201
|
Kuosmanen T, Cairns J, Noble R, Beerenwinkel N, Mononen T, Mustonen V. Drug-induced resistance evolution necessitates less aggressive treatment. PLoS Comput Biol 2021; 17:e1009418. [PMID: 34555024 PMCID: PMC8491903 DOI: 10.1371/journal.pcbi.1009418] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2021] [Revised: 10/05/2021] [Accepted: 09/03/2021] [Indexed: 12/24/2022] Open
Abstract
Increasing body of experimental evidence suggests that anticancer and antimicrobial therapies may themselves promote the acquisition of drug resistance by increasing mutability. The successful control of evolving populations requires that such biological costs of control are identified, quantified and included to the evolutionarily informed treatment protocol. Here we identify, characterise and exploit a trade-off between decreasing the target population size and generating a surplus of treatment-induced rescue mutations. We show that the probability of cure is maximized at an intermediate dosage, below the drug concentration yielding maximal population decay, suggesting that treatment outcomes may in some cases be substantially improved by less aggressive treatment strategies. We also provide a general analytical relationship that implicitly links growth rate, pharmacodynamics and dose-dependent mutation rate to an optimal control law. Our results highlight the important, but often neglected, role of fundamental eco-evolutionary costs of control. These costs can often lead to situations, where decreasing the cumulative drug dosage may be preferable even when the objective of the treatment is elimination, and not containment. Taken together, our results thus add to the ongoing criticism of the standard practice of administering aggressive, high-dose therapies and motivate further experimental and clinical investigation of the mutagenicity and other hidden collateral costs of therapies.
Collapse
Affiliation(s)
- Teemu Kuosmanen
- Organismal and Evolutionary Biology Research Programme, Department of Computer Science, University of Helsinki, Helsinki, Finland
| | - Johannes Cairns
- Organismal and Evolutionary Biology Research Programme, Department of Computer Science, University of Helsinki, Helsinki, Finland
| | - Robert Noble
- Department of Biosystems Science and Engineering, ETH Zurich, Basel, Switzerland
- Department of Evolutionary Biology and Environmental Studies, University of Zurich, Zurich, Switzerland
- Present address: Department of Mathematics, City, University of London, London, United Kingdom
| | - Niko Beerenwinkel
- Department of Biosystems Science and Engineering, ETH Zurich, Basel, Switzerland
| | - Tommi Mononen
- Organismal and Evolutionary Biology Research Programme, Department of Computer Science, University of Helsinki, Helsinki, Finland
| | - Ville Mustonen
- Organismal and Evolutionary Biology Research Programme, Department of Computer Science, University of Helsinki, Helsinki, Finland
- Institute of Biotechnology, Helsinki Institute for Information Technology, University of Helsinki, Helsinki, Finland
| |
Collapse
|
202
|
Piett CG, Pecen TJ, Laverty DJ, Nagel ZD. Large-scale preparation of fluorescence multiplex host cell reactivation (FM-HCR) reporters. Nat Protoc 2021; 16:4265-4298. [PMID: 34363069 PMCID: PMC9272811 DOI: 10.1038/s41596-021-00577-3] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2021] [Accepted: 05/28/2021] [Indexed: 01/14/2023]
Abstract
Repair of DNA damage is a critical survival mechanism that affects susceptibility to various human diseases and represents a key target for cancer therapy. A major barrier to applying this knowledge in research and clinical translation has been the lack of efficient, quantitative functional assays for measuring DNA repair capacity in living primary cells. To overcome this barrier, we recently developed a technology termed 'fluorescence multiplex host cell reactivation' (FM-HCR). We describe a method for using standard molecular biology techniques to generate large quantities of FM-HCR reporter plasmids containing site-specific DNA lesions and using these reporters to assess DNA repair capacity in at least six major DNA repair pathways in live cells. We improve upon previous methodologies by (i) providing a universal workflow for generating reporter plasmids, (ii) improving yield and purity to enable large-scale studies that demand milligram quantities and (iii) reducing preparation time >ten-fold.
Collapse
Affiliation(s)
- C G Piett
- Department of Environmental Health, JBL Center for Radiation Sciences, Harvard T. H. Chan School of Public Health, Boston, MA, USA
| | - T J Pecen
- Department of Environmental Health, JBL Center for Radiation Sciences, Harvard T. H. Chan School of Public Health, Boston, MA, USA
| | - D J Laverty
- Department of Environmental Health, JBL Center for Radiation Sciences, Harvard T. H. Chan School of Public Health, Boston, MA, USA
| | - Z D Nagel
- Department of Environmental Health, JBL Center for Radiation Sciences, Harvard T. H. Chan School of Public Health, Boston, MA, USA.
| |
Collapse
|
203
|
Somyajit K, Spies J, Coscia F, Kirik U, Rask MB, Lee JH, Neelsen KJ, Mund A, Jensen LJ, Paull TT, Mann M, Lukas J. Homology-directed repair protects the replicating genome from metabolic assaults. Dev Cell 2021; 56:461-477.e7. [PMID: 33621493 DOI: 10.1016/j.devcel.2021.01.011] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2020] [Revised: 10/14/2020] [Accepted: 01/20/2021] [Indexed: 12/18/2022]
Abstract
Homology-directed repair (HDR) safeguards DNA integrity under various forms of stress, but how HDR protects replicating genomes under extensive metabolic alterations remains unclear. Here, we report that besides stalling replication forks, inhibition of ribonucleotide reductase (RNR) triggers metabolic imbalance manifested by the accumulation of increased reactive oxygen species (ROS) in cell nuclei. This leads to a redox-sensitive activation of the ATM kinase followed by phosphorylation of the MRE11 nuclease, which in HDR-deficient settings degrades stalled replication forks. Intriguingly, nascent DNA degradation by the ROS-ATM-MRE11 cascade is also triggered by hypoxia, which elevates signaling-competent ROS and attenuates functional HDR without arresting replication forks. Under these conditions, MRE11 degrades daughter-strand DNA gaps, which accumulate behind active replisomes and attract error-prone DNA polymerases to escalate mutation rates. Thus, HDR safeguards replicating genomes against metabolic assaults by restraining mutagenic repair at aberrantly processed nascent DNA. These findings have implications for cancer evolution and tumor therapy.
Collapse
Affiliation(s)
- Kumar Somyajit
- Protein Signaling Program, Novo Nordisk Foundation Center for Protein Research, Faculty of Health and Medical Sciences, University of Copenhagen, Blegdamsvej 3b, DK-2200 Copenhagen, Denmark.
| | - Julian Spies
- Protein Signaling Program, Novo Nordisk Foundation Center for Protein Research, Faculty of Health and Medical Sciences, University of Copenhagen, Blegdamsvej 3b, DK-2200 Copenhagen, Denmark
| | - Fabian Coscia
- Proteomics Program, Novo Nordisk Foundation Center for Protein Research, Faculty of Health and Medical Sciences, University of Copenhagen, Blegdamsvej 3b, DK-2200 Copenhagen, Denmark
| | - Ufuk Kirik
- Disease Systems Biology Program, Novo Nordisk Foundation Center for Protein, Research, Faculty of Health and Medical Sciences, University of Copenhagen, Blegdamsvej 3b, DK-2200 Copenhagen, Denmark
| | - Maj-Britt Rask
- Protein Signaling Program, Novo Nordisk Foundation Center for Protein Research, Faculty of Health and Medical Sciences, University of Copenhagen, Blegdamsvej 3b, DK-2200 Copenhagen, Denmark
| | - Ji-Hoon Lee
- Department of Molecular Biosciences, University of Texas at Austin, Austin, TX 78712, USA
| | - Kai John Neelsen
- Protein Signaling Program, Novo Nordisk Foundation Center for Protein Research, Faculty of Health and Medical Sciences, University of Copenhagen, Blegdamsvej 3b, DK-2200 Copenhagen, Denmark
| | - Andreas Mund
- Proteomics Program, Novo Nordisk Foundation Center for Protein Research, Faculty of Health and Medical Sciences, University of Copenhagen, Blegdamsvej 3b, DK-2200 Copenhagen, Denmark
| | - Lars Juhl Jensen
- Disease Systems Biology Program, Novo Nordisk Foundation Center for Protein, Research, Faculty of Health and Medical Sciences, University of Copenhagen, Blegdamsvej 3b, DK-2200 Copenhagen, Denmark
| | - Tanya T Paull
- Department of Molecular Biosciences, University of Texas at Austin, Austin, TX 78712, USA
| | - Matthias Mann
- Proteomics Program, Novo Nordisk Foundation Center for Protein Research, Faculty of Health and Medical Sciences, University of Copenhagen, Blegdamsvej 3b, DK-2200 Copenhagen, Denmark
| | - Jiri Lukas
- Protein Signaling Program, Novo Nordisk Foundation Center for Protein Research, Faculty of Health and Medical Sciences, University of Copenhagen, Blegdamsvej 3b, DK-2200 Copenhagen, Denmark.
| |
Collapse
|
204
|
Guo J, Zhou Y, Xu C, Chen Q, Sztupinszki Z, Börcsök J, Xu C, Ye F, Tang W, Kang J, Yang L, Zhong J, Zhong T, Hu T, Yu R, Szallasi Z, Deng X, Li Q. Genetic Determinants of Somatic Selection of Mutational Processes in 3,566 Human Cancers. Cancer Res 2021; 81:4205-4217. [PMID: 34215622 PMCID: PMC9662923 DOI: 10.1158/0008-5472.can-21-0086] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2021] [Revised: 05/21/2021] [Accepted: 06/29/2021] [Indexed: 01/07/2023]
Abstract
The somatic landscape of the cancer genome results from different mutational processes represented by distinct "mutational signatures." Although several mutagenic mechanisms are known to cause specific mutational signatures in cell lines, the variation of somatic mutational activities in patients, which is mostly attributed to somatic selection, is still poorly explained. Here, we introduce a quantitative trait, mutational propensity (MP), and describe an integrated method to infer genetic determinants of variations in the mutational processes in 3,566 cancers with specific underlying mechanisms. As a result, we report 2,314 candidate determinants with both significant germline and somatic effects on somatic selection of mutational processes, of which, 485 act via cancer gene expression and 1,427 act through the tumor-immune microenvironment. These data demonstrate that the genetic determinants of MPs provide complementary information to known cancer driver genes, clonal evolution, and clinical biomarkers. SIGNIFICANCE: The genetic determinants of the somatic mutational processes in cancer elucidate the biology underlying somatic selection and evolution of cancers and demonstrate complementary predictive power across cancer types.
Collapse
Affiliation(s)
- Jintao Guo
- National Institute for Data Science in Health and Medicine, Xiamen University, Xiamen, China.,Department of hematology, School of Medicine, Xiamen University, Xiamen, China.,Department of Pediatrics, The First Affiliated Hospital of Xiamen University, Xiamen, China
| | - Ying Zhou
- National Institute for Data Science in Health and Medicine, Xiamen University, Xiamen, China.,Department of hematology, School of Medicine, Xiamen University, Xiamen, China.,Department of Pediatrics, The First Affiliated Hospital of Xiamen University, Xiamen, China
| | - Chaoqun Xu
- National Institute for Data Science in Health and Medicine, Xiamen University, Xiamen, China.,Department of hematology, School of Medicine, Xiamen University, Xiamen, China.,Department of Pediatrics, The First Affiliated Hospital of Xiamen University, Xiamen, China
| | - Qinwei Chen
- National Institute for Data Science in Health and Medicine, Xiamen University, Xiamen, China.,Department of hematology, School of Medicine, Xiamen University, Xiamen, China.,Department of Pediatrics, The First Affiliated Hospital of Xiamen University, Xiamen, China
| | | | - Judit Börcsök
- Danish Cancer Society Research Center, Copenhagen, Denmark
| | - Canqiang Xu
- XMU-Aginome Joint Lab, School of Informatics, Xiamen University, Xiamen, China
| | - Feng Ye
- Department of Medical Oncology, The First Affiliated Hospital of Xiamen University, Xiamen, China.,Department of Medical Oncology, The First Affiliated Hospital of Xiamen University, Teaching Hospital of Fujian Medical University, Xiamen, Fujian, China.,Xiamen Key Laboratory of Antitumor Drug Transformation Research, The First Affiliated Hospital of Xiamen University, Xiamen, China
| | - Weiwei Tang
- Department of Medical Oncology, The First Affiliated Hospital of Xiamen University, Xiamen, China.,Department of Medical Oncology, The First Affiliated Hospital of Xiamen University, Teaching Hospital of Fujian Medical University, Xiamen, Fujian, China.,Xiamen Key Laboratory of Antitumor Drug Transformation Research, The First Affiliated Hospital of Xiamen University, Xiamen, China
| | - Jiapeng Kang
- Department of Medical Oncology, The First Affiliated Hospital of Xiamen University, Xiamen, China.,Department of Medical Oncology, The First Affiliated Hospital of Xiamen University, Teaching Hospital of Fujian Medical University, Xiamen, Fujian, China.,Xiamen Key Laboratory of Antitumor Drug Transformation Research, The First Affiliated Hospital of Xiamen University, Xiamen, China
| | - Lu Yang
- Department of Medical Oncology, The First Affiliated Hospital of Xiamen University, Xiamen, China.,Department of Medical Oncology, The First Affiliated Hospital of Xiamen University, Teaching Hospital of Fujian Medical University, Xiamen, Fujian, China.,Xiamen Key Laboratory of Antitumor Drug Transformation Research, The First Affiliated Hospital of Xiamen University, Xiamen, China
| | - Jiaxin Zhong
- National Institute for Data Science in Health and Medicine, Xiamen University, Xiamen, China.,Department of hematology, School of Medicine, Xiamen University, Xiamen, China.,Department of Pediatrics, The First Affiliated Hospital of Xiamen University, Xiamen, China
| | - Taoling Zhong
- National Institute for Data Science in Health and Medicine, Xiamen University, Xiamen, China.,Department of hematology, School of Medicine, Xiamen University, Xiamen, China.,Department of Pediatrics, The First Affiliated Hospital of Xiamen University, Xiamen, China
| | - Tianhui Hu
- National Institute for Data Science in Health and Medicine, Xiamen University, Xiamen, China
| | - Rongshan Yu
- XMU-Aginome Joint Lab, School of Informatics, Xiamen University, Xiamen, China
| | - Zoltan Szallasi
- Danish Cancer Society Research Center, Copenhagen, Denmark.,Computational Health Informatics Program, Boston Children's Hospital, Boston, Massachusetts
| | - Xianming Deng
- State Key Laboratory of Cellular Stress Biology, School of Life Science, Xiamen University, Xiamen, China
| | - Qiyuan Li
- National Institute for Data Science in Health and Medicine, Xiamen University, Xiamen, China.,Department of hematology, School of Medicine, Xiamen University, Xiamen, China.,Department of Pediatrics, The First Affiliated Hospital of Xiamen University, Xiamen, China.,Corresponding Author: Qiyuan Li, School of Medicine, Xiamen University, Xiang'an South Road, Xiamen, Fujian 361102, China. Phone: 8659-2218-5175; E-mail:
| |
Collapse
|
205
|
Leonce C, Saintigny P, Ortiz-Cuaran S. Cell-intrinsic mechanisms of drug tolerance to systemic therapies in cancer. Mol Cancer Res 2021; 20:11-29. [PMID: 34389691 DOI: 10.1158/1541-7786.mcr-21-0038] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2021] [Revised: 06/11/2021] [Accepted: 07/30/2021] [Indexed: 11/16/2022]
Abstract
In cancer patients with metastatic disease, the rate of complete tumor response to systemic therapies is low, and residual lesions persist in the majority of patients due to early molecular adaptation in cancer cells. A growing body of evidence suggests that a subpopulation of drug-tolerant « persister » cells - a reversible phenotype characterized by reduced drug sensitivity and decreased cell proliferation - maintains residual disease and may serve as a reservoir for resistant phenotypes. The survival of these residual tumor cells can be caused by reactivation of specific signaling pathways, phenotypic plasticity (i.e., transdifferentiation), epigenetic or metabolic reprogramming, downregulation of apoptosis as well as transcriptional remodeling. In this review, we discuss the molecular mechanisms that enable adaptive survival in drug-tolerant cells. We describe the main characteristics and dynamic nature of this persistent state, and highlight the current therapeutic strategies that may be used to interfere with the establishment of drug-tolerant cells, as an alternative to improve objective response to systemic therapies and delay the emergence of resistance to improve long-term survival.
