201
|
Huang WC, Wong MY, Wang SH, Hashimoto M, Lin MH, Lee MF, Wu JJ, Wang MC, Lin WH, Jeng SL, Wang JL, Chen YL, Teng CH. The Ferric Citrate Uptake System Encoded in a Novel bla CTX-M-3- and bla TEM-1-Harboring Conjugative Plasmid Contributes to the Virulence of Escherichia coli. Front Microbiol 2021; 12:667782. [PMID: 34122381 PMCID: PMC8187952 DOI: 10.3389/fmicb.2021.667782] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2021] [Accepted: 04/23/2021] [Indexed: 11/23/2022] Open
Abstract
Escherichia coli is one major cause of bacterial infections and can horizontally acquire antimicrobial resistance and virulence genes through conjugation. Because conjugative plasmids can rapidly spread among bacteria of different species, the plasmids carrying both antimicrobial resistance and virulence genes may pose a significant threat to public health. Therefore, the identification and characterization of these plasmids may facilitate a better understanding of E. coli pathogenesis and the development of new strategies against E. coli infections. Because iron uptake ability is a potential virulence trait of bacteria, we screened for E. coli conjugative plasmids able to confer both iron uptake ability and ampicillin resistance. The plasmid pEC41, which was derived from the bacteremia clinical isolate EC41, was identified. EC41, which carried the fimH27 allele, belonged to sequence type (ST) 405 and phylogroup D. According to the sequencing analyses, pEC41 was 86 kb in size, and its backbone structure was almost identical to that of another highly conjugative plasmid, pCTX-M3, in which the extended-spectrum β-lactamase gene blaCTX–M–3 was originally identified. pEC41 carried blaCTX–M–3 and blaTEM–1. The ferric citrate uptake (fec) system was identified in pEC41 and was responsible for conferring iron uptake ability. The fec system contributes to the pathogenesis of EC41 in systemic infections but not in urinary tract infections (UTIs). However, this system promoted competitive fitness of a cystitis-associated clinical isolate to colonize urinary tracts. Additionally, the distribution of the fec system was related to E. coli isolates associated with human bacteremia and UTIs. In summary, the present study identified a novel conjugative plasmid, pEC41, which conferred both antimicrobial resistance and an extra iron uptake ability to E. coli. The iron uptake ability was encoded in the fec system and contributed to E. coli pathogenesis. This study is the first to show that the fec system is a virulence factor in E. coli.
Collapse
Affiliation(s)
- Wen-Chun Huang
- Institute of Molecular Medicine, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Min-Yi Wong
- Institute of Molecular Medicine, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Ssu-Han Wang
- Institute of Molecular Medicine, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Masayuki Hashimoto
- Institute of Molecular Medicine, College of Medicine, National Cheng Kung University, Tainan, Taiwan.,Institute of Basic Medical Sciences, College of Medicine, National Cheng Kung University, Tainan, Taiwan.,Center of Infectious Disease and Signaling Research, National Cheng Kung University, Tainan, Taiwan
| | - Meng-He Lin
- Institute of Molecular Medicine, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Mei-Feng Lee
- Institute of Molecular Medicine, College of Medicine, National Cheng Kung University, Tainan, Taiwan.,Department of Biotechnology, National Kaohsiung Normal University, Kaohsiung, Taiwan
| | - Jiunn-Jong Wu
- Department of Biotechnology and Laboratory Science in Medicine, School of Biomedical Science and Engineering, National Yang Ming Chiao Tung University, Taipei, Taiwan
| | - Ming-Cheng Wang
- Division of Nephrology, Department of Internal Medicine, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Wei-Hung Lin
- Department of Internal Medicine, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Shuen-Lin Jeng
- Department of Statistics, Institute of Data Science, Center for Innovative FinTech Business Models, National Cheng Kung University, Tainan, Taiwan
| | - Jiun-Ling Wang
- Department of Internal Medicine, National Cheng Kung University Hospital, Tainan, Taiwan.,Department of Medicine, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Ya-Lei Chen
- Department of Biotechnology, National Kaohsiung Normal University, Kaohsiung, Taiwan
| | - Ching-Hao Teng
- Institute of Molecular Medicine, College of Medicine, National Cheng Kung University, Tainan, Taiwan.,Institute of Basic Medical Sciences, College of Medicine, National Cheng Kung University, Tainan, Taiwan.,Center of Infectious Disease and Signaling Research, National Cheng Kung University, Tainan, Taiwan.,Center of Allergy and Clinical Immunology Research (ACIR), National Cheng Kung University, Tainan, Taiwan
| |
Collapse
|
202
|
Aslani S, Kiaei S, Afgar A, Morones-Ramírez JR, Aratboni HA, Faridi A, Rivera-Mackintosh LR, Kalantar-Neyestanaki D. Determination of incompatibility group plasmids and copy number of the bla NDM-1 gene in carbapenem-resistant Klebsiella pneumoniae strains recovered from different hospitals in Kerman, Iran. J Med Microbiol 2021; 70. [PMID: 33999798 DOI: 10.1099/jmm.0.001361] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Introduction. New Delhi metallo-β-lactamase (NDM)-producing Klebsiella pneumoniae has become a serious global health concern.Hypothesis/Gap Statement. Due to the high genetic diversity among NDM-positive K. pneumoniae, we need further surveillance and studies to better understand the relationships between them. In addition, the coexistence of several plasmid replicon types in NDM-positive K. pneumoniae may affect the copy number of bla NDM, the MIC level to antibiotics, as well as increasing the chance of horizontal gene transfer.Aim. The aim of this study was to determine incompatible plasmid groups and copy numbers of bla NDM, and to investigate the genetic relationship of 37 NDM-positive K. pneumoniae in Kerman, Iran.Methodology. The bla NDM-1 gene was detected and confirmed by PCR-sequencing. The plasmid replicon types were determined by PCR-based replicon typing (PBRT) and the copy number of bla NDM-1 was determined by quantitaive real time-PCR (qPCR). Random amplified polymorphic DNA (RAPD)-PCR typing was used to detect genetic relationships between the strains.Results. In this study, 10 different replicon types, including Frep [n=25 (67.5 %)], FIIAs [n=11 (29.7 %)], FIA [n=5 (13.5 %)], FIB [n=3 (8.1 %)], I1-Iγ [n=2 (5.4 %)], L/M [n=7 (18.9 %)], A/C [n=7 (18.9 %)], Y [n=3 (8.1 %)], P [n=1 (2.7 %)] and FIC [n=1 (2.7 %)] were reported. The copy numbers of the bla NDM-1 gene varied from 30.00 to 5.0×106 and no statistically significant correlation was observed between a rise of the MIC to imipenem and the copy numbers of bla NDM-1 (P>0.05). According to RAPD typing results, 35 strains were divided into five clusters, while two strains were non-typeable.Conclusion. The spread of NDM-1-producing K. pneumoniae strains that carry several plasmid replicon types increases the chance of horizontal transfer of antibiotic resistance genes in hospital settings. In this study, 10 different replicon types were identified. We could not find any relationship between the increase of MIC levels to imipenem and the copy numbers of bla NDM-1. Therefore, due to the identification of different replicon types in this study, the type and genetic characteristics of bla NDM-1-carrying plasmids, and other factors such as antibiotic selective pressure, probably affect the copy number of bla NDM-1 and change the MIC level to imipenem.
Collapse
Affiliation(s)
- Sajad Aslani
- Department of Medical Microbiology (Bacteriology & Virology), Afzalipour Faculty of Medicine, Kerman University of Medical Sciences, Kerman, Iran.,Medical Mycology and Bacteriology Research Center, Kerman University of Medical Sciences, Kerman, Iran
| | - Somayeh Kiaei
- Student Research Committee, Kerman University of Medical Sciences, Kerman, Iran
| | - Ali Afgar
- Research Center for Hydatid Disease in Iran, Kerman University of Medical Sciences, Kerman, Iran
| | - José Rubén Morones-Ramírez
- Centro de Investigación en Biotecnología y Nanotecnología, Facultad de Ciencias Químicas, Parque de Investigación e Innovación Tecnológica, Universidad Autónoma de Nuevo León, Apodaca, Mexico.,Facultad de Ciencias Químicas, Universidad Autónoma de Nuevo León, UANL, San Nicolás de los Garza, Mexico
| | - Hossein Alishah Aratboni
- Centro de Investigación en Biotecnología y Nanotecnología, Facultad de Ciencias Químicas, Parque de Investigación e Innovación Tecnológica, Universidad Autónoma de Nuevo León, Apodaca, Mexico.,Facultad de Ciencias Químicas, Universidad Autónoma de Nuevo León, UANL, San Nicolás de los Garza, Mexico
| | - Ashkan Faridi
- Student Research Committee, Kerman University of Medical Sciences, Kerman, Iran
| | - Luis Roberto Rivera-Mackintosh
- Centro de Investigación en Biotecnología y Nanotecnología, Facultad de Ciencias Químicas, Parque de Investigación e Innovación Tecnológica, Universidad Autónoma de Nuevo León, Apodaca, Mexico.,Facultad de Ciencias Químicas, Universidad Autónoma de Nuevo León, UANL, San Nicolás de los Garza, Mexico
| | - Davood Kalantar-Neyestanaki
- Department of Medical Microbiology (Bacteriology & Virology), Afzalipour Faculty of Medicine, Kerman University of Medical Sciences, Kerman, Iran.,Medical Mycology and Bacteriology Research Center, Kerman University of Medical Sciences, Kerman, Iran
| |
Collapse
|
203
|
Molecular characterization of fluoroquinolone-resistant Escherichia coli from broiler breeder farms. Poult Sci 2021; 100:101250. [PMID: 34182220 PMCID: PMC8250447 DOI: 10.1016/j.psj.2021.101250] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2021] [Revised: 05/01/2021] [Accepted: 05/03/2021] [Indexed: 11/21/2022] Open
Abstract
Fluoroquinolones (FQs) have been used effectively antimicrobial agents of choice for treatment of various infections caused by E. coli and FQs-resistance of E. coli from broiler breeders has been implicated in its vertical transmission to their offspring. The objective of this study investigated the phenotypic and genotypic characteristics of FQ-resistant E. coli isolates from broiler breeder farms in Korea. A total of 106 FQ-resistant E. coli isolates were tested in this study and all isolates had mutations in quinolone resistance determining regions; all (100%) had mutations in gyrA, 89 (84.0%) had mutations in parE, 8 (7.5%) isolates showed the mutations with parC and parE, and none had mutations in gyrB. The predominant mutation type was double mutation in gyrA (S83L and D87N), and all FQ-resistant E. coli isolates that had mutations in parC or parE also had double mutations in gyrA. Especially, FQ-resistant E. coli isolates which possessed double mutations in gyrA in combination with double mutations in parC or single mutations in both parC and parE were shown high levels of minimum inhibitory concentrations rage. Of the 23 plasmid-mediated quinolone resistance (PMQR)-positive E. coli isolates, qnrS was detected in 10 (9.4%) isolates, and followed by qnrA (7 isolates, 6.6%), qnrB (4 isolates, 3.8%), and aac(6′)-Ib-cr (2 isolates, 1.9%). Sixteen (69.6%) of the 23 PMQR-positive E. coli isolates harbored class 1 integrons with four different gene cassette arrangements and total of 9 plasmid replicon types were also identified in 23 PMQR-positive E. coli isolates. This is the first study to investigate the prevalence and characteristics of FQ-resistant and PMQR-positive E. coli isolated from the broiler breeder in Korea; it supports that constant monitoring and studies at the broiler breeder level are required to prevent the pyramidal transmission of FQ-resistant E. coli.
