Ameliorates the Dermis Microenvironment by Supporting CD301b-Expressing Macrophages. ACS NANO 2022; 16:251-260. [PMID: 34957822 DOI: 10.1021/acsnano.1c06096] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Hyaluronic acid-based hydrogels (Hyal-Gels) have the potential to reduce wrinkles by physically volumizing the skin. However, they have limited ability to stimulate collagen generation, thus warranting repeated treatments to maintain their volumizing effect. In this study, stem cell-derived extracellular vesicle (EV)-bearing Hyal-Gels (EVHyal-Gels) were prepared as a potential dermal filler, ameliorating the dermis microenvironment. No significant differences were observed in rheological properties and injection force between Hyal-Gels and EVHyal-Gels. When locally administered to mouse skin, Hyal-Gels significantly extended the biological half-life of EVs from 1.37 d to 3.75 d. In the dermis region, EVHyal-Gels induced the overexpression of CD301b on macrophages, resulting in enhanced proliferation of fibroblasts. It was found that miRNAs, such as let-7b-5p and miR-24-3p, were significantly involved in the change of macrophages toward the CD301bhi phenotype. The area of the collagen layer in EVHyal-Gel-treated dermis was 2.4-fold higher than that in Hyal-Gel-treated dermis 4 weeks after a single treatment, and the collagen generated by EVHyal-Gels was maintained for 24 weeks in the dermis. Overall, EVHyal-Gels have the potential as an antiaging dermal filler for reprogramming the dermis microenvironment.
Collapse
Affiliation(s)
- Dong Gil You
- School of Chemical Engineering, College of Engineering, Sungkyunkwan University, 2066 Seobu-ro, Jangan-gu, Suwon 16419, Republic of Korea
| | - Jae Yoon An
- School of Chemical Engineering, College of Engineering, Sungkyunkwan University, 2066 Seobu-ro, Jangan-gu, Suwon 16419, Republic of Korea
| | - Wooram Um
- School of Chemical Engineering, College of Engineering, Sungkyunkwan University, 2066 Seobu-ro, Jangan-gu, Suwon 16419, Republic of Korea
| | - Jae Min Jung
- School of Chemical Engineering, College of Engineering, Sungkyunkwan University, 2066 Seobu-ro, Jangan-gu, Suwon 16419, Republic of Korea
| | - Byeong Hoon Oh
- School of Chemical Engineering, College of Engineering, Sungkyunkwan University, 2066 Seobu-ro, Jangan-gu, Suwon 16419, Republic of Korea
| | - Van Quy Nguyen
- School of Chemical Engineering, College of Engineering, Sungkyunkwan University, 2066 Seobu-ro, Jangan-gu, Suwon 16419, Republic of Korea
| | - Jueun Jeon
- School of Chemical Engineering, College of Engineering, Sungkyunkwan University, 2066 Seobu-ro, Jangan-gu, Suwon 16419, Republic of Korea
| | - Jungmi Lee
- School of Chemical Engineering, College of Engineering, Sungkyunkwan University, 2066 Seobu-ro, Jangan-gu, Suwon 16419, Republic of Korea
| | - Dong-Gyu Jo
- Biomedical Institute for Convergence at SKKU (BICS), Sungkyunkwan University, 2066 Seobu-ro, Jangan-gu, Suwon 16419, Republic of Korea
- School of Pharmacy, Sungkyunkwan University, 2066 Seobu-ro, Jangan-gu, Suwon 16419, Republic of Korea
- ExoStemTech Inc., 55 Hanyangdaehak-ro, Sangnok-gu, Ansan 15588, Republic of Korea
| | - Yong Woo Cho
- ExoStemTech Inc., 55 Hanyangdaehak-ro, Sangnok-gu, Ansan 15588, Republic of Korea
- Department of Chemical Engineering, Hanyang University, 55 Hanyangdaehak-ro, Sangnok-gu, Ansan 15588, Republic of Korea
| | - Jae Hyung Park
- School of Chemical Engineering, College of Engineering, Sungkyunkwan University, 2066 Seobu-ro, Jangan-gu, Suwon 16419, Republic of Korea
- Biomedical Institute for Convergence at SKKU (BICS), Sungkyunkwan University, 2066 Seobu-ro, Jangan-gu, Suwon 16419, Republic of Korea
- ExoStemTech Inc., 55 Hanyangdaehak-ro, Sangnok-gu, Ansan 15588, Republic of Korea
| |
Collapse
|
214
|
Naik S. One Size Does Not Fit All: Diversifying Immune Function in the Skin. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2022; 208:227-234. [PMID: 35017212 PMCID: PMC8820520 DOI: 10.4049/jimmunol.2100758] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/03/2021] [Accepted: 10/11/2021] [Indexed: 01/17/2023]
Abstract
Our body's most outward facing epithelial barrier, the skin, serves as the frontline defense against myriad environmental assailants. To combat these motley threats, the skin has evolved a sophisticated immunological arsenal. In this article, I provide an overview of the skin's complex architecture and the distinct microniches in which immune cells reside and function. I review burgeoning literature on the synchronized immune, stromal, epithelial, and neuronal cell responses in healthy and inflamed skin. Next, I delve into the distinct requirement and mechanisms of long-term immune surveillance and tissue adaptation at the cutaneous frontier. Finally, by discussing the contributions of immune cells in maintaining and restoring tissue integrity, I underscore the constellation of noncanonical functions undertaken by the skin immune system. Just as our skin's immune system benefits from embracing diverse defense strategies, so, too, must we in the immunology research community support disparate perspectives and people from all walks of life.
Collapse
Affiliation(s)
- Shruti Naik
- Department of Pathology, Department of Medicine, Ronald O. Perelman Department of Dermatology, and Perlmutter Cancer Center, New York University Langone Health, 550 First Avenue, New York, New York. 10016 USA,Correspondence to:
| |
Collapse
|
215
|
Xie J, Chen L, Cao Y, Wu D, Xiong W, Zhang K, Shi J, Wang M. Single-Cell Sequencing Analysis and Weighted Co-Expression Network Analysis Based on Public Databases Identified That TNC Is a Novel Biomarker for Keloid. Front Immunol 2022; 12:783907. [PMID: 35003102 PMCID: PMC8728089 DOI: 10.3389/fimmu.2021.783907] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2021] [Accepted: 12/06/2021] [Indexed: 12/12/2022] Open
Abstract
Background The pathophysiology of keloid formation is not yet understood, so the identification of biomarkers for kelod can be one step towards designing new targeting therapies which will improve outcomes for patients with keloids or at risk of developing keloids. Methods In this study, we performed single-cell RNA sequencing analysis, weighted co-expression network analysis, and differential expression analysis of keloids based on public databases. And 3 RNA sequencing data from keloid patients in our center were used for validation. Besides, we performed QRT-PCR on keloid tissue and adjacent normal tissues from 16 patients for further verification. Results We identified the sensitive biomarker of keloid: Tenascin-C (TNC). Then, Pseudotime analysis found that the expression level of TNC decreased first, then stabilized and finally increased with fibroblast differentiation, suggesting that TNC may play an potential role in fibroblast differentiation. In addition, there were differences in the infiltration level of macrophages M0 between the TNC-high group and the TNC-low group. Macrophages M0 had a higher infiltration level in low TNC- group (P<0.05). Conclusion Our results can provide a new idea for the diagnosis and treatment of keloid.
Collapse
Affiliation(s)
- Jiaheng Xie
- Department of Burn and Plastic Surgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Liang Chen
- Department of General Surgery, Fuyang Hospital Affiliated to Anhui Medical University, Fuyang, China
| | - Yuan Cao
- Fourth School of Clinical Medicine, Nanjing Medical University, Nanjing, China
| | - Dan Wu
- Department of Rheumatology and Immunology, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, China
| | - Wenwen Xiong
- Department of Dermatology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Kai Zhang
- Pancreas Center, The First Affiliated Hospital with Nanjing Medical University, Nanjing, Jiangsu, China
| | - Jingping Shi
- Department of Burn and Plastic Surgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Ming Wang
- Department of Burn and Plastic Surgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| |
Collapse
|
216
|
Jia Y, Zhang X, Yang W, Lin C, Tao B, Deng Z, Gao P, Yang Y, Cai K. A pH-responsiveness injectable hyaluronic acid hydrogel towards regulation of inflammation and remodeling of extracellular matrix for diabetic wound. J Mater Chem B 2022; 10:2875-2888. [DOI: 10.1039/d2tb00064d] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Diabetes is a universal disease in the world. A critical mediator of proper wound healing is the production, assembly, and remodeling of the ECM by fibroblasts, but in the wound...
Collapse
|
217
|
LI Y, GE J, YIN Y, HE X, GU J. Hydroxysafflor yellow A (HSYA) improve scars by vivo and vitro study. FOOD SCIENCE AND TECHNOLOGY 2022. [DOI: 10.1590/fst.117121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Affiliation(s)
- Yan LI
- Nanjing Medical University, China
| | | | | | - Xu HE
- Nanjing Medical University, China
| | | |
Collapse
|
218
|
Parry D, Allison K. Is the future scarless? - Fibroblasts as targets for scarless wound healing: a narrative review. Scars Burn Heal 2022; 8:20595131221095348. [PMID: 36082315 PMCID: PMC9445533 DOI: 10.1177/20595131221095348] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Introduction: Scarless healing is the ideal outcome of wound healing and is exhibited in some species. This narrative review assembles the current understanding of fibroblast heterogenicity along with the latest fibroblast-related targets for scar reduction therapies. Human regenerative wound healing is deemed possible due to the wound regeneration already seen in the early gestation foetus. Methods: This literature narrative review was undertaken by searching PubMed and Web of Science databases and Google Scholar to find articles concerning the fibroblast involvement in wound healing. We evaluated and collated these articles to form a consensus of the current understanding of the field. Discussion: This article describes current understanding of fibroblast heterogenicity and involvement in wound healing, focusing on the role of fibroblasts during physiological scarring. We also present the current most promising targets involving fibroblasts in the reduction of scarring and how we can manipulate the behaviour of fibroblasts to mimic the wound regeneration models in the human foetus. These targets include the pro-fibrotic EN1 positive fibroblast lineage, TGFβ1 inhibition, and genetic therapies utilising miRNAs and siRNAs. Conclusion: No therapies are currently available to eradicate scarring; however, treatment options are available to reduce the appearance of scarring. Further research into the heterogenicity and interactions of fibroblasts in both the foetus and adult is needed, and this may lead to the development of novel treatments against scarring.
Collapse
Affiliation(s)
- Dylan Parry
- Newcastle University Medical School, Newcastle upon Tyne, UK
| | - Keith Allison
- South Tees Hospitals NHS Foundation Trust, Middlesbrough, UK
| |
Collapse
|
219
|
Bi X, Zhou L, Liu Y, Gu J, Mi QS. MicroRNA-146a Deficiency Delays Wound Healing in Normal and Diabetic Mice. Adv Wound Care (New Rochelle) 2022; 11:19-27. [PMID: 33554730 PMCID: PMC9831247 DOI: 10.1089/wound.2020.1165] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Abstract
Objective: MiRNAs are important regulators of inflammation and wound healing. However, the mechanisms through which miRNAs regulate wound healing under normal and diabetic conditions are poorly understood. We aimed to determine the effects of miR-146a on the pathogenesis of wound healing in normal and streptozotocin (STZ)-induced diabetic mice. Approach: Wild-type (WT) and miR-146a knockout (KO) mice were induced to develop diabetes with STZ. Next, skin and corneal wounds were produced and measured. Percent wound closure and histology were evaluated. Inflammation at wound sites was analyzed using flow cytometry, reverse-transcription PCR, and western blot. Results: Healing of wounded skin was significantly delayed in miR-146a KO compared with WT mice. However, corneal epithelial wound healing did not differ significantly in the mice with normal blood glucose, whereas corneal and skin wound healing was significantly delayed in KO mice with diabetes. Neutrophil infiltration increased in skin wounds of KO compared with normal mice. The potential mechanisms were associated with dysregulated interleukin 1β, tumor necrosis factor alpha (TNF-α), IRAK1 (interleukin-1 receptor-associated kinase 1), TRAF6 (TNF receptor-associated factor 6), and nuclear factor kappa B (NF-κB) signaling induced by miR-146a KO. Innovation: Skin wound healing was delayed in miR-146a KO mice and enhanced inflammatory responses were mediated by the NF-κB signaling pathway. Conclusions: Deficiency in miR-146a delayed skin wound healing by enhancing inflammatory responses in normal and diabetic mice. Therefore, miR-146a may be a potential target for modulation to accelerate skin wound healing.