Collapse
Affiliation(s)
- Camille Leonce
- Univ Lyon, Claude Bernard Lyon 1 University, INSERM 1052, CNRS 5286, Centre Léon Bérard, Cancer Research Center of Lyon
| | - Pierre Saintigny
- Department of Medical Oncology, Univ Lyon, Claude Bernard Lyon 1 University, INSERM 1052, CNRS 5286, Centre Léon Bérard, Cancer Research Center of Lyon. Department of Medical Oncology, Centre Léon Bérard
| | - Sandra Ortiz-Cuaran
- Univ Lyon, Claude Bernard Lyon 1 University, INSERM 1052, CNRS 5286, Centre Léon Bérard, Cancer Research Center of Lyon
| |
Collapse
|
206
|
Xu J, Bian X, Zhao H, Sun Y, Tian Y, Li X, Tian W. Morphine Prevents Ischemia/Reperfusion-Induced Myocardial Mitochondrial Damage by Activating δ-opioid Receptor/EGFR/ROS Pathway. Cardiovasc Drugs Ther 2021; 36:841-857. [PMID: 34279751 DOI: 10.1007/s10557-021-07215-w] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 06/07/2021] [Indexed: 10/20/2022]
Abstract
OBJECTIVE The purpose of this study was to determine whether the epidermal growth factor receptor (EGFR), which is a classical receptor tyrosine kinase, is involved in the protective effect of morphine against ischemia/reperfusion (I/R)-induced myocardial mitochondrial damage. METHODS Isolated rats hearts were subjected to global ischemia followed by reperfusion. Cardiac H9c2 cells were exposed to a simulated ischemia solution followed by Tyrode's solution to induce hypoxia/reoxygenation (H/R) injury. Triphenyltetrazolium chloride (TTC) was used to measure infarct size. The mitochondrial morphological and functional changes were determined using transmission election microscopy (TEM), mitochondrial stress assay, and mitochondrial swelling, respectively. Mitochondrial fluorescence indicator JC-1, DCFH-DA, and Mitosox Red were used to determine mitochondrial membrane potential (△Ψm), intracellular reactive oxygen species (ROS) and mitochondrial superoxide. A TUNUL assay kit was used to detect the level of apoptosis. Western blotting analysis was used to measure the expression of proteins. RESULTS Treatment of isolated rat hearts with morphine prevented I/R-induced myocardial mitochondrial injury, which was inhibited by the selective EGFR inhibitor AG1478, suggesting that EGFR is involved in the mitochondrial protective effect of morphine under I/R conditions. In support of this hypothesis, the selective EGFR agonist epidermal growth factor (EGF) reduced mitochondrial morphological and functional damage similarly to morphine. Further study demonstrated that morphine may alleviate I/R-induced cardiac damage by inhibiting autophagy but not apoptosis. Morphine increased protein kinase B (Akt), extracellular regulated protein kinases (ERK) and signal transducer and activator of transcription-3 (STAT-3) phosphorylation, which was inhibited by AG1478, and EGF had similar effects, indicating that morphine may activate Akt, ERK, and STAT-3 via EGFR. Morphine and EGF increased intracellular reactive oxygen species (ROS) generation. This effect of morphine was inhibited by AG1478, indicating that morphine promotes intracellular ROS generation by activating EGFR. However, morphine did not increase ROS generation when cells were transfected with siRNA against EGFR. In addition, EGFR activity was markedly increased by morphine, but the effect of morphine was reversed by naltrindole. These results suggest that morphine may activate EGFR via δ-opioid receptor activation. CONCLUSIONS Morphine may prevent I/R-induced myocardial mitochondrial damage by activating EGFR through δ-opioid receptors, in turn increasing RISK and SAFE pathway activity via intracellular ROS. Moreover, morphine may reduce myocardial injury by regulating autophagy but not apoptosis.
Collapse
Affiliation(s)
- Jingman Xu
- School of Public Health, North China University of Science and Technology, 21 Bohai Avenue, Caofeidian District, Tangshan, 063000, Hebei, China.
| | - Xiyun Bian
- Central Laboratory, The Fifth Central Hospital of Tianjin, 300, Tianjin, ,450, China
| | - Huanhuan Zhao
- Department of Physiology and Pathophysiology, Tianjin Medical University, 300, Tianjin, ,010, China
| | - Yujie Sun
- Department of Neurology, Kailuan Hospital, Tangshan, 063000, Hebei Province, China
| | - Yanyi Tian
- School of Public Health, North China University of Science and Technology, 21 Bohai Avenue, Caofeidian District, Tangshan, 063000, Hebei, China
| | - Xiaodong Li
- School of Public Health, North China University of Science and Technology, 21 Bohai Avenue, Caofeidian District, Tangshan, 063000, Hebei, China
| | - Wei Tian
- School of Public Health, North China University of Science and Technology, 21 Bohai Avenue, Caofeidian District, Tangshan, 063000, Hebei, China.
| |
Collapse
|
207
|
Chen P, Fang QX, Chen DB, Chen HS. Neoantigen vaccine: An emerging immunotherapy for hepatocellular carcinoma. World J Gastrointest Oncol 2021. [DOI: 10.4251/wjgo.v13.i7.498] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
|
208
|
Chen P, Fang QX, Chen DB, Chen HS. Neoantigen vaccine: An emerging immunotherapy for hepatocellular carcinoma. World J Gastrointest Oncol 2021; 13:673-683. [PMID: 34322196 PMCID: PMC8299936 DOI: 10.4251/wjgo.v13.i7.673] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/20/2021] [Revised: 04/06/2021] [Accepted: 06/17/2021] [Indexed: 02/06/2023] Open
Abstract
Tumor-specific neoantigens, which are expressed on tumor cells, can induce an effective antitumor cytotoxic T-cell response and mediate tumor regression. Among tumor immunotherapies, neoantigen vaccines are in early human clinical trials and have demonstrated substantial efficiency. Compared with more neoantigens in melanoma, the paucity and inefficient identification of effective neoantigens in hepatocellular carcinoma (HCC) remain enormous challenges in effectively treating this malignancy. In this review, we highlight the current development of HCC neoantigens in its generation, screening, and identification. We also discuss the possibility that there are more effective neoantigens in hepatitis B virus (HBV)-related HCC than in non-HBV-related HCC. In addition, since HCC is an immunosuppressive tumor, strategies that reverse immunosuppression and enhance the immune response should be considered for the practical exploitation of HCC neoantigens. In summary, this review offers some strategies to solve existing problems in HCC neoantigen research and provide further insights for immunotherapy.
Collapse
Affiliation(s)
- Pu Chen
- Peking University Hepatology Institute, Beijing Key Laboratory of Hepatitis C and Immunotherapy for Liver Disease, Peking University People’s Hospital, Beijing 100044, China
| | - Qiong-Xuan Fang
- Peking University Hepatology Institute, Beijing Key Laboratory of Hepatitis C and Immunotherapy for Liver Disease, Peking University People’s Hospital, Beijing 100044, China
| | - Dong-Bo Chen
- Peking University Hepatology Institute, Beijing Key Laboratory of Hepatitis C and Immunotherapy for Liver Disease, Peking University People’s Hospital, Beijing 100044, China
| | - Hong-Song Chen
- Peking University Hepatology Institute, Beijing Key Laboratory of Hepatitis C and Immunotherapy for Liver Disease, Peking University People’s Hospital, Beijing 100044, China
| |
Collapse
|
209
|
Qu J, Sun Z, Peng C, Li D, Yan W, Xu Z, Hou Y, Shen S, Chen P, Wang T. C. tropicalis promotes chemotherapy resistance in colon cancer through increasing lactate production to regulate the mismatch repair system. Int J Biol Sci 2021; 17:2756-2769. [PMID: 34345205 PMCID: PMC8326116 DOI: 10.7150/ijbs.59262] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2021] [Accepted: 05/22/2021] [Indexed: 11/17/2022] Open
Abstract
Due to chemotherapeutic drug resistance, tumor recurrence is common in patients with colorectal cancer (CRC) and chemo-resistant patients are often accompanied by defects in the mismatch repair system (MMR). Our previous study has shown that Candida tropicalis (C. tropicalis) is closely related to the occurrence and development of colorectal cancer, but whether this conditional pathogenic fungus is involved in chemotherapy needs further investigation. Here we found that C. tropicalis promoted chemotherapy resistance of colon cancer to oxaliplatin. Compared with oxaliplatin-treated group, the expression of functional MMR proteins in tumors were decreased in C.tropicalis/oxaliplatin -treated group, while the glycolysis level of tumors was up-regulated and the production of lactate was significantly increased in C.tropicalis/oxaliplatin -treated group. Inhibiting lactate production significantly alleviated the chemoresistance and rescued the decreased expression of MMR caused by C. tropicalis. Furthermore, we found that lactate down-regulated the expression of MLH1 through the GPR81-cAMP-PKA-CREB axis. This study clarified that C. tropicalis promoted chemoresistance of colon cancer via producing lactate and inhibiting the expression of MLH1, which may provide novel ideas for improving CRC chemotherapy effect.
Collapse
Affiliation(s)
- Junxing Qu
- The State Key Laboratory of Pharmaceutical Biotechnology, Division of Immunology, Medical School, Nanjing University, Nanjing, China, 210093.,Jiangsu Key Laboratory of Molecular Medicine, Division of Immunology, Medical School, Nanjing University, Nanjing, China, 210093
| | - Zhiheng Sun
- The State Key Laboratory of Pharmaceutical Biotechnology, Division of Immunology, Medical School, Nanjing University, Nanjing, China, 210093.,Jiangsu Key Laboratory of Molecular Medicine, Division of Immunology, Medical School, Nanjing University, Nanjing, China, 210093
| | - Chen Peng
- The State Key Laboratory of Pharmaceutical Biotechnology, Division of Immunology, Medical School, Nanjing University, Nanjing, China, 210093.,Jiangsu Key Laboratory of Molecular Medicine, Division of Immunology, Medical School, Nanjing University, Nanjing, China, 210093
| | - Daoqian Li
- The State Key Laboratory of Pharmaceutical Biotechnology, Division of Immunology, Medical School, Nanjing University, Nanjing, China, 210093.,Jiangsu Key Laboratory of Molecular Medicine, Division of Immunology, Medical School, Nanjing University, Nanjing, China, 210093
| | - Wenyue Yan
- Department of Oncology, Yancheng First Hospital, Affiliated Hospital of Nanjing University Medical School, The First People's Hospital of Yancheng, Yancheng, Jiangsu, China, 224001
| | - Zhen Xu
- The State Key Laboratory of Pharmaceutical Biotechnology, Division of Immunology, Medical School, Nanjing University, Nanjing, China, 210093.,Jiangsu Key Laboratory of Molecular Medicine, Division of Immunology, Medical School, Nanjing University, Nanjing, China, 210093
| | - Yayi Hou
- The State Key Laboratory of Pharmaceutical Biotechnology, Division of Immunology, Medical School, Nanjing University, Nanjing, China, 210093.,Jiangsu Key Laboratory of Molecular Medicine, Division of Immunology, Medical School, Nanjing University, Nanjing, China, 210093
| | - Sunan Shen
- The State Key Laboratory of Pharmaceutical Biotechnology, Division of Immunology, Medical School, Nanjing University, Nanjing, China, 210093.,Jiangsu Key Laboratory of Molecular Medicine, Division of Immunology, Medical School, Nanjing University, Nanjing, China, 210093
| | - Ping Chen
- Department of Oncology, Yancheng First Hospital, Affiliated Hospital of Nanjing University Medical School, The First People's Hospital of Yancheng, Yancheng, Jiangsu, China, 224001
| | - Tingting Wang
- The State Key Laboratory of Pharmaceutical Biotechnology, Division of Immunology, Medical School, Nanjing University, Nanjing, China, 210093.,Jiangsu Key Laboratory of Molecular Medicine, Division of Immunology, Medical School, Nanjing University, Nanjing, China, 210093
| |
Collapse
|
210
|
Tomasini PP, Guecheva TN, Leguisamo NM, Péricart S, Brunac AC, Hoffmann JS, Saffi J. Analyzing the Opportunities to Target DNA Double-Strand Breaks Repair and Replicative Stress Responses to Improve Therapeutic Index of Colorectal Cancer. Cancers (Basel) 2021; 13:3130. [PMID: 34201502 PMCID: PMC8268241 DOI: 10.3390/cancers13133130] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2021] [Revised: 06/15/2021] [Accepted: 06/18/2021] [Indexed: 12/22/2022] Open
Abstract
Despite the ample improvements of CRC molecular landscape, the therapeutic options still rely on conventional chemotherapy-based regimens for early disease, and few targeted agents are recommended for clinical use in the metastatic setting. Moreover, the impact of cytotoxic, targeted agents, and immunotherapy combinations in the metastatic scenario is not fully satisfactory, especially the outcomes for patients who develop resistance to these treatments need to be improved. Here, we examine the opportunity to consider therapeutic agents targeting DNA repair and DNA replication stress response as strategies to exploit genetic or functional defects in the DNA damage response (DDR) pathways through synthetic lethal mechanisms, still not explored in CRC. These include the multiple actors involved in the repair of DNA double-strand breaks (DSBs) through homologous recombination (HR), classical non-homologous end joining (NHEJ), and microhomology-mediated end-joining (MMEJ), inhibitors of the base excision repair (BER) protein poly (ADP-ribose) polymerase (PARP), as well as inhibitors of the DNA damage kinases ataxia-telangiectasia and Rad3 related (ATR), CHK1, WEE1, and ataxia-telangiectasia mutated (ATM). We also review the biomarkers that guide the use of these agents, and current clinical trials with targeted DDR therapies.
Collapse
Affiliation(s)
- Paula Pellenz Tomasini
- Laboratory of Genetic Toxicology, Federal University of Health Sciences of Porto Alegre, Avenida Sarmento Leite, 245, Porto Alegre 90050-170, Brazil; (P.P.T.); (N.M.L.)
- Post-Graduation Program in Cell and Molecular Biology, Federal University of Rio Grande do Sul, Avenida Bento Gonçalves, 9500, Porto Alegre 91501-970, Brazil
| | - Temenouga Nikolova Guecheva
- Cardiology Institute of Rio Grande do Sul, University Foundation of Cardiology (IC-FUC), Porto Alegre 90620-000, Brazil;
| | - Natalia Motta Leguisamo
- Laboratory of Genetic Toxicology, Federal University of Health Sciences of Porto Alegre, Avenida Sarmento Leite, 245, Porto Alegre 90050-170, Brazil; (P.P.T.); (N.M.L.)
| | - Sarah Péricart
- Laboratoire D’Excellence Toulouse Cancer (TOUCAN), Laboratoire de Pathologie, Institut Universitaire du Cancer-Toulouse, Oncopole, 1 Avenue Irène-Joliot-Curie, 31059 Toulouse, France; (S.P.); (A.-C.B.); (J.S.H.)
| | - Anne-Cécile Brunac
- Laboratoire D’Excellence Toulouse Cancer (TOUCAN), Laboratoire de Pathologie, Institut Universitaire du Cancer-Toulouse, Oncopole, 1 Avenue Irène-Joliot-Curie, 31059 Toulouse, France; (S.P.); (A.-C.B.); (J.S.H.)
| | - Jean Sébastien Hoffmann
- Laboratoire D’Excellence Toulouse Cancer (TOUCAN), Laboratoire de Pathologie, Institut Universitaire du Cancer-Toulouse, Oncopole, 1 Avenue Irène-Joliot-Curie, 31059 Toulouse, France; (S.P.); (A.-C.B.); (J.S.H.)
| | - Jenifer Saffi
- Laboratory of Genetic Toxicology, Federal University of Health Sciences of Porto Alegre, Avenida Sarmento Leite, 245, Porto Alegre 90050-170, Brazil; (P.P.T.); (N.M.L.)