Collapse
|
204
|
Tsuka T, Ozaki H, Saito D, Murase T, Okamoto Y, Azuma K, Osaki T, Ito N, Murahata Y, Imagawa T. Genetic Characterization of CTX-M-2-Producing Klebsiella pneumoniae and Klebsiella oxytoca Associated With Bovine Mastitis in Japan. Front Vet Sci 2021; 8:659222. [PMID: 34026894 PMCID: PMC8137899 DOI: 10.3389/fvets.2021.659222] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2021] [Accepted: 04/06/2021] [Indexed: 12/30/2022] Open
Abstract
CTX-M-2-producing Klebsiella oxytoca (K. oxytoca) has not received much attention in animal husbandry compared with Klebsiella pneumoniae (K. pneumoniae), a major reservoir of extended-spectrum β-lactamase (ESBL) genes. Bacteriological examinations of 1,466 mastitic milk samples between October 2012 and December 2014 were conducted. Ninety-five K. pneumoniae isolates (total prevalence: 6.5%) and 81 K. oxytoca isolates (total prevalence: 5.5%) were obtained. Seventeen K. pneumoniae isolates obtained from 15 animals reared on 11 farms and 9 K. oxytoca isolates obtained from 9 animals reared on the same farm were phenotypically confirmed to be ESBL producers. All nine ESBL-producing K. oxytoca isolates were obtained from one farm between June and November 2013 and related to a significantly (p < 0.05) higher monthly prevalence of mild mastitis (in June, August, September, October, and November 2013). Pulsed-field gel electrophoresis (PFGE) patterns of ESBL-producing K. pneumoniae isolates were distinguished from each other by more than 6-band differences except for two isolates from two animals, whereas all nine K. oxytoca isolates showed an identical PFGE pattern. Transferability of the bla CTX-M-2 gene was found in 14 K. pneumoniae and 9 K. oxytoca isolates by conjugation analysis. Of these isolates, the bla CTX-M-2 gene was detected on plasmids belonging to the incompatibility (Inc) groups P and N derived from five K. pneumoniae and nine K. oxytoca isolates, respectively, although the plasmids from the remaining nine K. pneumoniae were untypeable. All the transconjugants exhibited elevated minimum inhibitory concentrations of ampicillin, cefotaxime, and ceftiofur compared with those in the wild-type, recipient strain. Restriction fragment length polymorphism analysis demonstrated that the IncN plasmids extracted from eight of nine transconjugants, which received resistance against β-lactams from K. oxytoca, showed an identical DraI digestion pattern. These results suggest that the CTX-M-2-producing K. oxytoca strain with the above-mentioned characteristics may have clonally spread within a farm, whereas the bla CTX-M-2 gene in K. pneumoniae possibly disseminated among the farms through different plasmids. Thus, monitoring of ESBL genes, including the bla CTX-M-2 gene, among causative agents of bacterial mastitis in cows can help to develop relevant treatments and control practices.
Collapse
Affiliation(s)
- Takeshi Tsuka
- Joint Department of Veterinary Medicine, Faculty of Agriculture, Tottori University, Tottori, Japan
| | - Hiroichi Ozaki
- Joint Department of Veterinary Medicine, Faculty of Agriculture, Tottori University, Tottori, Japan
| | - Daisuke Saito
- Joint Department of Veterinary Medicine, Faculty of Agriculture, Tottori University, Tottori, Japan
| | - Toshiyuki Murase
- Joint Department of Veterinary Medicine, Faculty of Agriculture, Tottori University, Tottori, Japan
| | - Yoshiharu Okamoto
- Joint Department of Veterinary Medicine, Faculty of Agriculture, Tottori University, Tottori, Japan
| | - Kazuo Azuma
- Joint Department of Veterinary Medicine, Faculty of Agriculture, Tottori University, Tottori, Japan
| | - Tomohiro Osaki
- Joint Department of Veterinary Medicine, Faculty of Agriculture, Tottori University, Tottori, Japan
| | - Norihiko Ito
- Joint Department of Veterinary Medicine, Faculty of Agriculture, Tottori University, Tottori, Japan
| | - Yusuke Murahata
- Joint Department of Veterinary Medicine, Faculty of Agriculture, Tottori University, Tottori, Japan
| | - Tomohiro Imagawa
- Joint Department of Veterinary Medicine, Faculty of Agriculture, Tottori University, Tottori, Japan
| |
Collapse
|
205
|
Kurittu P, Khakipoor B, Brouwer MS, Heikinheimo A. Plasmids conferring resistance to extended-spectrum beta-lactamases including a rare IncN+IncR multireplicon carrying blaCTX-M-1 in Escherichia coli recovered from migrating barnacle geese ( Branta leucopsis). OPEN RESEARCH EUROPE 2021; 1:46. [PMID: 37645149 PMCID: PMC10446048 DOI: 10.12688/openreseurope.13529.1] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 04/23/2021] [Indexed: 08/31/2023]
Abstract
Background: Increasing antimicrobial resistance (AMR) is a global threat and wild migratory birds may act as mediators of resistant bacteria across country borders. Our objective was to study extended-spectrum beta-lactamase (ESBL) and plasmid-encoded AmpC (pAmpC) producing Escherichia coli in barnacle geese using whole genome sequencing (WGS) and to identify plasmids harboring bla genes. Methods: Barnacle geese feces (n=200) were collected during fall 2017 and spring 2018 from an urban area in Helsinki, Finland. ESBL/AmpC-producing E. coli were recovered from nine samples (4.5%) and isolates were subjected to WGS on both short- and long-read sequencers, enabling hybrid assembly and determination of the genomic location of bla genes. Results: A rare multireplicon IncN+IncR was recovered from one isolate carrying bla CTX-M-1 in addition to aadA2b, lnu(F), and qnrS1. Moreover, rarely detected IncY plasmids in two isolates were found to harbor multiple resistance genes in addition to the human-associated bla CTX-M-15. Poultry-associated bla CMY-2 was identified from the widely distributed IncI1 and IncK plasmids from four different isolates. One isolate harbored an IncI1 plasmid with bla CTX-M-1 and flor. A chromosomal point mutation in the AmpC promoter was identified in one of the isolates. WGS analysis showed isolates carried multiple resistance and virulence genes and harbored multiple different plasmid replicons in addition to bla-carrying plasmids. Conclusions: Our findings suggest that wild migratory birds serve as a limited source of ESBL/AmpC-producing E. coli and may act as disseminators of the epidemic plasmid types IncI1 and IncK but also rarely detected plasmid types carrying multidrug resistance. Human and livestock-associated ESBL enzyme types were recovered from samples, suggesting a potential for interspecies transmission. WGS offers a thorough method for studying AMR from different sources and should be implemented more widely in the future for AMR surveillance and detection. Understanding plasmid epidemiology is vital for efforts to mitigate global AMR spread.
Collapse
Affiliation(s)
- Paula Kurittu
- Department of Food Hygiene and Environmental Health, Faculty of Veterinary Medicine, University of Helsinki, Helsinki, Finland
| | - Banafsheh Khakipoor
- Department of Food Hygiene and Environmental Health, Faculty of Veterinary Medicine, University of Helsinki, Helsinki, Finland
| | | | - Annamari Heikinheimo
- Department of Food Hygiene and Environmental Health, Faculty of Veterinary Medicine, University of Helsinki, Helsinki, Finland
- Laboratory and Research Division, Microbiology Unit, Finnish Food Authority, Seinäjoki, Finland
| |
Collapse
|
206
|
Hendrickx APA, Landman F, de Haan A, Witteveen S, van Santen-Verheuvel MG, Schouls LM. blaOXA-48-like genome architecture among carbapenemase-producing Escherichia coli and Klebsiella pneumoniae in the Netherlands. Microb Genom 2021; 7:000512. [PMID: 33961543 PMCID: PMC8209719 DOI: 10.1099/mgen.0.000512] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2021] [Accepted: 04/01/2021] [Indexed: 11/29/2022] Open
Abstract
Carbapenem-hydrolysing enzymes belonging to the OXA-48-like group are encoded by blaOXA-48-like alleles and are abundant among Enterobacterales in the Netherlands. Therefore, the objective here was to investigate the characteristics, gene content and diversity of the blaOXA-48-like carrying plasmids and chromosomes of Escherichia coli and Klebsiella pneumoniae collected in the Dutch national surveillance from 2014 to 2019 in comparison with genome sequences from 29 countries. A combination of short-read genome sequencing with long-read sequencing enabled the reconstruction of 47 and 132 complete blaOXA-48-like plasmids for E. coli and K. pneumoniae, respectively. Seven distinct plasmid groups designated as pOXA-48-1 to pOXA-48-5, pOXA-181 and pOXA-232 were identified in the Netherlands which were similar to internationally reported plasmids obtained from countries from North and South America, Europe, Asia and Oceania. The seven plasmid groups varied in size, G+C content, presence of antibiotic resistance genes, replicon family and gene content. The pOXA-48-1 to pOXA-48-5 plasmids were variable, and the pOXA-181 and pOXA-232 plasmids were conserved. The pOXA-48-1, pOXA-48-2, pOXA-48-3 and pOXA-48-5 groups contained a putative conjugation system, but this was absent in the pOXA-48-4, pOXA-181 and pOXA-232 plasmid groups. pOXA-48 plasmids contained the PemI antitoxin, while the pOXA-181 and pOXA-232 plasmids did not. Furthermore, the pOXA-181 plasmids carried a virB2-virB3-virB9-virB10-virB11 type IV secretion system, while the pOXA-48 plasmids and pOXA-232 lacked this system. A group of non-related pOXA-48 plasmids from the Netherlands contained different resistance genes, non-IncL-type replicons or no replicons. Whole genome multilocus sequence typing revealed that the blaOXA-48-like plasmids were found in a wide variety of genetic backgrounds in contrast to chromosomally encoded blaOXA-48-like alleles. Chromosomally localized blaOXA-48 and blaOXA-244 alleles were located on genetic elements of variable sizes and comprised regions of pOXA-48 plasmids. The blaOXA-48-like genetic element was flanked by a direct repeat upstream of IS1R, and was found at multiple locations in the chromosomes of E. coli. Lastly, K. pneumoniae isolates carrying blaOXA-48 or blaOXA-232 were mostly resistant for meropenem, whereas E. coli blaOXA-48, blaOXA-181 and chromosomal blaOXA-48 or blaOXA-244 isolates were mostly sensitive. In conclusion, the overall blaOXA-48-like plasmid population in the Netherlands is conserved and similar to that reported for other countries, confirming global dissemination of blaOXA-48-like plasmids. Variations in size, presence of antibiotic resistance genes and gene content impacted pOXA-48, pOXA-181 and pOXA-232 plasmid architecture.
