201
|
Zhao F, Keating C, Ozorowski G, Shaabani N, Francino-Urdaniz IM, Barman S, Limbo O, Burns A, Zhou P, Ricciardi MJ, Woehl J, Tran Q, Turner HL, Peng L, Huang D, Nemazee D, Andrabi R, Sok D, Teijaro JR, Whitehead TA, Ward AB, Burton DR, Jardine JG. Engineering SARS-CoV-2 neutralizing antibodies for increased potency and reduced viral escape pathways. iScience 2022; 25:104914. [PMID: 35971553 PMCID: PMC9367177 DOI: 10.1016/j.isci.2022.104914] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2022] [Revised: 06/04/2022] [Accepted: 08/08/2022] [Indexed: 11/03/2022] Open
Abstract
The rapid spread of SARS-CoV-2 variants poses a constant threat of escape from monoclonal antibody and vaccine countermeasures. Mutations in the ACE2 receptor binding site on the surface S protein have been shown to disrupt antibody binding and prevent viral neutralization. Here, we used a directed evolution-based approach to engineer three neutralizing antibodies for enhanced binding to S protein. The engineered antibodies showed increased in vitro functional activity in terms of neutralization potency and/or breadth of neutralization against viral variants. Deep mutational scanning revealed that higher binding affinity reduces the total number of viral escape mutations. Studies in the Syrian hamster model showed two examples where the affinity-matured antibody provided superior protection compared to the parental antibody. These data suggest that monoclonal antibodies for antiviral indications would benefit from affinity maturation to reduce viral escape pathways and appropriate affinity maturation in vaccine immunization could help resist viral variation.
Collapse
Affiliation(s)
- Fangzhu Zhao
- Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, CA 92037, USA
- IAVI Neutralizing Antibody Center, The Scripps Research Institute, La Jolla, CA 92037, USA
- Consortium for HIV/AIDS Vaccine Development (CHAVD), The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Celina Keating
- Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, CA 92037, USA
- IAVI Neutralizing Antibody Center, The Scripps Research Institute, La Jolla, CA 92037, USA
- Consortium for HIV/AIDS Vaccine Development (CHAVD), The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Gabriel Ozorowski
- IAVI Neutralizing Antibody Center, The Scripps Research Institute, La Jolla, CA 92037, USA
- Consortium for HIV/AIDS Vaccine Development (CHAVD), The Scripps Research Institute, La Jolla, CA 92037, USA
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Namir Shaabani
- Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, CA 92037, USA
| | | | - Shawn Barman
- Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, CA 92037, USA
- IAVI Neutralizing Antibody Center, The Scripps Research Institute, La Jolla, CA 92037, USA
- Consortium for HIV/AIDS Vaccine Development (CHAVD), The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Oliver Limbo
- IAVI Neutralizing Antibody Center, The Scripps Research Institute, La Jolla, CA 92037, USA
- IAVI, New York, NY 10004, USA
| | - Alison Burns
- Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, CA 92037, USA
- IAVI Neutralizing Antibody Center, The Scripps Research Institute, La Jolla, CA 92037, USA
- Consortium for HIV/AIDS Vaccine Development (CHAVD), The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Panpan Zhou
- Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, CA 92037, USA
- IAVI Neutralizing Antibody Center, The Scripps Research Institute, La Jolla, CA 92037, USA
- Consortium for HIV/AIDS Vaccine Development (CHAVD), The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Michael J. Ricciardi
- Department of Pathology, George Washington University, Washington, DC 20052, USA
| | - Jordan Woehl
- IAVI Neutralizing Antibody Center, The Scripps Research Institute, La Jolla, CA 92037, USA
- IAVI, New York, NY 10004, USA
| | - Quoc Tran
- IAVI Neutralizing Antibody Center, The Scripps Research Institute, La Jolla, CA 92037, USA
- IAVI, New York, NY 10004, USA
| | - Hannah L. Turner
- IAVI Neutralizing Antibody Center, The Scripps Research Institute, La Jolla, CA 92037, USA
- Consortium for HIV/AIDS Vaccine Development (CHAVD), The Scripps Research Institute, La Jolla, CA 92037, USA
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Linghang Peng
- Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Deli Huang
- Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - David Nemazee
- Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Raiees Andrabi
- Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, CA 92037, USA
- IAVI Neutralizing Antibody Center, The Scripps Research Institute, La Jolla, CA 92037, USA
- Consortium for HIV/AIDS Vaccine Development (CHAVD), The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Devin Sok
- Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, CA 92037, USA
- IAVI Neutralizing Antibody Center, The Scripps Research Institute, La Jolla, CA 92037, USA
- Consortium for HIV/AIDS Vaccine Development (CHAVD), The Scripps Research Institute, La Jolla, CA 92037, USA
- IAVI, New York, NY 10004, USA
| | - John R. Teijaro
- Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Timothy A. Whitehead
- Department of Chemical and Biological Engineering, University of Colorado, Boulder, CO 80305, USA
| | - Andrew B. Ward
- IAVI Neutralizing Antibody Center, The Scripps Research Institute, La Jolla, CA 92037, USA
- Consortium for HIV/AIDS Vaccine Development (CHAVD), The Scripps Research Institute, La Jolla, CA 92037, USA
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Dennis R. Burton
- Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, CA 92037, USA
- IAVI Neutralizing Antibody Center, The Scripps Research Institute, La Jolla, CA 92037, USA
- Consortium for HIV/AIDS Vaccine Development (CHAVD), The Scripps Research Institute, La Jolla, CA 92037, USA
- Ragon Institute of Massachusetts General Hospital, Massachusetts Institute of Technology, and Harvard University, Cambridge, MA 02139, USA
| | - Joseph G. Jardine
- IAVI Neutralizing Antibody Center, The Scripps Research Institute, La Jolla, CA 92037, USA
- IAVI, New York, NY 10004, USA
| |
Collapse
|
202
|
SARS-CoV-2 Variants, Current Vaccines and Therapeutic Implications for COVID-19. Vaccines (Basel) 2022; 10:vaccines10091538. [PMID: 36146616 PMCID: PMC9504858 DOI: 10.3390/vaccines10091538] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2022] [Revised: 09/08/2022] [Accepted: 09/13/2022] [Indexed: 11/17/2022] Open
Abstract
Over the past two years, the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has caused hundreds of millions of infections, resulting in an unprecedented pandemic of coronavirus disease 2019 (COVID-19). As the virus spreads through the population, ongoing mutations and adaptations are being discovered. There is now substantial clinical evidence that demonstrates the SARS-CoV-2 variants have stronger transmissibility and higher virulence compared to the wild-type strain of SARS-CoV-2. Hence, development of vaccines against SARS-CoV-2 variants to boost individual immunity has become essential. However, current treatment options are limited for COVID-19 caused by the SARS-CoV-2 variants. In this review, we describe current distribution, variation, biology, and clinical features of COVID-19 caused by SARS-CoV-2 variants (including Alpha (B.1.1.7 Lineage) variant, Beta (B.1.351 Lineage) variant, Gamma (P.1 Lineage) variant, Delta (B.1.617.2 Lineage) variant, and Omicron (B.1.1.529 Lineage) variant and others. In addition, we review currently employed vaccines in clinical or preclinical phases as well as potential targeted therapies in an attempt to provide better preventive and treatment strategies for COVID-19 caused by different SARS-CoV-2 variants.
Collapse
|
203
|
Frank F, Keen MM, Rao A, Bassit L, Liu X, Bowers HB, Patel AB, Cato ML, Sullivan JA, Greenleaf M, Piantadosi A, Lam WA, Hudson WH, Ortlund EA. Deep mutational scanning identifies SARS-CoV-2 Nucleocapsid escape mutations of currently available rapid antigen tests. Cell 2022; 185:3603-3616.e13. [PMID: 36084631 PMCID: PMC9420710 DOI: 10.1016/j.cell.2022.08.010] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2022] [Revised: 07/15/2022] [Accepted: 08/09/2022] [Indexed: 01/26/2023]
Abstract
The effects of mutations in continuously emerging variants of SARS-CoV-2 are a major concern for the performance of rapid antigen tests. To evaluate the impact of mutations on 17 antibodies used in 11 commercially available antigen tests with emergency use authorization, we measured antibody binding for all possible Nucleocapsid point mutations using a mammalian surface-display platform and deep mutational scanning. The results provide a complete map of the antibodies' epitopes and their susceptibility to mutational escape. Our data predict no vulnerabilities for detection of mutations found in variants of concern. We confirm this using the commercial tests and sequence-confirmed COVID-19 patient samples. The antibody escape mutational profiles generated here serve as a valuable resource for predicting the performance of rapid antigen tests against past, current, as well as any possible future variants of SARS-CoV-2, establishing the direct clinical and public health utility of our system.
Collapse
Affiliation(s)
- Filipp Frank
- Department of Biochemistry, Emory University School of Medicine, Emory University, Atlanta, GA 30322, USA; The Atlanta Center for Microsystems-Engineered Point-of-Care Technologies, Atlanta, GA 30322, USA.
| | - Meredith M Keen
- Department of Biochemistry, Emory University School of Medicine, Emory University, Atlanta, GA 30322, USA; The Atlanta Center for Microsystems-Engineered Point-of-Care Technologies, Atlanta, GA 30322, USA
| | - Anuradha Rao
- The Atlanta Center for Microsystems-Engineered Point-of-Care Technologies, Atlanta, GA 30322, USA; Department of Pediatrics, Emory University School of Medicine, Atlanta, GA 30322, USA; Center for Childhood Infections and Vaccines of Children's Healthcare of Atlanta, Emory University, Atlanta, GA 30322, USA
| | - Leda Bassit
- The Atlanta Center for Microsystems-Engineered Point-of-Care Technologies, Atlanta, GA 30322, USA; Department of Pediatrics, Emory University School of Medicine, Atlanta, GA 30322, USA; Center for Childhood Infections and Vaccines of Children's Healthcare of Atlanta, Emory University, Atlanta, GA 30322, USA
| | - Xu Liu
- Department of Biochemistry, Emory University School of Medicine, Emory University, Atlanta, GA 30322, USA
| | - Heather B Bowers
- The Atlanta Center for Microsystems-Engineered Point-of-Care Technologies, Atlanta, GA 30322, USA; Department of Pediatrics, Emory University School of Medicine, Atlanta, GA 30322, USA; Center for Childhood Infections and Vaccines of Children's Healthcare of Atlanta, Emory University, Atlanta, GA 30322, USA
| | - Anamika B Patel
- Department of Biochemistry, Emory University School of Medicine, Emory University, Atlanta, GA 30322, USA
| | - Michael L Cato
- Department of Biochemistry, Emory University School of Medicine, Emory University, Atlanta, GA 30322, USA
| | - Julie A Sullivan
- The Atlanta Center for Microsystems-Engineered Point-of-Care Technologies, Atlanta, GA 30322, USA; Department of Pediatrics, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - Morgan Greenleaf
- The Atlanta Center for Microsystems-Engineered Point-of-Care Technologies, Atlanta, GA 30322, USA; Department of Pediatrics, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - Anne Piantadosi
- Department of Pathology and Laboratory Medicine, Emory University School of Medicine, Atlanta, GA 30322, USA; Department of Medicine, Division of Infectious Diseases, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - Wilbur A Lam
- The Atlanta Center for Microsystems-Engineered Point-of-Care Technologies, Atlanta, GA 30322, USA; Department of Pediatrics, Emory University School of Medicine, Atlanta, GA 30322, USA; Wallace H. Coulter Department of Biomedical Engineering, Emory University, Georgia Institute of Technology, Atlanta, GA 30332, USA; Aflac Cancer and Blood Disorders Center of Children's Healthcare of Atlanta, Atlanta, GA 30322, USA
| | - William H Hudson
- Emory Vaccine Center, Emory University School of Medicine, Atlanta, GA 30322, USA; Department of Microbiology and Immunology, Emory University School of Medicine, Atlanta, GA 30322, USA.
| | - Eric A Ortlund
- Department of Biochemistry, Emory University School of Medicine, Emory University, Atlanta, GA 30322, USA; The Atlanta Center for Microsystems-Engineered Point-of-Care Technologies, Atlanta, GA 30322, USA.
| |
Collapse
|
204
|
Schiepers A, van 't Wout MFL, Greaney AJ, Zang T, Muramatsu H, Lin PJC, Tam YK, Mesin L, Starr TN, Bieniasz PD, Pardi N, Bloom JD, Victora GD. Molecular fate-mapping of serum antibodies reveals the effects of antigenic imprinting on repeated immunization. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2022:2022.08.29.505743. [PMID: 36093344 PMCID: PMC9460965 DOI: 10.1101/2022.08.29.505743] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
The ability of serum antibody to protect against pathogens arises from the interplay of antigen-specific B cell clones of different affinities and fine specificities. These cellular dynamics are ultimately responsible for serum-level phenomena such as antibody imprinting or "Original Antigenic Sin" (OAS), a proposed propensity of the immune system to rely repeatedly on the first cohort of B cells that responded to a stimulus upon exposure to related antigens. Imprinting/OAS is thought to pose a barrier to vaccination against rapidly evolving viruses such as influenza and SARS-CoV-2. Precise measurement of the extent to which imprinting/OAS inhibits the recruitment of new B cell clones by boosting is challenging because cellular and temporal origins cannot readily be assigned to antibodies in circulation. Thus, the extent to which imprinting/OAS impacts the induction of new responses in various settings remains unclear. To address this, we developed a "molecular fate-mapping" approach in which serum antibodies derived from specific cohorts of B cells can be differentially detected. We show that, upon sequential homologous boosting, the serum antibody response strongly favors reuse of the first cohort of B cell clones over the recruitment of new, naÏve-derived B cells. This "primary addiction" decreases as a function of antigenic distance, allowing secondary immunization with divergent influenza virus or SARS-CoV-2 glycoproteins to overcome imprinting/OAS by targeting novel epitopes absent from the priming variant. Our findings have implications for the understanding of imprinting/OAS, and for the design and testing of vaccines aimed at eliciting antibodies to evolving antigens.
Collapse
|
205
|
Pramanik A, Mayer J, Sinha SS, Sharma PC, Patibandla S, Gao Y, Corby LR, Bates JT, Bierdeman MA, Tandon R, Seshadri R, Ray PC. Human ACE2 Peptide-Attached Plasmonic-Magnetic Heterostructure for Magnetic Separation, Surface Enhanced Raman Spectroscopy Identification, and Inhibition of Different Variants of SARS-CoV-2 Infections. ACS APPLIED BIO MATERIALS 2022; 5:4454-4464. [PMID: 36053723 DOI: 10.1021/acsabm.2c00573] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The emergence of Alpha, Beta, Gamma, Delta, and Omicron variants of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is responsible for several million deaths up to now. Because of the huge amount of vaccine escape mutations in the spike (S) protein for different variants, the design of material for combating SARS-CoV-2 is very important for our society. Herein, we report on the design of a human angiotensin converting enzyme 2 (ACE2) peptide-conjugated plasmonic-magnetic heterostructure, which has the capability for magnetic separation, identification via surface enhanced Raman spectroscopy (SERS), and inhibition of different variant SARS-CoV-2 infections. In this work, plasmonic-magnetic heterostructures were developed using the initial synthesis of polyethylenimine (PEI)-coated Fe3O4-based magnetic nanoparticles, and then gold nanoparticles (GNPs) were grown onto the surface of the magnetic nanoparticles. Experimental binding data between ACE2-conjugated plasmonic-magnetic heterostructures and spike-receptor-binding domain (RBD) show that the Omicron variant has maximum binding ability, and it follows Alpha < Beta < Gamma < Delta < Omicron. Our finding shows that, due to the high magnetic moment (specific magnetization 40 emu/g), bioconjugated heterostructures are capable of effective magnetic separation of pseudotyped SARS-CoV-2 bearing the Delta variant spike from an infected artificial nasal mucus fluid sample using a simple bar magnet. Experimental data show that due to the formation of huge "hot spots" in the presence of SARS-CoV-2, Raman intensity for the 4-aminothiolphenol (4-ATP) Raman reporter was enhanced sharply, which has been used for the identification of separated virus. Theoretical calculations using finite-difference time-domain (FDTD) simulation indicate that, due to the "hot spots" formation, a six orders of magnitude Raman enhancement can be observed. A concentration-dependent inhibition efficiency investigation using a HEK293T-human cell line indicates that ACE2 peptide-conjugated plasmonic-magnetic heterostructures have the capability of complete inhibition of entry of different variants and original SARS-CoV-2 pseudovirions into host cells.
Collapse
Affiliation(s)
- Avijit Pramanik
- Department of Chemistry and Biochemistry, Jackson State University, Jackson, Mississippi 39217, United States
| | - Justin Mayer
- Materials Department, University of California, Santa Barbara, California 93106-5121, United States
| | - Sudarson Sekhar Sinha
- Department of Chemistry and Biochemistry, Jackson State University, Jackson, Mississippi 39217, United States
| | - Poonam C Sharma
- Department of Microbiology and Immunology, University of Mississippi Medical Center, Jackson, Mississippi 39216, United States
| | - Shamily Patibandla
- Department of Chemistry and Biochemistry, Jackson State University, Jackson, Mississippi 39217, United States
| | - Ye Gao
- Department of Chemistry and Biochemistry, Jackson State University, Jackson, Mississippi 39217, United States
| | - Lauren R Corby
- Department of Chemistry and Biochemistry, Jackson State University, Jackson, Mississippi 39217, United States
| | - John T Bates
- Department of Microbiology and Immunology, University of Mississippi Medical Center, Jackson, Mississippi 39216, United States
| | - Michael A Bierdeman
- Department of Microbiology and Immunology, University of Mississippi Medical Center, Jackson, Mississippi 39216, United States
| | - Ritesh Tandon
- Department of Microbiology and Immunology, University of Mississippi Medical Center, Jackson, Mississippi 39216, United States
| | - Ram Seshadri
- Materials Department, University of California, Santa Barbara, California 93106-5121, United States
| | - Paresh Chandra Ray
- Department of Chemistry and Biochemistry, Jackson State University, Jackson, Mississippi 39217, United States
| |
Collapse
|
206
|
Beeraka NM, Sukocheva OA, Lukina E, Liu J, Fan R. Development of antibody resistance in emerging mutant strains of SARS CoV-2: Impediment for COVID-19 vaccines. Rev Med Virol 2022; 32:e2346. [PMID: 35416390 PMCID: PMC9111059 DOI: 10.1002/rmv.2346] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2021] [Revised: 01/28/2022] [Accepted: 03/06/2022] [Indexed: 02/05/2023]
Abstract
Coronavirus disease 2019 (COVID-19) is caused by severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2), a highly infectious agent associated with unprecedented morbidity and mortality. A failure to stop growth of COVID-19-linked morbidity rates is caused by SARS-CoV-2 mutations and the emergence of new highly virulent SARS-CoV-2 strains. Several acquired SARS-CoV-2 mutations reflect viral adaptations to host immune defence. Mutations in the virus Spike-protein were associated with the lowered effectiveness of current preventive therapies, including vaccines. Recent in vitro studies detected diminished neutralisation capacity of vaccine-induced antibodies, which are targeted to bind Spike receptor-binding and N-terminal domains in the emerging strains. Lower than expected inhibitory activity of antibodies was reported against viruses with E484K Spike mutation, including B.1.1.7 (UK), P.1 (Brazil), B.1.351 (South African), and new Omicron variant (B.1.1.529) with E484A mutation. The vaccine effectiveness is yet to be examined against new mutant strains of SARS-CoV-2 originating in Europe, Nigeria, Brazil, South Africa, and India. To prevent the loss of anti-viral protection in vivo, often defined as antibody resistance, it is required to target highly conserved viral sequences (including Spike protein) and enhance the potency of antibody cocktails. In this review, we assess the reported mutation-acquiring potential of coronaviruses and compare efficacies of current COVID-19 vaccines against 'parent' and 'mutant' strains of SARS-CoV-2 (Kappa (B.1.617.1), Delta (B.1.617.2), and Omicron (B.1.1.529)).