- Post-Graduation Program in Cell and Molecular Biology, Federal University of Rio Grande do Sul, Avenida Bento Gonçalves, 9500, Porto Alegre 91501-970, Brazil
| |
Collapse
|
211
|
Lallous N, Snow O, Sanchez C, Parra Nuñez AK, Sun B, Hussain A, Lee J, Morin H, Leblanc E, Gleave ME, Cherkasov A. Evaluation of Darolutamide (ODM201) Efficiency on Androgen Receptor Mutants Reported to Date in Prostate Cancer Patients. Cancers (Basel) 2021; 13:cancers13122939. [PMID: 34208290 PMCID: PMC8230763 DOI: 10.3390/cancers13122939] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2021] [Revised: 06/04/2021] [Accepted: 06/08/2021] [Indexed: 11/16/2022] Open
Abstract
Resistance to drug treatments is common in prostate cancer (PCa), and the gain-of-function mutations in human androgen receptor (AR) represent one of the most dominant drivers of progression to resistance to AR pathway inhibitors (ARPI). Previously, we evaluated the in vitro response of 24 AR mutations, identified in men with castration-resistant PCa, to five AR antagonists. In the current work, we evaluated 44 additional PCa-associated AR mutants, reported in the literature, and thus expanded the study of the effect of darolutamide to a total of 68 AR mutants. Unlike other AR antagonists, we demonstrate that darolutamide exhibits consistent efficiency against all characterized gain-of-function mutations in a full-length AR. Additionally, the response of the AR mutants to clinically used bicalutamide and enzalutamide, as well as to major endogenous steroids (DHT, estradiol, progesterone and hydrocortisone), was also investigated. As genomic profiling of PCa patients becomes increasingly feasible, the developed "AR functional encyclopedia" could provide decision-makers with a tool to guide the treatment choice for PCa patients based on their AR mutation status.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | - Artem Cherkasov
- Correspondence: ; Tel.: +1-604-875-4818; Fax: +1-604-875-5654
| |
Collapse
|
212
|
Roles for growth factors and mutations in metastatic dissemination. Biochem Soc Trans 2021; 49:1409-1423. [PMID: 34100888 PMCID: PMC8286841 DOI: 10.1042/bst20210048] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2021] [Revised: 05/09/2021] [Accepted: 05/14/2021] [Indexed: 12/17/2022]
Abstract
Cancer is initiated largely by specific cohorts of genetic aberrations, which are generated by mutagens and often mimic active growth factor receptors, or downstream effectors. Once initiated cells outgrow and attract blood vessels, a multi-step process, called metastasis, disseminates cancer cells primarily through vascular routes. The major steps of the metastatic cascade comprise intravasation into blood vessels, circulation as single or collectives of cells, and eventual colonization of distant organs. Herein, we consider metastasis as a multi-step process that seized principles and molecular players employed by physiological processes, such as tissue regeneration and migration of neural crest progenitors. Our discussion contrasts the irreversible nature of mutagenesis, which establishes primary tumors, and the reversible epigenetic processes (e.g. epithelial-mesenchymal transition) underlying the establishment of micro-metastases and secondary tumors. Interestingly, analyses of sequencing data from untreated metastases inferred depletion of putative driver mutations among metastases, in line with the pivotal role played by growth factors and epigenetic processes in metastasis. Conceivably, driver mutations may not confer the same advantage in the microenvironment of the primary tumor and of the colonization site, hence phenotypic plasticity rather than rigid cellular states hardwired by mutations becomes advantageous during metastasis. We review the latest reported examples of growth factors harnessed by the metastatic cascade, with the goal of identifying opportunities for anti-metastasis interventions. In summary, because the overwhelming majority of cancer-associated deaths are caused by metastatic disease, understanding the complexity of metastasis, especially the roles played by growth factors, is vital for preventing, diagnosing and treating metastasis.
Collapse
|
213
|
Abstract
The observation and analysis of intra-tumour heterogeneity (ITH), particularly in genomic studies, has advanced our understanding of the evolutionary forces that shape cancer growth and development. However, only a subset of the variation observed in a single tumour will have an impact on cancer evolution, highlighting the need to distinguish between functional and non-functional ITH. Emerging studies highlight a role for the cancer epigenome, transcriptome and immune microenvironment in functional ITH. Here, we consider the importance of both genetic and non-genetic ITH and their role in tumour evolution, and present the rationale for a broad research focus beyond the cancer genome. Systems-biology analytical approaches will be necessary to outline the scale and importance of functional ITH. By allowing a deeper understanding of tumour evolution this will, in time, encourage development of novel therapies and improve outcomes for patients.
Collapse
Affiliation(s)
- James R M Black
- Cancer Genome Evolution Research Group, University College London Cancer Institute, London, UK
- Cancer Research UK Lung Cancer Center of Excellence, University College London Cancer Institute, London, UK
| | - Nicholas McGranahan
- Cancer Genome Evolution Research Group, University College London Cancer Institute, London, UK.
- Cancer Research UK Lung Cancer Center of Excellence, University College London Cancer Institute, London, UK.
| |
Collapse
|
214
|
Lu H, Zhang H, Weng ML, Zhang J, Jiang N, Cata JP, Ma D, Chen WK, Miao CH. Morphine promotes tumorigenesis and cetuximab resistance via EGFR signaling activation in human colorectal cancer. J Cell Physiol 2021; 236:4445-4454. [PMID: 33184860 DOI: 10.1002/jcp.30161] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2020] [Revised: 10/31/2020] [Accepted: 11/03/2020] [Indexed: 02/06/2023]
Abstract
Morphine, a mu-opioid receptor (MOR) agonist, has been extensively used to treat advanced cancer pain. In particular, in patients with cancer metastasis, both morphine and anticancer drugs are given simultaneously. However, evidence showed that morphine might be a risk factor in promoting the tumor's malignant potential. In this study, we report that treatment with morphine could activate MOR and lead to the promotion of proliferation, migration, and invasion in HCT116 and DLD1 colorectal cancer (CRC) cells with time-concentration dependence. Moreover, morphine can also contribute to cetuximab's drug resistance, a targeted drug widely used to treat advanced CRC by inducing the activation of epidermal growth factor receptor (EGFR). The cell phenotype includes proliferation, migration, invasion, and drug resistance, which may be reversed by MOR knockdown or adding nalmefene, the MOR receptor antagonist. Receptor tyrosine kinase array analysis revealed that morphine selectively induced the transactivation of EGFR. EGFR transactivation resulted in the activation of ERK1/2 and AKT. In conclusion, morphine induces the transactivation of EGFR via MOR. It activates the downstream signal pathway AKT-MTOR and RAS-MAPK, increases proliferation, migration, and invasion, and promotes resistance to EGFR inhibitors in a CRC cell line. Furthermore, we verified that EGFR inhibition by cetuximab strongly reversed the protumoral effects of morphine in vitro and in vivo. Collectively, we provide evidence that morphine-EGFR signaling might be a promising therapeutic target for CRC patients, especially for cetuximab-resistant CRC patients.
Collapse
MESH Headings
- Animals
- Antineoplastic Agents, Immunological/pharmacology
- Cell Movement/drug effects
- Cell Proliferation/drug effects
- Cetuximab/pharmacology
- Colorectal Neoplasms/drug therapy
- Colorectal Neoplasms/genetics
- Colorectal Neoplasms/metabolism
- Colorectal Neoplasms/pathology
- Drug Resistance, Neoplasm
- ErbB Receptors/antagonists & inhibitors
- ErbB Receptors/metabolism
- Extracellular Signal-Regulated MAP Kinases/metabolism
- HCT116 Cells
- Humans
- Male
- Mice, Inbred BALB C
- Mice, Nude
- Morphine/toxicity
- Neoplasm Invasiveness
- Proto-Oncogene Proteins c-akt/metabolism
- Receptors, Opioid, mu/agonists
- Receptors, Opioid, mu/genetics
- Receptors, Opioid, mu/metabolism
- Signal Transduction
- TOR Serine-Threonine Kinases/metabolism
- Xenograft Model Antitumor Assays
- ras Proteins/metabolism
- Mice
Collapse
Affiliation(s)
- Hong Lu
- Department of Anesthesiology, Fudan University Shanghai Cancer Center, Shanghai, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
- Department of Anesthesiology, Zhongshan Hospital, Fudan University, Shanghai, China
- Cancer Center, ZhongShan Hospital, Fudan University, Shanghai, China
| | - Hao Zhang
- Department of Anesthesiology, Zhongshan Hospital, Fudan University, Shanghai, China
- Cancer Center, ZhongShan Hospital, Fudan University, Shanghai, China
| | - Mei-Lin Weng
- Department of Anesthesiology, Fudan University Shanghai Cancer Center, Shanghai, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Jin Zhang
- Key Laboratory of Metabolism and Molecular Medicine, Ministry of Education, Department of Biochemistry and Molecular Biology, Collaborative Innovation Center of Genetics and Development, Institutes of Biomedical Science, School of Basic Medical Science, Fudan University, Shanghai, China
- Institute of Biomedical Science, Fudan University, Shanghai, China
| | - Nan Jiang
- Key Laboratory of Metabolism and Molecular Medicine, Ministry of Education, Department of Biochemistry and Molecular Biology, Collaborative Innovation Center of Genetics and Development, Institutes of Biomedical Science, School of Basic Medical Science, Fudan University, Shanghai, China
- Institute of Biomedical Science, Fudan University, Shanghai, China
| | - Juan P Cata
- Department of Anesthesiology and Perioperative Medicine, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
- Anaesthesiology and Surgical Oncology Research Group, Houston, Texas, USA
| | - Duan Ma
- Key Laboratory of Metabolism and Molecular Medicine, Ministry of Education, Department of Biochemistry and Molecular Biology, Collaborative Innovation Center of Genetics and Development, Institutes of Biomedical Science, School of Basic Medical Science, Fudan University, Shanghai, China
- Institute of Biomedical Science, Fudan University, Shanghai, China
- Children's Hospital, Fudan University, Shanghai, China
| | - Wan-Kun Chen
- Department of Anesthesiology, Zhongshan Hospital, Fudan University, Shanghai, China
- Cancer Center, ZhongShan Hospital, Fudan University, Shanghai, China
| | - Chang-Hong Miao
- Department of Anesthesiology, Fudan University Shanghai Cancer Center, Shanghai, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
- Department of Anesthesiology, Zhongshan Hospital, Fudan University, Shanghai, China
- Cancer Center, ZhongShan Hospital, Fudan University, Shanghai, China
| |
Collapse
|
215
|
Uribe ML, Marrocco I, Yarden Y. EGFR in Cancer: Signaling Mechanisms, Drugs, and Acquired Resistance. Cancers (Basel) 2021; 13:cancers13112748. [PMID: 34206026 PMCID: PMC8197917 DOI: 10.3390/cancers13112748] [Citation(s) in RCA: 265] [Impact Index Per Article: 66.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2021] [Revised: 05/24/2021] [Accepted: 05/28/2021] [Indexed: 12/11/2022] Open
Abstract
The epidermal growth factor receptor (EGFR) has served as the founding member of the large family of growth factor receptors harboring intrinsic tyrosine kinase function. High abundance of EGFR and large internal deletions are frequently observed in brain tumors, whereas point mutations and small insertions within the kinase domain are common in lung cancer. For these reasons EGFR and its preferred heterodimer partner, HER2/ERBB2, became popular targets of anti-cancer therapies. Nevertheless, EGFR research keeps revealing unexpected observations, which are reviewed herein. Once activated by a ligand, EGFR initiates a time-dependent series of molecular switches comprising downregulation of a large cohort of microRNAs, up-regulation of newly synthesized mRNAs, and covalent protein modifications, collectively controlling phenotype-determining genes. In addition to microRNAs, long non-coding RNAs and circular RNAs play critical roles in EGFR signaling. Along with driver mutations, EGFR drives metastasis in many ways. Paracrine loops comprising tumor and stromal cells enable EGFR to fuel invasion across tissue barriers, survival of clusters of circulating tumor cells, as well as colonization of distant organs. We conclude by listing all clinically approved anti-cancer drugs targeting either EGFR or HER2. Because emergence of drug resistance is nearly inevitable, we discuss the major evasion mechanisms.
Collapse
|
216
|
Cabanos HF, Hata AN. Emerging Insights into Targeted Therapy-Tolerant Persister Cells in Cancer. Cancers (Basel) 2021; 13:cancers13112666. [PMID: 34071428 PMCID: PMC8198243 DOI: 10.3390/cancers13112666] [Citation(s) in RCA: 98] [Impact Index Per Article: 24.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2021] [Revised: 05/19/2021] [Accepted: 05/19/2021] [Indexed: 12/25/2022] Open
Abstract
Drug resistance is perhaps the greatest challenge in improving outcomes for cancer patients undergoing treatment with targeted therapies. It is becoming clear that "persisters," a subpopulation of drug-tolerant cells found in cancer populations, play a critical role in the development of drug resistance. Persisters are able to maintain viability under therapy but are typically slow cycling or dormant. These cells do not harbor classic drug resistance driver alterations, and their partial resistance phenotype is transient and reversible upon removal of the drug. In the clinic, the persister state most closely corresponds to minimal residual disease from which relapse can occur if treatment is discontinued or if acquired drug resistance develops in response to continuous therapy. Thus, eliminating persister cells will be crucial to improve outcomes for cancer patients. Using lung cancer targeted therapies as a primary paradigm, this review will give an overview of the characteristics of drug-tolerant persister cells, mechanisms associated with drug tolerance, and potential therapeutic opportunities to target this persister cell population in tumors.
Collapse
Affiliation(s)
- Heidie Frisco Cabanos
- Massachusetts General Hospital Cancer Center, Charlestown, MA 02129, USA;
- Department of Medicine, Harvard Medical School, Boston, MA 02115, USA
| | - Aaron N. Hata
- Massachusetts General Hospital Cancer Center, Charlestown, MA 02129, USA;
- Department of Medicine, Harvard Medical School, Boston, MA 02115, USA
- Correspondence: ; Tel.: +1-617-724-3442
| |
Collapse
|
217
|
Abstract
Cancer cells acquire genotypic and phenotypic changes over the course of the disease. A minority of these changes enhance cell fitness, allowing a tumor to evolve and overcome environmental constraints and treatment. Cancer evolution is driven by diverse processes governed by different rules, such as discrete and irreversible genetic variants and continuous and reversible plastic reprogramming. In this perspective, we explore the role of cell plasticity in tumor evolution through specific examples. We discuss epigenetic and transcriptional reprogramming in "disease progression" of solid tumors, through the lens of the epithelial-to-mesenchymal transition, and "treatment resistance", in the context endocrine therapy in hormone-driven cancers. These examples offer a paradigm of the features and challenges of cell plastic evolution, and we investigate how recent technological advances can address these challenges. Cancer evolution is a multi-faceted process, whose understanding and harnessing will require an equally diverse prism of perspectives and approaches.
Collapse
Affiliation(s)
- Giovanni Ciriello
- Department of Computational Biology, University of Lausanne, Lausanne, Switzerland
- Swiss Cancer Center Leman, Lausanne, Switzerland
| | - Luca Magnani
- Department of Surgery and Cancer, Imperial College London, London, UK
| |
Collapse
|
218
|
Woolston A, Barber LJ, Griffiths B, Pich O, Lopez-Bigas N, Matthews N, Rao S, Watkins D, Chau I, Starling N, Cunningham D, Gerlinger M. Mutational signatures impact the evolution of anti-EGFR antibody resistance in colorectal cancer. Nat Ecol Evol 2021; 5:1024-1032. [PMID: 34017094 PMCID: PMC7611134 DOI: 10.1038/s41559-021-01470-8] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2020] [Accepted: 04/20/2021] [Indexed: 12/15/2022]
Abstract
Anti-EGFR antibodies such as cetuximab are active against KRAS/NRAS wild-type colorectal cancers (CRC) but acquired resistance invariably evolves. Which mutational mechanisms enable resistance evolution and whether adaptive mutagenesis, a transient cetuximab-induced increase in mutation generation, contributes in patients is unknown. Here, we investigate this in exome sequencing data of 42 baseline and progression biopsies from cetuximab treated CRCs. Mutation loads did not increase from baseline to progression and evidence for a contribution of adaptive mutagenesis was limited. However, the chemotherapy-induced mutational signature SBS17b was the main contributor of specific KRAS/NRAS and EGFR driver mutations that are enriched at acquired resistance. Detectable SBS17b activity before treatment predicted for shorter progression free survival and for the evolution of these specific mutations during subsequent cetuximab treatment. This suggests that chemotherapy mutagenesis can accelerate resistance evolution. Mutational signatures may be a new class of cancer evolution predictor.