Collapse
Affiliation(s)
- Xinling Bi
- Department of Dermatology, Changhai Hospital, Naval Medical University, Shanghai, China.,Department of Dermatology, Henry Ford Health System, Detroit, Michigan, USA
| | - Li Zhou
- Department of Dermatology, Henry Ford Health System, Detroit, Michigan, USA
| | - Yanfang Liu
- Wound Care Center of Outpatient Department, Changhai Hospital, Naval Medical University, Shanghai, China
| | - Jun Gu
- Department of Dermatology, Changhai Hospital, Naval Medical University, Shanghai, China.,Correspondence: Jun Gu, Department of Dermatology, Changhai Hospital, Naval Medical University, Shanghai 200433, China
| | - Qing-Sheng Mi
- Department of Dermatology, Henry Ford Health System, Detroit, Michigan, USA.,Department of Dermatology, Henry Ford Hospital, Detroit, MI, USA .
| |
Collapse
|
220
|
Thompson SM, Phan QM, Winuthayanon S, Driskell IM, Driskell RR. Parallel single cell multi-omics analysis of neonatal skin reveals transitional fibroblast states that restricts differentiation into distinct fates. J Invest Dermatol 2021; 142:1812-1823.e3. [PMID: 34922949 DOI: 10.1016/j.jid.2021.11.032] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2021] [Revised: 11/26/2021] [Accepted: 11/30/2021] [Indexed: 12/18/2022]
Abstract
One of the keys to achieving skin regeneration lies within understanding the heterogeneity of neonatal fibroblasts, which support skin regeneration. However, the molecular underpinnings regulating the cellular states and fates of these cells are not fully understood. To investigate this, we performed a parallel multi-omics analysis by processing neonatal murine skin for single-cell ATAC-sequencing (scATAC-seq) and single-cell RNA-sequencing (scRNA-seq) separately. Our approach revealed that fibroblast clusters could be sorted into papillary and reticular lineages based on transcriptome profiling, as previously published. However, scATAC-seq analysis of neonatal fibroblast lineage markers, such as, Dpp4/CD26, Corin, and Dlk1 along with markers of myofibroblasts, revealed accessible chromatin in all fibroblast populations despite their lineage-specific transcriptome profiles. These results suggests that accessible chromatin does not always translate to gene expression and that many fibroblast lineage markers reflect a fibroblast state, which includes neonatal papillary, reticular, and myofibroblasts. This analysis also provides a possible explanation as to why these marker genes can be promiscuously expressed in different fibroblast populations under different conditions. Our scATAC-seq analysis also revealed that the functional lineage restriction between dermal papilla and adipocyte fates are regulated by distinct chromatin landscapes. Finally, we have developed a webtool for our multi-omics analysis: https://skinregeneration.org/scatacseq-and-scrnaseq-data-from-thompson-et-al-2021-2/.
Collapse
Affiliation(s)
- Sean M Thompson
- School of Molecular Biosciences, Washington State University, Pullman, WA
| | - Quan M Phan
- School of Molecular Biosciences, Washington State University, Pullman, WA
| | - Sarayut Winuthayanon
- School of Molecular Biosciences, Washington State University, Pullman, WA; Center for Reproductive Biology, Washington State University, Pullman, WA
| | - Iwona M Driskell
- School of Molecular Biosciences, Washington State University, Pullman, WA
| | - Ryan R Driskell
- School of Molecular Biosciences, Washington State University, Pullman, WA; Center for Reproductive Biology, Washington State University, Pullman, WA. https://twitter.com/Driskellab
| |
Collapse
|
221
|
Bi X, Li Y, Dong Z, Zhao J, Wu W, Zou J, Guo L, Lu F, Gao J. Recent Developments in Extracellular Matrix Remodeling for Fat Grafting. Front Cell Dev Biol 2021; 9:767362. [PMID: 34977018 PMCID: PMC8716396 DOI: 10.3389/fcell.2021.767362] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Accepted: 11/16/2021] [Indexed: 12/17/2022] Open
Abstract
Remodeling of the extracellular matrix (ECM), which provides structural and biochemical support for surrounding cells, is vital for adipose tissue regeneration after autologous fat grafting. Rapid and high-quality ECM remodeling can improve the retention rate after fat grafting by promoting neovascularization, regulating stem cells differentiation, and suppressing chronic inflammation. The degradation and deposition of ECM are regulated by various factors, including hypoxia, blood supply, inflammation, and stem cells. By contrast, ECM remodeling alters these regulatory factors, resulting in a dynamic relationship between them. Although researchers have attempted to identify the cellular sources of factors associated with tissue regeneration and regulation of the microenvironment, the factors and mechanisms that affect adipose tissue ECM remodeling remain incompletely understood. This review describes the process of adipose ECM remodeling after grafting and summarizes the factors that affect ECM reconstruction. Also, this review provides an overview of the clinical methods to avoid poor ECM remodeling. These findings may provide new ideas for improving the retention of adipose tissue after fat transplantation.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | - Jianhua Gao
- Department of Plastic and Cosmetic Surgery, Nanfang Hospital, Southern Medical University, Guangzhou, China
| |
Collapse
|
222
|
Suppression of the fibrotic encapsulation of silicone implants by inhibiting the mechanical activation of pro-fibrotic TGF-β. Nat Biomed Eng 2021; 5:1437-1456. [PMID: 34031559 DOI: 10.1038/s41551-021-00722-z] [Citation(s) in RCA: 82] [Impact Index Per Article: 20.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2020] [Accepted: 04/07/2021] [Indexed: 02/07/2023]
Abstract
The fibrotic encapsulation of implants involves the mechanical activation of myofibroblasts and of pro-fibrotic transforming growth factor beta 1 (TGF-β1). Here, we show that both softening of the implant surfaces and inhibition of the activation of TGF-β1 reduce the fibrotic encapsulation of subcutaneous silicone implants in mice. Conventionally stiff silicones (elastic modulus, ~2 MPa) coated with a soft silicone layer (elastic modulus, ~2 kPa) reduced collagen deposition as well as myofibroblast activation without affecting the numbers of macrophages and their polarization states. Instead, fibroblasts around stiff implants exhibited enhanced intracellular stress, increased the recruitment of αv and β1 integrins, and activated TGF-β1 signalling. In vitro, the recruitment of αv integrin to focal adhesions and the activation of β1 integrin and of TGF-β were higher in myofibroblasts grown on latency-associated peptide (LAP)-coated stiff silicones than on soft silicones. Antagonizing αv integrin binding to LAP through the small-molecule inhibitor CWHM-12 suppressed active TGF-β signalling, myofibroblast activation and the fibrotic encapsulation of stiff subcutaneous implants in mice.
Collapse
|
223
|
Karkanitsa M, Fathi P, Ngo T, Sadtler K. Mobilizing Endogenous Repair Through Understanding Immune Reaction With Biomaterials. Front Bioeng Biotechnol 2021; 9:730938. [PMID: 34917594 PMCID: PMC8670074 DOI: 10.3389/fbioe.2021.730938] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2021] [Accepted: 09/10/2021] [Indexed: 12/29/2022] Open
Abstract
With few exceptions, humans are incapable of fully recovering from severe physical trauma. Due to these limitations, the field of regenerative medicine seeks to find clinically viable ways to repair permanently damaged tissue. There are two main approaches to regenerative medicine: promoting endogenous repair of the wound, or transplanting a material to replace the injured tissue. In recent years, these two methods have fused with the development of biomaterials that act as a scaffold and mobilize the body's natural healing capabilities. This process involves not only promoting stem cell behavior, but by also inducing activity of the immune system. Through understanding the immune interactions with biomaterials, we can understand how the immune system participates in regeneration and wound healing. In this review, we will focus on biomaterials that promote endogenous tissue repair, with discussion on their interactions with the immune system.
Collapse
Affiliation(s)
| | | | | | - Kaitlyn Sadtler
- Section on Immuno-Engineering, National Institute of Biomedical Imaging and Bioengineering, National Institutes of Health, Bethesda, MD, United States
| |
Collapse
|
224
|
Recovery of Altered Diabetic Myofibroblast Heterogeneity and Gene Expression Are Associated with CD301b+ Macrophages. Biomedicines 2021; 9:biomedicines9121752. [PMID: 34944568 PMCID: PMC8698992 DOI: 10.3390/biomedicines9121752] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2021] [Revised: 11/18/2021] [Accepted: 11/22/2021] [Indexed: 01/13/2023] Open
Abstract
Diabetic wound healing is associated with impaired function and reduced numbers of myofibroblasts, a heterogeneous cell population with varying capacities to promote repair. To determine how diabetes alters myofibroblast composition, we performed flow cytometry and spatial tissue analysis of myofibroblast subsets throughout the healing process in diabetic (db/db) and control (db/+) mouse skin. We observed reduced numbers of profibrotic SCA1+; CD34+; CD26+ myofibroblasts in diabetic wounds five days after injury, with decreased expression of fibrosis-associated genes compared to myofibroblasts from db/+ mouse wounds. While the abundance of myofibroblasts remained reduced in db/db mouse wounds compared to controls, the altered myofibroblast heterogeneity and gene expression in diabetic mice was improved seven days after injury. The natural correction of myofibroblast composition and gene expression in db/db wound beds temporally corresponds with a macrophage phenotypic switch. Correlation analysis from individual wound beds revealed that wound healing in control mice is associated with CD206+ macrophages, while the rescued myofibroblast phenotypes in diabetic wounds are correlated with increased CD301b+ macrophage numbers. These data demonstrate how diabetes impacts specific subsets of myofibroblasts and indicate that signaling capable of rescuing impaired diabetic wound healing could be different from signals that regulate wound healing under nonpathological conditions.
Collapse
|
225
|
Hu H, Piotrowska Z, Hare PJ, Chen H, Mulvey HE, Mayfield A, Noeen S, Kattermann K, Greenberg M, Williams A, Riley AK, Wilson JJ, Mao YQ, Huang RP, Banwait MK, Ho J, Crowther GS, Hariri LP, Heist RS, Kodack DP, Pinello L, Shaw AT, Mino-Kenudson M, Hata AN, Sequist LV, Benes CH, Niederst MJ, Engelman JA. Three subtypes of lung cancer fibroblasts define distinct therapeutic paradigms. Cancer Cell 2021; 39:1531-1547.e10. [PMID: 34624218 PMCID: PMC8578451 DOI: 10.1016/j.ccell.2021.09.003] [Citation(s) in RCA: 151] [Impact Index Per Article: 37.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/06/2021] [Revised: 04/27/2021] [Accepted: 09/03/2021] [Indexed: 12/20/2022]
Abstract
Cancer-associated fibroblasts (CAFs) are highly heterogeneous. With the lack of a comprehensive understanding of CAFs' functional distinctions, it remains unclear how cancer treatments could be personalized based on CAFs in a patient's tumor. We have established a living biobank of CAFs derived from biopsies of patients' non-small lung cancer (NSCLC) that encompasses a broad molecular spectrum of CAFs in clinical NSCLC. By functionally interrogating CAF heterogeneity using the same therapeutics received by patients, we identify three functional subtypes: (1) robustly protective of cancers and highly expressing HGF and FGF7; (2) moderately protective of cancers and highly expressing FGF7; and (3) those providing minimal protection. These functional differences among CAFs are governed by their intrinsic TGF-β signaling, which suppresses HGF and FGF7 expression. This CAF functional classification correlates with patients' clinical response to targeted therapies and also associates with the tumor immune microenvironment, therefore providing an avenue to guide personalized treatment.