Collapse
Affiliation(s)
- Narasimha M. Beeraka
- Department of Radiation OncologyCancer CenterThe First Affiliated Hospital of ZhengzhouZhengzhouChina
- Department of Human AnatomyI.M. Sechenov First Moscow State Medical University (Sechenov University)MoscowRussian Federation
| | - Olga A. Sukocheva
- Discipline of Health SciencesCollege of Nursing and Health SciencesFlinders University of South AustraliaBedford ParkAustralia
| | - Elena Lukina
- Discipline of BiologyCollege of SciencesFlinders University of South AustraliaBedford ParkAustralia
| | - Junqi Liu
- Department of Radiation OncologyCancer CenterThe First Affiliated Hospital of ZhengzhouZhengzhouChina
| | - Ruitai Fan
- Department of Radiation OncologyCancer CenterThe First Affiliated Hospital of ZhengzhouZhengzhouChina
| |
Collapse
|
207
|
Candido KL, Eich CR, de Fariña LO, Kadowaki MK, da Conceição Silva JL, Maller A, Simão RDCG. Spike protein of SARS-CoV-2 variants: a brief review and practical implications. Braz J Microbiol 2022; 53:1133-1157. [PMID: 35397075 PMCID: PMC8994061 DOI: 10.1007/s42770-022-00743-z] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2022] [Accepted: 03/21/2022] [Indexed: 12/24/2022] Open
Abstract
The scientific community has been alarmed by the possible immunological evasion, higher infectivity, and severity of disease caused by the newest variants of SARS-CoV-2. The spike protein has an important role in the cellular invasion of viruses and is the target of several vaccines and therapeutic resources, such as monoclonal antibodies. In addition, some of the most relevant mutations in the different variants are on the spike (S) protein gene sequence that leads to structural alterations in the predicted protein, thus causing concern about the protection mediated by vaccines against these new strains. The present review highlights the most recent knowledge about COVID-19 and vaccines, emphasizing the different spike protein structures of SARS-CoV-2 and updating the reader about the emerging viral variants and their classifications, the more common viral mutations described and their distribution in Brazil. It also compiles a table with the most recent knowledge about all of the Omicron spike mutations.
Collapse
Affiliation(s)
- Kattlyn Laryssa Candido
- Present Address: Laboratório de Bioquímica Molecular (LaBioqMol), Centro de Ciências Médicas e Farmacêuticas, Unioeste, Cascavel, PR Brazil
| | - Caio Ricardo Eich
- Present Address: Laboratório de Bioquímica Molecular (LaBioqMol), Centro de Ciências Médicas e Farmacêuticas, Unioeste, Cascavel, PR Brazil
| | - Luciana Oliveira de Fariña
- Present Address: Laboratório de Bioquímica Molecular (LaBioqMol), Centro de Ciências Médicas e Farmacêuticas, Unioeste, Cascavel, PR Brazil
| | - Marina Kimiko Kadowaki
- Present Address: Laboratório de Bioquímica Molecular (LaBioqMol), Centro de Ciências Médicas e Farmacêuticas, Unioeste, Cascavel, PR Brazil
| | - José Luis da Conceição Silva
- Present Address: Laboratório de Bioquímica Molecular (LaBioqMol), Centro de Ciências Médicas e Farmacêuticas, Unioeste, Cascavel, PR Brazil
| | - Alexandre Maller
- Present Address: Laboratório de Bioquímica Molecular (LaBioqMol), Centro de Ciências Médicas e Farmacêuticas, Unioeste, Cascavel, PR Brazil
| | - Rita de Cássia Garcia Simão
- Present Address: Laboratório de Bioquímica Molecular (LaBioqMol), Centro de Ciências Médicas e Farmacêuticas, Unioeste, Cascavel, PR Brazil
| |
Collapse
|
208
|
Comas I, Moreno-Molina M. Phenogenomics of Mycobacterium abscessus. Nat Microbiol 2022; 7:1325-1326. [PMID: 36008618 DOI: 10.1038/s41564-022-01217-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Iñaki Comas
- Instituto de Biomedicina de Valencia IBV-CSIC, Valencia, Spain. .,CIBER in Epidemiology and Public Health, Madrid, Spain.
| | | |
Collapse
|
209
|
Mills MG, Hajian P, Bakhash SM, Xie H, Mantzke D, Zhu H, Perchetti GA, Huang ML, Pepper G, Jerome KR, Roychoudhury P, Greninger AL. Rapid and accurate identification of SARS-CoV-2 Omicron variants using droplet digital PCR (RT-ddPCR). J Clin Virol 2022; 154:105218. [PMID: 35779343 PMCID: PMC9212762 DOI: 10.1016/j.jcv.2022.105218] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Revised: 06/05/2022] [Accepted: 06/10/2022] [Indexed: 12/25/2022]
Abstract
BACKGROUND Some mutations in the receptor binding domain of the SARS-CoV-2 Spike protein are associated with increased transmission or substantial reductions in vaccine efficacy, including in recently described Omicron subvariants. The changing frequencies of these mutations combined with their differing susceptibility to available therapies have posed significant problems for clinicians and public health professionals. OBJECTIVE To develop an assay capable of rapidly and accurately identifying variants including Omicron in clinical specimens to enable case tracking and/or selection of appropriate clinical treatment. STUDY DESIGN Using three duplex RT-ddPCR reactions targeting four amino acids, we tested 419 positive clinical specimens from February to December 2021 during a period of rapidly shifting variant prevalences and compared genotyping results to genome sequences for each sample, determining the sensitivity and specificity of the assay for each variant. RESULTS Mutation determinations for 99.7% of detected samples agree with NGS data for those samples, and are accurate despite wide variation in RNA concentration and potential confounding factors like transport medium, presence of additional respiratory viruses, and additional mutations in primer and probe sequences. The assay accurately identified the first 15 Omicron variants in our laboratory including the first Omicron in Washington State and discriminated against S-gene dropout Delta specimen. CONCLUSION We describe an accurate, precise, and specific RT-ddPCR assay for variant detection that remains robust despite being designed prior the emergence of Delta and Omicron variants. The assay can quickly identify mutations in current and past SARS-CoV-2 variants, and can be adapted to future mutations.
Collapse
Affiliation(s)
- Margaret G Mills
- Department of Laboratory Medicine and Pathology, Virology Division, University of Washington School of Medicine, Seattle, Washington, USA.
| | - Pooneh Hajian
- Department of Laboratory Medicine and Pathology, Virology Division, University of Washington School of Medicine, Seattle, Washington, USA
| | - Shah Mohamed Bakhash
- Department of Laboratory Medicine and Pathology, Virology Division, University of Washington School of Medicine, Seattle, Washington, USA
| | - Hong Xie
- Department of Laboratory Medicine and Pathology, Virology Division, University of Washington School of Medicine, Seattle, Washington, USA
| | - Derrek Mantzke
- Department of Laboratory Medicine and Pathology, Virology Division, University of Washington School of Medicine, Seattle, Washington, USA
| | - Haiying Zhu
- Department of Laboratory Medicine and Pathology, Virology Division, University of Washington School of Medicine, Seattle, Washington, USA
| | - Garrett A Perchetti
- Department of Laboratory Medicine and Pathology, Virology Division, University of Washington School of Medicine, Seattle, Washington, USA
| | - Meei-Li Huang
- Department of Laboratory Medicine and Pathology, Virology Division, University of Washington School of Medicine, Seattle, Washington, USA
| | - Gregory Pepper
- Department of Laboratory Medicine and Pathology, Virology Division, University of Washington School of Medicine, Seattle, Washington, USA
| | - Keith R Jerome
- Department of Laboratory Medicine and Pathology, Virology Division, University of Washington School of Medicine, Seattle, Washington, USA; Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Research Center, Seattle, Washington, USA
| | - Pavitra Roychoudhury
- Department of Laboratory Medicine and Pathology, Virology Division, University of Washington School of Medicine, Seattle, Washington, USA; Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Research Center, Seattle, Washington, USA
| | - Alexander L Greninger
- Department of Laboratory Medicine and Pathology, Virology Division, University of Washington School of Medicine, Seattle, Washington, USA; Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Research Center, Seattle, Washington, USA
| |
Collapse
|
210
|
Tao K, Tzou PL, Kosakovsky Pond SL, Ioannidis JPA, Shafer RW. Susceptibility of SARS-CoV-2 Omicron Variants to Therapeutic Monoclonal Antibodies: Systematic Review and Meta-analysis. Microbiol Spectr 2022; 10:e0092622. [PMID: 35700134 PMCID: PMC9430471 DOI: 10.1128/spectrum.00926-22] [Citation(s) in RCA: 52] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Accepted: 05/28/2022] [Indexed: 12/11/2022] Open
Abstract
SARS-CoV-2 Omicron variants contain many mutations in its spike receptor-binding domain, the target of all authorized monoclonal antibodies (MAbs). Determining the extent to which Omicron variants reduced MAb susceptibility is critical to preventing and treating COVID-19. We systematically reviewed PubMed and three preprint servers, last updated 11 April 2022, for the in vitro activity of authorized MAbs against the Omicron variants. Fifty-one studies were eligible, including 50 containing Omicron BA.1 susceptibility data and 17 containing Omicron BA.2 susceptibility data. The first two authorized MAb combinations, bamlanivimab/etesevimab and casirivimab/imdevimab, were largely inactive against the Omicron BA.1 and BA.2 variants. In 34 studies, sotrovimab displayed a median 4.0-fold (interquartile range [IQR]: 2.6 to 6.9) reduction in activity against Omicron BA.1, and in 12 studies, it displayed a median 17-fold (IQR: 13 to 30) reduction in activity against Omicron BA.2. In 15 studies, the combination cilgavimab/tixagevimab displayed a median 86-fold (IQR: 27 to 151) reduction in activity against Omicron BA.1, and in six studies, it displayed a median 5.4-fold (IQR: 3.7 to 6.9) reduction in activity against Omicron BA.2. In eight studies against Omicron BA.1 and six studies against Omicron BA.2, bebtelovimab displayed no reduction in activity. Disparate results between assays were common. For authorized MAbs, 51/268 (19.0%) results for wild-type control variants and 78/348 (22.4%) results for Omicron BA.1 and BA.2 variants were more than 4-fold below or 4-fold above the median result for that MAb. Highly disparate results between published assays indicate a need for improved MAb susceptibility test standardization or interassay calibration. IMPORTANCE Monoclonal antibodies (MAbs) targeting the SARS-CoV-2 spike protein are among the most effective measures for preventing and treating COVID-19. However, SARS-CoV-2 Omicron variants contain many mutations in their spike receptor-binding domains, the target of all authorized MAbs. Therefore, determining the extent to which Omicron variants reduced MAb susceptibility is critical to preventing and treating COVID-19. We identified 51 studies that reported the in vitro susceptibility of the two main Omicron variants BA.1 and BA.2 to therapeutic MAbs in advanced clinical development, including eight authorized individual MAbs and three authorized MAb combinations. We estimated the degree to which different MAbs displayed reduced activity against Omicron variants. The marked loss of activity of many MAbs against Omicron variants underscores the importance of developing MAbs that target conserved regions of spike. Highly disparate results between assays indicate the need for improved MAb susceptibility test standardization.
Collapse
Affiliation(s)
- Kaiming Tao
- Division of Infectious Diseases, Department of Medicine, Stanford University, Stanford, California, USA
| | - Philip L. Tzou
- Division of Infectious Diseases, Department of Medicine, Stanford University, Stanford, California, USA
| | - Sergei L. Kosakovsky Pond
- Institute for Genomics and Evolutionary Medicine, Temple University, Philadelphia, Pennsylvania, USA
| | - John P. A. Ioannidis
- Departments of Medicine and of Epidemiology and Population Health and Meta-Research Innovation Center at Stanford (METRICS), Stanford University, Stanford, California, USA
| | - Robert W. Shafer
- Division of Infectious Diseases, Department of Medicine, Stanford University, Stanford, California, USA
| |
Collapse
|
211
|
Sims JJ, Lian S, Meggersee RL, Kasimsetty A, Wilson JM. High activity of an affinity-matured ACE2 decoy against Omicron SARS-CoV-2 and pre-emergent coronaviruses. PLoS One 2022; 17:e0271359. [PMID: 36006993 PMCID: PMC9409550 DOI: 10.1371/journal.pone.0271359] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2022] [Accepted: 06/28/2022] [Indexed: 11/18/2022] Open
Abstract
The viral genome of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), particularly its cell-binding spike protein gene, has undergone rapid evolution during the coronavirus disease 2019 (COVID-19) pandemic. Variants including Omicron BA.1 and Omicron BA.2 now seriously threaten the efficacy of therapeutic monoclonal antibodies and vaccines that target the spike protein. Viral evolution over a much longer timescale has generated a wide range of genetically distinct sarbecoviruses in animal populations, including the pandemic viruses SARS-CoV-2 and SARS-CoV-1. The genetic diversity and widespread zoonotic potential of this group complicates current attempts to develop drugs in preparation for the next sarbecovirus pandemic. Receptor-based decoy inhibitors can target a wide range of viral strains with a common receptor and may have intrinsic resistance to escape mutant generation and antigenic drift. We previously generated an affinity-matured decoy inhibitor based on the receptor target of the SARS-CoV-2 spike protein, angiotensin-converting enzyme 2 (ACE2), and deployed it in a recombinant adeno-associated virus vector (rAAV) for intranasal delivery and passive prophylaxis against COVID-19. Here, we demonstrate the exceptional binding and neutralizing potency of this ACE2 decoy against SARS-CoV-2 variants including Omicron BA.1 and Omicron BA.2. Tight decoy binding tracks with human ACE2 binding of viral spike receptor-binding domains across diverse clades of coronaviruses. Furthermore, in a coronavirus that cannot bind human ACE2, a variant that acquired human ACE2 binding was bound by the decoy with nanomolar affinity. Considering these results, we discuss a strategy of decoy-based treatment and passive protection to mitigate the ongoing COVID-19 pandemic and future airway virus threats.
Collapse
Affiliation(s)
- Joshua J. Sims
- Gene Therapy Program, Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States of America
| | - Sharon Lian
- Gene Therapy Program, Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States of America
| | - Rosemary L. Meggersee
- Gene Therapy Program, Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States of America
| | - Aradhana Kasimsetty
- Gene Therapy Program, Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States of America
| | - James M. Wilson
- Gene Therapy Program, Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States of America
| |
Collapse
|
212
|
Magnus CL, Hiergeist A, Schuster P, Rohrhofer A, Medenbach J, Gessner A, Peterhoff D, Schmidt B. Targeted escape of SARS-CoV-2 in vitro from monoclonal antibody S309, the precursor of sotrovimab. Front Immunol 2022; 13:966236. [PMID: 36090991 PMCID: PMC9449809 DOI: 10.3389/fimmu.2022.966236] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2022] [Accepted: 08/03/2022] [Indexed: 12/01/2022] Open
Abstract
Class 1 and 2 monoclonal antibodies inhibit SARS-CoV-2 entry by blocking the interaction of the viral receptor-binding domain with angiotensin-converting enzyme 2 (ACE2), while class 3 antibodies target a highly conserved epitope outside the ACE2 binding site. We aimed to investigate the plasticity of the spike protein by propagating wild-type SARS-CoV-2 in the presence of class 3 antibody S309. After 12 weeks, we obtained a viral strain that was completely resistant to inhibition by S309, due to successively evolving amino acid exchanges R346S and P337L located in the paratope of S309. The antibody lost affinity to receptor-binding domains carrying P337L or both amino acid exchanges, while ACE2 binding was not affected. The resistant strain replicated efficiently in human CaCo-2 cells and was more susceptible to inhibition of fusion than the original strain. Overall, SARS-CoV-2 escaped inhibition by class 3 antibody S309 through a slow, but targeted evolution enabling immune escape and altering cell entry. This immune-driven enhancement of infectivity and pathogenicity could play an important role in the future evolution of SARS-CoV-2, which is under increasing immunological pressure from vaccination and previous infections.
Collapse
Affiliation(s)
- Clara Luzia Magnus
- Institute of Clinical Microbiology and Hygiene, University Hospital Regensburg, Regensburg, Germany
| | - Andreas Hiergeist
- Institute of Clinical Microbiology and Hygiene, University Hospital Regensburg, Regensburg, Germany
| | - Philipp Schuster
- Institute of Medical Microbiology and Hygiene, University of Regensburg, Regensburg, Germany
| | - Anette Rohrhofer
- Institute of Clinical Microbiology and Hygiene, University Hospital Regensburg, Regensburg, Germany
| | - Jan Medenbach
- Biochemistry I, Faculty of Biology and Pre-Clinical Medicine, University of Regensburg, Regensburg, Germany
| | - André Gessner
- Institute of Clinical Microbiology and Hygiene, University Hospital Regensburg, Regensburg, Germany
- Institute of Medical Microbiology and Hygiene, University of Regensburg, Regensburg, Germany
| | - David Peterhoff
- Institute of Clinical Microbiology and Hygiene, University Hospital Regensburg, Regensburg, Germany
- Institute of Medical Microbiology and Hygiene, University of Regensburg, Regensburg, Germany
| | - Barbara Schmidt
- Institute of Clinical Microbiology and Hygiene, University Hospital Regensburg, Regensburg, Germany
- Institute of Medical Microbiology and Hygiene, University of Regensburg, Regensburg, Germany
| |
Collapse
|
213
|
Chen C, Saville JW, Marti MM, Schäfer A, Cheng MH, Mannar D, Zhu X, Berezuk AM, Banerjee A, Sobolewski MD, Kim A, Treat BR, Da Silva Castanha PM, Enick N, McCormick KD, Liu X, Adams C, Hines MG, Sun Z, Chen W, Jacobs JL, Barratt-Boyes SM, Mellors JW, Baric RS, Bahar I, Dimitrov DS, Subramaniam S, Martinez DR, Li W. Potent and broad neutralization of SARS-CoV-2 variants of concern (VOCs) including omicron sub-lineages BA.1 and BA.2 by biparatopic human VH domains. iScience 2022; 25:104798. [PMID: 35875685 PMCID: PMC9296231 DOI: 10.1016/j.isci.2022.104798] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2022] [Revised: 06/08/2022] [Accepted: 07/14/2022] [Indexed: 12/24/2022] Open
Abstract
The emergence of SARS-CoV-2 variants of concern (VOCs) requires the development of next-generation biologics with high neutralization breadth. Here, we characterized a human VH domain, F6, which we generated by sequentially panning large phage-displayed VH libraries against receptor binding domains (RBDs) containing VOC mutations. Cryo-EM analyses reveal that F6 has a unique binding mode that spans a broad surface of the RBD and involves the antibody framework region. Attachment of an Fc region to a fusion of F6 and ab8, a previously characterized VH domain, resulted in a construct (F6-ab8-Fc) that broadly and potently neutralized VOCs including Omicron. Additionally, prophylactic treatment using F6-ab8-Fc reduced live Beta (B.1.351) variant viral titers in the lungs of a mouse model. Our results provide a new potential therapeutic against SARS-CoV-2 variants including Omicron and highlight a vulnerable epitope within the spike that may be exploited to achieve broad protection against circulating variants.