Collapse
Affiliation(s)
- Andrew Woolston
- Translational Oncogenomics Laboratory, The Institute of Cancer Research, London, UK
| | - Louise J Barber
- Translational Oncogenomics Laboratory, The Institute of Cancer Research, London, UK
| | - Beatrice Griffiths
- Translational Oncogenomics Laboratory, The Institute of Cancer Research, London, UK
| | - Oriol Pich
- Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology, Barcelona, Spain
| | - Nuria Lopez-Bigas
- Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology, Barcelona, Spain.,Research Program on Biomedical Informatics, Universitat Pompeu Fabra, Barcelona, Spain.,Institució Catalana de Recerca i Estudis Avançats (ICREA), Barcelona, Spain
| | - Nik Matthews
- Tumour Profiling Unit, The Institute of Cancer Research, London, UK
| | - Sheela Rao
- Gastrointestinal Cancer Unit, The Royal Marsden Hospital, London, UK
| | - David Watkins
- Gastrointestinal Cancer Unit, The Royal Marsden Hospital, London, UK
| | - Ian Chau
- Gastrointestinal Cancer Unit, The Royal Marsden Hospital, London, UK
| | - Naureen Starling
- Gastrointestinal Cancer Unit, The Royal Marsden Hospital, London, UK
| | - David Cunningham
- Gastrointestinal Cancer Unit, The Royal Marsden Hospital, London, UK
| | - Marco Gerlinger
- Translational Oncogenomics Laboratory, The Institute of Cancer Research, London, UK. .,Gastrointestinal Cancer Unit, The Royal Marsden Hospital, London, UK.
| |
Collapse
|
219
|
Serratì S, Porcelli L, Fragassi F, Garofoli M, Di Fonte R, Fucci L, Iacobazzi RM, Palazzo A, Margheri F, Cristiani G, Albano A, De Luca R, Altomare DF, Simone M, Azzariti A. The Interaction between Reactive Peritoneal Mesothelial Cells and Tumor Cells via Extracellular Vesicles Facilitates Colorectal Cancer Dissemination. Cancers (Basel) 2021; 13:cancers13102505. [PMID: 34065529 PMCID: PMC8161093 DOI: 10.3390/cancers13102505] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2021] [Revised: 05/12/2021] [Accepted: 05/14/2021] [Indexed: 12/11/2022] Open
Abstract
Advanced colorectal cancer (CRC) is highly metastatic and often results in peritoneal dissemination. The extracellular vesicles (EVs) released by cancer cells in the microenvironment are important mediators of tumor metastasis. We investigated the contribution of EV-mediated interaction between peritoneal mesothelial cells (MCs) and CRC cells in generating a pro-metastatic environment in the peritoneal cavity. Peritoneal MCs isolated from peritoneal lavage fluids displayed high CD44 expression, substantial mesothelial-to-mesenchymal transition (MMT) and released EVs that both directed tumor invasion and caused reprogramming of secretory profiles by increasing TGF-β1 and uPA/uPAR expression and MMP-2/9 activation in tumor cells. Notably, the EVs released by tumor cells induced apoptosis by activating caspase-3, peritoneal MC senescence, and MMT, thereby augmenting the tumor-promoting potential of these cells in the peritoneal cavity. By using pantoprazole, we reduced the biogenesis of EVs and their pro-tumor functions. In conclusion, our findings provided evidence of underlying mechanisms of CRC dissemination driven by the interaction of peritoneal MCs and tumor cells via the EVs released in the peritoneal cavity, which may have important implications for the clinical management of patients.
Collapse
Affiliation(s)
- Simona Serratì
- Laboratory of Nanotechnology, IRCCS Istituto Tumori Giovanni Paolo II, 70124 Bari, Italy; (S.S.); (A.P.)
| | - Letizia Porcelli
- Laboratory of Experimental Pharmacology, IRCCS Istituto Tumori Giovanni Paolo II, Viale O. Flacco 65, 70124 Bari, Italy; (L.P.); (M.G.); (R.D.F.); (R.M.I.)
| | - Francesco Fragassi
- Department of Surgery Oncology, IRCCS Istituto Tumori Giovanni Paolo II, 70124 Bari, Italy; (F.F.); (R.D.L.); (D.F.A.); (M.S.)
| | - Marianna Garofoli
- Laboratory of Experimental Pharmacology, IRCCS Istituto Tumori Giovanni Paolo II, Viale O. Flacco 65, 70124 Bari, Italy; (L.P.); (M.G.); (R.D.F.); (R.M.I.)
| | - Roberta Di Fonte
- Laboratory of Experimental Pharmacology, IRCCS Istituto Tumori Giovanni Paolo II, Viale O. Flacco 65, 70124 Bari, Italy; (L.P.); (M.G.); (R.D.F.); (R.M.I.)
| | - Livia Fucci
- Pathology Department, IRCCS Istituto Tumori Giovanni Paolo II, 70124 Bari, Italy; (L.F.); (G.C.)
| | - Rosa Maria Iacobazzi
- Laboratory of Experimental Pharmacology, IRCCS Istituto Tumori Giovanni Paolo II, Viale O. Flacco 65, 70124 Bari, Italy; (L.P.); (M.G.); (R.D.F.); (R.M.I.)
| | - Antonio Palazzo
- Laboratory of Nanotechnology, IRCCS Istituto Tumori Giovanni Paolo II, 70124 Bari, Italy; (S.S.); (A.P.)
| | - Francesca Margheri
- Department of Experimental and Clinical Biomedical Sciences, University of Florence, 50134 Florence, Italy;
| | - Grazia Cristiani
- Pathology Department, IRCCS Istituto Tumori Giovanni Paolo II, 70124 Bari, Italy; (L.F.); (G.C.)
| | - Anna Albano
- Clinical Trial Center, IRCCS Istituto Tumori Giovanni Paolo II, 70124 Bari, Italy;
| | - Raffaele De Luca
- Department of Surgery Oncology, IRCCS Istituto Tumori Giovanni Paolo II, 70124 Bari, Italy; (F.F.); (R.D.L.); (D.F.A.); (M.S.)
| | - Donato Francesco Altomare
- Department of Surgery Oncology, IRCCS Istituto Tumori Giovanni Paolo II, 70124 Bari, Italy; (F.F.); (R.D.L.); (D.F.A.); (M.S.)
- Department of Emergency and Organ Transplantation, University Aldo Moro of Bari, 70124 Bari, Italy
| | - Michele Simone
- Department of Surgery Oncology, IRCCS Istituto Tumori Giovanni Paolo II, 70124 Bari, Italy; (F.F.); (R.D.L.); (D.F.A.); (M.S.)
| | - Amalia Azzariti
- Laboratory of Experimental Pharmacology, IRCCS Istituto Tumori Giovanni Paolo II, Viale O. Flacco 65, 70124 Bari, Italy; (L.P.); (M.G.); (R.D.F.); (R.M.I.)
- Correspondence:
| |
Collapse
|
220
|
Shen S, Vagner S, Robert C. Persistent Cancer Cells: The Deadly Survivors. Cell 2021; 183:860-874. [PMID: 33186528 DOI: 10.1016/j.cell.2020.10.027] [Citation(s) in RCA: 182] [Impact Index Per Article: 45.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2020] [Revised: 09/08/2020] [Accepted: 10/15/2020] [Indexed: 02/09/2023]
Abstract
Persistent cancer cells are the discrete and usually undetected cells that survive cancer drug treatment and constitute a major cause of treatment failure. These cells are characterized by their slow proliferation, highly flexible energy consumption, adaptation to their microenvironment, and phenotypic plasticity. Mechanisms that underlie their persistence offer highly coveted and sought-after therapeutic targets, and include diverse epigenetic, transcriptional, and translational regulatory processes, as well as complex cell-cell interactions. Although the successful clinical targeting of persistent cancer cells remains to be realized, immense progress has been made in understanding their persistence, yielding promising preclinical results.
Collapse
Affiliation(s)
- Shensi Shen
- INSERM U981, Gustave Roussy Cancer Campus, Villejuif, France.
| | - Stéphan Vagner
- Institut Curie, PSL Research University, CNRS UMR3348, INSERM U1278, Orsay, France; Université Paris Sud, Université Paris-Saclay, CNRS UMR3348, INSERM U1278, Orsay, France; Equipe Labellisée Ligue Nationale Contre le Cancer, Orsay, France.
| | - Caroline Robert
- INSERM U981, Gustave Roussy Cancer Campus, Villejuif, France; Université Paris-Sud, Université Paris-Saclay, Kremlin-Bicêtre, France; Dermato-Oncology, Gustave Roussy Cancer Campus, Villejuif, France.
| |
Collapse
|
221
|
Razavi ZS, Asgarpour K, Mahjoubin-Tehran M, Rasouli S, Khan H, Shahrzad MK, Hamblin MR, Mirzaei H. Angiogenesis-related non-coding RNAs and gastrointestinal cancer. MOLECULAR THERAPY-ONCOLYTICS 2021; 21:220-241. [PMID: 34095461 PMCID: PMC8141508 DOI: 10.1016/j.omto.2021.04.002] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Gastrointestinal (GI) cancers are among the main reasons for cancer death globally. The deadliest types of GI cancer include colon, stomach, and liver cancers. Multiple lines of evidence have shown that angiogenesis has a key role in the growth and metastasis of all GI tumors. Abnormal angiogenesis also has a critical role in many non-malignant diseases. Therefore, angiogenesis is considered to be an important target for improved cancer treatment. Despite much research, the mechanisms governing angiogenesis are not completely understood. Recently, it has been shown that angiogenesis-related non-coding RNAs (ncRNAs) could affect the development of angiogenesis in cancer cells and tumors. The broad family of ncRNAs, which include long non-coding RNAs, microRNAs, and circular RNAs, are related to the development, promotion, and metastasis of GI cancers, especially in angiogenesis. This review discusses the role of ncRNAs in mediating angiogenesis in various types of GI cancers and looks forward to the introduction of mimetics and antagonists as possible therapeutic agents.
Collapse
Affiliation(s)
| | - Kasra Asgarpour
- Department of Medicine, University of Western Ontario, London, ON, Canada
| | - Maryam Mahjoubin-Tehran
- Department of Medical Biotechnology, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Susan Rasouli
- School of Medicine, Kashan University of Medical Sciences, Kashan, Iran
| | - Haroon Khan
- Department of Pharmacy, Abdul Wali Khan University Mardan, Mardan, Pakistan
| | - Mohammad Karim Shahrzad
- Department of Internal Medicine and Endocrinology, Shohadae Tajrish Hospital, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Michael R Hamblin
- Laser Research Centre, Faculty of Health Science, University of Johannesburg, Doornfontein 2028, South Africa
| | - Hamed Mirzaei
- Research Center for Biochemistry and Nutrition in Metabolic Diseases, Institute for Basic Sciences, Kashan University of Medical Sciences, Kashan, Iran
| |
Collapse
|
222
|
Gaiani F, Marchesi F, Negri F, Greco L, Malesci A, de’Angelis GL, Laghi L. Heterogeneity of Colorectal Cancer Progression: Molecular Gas and Brakes. Int J Mol Sci 2021; 22:5246. [PMID: 34063506 PMCID: PMC8156342 DOI: 10.3390/ijms22105246] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2021] [Revised: 05/11/2021] [Accepted: 05/13/2021] [Indexed: 02/06/2023] Open
Abstract
The review begins with molecular genetics, which hit the field unveiling the involvement of oncogenes and tumor suppressor genes in the pathogenesis of colorectal cancer (CRC) and uncovering genetic predispositions. Then the notion of molecular phenotypes with different clinical behaviors was introduced and translated in the clinical arena, paving the way to next-generation sequencing that captured previously unrecognized heterogeneity. Among other molecular regulators of CRC progression, the extent of host immune response within the tumor micro-environment has a critical position. Translational sciences deeply investigated the field, accelerating the pace toward clinical transition, due to its strong association with outcomes. While the perturbation of gut homeostasis occurring in inflammatory bowel diseases can fuel carcinogenesis, micronutrients like vitamin D and calcium can act as brakes, and we discuss underlying molecular mechanisms. Among the components of gut microbiota, Fusobacterium nucleatum is over-represented in CRC, and may worsen patient outcome. However, any translational knowledge tracing the multifaceted evolution of CRC should be interpreted according to the prognostic and predictive frame of the TNM-staging system in a perspective of clinical actionability. Eventually, we examine challenges and promises of pharmacological interventions aimed to restrain disease progression at different disease stages.
Collapse
Affiliation(s)
- Federica Gaiani
- Department of Medicine and Surgery, University of Parma, 43126 Parma, Italy; (F.G.); (G.L.d.)
- Gastroenterology and Endoscopy Unit, University-Hospital of Parma, via Gramsci 14, 43126 Parma, Italy
| | - Federica Marchesi
- IRCCS Humanitas Research Hospital, via Manzoni 56, 20089 Rozzano, Italy; (F.M.); (A.M.)
- Department of Medical Biotechnology and Translational Medicine, University of Milan, 20132 Milan, Italy
| | - Francesca Negri
- Medical Oncology Unit, University Hospital of Parma, 43126 Parma, Italy;
| | - Luana Greco
- Laboratory of Molecular Gastroenterology, IRCCS Humanitas Research Hospital, via Manzoni 56, 20089 Rozzano, Italy;
| | - Alberto Malesci
- IRCCS Humanitas Research Hospital, via Manzoni 56, 20089 Rozzano, Italy; (F.M.); (A.M.)
- Department of Biomedical Sciences, Humanitas University, Via Rita Levi Montalcini 4, 20072 Pieve Emanuele, Italy
| | - Gian Luigi de’Angelis
- Department of Medicine and Surgery, University of Parma, 43126 Parma, Italy; (F.G.); (G.L.d.)
- Gastroenterology and Endoscopy Unit, University-Hospital of Parma, via Gramsci 14, 43126 Parma, Italy
| | - Luigi Laghi
- Department of Medicine and Surgery, University of Parma, 43126 Parma, Italy; (F.G.); (G.L.d.)
- Laboratory of Molecular Gastroenterology, IRCCS Humanitas Research Hospital, via Manzoni 56, 20089 Rozzano, Italy;
| |
Collapse
|
223
|
Wu Y, Zhong D, Li Y, Wu H, Zhang H, Mao H, Yang J, Luo K, Gong Q, Gu Z. A tumor-activatable peptide supramolecular nanoplatform for the delivery of dual-gene targeted siRNAs for drug-resistant cancer treatment. NANOSCALE 2021; 13:4887-4898. [PMID: 33625408 DOI: 10.1039/d0nr08487e] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Combinatorial short interference RNA (siRNA) technology for the silencing of multiple genes is expected to provide an effective therapeutic approach for cancer with complex genetic mutation and dysregulation. Herein we present a tumor-activatable supramolecular nanoplatform for the delivery of siRNAs to target telomerase and telomeres for paclitaxel-resistant non-small-cell lung cancer (A549/PTX) treatment. Two different sequences of siRNA are incorporated in a single nanoparticle, which is obtained by self-assembly from a peptide dendrimer. The siRNA stability is improved by the nanoparticle in the presence of serum compared to free siRNA, and these siRNAs are protected from RNA enzyme degradation. In the tumor extracellular acid environment, the PEG corona of the nanoparticle is removed to promote the internalization of siRNAs into tumor cells. The disulfide linkages between the nanoparticle and siRNAs are cleared in the reductive environment of the tumor cells, and the siRNAs are released in the cytoplasm. In vitro experiments show that the gene expression of hTERT and TRF2 at the mRNA and protein levels of A549/PTX tumor cells is down-regulated, which results in cooperative restraining proliferation and invasion of A549/PTX tumor cells. For the tumor cell-targeting function of the MUC1 aptamer and the EPR effect, sufficient tumor accumulation of nanoparticles was observed. Meanwhile, a shift of negative surface charge of nanoparticles to positive charge in the tumor extracellular microenvironment enhances deep penetration of siRNA-incorporating nanoparticles into tumor tissues. In vivo animal studies support that successful down-regulation of hTERT and TRF2 gene expression achieves effective inhibition of the growth and neovascularization of drug-resistant tumor cells. This work has provided a new avenue for drug-resistant cancer treatment by designing and synthesizing a tumor-activatable nanoplatform to achieve the delivery of dual-gene targeted combinatorial siRNAs.