Collapse
Affiliation(s)
- Haichuan Hu
- Massachusetts General Hospital Cancer Center and Department of Medicine, Harvard Medical School, Boston, MA 02114, USA.
| | - Zofia Piotrowska
- Massachusetts General Hospital Cancer Center and Department of Medicine, Harvard Medical School, Boston, MA 02114, USA
| | - Patricia J Hare
- Massachusetts General Hospital Cancer Center and Department of Medicine, Harvard Medical School, Boston, MA 02114, USA
| | - Huidong Chen
- Massachusetts General Hospital and Department of Pathology, Harvard Medical School, Boston, MA 02114, USA; Molecular Pathology Unit, Massachusetts General Hospital Research Institute, Charlestown, MA 02129, USA; Broad Institute of Harvard and MIT, Cambridge, MA 02142, USA
| | - Hillary E Mulvey
- Massachusetts General Hospital Cancer Center and Department of Medicine, Harvard Medical School, Boston, MA 02114, USA
| | - Aislinn Mayfield
- Massachusetts General Hospital Cancer Center and Department of Medicine, Harvard Medical School, Boston, MA 02114, USA
| | - Sundus Noeen
- Massachusetts General Hospital Cancer Center and Department of Medicine, Harvard Medical School, Boston, MA 02114, USA
| | - Krystina Kattermann
- Massachusetts General Hospital Cancer Center and Department of Medicine, Harvard Medical School, Boston, MA 02114, USA
| | - Max Greenberg
- Massachusetts General Hospital Cancer Center and Department of Medicine, Harvard Medical School, Boston, MA 02114, USA
| | - August Williams
- Massachusetts General Hospital Cancer Center and Department of Medicine, Harvard Medical School, Boston, MA 02114, USA
| | - Amanda K Riley
- Massachusetts General Hospital Cancer Center and Department of Medicine, Harvard Medical School, Boston, MA 02114, USA
| | | | - Ying-Qing Mao
- RayBiotech Inc, Norcross, GA 30092, USA; RayBiotech Inc, Guangzhou, Guangdong 510630, China
| | - Ruo-Pan Huang
- RayBiotech Inc, Norcross, GA 30092, USA; RayBiotech Inc, Guangzhou, Guangdong 510630, China; Affiliated Cancer Hospital & Institute of Guangzhou Medical University, Guangzhou, Guangdong 510095, China
| | - Mandeep K Banwait
- Massachusetts General Hospital Cancer Center and Department of Medicine, Harvard Medical School, Boston, MA 02114, USA
| | - Jeffrey Ho
- Massachusetts General Hospital Cancer Center and Department of Medicine, Harvard Medical School, Boston, MA 02114, USA
| | - Giovanna S Crowther
- Massachusetts General Hospital Cancer Center and Department of Medicine, Harvard Medical School, Boston, MA 02114, USA
| | - Lida P Hariri
- Massachusetts General Hospital and Department of Pathology, Harvard Medical School, Boston, MA 02114, USA
| | - Rebecca S Heist
- Massachusetts General Hospital Cancer Center and Department of Medicine, Harvard Medical School, Boston, MA 02114, USA
| | - David P Kodack
- Novartis Institutes for BioMedical Research, Cambridge, MA 02139, USA
| | - Luca Pinello
- Massachusetts General Hospital and Department of Pathology, Harvard Medical School, Boston, MA 02114, USA; Molecular Pathology Unit, Massachusetts General Hospital Research Institute, Charlestown, MA 02129, USA; Broad Institute of Harvard and MIT, Cambridge, MA 02142, USA
| | - Alice T Shaw
- Massachusetts General Hospital Cancer Center and Department of Medicine, Harvard Medical School, Boston, MA 02114, USA
| | - Mari Mino-Kenudson
- Massachusetts General Hospital and Department of Pathology, Harvard Medical School, Boston, MA 02114, USA
| | - Aaron N Hata
- Massachusetts General Hospital Cancer Center and Department of Medicine, Harvard Medical School, Boston, MA 02114, USA
| | - Lecia V Sequist
- Massachusetts General Hospital Cancer Center and Department of Medicine, Harvard Medical School, Boston, MA 02114, USA
| | - Cyril H Benes
- Massachusetts General Hospital Cancer Center and Department of Medicine, Harvard Medical School, Boston, MA 02114, USA.
| | | | | |
Collapse
|
226
|
Opzoomer JW, Anstee JE, Dean I, Hill EJ, Bouybayoune I, Caron J, Muliaditan T, Gordon P, Sosnowska D, Nuamah R, Pinder SE, Ng T, Dazzi F, Kordasti S, Withers DR, Lawrence T, Arnold JN. Macrophages orchestrate the expansion of a proangiogenic perivascular niche during cancer progression. SCIENCE ADVANCES 2021; 7:eabg9518. [PMID: 34730997 PMCID: PMC8565907 DOI: 10.1126/sciadv.abg9518] [Citation(s) in RCA: 47] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/15/2021] [Accepted: 09/14/2021] [Indexed: 05/09/2023]
Abstract
Tumor-associated macrophages (TAMs) are a highly plastic stromal cell type that support cancer progression. Using single-cell RNA sequencing of TAMs from a spontaneous murine model of mammary adenocarcinoma (MMTV-PyMT), we characterize a subset of these cells expressing lymphatic vessel endothelial hyaluronic acid receptor 1 (Lyve-1) that spatially reside proximal to blood vasculature. We demonstrate that Lyve-1+ TAMs support tumor growth and identify a pivotal role for these cells in maintaining a population of perivascular mesenchymal cells that express α-smooth muscle actin and phenotypically resemble pericytes. Using photolabeling techniques, we show that mesenchymal cells maintain their prevalence in the growing tumor through proliferation and uncover a role for Lyve-1+ TAMs in orchestrating a selective platelet-derived growth factor–CC–dependent expansion of the perivascular mesenchymal population, creating a proangiogenic niche. This study highlights the inter-reliance of the immune and nonimmune stromal network that supports cancer progression and provides therapeutic opportunities for tackling the disease.
Collapse
Affiliation(s)
- James W. Opzoomer
- School of Cancer and Pharmaceutical Sciences, King’s College London, London SE1 1UL, UK
| | - Joanne E. Anstee
- School of Cancer and Pharmaceutical Sciences, King’s College London, London SE1 1UL, UK
| | - Isaac Dean
- Institute of Immunology and Immunotherapy, College of Medical and Dental Sciences, University of Birmingham, Birmingham B15 2TT, UK
| | - Emily J. Hill
- School of Cancer and Pharmaceutical Sciences, King’s College London, London SE1 1UL, UK
| | - Ihssane Bouybayoune
- School of Cancer and Pharmaceutical Sciences, King’s College London, London SE1 1UL, UK
| | - Jonathan Caron
- School of Cancer and Pharmaceutical Sciences, King’s College London, London SE1 1UL, UK
| | - Tamara Muliaditan
- School of Cancer and Pharmaceutical Sciences, King’s College London, London SE1 1UL, UK
| | - Peter Gordon
- School of Cancer and Pharmaceutical Sciences, King’s College London, London SE1 1UL, UK
| | - Dominika Sosnowska
- School of Cancer and Pharmaceutical Sciences, King’s College London, London SE1 1UL, UK
| | - Rosamond Nuamah
- NIHR BRC Genomics Facility, Guy’s and St Thomas’ NHS Foundation Trust, King’s College London, Guy’s Hospital, London SE1 9RT, UK
| | - Sarah E. Pinder
- School of Cancer and Pharmaceutical Sciences, King’s College London, London SE1 1UL, UK
| | - Tony Ng
- School of Cancer and Pharmaceutical Sciences, King’s College London, London SE1 1UL, UK
- UCL Cancer Institute, University College London, London WC1E 6DD, UK
| | - Francesco Dazzi
- School of Cancer and Pharmaceutical Sciences, King’s College London, London SE1 1UL, UK
| | - Shahram Kordasti
- School of Cancer and Pharmaceutical Sciences, King’s College London, London SE1 1UL, UK
- Haematology Department, Guy’s Hospital, London, SE1 9RT, UK
| | - David R. Withers
- Institute of Immunology and Immunotherapy, College of Medical and Dental Sciences, University of Birmingham, Birmingham B15 2TT, UK
| | - Toby Lawrence
- Centre for Inflammation Biology and Cancer Immunology, School of Immunology & Microbial Sciences, King’s College London, London SE1 1UL, UK
- Aix Marseille University, CNRS, INSERM, CIML, Marseille, France
- Henan Key Laboratory of Immunology and Targeted Therapy, School of Laboratory Medicine, Xinxiang Medical University, Xinxiang, China
| | - James N. Arnold
- School of Cancer and Pharmaceutical Sciences, King’s College London, London SE1 1UL, UK
| |
Collapse
|
227
|
Fibroblast Differentiation and Matrix Remodeling Impaired under Simulated Microgravity in 3D Cell Culture Model. Int J Mol Sci 2021; 22:ijms222111911. [PMID: 34769342 PMCID: PMC8584780 DOI: 10.3390/ijms222111911] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Revised: 10/25/2021] [Accepted: 10/30/2021] [Indexed: 02/06/2023] Open
Abstract
Exposure to microgravity affects astronauts' health in adverse ways. However, less is known about the extent to which fibroblast differentiation during the wound healing process is affected by the lack of gravity. One of the key steps of this process is the differentiation of fibroblasts into myofibroblasts, which contribute functionally through extracellular matrix production and remodeling. In this work, we utilized collagen-based three-dimensional (3D) matrices to mimic interstitial tissue and studied fibroblast differentiation under simulated microgravity (sµG). Our results demonstrated that alpha-smooth muscle actin (αSMA) expression and translocation of Smad2/3 into the cell nucleus were reduced upon exposure to sµG compared to the 1g control, which suggests the impairment of fibroblast differentiation under sµG. Moreover, matrix remodeling and production were decreased under sµG, which is in line with the impaired fibroblast differentiation. We further investigated changes on a transcriptomic level using RNA sequencing. The results demonstrated that sµG has less effect on fibroblast transcriptomes, while sµG triggers changes in the transcriptome of myofibroblasts. Several genes and biological pathways found through transcriptome analysis have previously been reported to impair fibroblast differentiation. Overall, our data indicated that fibroblast differentiation, as well as matrix production and remodeling, are impaired in 3D culture under sµG conditions.