Collapse
Affiliation(s)
- Chuan Chen
- Center for Antibody Therapeutics, Division of Infectious Diseases, Department of Medicine, University of Pittsburgh Medical School, Pittsburgh, PA, USA
| | - James W. Saville
- Department of Biochemistry and Molecular Biology, University of British Columbia, Vancouver, BC V6T 1Z3, Canada
| | - Michelle M. Marti
- Department of Infectious Diseases and Microbiology, School of Public Health, University of Pittsburgh, Pittsburgh, PA, USA
| | - Alexandra Schäfer
- Department of Epidemiology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Mary Hongying Cheng
- Department of Computational and Systems Biology, School of Medicine, University of Pittsburgh, Pittsburgh, PA, USA
| | - Dhiraj Mannar
- Department of Biochemistry and Molecular Biology, University of British Columbia, Vancouver, BC V6T 1Z3, Canada
| | - Xing Zhu
- Department of Biochemistry and Molecular Biology, University of British Columbia, Vancouver, BC V6T 1Z3, Canada
| | - Alison M. Berezuk
- Department of Biochemistry and Molecular Biology, University of British Columbia, Vancouver, BC V6T 1Z3, Canada
| | - Anupam Banerjee
- Department of Computational and Systems Biology, School of Medicine, University of Pittsburgh, Pittsburgh, PA, USA
| | - Michele D. Sobolewski
- Division of Infectious Diseases, Department of Medicine, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Andrew Kim
- Center for Antibody Therapeutics, Division of Infectious Diseases, Department of Medicine, University of Pittsburgh Medical School, Pittsburgh, PA, USA
| | - Benjamin R. Treat
- Department of Infectious Diseases and Microbiology, School of Public Health, University of Pittsburgh, Pittsburgh, PA, USA
| | | | - Nathan Enick
- Division of Infectious Diseases, Department of Medicine, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Kevin D. McCormick
- Division of Infectious Diseases, Department of Medicine, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Xianglei Liu
- Center for Antibody Therapeutics, Division of Infectious Diseases, Department of Medicine, University of Pittsburgh Medical School, Pittsburgh, PA, USA
| | - Cynthia Adams
- Center for Antibody Therapeutics, Division of Infectious Diseases, Department of Medicine, University of Pittsburgh Medical School, Pittsburgh, PA, USA
| | - Margaret Grace Hines
- Center for Antibody Therapeutics, Division of Infectious Diseases, Department of Medicine, University of Pittsburgh Medical School, Pittsburgh, PA, USA
| | - Zehua Sun
- Center for Antibody Therapeutics, Division of Infectious Diseases, Department of Medicine, University of Pittsburgh Medical School, Pittsburgh, PA, USA
| | | | - Jana L. Jacobs
- Division of Infectious Diseases, Department of Medicine, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Simon M. Barratt-Boyes
- Department of Infectious Diseases and Microbiology, School of Public Health, University of Pittsburgh, Pittsburgh, PA, USA
| | - John W. Mellors
- Division of Infectious Diseases, Department of Medicine, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
- Abound Bio, Pittsburgh, PA, USA
| | - Ralph S. Baric
- Department of Epidemiology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Ivet Bahar
- Department of Computational and Systems Biology, School of Medicine, University of Pittsburgh, Pittsburgh, PA, USA
| | - Dimiter S. Dimitrov
- Center for Antibody Therapeutics, Division of Infectious Diseases, Department of Medicine, University of Pittsburgh Medical School, Pittsburgh, PA, USA
- Abound Bio, Pittsburgh, PA, USA
| | - Sriram Subramaniam
- Department of Biochemistry and Molecular Biology, University of British Columbia, Vancouver, BC V6T 1Z3, Canada
- Gandeeva Therapeutics, Inc., Vancouver, BC, Canada
| | - David R. Martinez
- Department of Epidemiology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Wei Li
- Center for Antibody Therapeutics, Division of Infectious Diseases, Department of Medicine, University of Pittsburgh Medical School, Pittsburgh, PA, USA
| |
Collapse
|
214
|
Tang H, Ke Y, Wang L, Wu M, Sun T, Zhu J. Recombinant Decoy Exhibits Broad Protection against Omicron and Resistance Potential to Future Variants. Pharmaceuticals (Basel) 2022; 15:1002. [PMID: 36015150 PMCID: PMC9413901 DOI: 10.3390/ph15081002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Revised: 07/29/2022] [Accepted: 08/09/2022] [Indexed: 12/01/2022] Open
Abstract
The Omicron variant has swept through most countries and become a dominant circulating strain, replacing the Delta variant. The evolutionary history of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) suggests that the onset of another variant (possibly another variant of concern (VOC) is inevitable. Therefore, the development of therapeutics that enable treatments for all Omicron-included VOCs/variants of interest (VOIs) and future variants is desired. Recently, the recombinant receptor decoy therapeutic angiotensin-converting enzyme 2 (ACE2)-Fc has exhibited good safety in a phase 1 clinical trial; therefore, its variant-resistant profile needs to be understood. Here, we conducted a comprehensive evaluation of its neutralization breadth against the Omicron variant and other VOCs/VOIs. Furthermore, to evaluate its resistance to future variants, we investigated its ability to neutralize various single-residue mutated variants. Next, we demonstrated its resistance to evasion via an experiment that rapidly and effectively stimulates virus evolution with a replication-competent virus model. In addition, we evaluated its efficacy for cocktail therapy. The combination of ACE2-Fc and neutralizing antibodies showed both efficacy and breadth in the simulation experiment. The underlying mechanism was revealed to be a synergistic effect in the cocktails. Collectively, this study deepens the understanding of the resistance profile of recombinant receptor decoy therapeutics and highlights the potential value of ACE2-Fc and neutralizing antibody cocktails in the subsequent anti-SARS-CoV-2 campaign. Furthermore, we also provide an effective method to study the resistance profile of antiviral agents and rapidly screen for potential cocktails to combat future variants.
Collapse
Affiliation(s)
- Haoneng Tang
- Engineering Research Center of Cell and Therapeutic Antibody, Ministry of Education of China, School of Pharmacy, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Yong Ke
- Engineering Research Center of Cell and Therapeutic Antibody, Ministry of Education of China, School of Pharmacy, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Lei Wang
- Engineering Research Center of Cell and Therapeutic Antibody, Ministry of Education of China, School of Pharmacy, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Mingyuan Wu
- Engineering Research Center of Cell and Therapeutic Antibody, Ministry of Education of China, School of Pharmacy, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Tao Sun
- School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China
- Shanghai Municipal Veterinary Key Laboratory, Shanghai 200240, China
| | - Jianwei Zhu
- Engineering Research Center of Cell and Therapeutic Antibody, Ministry of Education of China, School of Pharmacy, Shanghai Jiao Tong University, Shanghai 200240, China
- Jecho Biopharmaceuticals Co., Ltd., Tianjin 300467, China
- Jecho Laboratories, Inc., Frederick, MD 21704, USA
- Jecho Institute, Co., Ltd., Shanghai 200240, China
| |
Collapse
|
215
|
Gross B, Sharan R. Multi-task learning for predicting SARS-CoV-2 antibody escape. Front Genet 2022; 13:886649. [PMID: 36035121 PMCID: PMC9403730 DOI: 10.3389/fgene.2022.886649] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Accepted: 07/04/2022] [Indexed: 11/25/2022] Open
Abstract
The coronavirus pandemic has revolutionized our world, with vaccination proving to be a key tool in fighting the disease. However, a major threat to this line of attack are variants that can evade the vaccine. Thus, a fundamental problem of growing importance is the identification of mutations of concern with high escape probability. In this paper we develop a computational framework that harnesses systematic mutation screens in the receptor binding domain of the viral Spike protein for escape prediction. The framework analyzes data on escape from multiple antibodies simultaneously, creating a latent representation of mutations that is shown to be effective in predicting escape and binding properties of the virus. We use this representation to validate the escape potential of current SARS-CoV-2 variants.
Collapse
|
216
|
Hale M, Netland J, Chen Y, Thouvenel CD, Smith KN, Rich LM, Vanderwall ER, Miranda MC, Eggenberger J, Hao L, Watson MJ, Mundorff CC, Rodda LB, King NP, Guttman M, Gale M, Abraham J, Debley JS, Pepper M, Rawlings DJ. IgM antibodies derived from memory B cells are potent cross-variant neutralizers of SARS-CoV-2. J Exp Med 2022; 219:213384. [PMID: 35938988 PMCID: PMC9365875 DOI: 10.1084/jem.20220849] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2022] [Revised: 06/22/2022] [Accepted: 07/12/2022] [Indexed: 01/14/2023] Open
Abstract
Humoral immunity to SARS-CoV-2 can be supplemented with polyclonal sera from convalescent donors or an engineered monoclonal antibody (mAb) product. While pentameric IgM antibodies are responsible for much of convalescent sera's neutralizing capacity, all available mAbs are based on the monomeric IgG antibody subtype. We now show that IgM mAbs derived from immune memory B cell receptors are potent neutralizers of SARS-CoV-2. IgM mAbs outperformed clonally identical IgG antibodies across a range of affinities and SARS-CoV-2 receptor-binding domain epitopes. Strikingly, efficacy against SARS-CoV-2 viral variants was retained for IgM but not for clonally identical IgG. To investigate the biological role for IgM memory in SARS-CoV-2, we also generated IgM mAbs from antigen-experienced IgM+ memory B cells in convalescent donors, identifying a potent neutralizing antibody. Our results highlight the therapeutic potential of IgM mAbs and inform our understanding of the role for IgM memory against a rapidly mutating pathogen.
Collapse
Affiliation(s)
- Malika Hale
- Center for Immunity and Immunotherapies, Seattle Children’s Research Institute, Seattle, WA
| | - Jason Netland
- Department of Immunology, University of Washington School of Medicine, Seattle, WA
| | - Yu Chen
- Center for Immunity and Immunotherapies, Seattle Children’s Research Institute, Seattle, WA
| | | | | | - Lucille M. Rich
- Center for Immunity and Immunotherapies, Seattle Children’s Research Institute, Seattle, WA
| | | | - Marcos C. Miranda
- Institute for Protein Design, University of Washington, Seattle, WA,Department of Biochemistry, University of Washington School of Medicine, Seattle, WA
| | - Julie Eggenberger
- Department of Immunology, University of Washington School of Medicine, Seattle, WA
| | - Linhui Hao
- Department of Immunology, University of Washington School of Medicine, Seattle, WA
| | - Michael J. Watson
- Department of Medicinal Chemistry, University of Washington, Seattle, WA
| | | | - Lauren B. Rodda
- Department of Immunology, University of Washington School of Medicine, Seattle, WA
| | - Neil P. King
- Institute for Protein Design, University of Washington, Seattle, WA,Department of Biochemistry, University of Washington School of Medicine, Seattle, WA
| | - Miklos Guttman
- Department of Medicinal Chemistry, University of Washington, Seattle, WA
| | - Michael Gale
- Department of Immunology, University of Washington School of Medicine, Seattle, WA
| | - Jonathan Abraham
- Department of Microbiology, Blavatnik Institute, Harvard Medical School, Boston, MA
| | - Jason S. Debley
- Center for Immunity and Immunotherapies, Seattle Children’s Research Institute, Seattle, WA
| | - Marion Pepper
- Department of Immunology, University of Washington School of Medicine, Seattle, WA
| | - David J. Rawlings
- Center for Immunity and Immunotherapies, Seattle Children’s Research Institute, Seattle, WA,Department of Immunology, University of Washington School of Medicine, Seattle, WA,Department of Pediatrics, University of Washington School of Medicine, Seattle, WA,Correspondence to David J. Rawlings:
| |
Collapse
|
217
|
Ouyang J, Zaongo SD, Harypursat V, Li X, Routy JP, Chen Y. SARS-CoV-2 pre-exposure prophylaxis: A potential COVID-19 preventive strategy for high-risk populations, including healthcare workers, immunodeficient individuals, and poor vaccine responders. Front Public Health 2022; 10:945448. [PMID: 36003629 PMCID: PMC9393547 DOI: 10.3389/fpubh.2022.945448] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2022] [Accepted: 07/19/2022] [Indexed: 01/09/2023] Open
Abstract
The unprecedented worldwide spread of SARS-CoV-2 has imposed severe challenges on global health care systems. The roll-out and widespread administration of COVID-19 vaccines has been deemed a major milestone in the race to restrict the severity of the infection. Vaccines have as yet not entirely suppressed the relentless progression of the pandemic, due mainly to the emergence of new virus variants, and also secondary to the waning of protective antibody titers over time. Encouragingly, an increasing number of antiviral drugs, such as remdesivir and the newly developed drug combination, Paxlovid® (nirmatrelvir/ritonavir), as well as molnupiravir, have shown significant benefits for COVID-19 patient outcomes. Pre-exposure prophylaxis (PrEP) has been proven to be an effective preventive strategy in high-risk uninfected people exposed to HIV. Building on knowledge from what is already known about the use of PrEP for HIV disease, and from recently gleaned knowledge of antivirals used against COVID-19, we propose that SARS-CoV-2 PrEP, using specific antiviral and adjuvant drugs against SARS-CoV-2, may represent a novel preventive strategy for high-risk populations, including healthcare workers, immunodeficient individuals, and poor vaccine responders. Herein, we critically review the risk factors for severe COVID-19 and discuss PrEP strategies against SARS-CoV-2. In addition, we outline details of candidate anti-SARS-CoV-2 PrEP drugs, thus creating a framework with respect to the development of alternative and/or complementary strategies to prevent COVID-19, and contributing to the global armamentarium that has been developed to limit SARS-CoV-2 infection, severity, and transmission.
Collapse
Affiliation(s)
- Jing Ouyang
- Clinical Research Center, Chongqing Public Health Medical Center, Chongqing, China
| | - Silvere D. Zaongo
- Clinical Research Center, Chongqing Public Health Medical Center, Chongqing, China
| | - Vijay Harypursat
- Clinical Research Center, Chongqing Public Health Medical Center, Chongqing, China
| | - Xiaofang Li
- Clinical Research Center, Chongqing Public Health Medical Center, Chongqing, China
| | - Jean-Pierre Routy
- Infectious Diseases and Immunity in Global Health Program, Research Institute, McGill University Health Centre, Montréal, QC, Canada
- Chronic Viral Illness Service, McGill University Health Centre, Montréal, QC, Canada
- Division of Hematology, McGill University Health Centre, Montréal, QC, Canada
| | - Yaokai Chen
- Clinical Research Center, Chongqing Public Health Medical Center, Chongqing, China
- Division of Infectious Diseases, Chongqing Public Health Medical Center, Chongqing, China
| |
Collapse
|
218
|
Cohen AA, van Doremalen N, Greaney AJ, Andersen H, Sharma A, Starr TN, Keeffe JR, Fan C, Schulz JE, Gnanapragasam PNP, Kakutani LM, West AP, Saturday G, Lee YE, Gao H, Jette CA, Lewis MG, Tan TK, Townsend AR, Bloom JD, Munster VJ, Bjorkman PJ. Mosaic RBD nanoparticles protect against challenge by diverse sarbecoviruses in animal models. Science 2022; 377:eabq0839. [PMID: 35857620 PMCID: PMC9273039 DOI: 10.1126/science.abq0839] [Citation(s) in RCA: 145] [Impact Index Per Article: 48.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2022] [Accepted: 06/29/2022] [Indexed: 12/12/2022]
Abstract
To combat future severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) variants and spillovers of SARS-like betacoronaviruses (sarbecoviruses) threatening global health, we designed mosaic nanoparticles that present randomly arranged sarbecovirus spike receptor-binding domains (RBDs) to elicit antibodies against epitopes that are conserved and relatively occluded rather than variable, immunodominant, and exposed. We compared immune responses elicited by mosaic-8 (SARS-CoV-2 and seven animal sarbecoviruses) and homotypic (only SARS-CoV-2) RBD nanoparticles in mice and macaques and observed stronger responses elicited by mosaic-8 to mismatched (not on nanoparticles) strains, including SARS-CoV and animal sarbecoviruses. Mosaic-8 immunization showed equivalent neutralization of SARS-CoV-2 variants, including Omicrons, and protected from SARS-CoV-2 and SARS-CoV challenges, whereas homotypic SARS-CoV-2 immunization protected only from SARS-CoV-2 challenge. Epitope mapping demonstrated increased targeting of conserved epitopes after mosaic-8 immunization. Together, these results suggest that mosaic-8 RBD nanoparticles could protect against SARS-CoV-2 variants and future sarbecovirus spillovers.