Collapse
Affiliation(s)
- Yahui Wu
- Huaxi MR Research Center (HMRRC), Department of Radiology, Functional and Molecular Imaging Key Laboratory of Sichuan Province, National Clinical Research Center for Geriatrics, West China Hospital, and National Engineering Research Center for Biomaterials, Sichuan University, Chengdu 610041, P. R. China.
| | - Dan Zhong
- Huaxi MR Research Center (HMRRC), Department of Radiology, Functional and Molecular Imaging Key Laboratory of Sichuan Province, National Clinical Research Center for Geriatrics, West China Hospital, and National Engineering Research Center for Biomaterials, Sichuan University, Chengdu 610041, P. R. China.
| | - Yunkun Li
- Huaxi MR Research Center (HMRRC), Department of Radiology, Functional and Molecular Imaging Key Laboratory of Sichuan Province, National Clinical Research Center for Geriatrics, West China Hospital, and National Engineering Research Center for Biomaterials, Sichuan University, Chengdu 610041, P. R. China.
| | - Huayu Wu
- Huaxi MR Research Center (HMRRC), Department of Radiology, Functional and Molecular Imaging Key Laboratory of Sichuan Province, National Clinical Research Center for Geriatrics, West China Hospital, and National Engineering Research Center for Biomaterials, Sichuan University, Chengdu 610041, P. R. China.
| | - Hu Zhang
- Amgen Bioprocessing Centre, Keck Graduate Institute, CA 91711, USA
| | - Hongli Mao
- Research Institute for Biomaterials, Tech Institute for Advanced Materials, College of Materials Science and Engineering, NJTech-BARTY Joint Research Center for Innovative Medical Technology, Suqian Advanced Materials Industry Technology Innovation Center, Nanjing Tech University, Nanjing 211816, P. R. China
| | - Jun Yang
- The Key Laboratory of Bioactive Materials, Ministry of Education, College of Life Sciences, Nankai University, Tianjin 300071, P. R. China
| | - Kui Luo
- Huaxi MR Research Center (HMRRC), Department of Radiology, Functional and Molecular Imaging Key Laboratory of Sichuan Province, National Clinical Research Center for Geriatrics, West China Hospital, and National Engineering Research Center for Biomaterials, Sichuan University, Chengdu 610041, P. R. China.
| | - Qiyong Gong
- Huaxi MR Research Center (HMRRC), Department of Radiology, Functional and Molecular Imaging Key Laboratory of Sichuan Province, National Clinical Research Center for Geriatrics, West China Hospital, and National Engineering Research Center for Biomaterials, Sichuan University, Chengdu 610041, P. R. China.
| | - Zhongwei Gu
- Huaxi MR Research Center (HMRRC), Department of Radiology, Functional and Molecular Imaging Key Laboratory of Sichuan Province, National Clinical Research Center for Geriatrics, West China Hospital, and National Engineering Research Center for Biomaterials, Sichuan University, Chengdu 610041, P. R. China. and Research Institute for Biomaterials, Tech Institute for Advanced Materials, College of Materials Science and Engineering, NJTech-BARTY Joint Research Center for Innovative Medical Technology, Suqian Advanced Materials Industry Technology Innovation Center, Nanjing Tech University, Nanjing 211816, P. R. China
| |
Collapse
|
224
|
Kobori T, Tameishi M, Tanaka C, Urashima Y, Obata T. Subcellular distribution of ezrin/radixin/moesin and their roles in the cell surface localization and transport function of P-glycoprotein in human colon adenocarcinoma LS180 cells. PLoS One 2021; 16:e0250889. [PMID: 33974673 PMCID: PMC8112653 DOI: 10.1371/journal.pone.0250889] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2021] [Accepted: 04/15/2021] [Indexed: 12/20/2022] Open
Abstract
The ezrin/radixin/moesin (ERM) family proteins act as linkers between the actin cytoskeleton and P-glycoprotein (P-gp) and regulate the plasma membrane localization and functionality of the latter in various cancer cells. Notably, P-gp overexpression in the plasma membrane of cancer cells is a principal factor responsible for multidrug resistance and drug-induced mutagenesis. However, it remains unknown whether the ERM proteins contribute to the plasma membrane localization and transport function of P-gp in human colorectal cancer cells in which the subcellular localization of ERM has yet to be determined. This study aimed to determine the gene expression patterns and subcellular localization of ERM and P-gp and investigate the role of ERM proteins in the plasma membrane localization and transport function of P-gp using the human colon adenocarcinoma cell line LS180. Using real-time reverse transcription polymerase chain reaction and immunofluorescence analyses, we showed higher levels of ezrin and moesin mRNAs than those of radixin mRNA in these cells and preferential distribution of all three ERM proteins on the plasma membrane. The ERM proteins were highly colocalized with P-gp. Additionally, we show that the knockdown of ezrin, but not of radixin and moesin, by RNA interference significantly decreased the cell surface expression of P-gp in LS180 cells without affecting the mRNA expression of P-gp. Furthermore, gene silencing of ezrin substantially increased the intracellular accumulation of rhodamine123, a typical P-gp substrate, with no alterations in the plasma membrane permeability of Evans blue, a passive transport marker. In conclusion, ezrin may primarily regulate the cell surface localization and transport function of P-gp as a scaffold protein without influencing the transcriptional activity of P-gp in LS180 cells. These findings should be relevant for treating colorectal cancer, which is the second leading cause of cancer-related deaths in males and females combined.
Collapse
Affiliation(s)
- Takuro Kobori
- Laboratory of Clinical Pharmaceutics, Faculty of Pharmacy, Osaka Ohtani University, Tondabayashi, Osaka, Japan
| | - Mayuka Tameishi
- Laboratory of Clinical Pharmaceutics, Faculty of Pharmacy, Osaka Ohtani University, Tondabayashi, Osaka, Japan
| | - Chihiro Tanaka
- Laboratory of Clinical Pharmaceutics, Faculty of Pharmacy, Osaka Ohtani University, Tondabayashi, Osaka, Japan
| | - Yoko Urashima
- Laboratory of Clinical Pharmaceutics, Faculty of Pharmacy, Osaka Ohtani University, Tondabayashi, Osaka, Japan
| | - Tokio Obata
- Laboratory of Clinical Pharmaceutics, Faculty of Pharmacy, Osaka Ohtani University, Tondabayashi, Osaka, Japan
- * E-mail:
| |
Collapse
|
225
|
Russo M, Sogari A, Bardelli A. Adaptive Evolution: How Bacteria and Cancer Cells Survive Stressful Conditions and Drug Treatment. Cancer Discov 2021; 11:1886-1895. [PMID: 33952585 DOI: 10.1158/2159-8290.cd-20-1588] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Cancer is characterized by loss of the regulatory mechanisms that preserve homeostasis in multicellular organisms, such as controlled proliferation, cell-cell adhesion, and tissue differentiation. The breakdown of multicellularity rules is accompanied by activation of "selfish," unicellular-like life features, which are linked to the increased adaptability to environmental changes displayed by cancer cells. Mechanisms of stress response, resembling those observed in unicellular organisms, are actively exploited by mammalian cancer cells to boost genetic diversity and increase chances of survival under unfavorable conditions, such as lack of oxygen/nutrients or exposure to drugs. Unicellular organisms under stressful conditions (e.g., antibiotic treatment) stop replicating or slowly divide and transiently increase their mutation rates to foster diversity, a process known as adaptive mutability. Analogously, tumor cells exposed to drugs enter a persister phenotype and can reduce DNA replication fidelity, which in turn fosters genetic diversity. The implications of adaptive evolution are of relevance to understand resistance to anticancer therapies.
Collapse
Affiliation(s)
- Mariangela Russo
- Department of Oncology, University of Torino, Candiolo 10060, Italy. Candiolo Cancer Institute, FPO-IRCCS, Candiolo 10060, Italy.
| | - Alberto Sogari
- Department of Oncology, University of Torino, Candiolo 10060, Italy. Candiolo Cancer Institute, FPO-IRCCS, Candiolo 10060, Italy
| | - Alberto Bardelli
- Department of Oncology, University of Torino, Candiolo 10060, Italy. Candiolo Cancer Institute, FPO-IRCCS, Candiolo 10060, Italy.
| |
Collapse
|
226
|
Proteomics of resistance to Notch1 inhibition in acute lymphoblastic leukemia reveals targetable kinase signatures. Nat Commun 2021; 12:2507. [PMID: 33947863 PMCID: PMC8097059 DOI: 10.1038/s41467-021-22787-9] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2020] [Accepted: 03/29/2021] [Indexed: 01/01/2023] Open
Abstract
Notch1 is a crucial oncogenic driver in T-cell acute lymphoblastic leukemia (T-ALL), making it an attractive therapeutic target. However, the success of targeted therapy using γ-secretase inhibitors (GSIs), small molecules blocking Notch cleavage and subsequent activation, has been limited due to development of resistance, thus restricting its clinical efficacy. Here, we systematically compare GSI resistant and sensitive cell states by quantitative mass spectrometry-based phosphoproteomics, using complementary models of resistance, including T-ALL patient-derived xenografts (PDX) models. Our datasets reveal common mechanisms of GSI resistance, including a distinct kinase signature that involves protein kinase C delta. We demonstrate that the PKC inhibitor sotrastaurin enhances the anti-leukemic activity of GSI in PDX models and completely abrogates the development of acquired GSI resistance in vitro. Overall, we highlight the potential of proteomics to dissect alterations in cellular signaling and identify druggable pathways in cancer. NOTCH1 is a driver of T-cell acute lymphoblastic leukemia that can be inhibited by γ-secretase inhibitors (GSIs), but their clinical efficacy is limited. Here, the authors compare the phosphoproteomes of GSI resistant and sensitive models, and identify potential kinase targets to overcome GSI resistance.
Collapse
|
227
|
Haga Y, Marrocco I, Noronha A, Uribe ML, Nataraj NB, Sekar A, Drago-Garcia D, Borgoni S, Lindzen M, Giri S, Wiemann S, Tsutsumi Y, Yarden Y. Host-Dependent Phenotypic Resistance to EGFR Tyrosine Kinase Inhibitors. Cancer Res 2021; 81:3862-3875. [PMID: 33941614 DOI: 10.1158/0008-5472.can-20-3555] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2020] [Revised: 03/01/2021] [Accepted: 04/28/2021] [Indexed: 11/16/2022]
Abstract
Lung cancers driven by mutant forms of EGFR invariably develop resistance to kinase inhibitors, often due to secondary mutations. Here we describe an unconventional mechanism of resistance to dacomitinib, a newly approved covalent EGFR kinase inhibitor, and uncover a previously unknown step of resistance acquisition. Dacomitinib-resistant (DR) derivatives of lung cancer cells were established by means of gradually increasing dacomitinib concentrations. These DR cells acquired no secondary mutations in the kinase or other domains of EGFR. Along with resistance to other EGFR inhibitors, DR cells acquired features characteristic to epithelial-mesenchymal transition, including an expanded population of aldehyde dehydrogenase-positive cells and upregulation of AXL, a receptor previously implicated in drug resistance. Unexpectedly, when implanted in animals, DR cells reverted to a dacomitinib-sensitive state. Nevertheless, cell lines derived from regressing tumors displayed renewed resistance when cultured in vitro. Three-dimensional and cocultures along with additional analyses indicated lack of involvement of hypoxia, fibroblasts, and immune cells in phenotype reversal, implying that other host-dependent mechanisms might nullify nonmutational modes of resistance. Thus, similar to the phenotypic resistance of bacteria treated with antibiotics, the reversible resisters described here likely evolve from drug-tolerant persisters and give rise to the irreversible, secondary mutation-driven nonreversible resister state. SIGNIFICANCE: This study reports that stepwise acquisition of kinase inhibitor resistance in lung cancers driven by mutant EGFR comprises a nonmutational, reversible resister state. GRAPHICAL ABSTRACT: http://cancerres.aacrjournals.org/content/canres/81/14/3862/F1.large.jpg.
Collapse
Affiliation(s)
- Yuya Haga
- Department of Biological Regulation, Weizmann Institute of Science, Rehovot, Israel.,Graduate School of Pharmaceutical Sciences, Osaka University, Osaka, Japan
| | - Ilaria Marrocco
- Department of Biological Regulation, Weizmann Institute of Science, Rehovot, Israel
| | - Ashish Noronha
- Department of Biological Regulation, Weizmann Institute of Science, Rehovot, Israel
| | - Mary Luz Uribe
- Department of Biological Regulation, Weizmann Institute of Science, Rehovot, Israel
| | | | - Arunachalam Sekar
- Department of Biological Regulation, Weizmann Institute of Science, Rehovot, Israel
| | - Diana Drago-Garcia
- Department of Biological Regulation, Weizmann Institute of Science, Rehovot, Israel
| | - Simone Borgoni
- Division of Molecular Genome Analysis, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Moshit Lindzen
- Department of Biological Regulation, Weizmann Institute of Science, Rehovot, Israel
| | - Suvendu Giri
- Department of Biological Regulation, Weizmann Institute of Science, Rehovot, Israel
| | - Stefan Wiemann
- Division of Molecular Genome Analysis, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Yasuo Tsutsumi
- Graduate School of Pharmaceutical Sciences, Osaka University, Osaka, Japan.,Global Center for Medical Engineering and Informatics, Osaka University, Osaka, Japan
| | - Yosef Yarden
- Department of Biological Regulation, Weizmann Institute of Science, Rehovot, Israel.
| |
Collapse
|
228
|
Zhou B, Gao S. Pan-Cancer Analysis of FURIN as a Potential Prognostic and Immunological Biomarker. Front Mol Biosci 2021; 8:648402. [PMID: 33968987 PMCID: PMC8100462 DOI: 10.3389/fmolb.2021.648402] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2020] [Accepted: 03/30/2021] [Indexed: 12/12/2022] Open
Abstract
Background Furin is a calcium-dependent protease that processes various precursor proteins through diverse secretory pathways. The deregulation of FURIN correlated with the prognosis of patients in numerous diseases. However, the role of FURIN in human pan-cancer is still largely unknown. Methods Multiple bioinformatic methods were employed to comprehensively analyze the correlation of FURIN expression with prognosis, mismatch repair (MMR), microsatellite instability (MSI), tumor mutational burden (TMB), DNA methylation, tumor immune infiltration, and common immune checkpoint inhibitors (ICIs) from the public database, and aim to evaluate the potential prognostic value of FURIN across cancers. Results FURIN was aberrantly expressed and was strongly correlated with MMR, MSI, TMB, and DNA methylation in multiple types of cancer. Moreover, survival analysis across cancers revealed that FURIN expression was correlated with overall survival (OS) in four cancers, disease-specific survival (DSS) in five cancers, progression-free interval (PFI) in seven cancers, and disease-free interval (DFI) in two cancers. Also, FURIN expression was related to immune cell infiltration in 6 cancers and ImmuneScore/StromalScore in 10 cancers, respectively. In addition, FURIN expression also showed strong association between expression levels and immune checkpoint markers in three cancers. Conclusion FURIN can serve as a significant prognostic biomarker and correlate with tumor immunity in human pan-cancer.
Collapse
Affiliation(s)
- Bolun Zhou
- Thoracic Surgery Department, National Cancer Center, National Clinical Research Center for Cancer, Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Shugeng Gao
- Thoracic Surgery Department, National Cancer Center, National Clinical Research Center for Cancer, Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| |
Collapse
|
229
|
The European Union and personalised cancer medicine. Eur J Cancer 2021; 150:95-98. [PMID: 33892410 DOI: 10.1016/j.ejca.2021.03.013] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2021] [Accepted: 03/08/2021] [Indexed: 11/20/2022]
Abstract
Two recent policy documents by the European Union, 'Europe's Beating Cancer Plan' and its accompanying 'Conquering Cancer: Mission Possible' (CCMP), articulate broad policies aimed at reducing cancer mortality across Europe, for example, by promoting prevention and early detection. The focus for cancer treatment in these manifestos is the expansion of personalised cancer medicine (PCM). However, the CCMP document suggests that the uptake of PCM is "hampered by uncertainty about its outcomes". What are these outcomes and why this uncertainty? We address the limits of PCM in pathology-driven and pathology-agnostic PCM, briefly discussing the results of umbrella and basket trials. We suggest that the complexity, plasticity and genetic heterogeneity of advanced cancers will continue to thwart the impact of PCM, limiting it to specific pathologies, or rare subsets of them. Caution regarding the advancement of PCM is justified, and policymakers should be wary of the hype of lobbyists, who do not acknowledge the limits of PCM.