Collapse
|
228
|
Pajtók C, Veres-Székely A, Agócs R, Szebeni B, Dobosy P, Németh I, Veréb Z, Kemény L, Szabó AJ, Vannay Á, Tulassay T, Pap D. High salt diet impairs dermal tissue remodeling in a mouse model of IMQ induced dermatitis. PLoS One 2021; 16:e0258502. [PMID: 34723976 PMCID: PMC8559960 DOI: 10.1371/journal.pone.0258502] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2021] [Accepted: 09/28/2021] [Indexed: 02/02/2023] Open
Abstract
Recent animal studies, as well as quantitative sodium MRI observations on humans demonstrated that remarkable amounts of sodium can be stored in the skin. It is also known that excess sodium in the tissues leads to inflammation in various organs, but its role in dermal pathophysiology has not been elucidated. Therefore, our aim was to study the effect of dietary salt loading on inflammatory process and related extracellular matrix (ECM) remodeling in the skin. To investigate the effect of high salt consumption on inflammation and ECM production in the skin mice were kept on normal (NSD) or high salt (HSD) diet and then dermatitis was induced with imiquimod (IMQ) treatment. The effect of high salt concentration on dermal fibroblasts (DF) and peripheral blood mononuclear cells (PBMC) was also investigated in vitro. The HSD resulted in increased sodium content in the skin of mice. Inflammatory cytokine Il17 expression was elevated in the skin of HSD mice. Expression of anti-inflammatory Il10 and Il13 decreased in the skin of HSD or HSD IMQ mice. The fibroblast marker Acta2 and ECM component Fn and Col1a1 decreased in HSD IMQ mice. Expression of ECM remodeling related Pdgfb and activation phosphorylated (p)-SMAD2/3 was lower in HSD IMQ mice. In PBMCs, production of IL10, IL13 and PDGFB was reduced due to high salt loading. In cultured DFs high salt concentration resulted in decreased cell motility and ECM production, as well. Our results demonstrate that high dietary salt intake is associated with increased dermal pro-inflammatory status. Interestingly, although inflammation induces the synthesis of ECM in most organs, the expression of ECM decreased in the inflamed skin of mice on high salt diet. Our data suggest that salt intake may alter the process of skin remodeling.
Collapse
Affiliation(s)
- Csenge Pajtók
- 1st Department of Paediatrics, Semmelweis University, Budapest, Hungary
| | - Apor Veres-Székely
- 1st Department of Paediatrics, Semmelweis University, Budapest, Hungary
- ELKH-SE Pediatrics and Nephrology Research Group, Budapest, Hungary
| | - Róbert Agócs
- 1st Department of Paediatrics, Semmelweis University, Budapest, Hungary
| | - Beáta Szebeni
- 1st Department of Paediatrics, Semmelweis University, Budapest, Hungary
- ELKH-SE Pediatrics and Nephrology Research Group, Budapest, Hungary
| | - Péter Dobosy
- Institute of Aquatic Ecology, Centre for Ecological Research, Budapest, Hungary
| | - István Németh
- Faculty of Medicine, Department of Dermatology and Allergology, University of Szeged, Szeged, Hungary
| | - Zoltán Veréb
- Faculty of Medicine, Department of Dermatology and Allergology, University of Szeged, Szeged, Hungary
| | - Lajos Kemény
- Faculty of Medicine, Department of Dermatology and Allergology, University of Szeged, Szeged, Hungary
| | - Attila J. Szabó
- 1st Department of Paediatrics, Semmelweis University, Budapest, Hungary
- ELKH-SE Pediatrics and Nephrology Research Group, Budapest, Hungary
| | - Ádám Vannay
- ELKH-SE Pediatrics and Nephrology Research Group, Budapest, Hungary
| | - Tivadar Tulassay
- 1st Department of Paediatrics, Semmelweis University, Budapest, Hungary
- ELKH-SE Pediatrics and Nephrology Research Group, Budapest, Hungary
| | - Domonkos Pap
- 1st Department of Paediatrics, Semmelweis University, Budapest, Hungary
- ELKH-SE Pediatrics and Nephrology Research Group, Budapest, Hungary
| |
Collapse
|
229
|
Abstract
PURPOSE OF REVIEW Adipose tissue is closely associated with systemic sclerosis (SSc)-pathology, both anatomically and functionally. This review focuses on local effects of adipocytes in the context of adipose to mesenchymal transdifferentiation (AMT), effects of the adipose stromal vascular fraction on SSc pathogenesis and systemic effects of adipose tissue secretome. RECENT FINDINGS Novel populations of fibroblasts evolving from adipose tissue were identified- for example COL11+ cancer-associated fibroblasts differentiated from adipose-derived stromal cells. Lipofibroblasts in human lungs were described using nonconventional markers that allow more effective population identification. These findings could make an important contribution to further clarification of adipocyte involvement in SSc.Recent studies confirmed that lipolysis contributes to fibrogenesis through AMT differentiation and release of fatty acids (FA). Unbalanced metabolism of FA has been reported in several studies in SSc. Other adipose tissue secretome molecules (e.g. lysophosphatidic acid), novel adipokines and extracellular vesicles from adipose mesenchymal stem cells make important contributions to the pro-/antifibrotic balance. SUMMARY There is a growing evidence of important contribution of adipose tissue and its secretome to SSc pathogenesis. Novel techniques such as single-cell RNA sequencing (scRNAseq) and metabolomics, albeit challenging to use in adipose tissue, will provide further evidence.
Collapse
|
230
|
Fibroblast Memory in Development, Homeostasis and Disease. Cells 2021; 10:cells10112840. [PMID: 34831065 PMCID: PMC8616330 DOI: 10.3390/cells10112840] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2021] [Revised: 10/19/2021] [Accepted: 10/20/2021] [Indexed: 02/06/2023] Open
Abstract
Fibroblasts are the major cell population in the connective tissue of most organs, where they are essential for their structural integrity. They are best known for their role in remodelling the extracellular matrix, however more recently they have been recognised as a functionally highly diverse cell population that constantly responds and adapts to their environment. Biological memory is the process of a sustained altered cellular state and functions in response to a transient or persistent environmental stimulus. While it is well established that fibroblasts retain a memory of their anatomical location, how other environmental stimuli influence fibroblast behaviour and function is less clear. The ability of fibroblasts to respond and memorise different environmental stimuli is essential for tissue development and homeostasis and may become dysregulated in chronic disease conditions such as fibrosis and cancer. Here we summarise the four emerging key areas of fibroblast adaptation: positional, mechanical, inflammatory, and metabolic memory and highlight the underlying mechanisms and their implications in tissue homeostasis and disease.
Collapse
|
231
|
Soliman H, Theret M, Scott W, Hill L, Underhill TM, Hinz B, Rossi FMV. Multipotent stromal cells: One name, multiple identities. Cell Stem Cell 2021; 28:1690-1707. [PMID: 34624231 DOI: 10.1016/j.stem.2021.09.001] [Citation(s) in RCA: 92] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Multipotent stromal cells (MSCs) are vital for development, maintenance, function, and regeneration of most tissues. They can differentiate along multiple connective lineages, but unlike most other stem/progenitor cells, they carry out various other functions while maintaining their developmental potential. MSCs function as damage sensors, respond to injury by fostering regeneration through secretion of trophic factors as well as extracellular matrix (ECM) molecules, and contribute to fibrotic reparative processes when regeneration fails. Tissue-specific MSC identity, fate(s), and function(s) are being resolved through fate mapping coupled with single cell "omics," providing unparalleled insights into the secret lives of tissue-resident MSCs.
Collapse
Affiliation(s)
- Hesham Soliman
- School of Biomedical Engineering, University of British Columbia, Vancouver, BC V6T 1Z3, Canada; Aspect Biosystems, Vancouver, BC V6P 6P2, Canada
| | - Marine Theret
- School of Biomedical Engineering, University of British Columbia, Vancouver, BC V6T 1Z3, Canada
| | - Wilder Scott
- School of Biomedical Engineering, University of British Columbia, Vancouver, BC V6T 1Z3, Canada
| | - Lesley Hill
- School of Biomedical Engineering, University of British Columbia, Vancouver, BC V6T 1Z3, Canada
| | - Tully Michael Underhill
- School of Biomedical Engineering, University of British Columbia, Vancouver, BC V6T 1Z3, Canada; Department of Cellular and Physiological Sciences, University of British Columbia, Vancouver, BC V6T 1Z3, Canada
| | - Boris Hinz
- Laboratory of Tissue Repair and Regeneration, Faculty of Dentistry, University of Toronto, Toronto, ON M5S 1A1, Canada
| | - Fabio M V Rossi
- School of Biomedical Engineering, University of British Columbia, Vancouver, BC V6T 1Z3, Canada; Department of Medical Genetics, University of British Columbia, Vancouver, BC V6T 1Z3, Canada.
| |
Collapse
|
232
|
Stauber T, Wolleb M, Duss A, Jaeger PK, Heggli I, Hussien AA, Blache U, Snedeker JG. Extrinsic Macrophages Protect While Tendon Progenitors Degrade: Insights from a Tissue Engineered Model of Tendon Compartmental Crosstalk. Adv Healthc Mater 2021; 10:e2100741. [PMID: 34494401 PMCID: PMC11468160 DOI: 10.1002/adhm.202100741] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2021] [Revised: 07/30/2021] [Indexed: 12/15/2022]
Abstract
Tendons are among the most mechanically stressed tissues of the body, with a functional core of type-I collagen fibers maintained by embedded stromal fibroblasts known as tenocytes. The intrinsic load-bearing core compartment of tendon is surrounded, nourished, and repaired by the extrinsic peritendon, a synovial-like tissue compartment with access to tendon stem/progenitor cells as well as blood monocytes. In vitro tendon model systems generally lack this important feature of tissue compartmentalization, while in vivo models are cumbersome when isolating multicellular mechanisms. To bridge this gap, an improved in vitro model of explanted tendon core stromal tissue (mouse tail tendon fascicles) surrounded by cell-laden collagen hydrogels that mimic extrinsic tissue compartments is suggested. Using this model, CD146+ tendon stem/progenitor cell and CD45+ F4/80+ bone-marrow derived macrophage activity within a tendon injury-like niche are recapitulated. It is found that extrinsic stromal progenitors recruit to the damaged core, contribute to an overall increase in catabolic ECM gene expression, and accelerate the decrease in mechanical properties. Conversely, it is found that extrinsic bone-marrow derived macrophages in these conditions adopt a proresolution phenotype that mitigates rapid tissue breakdown by outwardly migrated tenocytes and F4/80+ "tenophages" from the intrinsic tissue core.