Collapse
Affiliation(s)
- Alexander A. Cohen
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA 91125, USA
| | - Neeltje van Doremalen
- Laboratory of Virology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, MT 59840, USA
| | - Allison J. Greaney
- Basic Sciences Division and Computational Biology Program, Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA
- Department of Genome Sciences and Medical Scientist Training Program, University of Washington, Seattle, WA 98195, USA
| | | | | | - Tyler N. Starr
- Basic Sciences Division and Computational Biology Program, Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA
- Department of Genome Sciences and Medical Scientist Training Program, University of Washington, Seattle, WA 98195, USA
| | - Jennifer R. Keeffe
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA 91125, USA
| | - Chengcheng Fan
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA 91125, USA
| | - Jonathan E. Schulz
- Laboratory of Virology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, MT 59840, USA
| | | | - Leesa M. Kakutani
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA 91125, USA
| | - Anthony P. West
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA 91125, USA
| | - Greg Saturday
- Laboratory of Virology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, MT 59840, USA
| | - Yu E. Lee
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA 91125, USA
| | - Han Gao
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA 91125, USA
| | - Claudia A. Jette
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA 91125, USA
| | | | - Tiong K. Tan
- MRC Human Immunology Unit, MRC Weatherall Institute of Molecular Medicine, John Radcliffe Hospital, University of Oxford, Oxford OX3 9DS, UK
| | - Alain R. Townsend
- MRC Human Immunology Unit, MRC Weatherall Institute of Molecular Medicine, John Radcliffe Hospital, University of Oxford, Oxford OX3 9DS, UK
- Chinese Academy of Medical Sciences, Oxford Institute, University of Oxford, Oxford OX3 9DS, UK
| | - Jesse D. Bloom
- Basic Sciences Division and Computational Biology Program, Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA
- Howard Hughes Medical Institute, Seattle, WA 98109, USA
| | - Vincent J. Munster
- Laboratory of Virology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, MT 59840, USA
| | - Pamela J. Bjorkman
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA 91125, USA
| |
Collapse
|
219
|
Sharif N, Alzahrani KJ, Ahmed SN, Khan A, Banjer HJ, Alzahrani FM, Parvez AK, Dey SK. Genomic surveillance, evolution and global transmission of SARS-CoV-2 during 2019-2022. PLoS One 2022; 17:e0271074. [PMID: 35913920 PMCID: PMC9342790 DOI: 10.1371/journal.pone.0271074] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2022] [Accepted: 06/23/2022] [Indexed: 12/19/2022] Open
Abstract
In spite of the availability of vaccine, the health burden associated with the COVID-19 pandemic continues to increase. An estimated 5 million people have died with SARS-CoV-2 infection. Analysis of evolution and genomic diversity can provide sufficient information to reduce the health burden of the pandemic. This study focused to conduct worldwide genomic surveillance. About 7.6 million genomic data were analyzed during 2019 to 2022. Multiple sequence alignment was conducted by using maximum likelihood method. Clade GK (52%) was the most predominant followed by GRY (12%), GRA (11%), GR (8%), GH (7%), G (6%), GV (3%), and O (1%), respectively. VOC Delta (66%) was the most prevalent variant followed by VOC Alpha (18%), VOC Omicron (13%), VOC Gamma (2%) and VOC Beta (1%), respectively. The frequency of point mutations including E484K, N501Y, N439K, and L452R at spike protein has increased 10%-92%. Evolutionary rate of the variants was 23.7 substitution per site per year. Substitution mutations E484K and N501Y had significant correlation with cases (r = .45, r = .23), fatalities (r = .15, r = .44) and growth rate R0 (r = .28, r = .54). This study will help to understand the genomic diversity, evolution and the impact of the variants on the outcome of the COVID-19 pandemic.
Collapse
Affiliation(s)
- Nadim Sharif
- Department of Microbiology, Jahangirnagar University, Savar, Dhaka, Bangladesh
| | - Khalid J. Alzahrani
- Department of Clinical Laboratories Sciences, College of Applied Medical Sciences, Taif University, Taif, Saudi Arabia
| | - Shamsun Nahar Ahmed
- Department of Microbiology, Jahangirnagar University, Savar, Dhaka, Bangladesh
| | - Afsana Khan
- Department of Statistics, Jahangirnagar University, Savar, Dhaka, Bangladesh
| | - Hamsa Jameel Banjer
- Department of Clinical Laboratories Sciences, College of Applied Medical Sciences, Taif University, Taif, Saudi Arabia
| | - Fuad M. Alzahrani
- Department of Clinical Laboratories Sciences, College of Applied Medical Sciences, Taif University, Taif, Saudi Arabia
| | | | - Shuvra Kanti Dey
- Department of Microbiology, Jahangirnagar University, Savar, Dhaka, Bangladesh
- * E-mail:
| |
Collapse
|
220
|
Choudhary MC, Li JZ. Uncovering hidden sources of SARS-CoV-2 viral evolution: A call to action. Transpl Infect Dis 2022; 24:e13910. [PMID: 35899935 PMCID: PMC9353434 DOI: 10.1111/tid.13910] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2022] [Accepted: 04/12/2022] [Indexed: 01/14/2023]
Affiliation(s)
| | - Jonathan Z. Li
- Brigham and Women's HospitalHarvard Medical SchoolBostonMassachusettsUSA
| |
Collapse
|
221
|
Zhang X, Lobinska G, Feldman M, Dekel E, Nowak MA, Pilpel Y, Pauzner Y, Barzel B, Pauzner A. A spatial vaccination strategy to reduce the risk of vaccine-resistant variants. PLoS Comput Biol 2022; 18:e1010391. [PMID: 35947602 PMCID: PMC9394842 DOI: 10.1371/journal.pcbi.1010391] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2021] [Revised: 08/22/2022] [Accepted: 07/14/2022] [Indexed: 11/18/2022] Open
Abstract
The COVID-19 pandemic demonstrated that the process of global vaccination against a novel virus can be a prolonged one. Social distancing measures, that are initially adopted to control the pandemic, are gradually relaxed as vaccination progresses and population immunity increases. The result is a prolonged period of high disease prevalence combined with a fitness advantage for vaccine-resistant variants, which together lead to a considerably increased probability for vaccine escape. A spatial vaccination strategy is proposed that has the potential to dramatically reduce this risk. Rather than dispersing the vaccination effort evenly throughout a country, distinct geographic regions of the country are sequentially vaccinated, quickly bringing each to effective herd immunity. Regions with high vaccination rates will then have low infection rates and vice versa. Since people primarily interact within their own region, spatial vaccination reduces the number of encounters between infected individuals (the source of mutations) and vaccinated individuals (who facilitate the spread of vaccine-resistant strains). Thus, spatial vaccination may help mitigate the global risk of vaccine-resistant variants.
Collapse
Affiliation(s)
- Xiyun Zhang
- Department of Physics, Jinan University, Guangzhou, China
| | - Gabriela Lobinska
- Department of Molecular Genetics, Weizmann Institute of Science, Israel
| | - Michal Feldman
- School of Computer Science and Center for Combating Pandemics, Tel Aviv University, Israel
| | - Eddie Dekel
- Department of Economics, Northwestern University, Illinois, United States of America, and School of Economics, Tel Aviv University, Israel
| | - Martin A. Nowak
- Department of Mathematics and Department of Organismic and Evolutionary Biology, Harvard University, Massachusetts, United States of America
| | - Yitzhak Pilpel
- Department of Molecular Genetics, Weizmann Institute of Science, Israel
| | | | - Baruch Barzel
- Department of Mathematics and Gonda Multidisciplinary Brain Research Center Bar-Ilan University, Israel, and Network Science Institute, Northeastern University, Boston, Massachusetts, United States of America
| | - Ady Pauzner
- School of Economics and Center for Combating Pandemics, Tel Aviv University, Israel
| |
Collapse
|
222
|
Chen KWK, Tsung-Ning Huang D, Huang LM. SARS-CoV-2 variants - Evolution, spike protein, and vaccines. Biomed J 2022; 45:573-579. [PMID: 35526825 PMCID: PMC9072773 DOI: 10.1016/j.bj.2022.04.006] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2022] [Revised: 04/09/2022] [Accepted: 04/29/2022] [Indexed: 12/11/2022] Open
Abstract
Despite the rising natural and vaccines mediated immunity, several countries have experienced a resurgence of the Coronavirus disease of 2019 (COVID-19) due to the emergence of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) variants. From Alpha to Omicron, the variants of concern (VOC) have evolved several spike protein mutations that may have an impact on virus characteristics, such as transmissibility and antigenicity. In this review, we describe the evolution of SARS-CoV-2, summarize current knowledge of epidemiological and clinical features of the variants, and discuss the response strategies in terms of vaccines to reduce the burden of COVID-19.
Collapse
Affiliation(s)
- Kai-Wei K Chen
- Department of Pediatrics, MacKay Children's Hospital, Taipei, Taiwan
| | - Daniel Tsung-Ning Huang
- Department of Pediatrics, MacKay Children's Hospital, Taipei, Taiwan; Department of Medicine, MacKay Medical College, Taipei, Taiwan
| | - Li-Min Huang
- Department of Pediatrics, National Taiwan University Children's Hospital, National Taiwan University College of Medicine, Taipei, Taiwan.
| |
Collapse
|
223
|
Willett BJ, Grove J, MacLean OA, Wilkie C, De Lorenzo G, Furnon W, Cantoni D, Scott S, Logan N, Ashraf S, Manali M, Szemiel A, Cowton V, Vink E, Harvey WT, Davis C, Asamaphan P, Smollett K, Tong L, Orton R, Hughes J, Holland P, Silva V, Pascall DJ, Puxty K, da Silva Filipe A, Yebra G, Shaaban S, Holden MTG, Pinto RM, Gunson R, Templeton K, Murcia PR, Patel AH, Klenerman P, Dunachie S, Haughney J, Robertson DL, Palmarini M, Ray S, Thomson EC. SARS-CoV-2 Omicron is an immune escape variant with an altered cell entry pathway. Nat Microbiol 2022; 7:1161-1179. [PMID: 35798890 PMCID: PMC9352574 DOI: 10.1038/s41564-022-01143-7] [Citation(s) in RCA: 412] [Impact Index Per Article: 137.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2022] [Accepted: 05/03/2022] [Indexed: 12/12/2022]
Abstract
Vaccines based on the spike protein of SARS-CoV-2 are a cornerstone of the public health response to COVID-19. The emergence of hypermutated, increasingly transmissible variants of concern (VOCs) threaten this strategy. Omicron (B.1.1.529), the fifth VOC to be described, harbours multiple amino acid mutations in spike, half of which lie within the receptor-binding domain. Here we demonstrate substantial evasion of neutralization by Omicron BA.1 and BA.2 variants in vitro using sera from individuals vaccinated with ChAdOx1, BNT162b2 and mRNA-1273. These data were mirrored by a substantial reduction in real-world vaccine effectiveness that was partially restored by booster vaccination. The Omicron variants BA.1 and BA.2 did not induce cell syncytia in vitro and favoured a TMPRSS2-independent endosomal entry pathway, these phenotypes mapping to distinct regions of the spike protein. Impaired cell fusion was determined by the receptor-binding domain, while endosomal entry mapped to the S2 domain. Such marked changes in antigenicity and replicative biology may underlie the rapid global spread and altered pathogenicity of the Omicron variant.
Collapse
Affiliation(s)
- Brian J Willett
- MRC-University of Glasgow Centre for Virus Research, University of Glasgow, Glasgow, UK.
| | - Joe Grove
- MRC-University of Glasgow Centre for Virus Research, University of Glasgow, Glasgow, UK.
| | - Oscar A MacLean
- MRC-University of Glasgow Centre for Virus Research, University of Glasgow, Glasgow, UK
| | - Craig Wilkie
- School of Mathematics & Statistics, University of Glasgow, Glasgow, UK
| | - Giuditta De Lorenzo
- MRC-University of Glasgow Centre for Virus Research, University of Glasgow, Glasgow, UK
| | - Wilhelm Furnon
- MRC-University of Glasgow Centre for Virus Research, University of Glasgow, Glasgow, UK
| | - Diego Cantoni
- MRC-University of Glasgow Centre for Virus Research, University of Glasgow, Glasgow, UK
| | - Sam Scott
- MRC-University of Glasgow Centre for Virus Research, University of Glasgow, Glasgow, UK
| | - Nicola Logan
- MRC-University of Glasgow Centre for Virus Research, University of Glasgow, Glasgow, UK
| | - Shirin Ashraf
- MRC-University of Glasgow Centre for Virus Research, University of Glasgow, Glasgow, UK
| | - Maria Manali
- MRC-University of Glasgow Centre for Virus Research, University of Glasgow, Glasgow, UK
| | - Agnieszka Szemiel
- MRC-University of Glasgow Centre for Virus Research, University of Glasgow, Glasgow, UK
| | - Vanessa Cowton
- MRC-University of Glasgow Centre for Virus Research, University of Glasgow, Glasgow, UK
| | - Elen Vink
- MRC-University of Glasgow Centre for Virus Research, University of Glasgow, Glasgow, UK
| | - William T Harvey
- MRC-University of Glasgow Centre for Virus Research, University of Glasgow, Glasgow, UK
| | - Chris Davis
- MRC-University of Glasgow Centre for Virus Research, University of Glasgow, Glasgow, UK
| | - Patawee Asamaphan
- MRC-University of Glasgow Centre for Virus Research, University of Glasgow, Glasgow, UK
| | - Katherine Smollett
- MRC-University of Glasgow Centre for Virus Research, University of Glasgow, Glasgow, UK
| | - Lily Tong
- MRC-University of Glasgow Centre for Virus Research, University of Glasgow, Glasgow, UK
| | - Richard Orton
- MRC-University of Glasgow Centre for Virus Research, University of Glasgow, Glasgow, UK
| | - Joseph Hughes
- MRC-University of Glasgow Centre for Virus Research, University of Glasgow, Glasgow, UK
| | | | | | - David J Pascall
- MRC Biostatistics Unit, University of Cambridge, Cambridge, UK
| | | | - Ana da Silva Filipe
- MRC-University of Glasgow Centre for Virus Research, University of Glasgow, Glasgow, UK
| | | | | | - Matthew T G Holden
- Public Health Scotland, Glasgow, UK
- School of Medicine, University of St Andrews, St Andrews, UK
| | - Rute Maria Pinto
- MRC-University of Glasgow Centre for Virus Research, University of Glasgow, Glasgow, UK
| | | | | | - Pablo R Murcia
- MRC-University of Glasgow Centre for Virus Research, University of Glasgow, Glasgow, UK
| | - Arvind H Patel
- MRC-University of Glasgow Centre for Virus Research, University of Glasgow, Glasgow, UK
| | | | | | | | - David L Robertson
- MRC-University of Glasgow Centre for Virus Research, University of Glasgow, Glasgow, UK
| | - Massimo Palmarini
- MRC-University of Glasgow Centre for Virus Research, University of Glasgow, Glasgow, UK
| | - Surajit Ray
- School of Mathematics & Statistics, University of Glasgow, Glasgow, UK
| | - Emma C Thomson
- MRC-University of Glasgow Centre for Virus Research, University of Glasgow, Glasgow, UK.
- NHS Greater Glasgow & Clyde, Glasgow, UK.
- London School of Hygiene and Tropical Medicine, London, UK.
| |
Collapse
|
224
|
Liu H, Kaku CI, Song G, Yuan M, Andrabi R, Burton DR, Walker LM, Wilson IA. Human antibodies to SARS-CoV-2 with a recurring YYDRxG motif retain binding and neutralization to variants of concern including Omicron. Commun Biol 2022; 5:766. [PMID: 35906394 PMCID: PMC9336126 DOI: 10.1038/s42003-022-03700-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2022] [Accepted: 07/11/2022] [Indexed: 01/02/2023] Open
Abstract
Studying the antibody response to SARS-CoV-2 informs on how the human immune system can respond to antigenic variants as well as other SARS-related viruses. Here, we structurally identified a YYDRxG motif encoded by IGHD3-22 in CDR H3 that facilitates antibody targeting to a functionally conserved epitope on the SARS-CoV-2 receptor binding domain. A computational search for a YYDRxG pattern in publicly available sequences uncovered 100 such antibodies, many of which can neutralize SARS-CoV-2 variants and SARS-CoV. Thus, the YYDRxG motif represents a common convergent solution for the human humoral immune system to target sarbecoviruses including the Omicron variant. These findings suggest an epitope-targeting strategy to identify potent and broadly neutralizing antibodies for design of pan-sarbecovirus vaccines and antibody therapeutics.
Collapse
Affiliation(s)
- Hejun Liu
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA, USA
| | | | - Ge Song
- Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, CA, USA
| | - Meng Yuan
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA, USA
| | - Raiees Andrabi
- Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, CA, USA
| | - Dennis R Burton
- Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, CA, USA
- Ragon Institute of MGH, MIT and Harvard, Cambridge, MA, USA
| | - Laura M Walker
- Adimab, LLC, Lebanon, NH, USA.
- Adagio Therapeutics, Inc, Waltham, MA, USA.
| | - Ian A Wilson
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA, USA.
- The Skaggs Institute for Chemical Biology, The Scripps Research Institute, La Jolla, CA, USA.
| |
Collapse
|
225
|
Nkosi T, Chasara C, Papadopoulos AO, Nguni TL, Karim F, Moosa MYS, Gazy I, Jambo K, COMMIT-KZN-Team, Hanekom W, Sigal A, Ndhlovu ZM. Unsuppressed HIV infection impairs T cell responses to SARS-CoV-2 infection and abrogates T cell cross-recognition. eLife 2022; 11:e78374. [PMID: 35880744 PMCID: PMC9355563 DOI: 10.7554/elife.78374] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2022] [Accepted: 07/20/2022] [Indexed: 11/15/2022] Open
Abstract
In some instances, unsuppressed HIV has been associated with severe COVID-19 disease, but the mechanisms underpinning this susceptibility are still unclear. Here, we assessed the impact of HIV infection on the quality and epitope specificity of SARS-CoV-2 T cell responses in the first wave and second wave of the COVID-19 epidemic in South Africa. Flow cytometry was used to measure T cell responses following peripheral blood mononuclear cell stimulation with SARS-CoV-2 peptide pools. Culture expansion was used to determine T cell immunodominance hierarchies and to assess potential SARS-CoV-2 escape from T cell recognition. HIV-seronegative individuals had significantly greater CD4+ T cell responses against the Spike protein compared to the viremic people living with HIV (PLWH). Absolute CD4 count correlated positively with SARS-CoV-2-specific CD4+ and CD8+ T cell responses (CD4 r=0.5, p=0.03; CD8 r=0.5, p=0.001), whereas T cell activation was negatively correlated with CD4+ T cell responses (CD4 r=-0.7, p=0.04). There was diminished T cell cross-recognition between the two waves, which was more pronounced in individuals with unsuppressed HIV infection. Importantly, we identify four mutations in the Beta variant that resulted in abrogation of T cell recognition. Taken together, we show that unsuppressed HIV infection markedly impairs T cell responses to SARS-Cov-2 infection and diminishes T cell cross-recognition. These findings may partly explain the increased susceptibility of PLWH to severe COVID-19 and also highlights their vulnerability to emerging SARS-CoV-2 variants of concern.