Collapse
|
230
|
Wu Y, Lu D, Jiang Y, Jin J, Liu S, Chen L, Zhang H, Zhou Y, Chen H, Nagle DG, Luan X, Zhang W. Stapled Wasp Venom-Derived Oncolytic Peptides with Side Chains Induce Rapid Membrane Lysis and Prolonged Immune Responses in Melanoma. J Med Chem 2021; 64:5802-5815. [PMID: 33844923 DOI: 10.1021/acs.jmedchem.0c02237] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Peptide stapling chemistry represents an attractive strategy to promote the clinical translation of protein epitope mimetics, but its use has not been applied to natural cytotoxic peptides (NCPs) to produce new oncolytic peptides. Based on a wasp venom peptide, a series of stapled anoplin peptides (StAnos) were prepared. The optimized stapled Ano-3/3s were shown to be protease-resistant and exerted superior tumor cell-selective cytotoxicity by rapid membrane disruption. In addition, Ano-3/3s induced tumor ablation in mice through the direct oncolytic effect and subsequent stimulation of immunogenic cell death. This synergistic oncolytic-immunotherapy effect is more remarkable on melanoma than on triple-negative breast cancer in vivo. The efficacies exerted by Ano-3/3s on melanoma were further characterized by CD8+ T cell infiltration, and the addition of anti-CD8 antibodies diminished the long-term antitumor effects. In summary, these results support stapled peptide chemistry as an advantageous method to enhance the NCP potency for oncolytic therapy.
Collapse
Affiliation(s)
- Ye Wu
- Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Dong Lu
- Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Yixin Jiang
- Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Jinmei Jin
- Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Sanhong Liu
- Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Lili Chen
- Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Hong Zhang
- Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Yudong Zhou
- Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China.,Department of Chemistry and Biochemistry, College of Liberal Arts, University of Mississippi, University, Mississippi 38677-1848, United States
| | - Hongzhuan Chen
- Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Dale G Nagle
- Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China.,Department of Biomolecular Sciences and Research of Institute of Pharmaceutical Sciences, School of Pharmacy, University of Mississippi, University, Mississippi 38677-1848, United States
| | - Xin Luan
- Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Weidong Zhang
- Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China.,School of Pharmacy, Second Military Medical University, Shanghai 201203, China
| |
Collapse
|
231
|
Maiorano D, El Etri J, Franchet C, Hoffmann JS. Translesion Synthesis or Repair by Specialized DNA Polymerases Limits Excessive Genomic Instability upon Replication Stress. Int J Mol Sci 2021; 22:3924. [PMID: 33920223 PMCID: PMC8069355 DOI: 10.3390/ijms22083924] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2021] [Revised: 04/02/2021] [Accepted: 04/06/2021] [Indexed: 12/15/2022] Open
Abstract
DNA can experience "replication stress", an important source of genome instability, induced by various external or endogenous impediments that slow down or stall DNA synthesis. While genome instability is largely documented to favor both tumor formation and heterogeneity, as well as drug resistance, conversely, excessive instability appears to suppress tumorigenesis and is associated with improved prognosis. These findings support the view that karyotypic diversity, necessary to adapt to selective pressures, may be limited in tumors so as to reduce the risk of excessive instability. This review aims to highlight the contribution of specialized DNA polymerases in limiting extreme genetic instability by allowing DNA replication to occur even in the presence of DNA damage, to either avoid broken forks or favor their repair after collapse. These mechanisms and their key regulators Rad18 and Polθ not only offer diversity and evolutionary advantage by increasing mutagenic events, but also provide cancer cells with a way to escape anti-cancer therapies that target replication forks.
Collapse
Affiliation(s)
- Domenico Maiorano
- Institute of Human Genetics, UMR9002, CNRS-University of Montpellier, 34396 Montpellier, France; (D.M.); (J.E.E.)
| | - Jana El Etri
- Institute of Human Genetics, UMR9002, CNRS-University of Montpellier, 34396 Montpellier, France; (D.M.); (J.E.E.)
| | - Camille Franchet
- Laboratoire D’Excellence Toulouse Cancer (TOUCAN), Laboratoire de Pathologie, Institut Universitaire du Cancer-Toulouse, Oncopole, 1 Avenue Irène-Joliot-Curie, 31059 Toulouse, France;
| | - Jean-Sébastien Hoffmann
- Laboratoire D’Excellence Toulouse Cancer (TOUCAN), Laboratoire de Pathologie, Institut Universitaire du Cancer-Toulouse, Oncopole, 1 Avenue Irène-Joliot-Curie, 31059 Toulouse, France;
| |
Collapse
|
232
|
Aldea M, Andre F, Marabelle A, Dogan S, Barlesi F, Soria JC. Overcoming Resistance to Tumor-Targeted and Immune-Targeted Therapies. Cancer Discov 2021; 11:874-899. [PMID: 33811122 DOI: 10.1158/2159-8290.cd-20-1638] [Citation(s) in RCA: 157] [Impact Index Per Article: 39.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2020] [Revised: 01/13/2021] [Accepted: 02/01/2021] [Indexed: 11/16/2022]
Abstract
Resistance to anticancer therapies includes primary resistance, usually related to lack of target dependency or presence of additional targets, and secondary resistance, mostly driven by adaptation of the cancer cell to the selection pressure of treatment. Resistance to targeted therapy is frequently acquired, driven by on-target, bypass alterations, or cellular plasticity. Resistance to immunotherapy is often primary, orchestrated by sophisticated tumor-host-microenvironment interactions, but could also occur after initial efficacy, mostly when only partial responses are obtained. Here, we provide an overview of resistance to tumor and immune-targeted therapies and discuss challenges of overcoming resistance, and current and future directions of development. SIGNIFICANCE: A better and earlier identification of cancer-resistance mechanisms could avoid the use of ineffective drugs in patients not responding to therapy and provide the rationale for the administration of personalized drug associations. A clear description of the molecular interplayers is a prerequisite to the development of novel and dedicated anticancer drugs. Finally, the implementation of such cancer molecular and immunologic explorations in prospective clinical trials could de-risk the demonstration of more effective anticancer strategies in randomized registration trials, and bring us closer to the promise of cure.
Collapse
Affiliation(s)
- Mihaela Aldea
- Department of Medical Oncology, Gustave Roussy, Villejuif, France
| | - Fabrice Andre
- Department of Medical Oncology, Gustave Roussy, Villejuif, France.,INSERM U981, PRISM Institute, Gustave Roussy, Villejuif, France.,Paris Saclay University, Saint-Aubin, France
| | - Aurelien Marabelle
- INSERM U981, PRISM Institute, Gustave Roussy, Villejuif, France.,Drug Development Department, Gustave Roussy, Villejuif, France
| | - Semih Dogan
- INSERM U981, PRISM Institute, Gustave Roussy, Villejuif, France
| | - Fabrice Barlesi
- Department of Medical Oncology, Gustave Roussy, Villejuif, France.,Aix Marseille University, CNRS, INSERM, CRCM, Marseille, France
| | - Jean-Charles Soria
- Paris Saclay University, Saint-Aubin, France. .,Drug Development Department, Gustave Roussy, Villejuif, France
| |
Collapse
|
233
|
Qin F, Fan Q, Yu PKN, Almahi WA, Kong P, Yang M, Cao W, Nie L, Chen G, Han W. Properties and gene expression profiling of acquired radioresistance in mouse breast cancer cells. ANNALS OF TRANSLATIONAL MEDICINE 2021; 9:628. [PMID: 33987326 PMCID: PMC8106033 DOI: 10.21037/atm-20-4667] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Background Acquired radioresistant cells exhibit many characteristic changes which may influence cancer progression and further treatment options. The purpose of this study is to investigate the changes of radioresistant human epidermal growth factor receptor 2 (HER2)-positive breast cancer cells on both phenotypic and molecular levels. Methods We established an acquired radioresistant cell line from its parental NF639 cell line (HER2-positive) by fractionated radiation and assessed changes in cellular morphology, proliferation, migration, anti-apoptosis activity, basal reactive oxygen species (ROS) level and energy metabolism. RNA-sequencing (RNA-seq) was also used to reveal the potential regulating genes and molecular mechanisms associated with the acquired changed phenotypes. Real-time PCR was used to validate the results of RNA-seq. Results The NF639R cells exhibited increased radioresistance and enhanced activity of proliferation, migration and anti-apoptosis, but decreased basal ROS. Two main energy metabolism pathways, mitochondrial respiration and glycolytic, were also upregulated. Furthermore, 490 differentially expressed genes were identified by RNA-seq. Enrichment analysis based on Gene Ontology and Kyoto Encyclopedia of Genes and Genomes showed many differently expressed genes were significantly enriched in cell morphology, proliferation, migration, anti-apoptosis, antioxidation, tumor stem cells and energy metabolism and the signaling cascades such as the transforming growth factor-β, Wnt, Hedgehog, vascular endothelial growth factor, retinoic acid-inducible gene I (RIG-I)-like receptor, Toll-like receptor and nucleotide oligomerization domain (NOD)-like receptor were significantly altered in NF639R cells. Conclusions In clinical radiotherapy, repeat radiotherapy for short-term recurrence of breast cancer may result in enhanced radioresistance and promote malignant progression. Our research provided hints to understand the tumor resistance to radiotherapy de novo and recurrence with a worse prognosis following radiotherapy.
Collapse
Affiliation(s)
- Feng Qin
- Anhui Province Key Laboratory of Medical Physics and Technology/Institute of Health and Medical Technology, Hefei Institutes of Physical Sciences, Chinese Academy of Sciences, Hefei, China.,Scinece Island Branch, Graduate School of USTC, Hefei, China.,Hefei Cancer Hospital, Chinese Academy of Sciences, Hefei, China.,Institute of Sericultural, Anhui Academy of Agricultural Sciences, Hefei, China
| | - Qiang Fan
- Anhui Province Key Laboratory of Medical Physics and Technology/Institute of Health and Medical Technology, Hefei Institutes of Physical Sciences, Chinese Academy of Sciences, Hefei, China.,Scinece Island Branch, Graduate School of USTC, Hefei, China
| | - Peter K N Yu
- Department of Physics, City University of Hong Kong, Tat Chee Avenue, Kowloon Tong, Hong Kong, China.,State Key Laboratory in Marine Pollution, City University of Hong Kong, Tat Chee Avenue, Kowloon Tong, Hong Kong, China
| | - Waleed Abdelbagi Almahi
- Anhui Province Key Laboratory of Medical Physics and Technology/Institute of Health and Medical Technology, Hefei Institutes of Physical Sciences, Chinese Academy of Sciences, Hefei, China.,Scinece Island Branch, Graduate School of USTC, Hefei, China
| | - Peizhong Kong
- Anhui Province Key Laboratory of Medical Physics and Technology/Institute of Health and Medical Technology, Hefei Institutes of Physical Sciences, Chinese Academy of Sciences, Hefei, China.,Scinece Island Branch, Graduate School of USTC, Hefei, China
| | - Miaomiao Yang
- Anhui Province Key Laboratory of Medical Physics and Technology/Institute of Health and Medical Technology, Hefei Institutes of Physical Sciences, Chinese Academy of Sciences, Hefei, China.,Scinece Island Branch, Graduate School of USTC, Hefei, China.,Clinical Pathology Center, The Fourth Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Wei Cao
- Anhui Province Key Laboratory of Medical Physics and Technology/Institute of Health and Medical Technology, Hefei Institutes of Physical Sciences, Chinese Academy of Sciences, Hefei, China.,Scinece Island Branch, Graduate School of USTC, Hefei, China
| | - Lili Nie
- Anhui Province Key Laboratory of Medical Physics and Technology/Institute of Health and Medical Technology, Hefei Institutes of Physical Sciences, Chinese Academy of Sciences, Hefei, China.,Hefei Cancer Hospital, Chinese Academy of Sciences, Hefei, China
| | - Guodong Chen
- Anhui Province Key Laboratory of Medical Physics and Technology/Institute of Health and Medical Technology, Hefei Institutes of Physical Sciences, Chinese Academy of Sciences, Hefei, China.,Hefei Cancer Hospital, Chinese Academy of Sciences, Hefei, China
| | - Wei Han
- Anhui Province Key Laboratory of Medical Physics and Technology/Institute of Health and Medical Technology, Hefei Institutes of Physical Sciences, Chinese Academy of Sciences, Hefei, China.,Hefei Cancer Hospital, Chinese Academy of Sciences, Hefei, China.,Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions and School for Radiological and Interdisciplinary Sciences (RAD-X), Soochow University, Suzhou, China
| |
Collapse
|
234
|
Yang C, Tian C, Hoffman TE, Jacobsen NK, Spencer SL. Melanoma subpopulations that rapidly escape MAPK pathway inhibition incur DNA damage and rely on stress signalling. Nat Commun 2021; 12:1747. [PMID: 33741929 PMCID: PMC7979728 DOI: 10.1038/s41467-021-21549-x] [Citation(s) in RCA: 50] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2020] [Accepted: 01/28/2021] [Indexed: 12/11/2022] Open
Abstract
Despite the increasing number of effective anti-cancer therapies, successful treatment is limited by the development of drug resistance. While the contribution of genetic factors to drug resistance is undeniable, little is known about how drug-sensitive cells first evade drug action to proliferate in drug. Here we track the responses of thousands of single melanoma cells to BRAF inhibitors and show that a subset of cells escapes drug via non-genetic mechanisms within the first three days of treatment. Cells that escape drug rely on ATF4 stress signalling to cycle periodically in drug, experience DNA replication defects leading to DNA damage, and yet out-proliferate other cells over extended treatment. Together, our work reveals just how rapidly melanoma cells can adapt to drug treatment, generating a mutagenesis-prone subpopulation that expands over time.
Collapse
Affiliation(s)
- Chen Yang
- Department of Biochemistry, University of Colorado Boulder, Boulder, CO, USA.,BioFrontiers Institute, University of Colorado Boulder, Boulder, CO, USA.,Department of Molecular, Cellular, and Developmental Biology, University of Colorado Boulder, Boulder, CO, USA
| | - Chengzhe Tian
- Department of Biochemistry, University of Colorado Boulder, Boulder, CO, USA.,BioFrontiers Institute, University of Colorado Boulder, Boulder, CO, USA
| | - Timothy E Hoffman
- Department of Biochemistry, University of Colorado Boulder, Boulder, CO, USA.,BioFrontiers Institute, University of Colorado Boulder, Boulder, CO, USA
| | - Nicole K Jacobsen
- Department of Biochemistry, University of Colorado Boulder, Boulder, CO, USA.,BioFrontiers Institute, University of Colorado Boulder, Boulder, CO, USA
| | - Sabrina L Spencer
- Department of Biochemistry, University of Colorado Boulder, Boulder, CO, USA. .,BioFrontiers Institute, University of Colorado Boulder, Boulder, CO, USA.
| |
Collapse
|
235
|
How Chaotic Is Genome Chaos? Cancers (Basel) 2021; 13:cancers13061358. [PMID: 33802828 PMCID: PMC8002653 DOI: 10.3390/cancers13061358] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2021] [Revised: 03/08/2021] [Accepted: 03/09/2021] [Indexed: 12/11/2022] Open
Abstract
Simple Summary Cancer genomes can undergo major restructurings involving many chromosomal locations at key stages in tumor development. This restructuring process has been designated “genome chaos” by some authors. In order to examine how chaotic cancer genome restructuring may be, the cell and molecular processes for DNA restructuring are reviewed. Examination of the action of these processes in various cancers reveals a degree of specificity that indicates genome restructuring may be sufficiently reproducible to enable possible therapies that interrupt tumor progression to more lethal forms. Abstract Cancer genomes evolve in a punctuated manner during tumor evolution. Abrupt genome restructuring at key steps in this evolution has been called “genome chaos.” To answer whether widespread genome change is truly chaotic, this review (i) summarizes the limited number of cell and molecular systems that execute genome restructuring, (ii) describes the characteristic signatures of DNA changes that result from activity of those systems, and (iii) examines two cases where genome restructuring is determined to a significant degree by cell type or viral infection. The conclusion is that many restructured cancer genomes display sufficiently unchaotic signatures to identify the cellular systems responsible for major oncogenic transitions, thereby identifying possible targets for therapies to inhibit tumor progression to greater aggressiveness.