Collapse
Affiliation(s)
- Antoni P. A. Hendrickx
- Centre for Infectious Diseases Research, Diagnostics and Laboratory Surveillance, Centre for Infectious Disease Control (CIb), National Institute for Public Health and the Environment (RIVM), Bilthoven, the Netherlands
| | - Fabian Landman
- Centre for Infectious Diseases Research, Diagnostics and Laboratory Surveillance, Centre for Infectious Disease Control (CIb), National Institute for Public Health and the Environment (RIVM), Bilthoven, the Netherlands
| | - Angela de Haan
- Centre for Infectious Diseases Research, Diagnostics and Laboratory Surveillance, Centre for Infectious Disease Control (CIb), National Institute for Public Health and the Environment (RIVM), Bilthoven, the Netherlands
| | - Sandra Witteveen
- Centre for Infectious Diseases Research, Diagnostics and Laboratory Surveillance, Centre for Infectious Disease Control (CIb), National Institute for Public Health and the Environment (RIVM), Bilthoven, the Netherlands
| | - Marga G. van Santen-Verheuvel
- Centre for Infectious Diseases Research, Diagnostics and Laboratory Surveillance, Centre for Infectious Disease Control (CIb), National Institute for Public Health and the Environment (RIVM), Bilthoven, the Netherlands
| | - Leo M. Schouls
- Centre for Infectious Diseases Research, Diagnostics and Laboratory Surveillance, Centre for Infectious Disease Control (CIb), National Institute for Public Health and the Environment (RIVM), Bilthoven, the Netherlands
| | - the Dutch CPE surveillance Study Group
- Centre for Infectious Diseases Research, Diagnostics and Laboratory Surveillance, Centre for Infectious Disease Control (CIb), National Institute for Public Health and the Environment (RIVM), Bilthoven, the Netherlands
| |
Collapse
|
207
|
Thermo-halotolerant mycelial bacteria from Algerian soils: Isolation, taxonomy and antagonistic properties. BIOCATALYSIS AND AGRICULTURAL BIOTECHNOLOGY 2021. [DOI: 10.1016/j.bcab.2021.101972] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
208
|
pCTX-M3-Structure, Function, and Evolution of a Multi-Resistance Conjugative Plasmid of a Broad Recipient Range. Int J Mol Sci 2021; 22:ijms22094606. [PMID: 33925677 PMCID: PMC8125031 DOI: 10.3390/ijms22094606] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2021] [Revised: 04/23/2021] [Accepted: 04/26/2021] [Indexed: 11/17/2022] Open
Abstract
pCTX-M3 is the archetypic member of the IncM incompatibility group of conjugative plasmids (recently referred to as IncM2). It is responsible for the worldwide dissemination of numerous antibiotic resistance genes, including those coding for extended-spectrum β-lactamases and conferring resistance to aminoglycosides. The IncM plasmids acquired during evolution diverse mobile genetic elements found in one or two multiple resistance regions, MRR(s), grouping antibiotic resistance genes as well as mobile genetic elements or their remnants. The IncM plasmids can be found in bacteria inhabiting various environments. The information on the structure and biology of pCTX-M3 is integrated in this review. It focuses on the functional modules of pCTX-M3 responsible for its replication, stable maintenance, and conjugative transfer, indicating that the host range of the pCTX-M3 replicon is limited to representatives of the family Enterobacteriaceae (Enterobacterales ord. nov.), while the range of recipients of its conjugation system is wide, comprising Alpha-, Beta-, and Gammaproteobacteria, and also Firmicutes.
Collapse
|
209
|
Mitchell S, Bull M, Muscatello G, Chapman B, Coleman NV. The equine hindgut as a reservoir of mobile genetic elements and antimicrobial resistance genes. Crit Rev Microbiol 2021; 47:543-561. [PMID: 33899656 DOI: 10.1080/1040841x.2021.1907301] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
Antibiotic resistance in bacterial pathogens is a growing problem for both human and veterinary medicine. Mobile genetic elements (MGEs) such as plasmids, transposons, and integrons enable the spread of antibiotic resistance genes (ARGs) among bacteria, and the overuse of antibiotics drives this process by providing the selection pressure for resistance genes to establish and persist in bacterial populations. Because bacteria, MGEs, and resistance genes can readily spread between different ecological compartments (e.g. soil, plants, animals, humans, wastewater), a "One Health" approach is needed to combat this problem. The equine hindgut is an understudied but potentially significant reservoir of ARGs and MGEs, since horses have close contact with humans, their manure is used in agriculture, they have a dense microbiome of both bacteria and fungi, and many antimicrobials used for equine treatment are also used in human medicine. Here, we collate information to date about resistance genes, plasmids, and class 1 integrons from equine-derived bacteria, we discuss why the equine hindgut deserves increased attention as a potential reservoir of ARGs, and we suggest ways to minimize the selection for ARGs in horses, in order to prevent their spread to the wider community.
Collapse
Affiliation(s)
- Scott Mitchell
- School of Life and Environmental Sciences, University of Sydney, Sydney, Australia
| | | | - Gary Muscatello
- School of Life and Environmental Sciences, University of Sydney, Sydney, Australia
| | | | - Nicholas V Coleman
- School of Life and Environmental Sciences, University of Sydney, Sydney, Australia
| |
Collapse
|
210
|
Hassen B, Abbassi MS, Ruiz-Ripa L, Mama OM, Ibrahim C, Benlabidi S, Hassen A, Torres C, Hammami S. Genetic characterization of extended-spectrum β-lactamase-producing Enterobacteriaceae from a biological industrial wastewater treatment plant in Tunisia with detection of the colistin-resistance mcr-1 gene. FEMS Microbiol Ecol 2021; 97:5986610. [PMID: 33202005 DOI: 10.1093/femsec/fiaa231] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2020] [Accepted: 11/13/2020] [Indexed: 12/14/2022] Open
Abstract
This study evaluated the occurrence of extended-spectrum β-lactamases (ESBL) and associated resistance genes, integrons, and plasmid types, as well as the genetic relatedness of enterobacterial isolates in the wastewater treatment plant (WWTP) of La Charguia, Tunis City (Tunisia). A total of 100 water samples were collected at different points of the sewage treatment process during 2017-2019. Antimicrobial susceptibility was conducted by the disc-diffusion method. blaCTX-M, blaTEM and blaSHV genes as well as those encoding non-β-lactam resistance, the plasmid types, occurrence of class1 integrons and phylogenetic groups of Escherichia coli isolates were determined by PCR/sequencing. Genomic relatedness was determined by multi-locus sequence typing (MLST) for selected isolates. In total, 57 ESBL-producer isolates were recovered (47 E. coli, eight Klebsiella pneumoniae, 1 of the Citrobacter freundii complex and 1 of the Enterobacter cloacae complex). The CTX-M-15 enzyme was the most frequently detected ESBL, followed by CTX-M-27, CTX-M-55 and SHV-12. One E. coli isolate harboured the mcr-1 gene. The following phylogroups/sequence types (STs) were identified among ESBL-producing E. coli isolates: B2/ST131 (subclade-C1), A/ST3221, A/ST8900, D/ST69, D/ST2142, D/ST38, B1/ST2460 and B1/ST6448. High numbers of isolates harboured the class 1 integrons with various gene cassette arrays as well as IncP-1 and IncFIB plasmids. Our findings confirm the importance of WWTPs as hotspot collectors of ESBL-producing Enterobacteriaceae with a high likelihood of spread to human and natural environments.