Collapse
Affiliation(s)
- Thandeka Nkosi
- Africa Health Research Institute, Nelson R. Mandela School of Medicine, University of Kwa-Zulu NatalDurbanSouth Africa
| | - Caroline Chasara
- Africa Health Research Institute, Nelson R. Mandela School of Medicine, University of Kwa-Zulu NatalDurbanSouth Africa
| | - Andrea O Papadopoulos
- Africa Health Research Institute, Nelson R. Mandela School of Medicine, University of Kwa-Zulu NatalDurbanSouth Africa
| | - Tiza L Nguni
- Africa Health Research Institute, Nelson R. Mandela School of Medicine, University of Kwa-Zulu NatalDurbanSouth Africa
| | - Farina Karim
- Africa Health Research Institute, Nelson R. Mandela School of Medicine, University of Kwa-Zulu NatalDurbanSouth Africa
| | - Mahomed-Yunus S Moosa
- HIV Pathogenesis Program, School of Laboratory Medicine and Medical Sciences, University of KwaZulu-NatalDurbanSouth Africa
| | - Inbal Gazy
- KwaZulu-Natal Research Innovation and Sequencing Platform (KRISP), Nelson R Mandela School of Medicine, University of KwaZulu-NatalDurbanSouth Africa
| | - Kondwani Jambo
- Malawi-Liverpool-Wellcome Trust Clinical Research ProgrammeBlantyreMalawi
- Liverpool School of Tropical MedicineLiverpoolUnited Kingdom
| | - COMMIT-KZN-Team
- Africa Health Research Institute, Nelson R. Mandela School of Medicine, University of Kwa-Zulu NatalDurbanSouth Africa
| | - Willem Hanekom
- Africa Health Research Institute, Nelson R. Mandela School of Medicine, University of Kwa-Zulu NatalDurbanSouth Africa
- Division of Infection and Immunity, University College LondonLondonUnited Kingdom
| | - Alex Sigal
- Africa Health Research Institute, Nelson R. Mandela School of Medicine, University of Kwa-Zulu NatalDurbanSouth Africa
| | - Zaza M Ndhlovu
- Africa Health Research Institute, Nelson R. Mandela School of Medicine, University of Kwa-Zulu NatalDurbanSouth Africa
- HIV Pathogenesis Program, School of Laboratory Medicine and Medical Sciences, University of KwaZulu-NatalDurbanSouth Africa
- Ragon Institute of MGH, MIT and HarvardCambridgeUnited States
| |
Collapse
|
226
|
Kibler KV, Szczerba M, Lake D, Roeder AJ, Rahman M, Hogue BG, Roy Wong LY, Perlman S, Li Y, Jacobs BL. Intranasal Immunization with a Vaccinia Virus Vaccine Vector Expressing Pre-Fusion Stabilized SARS-CoV-2 Spike Fully Protected Mice against Lethal Challenge with the Heavily Mutated Mouse-Adapted SARS2-N501Y MA30 Strain of SARS-CoV-2. Vaccines (Basel) 2022; 10:1172. [PMID: 35893821 PMCID: PMC9394475 DOI: 10.3390/vaccines10081172] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2022] [Revised: 07/13/2022] [Accepted: 07/18/2022] [Indexed: 11/24/2022] Open
Abstract
The Omicron SARS-CoV-2 variant has been designated as a variant of concern because its spike protein is heavily mutated. In particular, the Omicron spike is mutated at five positions (K417, N440, E484, Q493, and N501) that have been associated with escape from neutralizing antibodies induced by either infection with or immunization against the early Washington strain of SARS-CoV-2. The mouse-adapted strain of SARS-CoV-2, SARS2-N501YMA30, contains a spike that is also heavily mutated, with mutations at four of the five positions in the Omicron spike associated with neutralizing antibody escape (K417, E484, Q493, and N501). In this manuscript, we show that intranasal immunization with a pre-fusion stabilized Washington strain spike, expressed from a highly attenuated, replication-competent vaccinia virus construct, NYVAC-KC, fully protected mice against symptoms and death from SARS2-N501YMA30. Similarly, immunization by scarification on the skin fully protected against death, but not from mild disease. This data demonstrates that the Washington strain spike, when expressed from a highly attenuated, replication-competent poxvirus-administered without parenteral injection-can fully protect against the heavily mutated mouse-adapted SARS2-N501YMA30.
Collapse
Affiliation(s)
- Karen V. Kibler
- Biodesign Center for Immunotherapy, Vaccines and Virotherapy, Arizona State University, Tempe, AZ 85287, USA; (M.S.); (M.R.); (B.G.H.); (Y.L.); (B.L.J.)
| | - Mateusz Szczerba
- Biodesign Center for Immunotherapy, Vaccines and Virotherapy, Arizona State University, Tempe, AZ 85287, USA; (M.S.); (M.R.); (B.G.H.); (Y.L.); (B.L.J.)
| | - Douglas Lake
- School of Life Sciences, Arizona State University, Tempe, AZ 85287, USA; (D.L.); (A.J.R.)
| | - Alexa J. Roeder
- School of Life Sciences, Arizona State University, Tempe, AZ 85287, USA; (D.L.); (A.J.R.)
| | - Masmudur Rahman
- Biodesign Center for Immunotherapy, Vaccines and Virotherapy, Arizona State University, Tempe, AZ 85287, USA; (M.S.); (M.R.); (B.G.H.); (Y.L.); (B.L.J.)
| | - Brenda G. Hogue
- Biodesign Center for Immunotherapy, Vaccines and Virotherapy, Arizona State University, Tempe, AZ 85287, USA; (M.S.); (M.R.); (B.G.H.); (Y.L.); (B.L.J.)
- School of Life Sciences, Arizona State University, Tempe, AZ 85287, USA; (D.L.); (A.J.R.)
| | - Lok-Yin Roy Wong
- Department of Microbiology and Immunology, University of Iowa, Iowa City, IA 52242, USA; (L.-Y.R.W.); (S.P.)
| | - Stanley Perlman
- Department of Microbiology and Immunology, University of Iowa, Iowa City, IA 52242, USA; (L.-Y.R.W.); (S.P.)
- Department of Pediatrics, University of Iowa, Iowa City, IA 52242, USA
| | - Yize Li
- Biodesign Center for Immunotherapy, Vaccines and Virotherapy, Arizona State University, Tempe, AZ 85287, USA; (M.S.); (M.R.); (B.G.H.); (Y.L.); (B.L.J.)
- School of Life Sciences, Arizona State University, Tempe, AZ 85287, USA; (D.L.); (A.J.R.)
| | - Bertram L. Jacobs
- Biodesign Center for Immunotherapy, Vaccines and Virotherapy, Arizona State University, Tempe, AZ 85287, USA; (M.S.); (M.R.); (B.G.H.); (Y.L.); (B.L.J.)
- School of Life Sciences, Arizona State University, Tempe, AZ 85287, USA; (D.L.); (A.J.R.)
| |
Collapse
|
227
|
Starr TN, Greaney AJ, Hannon WW, Loes AN, Hauser K, Dillen JR, Ferri E, Farrell AG, Dadonaite B, McCallum M, Matreyek KA, Corti D, Veesler D, Snell G, Bloom JD. Shifting mutational constraints in the SARS-CoV-2 receptor-binding domain during viral evolution. Science 2022; 377:420-424. [PMID: 35762884 PMCID: PMC9273037 DOI: 10.1126/science.abo7896] [Citation(s) in RCA: 167] [Impact Index Per Article: 55.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2022] [Accepted: 06/23/2022] [Indexed: 12/30/2022]
Abstract
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has evolved variants with substitutions in the spike receptor-binding domain (RBD) that affect its affinity for angiotensin-converting enzyme 2 (ACE2) receptor and recognition by antibodies. These substitutions could also shape future evolution by modulating the effects of mutations at other sites-a phenomenon called epistasis. To investigate this possibility, we performed deep mutational scans to measure the effects on ACE2 binding of all single-amino acid mutations in the Wuhan-Hu-1, Alpha, Beta, Delta, and Eta variant RBDs. Some substitutions, most prominently Asn501→Tyr (N501Y), cause epistatic shifts in the effects of mutations at other sites. These epistatic shifts shape subsequent evolutionary change-for example, enabling many of the antibody-escape substitutions in the Omicron RBD. These epistatic shifts occur despite high conservation of the overall RBD structure. Our data shed light on RBD sequence-function relationships and facilitate interpretation of ongoing SARS-CoV-2 evolution.
Collapse
Affiliation(s)
- Tyler N. Starr
- Basic Sciences Division, Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA
| | - Allison J. Greaney
- Basic Sciences Division, Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA
- Department of Genome Sciences, University of Washington, Seattle, WA 98109, USA
- Medical Scientist Training Program, University of Washington, Seattle, WA 98109, USA
| | - William W. Hannon
- Basic Sciences Division, Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA
- Molecular and Cellular Biology Graduate Program, University of Washington, Seattle, WA 98109, USA
| | - Andrea N. Loes
- Basic Sciences Division, Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA
- Howard Hughes Medical Institute, Seattle, WA 98109, USA
| | | | | | - Elena Ferri
- Vir Biotechnology, San Francisco, CA 94158, USA
| | - Ariana Ghez Farrell
- Basic Sciences Division, Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA
| | - Bernadeta Dadonaite
- Basic Sciences Division, Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA
| | - Matthew McCallum
- Department of Biochemistry, University of Washington, Seattle, WA 98195, USA
| | - Kenneth A. Matreyek
- Department of Pathology, Case Western Reserve University School of Medicine, Cleveland, OH 44106, USA
| | - Davide Corti
- Humabs BioMed SA, a subsidiary of Vir Biotechnology, 6500 Bellinzona, Switzerland
| | - David Veesler
- Howard Hughes Medical Institute, Seattle, WA 98109, USA
- Department of Biochemistry, University of Washington, Seattle, WA 98195, USA
| | | | - Jesse D. Bloom
- Basic Sciences Division, Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA
- Department of Genome Sciences, University of Washington, Seattle, WA 98109, USA
- Howard Hughes Medical Institute, Seattle, WA 98109, USA
| |
Collapse
|
228
|
Li H, Hong X, Ding L, Meng S, Liao R, Jiang Z, Liu D. Sequence similarity of SARS-CoV-2 and humans: Implications for SARS-CoV-2 detection. Front Genet 2022; 13:946359. [PMID: 35937998 PMCID: PMC9355506 DOI: 10.3389/fgene.2022.946359] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2022] [Accepted: 07/06/2022] [Indexed: 11/13/2022] Open
Abstract
Detecting severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) needs human samples, which inevitably contain trace human DNA and RNA. Sequence similarity may cause invalid detection results; however, there is still a lack of gene similarity analysis of SARS-CoV-2 and humans. All publicly reported complete genome assemblies in the Entrez genome database were collected for multiple sequence alignment, similarity and phylogenetic analysis. The complete genomes showed high similarity (>99.88% sequence identity). Phylogenetic analysis divided these viruses into three major clades with significant geographic group effects. Viruses from the United States showed considerable variability. Sequence similarity analysis revealed that SARS-CoV-2 has 612 similar sequences with the human genome and 100 similar sequences with the human transcriptome. The sequence characteristics and genome distribution of these similar sequences were confirmed. The sequence similarity and evolutionary mutations provide indispensable references for dynamic updates of SARS-CoV-2 detection primers and methods.
Collapse
Affiliation(s)
- Heng Li
- Department of Rheumatology and Immunology, Shenzhen People’s Hospital, The Second Clinical Medical College of Jinan University, Shenzhen, China
- Integrated Chinese and Western Medicine Postdoctoral Research Station, Jinan University, Guangzhou, China
| | - Xiaoping Hong
- Department of Rheumatology and Immunology, Shenzhen People’s Hospital, The Second Clinical Medical College of Jinan University, Shenzhen, China
| | - Liping Ding
- Department of Rheumatology and Immunology, Shenzhen People’s Hospital, The Second Clinical Medical College of Jinan University, Shenzhen, China
| | - Shuhui Meng
- Department of Rheumatology and Immunology, Shenzhen People’s Hospital, The Second Clinical Medical College of Jinan University, Shenzhen, China
| | - Rui Liao
- Department of Rheumatology and Immunology, Shenzhen People’s Hospital, The Second Clinical Medical College of Jinan University, Shenzhen, China
| | - Zhenyou Jiang
- Department of Microbiology and Immunology, School of Medicine, Jinan University, Guangzhou, China
- *Correspondence: Zhenyou Jiang, ; Dongzhou Liu,
| | - Dongzhou Liu
- Department of Rheumatology and Immunology, Shenzhen People’s Hospital, The Second Clinical Medical College of Jinan University, Shenzhen, China
- *Correspondence: Zhenyou Jiang, ; Dongzhou Liu,
| |
Collapse
|
229
|
Chen J, Wei GW. Mathematical artificial intelligence design of mutation-proof COVID-19 monoclonal antibodies. COMMUNICATIONS IN INFORMATION AND SYSTEMS 2022; 22:339-361. [PMID: 36713633 PMCID: PMC9881605 DOI: 10.4310/cis.2022.v22.n3.a3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Emerging severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) variants have compromised existing vaccines and posed a grand challenge to coronavirus disease 2019 (COVID-19) prevention, control, and global economic recovery. For COVID-19 patients, one of the most effective COVID-19 medications is monoclonal antibody (mAb) therapies. The United States Food and Drug Administration (U.S. FDA) has given the emergency use authorization (EUA) to a few mAbs, including those from Regeneron, Eli Elly, etc. However, they are also undermined by SARS-CoV-2 mutations. It is imperative to develop effective mutation-proof mAbs for treating COVID-19 patients infected by all emerging variants and/or the original SARS-CoV-2. We carry out a deep mutational scanning to present the blueprint of such mAbs using algebraic topology and artificial intelligence (AI). To reduce the risk of clinical trial-related failure, we select five mAbs either with FDA EUA or in clinical trials as our starting point. We demonstrate that topological AI-designed mAbs are effective for variants of concerns and variants of interest designated by the World Health Organization (WHO), as well as the original SARS-CoV-2. Our topological AI methodologies have been validated by tens of thousands of deep mutational data and their predictions have been confirmed by results from tens of experimental laboratories and population-level statistics of genome isolates from hundreds of thousands of patients.
Collapse
Affiliation(s)
- Jiahui Chen
- Department of mathematics, Michigan State University, East Lansing, MI 48823, USA
| | - Guo-Wei Wei
- Department of mathematics, Michigan State University, East Lansing, MI 48823, USA
| |
Collapse
|
230
|
Williams A, Zhan CG. Fast Prediction of Binding Affinities of SARS-CoV-2 Spike Protein and Its Mutants with Antibodies through Intermolecular Interaction Modeling-Based Machine Learning. J Phys Chem B 2022; 126:5194-5206. [PMID: 35817617 PMCID: PMC9301770 DOI: 10.1021/acs.jpcb.2c02123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2022] [Revised: 06/28/2022] [Indexed: 11/30/2022]
Abstract
Since the introduction of the novel SARS-CoV-2 virus (COVID-19) in late 2019, various new variants have appeared with mutations that confer resistance to the vaccines and monoclonal antibodies that were developed in response to the wild-type virus. As we continue through the pandemic, an accurate and efficient methodology is needed to help predict the effects certain mutations will have on both our currently produced therapeutics and those that are in development. Using published cryo-electron microscopy and X-ray crystallography structures of the spike receptor binding domain region with currently known antibodies, in the present study, we created and cross-validated an intermolecular interaction modeling-based multi-layer perceptron machine learning approach that can accurately predict the mutation-caused shifts in the binding affinity between the spike protein (wild-type or mutant) and various antibodies. This validated artificial intelligence (AI) model was used to predict the binding affinity (Kd) of reported SARS-CoV-2 antibodies with various variants of concern, including the most recently identified "Deltamicron" (or "Deltacron") variant. This AI model may be employed in the future to predict the Kd of developed novel antibody therapeutics to overcome the challenging antibody resistance issue and develop structural bases for the effects of both current and new mutants of the spike protein. In addition, the similar AI strategy and approach based on modeling of the intermolecular interactions may be useful in development of machine learning models predicting binding affinities for other protein-protein binding systems, including other antibodies binding with their antigens.
Collapse
Affiliation(s)
- Alexander
H. Williams
- Molecular
Modeling and Biopharmaceutical Center, University
of Kentucky, 789 South Limestone Street, Lexington, Kentucky 40536, United States
- Department
of Pharmaceutical Sciences, College of Pharmacy, University of Kentucky, 789 South Limestone Street, Lexington, Kentucky 40536, United States
| | - Chang-Guo Zhan
- Molecular
Modeling and Biopharmaceutical Center, University
of Kentucky, 789 South Limestone Street, Lexington, Kentucky 40536, United States
- Department
of Pharmaceutical Sciences, College of Pharmacy, University of Kentucky, 789 South Limestone Street, Lexington, Kentucky 40536, United States
| |
Collapse
|
231
|
Wang B, Gamazon ER. Modeling mutational effects on biochemical phenotypes using convolutional neural networks: application to SARS-CoV-2. iScience 2022; 25:104500. [PMID: 35669036 PMCID: PMC9159778 DOI: 10.1016/j.isci.2022.104500] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2021] [Revised: 11/15/2021] [Accepted: 05/26/2022] [Indexed: 11/29/2022] Open
Abstract
Deep mutational scanning (DMS) experiments have been performed on SARS-CoV-2’s spike receptor-binding domain (RBD) and human angiotensin-converting enzyme 2 (ACE2) zinc-binding peptidase domain—both central players in viral infection and evolution and antibody evasion—quantifying how mutations impact biochemical phenotypes. We modeled biochemical phenotypes from massively parallel assays, using neural networks trained on protein sequence mutations in the virus and human host. Neural networks were significantly predictive of binding affinity, protein expression, and antibody escape, learning complex interactions and higher-order features that are difficult to capture with conventional methods from structural biology. Integrating the physicochemical properties of amino acids, such as hydrophobicity and long-range non-bonded energy per atom, significantly improved prediction (empirical p < 0.01). We observed concordance of the neural network predictions with molecular dynamics (multiple 500 ns or 1 μs all-atom) simulations of the spike protein-ACE2 interface, with critical implications for the use of deep learning to dissect molecular mechanisms. Deep learning models of biochemical phenotypes from deep mutational scanning (DMS) data Prediction performance gain from using physicochemical properties of amino acids Concordance of neural network predictions with molecular dynamics simulations Improved causal inference properties for neural-network-defined phenotypes
Collapse
Affiliation(s)
- Bo Wang
- Division of Genetic Medicine, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - Eric R Gamazon
- Division of Genetic Medicine, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN 37232, USA.,Vanderbilt Genetics Institute, Vanderbilt University Medical Center, Nashville, TN 37232, USA.,Data Science Institute, Vanderbilt University Medical Center, Nashville, TN 37232, USA.,Clare Hall, University of Cambridge, Cambridge CB3 9AL, UK
| |
Collapse
|
232
|
Patrick C, Upadhyay V, Lucas A, Mallela KM. Biophysical Fitness Landscape of the SARS-CoV-2 Delta Variant Receptor Binding Domain. J Mol Biol 2022; 434:167622. [PMID: 35533762 PMCID: PMC9076029 DOI: 10.1016/j.jmb.2022.167622] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2022] [Revised: 04/21/2022] [Accepted: 04/29/2022] [Indexed: 12/16/2022]
Abstract
Among the five known SARS-CoV-2 variants of concern, Delta is the most virulent leading to severe symptoms and increased mortality among infected people. Our study seeks to examine how the biophysical parameters of the Delta variant correlate to the clinical observations. Receptor binding domain (RBD) is the first point of contact with the human host cells and is the immunodominant form of the spike protein. Delta variant RBD contains two novel mutations L452R and T478K. We examined the effect of single as well as the double mutations on RBD expression in human Expi293 cells, RBD stability using urea and thermal denaturation, and RBD binding to angiotensin converting enzyme 2 (ACE2) receptor and to neutralizing antibodies using isothermal titration calorimetry. Delta variant RBD showed significantly higher expression compared to the wild-type RBD, and the increased expression is due to L452R mutation. Despite their non-conservative nature, none of the mutations significantly affected RBD structure and stability. All mutants showed similar binding affinity to ACE2 and to Class 1 antibodies (CC12.1 and LY-CoV016) as that of the wild-type. Delta double mutant L452R/T478K showed no binding to Class 2 antibodies (P2B-2F6 and LY-CoV555) and a hundred-fold weaker binding to a Class 3 antibody (REGN10987), and the decreased antibody binding is determined by the L452R mutation. These results indicate that the immune escape from neutralizing antibodies, rather than increased receptor binding, is the main biophysical parameter that determined the fitness landscape of the Delta variant RBD.