Collapse
|
236
|
Mendez-Dorantes C, Tsai LJ, Jahanshir E, Lopezcolorado FW, Stark JM. BLM has Contrary Effects on Repeat-Mediated Deletions, based on the Distance of DNA DSBs to a Repeat and Repeat Divergence. Cell Rep 2021; 30:1342-1357.e4. [PMID: 32023454 PMCID: PMC7085117 DOI: 10.1016/j.celrep.2020.01.001] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2019] [Revised: 12/08/2019] [Accepted: 12/31/2019] [Indexed: 12/30/2022] Open
Abstract
Repeat-mediated deletions (RMDs) often involve repetitive elements (e.g., short interspersed elements) with sequence divergence that is separated by several kilobase pairs (kbps). We have examined RMDs induced by DNA double-strand breaks (DSBs) under varying conditions of repeat sequence divergence (identical versus 1% and 3% divergent) and DSB/repeat distance (16 bp–28.4 kbp). We find that the BLM helicase promotes RMDs with long DSB/repeat distances (e.g., 28.4 kbp), which is consistent with a role in extensive DSB end resection, because the resection nucleases EXO1 and DNA2 affect RMDs similarly to BLM. In contrast, BLM suppresses RMDs with sequence divergence and intermediate (e.g., 3.3 kbp) DSB/repeat distances, which supports a role in heteroduplex rejection. The role of BLM in heteroduplex rejection is not epistatic with MSH2 and is independent of the annealing factor RAD52. Accordingly, the role of BLM on RMDs is substantially affected by DSB/repeat distance and repeat sequence divergence. Mendez-Dorantes et al. identify the BLM helicase as a key regulator of repeat-mediated deletions (RMDs). BLM, EXO1, and DNA2 mediate RMDs with remarkably long DNA break/repeat distances. BLM suppresses RMDs with sequence divergence that is optimal with a long non-homologous tail and is independent of MSH2 and RAD52.
Collapse
Affiliation(s)
- Carlos Mendez-Dorantes
- Department of Cancer Genetics and Epigenetics, Beckman Research Institute of the City of Hope, Duarte, CA 91010, USA; Irell and Manella Graduate School of Biological Sciences, Beckman Research Institute of the City of Hope, Duarte, CA 91010, USA
| | - L Jillianne Tsai
- Department of Cancer Genetics and Epigenetics, Beckman Research Institute of the City of Hope, Duarte, CA 91010, USA; Irell and Manella Graduate School of Biological Sciences, Beckman Research Institute of the City of Hope, Duarte, CA 91010, USA
| | - Eva Jahanshir
- Department of Cancer Genetics and Epigenetics, Beckman Research Institute of the City of Hope, Duarte, CA 91010, USA
| | | | - Jeremy M Stark
- Department of Cancer Genetics and Epigenetics, Beckman Research Institute of the City of Hope, Duarte, CA 91010, USA; Irell and Manella Graduate School of Biological Sciences, Beckman Research Institute of the City of Hope, Duarte, CA 91010, USA.
| |
Collapse
|
237
|
De Conti G, Dias MH, Bernards R. Fighting Drug Resistance through the Targeting of Drug-Tolerant Persister Cells. Cancers (Basel) 2021; 13:1118. [PMID: 33807785 PMCID: PMC7961328 DOI: 10.3390/cancers13051118] [Citation(s) in RCA: 57] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2021] [Revised: 02/24/2021] [Accepted: 02/28/2021] [Indexed: 12/12/2022] Open
Abstract
Designing specific therapies for drug-resistant cancers is arguably the ultimate challenge in cancer therapy. While much emphasis has been put on the study of genetic alterations that give rise to drug resistance, much less is known about the non-genetic adaptation mechanisms that operate during the early stages of drug resistance development. Drug-tolerant persister cells have been suggested to be key players in this process. These cells are thought to have undergone non-genetic adaptations that enable survival in the presence of a drug, from which full-blown resistant cells may emerge. Such initial adaptations often involve engagement of stress response programs to maintain cancer cell viability. In this review, we discuss the nature of drug-tolerant cancer phenotypes, as well as the non-genetic adaptations involved. We also discuss how malignant cells employ homeostatic stress response pathways to mitigate the intrinsic costs of such adaptations. Lastly, we discuss which vulnerabilities are introduced by these adaptations and how these might be exploited therapeutically.
Collapse
Affiliation(s)
| | | | - René Bernards
- Division of Molecular Carcinogenesis, Oncode Institute, The Netherlands Cancer Institute, Plesmanlaan 121, 1066 CX Amsterdam, The Netherlands; (G.D.C.); (M.H.D.)
| |
Collapse
|
238
|
Nguyen M, Tipping Smith S, Lam M, Liow E, Davies A, Prenen H, Segelov E. An update on the use of immunotherapy in patients with colorectal cancer. Expert Rev Gastroenterol Hepatol 2021; 15:291-304. [PMID: 33138649 DOI: 10.1080/17474124.2021.1845141] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Introduction: Colorectal cancer (CRC) is the third most common malignancy worldwide, with recent trends demonstrating increasing incidence amongst younger patients. Despite multiple treatment options, metastatic disease remains incurable. A new therapeutic strategy to harness the host immune system, specifically with immune checkpoint inhibitors, now has reported results from a number of clinical trials. Areas covered: This review will discuss in detail microsatellite instability (MSI) and other biomarkers for response to immunotherapy, summarize the pivotal clinical trials of immune checkpoint inhibitors in early-stage and metastatic MSI colorectal cancer, explore strategies to induce treatment responses in MSS CRC and highlight the emerging treatments and novel immune-based therapies under investigation. Expert opinion: Immunotherapy is now a standard of care for the proportion of CRC patients with MSI. While overall survival data are still awaited, the promise of profound and durable responses is highly anticipated. The lack of efficacy in MSS CRC is disappointing and strategies to convert these 'cold' tumors are needed. Further elucidation of optimal use of treatment sequences, combinations and novel agents will improve outcomes.
Collapse
Affiliation(s)
- Mike Nguyen
- Medical Oncology, St Vincent's Hospital Melbourne , Fitzroy, Australia
| | | | - Marissa Lam
- Medical Oncology, Monash Medical Centre , Clayton, Australia
| | - Elizabeth Liow
- Medical Oncology, Monash Medical Centre , Clayton, Australia
| | - Amy Davies
- Medical Oncology, Monash Medical Centre , Clayton, Australia
| | - Hans Prenen
- Oncology Department, University Hospital Antwerp , Antwerp, Belgium
| | - Eva Segelov
- Medical Oncology, Monash Medical Centre , Clayton, Australia.,Faculty of Medicine, Monash University , Clayton, Australia
| |
Collapse
|
239
|
Healy FM, Prior IA, MacEwan DJ. The importance of Ras in drug resistance in cancer. Br J Pharmacol 2021; 179:2844-2867. [PMID: 33634485 DOI: 10.1111/bph.15420] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2020] [Revised: 02/10/2021] [Accepted: 02/21/2021] [Indexed: 12/19/2022] Open
Abstract
In this review, we analyse the impact of oncogenic Ras mutations in mediating cancer drug resistance and the progress made in the abrogation of this resistance, through pharmacological targeting. At a physiological level, Ras is implicated in many cellular proliferation and survival pathways. However, mutations within this small GTPase can be responsible for the initiation of cancer, therapeutic resistance and failure, and ultimately disease relapse. Often termed "undruggable," Ras is notoriously difficult to target directly, due to its structure and intrinsic activity. Thus, Ras-mediated drug resistance remains a considerable pharmacological problem. However, with advances in both analytical techniques and novel drug classes, the therapeutic landscape against Ras is changing. Allele-specific, direct Ras-targeting agents have reached clinical trials for the first time, indicating there may, at last, be hope of targeting such an elusive but significant protein for better more effective cancer therapy.
Collapse
Affiliation(s)
- Fiona M Healy
- Department of Pharmacology and Therapeutics, Institute of Systems, Molecular and Integrative Biology (ISMIB), University of Liverpool, Liverpool, UK
| | - Ian A Prior
- Department of Molecular Physiology and Cell Signalling, Institute of Systems, Molecular and Integrative Biology (ISMIB), University of Liverpool, Liverpool, UK
| | - David J MacEwan
- Department of Pharmacology and Therapeutics, Institute of Systems, Molecular and Integrative Biology (ISMIB), University of Liverpool, Liverpool, UK
| |
Collapse
|
240
|
Bacterial phenotypic heterogeneity in DNA repair and mutagenesis. Biochem Soc Trans 2021; 48:451-462. [PMID: 32196548 PMCID: PMC7200632 DOI: 10.1042/bst20190364] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2020] [Revised: 02/26/2020] [Accepted: 02/28/2020] [Indexed: 02/06/2023]
Abstract
Genetically identical cells frequently exhibit striking heterogeneity in various phenotypic traits such as their morphology, growth rate, or gene expression. Such non-genetic diversity can help clonal bacterial populations overcome transient environmental challenges without compromising genome stability, while genetic change is required for long-term heritable adaptation. At the heart of the balance between genome stability and plasticity are the DNA repair pathways that shield DNA from lesions and reverse errors arising from the imperfect DNA replication machinery. In principle, phenotypic heterogeneity in the expression and activity of DNA repair pathways can modulate mutation rates in single cells and thus be a source of heritable genetic diversity, effectively reversing the genotype-to-phenotype dogma. Long-standing evidence for mutation rate heterogeneity comes from genetics experiments on cell populations, which are now complemented by direct measurements on individual living cells. These measurements are increasingly performed using fluorescence microscopy with a temporal and spatial resolution that enables localising, tracking, and counting proteins with single-molecule sensitivity. In this review, we discuss which molecular processes lead to phenotypic heterogeneity in DNA repair and consider the potential consequences on genome stability and dynamics in bacteria. We further inspect these concepts in the context of DNA damage and mutation induced by antibiotics.
Collapse
|
241
|
Seita A, Nakaoka H, Okura R, Wakamoto Y. Intrinsic growth heterogeneity of mouse leukemia cells underlies differential susceptibility to a growth-inhibiting anticancer drug. PLoS One 2021; 16:e0236534. [PMID: 33524064 PMCID: PMC7850478 DOI: 10.1371/journal.pone.0236534] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2020] [Accepted: 01/14/2021] [Indexed: 11/18/2022] Open
Abstract
Cancer cell populations consist of phenotypically heterogeneous cells. Growing evidence suggests that pre-existing phenotypic differences among cancer cells correlate with differential susceptibility to anticancer drugs and eventually lead to a relapse. Such phenotypic differences can arise not only externally driven by the environmental heterogeneity around individual cells but also internally by the intrinsic fluctuation of cells. However, the quantitative characteristics of intrinsic phenotypic heterogeneity emerging even under constant environments and their relevance to drug susceptibility remain elusive. Here we employed a microfluidic device, mammalian mother machine, for studying the intrinsic heterogeneity of growth dynamics of mouse lymphocytic leukemia cells (L1210) across tens of generations. The generation time of this cancer cell line had a distribution with a long tail and a heritability across generations. We determined that a minority of cell lineages exist in a slow-cycling state for multiple generations. These slow-cycling cell lineages had a higher chance of survival than the fast-cycling lineages under continuous exposure to the anticancer drug Mitomycin C. This result suggests that heritable heterogeneity in cancer cells’ growth in a population influences their susceptibility to anticancer drugs.
Collapse
Affiliation(s)
- Akihisa Seita
- Department of Basic Science, Graduate School of Arts and Sciences, The University of Tokyo, Tokyo, Japan
| | - Hidenori Nakaoka
- Department of Basic Science, Graduate School of Arts and Sciences, The University of Tokyo, Tokyo, Japan
- * E-mail: (HN); (YW)
| | - Reiko Okura
- Department of Basic Science, Graduate School of Arts and Sciences, The University of Tokyo, Tokyo, Japan
| | - Yuichi Wakamoto
- Department of Basic Science, Graduate School of Arts and Sciences, The University of Tokyo, Tokyo, Japan
- Research Center for Complex Systems Biology, The University of Tokyo, Tokyo, Japan
- Universal Biology Institute, The University of Tokyo, Tokyo, Japan
- * E-mail: (HN); (YW)
| |
Collapse
|
242
|
Kopetz S, Guthrie KA, Morris VK, Lenz HJ, Magliocco AM, Maru D, Yan Y, Lanman R, Manyam G, Hong DS, Sorokin A, Atreya CE, Diaz LA, Allegra C, Raghav KP, Wang SE, Lieu CH, McDonough SL, Philip PA, Hochster HS. Randomized Trial of Irinotecan and Cetuximab With or Without Vemurafenib in BRAF-Mutant Metastatic Colorectal Cancer (SWOG S1406). J Clin Oncol 2021; 39:285-294. [PMID: 33356422 PMCID: PMC8462593 DOI: 10.1200/jco.20.01994] [Citation(s) in RCA: 167] [Impact Index Per Article: 41.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2020] [Revised: 08/23/2020] [Accepted: 10/15/2020] [Indexed: 02/06/2023] Open
Abstract
PURPOSE BRAFV600E mutations are rarely associated with objective responses to the BRAF inhibitor vemurafenib in patients with metastatic colorectal cancer (CRC). Blockade of BRAFV600E by vemurafenib causes feedback upregulation of EGFR, whose signaling activities can be impeded by cetuximab. METHODS One hundred six patients with BRAFV600E-mutated metastatic CRC previously treated with one or two regimens were randomly assigned to irinotecan and cetuximab with or without vemurafenib (960 mg PO twice daily). RESULTS Progression-free survival, the primary end point, was improved with the addition of vemurafenib (hazard ratio, 0.50, P = .001). The response rate was 17% versus 4% (P = .05), with a disease control rate of 65% versus 21% (P < .001). A decline in circulating tumor DNA BRAFV600E variant allele frequency was seen in 87% versus 0% of patients (P < .001), with a low incidence of acquired RAS alterations at the time of progression. RNA profiling suggested that treatment benefit did not depend on previously established BRAF subgroups or the consensus molecular subtype. CONCLUSION Simultaneous inhibition of EGFR and BRAF combined with irinotecan is effective in BRAFV600E-mutated CRC.
Collapse
Affiliation(s)
- Scott Kopetz
- University of Texas MD Anderson Cancer Center, Houston, TX
| | | | - Van K. Morris
- University of Texas MD Anderson Cancer Center, Houston, TX
| | | | | | - Dipen Maru
- University of Texas MD Anderson Cancer Center, Houston, TX
| | | | | | | | - David S. Hong
- University of Texas MD Anderson Cancer Center, Houston, TX
| | - Alexey Sorokin
- University of Texas MD Anderson Cancer Center, Houston, TX
| | - Chloe E. Atreya
- Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, CA
| | - Luis A. Diaz
- Memorial Sloan Kettering Cancer Center, The Sidney Kimmel Cancer Center at Johns Hopkins University, Baltimore, MD
| | | | | | | | | | | | | | | |
Collapse
|
243
|
Intratumoral heterogeneity in cancer progression and response to immunotherapy. Nat Med 2021; 27:212-224. [PMID: 33574607 DOI: 10.1038/s41591-021-01233-9] [Citation(s) in RCA: 452] [Impact Index Per Article: 113.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2020] [Accepted: 01/07/2021] [Indexed: 01/30/2023]
Abstract
Most (if not all) tumors emerge and progress under a strong evolutionary pressure imposed by trophic, metabolic, immunological, and therapeutic factors. The relative impact of these factors on tumor evolution changes over space and time, ultimately favoring the establishment of a neoplastic microenvironment that exhibits considerable genetic, phenotypic, and behavioral heterogeneity in all its components. Here, we discuss the main sources of intratumoral heterogeneity and its impact on the natural history of the disease, including sensitivity to treatment, as we delineate potential strategies to target such a detrimental feature of aggressive malignancies.
Collapse
|
244
|
Liquid biopsy enters the clinic - implementation issues and future challenges. Nat Rev Clin Oncol 2021; 18:297-312. [PMID: 33473219 DOI: 10.1038/s41571-020-00457-x] [Citation(s) in RCA: 707] [Impact Index Per Article: 176.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/23/2020] [Indexed: 02/07/2023]
Abstract
Historically, studies of disseminated tumour cells in bone marrow and circulating tumour cells in peripheral blood have provided crucial insights into cancer biology and the metastatic process. More recently, advances in the detection and characterization of circulating tumour DNA (ctDNA) have finally enabled the introduction of liquid biopsy assays into clinical practice. The FDA has already approved several single-gene assays and, more recently, multigene assays to detect genetic alterations in plasma cell-free DNA (cfDNA) for use as companion diagnostics matched to specific molecularly targeted therapies for cancer. These approvals mark a tipping point for the widespread use of liquid biopsy in the clinic, and mostly in patients with advanced-stage cancer. The next frontier for the clinical application of liquid biopsy is likely to be the systemic treatment of patients with 'ctDNA relapse', a term we introduce for ctDNA detection prior to imaging-detected relapse after curative-intent therapy for early stage disease. Cancer screening and diagnosis are other potential future applications. In this Perspective, we discuss key issues and gaps in technology, clinical trial methodologies and logistics for the eventual integration of liquid biopsy into the clinical workflow.