Collapse
Affiliation(s)
- Bilel Hassen
- Université de Tunis El Manar, Institut de la Recherche Vétérinaire de Tunisie, 20 rue Jebel Lakhdhar, Bab Saadoun, Tunis 1006, Tunisia
| | - Mohamed Salah Abbassi
- Université de Tunis El Manar, Institut de la Recherche Vétérinaire de Tunisie, 20 rue Jebel Lakhdhar, Bab Saadoun, Tunis 1006, Tunisia.,Université de Tunis El Manar, Faculté de Médecine de Tunis, Laboratoire de résistance aux antibiotiques LR99ES09, Tunisia
| | - Laura Ruiz-Ripa
- Departamento de Agricultura y Alimentación, Universidad de La Rioja, 26006 Logroño, Spain
| | - Olouwafemi M Mama
- Departamento de Agricultura y Alimentación, Universidad de La Rioja, 26006 Logroño, Spain
| | - Chourouk Ibrahim
- Laboratoire de Traitement et de Valorisation des rejets hydriques, Centre des Recherches et des Technologies des Eaux (CERTE), Technopole Borj-Cédria, BP 273, 8020, Soliman, Tunisia
| | - Saloua Benlabidi
- Université de Tunis El Manar, Institut de la Recherche Vétérinaire de Tunisie, 20 rue Jebel Lakhdhar, Bab Saadoun, Tunis 1006, Tunisia
| | - Abdennaceur Hassen
- Laboratoire de Traitement et de Valorisation des rejets hydriques, Centre des Recherches et des Technologies des Eaux (CERTE), Technopole Borj-Cédria, BP 273, 8020, Soliman, Tunisia
| | - Carmen Torres
- Departamento de Agricultura y Alimentación, Universidad de La Rioja, 26006 Logroño, Spain
| | - Salah Hammami
- Université de la Manouba, IRESA, École Nationale de Médecine Vétérinaire de Sidi Thabet, Sidi Thabet 2020, Sidi Thabet, Ariana, Tunisia
| |
Collapse
|
211
|
Genetic Environments of Plasmid-Mediated blaCTXM-15 Beta-Lactamase Gene in Enterobacteriaceae from Africa. MICROBIOLOGY RESEARCH 2021. [DOI: 10.3390/microbiolres12020026] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
The most widely distributed blaCTX-M gene on a global scale is blaCTX-M-15. The dissemination has been associated with clonal spread and different types of mobile genetic elements. The objective of this review was to describe the genetic environments of the blaCTX-M-15 gene detected from Enterobacteriaceae in published literature from Africa. A literature search for relevant articles was performed through PubMed, AJOL, and Google Scholar electronic databases; 43 articles from 17 African countries were included in the review based on the eligibility criteria. Insertion sequences were reported as part of the genetic environment of blaCTX-M-15 gene in 32 studies, integrons in 13 studies, and plasmids in 23 studies. In this review, five insertion sequences including ISEcp1, IS26, orf447, IS903, and IS3 have been detected which are associated with the genetic environment of blaCTX-M-15 in Africa. Seven different genetic patterns were seen in the blaCTX-M-15 genetic environment. Insertion sequence ISEcp1 was commonly located upstream of the end of the blaCTX-M-15 gene, while the insertion sequence orf477 was located downstream. In some studies, ISEcp1 was truncated upstream of blaCTX-M-15 by insertion sequences IS26 and IS3. The class 1 integron (Intl1) was most commonly reported to be associated with blaCTX-M-15 (13 studies), with Intl1/dfrA17–aadA5 being the most common gene cassette array. IncFIA-FIB-FII multi-replicons and IncHI2 replicon types were the most common plasmid replicon types that horizontally transferred the blaCTX-M-15 gene. Aminoglycoside-modifying enzymes, and plasmid-mediated quinolone resistance genes were commonly collocated with the blaCTX-M-15 gene on plasmids. This review revealed the predominant role of ISEcp1, Intl1 and IncF plasmids in the mobilization and continental dissemination of the blaCTX-M-15 gene in Africa.
Collapse
|
212
|
Molecular characterization of plasmids encoding bla CTX-M from faecal Escherichia coli in travellers returning to the UK from South Asia. J Hosp Infect 2021; 114:134-143. [PMID: 33862156 DOI: 10.1016/j.jhin.2021.03.030] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2021] [Revised: 03/20/2021] [Accepted: 03/20/2021] [Indexed: 10/21/2022]
Abstract
BACKGROUND The global prevalence of extended-spectrum beta-lactamase-producing Escherichia coli is rising and is dominated by blaCTX-M spread by plasmids. Travellers to South Asia from Western Europe have high rates of acquisition of faecal CTX-M-producing E. coli (CTX-M-EC). AIMS To determine the conjugative ability of CTX-M-EC acquired by healthy volunteers after travel to South Asia, the proportion of travel-acquired CTX-M-EC where blaCTX-M is encoded on a plasmid vs on the bacterial chromosome, and the relatedness of travel-acquired CTX-M-EC plasmids to previously sequenced plasmids. METHODS Faecal samples were collected pre- and post-travel from 23 volunteers who visited South Asia, and CTX-M-EC were cultured. After short- and long-read sequencing, 10 plasmid sequences were identified and compared with previously sequenced plasmids in GenBank. Conjugation to E. coli K-12 was undertaken using filter mating. FINDINGS Thirty-five percent of CTX-M-EC isolates tested transferred the blaCTX-M plasmid by conjugation. Travel-acquired CTX-M-EC carried blaCTX-M on a plasmid in 62% of isolates, whereas 38% of isolates had blaCTX-M on the chromosome. CTX-M-EC plasmids acquired after travel to South Asia had close homology to previously described epidemic plasmids which are widely disseminated in humans, animals and the natural environment. CONCLUSION Globally successful epidemic plasmids are involved in the spread of CTX-M-EC. Targeted strategies may be used to displace such plasmids from the host strain as part of efforts in infection prevention and control in healthcare settings. Bacteria with blaCTX-M plasmids were readily acquired by healthy volunteers, and were carried on return to the UK, providing opportunities for onward dissemination.
Collapse
|
213
|
Hiley L, Graham RMA, Jennison AV. Characterisation of IncI1 plasmids associated with change of phage type in isolates of Salmonella enterica serovar Typhimurium. BMC Microbiol 2021; 21:92. [PMID: 33773572 PMCID: PMC8004404 DOI: 10.1186/s12866-021-02151-z] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2020] [Accepted: 03/09/2021] [Indexed: 12/02/2022] Open
Abstract
Background Acquisition of IncI1 plasmids by members of the Enterobacteriaceae sometimes leads to transfer of antimicrobial resistance and colicinogeny as well as change of phage type in Salmonella Typhimurium. Isolates of S. Typhimurium from a 2015 outbreak of food poisoning were found to contain an IncI1 plasmid implicated in change of phage type from PT135a to U307 not previously reported. The origin of the changes of phage type associated with this IncI1 plasmid was investigated. In addition, a comparison of its gene composition with that of IncI1 plasmids found in local isolates of S. Typhimurium typed as U307 from other times was undertaken. This comparison was extended to IncI1 plasmids in isolates of phage types PT6 and PT6 var. 1 which are thought to be associated with acquisition of IncI1 plasmids. Results Analysis of IncI1 plasmids from whole genome sequencing of isolates implicated a gene coding for a 1273 amino acid protein present only in U307 isolates as the likely source of change of phage type. The IncI1 plasmids from PT6 and PT6 var. 1 isolates all had the ibfA gene present in IncI1 plasmid R64. This gene inhibits growth of bacteriophage BF23 and was therefore the possible source of change of phage type. A fuller comparison of the genetic composition of IncI1 plasmids from U307 isolates and PT6 and PT6 var. 1 isolates along with two IncI1 plasmids from S. Typhimurium isolates not showing change of phage type was undertaken. Plasmids were classified as either ‘Delta’ or ‘Col’ IncI1 plasmids according to whether genes between repZ and the rfsF site showed high identity to genes in the same location in R64 or ColIb-P9 plasmids respectively. Comparison of the tra gene sets and the pil gene sets across the range of sequenced plasmids identified Delta and Col plasmids with almost identical sequences for both sets of genes. This indicated a genetic recombination event leading to a switch between Delta and Col gene sets at the rfsF site. Comparisons of other gene sets showing significant variation among the sequenced plasmids are reported. Searches of the NCBI GenBank database using DNA and protein sequences of interest from the sequenced plasmids identified global IncI1 plasmids with extensive regions showing 99 to 100% identity to some of the plasmids sequenced in this study indicating evidence for widespread distribution of these plasmids. Conclusion Two genes possibly associated with change of phage type were identified in IncI1 plasmids. IncI1 plasmids were classified as either ‘Delta’ or ‘Col’ plasmids and other sequences of significant variation among these plasmids were identified. This study offers a new perspective on the understanding of the gene composition of IncI1 plasmids. The sequences of newly sequenced IncI1 plasmids could be compared against the regions of significant sequence variation identified in this study to understand better their overall gene composition and relatedness to other IncI1 plasmids in the databases. Supplementary Information The online version contains supplementary material available at 10.1186/s12866-021-02151-z.
Collapse
Affiliation(s)
- Lester Hiley
- Public Health Microbiology, Queensland Reference Centre for Microbial and Public Health Genomics (MPHG), Forensic and Scientific Services, Queensland Department of Health, Coopers Plains, Queensland, Australia.
| | - Rikki M A Graham
- Public Health Microbiology, Queensland Reference Centre for Microbial and Public Health Genomics (MPHG), Forensic and Scientific Services, Queensland Department of Health, Coopers Plains, Queensland, Australia
| | - Amy V Jennison
- Public Health Microbiology, Queensland Reference Centre for Microbial and Public Health Genomics (MPHG), Forensic and Scientific Services, Queensland Department of Health, Coopers Plains, Queensland, Australia
| |
Collapse
|
214
|
Resistance determinants and their genetic context in enterobacteria from a longitudinal study of pigs reared under various husbandry conditions. Appl Environ Microbiol 2021; 87:AEM.02612-20. [PMID: 33514521 PMCID: PMC8091121 DOI: 10.1128/aem.02612-20] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Pigs are major reservoirs of resistant Enterobacteriaceae that can reach humans through consumption of contaminated meat or vegetables grown in manure-fertilized soil. Samples were collected from sows during lactation and their piglets at five time points spanning the production cycle. Cefotaxime-resistant bacteria were quantified and isolated from feed, feces, manures and carcasses of pigs reared with penicillin-using or antibiotic-free husbandries. The isolates were characterized by antibiotic susceptibility testing, whole genome sequencing and conjugation assays. The extended spectrum β-lactamase (ESBL) phenotype was more frequent in isolates originating from antibiotic-free animals, while the bacteria isolated from penicillin-using animals were on average resistant to a greater number of antibiotics. The ESBL-encoding genes identified were bla CTX-M-1, bla CTX-M-15 and bla CMY-2 and they co-localised on plasmids with various genes encoding resistance to ß-lactams, co-trimoxazole, phenicols and tetracycline, all antibiotics used in pig production. Groups of genes conferring the observed resistance and the mobile elements disseminating multidrug resistance were determined. The observed resistance to ß-lactams was mainly due to the complementary actions of penicillin-binding proteins, an efflux pump and ß-lactamases. Most resistance determinants were shared by animals raised with or without antimicrobials. This suggests a key contribution of indigenous enterobacteria maternally transmitted along the sow lineage, regardless of antimicrobial use. It is unclear if the antimicrobial resistance observed in the enterobacteria populations of the commercial pig herds studied were present before the use of antibiotics, or the extent to which historical antimicrobial use exerted a selective pressure defining the resistant bacterial populations in farms using penicillin prophylaxis.Importance: Antimicrobial resistance is a global threat that needs to be fought on numerous fronts along the One Health continuum. Vast quantities of antimicrobials are used in agriculture to ensure animal welfare and productivity, and are arguably a driving force for the persistence of environmental and food-borne resistant bacteria. This study evaluated the impact of conventional, organic and other antibiotic-free husbandry practices on the frequency and nature of antimicrobial resistance genes and multidrug resistant enterobacteria. It provides knowledge about the relative contribution of specific resistance determinants to observed antibiotic resistance. It also showed the clear co-selection of genes coding for extended-spectrum beta-lactamases and genes coding for the resistance to antibiotics commonly used for prophylaxis or in curative treatments in pig operations.