Collapse
Affiliation(s)
- Tino Stauber
- Department of OrthopedicsBalgrist University HospitalUniversity of ZurichLengghalde 5Zurich8008Switzerland
- Institute for BiomechanicsETH ZurichZurich8093Switzerland
| | - Maja Wolleb
- Department of OrthopedicsBalgrist University HospitalUniversity of ZurichLengghalde 5Zurich8008Switzerland
- Institute for BiomechanicsETH ZurichZurich8093Switzerland
| | - Anja Duss
- Department of OrthopedicsBalgrist University HospitalUniversity of ZurichLengghalde 5Zurich8008Switzerland
- Institute for BiomechanicsETH ZurichZurich8093Switzerland
| | - Patrick K. Jaeger
- Department of OrthopedicsBalgrist University HospitalUniversity of ZurichLengghalde 5Zurich8008Switzerland
- Institute for BiomechanicsETH ZurichZurich8093Switzerland
| | - Irina Heggli
- Center of Experimental RheumatologyDepartment of RheumatologyUniversity Hospital, University of ZurichLengghalde 5Zurich8008Switzerland
| | - Amro A. Hussien
- Department of OrthopedicsBalgrist University HospitalUniversity of ZurichLengghalde 5Zurich8008Switzerland
- Institute for BiomechanicsETH ZurichZurich8093Switzerland
| | - Ulrich Blache
- Department of OrthopedicsBalgrist University HospitalUniversity of ZurichLengghalde 5Zurich8008Switzerland
- Institute for BiomechanicsETH ZurichZurich8093Switzerland
- Fraunhofer Institute for Cell Therapy and Immunology04103LeipzigGermany
| | - Jess G. Snedeker
- Department of OrthopedicsBalgrist University HospitalUniversity of ZurichLengghalde 5Zurich8008Switzerland
- Institute for BiomechanicsETH ZurichZurich8093Switzerland
| |
Collapse
|
233
|
Martin KE, García AJ. Macrophage phenotypes in tissue repair and the foreign body response: Implications for biomaterial-based regenerative medicine strategies. Acta Biomater 2021; 133:4-16. [PMID: 33775905 PMCID: PMC8464623 DOI: 10.1016/j.actbio.2021.03.038] [Citation(s) in RCA: 203] [Impact Index Per Article: 50.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2020] [Revised: 03/15/2021] [Accepted: 03/16/2021] [Indexed: 12/14/2022]
Abstract
Macrophages are a highly heterogeneous and plastic population of cells that are crucial for tissue repair and regeneration. This has made macrophages a particularly attractive target for biomaterial-directed regenerative medicine strategies. However, macrophages also contribute to adverse inflammatory and fibrotic responses to implanted biomaterials, typically related to the foreign body response (FBR). The traditional model in the field asserts that the M2 macrophage phenotype is pro-regenerative and associated with positive wound healing outcomes, whereas the M1 phenotype is pro-inflammatory and associated with pathogenesis. However, recent studies indicate that both M1 and M2 macrophages play different, but equally vital, roles in promoting tissue repair. Furthermore, recent technological developments such as single-cell RNA sequencing have allowed for unprecedented insights into the heterogeneity within the myeloid compartment, related to activation state, niche, and ontogenetic origin. A better understanding of the phenotypic and functional characteristics of macrophages critical to tissue repair and FBR processes will allow for rational design of biomaterials to promote biomaterial-tissue integration and regeneration. In this review, we discuss the role of temporal and ontogenetic macrophage heterogeneity on tissue repair processes and the FBR and the potential implications for biomaterial-directed regenerative medicine applications. STATEMENT OF SIGNIFICANCE: This review outlines the contributions of different macrophage phenotypes to different phases of wound healing and angiogenesis. Pathological outcomes, such as chronic inflammation, fibrosis, and the foreign body response, related to disruption of the macrophage inflammation-resolution process are also discussed. We summarize recent insights into the vast heterogeneity of myeloid cells related to their niche, especially the biomaterial microenvironment, and ontogenetic origin. Additionally, we present a discussion on novel tools that allow for resolution of cellular heterogeneity at the single-cell level and how these can be used to build a better understanding of macrophage heterogeneity in the biomaterial immune microenvironment to better inform immunomodulatory biomaterial design.
Collapse
Affiliation(s)
- Karen E Martin
- Woodruff School of Mechanical Engineering, Georgia Institute of Technology, Atlanta, GA 30332, USA; Petit Institute for Bioengineering and Biosciences, Georgia Institute of Technology, Atlanta, GA 30332, USA
| | - Andrés J García
- Woodruff School of Mechanical Engineering, Georgia Institute of Technology, Atlanta, GA 30332, USA; Petit Institute for Bioengineering and Biosciences, Georgia Institute of Technology, Atlanta, GA 30332, USA.
| |
Collapse
|
234
|
Dai X, Lei TC. Botulinum toxin A promotes the transdifferentiation of primary keloid myofibroblasts into adipocyte-like cells. Basic Clin Pharmacol Toxicol 2021; 129:462-469. [PMID: 34571584 DOI: 10.1111/bcpt.13661] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2021] [Revised: 08/31/2021] [Accepted: 09/17/2021] [Indexed: 11/30/2022]
Abstract
Keloid is a type of unusually raised scar. Botulinum toxin A (BTX-A) has a great application potential in keloids treatment. Here, we investigated the functional role of BTX-A in keloids. We separated keloid tissues and normal skin tissues from keloid patients and found that the expression of myofibroblast markers, α-SMA, Collagen I, and Collagen III was increased in the keloid tissues as compared with normal skin tissues. Keloid fibroblasts derived from keloid tissues were treated with TGF-β1 to induce the differentiation of fibroblasts into myofibroblasts. The keloid myofibroblasts displayed a significant up-regulation of α-SMA. BTX-A enhanced the expression of adipocyte markers, PPARγ and C/EBPα, and increased the accumulation of lipid droplets, and reduced the expression of α-SMA, Collagen I, and Collagen III in the keloid myofibroblasts. Moreover, BTX-A enhanced the expression of BMP4 and p-smad1/5/8. Noggin (BMP4 antagonist) treatment reversed BTX-A-mediated increase of PPARγ and C/EBPα expression and lipid droplets, and down-regulation of α-SMA, Collagen I, and Collagen III in primary keloid myofibroblasts. In conclusion, BTX-A promoted the transdifferentiation of primary keloid myofibroblasts into adipocyte-like cells, which may attribute to activate BMP4/Smad signalling pathway. Thus, this study provides new insights into the mechanism of BTX-A in keloid.
Collapse
Affiliation(s)
- Xing Dai
- Department of Skin Medical Cosmetology, Renmin Hospital of Wuhan University, Wuhan, Hubei, China
| | - Tie-Chi Lei
- Department of Dermatology, Renmin Hospital of Wuhan University, Wuhan, Hubei, China
| |
Collapse
|
235
|
Yu Y, Wu H, Zhang Q, Ogawa R, Fu S. Emerging insights into the immunological aspects of keloids. J Dermatol 2021; 48:1817-1826. [PMID: 34549462 DOI: 10.1111/1346-8138.16149] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2021] [Revised: 08/18/2021] [Accepted: 08/25/2021] [Indexed: 12/21/2022]
Abstract
A special kind of scar, keloid, sometimes grows huge, disturbing patients in different ways. We discussed the pathogenesis of keloids and found researches about fibroblasts and collagen disorders, with little emphasis on immunity. Coupled with few effective treatments in keloid at present, we have focused on the immunological mechanisms of keloids with an aim to unravel some new therapeutic approaches in the future. In this review, the immunological processes are separately illustrated by the classification of different immune cells. In addition, we also discuss possible reasons for the repeated recurrence of keloids, the phenomenon of cell talks, and inflammation-related signal pathways involved in the pathogenesis of keloids.
Collapse
Affiliation(s)
- Yangyiyi Yu
- Hunan Key Laboratory of Medical Epigenomics, Department of Dermatology, Second Xiangya Hospital, Central South University, Changsha, China
| | - Haijing Wu
- Hunan Key Laboratory of Medical Epigenomics, Department of Dermatology, Second Xiangya Hospital, Central South University, Changsha, China
| | - Qing Zhang
- Hunan Key Laboratory of Medical Epigenomics, Department of Dermatology, Second Xiangya Hospital, Central South University, Changsha, China
| | - Rei Ogawa
- Department of Plastic, Reconstructive and Aesthetic Surgery, Nippon Medical School, Tokyo, Japan
| | - Siqi Fu
- Hunan Key Laboratory of Medical Epigenomics, Department of Dermatology, Second Xiangya Hospital, Central South University, Changsha, China
| |
Collapse
|
236
|
Disrupting biological sensors of force promotes tissue regeneration in large organisms. Nat Commun 2021; 12:5256. [PMID: 34489407 PMCID: PMC8421385 DOI: 10.1038/s41467-021-25410-z] [Citation(s) in RCA: 47] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2020] [Accepted: 08/06/2021] [Indexed: 12/31/2022] Open
Abstract
Tissue repair and healing remain among the most complicated processes that occur during postnatal life. Humans and other large organisms heal by forming fibrotic scar tissue with diminished function, while smaller organisms respond with scarless tissue regeneration and functional restoration. Well-established scaling principles reveal that organism size exponentially correlates with peak tissue forces during movement, and evolutionary responses have compensated by strengthening organ-level mechanical properties. How these adaptations may affect tissue injury has not been previously examined in large animals and humans. Here, we show that blocking mechanotransduction signaling through the focal adhesion kinase pathway in large animals significantly accelerates wound healing and enhances regeneration of skin with secondary structures such as hair follicles. In human cells, we demonstrate that mechanical forces shift fibroblasts toward pro-fibrotic phenotypes driven by ERK-YAP activation, leading to myofibroblast differentiation and excessive collagen production. Disruption of mechanical signaling specifically abrogates these responses and instead promotes regenerative fibroblast clusters characterized by AKT-EGR1. Humans and other large mammals heal wounds by forming fibrotic scar tissue with diminished function. Here, the authors show that disrupting mechanotransduction through the focal adhesion kinase pathway in large animals accelerates healing, prevents fibrosis, and enhances skin regeneration.
Collapse
|
237
|
Xia Y, Sokhi UK, Bell RD, Pannellini T, Turajane K, Niu Y, Frye L, Chao M, Ayturk U, Otero M, Bostrom M, Oliver D, Yang X, Ivashkiv LB. Immune and repair responses in joint tissues and lymph nodes after knee arthroplasty surgery in mice. J Bone Miner Res 2021; 36:1765-1780. [PMID: 34076292 PMCID: PMC8727029 DOI: 10.1002/jbmr.4381] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/05/2020] [Revised: 05/21/2021] [Accepted: 05/23/2021] [Indexed: 12/13/2022]
Abstract
The importance of a local tissue immune response in healing injured tissues such as skin and lung is well established. Little is known about whether sterile wounds elicit lymph node (LN) responses and inflammatory responses after injury of musculoskeletal tissues that are mechanically loaded during the repair response. We investigated LN and tissue immune responses in a tibial implant model of joint replacement surgery where wounded tissue is subjected to movement and mechanical loading postoperatively. Draining inguinal and iliac LNs expanded postoperatively, including increases in regulatory T cells and activation of a subset of T cells. Thus, tissue injury was actively sensed in secondary lymphoid organs, with the potential to activate adaptive immunity. Joint tissues exhibited three temporally distinct immune response components, including a novel interferon (IFN) response with activation of signal transducer and activator of transcription (STAT) and interferon regulatory factor (IRF) pathways. Fibrovascular tissue formation was not associated with a macrophage type 2 (M2) reparative immune response, but instead with delayed induction of interleukin-1 family (IL-1β, IL-33, IL-36), IL-17, and prostaglandin pathway genes concomitant with transforming growth factor (TGF)-β and growth factor signaling, fibroblast activation, and tissue formation. Tissue remodeling was associated with activity of the HOX antisense intergenic RNA (HOTAIR) pathway. These results provide insights into immune responses and regulation of tissue healing after knee arthroplasty that potentially can be used to develop therapeutic strategies to improve healing, prevent arthrofibrosis, and improve surgical outcomes. © 2021 American Society for Bone and Mineral Research (ASBMR).