Collapse
Affiliation(s)
| | | | | | - Krishna M.G. Mallela
- Corresponding author at: Department of Pharmaceutical Sciences, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of Colorado Anschutz Medical Campus, 12850 E. Montview Blvd, MS C238-V20, Aurora, CO 80045, USA
| |
Collapse
|
233
|
Sorokina M, Belapure J, Tüting C, Paschke R, Papasotiriou I, Rodrigues JP, Kastritis PL. An Electrostatically-steered Conformational Selection Mechanism Promotes SARS-CoV-2 Spike Protein Variation. J Mol Biol 2022; 434:167637. [PMID: 35595165 PMCID: PMC9112565 DOI: 10.1016/j.jmb.2022.167637] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2022] [Revised: 04/28/2022] [Accepted: 05/06/2022] [Indexed: 12/16/2022]
Abstract
After two years since the outbreak, the COVID-19 pandemic remains a global public health emergency. SARS-CoV-2 variants with substitutions on the spike (S) protein emerge increasing the risk of immune evasion and cross-species transmission. Here, we analyzed the evolution of the S protein as recorded in 276,712 samples collected before the start of vaccination efforts. Our analysis shows that most variants destabilize the S protein trimer, increase its conformational heterogeneity and improve the odds of the recognition by the host cell receptor. Most frequent substitutions promote overall hydrophobicity by replacing charged amino acids, reducing stabilizing local interactions in the unbound S protein trimer. Moreover, our results identify "forbidden" regions that rarely show any sequence variation, and which are related to conformational changes occurring upon fusion. These results are significant for understanding the structure and function of SARS-CoV-2 related proteins which is a critical step in vaccine development and epidemiological surveillance.
Collapse
Affiliation(s)
- Marija Sorokina
- Institute of Biochemistry and Biotechnology, Martin Luther University Halle-Wittenberg, Kurt-Mothes-Str. 3, 06120 Halle/Saale, Germany,RGCC International GmbH, Baarerstrasse 95, Zug 6300, Switzerland,BioSolutions GmbH, Weinbergweg 22, 06120 Halle/Saale, Germany
| | - Jaydeep Belapure
- Interdisciplinary Research Center HALOmem, Charles Tanford Protein Center, Martin Luther University Halle-Wittenberg, Kurt-Mothes-Str. 3a, 06120 Halle/Saale, Germany
| | - Christian Tüting
- Interdisciplinary Research Center HALOmem, Charles Tanford Protein Center, Martin Luther University Halle-Wittenberg, Kurt-Mothes-Str. 3a, 06120 Halle/Saale, Germany
| | - Reinhard Paschke
- BioSolutions GmbH, Weinbergweg 22, 06120 Halle/Saale, Germany,Biozentrum, Martin Luther University Halle-Wittenberg, Weinbergweg 22, 06120 Halle/Saale, Germany
| | | | | | - Panagiotis L. Kastritis
- Institute of Biochemistry and Biotechnology, Martin Luther University Halle-Wittenberg, Kurt-Mothes-Str. 3, 06120 Halle/Saale, Germany,Interdisciplinary Research Center HALOmem, Charles Tanford Protein Center, Martin Luther University Halle-Wittenberg, Kurt-Mothes-Str. 3a, 06120 Halle/Saale, Germany,Biozentrum, Martin Luther University Halle-Wittenberg, Weinbergweg 22, 06120 Halle/Saale, Germany,Corresponding author at: Institute of Biochemistry and Biotechnology, Martin Luther University Halle-Wittenberg, Kurt-Mothes-Str. 3, 06120 Halle/Saale, Germany
| |
Collapse
|
234
|
Faist A, Janowski J, Kumar S, Hinse S, Çalışkan DM, Lange J, Ludwig S, Brunotte L. Virus Infection and Systemic Inflammation: Lessons Learnt from COVID-19 and Beyond. Cells 2022; 11:2198. [PMID: 35883640 PMCID: PMC9316821 DOI: 10.3390/cells11142198] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2022] [Revised: 06/28/2022] [Accepted: 07/09/2022] [Indexed: 02/06/2023] Open
Abstract
Respiratory infections with newly emerging zoonotic viruses such as SARS-CoV-2, the etiological agent of COVID-19, often lead to the perturbation of the human innate and adaptive immune responses causing severe disease with high mortality. The responsible mechanisms are commonly virus-specific and often include either over-activated or delayed local interferon responses, which facilitate efficient viral replication in the primary target organ, systemic viral spread, and rapid onset of organ-specific and harmful inflammatory responses. Despite the distinct replication strategies, human infections with SARS-CoV-2 and highly pathogenic avian influenza viruses demonstrate remarkable similarities and differences regarding the mechanisms of immune induction, disease dynamics, as well as the long-term sequelae, which will be discussed in this review. In addition, we will highlight some important lessons about the effectiveness of antiviral and immunomodulatory therapeutic strategies that this pandemic has taught us.
Collapse
Affiliation(s)
- Aileen Faist
- Institute of Virology, University of Muenster, 48149 Muenster, Germany; (A.F.); (J.J.); (S.K.); (S.H.); (D.M.Ç.); (J.L.); (S.L.)
- CiM-IMPRS, International Max Planck Research School—Molecular Biomedicine, Westfaelische Wilhelms-University Muenster, 48149 Muenster, Germany
| | - Josua Janowski
- Institute of Virology, University of Muenster, 48149 Muenster, Germany; (A.F.); (J.J.); (S.K.); (S.H.); (D.M.Ç.); (J.L.); (S.L.)
- SP BioSciences Graduate Program, University of Muenster, 48149 Muenster, Germany
| | - Sriram Kumar
- Institute of Virology, University of Muenster, 48149 Muenster, Germany; (A.F.); (J.J.); (S.K.); (S.H.); (D.M.Ç.); (J.L.); (S.L.)
- EvoPAD Research Training Group 2220, University of Muenster, 48149 Muenster, Germany
| | - Saskia Hinse
- Institute of Virology, University of Muenster, 48149 Muenster, Germany; (A.F.); (J.J.); (S.K.); (S.H.); (D.M.Ç.); (J.L.); (S.L.)
| | - Duygu Merve Çalışkan
- Institute of Virology, University of Muenster, 48149 Muenster, Germany; (A.F.); (J.J.); (S.K.); (S.H.); (D.M.Ç.); (J.L.); (S.L.)
- EvoPAD Research Training Group 2220, University of Muenster, 48149 Muenster, Germany
| | - Julius Lange
- Institute of Virology, University of Muenster, 48149 Muenster, Germany; (A.F.); (J.J.); (S.K.); (S.H.); (D.M.Ç.); (J.L.); (S.L.)
| | - Stephan Ludwig
- Institute of Virology, University of Muenster, 48149 Muenster, Germany; (A.F.); (J.J.); (S.K.); (S.H.); (D.M.Ç.); (J.L.); (S.L.)
- CiM-IMPRS, International Max Planck Research School—Molecular Biomedicine, Westfaelische Wilhelms-University Muenster, 48149 Muenster, Germany
- EvoPAD Research Training Group 2220, University of Muenster, 48149 Muenster, Germany
- Interdisciplinary Center for Clinical Research, University of Muenster, 48149 Muenster, Germany
| | - Linda Brunotte
- Institute of Virology, University of Muenster, 48149 Muenster, Germany; (A.F.); (J.J.); (S.K.); (S.H.); (D.M.Ç.); (J.L.); (S.L.)
- Interdisciplinary Center for Clinical Research, University of Muenster, 48149 Muenster, Germany
| |
Collapse
|
235
|
Iketani S, Hong SJ, Sheng J, Bahari F, Culbertson B, Atanaki FF, Aditham AK, Kratz AF, Luck MI, Tian R, Goff SP, Montazeri H, Sabo Y, Ho DD, Chavez A. The Functional Landscape of SARS-CoV-2 3CL Protease. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2022:2022.06.23.497404. [PMID: 35860222 PMCID: PMC9298129 DOI: 10.1101/2022.06.23.497404] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/01/2023]
Abstract
SARS-CoV-2 (severe acute respiratory syndrome coronavirus 2) as the etiologic agent of COVID-19 (coronavirus disease 2019) has drastically altered life globally. Numerous efforts have been placed on the development of therapeutics to treat SARS-CoV-2 infection. One particular target is the 3CL protease (3CL pro ), which holds promise as it is essential to the virus and highly conserved among coronaviruses, suggesting that it may be possible to find broad inhibitors that treat not just SARS-CoV-2 but other coronavirus infections as well. While the 3CL protease has been studied by many groups for SARS-CoV-2 and other coronaviruses, our understanding of its tolerance to mutations is limited, knowledge which is particularly important as 3CL protease inhibitors become utilized clinically. Here, we develop a yeast-based deep mutational scanning approach to systematically profile the activity of all possible single mutants of the SARS-CoV-2 3CL pro , and validate our results both in yeast and in authentic viruses. We reveal that the 3CL pro is highly malleable and is capable of tolerating mutations throughout the protein, including within the substrate binding pocket. Yet, we also identify specific residues that appear immutable for function of the protease, suggesting that these interactions may be novel targets for the design of future 3CL pro inhibitors. Finally, we utilize our screening results as a basis to identify E166V as a resistance-conferring mutation against the therapeutic 3CL pro inhibitor, nirmatrelvir, in clinical use. Collectively, the functional map presented herein may serve as a guide for further understanding of the biological properties of the 3CL protease and for drug development for current and future coronavirus pandemics.
Collapse
|
236
|
Xiong D, Zhao X, Luo S, Cong Y, Zhang JZH, Duan L. Immune Escape Mechanisms of SARS-CoV-2 Delta and Omicron Variants against Two Monoclonal Antibodies That Received Emergency Use Authorization. J Phys Chem Lett 2022; 13:6064-6073. [PMID: 35758899 PMCID: PMC9260724 DOI: 10.1021/acs.jpclett.2c00912] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Accepted: 06/23/2022] [Indexed: 05/07/2023]
Abstract
Multiple-site mutated SARS-CoV-2 Delta and Omicron variants may trigger immune escape against existing monoclonal antibodies. Here, molecular dynamics simulations combined with the interaction entropy method reveal the escape mechanism of Delta/Omicron variants to Bamlanivimab/Etesevimab. The result shows the significantly reduced binding affinity of the Omicron variant for both antibodies, due to the introduction of positively charged residues that greatly weaken their electrostatic interactions. Meanwhile, significant structural deflection induces fewer atomic contacts and an unstable binding mode. As for the Delta variant, the reduced binding affinity for Bamlanivimab is owing to the alienation of the receptor-binding domain to the main part of this antibody, and the binding mode of the Delta variant to Etesevimab is similar to that of the wild type, suggesting that Etesevimab could still be effective against the Delta variant. We hope this work will provide timely theoretical insights into developing antibodies to prevalent and possible future variants of SARS-CoV-2.
Collapse
Affiliation(s)
- Danyang Xiong
- School
of Physics and Electronics, Shandong Normal
University, Jinan 250014, China
| | - Xiaoyu Zhao
- School
of Physics and Electronics, Shandong Normal
University, Jinan 250014, China
| | - Song Luo
- School
of Physics and Electronics, Shandong Normal
University, Jinan 250014, China
| | - Yalong Cong
- Shanghai
Engineering Research Center of Molecular Therapeutics and New Drug
Development, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai 200062, China
| | - John Z. H. Zhang
- Shanghai
Engineering Research Center of Molecular Therapeutics and New Drug
Development, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai 200062, China
- Shenzhen
Institute of Synthetic Biology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
- NYU-ECNU
Center for Computational Chemistry at NYU Shanghai, Shanghai 200062, China
- Department
of Chemistry, New York University, New York, New York 10003, United States
| | - Lili Duan
- School
of Physics and Electronics, Shandong Normal
University, Jinan 250014, China
| |
Collapse
|
237
|
Antony P, Jobe A, Vijayan R. Dynamics of the interaction between the receptor-binding domain of SARS-CoV-2 Omicron (B.1.1.529) variant and human angiotensin-converting enzyme 2. PeerJ 2022; 10:e13680. [PMID: 35811809 PMCID: PMC9266696 DOI: 10.7717/peerj.13680] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2022] [Accepted: 06/14/2022] [Indexed: 01/17/2023] Open
Abstract
Background The COVID-19 pandemic is still a global public health issue. Omicron, a SARS-CoV-2 B.1.1.529 variant, has raised concerns about transmission and vaccine effectiveness. Omicron currently has the greatest number of variantions. Methods To gain a better understanding of the significance of these variations and the dynamics of the interaction between the Omicron spike (S) protein and its human host factor angiotensin-converting enzyme 2 (ACE2), triplicate 500 ns molecular dynamics simulations were run using the structure of the S protein's receptor-binding domain (RBD) in complex with ACE2. The interaction and binding energy, determined using the molecular mechanics-generalized Born surface area approach, were compared to the original SARS-CoV-2 and the B.1.617 variant. Results Though mutations K417N and G496S in the S protein RBD disrupt interactions found in the original SARS-CoV-2 complex, mutations Q493R and N501Y introduce interactions not found in the original complex. Interaction at a key viral hotspot and hydrophobic contacts at ACE2's N-terminus were preserved, but intermolecular hydrogen bonds and polar contacts in the S-ACE2 interface were lower than in the original SARS-CoV-2 interface.
Collapse
Affiliation(s)
- Priya Antony
- Department of Biology, College of Science, United Arab Emirates University, Al Ain, Abu Dhabi, United Arab Emirates
| | - Amie Jobe
- Department of Biology, College of Science, United Arab Emirates University, Al Ain, Abu Dhabi, United Arab Emirates
| | - Ranjit Vijayan
- Department of Biology, College of Science, United Arab Emirates University, Al Ain, Abu Dhabi, United Arab Emirates,The Big Data Analytics Center, United Arab Emirates University, Al Ain, Abu Dhabi, United Arab Emirates,Zayed Center for Health Sciences, United Arab Emirates University, Al Ain, Abu Dhabi, United Arab Emirates
| |
Collapse
|
238
|
Chaguza C, Hahn AM, Petrone ME, Zhou S, Ferguson D, Breban MI, Pham K, Peña-Hernández MA, Castaldi C, Hill V, Yale SARS-CoV-2 Genomic Surveillance Initiative, Schulz W, Swanstrom RI, Roberts SC, Grubaugh ND. Accelerated SARS-CoV-2 intrahost evolution leading to distinct genotypes during chronic infection. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2022:2022.06.29.22276868. [PMID: 35794895 PMCID: PMC9258298 DOI: 10.1101/2022.06.29.22276868] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
The chronic infection hypothesis for novel SARS-CoV-2 variant emergence is increasingly gaining credence following the appearance of Omicron. Here we investigate intrahost evolution and genetic diversity of lineage B.1.517 during a SARS-CoV-2 chronic infection lasting for 471 days (and still ongoing) with consistently recovered infectious virus and high viral loads. During the infection, we found an accelerated virus evolutionary rate translating to 35 nucleotide substitutions per year, approximately two-fold higher than the global SARS-CoV-2 evolutionary rate. This intrahost evolution led to the emergence and persistence of at least three genetically distinct genotypes suggesting the establishment of spatially structured viral populations continually reseeding different genotypes into the nasopharynx. Finally, using unique molecular indexes for accurate intrahost viral sequencing, we tracked the temporal dynamics of genetic diversity to identify advantageous mutations and highlight hallmark changes for chronic infection. Our findings demonstrate that untreated chronic infections accelerate SARS-CoV-2 evolution, ultimately providing opportunity for the emergence of genetically divergent and potentially highly transmissible variants as seen with Delta and Omicron.
Collapse
Affiliation(s)
- Chrispin Chaguza
- Department of Epidemiology of Microbial Diseases, Yale School of Public Health, New Haven, CT, USA
| | - Anne M. Hahn
- Department of Epidemiology of Microbial Diseases, Yale School of Public Health, New Haven, CT, USA
| | - Mary E. Petrone
- Department of Epidemiology of Microbial Diseases, Yale School of Public Health, New Haven, CT, USA
- School of Life and Environmental Sciences, University of Sydney, Sydney, NSW, Australia
| | - Shuntai Zhou
- Department of Microbiology and Immunology, University of North Carolina, Chapel Hill, NC, USA
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - David Ferguson
- Department of Laboratory Medicine, Yale School of Medicine, New Haven, CT, USA
| | - Mallery I. Breban
- Department of Epidemiology of Microbial Diseases, Yale School of Public Health, New Haven, CT, USA
| | - Kien Pham
- Department of Epidemiology of Microbial Diseases, Yale School of Public Health, New Haven, CT, USA
| | - Mario A. Peña-Hernández
- Department of Biological and Biomedical Sciences, Yale School of Medicine, New Haven, Connecticut, USA
| | | | - Verity Hill
- Department of Epidemiology of Microbial Diseases, Yale School of Public Health, New Haven, CT, USA
| | | | - Wade Schulz
- Department of Laboratory Medicine, Yale School of Medicine, New Haven, CT, USA
- Center for Outcomes Research and Evaluation, Yale New Haven Hospital, New Haven, CT, USA
| | - Ronald I. Swanstrom
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
- Department of Biochemistry and Biophysics, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | | | - Nathan D. Grubaugh
- Department of Epidemiology of Microbial Diseases, Yale School of Public Health, New Haven, CT, USA
- Department of Ecology and Evolutionary Biology, Yale University, New Haven, CT, USA
| |
Collapse
|
239
|
Correia BSB, Ferreira VG, Piagge PMFD, Almeida MB, Assunção NA, Raimundo JRS, Fonseca FLA, Carrilho E, Cardoso DR. 1H qNMR-Based Metabolomics Discrimination of Covid-19 Severity. J Proteome Res 2022; 21:1640-1653. [PMID: 35674498 PMCID: PMC9212193 DOI: 10.1021/acs.jproteome.1c00977] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2021] [Indexed: 01/08/2023]
Abstract
The coronavirus disease 2019 (Covid-19), which caused respiratory problems in many patients worldwide, led to more than 5 million deaths by the end of 2021. Experienced symptoms vary from mild to severe illness. Understanding the infection severity to reach a better prognosis could be useful to the clinics, and one study area to fulfill one piece of this biological puzzle is metabolomics. The metabolite profile and/or levels being monitored can help predict phenotype properties. Therefore, this study evaluated plasma metabolomes of 110 individual samples, 57 from control patients and 53 from recent positive cases of Covid-19 (IgM 98% reagent), representing mild to severe symptoms, before any clinical intervention. Polar metabolites from plasma samples were analyzed by quantitative 1H NMR. Glycerol, 3-aminoisobutyrate, formate, and glucuronate levels showed alterations in Covid-19 patients compared to those in the control group (Tukey's HSD p-value cutoff = 0.05), affecting the lactate, phenylalanine, tyrosine, and tryptophan biosynthesis and d-glutamine, d-glutamate, and glycerolipid metabolisms. These metabolic alterations show that SARS-CoV-2 infection led to disturbance in the energetic system, supporting the viral replication and corroborating with the severe clinical conditions of patients. Six polar metabolites (glycerol, acetate, 3-aminoisobutyrate, formate, glucuronate, and lactate) were revealed by PLS-DA and predicted by ROC curves and ANOVA to be potential prognostic metabolite panels for Covid-19 and considered clinically relevant for predicting infection severity due to their straight roles in the lipid and energy metabolism. Thus, metabolomics from samples of Covid-19 patients is a powerful tool for a better understanding of the disease mechanism of action and metabolic consequences of the infection in the human body and may corroborate allowing clinicians to intervene quickly according to the needs of Covid-19 patients.