Collapse
|
215
|
Zhang Z, Liu G, Chen Y, Xue W, Ji Q, Xu Q, Zhang H, Fan G, Huang H, Jiang L, Chen J. Comparison of different sequencing strategies for assembling chromosome-level genomes of extremophiles with variable GC content. iScience 2021; 24:102219. [PMID: 33748707 PMCID: PMC7961107 DOI: 10.1016/j.isci.2021.102219] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2020] [Revised: 01/20/2021] [Accepted: 02/18/2021] [Indexed: 01/23/2023] Open
Abstract
In this study, six bacterial isolates with variable GC, including Escherichia coli as mesophilic reference strain, were selected to compare hybrid assembly strategies based on next-generation sequencing (NGS) of short reads, single-tube long-fragment reads (stLFR) sequencing, and Oxford Nanopore Technologies (ONT) sequencing platforms. We obtained the complete genomes using the hybrid assembler Unicycler based on the NGS and ONT reads; others were de novo assembled using NGS, stLFR, and ONT reads by using different strategies. The contiguity, accuracy, completeness, sequencing costs, and DNA material requirements of the investigated strategies were compared systematically. Although all sequencing data could be assembled into accurate whole-genome sequences, the stLFR sequencing data yield a scaffold with more contiguity with more completeness of gene function than NGS sequencing assemblies. Our research provides a low-cost chromosome-level genome assembly strategy for large-scale sequencing of extremophile genomes with different GC contents.
Collapse
Affiliation(s)
- Zhidong Zhang
- College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing 211816, China
- Institute of Applied Microbiology, Xinjiang Academy of Agricultural Sciences/Xinjiang Key Laboratory of Special Environmental Microbiology, Urumqi, Xinjiang 830091, China
| | - Guilin Liu
- BGI-Qingdao, BGI-Shenzhen, Qingdao, Shandong 266555, China
| | - Yao Chen
- College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing 211816, China
| | - Weizhen Xue
- BGI-Qingdao, BGI-Shenzhen, Qingdao, Shandong 266555, China
| | - Qianyue Ji
- BGI-Qingdao, BGI-Shenzhen, Qingdao, Shandong 266555, China
| | - Qiwu Xu
- BGI-Qingdao, BGI-Shenzhen, Qingdao, Shandong 266555, China
| | - He Zhang
- BGI-Qingdao, BGI-Shenzhen, Qingdao, Shandong 266555, China
| | - Guangyi Fan
- BGI-Qingdao, BGI-Shenzhen, Qingdao, Shandong 266555, China
- BGI-Shenzhen, Shenzhen, Guangdong 518083, China
| | - He Huang
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, Nanjing 210023, China
- School of Pharmaceutical Sciences, Nanjing Tech University, Nanjing 211816, China
| | - Ling Jiang
- College of Food Science and Light Industry, Nanjing Tech University, Nanjing 211816, China
| | - Jianwei Chen
- BGI-Qingdao, BGI-Shenzhen, Qingdao, Shandong 266555, China
- BGI-Shenzhen, Shenzhen, Guangdong 518083, China
- Qingdao-Europe Advanced Institute for Life Sciences, BGI-Shenzhen, Qingdao 266555, China
- Laboratory of Genomics and Molecular Biomedicine, Department of Biology, University of Copenhagen, Universitetsparken 13, Copenhagen 2100, Denmark
| |
Collapse
|
216
|
Tran T, Checkley S, Caffrey N, Mainali C, Gow S, Agunos A, Liljebjelke K. Genetic Characterization of AmpC and Extended-Spectrum Beta-Lactamase Phenotypes in Escherichia coli and Salmonella From Alberta Broiler Chickens. Front Cell Infect Microbiol 2021; 11:622195. [PMID: 33777835 PMCID: PMC7994595 DOI: 10.3389/fcimb.2021.622195] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2020] [Accepted: 02/18/2021] [Indexed: 11/13/2022] Open
Abstract
Horizontal gene transfer is an important mechanism which facilitates bacterial populations in overcoming antimicrobial treatment. In this study, a total of 120 Escherichia coli and 62 Salmonella enterica subsp. enterica isolates were isolated from broiler chicken farms in Alberta. Fourteen serovars were identified among Salmonella isolates. Thirty one percent of E. coli isolates (37/120) were multiclass drug resistant (resistant to ≥ 3 drug classes), while only about 16% of Salmonella isolates (10/62) were multiclass drug resistant. Among those, eight E. coli isolates had an AmpC-type phenotype, and one Salmonella isolate had an extended-spectrum beta-lactamase (ESBL)-type beta-lactamase phenotype. We identified both AmpC-type (blaCMY-2) and ESBL-type (blaTEM) genes in both E. coli and Salmonella isolates. Plasmids from eight of nine E. coli and Salmonella isolates were transferred to recipient strain E. coli J53 through conjugation. Transferable plasmids in the eight E. coli and Salmonella isolates were also transferred into a lab-made sodium azide-resistant Salmonella recipient through conjugation. The class 1 integrase gene, int1, was detected on plasmids from two E. coli isolates. Further investigation of class 1 integron cassette regions revealed the presence of an aadA gene encoding streptomycin 3’’-adenylyltransferase, an aadA1a/aadA2 gene encoding aminoglycoside 3’’-O-adenyltransferase, and a putative adenylyltransferase gene. This study provides some insight into potential horizontal gene transfer events of antimicrobial resistance genes between E. coli and Salmonella in broiler chicken production.
Collapse
Affiliation(s)
- Tam Tran
- Department of Ecosystem and Public Health, Faculty of Veterinary Medicine, University of Calgary, Calgary, AB, Canada
| | - Sylvia Checkley
- Department of Ecosystem and Public Health, Faculty of Veterinary Medicine, University of Calgary, Calgary, AB, Canada
| | - Niamh Caffrey
- Department of Ecosystem and Public Health, Faculty of Veterinary Medicine, University of Calgary, Calgary, AB, Canada
| | - Chunu Mainali
- Animal Policy and Epidemiology Section, Animal Health Branch, Animal Health and Assurance Division, Alberta Agriculture and Forestry, Edmonton, AB, Canada
| | - Sheryl Gow
- Western College of Veterinary Medicine, University of Saskatchewan, Saskatoon, SK, Canada
| | - Agnes Agunos
- Center for Foodborne, Environmental and Zoonotic Infectious Diseases, Public Health Agency of Canada, Guelph, ON, Canada
| | - Karen Liljebjelke
- Department of Ecosystem and Public Health, Faculty of Veterinary Medicine, University of Calgary, Calgary, AB, Canada
| |
Collapse
|
217
|
Newman DM, Barbieri NL, de Oliveira AL, Willis D, Nolan LK, Logue CM. Characterizing avian pathogenic Escherichia coli (APEC) from colibacillosis cases, 2018. PeerJ 2021; 9:e11025. [PMID: 33717713 PMCID: PMC7937341 DOI: 10.7717/peerj.11025] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2020] [Accepted: 02/08/2021] [Indexed: 12/14/2022] Open
Abstract
Colibacillosis caused by avian pathogenic Escherichia coli (APEC) is a devastating disease of poultry that results in multi-million-dollar losses annually to the poultry industry. Disease syndromes associated with APEC includes colisepticemia, cellulitis, air sac disease, peritonitis, salpingitis, omphalitis, and osteomyelitis among others. A total of 61 APEC isolates collected during the Fall of 2018 (Aug-Dec) from submitted diagnostic cases of poultry diagnosed with colibacillosis were assessed for the presence of 44 virulence-associated genes, 24 antimicrobial resistance genes and 17 plasmid replicon types. Each isolate was also screened for its ability to form biofilm using the crystal violet assay and antimicrobial susceptibility to 14 antimicrobials using the NARMS panel. Overall, the prevalence of virulence genes ranged from 1.6% to >90% with almost all strains harboring genes that are associated with the ColV plasmid-the defining trait of the APEC pathotype. Overall, 58 strains were able to form biofilms and only three strains formed negligible biofilms. Forty isolates displayed resistance to antimicrobials of the NARMS panel ranging from one to nine agents. This study highlights that current APEC causing disease in poultry possess virulence and resistance traits and form biofilms which could potentially lead to challenges in colibacillosis control.
Collapse
Affiliation(s)
- Darby M Newman
- Department of Population Health, College of Veterinary Medicine, University of Georgia, Athens, GA, USA
| | - Nicolle L Barbieri
- Department of Population Health, College of Veterinary Medicine, University of Georgia, Athens, GA, USA
| | - Aline L de Oliveira
- Department of Population Health, College of Veterinary Medicine, University of Georgia, Athens, GA, USA
| | - Dajour Willis
- Department of Population Health, College of Veterinary Medicine, University of Georgia, Athens, GA, USA
| | - Lisa K Nolan
- Department of Infectious Diseases, College of Veterinary Medicine, University of Georgia, Athens, GA, USA
| | - Catherine M Logue
- Department of Population Health, College of Veterinary Medicine, University of Georgia, Athens, GA, USA
| |
Collapse
|
218
|
Xiong Y, Zhang C, Gao W, Ma Y, Zhang Q, Han Y, Jiang S, Zhao Z, Wang J, Chen Y. Genetic diversity and co-prevalence of ESBLs and PMQR genes among plasmid-mediated AmpC β-lactamase-producing Klebsiella pneumoniae isolates causing urinary tract infection. J Antibiot (Tokyo) 2021; 74:397-406. [PMID: 33658638 DOI: 10.1038/s41429-021-00413-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2021] [Revised: 01/20/2021] [Accepted: 01/21/2021] [Indexed: 11/09/2022]
Abstract
Klebsiella pneumoniae is an opportunistic pathogen that frequently causes nosocomial urinary tract infection (UTI). The aim of this study was to investigate the prevalence of extended-spectrum β-lactamases (ESBL), plasmid-mediated quinolone resistance (PMQR) genes, in acquired AmpC (ac-AmpC) β‑lactamase‑producing K. pneumoniae isolates from patients with nosocomial UTI and to characterize the transmissibility of plasmids harbouring multiple resistance genes. From January 2017 to June 2018, we collected 46 ac-AmpC-producing K. pneumoniae isolates causing UTI from a tertiary care hospital in China. Antimicrobial susceptibility assays showed that non-susceptibility of all isolates to third-generation cephalosporin and fluoroquinolone was very high (>80%). Diverse types of ESBLs and PMQR genes, including blaSHV-12 (n = 23), blaSHV-27 (n = 1), blaSHV-28 (n = 2), blaSHV-33 (n = 4), blaCTX-M-3 (n = 24), blaCTX-M-14 (n = 6), blaCTX-M-15 (n = 6), blaCTX-M-22 (n = 1) and blaOXA-10 (n = 26), as well as qnrA (n = 2), qnrB (n = 39) and qnrS (n = 2) genes were identified amongst AmpC-producing K. pneumoniae isolates. The blaAmpC, qnrB and several ESBLs genes from six strains harbouring multiple AmpC (at least two ampC) were co-transferrable to recipients via conjugation or electroporation, with IncFIA, IncFIB and IncA/C being the dominant replicons. Conserved genetic context associated with the mobilization of blaampC genes was detected. Forty-six isolates were categorized into 25 enterobacterial repetitive intergenic consensus (ERIC) types, and the 6 isolates harbouring multiple AmpC genes belonged to ST1 lineage. This work reports that the emergence of plasmids co-harbouring multiple resistance determinants and mediating the local prevalence in K. pneumoniae causing UTI in China.