Collapse
Affiliation(s)
- Yunwei Xia
- Research Institute, Hospital for Special Surgery, New York, New York, USA
- David Z. Rosensweig Genomics Research Center, Hospital for Special Surgery, New York, New York, USA
| | - Upneet K. Sokhi
- Research Institute, Hospital for Special Surgery, New York, New York, USA
- David Z. Rosensweig Genomics Research Center, Hospital for Special Surgery, New York, New York, USA
| | - Richard D. Bell
- Research Institute, Hospital for Special Surgery, New York, New York, USA
- David Z. Rosensweig Genomics Research Center, Hospital for Special Surgery, New York, New York, USA
| | - Tania Pannellini
- Research Institute, Hospital for Special Surgery, New York, New York, USA
- Department of Pathology, Hospital for Special Surgery, New York, New York, USA
| | - Kathleen Turajane
- Research Institute, Hospital for Special Surgery, New York, New York, USA
- Arthroplasty Research Laboratory, Hospital for Special Surgery, New York, New York, USA
| | - Yingzhen Niu
- Research Institute, Hospital for Special Surgery, New York, New York, USA
- Arthroplasty Research Laboratory, Hospital for Special Surgery, New York, New York, USA
| | - Laura Frye
- Research Institute, Hospital for Special Surgery, New York, New York, USA
- David Z. Rosensweig Genomics Research Center, Hospital for Special Surgery, New York, New York, USA
| | - Max Chao
- Research Institute, Hospital for Special Surgery, New York, New York, USA
- David Z. Rosensweig Genomics Research Center, Hospital for Special Surgery, New York, New York, USA
| | - Ugur Ayturk
- Research Institute, Hospital for Special Surgery, New York, New York, USA
| | - Miguel Otero
- Research Institute, Hospital for Special Surgery, New York, New York, USA
- David Z. Rosensweig Genomics Research Center, Hospital for Special Surgery, New York, New York, USA
- Department of Orthopaedics, Weill Cornell Medicine, New York, New York, USA
| | - Mathias Bostrom
- Research Institute, Hospital for Special Surgery, New York, New York, USA
- Arthroplasty Research Laboratory, Hospital for Special Surgery, New York, New York, USA
- Department of Orthopaedics, Weill Cornell Medicine, New York, New York, USA
| | - David Oliver
- Research Institute, Hospital for Special Surgery, New York, New York, USA
- David Z. Rosensweig Genomics Research Center, Hospital for Special Surgery, New York, New York, USA
| | - Xu Yang
- Research Institute, Hospital for Special Surgery, New York, New York, USA
- Arthroplasty Research Laboratory, Hospital for Special Surgery, New York, New York, USA
| | - Lionel B. Ivashkiv
- Research Institute, Hospital for Special Surgery, New York, New York, USA
- David Z. Rosensweig Genomics Research Center, Hospital for Special Surgery, New York, New York, USA
- Department of Medicine, Weill Cornell Medicine, New York, New York, USA
- Immunology and Microbial Pathogenesis Program, Weill Cornell Medicine, New York, New York, USA
| |
Collapse
|
238
|
Griffin MF, Huber J, Evan FJ, Quarto N, Longaker MT. The role of Wnt signaling in skin fibrosis. Med Res Rev 2021; 42:615-628. [PMID: 34431110 DOI: 10.1002/med.21853] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2020] [Revised: 05/14/2021] [Accepted: 08/17/2021] [Indexed: 12/20/2022]
Abstract
Skin fibrosis is the excessive deposition of extracellular matrix in the dermis. Cutaneous fibrosis can occur following tissue injury, including burns, trauma, and surgery, resulting in scars that are disfiguring, limit movement and cause significant psychological distress for patients. Many molecular pathways have been implicated in the development of skin fibrosis, yet effective treatments to prevent or reverse scarring are unknown. The Wnt signaling pathways are known to play an important role in skin homeostasis, skin injury, and in the development of fibrotic skin diseases. This review provides a detailed overview of the role of the canonical Wnt signaling pathways in regulating skin scarring. We also discuss how Wnt signaling interacts with other known fibrotic molecular pathways to cause skin fibrosis. We further provide a summary of the different Wnt inhibitor types available for treating skin scarring. Understanding the role of the Wnt pathway in cutaneous fibrosis will accelerate the development of effective Wnt modulators for the treatment of skin fibrosis.
Collapse
Affiliation(s)
- Michelle F Griffin
- Hagey Laboratory for Pediatric Regenerative Medicine, Division of Plastic Surgery, Department of Surgery, Stanford, California, USA
| | - Julika Huber
- Hagey Laboratory for Pediatric Regenerative Medicine, Division of Plastic Surgery, Department of Surgery, Stanford, California, USA
| | - Fahy J Evan
- Hagey Laboratory for Pediatric Regenerative Medicine, Division of Plastic Surgery, Department of Surgery, Stanford, California, USA
| | - Natalina Quarto
- Hagey Laboratory for Pediatric Regenerative Medicine, Division of Plastic Surgery, Department of Surgery, Stanford, California, USA.,Stanford Institute for Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, Stanford, California, USA
| | - Michael T Longaker
- Hagey Laboratory for Pediatric Regenerative Medicine, Division of Plastic Surgery, Department of Surgery, Stanford, California, USA.,Stanford Institute for Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, Stanford, California, USA
| |
Collapse
|
239
|
Ullm F, Pompe T. Fibrillar biopolymer-based scaffolds to study macrophage-fibroblast crosstalk in wound repair. Biol Chem 2021; 402:1309-1324. [PMID: 34392640 DOI: 10.1515/hsz-2021-0164] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2021] [Accepted: 07/09/2021] [Indexed: 01/02/2023]
Abstract
Controlled wound healing requires a temporal and spatial coordination of cellular activities within the surrounding extracellular matrix (ECM). Disruption of cell-cell and cell-matrix communication results in defective repair, like chronic or fibrotic wounds. Activities of macrophages and fibroblasts crucially contribute to the fate of closing wounds. To investigate the influence of the ECM as an active part controlling cellular behavior, coculture models based on fibrillar 3D biopolymers such as collagen have already been successfully used. With well-defined biochemical and biophysical properties such 3D scaffolds enable in vitro studies on cellular processes including infiltration and differentiation in an in vivo like microenvironment. Further, paracrine and autocrine signaling as well as modulation of soluble mediator transport inside the ECM can be modeled using fibrillar 3D scaffolds. Herein, we review the usage of these scaffolds in in vitro coculture models allowing in-depth studies on the crosstalk between macrophages and fibroblasts during different stages of cutaneous wound healing. A more accurate mimicry of the various processes of cellular crosstalk at the different stages of wound healing will contribute to a better understanding of the impact of biochemical and biophysical environmental parameters and help to develop further strategies against diseases such as fibrosis.
Collapse
Affiliation(s)
- Franziska Ullm
- Faculty of Life Sciences, Institute of Biochemistry, Leipzig University, D-04103Leipzig, Germany
| | - Tilo Pompe
- Faculty of Life Sciences, Institute of Biochemistry, Leipzig University, D-04103Leipzig, Germany
| |
Collapse
|
240
|
Torregrossa M, Kakpenova A, Simon JC, Franz S. Modulation of macrophage functions by ECM-inspired wound dressings - a promising therapeutic approach for chronic wounds. Biol Chem 2021; 402:1289-1307. [PMID: 34390641 DOI: 10.1515/hsz-2021-0145] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2021] [Accepted: 08/02/2021] [Indexed: 12/24/2022]
Abstract
Nonhealing chronic wounds are among the most common skin disorders with increasing incidence worldwide. However, their treatment is still dissatisfying, that is why novel therapeutic concepts targeting the sustained inflammatory process have emerged. Increasing understanding of chronic wound pathologies has put macrophages in the spotlight of such approaches. Herein, we review current concepts and perspectives of therapeutic macrophage control by ECM-inspired wound dressing materials. We provide an overview of the current understanding of macrophage diversity with particular view on their roles in skin and in physiological and disturbed wound healing processes. Based on this we discuss strategies for their modulation in chronic wounds and how such strategies can be tailored in ECM-inspired wound dressing. The latter utilize and mimic general principles of ECM-mediated cell control, such as binding and delivery of signaling molecules and direct signaling to cells specifically adapted for macrophage regulation in wounds. In this review, we present examples of most recent approaches and discuss ideas for their further development.
Collapse
Affiliation(s)
- Marta Torregrossa
- Department of Dermatology, Venerology and Allergology, Max Bürger Research Centre, Leipzig University, Johannisallee 30, D-04103 Leipzig, Germany
| | - Ainur Kakpenova
- Department of Dermatology, Venerology and Allergology, Max Bürger Research Centre, Leipzig University, Johannisallee 30, D-04103 Leipzig, Germany
| | - Jan C Simon
- Department of Dermatology, Venerology and Allergology, Max Bürger Research Centre, Leipzig University, Johannisallee 30, D-04103 Leipzig, Germany
| | - Sandra Franz
- Department of Dermatology, Venerology and Allergology, Max Bürger Research Centre, Leipzig University, Johannisallee 30, D-04103 Leipzig, Germany
| |
Collapse
|
241
|
Myofibroblasts: Function, Formation, and Scope of Molecular Therapies for Skin Fibrosis. Biomolecules 2021; 11:biom11081095. [PMID: 34439762 PMCID: PMC8391320 DOI: 10.3390/biom11081095] [Citation(s) in RCA: 123] [Impact Index Per Article: 30.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2021] [Revised: 07/16/2021] [Accepted: 07/20/2021] [Indexed: 12/11/2022] Open
Abstract
Myofibroblasts are contractile, α-smooth muscle actin-positive cells with multiple roles in pathophysiological processes. Myofibroblasts mediate wound contractions, but their persistent presence in tissues is central to driving fibrosis, making them attractive cell targets for the development of therapeutic treatments. However, due to shared cellular markers with several other phenotypes, the specific targeting of myofibroblasts has long presented a scientific and clinical challenge. In recent years, myofibroblasts have drawn much attention among scientific research communities from multiple disciplines and specialisations. As further research uncovers the characterisations of myofibroblast formation, function, and regulation, the realisation of novel interventional routes for myofibroblasts within pathologies has emerged. The research community is approaching the means to finally target these cells, to prevent fibrosis, accelerate scarless wound healing, and attenuate associated disease-processes in clinical settings. This comprehensive review article describes the myofibroblast cell phenotype, their origins, and their diverse physiological and pathological functionality. Special attention has been given to mechanisms and molecular pathways governing myofibroblast differentiation, and updates in molecular interventions.
Collapse
|
242
|
Plikus MV, Wang X, Sinha S, Forte E, Thompson SM, Herzog EL, Driskell RR, Rosenthal N, Biernaskie J, Horsley V. Fibroblasts: Origins, definitions, and functions in health and disease. Cell 2021; 184:3852-3872. [PMID: 34297930 PMCID: PMC8566693 DOI: 10.1016/j.cell.2021.06.024] [Citation(s) in RCA: 538] [Impact Index Per Article: 134.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2021] [Revised: 05/28/2021] [Accepted: 06/17/2021] [Indexed: 02/07/2023]
Abstract
Fibroblasts are diverse mesenchymal cells that participate in tissue homeostasis and disease by producing complex extracellular matrix and creating signaling niches through biophysical and biochemical cues. Transcriptionally and functionally heterogeneous across and within organs, fibroblasts encode regional positional information and maintain distinct cellular progeny. We summarize their development, lineages, functions, and contributions to fibrosis in four fibroblast-rich organs: skin, lung, skeletal muscle, and heart. We propose that fibroblasts are uniquely poised for tissue repair by easily reentering the cell cycle and exhibiting a reversible plasticity in phenotype and cell fate. These properties, when activated aberrantly, drive fibrotic disorders in humans.