Collapse
Affiliation(s)
- Banny S. B. Correia
- Instituto de Química de São Carlos,
Universidade de São Paulo, São Carlos, SP
13566-590, Brazil
| | - Vinicius G. Ferreira
- Instituto de Química de São Carlos,
Universidade de São Paulo, São Carlos, SP
13566-590, Brazil
- Instituto Nacional de Ciência e Tecnologia de
Bioanalítica, INCTBio, Campinas, SP 13083-861,
Brazil
| | | | - Mariana B. Almeida
- Instituto de Química de São Carlos,
Universidade de São Paulo, São Carlos, SP
13566-590, Brazil
- Instituto Nacional de Ciência e Tecnologia de
Bioanalítica, INCTBio, Campinas, SP 13083-861,
Brazil
| | - Nilson A. Assunção
- Instituto de Ciências Ambientais, Químicas
e Farmacêuticas, Universidade Federal de São
Paulo, São Paulo, SP 09972-270, Brazil
| | | | - Fernando L. A. Fonseca
- Faculdade de Medicina do
ABC, Santo André, SP 09060-870, Brazil
- Departamento de Ciências Farmacêuticas,
Universidade Federal de São Paulo, Diadema, SP
09972-270, Brazil
| | - Emanuel Carrilho
- Instituto de Química de São Carlos,
Universidade de São Paulo, São Carlos, SP
13566-590, Brazil
- Instituto Nacional de Ciência e Tecnologia de
Bioanalítica, INCTBio, Campinas, SP 13083-861,
Brazil
| | - Daniel R. Cardoso
- Instituto de Química de São Carlos,
Universidade de São Paulo, São Carlos, SP
13566-590, Brazil
| |
Collapse
|
240
|
Qi H, Liu B, Wang X, Zhang L. The humoral response and antibodies against SARS-CoV-2 infection. Nat Immunol 2022; 23:1008-1020. [PMID: 35761083 DOI: 10.1038/s41590-022-01248-5] [Citation(s) in RCA: 115] [Impact Index Per Article: 38.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2022] [Accepted: 04/22/2022] [Indexed: 12/14/2022]
Abstract
Two and a half years into the COVID-19 pandemic, we have gained many insights into the human antibody response to the causative SARS-CoV-2 virus. In this Review, we summarize key observations of humoral immune responses in people with COVID-19, discuss key features of infection- and vaccine-induced neutralizing antibodies, and consider vaccine designs for inducing antibodies that are broadly protective against different variants of the SARS-CoV-2 virus.
Collapse
Affiliation(s)
- Hai Qi
- Tsinghua-Peking Center for Life Sciences, Beijing, China. .,Laboratory of Dynamic Immunobiology, Institute for Immunology, Tsinghua University, Beijing, China. .,Department of Basic Medical Sciences, School of Medicine, Tsinghua University, Beijing, China. .,NexVac Research Center, Tsinghua University, Beijing, China. .,Beijing Key Laboratory for Immunological Research on Chronic Diseases, Beijing, China. .,Beijing Frontier Research Center for Biological Structure, Tsinghua University, Beijing, China.
| | - Bo Liu
- Tsinghua-Peking Center for Life Sciences, Beijing, China.,Laboratory of Dynamic Immunobiology, Institute for Immunology, Tsinghua University, Beijing, China.,Department of Basic Medical Sciences, School of Medicine, Tsinghua University, Beijing, China
| | - Xinquan Wang
- Beijing Frontier Research Center for Biological Structure, Tsinghua University, Beijing, China.,School of Life Sciences, Tsinghua University, Beijing, China
| | - Linqi Zhang
- Department of Basic Medical Sciences, School of Medicine, Tsinghua University, Beijing, China. .,NexVac Research Center, Tsinghua University, Beijing, China. .,Beijing Frontier Research Center for Biological Structure, Tsinghua University, Beijing, China. .,Comprehensive AIDS Research Center, Center for Global Health and Infectious Diseases, Tsinghua University, Beijing, China.
| |
Collapse
|
241
|
Nomura T, Kitagawa H, Kakimoto M, Kaiki Y, Nazmul T, Miyamori D, Omori K, Shigemoto N, Ito M, Sakaguchi T, Ohge H. Duration of infectious viral shedding in patients with mild to moderate COVID-19 treated with REGN-CoV2. J Infect Chemother 2022; 28:912-917. [PMID: 35370078 PMCID: PMC8938179 DOI: 10.1016/j.jiac.2022.03.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2021] [Revised: 02/21/2022] [Accepted: 03/16/2022] [Indexed: 01/31/2023]
Abstract
INTRODUCTION New treatment methods, such as REGN-CoV2, have been approved for patients with coronavirus disease (COVID-19) caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). However, the effect of the drug on the duration of infectious viral shedding and viral mutations is unknown. In this study, we investigated the clinical efficacy of REGN-CoV2 treatment in patients with mild to moderate disease and compared its antiviral effects against different strains of SARS-CoV-2. METHODS Viral culture and PCR testing were performed on the pharyngeal swabs collected from 28 patients with COVID-19 who were admitted and treated at Hiroshima University Hospital during the study period. Of these, 23 patients were treated with REGN-CoV2. The patients were classified into the REGN-CoV2(+) and REGN-CoV2(-) groups, and the clinical course was compared between the groups. The 50% inhibitory concentrations (IC50) of REGN-CoV2 against the isolated virus strains were determined. RESULTS After treatment with REGN-CoV2, the virus culture positivity rate was greatly reduced. The time to negative viral culture was significantly shorter in the REGN-CoV2(+) group than in the REGN-CoV2(-) group. In vitro evaluation of REGN-CoV2 against isolated virus strains also showed efficacy. CONCLUSIONS REGN-CoV2 treatment was effective in patients with mild COVID-19 and could shorten the period of infectious viral shedding. This may be an important factor in preventing the spread of infection. It may be possible to revise the isolation period for patients with mild disease treated with REGN-CoV2.
Collapse
Affiliation(s)
- Toshihito Nomura
- Department of Infectious Diseases, Hiroshima University Hospital, 1-2-3 Kasumi, Minamiku, Hiroshima, 734-8551, Japan; Department of Virology, Graduate School of Biomedical and Health Sciences, Hiroshima University, 1-2-3 Kasumi, Minamiku, Hiroshima, 734-8551, Japan.
| | - Hiroki Kitagawa
- Department of Infectious Diseases, Hiroshima University Hospital, 1-2-3 Kasumi, Minamiku, Hiroshima, 734-8551, Japan
| | - Masaki Kakimoto
- Department of General Internal Medicine, Hiroshima University Hospital, 1-2-3 Kasumi, Minamiku, Hiroshima, 734-8551, Japan
| | - Yuki Kaiki
- Department of Surgery, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima, 1-2-3 Kasumi, Minamiku, Hiroshima, 734-8551, Japan
| | - Tanuza Nazmul
- Department of Virology, Graduate School of Biomedical and Health Sciences, Hiroshima University, 1-2-3 Kasumi, Minamiku, Hiroshima, 734-8551, Japan
| | - Daisuke Miyamori
- Department of General Internal Medicine, Hiroshima University Hospital, 1-2-3 Kasumi, Minamiku, Hiroshima, 734-8551, Japan
| | - Keitaro Omori
- Department of Infectious Diseases, Hiroshima University Hospital, 1-2-3 Kasumi, Minamiku, Hiroshima, 734-8551, Japan
| | - Norifumi Shigemoto
- Department of Infectious Diseases, Hiroshima University Hospital, 1-2-3 Kasumi, Minamiku, Hiroshima, 734-8551, Japan; Translational Research Center, Hiroshima University, 1-2-3 Kasumi, Minamiku, Hiroshima, 734-8551, Japan
| | - Masanori Ito
- Department of General Internal Medicine, Hiroshima University Hospital, 1-2-3 Kasumi, Minamiku, Hiroshima, 734-8551, Japan
| | - Takemasa Sakaguchi
- Department of Virology, Graduate School of Biomedical and Health Sciences, Hiroshima University, 1-2-3 Kasumi, Minamiku, Hiroshima, 734-8551, Japan
| | - Hiroki Ohge
- Department of Infectious Diseases, Hiroshima University Hospital, 1-2-3 Kasumi, Minamiku, Hiroshima, 734-8551, Japan
| |
Collapse
|
242
|
Markarian NM, Galli G, Patel D, Hemmings M, Nagpal P, Berghuis AM, Abrahamyan L, Vidal SM. Identifying Markers of Emerging SARS-CoV-2 Variants in Patients With Secondary Immunodeficiency. Front Microbiol 2022; 13:933983. [PMID: 35847101 PMCID: PMC9283111 DOI: 10.3389/fmicb.2022.933983] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2022] [Accepted: 05/31/2022] [Indexed: 12/03/2022] Open
Abstract
Since the end of 2019, the world has been challenged by the coronavirus disease 2019 (COVID-19) pandemic. With COVID-19 cases rising globally, severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) continues to evolve, resulting in the emergence of variants of interest (VOI) and of concern (VOC). Of the hundreds of millions infected, immunodeficient patients are one of the vulnerable cohorts that are most susceptible to this virus. These individuals include those with preexisting health conditions and/or those undergoing immunosuppressive treatment (secondary immunodeficiency). In these cases, several researchers have reported chronic infections in the presence of anti-COVID-19 treatments that may potentially lead to the evolution of the virus within the host. Such variations occurred in a variety of viral proteins, including key structural ones involved in pathogenesis such as spike proteins. Tracking and comparing such mutations with those arisen in the general population may provide information about functional sites within the SARS-CoV-2 genome. In this study, we reviewed the current literature regarding the specific features of SARS-CoV-2 evolution in immunocompromised patients and identified recurrent de novo amino acid changes in virus isolates of these patients that can potentially play an important role in SARS-CoV-2 pathogenesis and evolution.
Collapse
Affiliation(s)
- Nathan M. Markarian
- Department of Human Genetics, McGill University, Montréal, QC, Canada
- McGill University Research Centre on Complex Traits, Montréal, QC, Canada
- Swine and Poultry Infectious Diseases Research Center and Research Group on Infectious Diseases in Production Animals, Faculty of Veterinary Medicine, University of Montreal, Saint-Hyacinthe, QC, Canada
| | - Gaël Galli
- McGill University Research Centre on Complex Traits, Montréal, QC, Canada
- Department of Microbiology and Immunology, McGill University, Montréal, QC, Canada
- CNRS, ImmunoConcEpT, UMR 5164, Université de Bordeaux, Bordeaux, France
- CHU de Bordeaux, FHU ACRONIM, Centre National de Référence des Maladies Auto-Immunes et Systémiques Rares Est/Sud-Ouest, Bordeaux, France
| | - Dhanesh Patel
- Department of Human Genetics, McGill University, Montréal, QC, Canada
- McGill University Research Centre on Complex Traits, Montréal, QC, Canada
| | - Mark Hemmings
- Department of Biochemistry, McGill University, Montréal, QC, Canada
| | - Priya Nagpal
- Department of Pharmacology, McGill University, Montréal, QC, Canada
| | | | - Levon Abrahamyan
- Swine and Poultry Infectious Diseases Research Center and Research Group on Infectious Diseases in Production Animals, Faculty of Veterinary Medicine, University of Montreal, Saint-Hyacinthe, QC, Canada
| | - Silvia M. Vidal
- Department of Human Genetics, McGill University, Montréal, QC, Canada
- McGill University Research Centre on Complex Traits, Montréal, QC, Canada
| |
Collapse
|
243
|
Antwi CO, Belle MA, Ntim SY, Wu Y, Affum-Osei E, Aboagye MO, Ren J. COVID-19 Pandemic and International Students' Mental Health in China: Age, Gender, Chronic Health Condition and Having Infected Relative as Risk Factors. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 19:7916. [PMID: 35805589 PMCID: PMC9265787 DOI: 10.3390/ijerph19137916] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/09/2022] [Revised: 06/23/2022] [Accepted: 06/24/2022] [Indexed: 01/27/2023]
Abstract
International students in China were among the first group of individuals to be affected by the COVID-19 pandemic. However, the pandemic's impact on their mental health is underexplored. This study-utilizing web-based survey data (N = 381), presents preliminary reports using ANOVA and MIMIC analytic approaches. Following the clinical demarcation of the 21-item version of the Depression Anxiety Stress Scales (DASS-21), we found 24.6%, 38.3%, and 43.6% of the students to suffer mild to extreme stress, anxiety, and depression, respectively. Female students reported significantly higher levels of stress and depression than males. Older students' reports of stress were more substantial than younger students. Students who reported having a relative infected with the virus (vs. those without) experienced significantly higher anxiety and stress. Those who reported having pre-existing chronic health condition(s) (vs. those without) also reported significantly higher stress, anxiety, and depression levels. Moreover, students with an exercise routine (vs. those without) experienced significantly lower levels of stress, anxiety, and depression. Last, our MIMIC model results indicate that foreign students' age, gender, chronic health status, and having a relative infected with the virus constitute significant risk factors explaining variations in foreign students' experience of psychological distress. Implications for international students' management have been thoroughly discussed.
Collapse
Affiliation(s)
- Collins Opoku Antwi
- Department of Psychology, Zhejiang Normal University, Jinhua 321000, China; (C.O.A.); (M.A.B.); (Y.W.)
| | - Michelle Allyshia Belle
- Department of Psychology, Zhejiang Normal University, Jinhua 321000, China; (C.O.A.); (M.A.B.); (Y.W.)
| | - Seth Yeboah Ntim
- International Institute for Child Studies, Zhejiang Normal University, Hangzhou 310012, China;
| | - Yuanchun Wu
- Department of Psychology, Zhejiang Normal University, Jinhua 321000, China; (C.O.A.); (M.A.B.); (Y.W.)
| | - Emmanuel Affum-Osei
- KNUST School of Business, Kwame Nkrumah University of Science & Technology, Kumasi AK-039, Ghana;
| | - Michael Osei Aboagye
- Department of Interdisciplinary Studies (DIS), Akenten Appiah-Minka University of Skills Training and Entrepreneurial Development, Kumasi AK-039, Ghana;
| | - Jun Ren
- Department of Psychology, Zhejiang Normal University, Jinhua 321000, China; (C.O.A.); (M.A.B.); (Y.W.)
| |
Collapse
|
244
|
Sun C, Xie C, Bu GL, Zhong LY, Zeng MS. Molecular characteristics, immune evasion, and impact of SARS-CoV-2 variants. Signal Transduct Target Ther 2022; 7:202. [PMID: 35764603 PMCID: PMC9240077 DOI: 10.1038/s41392-022-01039-2] [Citation(s) in RCA: 72] [Impact Index Per Article: 24.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2022] [Revised: 05/16/2022] [Accepted: 05/22/2022] [Indexed: 01/18/2023] Open
Abstract
The persistent COVID-19 pandemic since 2020 has brought an enormous public health burden to the global society and is accompanied by various evolution of the virus genome. The consistently emerging SARS-CoV-2 variants harboring critical mutations impact the molecular characteristics of viral proteins and display heterogeneous behaviors in immune evasion, transmissibility, and the clinical manifestation during infection, which differ each strain and endow them with distinguished features during populational spread. Several SARS-CoV-2 variants, identified as Variants of Concern (VOC) by the World Health Organization, challenged global efforts on COVID-19 control due to the rapid worldwide spread and enhanced immune evasion from current antibodies and vaccines. Moreover, the recent Omicron variant even exacerbated the global anxiety in the continuous pandemic. Its significant evasion from current medical treatment and disease control even highlights the necessity of combinatory investigation of the mutational pattern and influence of the mutations on viral dynamics against populational immunity, which would greatly facilitate drug and vaccine development and benefit the global public health policymaking. Hence in this review, we summarized the molecular characteristics, immune evasion, and impacts of the SARS-CoV-2 variants and focused on the parallel comparison of different variants in mutational profile, transmissibility and tropism alteration, treatment effectiveness, and clinical manifestations, in order to provide a comprehensive landscape for SARS-CoV-2 variant research.
Collapse
Affiliation(s)
- Cong Sun
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Department of Experimental Research, Sun Yat-sen University Cancer Center, Sun Yat-sen University, 510060, Guangzhou, China
| | - Chu Xie
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Department of Experimental Research, Sun Yat-sen University Cancer Center, Sun Yat-sen University, 510060, Guangzhou, China
| | - Guo-Long Bu
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Department of Experimental Research, Sun Yat-sen University Cancer Center, Sun Yat-sen University, 510060, Guangzhou, China
| | - Lan-Yi Zhong
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Department of Experimental Research, Sun Yat-sen University Cancer Center, Sun Yat-sen University, 510060, Guangzhou, China
| | - Mu-Sheng Zeng
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Department of Experimental Research, Sun Yat-sen University Cancer Center, Sun Yat-sen University, 510060, Guangzhou, China. .,Guangdong-Hong Kong Joint Laboratory for RNA Medicine, 510060, Guangzhou, China.
| |
Collapse
|
245
|
Xu K, Gao P, Liu S, Lu S, Lei W, Zheng T, Liu X, Xie Y, Zhao Z, Guo S, Tang C, Yang Y, Yu W, Wang J, Zhou Y, Huang Q, Liu C, An Y, Zhang R, Han Y, Duan M, Wang S, Yang C, Wu C, Liu X, She G, Liu Y, Zhao X, Xu K, Qi J, Wu G, Peng X, Dai L, Wang P, Gao GF. Protective prototype-Beta and Delta-Omicron chimeric RBD-dimer vaccines against SARS-CoV-2. Cell 2022; 185:2265-2278.e14. [PMID: 35568034 PMCID: PMC9042943 DOI: 10.1016/j.cell.2022.04.029] [Citation(s) in RCA: 87] [Impact Index Per Article: 29.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2022] [Revised: 03/25/2022] [Accepted: 04/21/2022] [Indexed: 12/19/2022]
Abstract
Breakthrough infections by SARS-CoV-2 variants become the global challenge for pandemic control. Previously, we developed the protein subunit vaccine ZF2001 based on the dimeric receptor-binding domain (RBD) of prototype SARS-CoV-2. Here, we developed a chimeric RBD-dimer vaccine approach to adapt SARS-CoV-2 variants. A prototype-Beta chimeric RBD-dimer was first designed to adapt the resistant Beta variant. Compared with its homotypic forms, the chimeric vaccine elicited broader sera neutralization of variants and conferred better protection in mice. The protection of the chimeric vaccine was further verified in macaques. This approach was generalized to develop Delta-Omicron chimeric RBD-dimer to adapt the currently prevalent variants. Again, the chimeric vaccine elicited broader sera neutralization of SARS-CoV-2 variants and conferred better protection against challenge by either Delta or Omicron SARS-CoV-2 in mice. The chimeric approach is applicable for rapid updating of immunogens, and our data supported the use of variant-adapted multivalent vaccine against circulating and emerging variants.