Collapse
Affiliation(s)
- Yilin Xiong
- Department of Biotechnology, Basic Medical College, Dalian Medical University, Dalian, China
| | - Cong Zhang
- Department of Nutrition and Food Hygiene, School of Public Health, Dalian Medical University, Dalian, China
| | - Wenting Gao
- Institute of Genome Engineered Animal Models for Human Disease, Dalian Medical University, Dalian, China
| | - Yong Ma
- Institute of Genome Engineered Animal Models for Human Disease, Dalian Medical University, Dalian, China
| | - Qingqing Zhang
- Department of Pathology, Basic Medical College, Dalian Medical University, Dalian, China
| | - Yuqiao Han
- Department of Biotechnology, Basic Medical College, Dalian Medical University, Dalian, China
| | - Shiyu Jiang
- Department of Biotechnology, Basic Medical College, Dalian Medical University, Dalian, China
| | - Zinan Zhao
- Department of Biotechnology, Basic Medical College, Dalian Medical University, Dalian, China
| | - Jia Wang
- Department of Biotechnology, Basic Medical College, Dalian Medical University, Dalian, China
| | - Yang Chen
- Department of Biotechnology, Basic Medical College, Dalian Medical University, Dalian, China.
| |
Collapse
|
219
|
Multidrug Resistance Dissemination in Escherichia coli Isolated from Wild Animals: Bacterial Clones and Plasmid Complicity. MICROBIOLOGY RESEARCH 2021. [DOI: 10.3390/microbiolres12010009] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023] Open
Abstract
Objectives. Epidemiological data concerning third-generation cephalosporin (3GC) resistance in wild fauna are scarce. The aim of this study was to characterize the resistance genes, their genetic context, and clonal relatedness in 17 Escherichia coli resistant to 3GC isolated from wild animals. Methods. The isolates were characterized by short-read whole genome sequencing, and long-read sequencing was used for the hybrid assembly of plasmid sequences. Results. The 3GC resistance gene most identified in the isolates was the extended-spectrum β-lactamases (ESBL)-encoding gene blaCTX-M-1 (82.3%), followed by blaCTX-M-32 (5.9%), blaCTX-M-14 (5.9%), and blaSHV-12 (5.9%). E. coli isolates mainly belonged to the sequence types (STs) rarely reported from humans. The single nucleotide polymorphism (SNP)-based typing showed that most E. coli genomes from wild animals (wild boars, birds of prey, and buzzards) formed clonal clusters (<5 SNPs), showing a clonal dissemination crossing species boundaries. blaCTX-M-1-harboring IncI1-ST3 plasmid was the predominant ESBL-encoding plasmid (76.4%) in wild animal isolates. Plasmid comparison revealed a 110-kb self-transferable plasmid consisting of a conserved backbone and two variable regions involved in antimicrobial resistance and in interaction with recipient cells during conjugation. Conclusion. Our results highlighted the unexpected clonal dissemination of blaCTX-M-1-encoding clones and the complicity of IncI1-ST3 plasmid in the spread of blaCTX-M-1 within wild fauna.
Collapse
|
220
|
Plasmid- and strain-specific factors drive variation in ESBL-plasmid spread in vitro and in vivo. THE ISME JOURNAL 2021; 15:862-878. [PMID: 33149210 PMCID: PMC8026971 DOI: 10.1038/s41396-020-00819-4] [Citation(s) in RCA: 55] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/12/2020] [Revised: 09/15/2020] [Accepted: 10/21/2020] [Indexed: 02/07/2023]
Abstract
Horizontal gene transfer, mediated by conjugative plasmids, is a major driver of the global rise of antibiotic resistance. However, the relative contributions of factors that underlie the spread of plasmids and their roles in conjugation in vivo are unclear. To address this, we investigated the spread of clinical Extended Spectrum Beta-Lactamase (ESBL)-producing plasmids in the absence of antibiotics in vitro and in the mouse intestine. We hypothesised that plasmid properties would be the primary determinants of plasmid spread and that bacterial strain identity would also contribute. We found clinical Escherichia coli strains natively associated with ESBL-plasmids conjugated to three distinct E. coli strains and one Salmonella enterica serovar Typhimurium strain. Final transconjugant frequencies varied across plasmid, donor, and recipient combinations, with qualitative consistency when comparing transfer in vitro and in vivo in mice. In both environments, transconjugant frequencies for these natural strains and plasmids covaried with the presence/absence of transfer genes on ESBL-plasmids and were affected by plasmid incompatibility. By moving ESBL-plasmids out of their native hosts, we showed that donor and recipient strains also modulated transconjugant frequencies. This suggests that plasmid spread in the complex gut environment of animals and humans can be predicted based on in vitro testing and genetic data.
Collapse
|
221
|
Chen Y, Fang L, Yang Y, Yan R, Fu Y, Shen P, Zhao D, Chen Y, Hua X, Jiang Y, Moran RA, van Schaik W, Yu Y. Emergence of carbapenem-resistant Klebsiella pneumoniae harbouring bla OXA-48-like genes in China. J Med Microbiol 2021; 70:001306. [PMID: 33507142 PMCID: PMC8346730 DOI: 10.1099/jmm.0.001306] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2020] [Accepted: 12/15/2020] [Indexed: 12/03/2022] Open
Abstract
Klebsiella pneumoniae strains carrying OXA-48-like carbapenemases are increasingly prevalent across the globe. There is thus an urgent need to better understand the mechanisms that underpin the dissemination of bla OXA-48-like carbapenemases. To this end, four ertapenem-resistant K. pneumoniae isolates producing OXA-48-like carbapenemases were isolated from two patients. Genome sequencing revealed that one sequence type (ST) 17 isolate carried bla OXA-181, whilst three isolates from a single patient, two ST76 and one ST15, carried bla OXA-232. The 50514 bp bla OXA-181-harbouring plasmid, pOXA-181_YML0508, was X3-type with a conjugation frequency to Escherichia coli of 1.94×10-4 transconjugants per donor. The bla OXA-232 gene was located on a 6141 bp ColKP3-type plasmid, pOXA-232_WSD, that was identical in the ST76 and ST15 K. pneumoniae isolates. This plasmid could be transferred from K. pneumoniae to E. coli at low frequency, 8.13×10-6 transconjugants per donor. Comparative analysis revealed that the X3 plasmid acquired the bla OXA-48-like gene via IS3000-mediated co-integration of the ColKP3-type plasmid. Our study highlights how plasmid integration and rearrangements can contribute to the spread of bla OXA-48-like genes, which provides important clues for clinical prevention of the dissemination of K. pneumoniae strains carrying bla OXA-48-like carbapenemases.
Collapse
Affiliation(s)
- Ying Chen
- Department of Infectious Disease, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, PR China
- Key Laboratory of Microbial Technology and Bioinformatics of Zhejiang Province, Hangzhou, PR China
- Regional Medical Center for National Institute of Respiratory Diseases, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, PR China
| | - Li Fang
- Department of Infectious Disease, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, PR China
- Key Laboratory of Microbial Technology and Bioinformatics of Zhejiang Province, Hangzhou, PR China
- Regional Medical Center for National Institute of Respiratory Diseases, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, PR China
| | - Yunxing Yang
- Department of Clinical Laboratory, Affiliated Hangzhou First People’s Hospital, Zhejiang University School of Medicine, Hangzhou, PR China
| | - Rushuang Yan
- Department of Infectious Disease, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, PR China
- Key Laboratory of Microbial Technology and Bioinformatics of Zhejiang Province, Hangzhou, PR China
- Regional Medical Center for National Institute of Respiratory Diseases, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, PR China
| | - Ying Fu
- Department of Clinical Laboratory, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, PR China
| | - Ping Shen
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, PR China
| | - Dongdong Zhao
- Department of Infectious Disease, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, PR China
- Key Laboratory of Microbial Technology and Bioinformatics of Zhejiang Province, Hangzhou, PR China
- Regional Medical Center for National Institute of Respiratory Diseases, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, PR China
| | - Yan Chen
- Department of Infectious Disease, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, PR China
- Key Laboratory of Microbial Technology and Bioinformatics of Zhejiang Province, Hangzhou, PR China
- Regional Medical Center for National Institute of Respiratory Diseases, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, PR China
| | - Xiaoting Hua
- Department of Infectious Disease, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, PR China
- Key Laboratory of Microbial Technology and Bioinformatics of Zhejiang Province, Hangzhou, PR China
- Regional Medical Center for National Institute of Respiratory Diseases, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, PR China
| | - Yan Jiang
- Department of Infectious Disease, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, PR China
- Key Laboratory of Microbial Technology and Bioinformatics of Zhejiang Province, Hangzhou, PR China
- Regional Medical Center for National Institute of Respiratory Diseases, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, PR China
| | - Robert A. Moran
- Institute of Microbiology and Infection, University of Birmingham, Birmingham, UK
| | - Willem van Schaik
- Institute of Microbiology and Infection, University of Birmingham, Birmingham, UK
| | - Yunsong Yu
- Department of Infectious Disease, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, PR China
- Key Laboratory of Microbial Technology and Bioinformatics of Zhejiang Province, Hangzhou, PR China
- Regional Medical Center for National Institute of Respiratory Diseases, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, PR China
| |
Collapse
|
222
|
de Lagarde M, Vanier G, Arsenault J, Fairbrother JM. High Risk Clone: A Proposal of Criteria Adapted to the One Health Context with Application to Enterotoxigenic Escherichia coli in the Pig Population. Antibiotics (Basel) 2021; 10:antibiotics10030244. [PMID: 33671102 PMCID: PMC8000703 DOI: 10.3390/antibiotics10030244] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2021] [Revised: 02/19/2021] [Accepted: 02/25/2021] [Indexed: 11/16/2022] Open
Abstract
The definition of a high risk clone for antibiotic resistance dissemination was initially established for human medicine. We propose a revised definition of a high risk clone adapted to the One Health context. Then, we applied our criteria to a cluster of enrofloxacin non susceptible ETEC:F4 isolates which emerged in 2013 in diseased pigs in Quebec. The whole genomes of 183 ETEC:F4 strains isolated in Quebec from 1990 to 2018 were sequenced. The presence of virulence and resistance genes and replicons was examined in 173 isolates. Maximum likelihood phylogenetic trees were constructed based on SNP data and clones were identified using a set of predefined criteria. The strains belonging to the clonal lineage ST100/O149:H10 isolated in Quebec in 2013 or later were compared to ETEC:F4 whole genome sequences available in GenBank. Prior to 2000, ETEC:F4 isolates from pigs in Quebec were mostly ST90 and belonged to several serotypes. After 2000, the isolates were mostly ST100/O149:H10. In this article, we demonstrated the presence of a ETEC:F4 high risk clone. This clone (1) emerged in 2013, (2) is multidrug resistant, (3) has a widespread distribution over North America and was able to persist several months on farms, and (4) possesses specific virulence genes. It is crucial to detect and characterize high risk clones in animal populations to increase our understanding of their emergence and their dissemination.