Collapse
Affiliation(s)
- Maksim V Plikus
- Department of Developmental and Cell Biology, University of California, Irvine, Irvine, CA 92697, USA; Sue and Bill Gross Stem Cell Research Center, University of California, Irvine, Irvine, CA 92697, USA; NSF-Simons Center for Multiscale Cell Fate Research, University of California, Irvine, Irvine, CA 92697, USA; Center for Complex Biological Systems, University of California, Irvine, Irvine, CA 92697, USA.
| | - Xiaojie Wang
- Department of Developmental and Cell Biology, University of California, Irvine, Irvine, CA 92697, USA; Sue and Bill Gross Stem Cell Research Center, University of California, Irvine, Irvine, CA 92697, USA; NSF-Simons Center for Multiscale Cell Fate Research, University of California, Irvine, Irvine, CA 92697, USA
| | - Sarthak Sinha
- Department of Comparative Biology and Experimental Medicine, Faculty of Veterinary Medicine, University of Calgary, Calgary, AB T2N 4N1, Canada
| | - Elvira Forte
- The Jackson Laboratory, Bar Harbor, ME 04609, USA; National Heart and Lung Institute, Imperial College London, London SW7 2BX, UK
| | - Sean M Thompson
- School of Molecular Biosciences, Washington State University, Pullman, WA 99164, USA
| | - Erica L Herzog
- Department of Internal Medicine, Yale School of Medicine, New Haven, CT 06520, USA.
| | - Ryan R Driskell
- School of Molecular Biosciences, Washington State University, Pullman, WA 99164, USA; Center for Reproductive Biology, Washington State University, Pullman, WA 99164, USA.
| | - Nadia Rosenthal
- The Jackson Laboratory, Bar Harbor, ME 04609, USA; National Heart and Lung Institute, Imperial College London, London SW7 2BX, UK.
| | - Jeff Biernaskie
- Department of Comparative Biology and Experimental Medicine, Faculty of Veterinary Medicine, University of Calgary, Calgary, AB T2N 4N1, Canada; Department of Surgery, Cumming School of Medicine, University of Calgary, Calgary, AB T2N 4N1, Canada; Alberta Children's Hospital Research Institute, University of Calgary, Calgary, AB T2N 4N1, Canada; Hotchkiss Brain Institute, University of Calgary, Calgary, AB T2N 4N1, Canada.
| | - Valerie Horsley
- Department of Molecular, Cellular, and Developmental Biology, Yale University, New Haven, CT 06520, USA; Department of Dermatology, Yale School of Medicine, New Haven, CT 06520, USA.
| |
Collapse
|
243
|
Hu J, Yang R, Qin H, Sun Y, Qu L, Li Z. Spying on the Polarity Dynamics during Wound Healing of Zebrafish by Using Rationally Designed Carbon Dots. Adv Healthc Mater 2021; 10:e2002268. [PMID: 34165910 DOI: 10.1002/adhm.202002268] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2020] [Revised: 05/27/2021] [Indexed: 12/20/2022]
Abstract
Wound healing is an essential and complex biological process. Research into its mechanism and factors that influence its effectiveness has led to better treatments. Changes in the microenvironment are demonstrated to affect wound healing. Cell polarity is a significant microenvironment-related parameter that is associated with many physiological and pathological activities. However, dynamic changes in polarity during wound healing have not been investigated. Monitoring cell polarity during wound healing may open up a new avenue for developing better treatments. Here, a method is developed to monitor cell polarity that involved taking advantage of the fascinating optical properties and biocompatibility of carbon dots (CDs). Specifically, near-infrared (NIR) polarity-sensitive N-phenyl-p-phenylenediamine (PPh-CDs) are successfully prepared, which exhibit high sensitivity to polarity, with 509-fold stronger fluorescence in dioxane than in water. The PPh-CDs are successfully applied to monitor the changes of lysosomal polarity during starvation conditions. Using this method, dynamic changes of polarity during wound healing of zebrafish are monitored for the first time. Upon an amputation performed at the zebrafish tail, stronger PPh-CDs fluorescence appeared at the wound sites, and the intensity increased for 25 min and then gradually decreased. This report provides an important experimental basis for investigating wound healing by employing polarity-sensitive CDs.
Collapse
Affiliation(s)
- Jingyu Hu
- College of Chemistry Green Catalysis Center Henan Joint International Research Laboratory of Green Construction of Functional Molecules and Their Bioanalytical Applications Zhengzhou Key Laboratory of Functional Nanomaterial and Medical Theranostic Zhengzhou University Zhengzhou 450001 P. R. China
| | - Ran Yang
- College of Chemistry Green Catalysis Center Henan Joint International Research Laboratory of Green Construction of Functional Molecules and Their Bioanalytical Applications Zhengzhou Key Laboratory of Functional Nanomaterial and Medical Theranostic Zhengzhou University Zhengzhou 450001 P. R. China
| | - Haoyue Qin
- College of Chemistry Green Catalysis Center Henan Joint International Research Laboratory of Green Construction of Functional Molecules and Their Bioanalytical Applications Zhengzhou Key Laboratory of Functional Nanomaterial and Medical Theranostic Zhengzhou University Zhengzhou 450001 P. R. China
| | - Yuanqiang Sun
- College of Chemistry Green Catalysis Center Henan Joint International Research Laboratory of Green Construction of Functional Molecules and Their Bioanalytical Applications Zhengzhou Key Laboratory of Functional Nanomaterial and Medical Theranostic Zhengzhou University Zhengzhou 450001 P. R. China
| | - Lingbo Qu
- College of Chemistry Green Catalysis Center Henan Joint International Research Laboratory of Green Construction of Functional Molecules and Their Bioanalytical Applications Zhengzhou Key Laboratory of Functional Nanomaterial and Medical Theranostic Zhengzhou University Zhengzhou 450001 P. R. China
| | - Zhaohui Li
- College of Chemistry Green Catalysis Center Henan Joint International Research Laboratory of Green Construction of Functional Molecules and Their Bioanalytical Applications Zhengzhou Key Laboratory of Functional Nanomaterial and Medical Theranostic Zhengzhou University Zhengzhou 450001 P. R. China
| |
Collapse
|
244
|
Walker JT, Flynn LE, Hamilton DW. Lineage tracing of Foxd1-expressing embryonic progenitors to assess the role of divergent embryonic lineages on adult dermal fibroblast function. FASEB Bioadv 2021; 3:541-557. [PMID: 34258523 PMCID: PMC8255845 DOI: 10.1096/fba.2020-00110] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2020] [Revised: 02/16/2021] [Accepted: 02/24/2021] [Indexed: 01/10/2023] Open
Abstract
Recent studies have highlighted the functional diversity of dermal fibroblast populations in health and disease, with part of this diversity linked to fibroblast lineage and embryonic origin. Fibroblasts derived from foxd1-expressing progenitors contribute to the myofibroblast populations present in lung and kidney fibrosis in mice but have not been investigated in the context of dermal wound repair. Using a Cre/Lox system to genetically track populations derived from foxd1-expressing progenitors, lineage-positive fibroblasts were identified as a subset of the dermal fibroblast population. During development, lineage-positive cells were most abundant within the dorsal embryonic tissues, contributing to the developing dermal fibroblast population, and remaining in this niche into adulthood. In adult mice, assessment of fibrosis-related gene expression in lineage-positive and lineage-negative populations isolated from wounded and unwounded dorsal skin was performed, identifying an enrichment of transcripts associated with matrix synthesis and remodeling in the lineage-positive populations. Using a novel excisional wound model, ventral skin healed with a greatly reduced frequency of foxd1 lineage-positive cells. This work supports that the embryonic origin of fibroblasts is an important predictor of fibroblast function, but also highlights that within disparate regions, fibroblasts of different lineages likely undergo convergent differentiation contributing to phenotypic similarities.
Collapse
Affiliation(s)
- John T. Walker
- Department of Anatomy and Cell BiologySchulich School of Medicine and DentistryThe University of Western OntarioLondonOntarioCanada
| | - Lauren E. Flynn
- Department of Anatomy and Cell BiologySchulich School of Medicine and DentistryThe University of Western OntarioLondonOntarioCanada
- Department of Chemical and Biochemical EngineeringThompson Engineering BuildingThe University of Western OntarioLondonONCanada
| | - Douglas W. Hamilton
- Department of Anatomy and Cell BiologySchulich School of Medicine and DentistryThe University of Western OntarioLondonOntarioCanada
- Division of Oral BiologySchulich School of Medicine and DentistryThe University of Western OntarioLondonONCanada
| |
Collapse
|
245
|
Vasse GF, Nizamoglu M, Heijink IH, Schlepütz M, van Rijn P, Thomas MJ, Burgess JK, Melgert BN. Macrophage-stroma interactions in fibrosis: biochemical, biophysical, and cellular perspectives. J Pathol 2021; 254:344-357. [PMID: 33506963 PMCID: PMC8252758 DOI: 10.1002/path.5632] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2020] [Revised: 12/18/2020] [Accepted: 01/08/2021] [Indexed: 12/16/2022]
Abstract
Fibrosis results from aberrant wound healing and is characterized by an accumulation of extracellular matrix, impairing the function of an affected organ. Increased deposition of extracellular matrix proteins, disruption of matrix degradation, but also abnormal post-translational modifications alter the biochemical composition and biophysical properties of the tissue microenvironment - the stroma. Macrophages are known to play an important role in wound healing and tissue repair, but the direct influence of fibrotic stroma on macrophage behaviour is still an under-investigated element in the pathogenesis of fibrosis. In this review, the current knowledge on interactions between macrophages and (fibrotic) stroma will be discussed from biochemical, biophysical, and cellular perspectives. Furthermore, we provide future perspectives with regard to how macrophage-stroma interactions can be examined further to ultimately facilitate more specific targeting of these interactions in the treatment of fibrosis. © 2021 The Authors. The Journal of Pathology published by John Wiley & Sons, Ltd. on behalf of The Pathological Society of Great Britain and Ireland.
Collapse
Affiliation(s)
- Gwenda F Vasse
- University of Groningen, University Medical Center GroningenBiomedical Engineering Department‐FB40GroningenThe Netherlands
- University of Groningen, University Medical Center Groningen, W.J. Kolff Institute for Biomedical Engineering and Materials ScienceGroningenThe Netherlands
- University of Groningen, Department of Molecular PharmacologyGroningen Research Institute for PharmacyGroningenThe Netherlands
- University of Groningen, University Medical Center Groningen, Groningen Research Institute for Asthma and COPD (GRIAC)GroningenThe Netherlands
| | - Mehmet Nizamoglu
- University of Groningen, University Medical Center Groningen, Groningen Research Institute for Asthma and COPD (GRIAC)GroningenThe Netherlands
- University of Groningen, University Medical Center GroningenDepartment of Pathology and Medical BiologyGroningenThe Netherlands
| | - Irene H Heijink
- University of Groningen, University Medical Center Groningen, Groningen Research Institute for Asthma and COPD (GRIAC)GroningenThe Netherlands
- University of Groningen, University Medical Center GroningenDepartment of Pathology and Medical BiologyGroningenThe Netherlands
- University of Groningen, University Medical Center GroningenDepartment of PulmonologyGroningenThe Netherlands
| | - Marco Schlepütz
- Immunology & Respiratory Diseases ResearchBoehringer Ingelheim Pharma GmbH & Co KGBiberach an der RissGermany
| | - Patrick van Rijn
- University of Groningen, University Medical Center GroningenBiomedical Engineering Department‐FB40GroningenThe Netherlands
- University of Groningen, University Medical Center Groningen, W.J. Kolff Institute for Biomedical Engineering and Materials ScienceGroningenThe Netherlands
| | - Matthew J Thomas
- Immunology & Respiratory Diseases ResearchBoehringer Ingelheim Pharma GmbH & Co KGBiberach an der RissGermany
| | - Janette K Burgess
- University of Groningen, University Medical Center Groningen, W.J. Kolff Institute for Biomedical Engineering and Materials ScienceGroningenThe Netherlands
- University of Groningen, University Medical Center Groningen, Groningen Research Institute for Asthma and COPD (GRIAC)GroningenThe Netherlands
- University of Groningen, University Medical Center GroningenDepartment of Pathology and Medical BiologyGroningenThe Netherlands
| | - Barbro N Melgert
- University of Groningen, Department of Molecular PharmacologyGroningen Research Institute for PharmacyGroningenThe Netherlands
- University of Groningen, University Medical Center Groningen, Groningen Research Institute for Asthma and COPD (GRIAC)GroningenThe Netherlands
| |
Collapse
|
246
|
Wang J, Li D, Pan Y, Li J, Jiang Q, Liu D, Hou Y. Interleukin-34 accelerates intrauterine adhesions progress related to CX3CR1 + monocytes/macrophages. Eur J Immunol 2021; 51:2501-2512. [PMID: 34138470 DOI: 10.1002/eji.202149174] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2021] [Revised: 06/04/2021] [Indexed: 01/14/2023]
Abstract
Intrauterine adhesions (IUA) are characterized by endometrial fibrosis and impose a great challenge for female reproduction. IL-34 is profoundly involved in various fibrotic diseases through regulating the survival, proliferation, and differentiation of monocytes/macrophages. However, it remains unclear how IL-34 regulates monocytes/macrophages in context of IUA. Here, we showed that the expression level of IL-34 and the amount of CX3CR1+ monocytes/macrophages were significantly increased in endometrial tissues of IUA patients. IL-34 promoted the differentiation of monocytes/macrophages, which express CX3CR1 via CSF-1R/P13K/Akt pathway in vitro. Moreover, IL-34-induced CX3CR1+ monocytes/macrophages promoted the differentiation of endometrial stromal cells into myofibroblasts. Of note, IL-34 caused endometrial fibrosis and increased the amount of CX3CR1+ monocytes/macrophages in endometrial tissues in vivo. IL-34 modulated endometrial fibrosis by regulating monocytes/macrophages since the elimination of endometrial monocytes/macrophages significantly suppressed the profibrotic function of IL-34. Finally, blocking of IL-34 in the LPS-IUA model resulted in the improvement of endometrial fibrosis and decreased number of CX3CR1+ monocytes/macrophages. Our studies uncover the novel mechanism of interaction between IL-34-induced CX3CR1+ monocytes/macrophages and endometrial stromal cells in endometrial fibrosis pathogenesis, and highlight IL-34 as a critical target for treating IUA.