Collapse
|
245
|
Guo L, Lee YT, Zhou Y, Huang Y. Targeting epigenetic regulatory machinery to overcome cancer therapy resistance. Semin Cancer Biol 2021; 83:487-502. [PMID: 33421619 PMCID: PMC8257754 DOI: 10.1016/j.semcancer.2020.12.022] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2020] [Revised: 12/28/2020] [Accepted: 12/29/2020] [Indexed: 02/07/2023]
Abstract
Drug resistance, either intrinsic or acquired, represents a major hurdle to achieving optimal therapeutic outcomes during cancer treatment. In addition to acquisition of resistance-conferring genetic mutations, accumulating evidence suggests an intimate involvement of the epigenetic machinery in this process as well. Recent studies have revealed that epigenetic reprogramming, such as altered expression or relocation of DNA/histone modulators accompanied with chromatin structure remodeling, can lead to transcriptional plasticity in tumor cells, thereby driving their transformation towards a persistent state. These "persisters" represent a pool of slow-growing cells that can either re-expand when treatment is discontinued or acquire permanent resistance. Targeting epigenetic reprogramming or plasticity represents a new strategy to prevent the emergence of drug-refractory populations and to enable more consistent clinical responses. With the growing numbers of drugs or drug candidates developed to target epigenetic regulators, more and more epigenetic therapies are under preclinical evaluation, early clinical trials or approved by FDA as single agent or in combination with existing antitumor drugs. In this review, we highlight latest discoveries in the mechanistic understanding of epigenetically-induced drug resistance. In parallel, we discuss the potential of combining epigenetic drugs with existing anticancer regimens as a promising strategy for overcoming cancer drug resistance.
Collapse
Affiliation(s)
- Lei Guo
- Center for Epigenetics & Disease Prevention, Institute of Biosciences and Technology, Texas A&M University, Houston, TX, 77030, USA; Center for Translational Cancer Research, Institute of Biosciences and Technology, Texas A&M University, Houston, TX, 77030, USA
| | - Yi-Tsang Lee
- Center for Translational Cancer Research, Institute of Biosciences and Technology, Texas A&M University, Houston, TX, 77030, USA
| | - Yubin Zhou
- Center for Translational Cancer Research, Institute of Biosciences and Technology, Texas A&M University, Houston, TX, 77030, USA; Department of Translational Medical Sciences, College of Medicine, Texas A&M University, Houston, TX, 77030, USA.
| | - Yun Huang
- Center for Epigenetics & Disease Prevention, Institute of Biosciences and Technology, Texas A&M University, Houston, TX, 77030, USA; Department of Translational Medical Sciences, College of Medicine, Texas A&M University, Houston, TX, 77030, USA.
| |
Collapse
|
246
|
Chen C, Di Bartolomeo M, Corallo S, Strickler JH, Goyal L. Overcoming Resistance to Targeted Therapies in Gastrointestinal Cancers: Progress to Date and Progress to Come. Am Soc Clin Oncol Educ Book 2021; 40:161-173. [PMID: 32421451 DOI: 10.1200/edbk_280871] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Targeted therapies have transformed the treatment paradigm in diseases such as non-small cell lung cancer and melanoma but have shown relatively modest clinical benefit in gastrointestinal malignancies. Anti-EGFR therapy in RAS wild-type colorectal cancer, anti-HER2 therapy in HER2- amplified esophagogastric cancer, and FGFR and isocitrate dehydrogenase 1 (IDH1) inhibitors in FGFR2 fusion-positive and IDH1-mutant biliary tract cancers offer antitumor efficacy, but the clinical benefit and durability of response in each case are typically limited. We review targeted therapies in each of these therapeutic areas and discuss their clinical efficacy, mechanisms of primary and acquired resistance, and strategies to overcome this resistance. We discuss lessons learned that we hope will lead to an expanded role for molecularly targeted therapy options for patients with gastrointestinal cancers.
Collapse
Affiliation(s)
| | - Maria Di Bartolomeo
- Medical Oncology Department, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy
| | - Salvatore Corallo
- Medical Oncology Department, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy
| | | | - Lipika Goyal
- Massachusetts General Hospital Cancer Center, Boston, MA
| |
Collapse
|
247
|
Nickoloff JA, Taylor L, Sharma N, Kato TA. Exploiting DNA repair pathways for tumor sensitization, mitigation of resistance, and normal tissue protection in radiotherapy. CANCER DRUG RESISTANCE (ALHAMBRA, CALIF.) 2021; 4:244-263. [PMID: 34337349 PMCID: PMC8323830 DOI: 10.20517/cdr.2020.89] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/12/2023]
Abstract
More than half of cancer patients are treated with radiotherapy, which kills tumor cells by directly and indirectly inducing DNA damage, including cytotoxic DNA double-strand breaks (DSBs). Tumor cells respond to these threats by activating a complex signaling network termed the DNA damage response (DDR). The DDR arrests the cell cycle, upregulates DNA repair, and triggers apoptosis when damage is excessive. The DDR signaling and DNA repair pathways are fertile terrain for therapeutic intervention. This review highlights strategies to improve therapeutic gain by targeting DDR and DNA repair pathways to radiosensitize tumor cells, overcome intrinsic and acquired tumor radioresistance, and protect normal tissue. Many biological and environmental factors determine tumor and normal cell responses to ionizing radiation and genotoxic chemotherapeutics. These include cell type and cell cycle phase distribution; tissue/tumor microenvironment and oxygen levels; DNA damage load and quality; DNA repair capacity; and susceptibility to apoptosis or other active or passive cell death pathways. We provide an overview of radiobiological parameters associated with X-ray, proton, and carbon ion radiotherapy; DNA repair and DNA damage signaling pathways; and other factors that regulate tumor and normal cell responses to radiation. We then focus on recent studies exploiting DSB repair pathways to enhance radiotherapy therapeutic gain.
Collapse
Affiliation(s)
- Jac A. Nickoloff
- Department of Environmental and Radiological Health Sciences, Colorado State University, Ft. Collins, CO 80523, USA
- Correspondence Address: Dr. Jac A. Nickoloff, Department of Environmental and Radiological Health Sciences, Colorado State University, 1681 Campus Delivery, Ft. Collins, CO 80523-1681, USA. E-mail:
| | - Lynn Taylor
- Department of Environmental and Radiological Health Sciences, Colorado State University, Ft. Collins, CO 80523, USA
| | - Neelam Sharma
- Department of Environmental and Radiological Health Sciences, Colorado State University, Ft. Collins, CO 80523, USA
| | - Takamitsu A. Kato
- Department of Environmental and Radiological Health Sciences, Colorado State University, Ft. Collins, CO 80523, USA
| |
Collapse
|
248
|
Lu L, Jiang J, Zhan M, Zhang H, Wang QT, Sun SN, Guo XK, Yin H, Wei Y, Liu JO, Li SY, Li Y, He YW. Targeting Neoantigens in Hepatocellular Carcinoma for Immunotherapy: A Futile Strategy? Hepatology 2021; 73:414-421. [PMID: 32299136 DOI: 10.1002/hep.31279] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/21/2020] [Revised: 03/24/2020] [Accepted: 04/02/2020] [Indexed: 12/13/2022]
Affiliation(s)
- Ligong Lu
- Zhuhai Interventional Medical Center, Zhuhai Precision Medical Center, Zhuhai People's Hospital, Zhuhai Hospital Affiliated with Jinan University, Zhuhai, P.R. China
| | - Jun Jiang
- Tricision Biotherapeutic Inc., Zhuhai, P.R. China
| | - Meixiao Zhan
- Zhuhai Interventional Medical Center, Zhuhai Precision Medical Center, Zhuhai People's Hospital, Zhuhai Hospital Affiliated with Jinan University, Zhuhai, P.R. China
| | - Hui Zhang
- First Affiliated Hospital, China Medical University, Shenyang, P.R. China
| | | | | | - Xiao-Kai Guo
- Tricision Biotherapeutic Inc., Zhuhai, P.R. China
| | - Hua Yin
- Zhuhai Interventional Medical Center, Zhuhai Precision Medical Center, Zhuhai People's Hospital, Zhuhai Hospital Affiliated with Jinan University, Zhuhai, P.R. China
| | - Yadong Wei
- Department of Pharmacology and Molecular Sciences, Johns Hopkins University School of Medicine, Baltimore, MD
| | - Jun O Liu
- Department of Pharmacology and Molecular Sciences, Johns Hopkins University School of Medicine, Baltimore, MD
| | - Shi-You Li
- Tricision Biotherapeutic Inc., Zhuhai, P.R. China
| | - Yong Li
- Zhuhai Interventional Medical Center, Zhuhai Precision Medical Center, Zhuhai People's Hospital, Zhuhai Hospital Affiliated with Jinan University, Zhuhai, P.R. China
| | - You-Wen He
- Department of Immunology, Duke University Medical University Medical Center, Durham, NC
| |
Collapse
|
249
|
Zhou J, Zhou XA, Zhang N, Wang J. Evolving insights: how DNA repair pathways impact cancer evolution. Cancer Biol Med 2020; 17:805-827. [PMID: 33299637 PMCID: PMC7721097 DOI: 10.20892/j.issn.2095-3941.2020.0177] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2020] [Accepted: 07/10/2020] [Indexed: 12/17/2022] Open
Abstract
Viewing cancer as a large, evolving population of heterogeneous cells is a common perspective. Because genomic instability is one of the fundamental features of cancer, this intrinsic tendency of genomic variation leads to striking intratumor heterogeneity and functions during the process of cancer formation, development, metastasis, and relapse. With the increased mutation rate and abundant diversity of the gene pool, this heterogeneity leads to cancer evolution, which is the major obstacle in the clinical treatment of cancer. Cells rely on the integrity of DNA repair machineries to maintain genomic stability, but these machineries often do not function properly in cancer cells. The deficiency of DNA repair could contribute to the generation of cancer genomic instability, and ultimately promote cancer evolution. With the rapid advance of new technologies, such as single-cell sequencing in recent years, we have the opportunity to better understand the specific processes and mechanisms of cancer evolution, and its relationship with DNA repair. Here, we review recent findings on how DNA repair affects cancer evolution, and discuss how these mechanisms provide the basis for critical clinical challenges and therapeutic applications.
Collapse
Affiliation(s)
- Jiadong Zhou
- Department of Radiation Medicine, Institute of Systems Biomedicine, School of Basic Medical Sciences, Peking University Health Science Center, Beijing 100191, China
| | - Xiao Albert Zhou
- Department of Radiation Medicine, Institute of Systems Biomedicine, School of Basic Medical Sciences, Peking University Health Science Center, Beijing 100191, China
| | - Ning Zhang
- Laboratory of Cancer Cell Biology, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin, Tianjin's Clinical Research Center for Cancer, Tianjin 300060, China.,Biomedical Pioneering Innovation Center (BIOPIC) and Translational Cancer Research Center, School of Life Sciences, First Hospital, Peking University, Beijing 100871, China
| | - Jiadong Wang
- Department of Radiation Medicine, Institute of Systems Biomedicine, School of Basic Medical Sciences, Peking University Health Science Center, Beijing 100191, China
| |
Collapse
|
250
|
Zhao W, Li J, Chen MJM, Luo Y, Ju Z, Nesser NK, Johnson-Camacho K, Boniface CT, Lawrence Y, Pande NT, Davies MA, Herlyn M, Muranen T, Zervantonakis IK, von Euw E, Schultz A, Kumar SV, Korkut A, Spellman PT, Akbani R, Slamon DJ, Gray JW, Brugge JS, Lu Y, Mills GB, Liang H. Large-Scale Characterization of Drug Responses of Clinically Relevant Proteins in Cancer Cell Lines. Cancer Cell 2020; 38:829-843.e4. [PMID: 33157050 PMCID: PMC7738392 DOI: 10.1016/j.ccell.2020.10.008] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/04/2020] [Revised: 07/31/2020] [Accepted: 10/07/2020] [Indexed: 12/31/2022]
Abstract
Perturbation biology is a powerful approach to modeling quantitative cellular behaviors and understanding detailed disease mechanisms. However, large-scale protein response resources of cancer cell lines to perturbations are not available, resulting in a critical knowledge gap. Here we generated and compiled perturbed expression profiles of ∼210 clinically relevant proteins in >12,000 cancer cell line samples in response to ∼170 drug compounds using reverse-phase protein arrays. We show that integrating perturbed protein response signals provides mechanistic insights into drug resistance, increases the predictive power for drug sensitivity, and helps identify effective drug combinations. We build a systematic map of "protein-drug" connectivity and develop a user-friendly data portal for community use. Our study provides a rich resource to investigate the behaviors of cancer cells and the dependencies of treatment responses, thereby enabling a broad range of biomedical applications.
Collapse
Affiliation(s)
- Wei Zhao
- Department of Bioinformatics and Computational Biology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA; Department of Systems Biology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Jun Li
- Department of Bioinformatics and Computational Biology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Mei-Ju M Chen
- Department of Bioinformatics and Computational Biology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Yikai Luo
- Department of Bioinformatics and Computational Biology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA; Graduate Program in Quantitative and Computational Biosciences, Baylor College of Medicine, Houston, TX 77030, USA
| | - Zhenlin Ju
- Department of Bioinformatics and Computational Biology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Nicole K Nesser
- Department of Molecular and Medical Genetics, Oregon Health & Science University, Portland, OR 97201, USA
| | - Katie Johnson-Camacho
- Department of Molecular and Medical Genetics, Oregon Health & Science University, Portland, OR 97201, USA
| | - Christopher T Boniface
- Department of Molecular and Medical Genetics, Oregon Health & Science University, Portland, OR 97201, USA
| | - Yancey Lawrence
- Department of Molecular and Medical Genetics, Oregon Health & Science University, Portland, OR 97201, USA
| | - Nupur T Pande
- Department of Molecular and Medical Genetics, Oregon Health & Science University, Portland, OR 97201, USA
| | - Michael A Davies
- Department of Melanoma Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Meenhard Herlyn
- Molecular and Cellular Oncogenesis Program, Wistar Institute, Philadelphia, PA 19104, USA
| | - Taru Muranen
- Department of Cell Biology, Ludwig Center at Harvard, Harvard Medical School, Boston, MA 02115, USA
| | - Ioannis K Zervantonakis
- Department of Cell Biology, Ludwig Center at Harvard, Harvard Medical School, Boston, MA 02115, USA; Department of Bioengineering, UPMC Hillman Cancer Center, University of Pittsburgh, Pittsburgh, PA 15219, USA
| | - Erika von Euw
- Division of Hematology-Oncology, Department of Medicine, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA 90095, USA
| | - Andre Schultz
- Department of Bioinformatics and Computational Biology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Shwetha V Kumar
- Department of Bioinformatics and Computational Biology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Anil Korkut
- Department of Bioinformatics and Computational Biology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Paul T Spellman
- Department of Molecular and Medical Genetics, Oregon Health & Science University, Portland, OR 97201, USA
| | - Rehan Akbani
- Department of Bioinformatics and Computational Biology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Dennis J Slamon
- Division of Hematology-Oncology, Department of Medicine, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA 90095, USA
| | - Joe W Gray
- Center for Spatial Systems Biomedicine, Department of Biomedical Engineering, Oregon Health & Science University, Portland, OR 97201, USA
| | - Joan S Brugge
- Department of Cell Biology, Ludwig Center at Harvard, Harvard Medical School, Boston, MA 02115, USA
| | - Yiling Lu
- Department of Systems Biology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Gordon B Mills
- Knight Cancer Institute and Cell, Developmental and Cancer Biology, Oregon Health & Science University, Portland, OR 97201, USA.
| | - Han Liang
- Department of Bioinformatics and Computational Biology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA; Department of Systems Biology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA; Graduate Program in Quantitative and Computational Biosciences, Baylor College of Medicine, Houston, TX 77030, USA.
| |
Collapse
|