Collapse
Affiliation(s)
- Maud de Lagarde
- OIE Reference Laboratory for Escherichia coli, Faculty of Veterinary Medicine, Université de Montréal, Saint-Hyacinthe, QC J2S2M2, Canada; (M.d.L.); (G.V.)
| | - Ghyslaine Vanier
- OIE Reference Laboratory for Escherichia coli, Faculty of Veterinary Medicine, Université de Montréal, Saint-Hyacinthe, QC J2S2M2, Canada; (M.d.L.); (G.V.)
| | - Julie Arsenault
- Swine and Poultry Infectious Research Center (CRIPA-FQRNT), Faculty of Veterinary Medicine, Université de Montréal, Saint-Hyacinthe, QC J2S2M2, Canada;
- Groupe de Recherche en Epidémiologie des Zoonoses et Santé Publique (GREZOSP), Faculty of Veterinary Medicine, Université de Montréal, Saint-Hyacinthe, QC J2S2M2, Canada
| | - John Morris Fairbrother
- OIE Reference Laboratory for Escherichia coli, Faculty of Veterinary Medicine, Université de Montréal, Saint-Hyacinthe, QC J2S2M2, Canada; (M.d.L.); (G.V.)
- Swine and Poultry Infectious Research Center (CRIPA-FQRNT), Faculty of Veterinary Medicine, Université de Montréal, Saint-Hyacinthe, QC J2S2M2, Canada;
- Correspondence:
| |
Collapse
|
223
|
Ma Y, Chen J, Fong K, Nadya S, Allen K, Laing C, Ziebell K, Topp E, Carroll LM, Wiedmann M, Delaquis P, Wang S. Antibiotic Resistance in Shiga Toxigenic Escherichia coli Isolates from Surface Waters and Sediments in a Mixed Use Urban Agricultural Landscape. Antibiotics (Basel) 2021; 10:237. [PMID: 33652953 PMCID: PMC7996769 DOI: 10.3390/antibiotics10030237] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2021] [Revised: 02/16/2021] [Accepted: 02/19/2021] [Indexed: 01/09/2023] Open
Abstract
Antibiotic resistance (AR) phenotypes and acquired resistance determinants (ARDs) detected by in silico analysis of genome sequences were examined in 55 Shiga toxin-producing Escherichia coli (STEC) isolates representing diverse serotypes recovered from surfaces waters and sediments in a mixed use urban/agricultural landscape in British Columbia, Canada. The isolates displayed decreased susceptibility to florfenicol (65.5%), chloramphenicol (7.3%), tetracycline (52.7%), ampicillin (49.1%), streptomycin (34.5%), kanamycin (20.0%), gentamycin (10.9%), amikacin (1.8%), amoxicillin/clavulanic acid (21.8%), ceftiofur (18.2%), ceftriaxone (3.6%), trimethoprim-sulfamethoxazole (12.7%), and cefoxitin (3.6%). All surface water and sediment isolates were susceptible to ciprofloxacin, nalidixic acid, ertapenem, imipenem and meropenem. Eight isolates (14.6%) were multidrug resistant. ARDs conferring resistance to phenicols (floR), trimethoprim (dfrA), sulfonamides (sul1/2), tetracyclines (tetA/B), and aminoglycosides (aadA and aph) were detected. Additionally, narrow-spectrum β-lactamase blaTEM-1b and extended-spectrum AmpC β-lactamase (cephalosporinase) blaCMY-2 were detected in the genomes, as were replicons from plasmid incompatibility groups IncFII, IncB/O/K/Z, IncQ1, IncX1, IncY and Col156. A comparison with surveillance data revealed that AR phenotypes and ARDs were comparable to those reported in generic E. coli from food animals. Aquatic environments in the region are potential reservoirs for the maintenance and transmission of antibiotic resistant STEC, associated ARDs and their plasmids.
Collapse
Affiliation(s)
- Yvonne Ma
- Faculty of Land and Food Systems, University of British Columbia, Vancouver, BC V6T 1Z4, Canada; (Y.M.); (J.C.); (K.F.); (S.N.); (K.A.)
| | - Jessica Chen
- Faculty of Land and Food Systems, University of British Columbia, Vancouver, BC V6T 1Z4, Canada; (Y.M.); (J.C.); (K.F.); (S.N.); (K.A.)
| | - Karen Fong
- Faculty of Land and Food Systems, University of British Columbia, Vancouver, BC V6T 1Z4, Canada; (Y.M.); (J.C.); (K.F.); (S.N.); (K.A.)
| | - Stephanie Nadya
- Faculty of Land and Food Systems, University of British Columbia, Vancouver, BC V6T 1Z4, Canada; (Y.M.); (J.C.); (K.F.); (S.N.); (K.A.)
| | - Kevin Allen
- Faculty of Land and Food Systems, University of British Columbia, Vancouver, BC V6T 1Z4, Canada; (Y.M.); (J.C.); (K.F.); (S.N.); (K.A.)
| | - Chad Laing
- National Centre for Animal Diseases, Canadian Food Inspection Agency, Lethbridge, AB T1J 3Z4, Canada;
| | - Kim Ziebell
- Laboratory for Foodborne Zoonoses, Public Health Agency of Canada, Guelph, ON N1G 3W4, Canada;
| | - Ed Topp
- London Research and Development Centre, Agriculture and Agri-Food Canada, London, ON N5V 4T3, Canada;
| | - Laura M. Carroll
- Department of Food Science, Cornell University, Ithaca, NY 14853, USA; (L.M.C.); (M.W.)
| | - Martin Wiedmann
- Department of Food Science, Cornell University, Ithaca, NY 14853, USA; (L.M.C.); (M.W.)
| | - Pascal Delaquis
- Summerland Research and Development Centre, Agriculture and Agri-Food Canada, Summerland, BC V0H 1Z0, Canada;
| | - Siyun Wang
- Faculty of Land and Food Systems, University of British Columbia, Vancouver, BC V6T 1Z4, Canada; (Y.M.); (J.C.); (K.F.); (S.N.); (K.A.)
| |
Collapse
|
224
|
Sánchez F, Fuenzalida V, Ramos R, Escobar B, Neira V, Borie C, Lapierre L, López P, Venegas L, Dettleff P, Johnson T, Fuentes-Castillo D, Lincopan N, Galarce N. Genomic features and antimicrobial resistance patterns of Shiga toxin-producing Escherichia coli strains isolated from food in Chile. Zoonoses Public Health 2021; 68:226-238. [PMID: 33619864 DOI: 10.1111/zph.12818] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2020] [Revised: 12/18/2020] [Accepted: 01/18/2021] [Indexed: 02/06/2023]
Abstract
Shiga toxin-producing Escherichia coli (STEC) is a zoonotic pathogen that causes severe illness in humans, often associated with foodborne outbreaks. Antimicrobial resistance among foodborne E. coli has increased over the last decades becoming a public health issue. In this study, the presence and features of STEC were investigated in samples of meat, seafood, vegetables and ready-to-eat street-vended food collected in Chile, using a genomic and microbiological approach. Phenotypic and genotypic antimicrobial resistance profiles were determined, and serotype, phylogroup, sequence type (ST) and phylogenomics were predicted using bioinformatic tools. Three thousand three hundred samples collected in 2019 were screened, of which 18 were positive for STEC strains (0.5%), with stx2a (61.1%) being the predominant stx subtype. The presence of the virulence genes lpfA (100%), iha and ehaA (94.4%), and ehxA, hlyA and saa (83.3%) was confirmed among the STEC strains; the Locus of adhesion and autoaggregation (LAA) was predicted in 14 (77.8%) strains. Strains displayed resistance to colistin (100%), and intermediate resistance to enrofloxacin (11.1%) and chloramphenicol (5.6%). In this regard, mutations in the two-component regulatory system genes pmrA (S29G), pmrB (D283G) and phoP (I44L), and the presence of the qnrB19 gene were confirmed. STEC strains belonged to ST11231 (38.9%), ST297 and ST58 (16.7% each), and ST1635, ST11232, ST446, ST442 and ST54 (5.6% each), and the most frequently detected serotypes were O113:H21 (44.4%), O130:H11 and O116:H21 (16.7% each), and O174:H21 (11.1%). Strains belonging to the international ST58 showed genomic relatedness with worldwide strains from human and non-human sources. Our study reports for the first time the genomic profile of STEC strains isolated from food in Chile, highlighting the presence of international clones and sequence types commonly associated with human infections in different geographical regions, as well as the convergence of virulence and resistance in STEC lineages circulating in this country.