Collapse
Affiliation(s)
- Kun Xu
- Research Network of Immunity and Health (RNIH), Beijing Institutes of Life Science, Chinese Academy of Sciences, Beijing 100101, China
| | - Ping Gao
- CAS Key Laboratory of Pathogen Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Sheng Liu
- Cryo-EM Center, Southern University of Science and Technology, Shenzhen 518055, China
| | - Shuaiyao Lu
- National Kunming High-level Biosafety Primate Research Center, Institute of Medical Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, Kunming 650031, China
| | - Wenwen Lei
- NHC Key Laboratory of Biosafety, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing 102206, China
| | - Tianyi Zheng
- Zhejiang University School of Medicine, Hangzhou 310058, China
| | - Xueyuan Liu
- School of Public Health, Cheeloo College of Medicine, Shandong University, Jinan 250012, China
| | - Yufeng Xie
- Department of Basic Medical Sciences, School of Medicine, Tsinghua University, Beijing 100084, China
| | - Zhennan Zhao
- CAS Key Laboratory of Pathogen Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Shuxin Guo
- Faculty of Health Sciences, University of Macau, Macau, SAR 999078, China
| | - Cong Tang
- National Kunming High-level Biosafety Primate Research Center, Institute of Medical Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, Kunming 650031, China
| | - Yun Yang
- National Kunming High-level Biosafety Primate Research Center, Institute of Medical Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, Kunming 650031, China
| | - Wenhai Yu
- National Kunming High-level Biosafety Primate Research Center, Institute of Medical Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, Kunming 650031, China
| | - Junbin Wang
- National Kunming High-level Biosafety Primate Research Center, Institute of Medical Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, Kunming 650031, China
| | - Yanan Zhou
- National Kunming High-level Biosafety Primate Research Center, Institute of Medical Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, Kunming 650031, China
| | - Qing Huang
- National Kunming High-level Biosafety Primate Research Center, Institute of Medical Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, Kunming 650031, China
| | - Chuanyu Liu
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangxi University, Nanning 530004, China
| | - Yaling An
- Savaid Medical School, University of Chinese Academy of Sciences, Beijing 101408, China
| | - Rong Zhang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangxi University, Nanning 530004, China
| | - Yuxuan Han
- Savaid Medical School, University of Chinese Academy of Sciences, Beijing 101408, China
| | - Minrun Duan
- School of Life Sciences, Yunnan University, Kunming 650091, China
| | - Shaofeng Wang
- CAS Key Laboratory of Pathogen Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Chenxi Yang
- CAS Key Laboratory of Pathogen Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Changwei Wu
- Anhui Zhifei Longcom Biopharmaceutical Co. Ltd, Hefei 230088, China
| | - Xiaoya Liu
- Anhui Zhifei Longcom Biopharmaceutical Co. Ltd, Hefei 230088, China
| | - Guangbiao She
- Anhui Zhifei Longcom Biopharmaceutical Co. Ltd, Hefei 230088, China
| | - Yan Liu
- Chongqing Medleader Bio-Pharm, Chongqing 401338, China
| | - Xin Zhao
- CAS Key Laboratory of Pathogen Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
| | - Ke Xu
- NHC Key Laboratory of Biosafety, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing 102206, China
| | - Jianxun Qi
- CAS Key Laboratory of Pathogen Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
| | - Guizhen Wu
- NHC Key Laboratory of Biosafety, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing 102206, China.
| | - Xiaozhong Peng
- National Kunming High-level Biosafety Primate Research Center, Institute of Medical Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, Kunming 650031, China; State Key Laboratory of Medical Molecular Biology, Department of Molecular Biology and Biochemistry, Institute of Basic Medical Sciences, Medical Primate Research Center, Neuroscience Center, Chinese Academy of Medical Sciences, School of Basic Medicine, Peking Union Medical College, Beijing 100005, China.
| | - Lianpan Dai
- CAS Key Laboratory of Pathogen Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China.
| | - Peiyi Wang
- Cryo-EM Center, Southern University of Science and Technology, Shenzhen 518055, China.
| | - George F Gao
- Research Network of Immunity and Health (RNIH), Beijing Institutes of Life Science, Chinese Academy of Sciences, Beijing 100101, China; CAS Key Laboratory of Pathogen Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China; Savaid Medical School, University of Chinese Academy of Sciences, Beijing 101408, China.
| |
Collapse
|
246
|
Miranda MNS, Pingarilho M, Pimentel V, Torneri A, Seabra SG, Libin PJK, Abecasis AB. A Tale of Three Recent Pandemics: Influenza, HIV and SARS-CoV-2. Front Microbiol 2022; 13:889643. [PMID: 35722303 PMCID: PMC9201468 DOI: 10.3389/fmicb.2022.889643] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2022] [Accepted: 05/06/2022] [Indexed: 11/13/2022] Open
Abstract
Emerging infectious diseases are one of the main threats to public health, with the potential to cause a pandemic when the infectious agent manages to spread globally. The first major pandemic to appear in the 20th century was the influenza pandemic of 1918, caused by the influenza A H1N1 strain that is characterized by a high fatality rate. Another major pandemic was caused by the human immunodeficiency virus (HIV), that started early in the 20th century and remained undetected until 1981. The ongoing HIV pandemic demonstrated a high mortality and morbidity rate, with discrepant impacts in different regions around the globe. The most recent major pandemic event, is the ongoing pandemic of COVID-19, caused by the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), which has caused over 5.7 million deaths since its emergence, 2 years ago. The aim of this work is to highlight the main determinants of the emergence, epidemic response and available countermeasures of these three pandemics, as we argue that such knowledge is paramount to prepare for the next pandemic. We analyse these pandemics’ historical and epidemiological contexts and the determinants of their emergence. Furthermore, we compare pharmaceutical and non-pharmaceutical interventions that have been used to slow down these three pandemics and zoom in on the technological advances that were made in the progress. Finally, we discuss the evolution of epidemiological modelling, that has become an essential tool to support public health policy making and discuss it in the context of these three pandemics. While these pandemics are caused by distinct viruses, that ignited in different time periods and in different regions of the globe, our work shows that many of the determinants of their emergence and countermeasures used to halt transmission were common. Therefore, it is important to further improve and optimize such approaches and adapt it to future threatening emerging infectious diseases.
Collapse
Affiliation(s)
- Mafalda N S Miranda
- Global Health and Tropical Medicine (GHTM), Instituto de Higiene e Medicina Tropical/Universidade Nova de Lisboa (IHMT/UNL), Lisboa, Portugal
| | - Marta Pingarilho
- Global Health and Tropical Medicine (GHTM), Instituto de Higiene e Medicina Tropical/Universidade Nova de Lisboa (IHMT/UNL), Lisboa, Portugal
| | - Victor Pimentel
- Global Health and Tropical Medicine (GHTM), Instituto de Higiene e Medicina Tropical/Universidade Nova de Lisboa (IHMT/UNL), Lisboa, Portugal
| | - Andrea Torneri
- Artificial Intelligence Lab, Department of Computer Science, Vrije Universiteit Brussel, Brussels, Belgium
| | - Sofia G Seabra
- Global Health and Tropical Medicine (GHTM), Instituto de Higiene e Medicina Tropical/Universidade Nova de Lisboa (IHMT/UNL), Lisboa, Portugal
| | - Pieter J K Libin
- Artificial Intelligence Lab, Department of Computer Science, Vrije Universiteit Brussel, Brussels, Belgium.,Interuniversity Institute of Biostatistics and Statistical Bioinformatics, Data Science Institute, Hasselt University, Hasselt, Belgium.,Department of Microbiology and Immunology, Rega Institute for Medical Research, KU Leuven, University of Leuven, Leuven, Belgium
| | - Ana B Abecasis
- Global Health and Tropical Medicine (GHTM), Instituto de Higiene e Medicina Tropical/Universidade Nova de Lisboa (IHMT/UNL), Lisboa, Portugal
| |
Collapse
|
247
|
The Cellular Characterization of SARS-CoV-2 Spike Protein in Virus-Infected Cells Using the Receptor Binding Domain Binding Specific Human Monoclonal Antibodies. J Virol 2022; 96:e0045522. [PMID: 35727030 PMCID: PMC9278116 DOI: 10.1128/jvi.00455-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
A human monoclonal antibody panel (PD4, PD5, PD7, SC23, and SC29) was isolated from the B cells of convalescent patients and used to examine the S protein in SARS-CoV-2-infected cells. While all five antibodies bound conformational-specific epitopes within SARS-CoV-2 spike (S) protein, only PD5, PD7, and SC23 were able to bind to the receptor binding domain (RBD). Immunofluorescence microscopy was used to examine the S protein RBD in cells infected with the Singapore isolates SARS-CoV-2/0334 and SARS-CoV-2/1302. The RBD-binders exhibited a distinct cytoplasmic staining pattern that was primarily localized within the Golgi complex and was distinct from the diffuse cytoplasmic staining pattern exhibited by the non-RBD-binders (PD4 and SC29). These data indicated that the S protein adopted a conformation in the Golgi complex that enabled the RBD recognition by the RBD-binders. The RBD-binders also recognized the uncleaved S protein, indicating that S protein cleavage was not required for RBD recognition. Electron microscopy indicated high levels of cell-associated virus particles, and multiple cycle virus infection using RBD-binder staining provided evidence for direct cell-to-cell transmission for both isolates. Although similar levels of RBD-binder staining were demonstrated for each isolate, SARS-CoV-2/1302 exhibited slower rates of cell-to-cell transmission. These data suggest that a conformational change in the S protein occurs during its transit through the Golgi complex that enables RBD recognition by the RBD-binders and suggests that these antibodies can be used to monitor S protein RBD formation during the early stages of infection. IMPORTANCE The SARS-CoV-2 spike (S) protein receptor binding domain (RBD) mediates the attachment of SARS-CoV-2 to the host cell. This interaction plays an essential role in initiating virus infection, and the S protein RBD is therefore a focus of therapeutic and vaccine interventions. However, new virus variants have emerged with altered biological properties in the RBD that can potentially negate these interventions. Therefore, an improved understanding of the biological properties of the RBD in virus-infected cells may offer future therapeutic strategies to mitigate SARS- CoV-2 infection. We used physiologically relevant antibodies that were isolated from the B cells of convalescent COVID-19 patients to monitor the RBD in cells infected with SARS-CoV-2 clinical isolates. These immunological reagents specifically recognize the correctly folded RBD and were used to monitor the appearance of the RBD in SARS-CoV-2-infected cells and identified the site where the RBD first appears.
Collapse
|
248
|
Harari S, Tahor M, Rutsinsky N, Meijer S, Miller D, Henig O, Halutz O, Levytskyi K, Ben-Ami R, Adler A, Paran Y, Stern A. Drivers of adaptive evolution during chronic SARS-CoV-2 infections. Nat Med 2022; 28:1501-1508. [PMID: 35725921 PMCID: PMC9307477 DOI: 10.1038/s41591-022-01882-4] [Citation(s) in RCA: 84] [Impact Index Per Article: 28.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2022] [Accepted: 05/23/2022] [Indexed: 11/17/2022]
Abstract
In some immunocompromised patients with chronic severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection, considerable adaptive evolution occurs. Some substitutions found in chronic infections are lineage-defining mutations in variants of concern (VOCs), which has led to the hypothesis that VOCs emerged from chronic infections. In this study, we searched for drivers of VOC-like emergence by consolidating sequencing results from a set of 27 chronic infections. Most substitutions in this set reflected lineage-defining VOC mutations; however, a subset of mutations associated with successful global transmission was absent from chronic infections. We further tested the ability to associate antibody evasion mutations with patient-specific and virus-specific features and found that viral rebound is strongly correlated with the emergence of antibody evasion. We found evidence for dynamic polymorphic viral populations in most patients, suggesting that a compromised immune system selects for antibody evasion in particular niches in a patient’s body. We suggest that a tradeoff exists between antibody evasion and transmissibility and that extensive monitoring of chronic infections is necessary to further understanding of VOC emergence. Analysis of mutations that arise in chronic SARS-CoV-2 infections shows both overlap and differences with mutations present in pandemic viral variants of concern, highlighting their distinct drivers of evolution.
Collapse
Affiliation(s)
- Sheri Harari
- The Shmunis School of Biomedicine and Cancer Research, Tel Aviv University, Tel Aviv, Israel.,Edmond J. Safra Center for Bioinformatics at Tel Aviv University, Tel Aviv, Israel
| | - Maayan Tahor
- The Shmunis School of Biomedicine and Cancer Research, Tel Aviv University, Tel Aviv, Israel
| | - Natalie Rutsinsky
- The Shmunis School of Biomedicine and Cancer Research, Tel Aviv University, Tel Aviv, Israel
| | - Suzy Meijer
- Department of Infectious Diseases and Epidemiology, Tel Aviv Sourasky Medical Center, Tel Aviv, Israel.,Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Danielle Miller
- The Shmunis School of Biomedicine and Cancer Research, Tel Aviv University, Tel Aviv, Israel.,Edmond J. Safra Center for Bioinformatics at Tel Aviv University, Tel Aviv, Israel
| | - Oryan Henig
- Department of Infectious Diseases and Epidemiology, Tel Aviv Sourasky Medical Center, Tel Aviv, Israel.,Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Ora Halutz
- Clinical Microbiology Laboratory, Tel Aviv Sourasky Medical Center, Tel Aviv, Israel
| | - Katia Levytskyi
- Department of Infectious Diseases and Epidemiology, Tel Aviv Sourasky Medical Center, Tel Aviv, Israel.,Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Ronen Ben-Ami
- Department of Infectious Diseases and Epidemiology, Tel Aviv Sourasky Medical Center, Tel Aviv, Israel.,Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Amos Adler
- Department of Infectious Diseases and Epidemiology, Tel Aviv Sourasky Medical Center, Tel Aviv, Israel.,Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Yael Paran
- Department of Infectious Diseases and Epidemiology, Tel Aviv Sourasky Medical Center, Tel Aviv, Israel.,Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Adi Stern
- The Shmunis School of Biomedicine and Cancer Research, Tel Aviv University, Tel Aviv, Israel. .,Edmond J. Safra Center for Bioinformatics at Tel Aviv University, Tel Aviv, Israel.
| |
Collapse
|
249
|
Saberiyan M, Karimi E, Khademi Z, Movahhed P, Safi A, Mehri-Ghahfarrokhi A. SARS-CoV-2: phenotype, genotype, and characterization of different variants. Cell Mol Biol Lett 2022; 27:50. [PMID: 35715738 PMCID: PMC9204680 DOI: 10.1186/s11658-022-00352-6] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2022] [Accepted: 05/31/2022] [Indexed: 12/31/2022] Open
Abstract
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is the cause of coronavirus disease 2019 (COVID-19), a major international public health concern. Because of very similar amino acid sequences of the seven domain names, SARS-CoV-2 belongs to the Coronavirinae subfamily of the family Coronaviridae, order Nidovirales, and realm Riboviria, placed in exceptional clusters, but categorized as a SARS-like species. As the RNA virus family with the longest genome, the Coronaviridae genome consists of a single strand of positive RNA (25-32 kb in length). Four major structural proteins of this genome include the spike (S), membrane (M), envelope (E), and the nucleocapsid (N) protein, all of which are encoded within the 3' end of the genome. By engaging with its receptor, angiotensin-converting enzyme 2 (ACE2), SARS-CoV-2 infects host cells. According to the most recent epidemiological data, as the illness spread globally, several genetic variations of SARS-CoV-2 appeared quickly, with the World Health Organization (WHO) naming 11 of them. Among these, seven SARS-CoV-2 subtypes have received the most attention. Alpha (B.1.1.7), Beta (B.1.351), Gamma (P.1), Delta (B.1.617.2), and Omicron (B.1.617.2) are now designated as variations of concern (VOC) (B.1.1.529). Lambda (C.37) and Mu are variations of interest (VOI) (B.1.621). The remaining six are either being monitored or are no longer considered a threat. On the basis of studies done so far, antiviral drugs, antibiotics, glucocorticoids, recombinant intravenous immunoglobulin, plasma therapy, and IFN-α2b have been used to treat patients. Moreover, full vaccination is associated with lower infection and helps prevent transmission, but the risk of infection cannot be eliminated completely in vaccinated people.
Collapse
Affiliation(s)
- Mohammadreza Saberiyan
- Cellular and Molecular Research Center, Basic Health Sciences Institute, Shahrekord University of Medical Sciences, Shahrekord, Iran
| | - Elham Karimi
- Department of Medical Genetics, School of Medicine, Hormozgan University of Medical Sciences, Bandar Abbas, Iran
| | - Zahra Khademi
- Department of Genetics, Faculty of Basic Sciences, Shahrekord University, Shahrekord, Iran
| | - Parvaneh Movahhed
- Department of Medical Laboratory Sciences, School of Allied Medical Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Amir Safi
- Clinical Biochemistry Research Center, Basic Health Sciences Institute, Shahrekord University of Medical Sciences, Shahrekord, Iran
| | - Ameneh Mehri-Ghahfarrokhi
- Clinical Research Development Unit, Hajar Hospital, Shahrekord University of Medical Sciences, Shahrekord, Iran.
| |
Collapse
|
250
|
Kastenhuber ER, Johnson JL, Yaron TM, Mercadante M, Cantley LC. Evolution of host protease interactions among SARS-CoV-2 variants of concern and related coronaviruses. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2022:2022.06.16.496428. [PMID: 35734085 PMCID: PMC9216717 DOI: 10.1101/2022.06.16.496428] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Previously, we showed that coagulation factors directly cleave SARS-CoV-2 spike and promote viral entry (Kastenhuber et al., 2022). Here, we show that substitutions in the S1/S2 cleavage site observed in SARS-CoV-2 variants of concern (VOCs) exhibit divergent interactions with host proteases, including factor Xa and furin. Nafamostat remains effective to block coagulation factor-mediated cleavage of variant spike sequences. Furthermore, host protease usage has likely been a selection pressure throughout coronavirus evolution, and we observe convergence of distantly related coronaviruses to attain common host protease interactions, including coagulation factors. Interpretation of genomic surveillance of emerging SARS-CoV-2 variants and future zoonotic spillover is supported by functional characterization of recurrent emerging features.
Collapse
Affiliation(s)
- Edward R. Kastenhuber
- Meyer Cancer Center, Department of Medicine, Weill Cornell Medical College, New York, NY, USA
| | - Jared L. Johnson
- Meyer Cancer Center, Department of Medicine, Weill Cornell Medical College, New York, NY, USA
| | - Tomer M. Yaron
- Meyer Cancer Center, Department of Medicine, Weill Cornell Medical College, New York, NY, USA
| | - Marisa Mercadante
- Meyer Cancer Center, Department of Medicine, Weill Cornell Medical College, New York, NY, USA
| | - Lewis C. Cantley
- Meyer Cancer Center, Department of Medicine, Weill Cornell Medical College, New York, NY, USA
- Dana Farber Cancer Institute, Boston, MA, USA
| |
Collapse
|