Collapse
Affiliation(s)
- Jiali Wang
- The State Key Laboratory of Pharmaceutical Biotechnology, Division of Immunology, Medical School, Nanjing University, Nanjing, China
| | - Dan Li
- The State Key Laboratory of Pharmaceutical Biotechnology, Division of Immunology, Medical School, Nanjing University, Nanjing, China
| | - Yuchen Pan
- The State Key Laboratory of Pharmaceutical Biotechnology, Division of Immunology, Medical School, Nanjing University, Nanjing, China
| | - Jingman Li
- The State Key Laboratory of Pharmaceutical Biotechnology, Division of Immunology, Medical School, Nanjing University, Nanjing, China
| | - Qi Jiang
- The State Key Laboratory of Pharmaceutical Biotechnology, Division of Immunology, Medical School, Nanjing University, Nanjing, China
| | - Dan Liu
- Department of Obstetrics and Gynecology, The Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing, China
| | - Yayi Hou
- The State Key Laboratory of Pharmaceutical Biotechnology, Division of Immunology, Medical School, Nanjing University, Nanjing, China.,Jiangsu Key Laboratory of Molecular Medicine, Medical School, Nanjing University, Nanjing, China
| |
Collapse
|
247
|
Sawant M, Hinz B, Schönborn K, Zeinert I, Eckes B, Krieg T, Schuster R. A story of fibers and stress: Matrix-embedded signals for fibroblast activation in the skin. Wound Repair Regen 2021; 29:515-530. [PMID: 34081361 DOI: 10.1111/wrr.12950] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2021] [Revised: 05/13/2021] [Accepted: 05/28/2021] [Indexed: 12/12/2022]
Abstract
Our skin is continuously exposed to mechanical challenge, including shear, stretch, and compression. The extracellular matrix of the dermis is perfectly suited to resist these challenges and maintain integrity of normal skin even upon large strains. Fibroblasts are the key cells that interpret mechanical and chemical cues in their environment to turnover matrix and maintain homeostasis in the skin of healthy adults. Upon tissue injury, fibroblasts and an exclusive selection of other cells become activated into myofibroblasts with the task to restore skin integrity by forming structurally imperfect but mechanically stable scar tissue. Failure of myofibroblasts to terminate their actions after successful repair or upon chronic inflammation results in dysregulated myofibroblast activities which can lead to hypertrophic scarring and/or skin fibrosis. After providing an overview on the major fibrillar matrix components in normal skin, we will interrogate the various origins of fibroblasts and myofibroblasts in the skin. We then examine the role of the matrix as signaling hub and how fibroblasts respond to mechanical matrix cues to restore order in the confusing environment of a healing wound.
Collapse
Affiliation(s)
- Mugdha Sawant
- Translational Matrix Biology, University of Cologne, Medical Faculty, Cologne, Germany
| | - Boris Hinz
- Laboratory of Tissue Repair and Regeneration, Faculty of Dentistry, University of Toronto, Toronto, Canada
| | - Katrin Schönborn
- Translational Matrix Biology, University of Cologne, Medical Faculty, Cologne, Germany
| | - Isabel Zeinert
- Translational Matrix Biology, University of Cologne, Medical Faculty, Cologne, Germany
| | - Beate Eckes
- Translational Matrix Biology, University of Cologne, Medical Faculty, Cologne, Germany
| | - Thomas Krieg
- Translational Matrix Biology, University of Cologne, Medical Faculty, Cologne, Germany.,Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), University of Cologne, Cologne, Germany.,Center for Molecular Medicine (CMMC), University of Cologne, Cologne, Germany
| | - Ronen Schuster
- Laboratory of Tissue Repair and Regeneration, Faculty of Dentistry, University of Toronto, Toronto, Canada.,PhenomicAI, MaRS Centre, 661 University Avenue, Toronto, Canada
| |
Collapse
|
248
|
Huiyang Shengji Extract Improve Chronic Nonhealing Cutaneous through the TGF- β1/Smad3 Signaling Pathway. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2021; 2021:8881565. [PMID: 34211577 PMCID: PMC8208873 DOI: 10.1155/2021/8881565] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/01/2020] [Accepted: 05/27/2021] [Indexed: 11/30/2022]
Abstract
Chronic nonhealing cutaneous wounds are a thorny problem in the field of surgery because of their prolonged and unhealed characteristics. Huiyang Shengji extract (HSE) is an extract of traditional Chinese medicine prescription for treating chronic wounds. This study aims to investigate the regulation of M1 macrophages on fibroblast proliferation and secretion and the intervention mechanism of Huiyang Shengji extract. We found that the effects of HSFs stimulated with paracrine factors from M1 macrophages were as follows: the proliferation of HSFs was reduced, the expression of MKI-67 was downregulated, and the content and gene expression of the inflammation factors and fibroblast MMPs were increased, while the content and gene expression of TIMP-1 are decreased, the content of human fibroblasts secreting type I collagen (COL1A1) and type III collagen (COL3A1) was decreased, and the TGF-β1/Smad3 signaling pathway was inhibited. Interestingly, HSE inhibited these effects of M1 macrophages on human fibroblasts after the intervention, and the inhibitory effect was related to the concentration. In conclusion, M1 macrophages caused changes in HSFs and secretion, while HSE has a specific regulatory effect on the proliferation and secretion of fibroblasts caused by M1 macrophages.
Collapse
|
249
|
Franklin RA. Fibroblasts and macrophages: Collaborators in tissue homeostasis. Immunol Rev 2021; 302:86-103. [PMID: 34101202 DOI: 10.1111/imr.12989] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2021] [Revised: 05/12/2021] [Accepted: 05/15/2021] [Indexed: 12/19/2022]
Abstract
Fibroblasts and macrophages are universal cell types across all mammalian tissues. These cells differ in many ways including their cellular origins; dynamics of renewal, recruitment, and motility within tissues; roles in tissue structure and secretion of signaling molecules; and contributions to the activation and progression of immune responses. However, many of the features that make these two cell types unique are not opposing, but instead complementary. This review will present cell-cell communication in this context and discuss how complementarity makes fibroblasts and macrophages highly compatible partners in the maintenance of tissue homeostasis.
Collapse
Affiliation(s)
- Ruth A Franklin
- Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, MA, USA.,Department of Immunology, Harvard Medical School, Boston, MA, USA
| |
Collapse
|
250
|
Xie YH, Tang CQ, Huang ZZ, Zhou SC, Yang YW, Yin Z, Heng BC, Chen WS, Chen X, Shen WL. ECM remodeling in stem cell culture: a potential target for regulating stem cell function. TISSUE ENGINEERING PART B-REVIEWS 2021; 28:542-554. [PMID: 34082581 DOI: 10.1089/ten.teb.2021.0066] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Stem cells (SCs) hold great potential for regenerative medicine, tissue engineering and cell therapy. The clinical applications of SCs require both high quality and quantity of transplantable cells. However, during conventional in vitro expansion, SCs tend to lose properties that make them amenable for cell therapies. Extracellular matrix (ECM) serves an essential regulatory part in the growth, differentiation and homeostasis of all cells in vivo. when signals transmitted to cells, they do not respond passively. Many cell types can remodel pericellular matrix to meet their specific needs. This reciprocal cell-ECM interaction is crucial for the conservation of cell and tissue functions and homeostasis. In vitro ECM remodeling also plays a key role in regulating the lineage fate of SCs. A deeper understanding of in vitro ECM remodeling may provide new perspectives for the maintenance of SC function. In this review, we critically examined three ways that cells can be used to influence the pericellular matrix: (i) exerting tensile force on the ECM, (ii) secreting a variety of ECM proteins, and (iii) degrading the surrounding matrix, and its impact on SC lineage fate. Finally, we describe the deficiencies of current studies and what needs to be done next to further understand the role of ECM remodeling in ex vivo SC cultures.
Collapse
Affiliation(s)
- Yuan-Hao Xie
- Zhejiang University School of Medicine Second Affiliated Hospital, 89681, Department of Orthopedic Surgery, Hangzhou, Zhejiang, China;
| | - Chen-Qi Tang
- Zhejiang University School of Medicine Second Affiliated Hospital, 89681, Department of Orthopedic Surgery, Hangzhou, Zhejiang, China;
| | - Zi-Zhan Huang
- Zhejiang University School of Medicine Second Affiliated Hospital, 89681, Department of Orthopedic Surgery, Hangzhou, Zhejiang, China;
| | - Si-Cheng Zhou
- Zhejiang University School of Medicine Second Affiliated Hospital, 89681, Hangzhou, Zhejiang, China;
| | - Yu-Wei Yang
- Zhejiang University School of Medicine, 26441, Dr. Li Dak Sum & Yip Yio Chin Center for Stem Cells and Regenerative Medicine, Hangzhou, Zhejiang, China;
| | - Zi Yin
- Zhejiang University School of Medicine, 26441, Dr. Li Dak Sum & Yip Yio Chin Center for Stem Cells and Regenerative Medicine, Hangzhou, Zhejiang, China;
| | - Boon Chin Heng
- Peking University School of Stomatology, 159460, Beijing, Beijing, China;
| | - Wei-Shan Chen
- Zhejiang University School of Medicine Second Affiliated Hospital, 89681, Department of Orthopedic Surgery, Hangzhou, Zhejiang, China;
| | - Xiao Chen
- Zhejiang University School of Medicine, 26441, Dr. Li Dak Sum & Yip Yio Chin Center for Stem Cells and Regenerative Medicine, Hangzhou, Zhejiang, China;
| | - Wei-Liang Shen
- Zhejiang University School of Medicine Second Affiliated Hospital, 89681, Department of Orthopedic Surgery, Hangzhou, Zhejiang, China;
| |
Collapse
|