Collapse
Affiliation(s)
- Fernando Sánchez
- Facultad de Ciencias Veterinarias y Pecuarias, Departamento de Medicina Preventiva Animal, Universidad de Chile, Santiago, Chile.,Programa de Magíster en Ciencias Animales y Veterinarias, Facultad de Ciencias Veterinarias y Pecuarias, Universidad de Chile, Santiago, Chile
| | - Verónica Fuenzalida
- Facultad de Ciencias Veterinarias y Pecuarias, Departamento de Medicina Preventiva Animal, Universidad de Chile, Santiago, Chile
| | - Romina Ramos
- Facultad de Ciencias Veterinarias y Pecuarias, Departamento de Medicina Preventiva Animal, Universidad de Chile, Santiago, Chile
| | - Beatriz Escobar
- Facultad de Ciencias Veterinarias y Pecuarias, Departamento de Medicina Preventiva Animal, Universidad de Chile, Santiago, Chile
| | - Víctor Neira
- Facultad de Ciencias Veterinarias y Pecuarias, Departamento de Medicina Preventiva Animal, Universidad de Chile, Santiago, Chile
| | - Consuelo Borie
- Facultad de Ciencias Veterinarias y Pecuarias, Departamento de Medicina Preventiva Animal, Universidad de Chile, Santiago, Chile
| | - Lisette Lapierre
- Facultad de Ciencias Veterinarias y Pecuarias, Departamento de Medicina Preventiva Animal, Universidad de Chile, Santiago, Chile
| | - Paulina López
- Facultad de Ciencias Veterinarias y Pecuarias, Departamento de Medicina Preventiva Animal, Universidad de Chile, Santiago, Chile
| | - Lucas Venegas
- Facultad de Ciencias Veterinarias y Pecuarias, Departamento de Medicina Preventiva Animal, Universidad de Chile, Santiago, Chile
| | - Phillip Dettleff
- Laboratorio FAVET-INBIOGEN, Facultad de Ciencias Veterinarias y Pecuarias, Departamento de Fomento de la Producción Animal, Universidad de Chile, Santiago, Chile.,Escuela de Medicina Veterinaria, Facultad de Recursos Naturales y Medicina Veterinaria, Universidad Santo Tomás, Santiago, Chile
| | - Timothy Johnson
- Department of Veterinary and Biomedical Sciences, College of Veterinary Medicine, University of Minnesota, MI, USA
| | - Danny Fuentes-Castillo
- Faculdade de Medicina Veterinária e Zootecnia, Departamento de Patología, Universidade de São Paulo, São Paulo, Brazil
| | - Nilton Lincopan
- Departamento de Microbiología, Instituto de Ciências Biomédicas, Universidade de São Paulo, São Paulo, Brazil
| | - Nicolás Galarce
- Facultad de Ciencias Veterinarias y Pecuarias, Departamento de Medicina Preventiva Animal, Universidad de Chile, Santiago, Chile
| |
Collapse
|
225
|
Selection of Resistant Bacteria in Mallards Exposed to Subinhibitory Concentrations of Ciprofloxacin in Their Water Environment. Antimicrob Agents Chemother 2021; 65:AAC.01858-20. [PMID: 33318021 DOI: 10.1128/aac.01858-20] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2020] [Accepted: 12/10/2020] [Indexed: 12/22/2022] Open
Abstract
Emergence and selection of antibiotic resistance following exposure to high antibiotic concentrations have been repeatedly shown in clinical and agricultural settings, whereas the role of the weak selective pressures exerted by antibiotic levels below the MIC (sub-MIC) in aquatic environments due to anthropogenic contamination remains unclear. Here, we studied how exposure to sub-MIC levels of ciprofloxacin enriches for Escherichia coli with reduced susceptibility to ciprofloxacin using a mallard colonization model. Mallards were inoculated with two isogenic extended-spectrum-β-lactamase (ESBL)-encoding E. coli strains, differing only by a gyrA mutation that results in increased MICs of ciprofloxacin, and exposed to different levels of ciprofloxacin in their swimming water. Changes in the ratios of mutant to parental strains excreted in feces over time and ESBL plasmid spread within the gut microbiota from individual birds were investigated. Results show that in vivo selection of gyrA mutants occurred in mallards during exposure to ciprofloxacin at concentrations previously found in aquatic environments. During colonization, resistance plasmids were readily transferred between strains in the intestines of the mallards, but conjugation frequencies were not affected by ciprofloxacin exposure. Our results highlight the potential for enrichment of resistant bacteria in wildlife and underline the importance of reducing antibiotic pollution in the environment.
Collapse
|
226
|
BKC-2, a New BKC Variant Detected in MCR-9.1-Producing Enterobacter hormaechei subsp. xiangfangensis. Antimicrob Agents Chemother 2021; 65:AAC.01193-20. [PMID: 33318020 DOI: 10.1128/aac.01193-20] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2020] [Accepted: 12/03/2020] [Indexed: 11/20/2022] Open
Abstract
We characterized a multidrug-resistant (MDR) Enterobacter spp. isolate highlighting the genetic aspects of the antimicrobial resistance genes. An Enterobacter spp. isolate (Ec61) was recovered in 2014 from a transtracheal aspirate sample from a patient admitted to a Brazilian tertiary hospital and submitted to further microbiological and genomic characterization. Ec61 was identified as Enterobacter hormaechei subsp. xiangfangensis strain ST451, showing an MDR profile and the presence of genes codifying the new β-lactamase variants BKC-2 and ACT-84 and the mobile colistin resistance gene mcr-9.1.
Collapse
|
227
|
Kareem SM, Al-Kadmy IMS, Kazaal SS, Mohammed Ali AN, Aziz SN, Makharita RR, Algammal AM, Al-Rejaie S, Behl T, Batiha GES, El-Mokhtar MA, Hetta HF. Detection of gyrA and parC Mutations and Prevalence of Plasmid-Mediated Quinolone Resistance Genes in Klebsiella pneumoniae. Infect Drug Resist 2021; 14:555-563. [PMID: 33603418 PMCID: PMC7886241 DOI: 10.2147/idr.s275852] [Citation(s) in RCA: 59] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2020] [Accepted: 12/14/2020] [Indexed: 12/23/2022] Open
Abstract
Background and Aim Recently, the extensive use of quinolones led to increased resistance to these antimicrobial agents, with different rates according to the organism and the geographical region. The aim of this study was to detect the resistance rate of Klebsiella pneumoniae Iraqi isolates toward quinolone antimicrobial agents, to determine genetic mutations in gyrA and parC, to screen for efflux-pump activity, and to screen the presence of plasmid-mediated quinolone resistance (PMQR) genes. Methods Forty-three K. pneumoniae isolates were confirmed phenotypically and genotypically by Vitek 2 system and species specific primers by PCR using the targeting rpo gene followed by sequencing. Antibiotic susceptibility test was carried out using disc diffusion method. Quinolone resistant isolates were subjected to ciprofloxacin MIC testing, and cartwheel method to screen for efflux pump activity. The presence of the plasmid mediated quinolone resistance genes qepA, qnrB, qnrS, and aac(6)Ib was tested by PCR. Sequencing of gyrA and parC was performed. Results We observed a high rate of resistance to ceftriaxone, gentamicin ciprofloxacin, and levofloxacin. Low rate of resistance was detected against amikacin and azithromycin. Ciprofloxacin MIC results revealed that 96.1% of the isolates had MICs >256 µg/mL, 83.4% had MICs >512 µg/mL while 34.6% had MIC >1024 µg/mL. Testing of isolates against ciprofloxacin mixed with EtBr at various concentrations resulted in decreased resistant. Sequencing results showed that Ser83Leu was the most common mutation in gyrA that was observed in all quinolone resistant isolates, followed by Asp87Asn. Ser80Ile mutation in parC was observed in 77.7% of the tested isolates. The prevalence of PMQR genes was 92.5% aac (6)-Ib, 51.8% qnrB, 40.7% qepA, and 37% qnrS. Conclusion Quinolone resistance is common in K. pneumoniae isolates in Baghdad. The frequent mutation in gyrA and parC, and the presence of PMQR genes is alarming.
Collapse
Affiliation(s)
- Sawsan Mohammed Kareem
- Branch of Biotechnology, Department of Biology, College of Science, University of Mustansiriyah, Baghdad, Iraq
| | - Israa M S Al-Kadmy
- Branch of Biotechnology, Department of Biology, College of Science, University of Mustansiriyah, Baghdad, Iraq.,Faculty of Science & Engineering, School of Engineering, University of Plymouth, Plymouth, PL4 8AA, UK
| | - Saba S Kazaal
- Branch of Biotechnology, Department of Biology, College of Science, University of Mustansiriyah, Baghdad, Iraq
| | - Alaa N Mohammed Ali
- Branch of Biotechnology, Department of Biology, College of Science, University of Mustansiriyah, Baghdad, Iraq
| | - Sarah Naji Aziz
- Branch of Biotechnology, Department of Biology, College of Science, University of Mustansiriyah, Baghdad, Iraq
| | - Rabab R Makharita
- Botany Department, Faculty of Science, Suez Canal University, Ismailia, 41522, Egypt
| | - Abdelazeem M Algammal
- Department of Bacteriology, Immunology and Mycology, Faculty of Veterinary Medicine, Suez Canal University, Ismailia, 41522, Egypt
| | - Salim Al-Rejaie
- Department of Pharmacology & Toxicology, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - Tapan Behl
- Chitkara College of Pharmacy, Chitkara University, Rajpura, Punjab, India
| | - Gaber El-Saber Batiha
- Department of Pharmacology and Therapeutics, Faculty of Veterinary Medicines, Damanhour University, Damanhour, 22511, Egypt
| | - Mohamed A El-Mokhtar
- Department of Medical Microbiology and Immunology, Faculty of Medicine, Assiut University, Assiut, 71515, Egypt
| | - Helal F Hetta
- Department of Medical Microbiology and Immunology, Faculty of Medicine, Assiut University, Assiut, 71515, Egypt.,Department of Internal Medicine, University of Cincinnati College of Medicine, Cincinnati, Ohio, USA
| |
Collapse
|
228
|
Kurittu P, Khakipoor B, Aarnio M, Nykäsenoja S, Brouwer M, Myllyniemi AL, Vatunen E, Heikinheimo A. Plasmid-Borne and Chromosomal ESBL/AmpC Genes in Escherichia coli and Klebsiella pneumoniae in Global Food Products. Front Microbiol 2021; 12:592291. [PMID: 33613476 PMCID: PMC7886708 DOI: 10.3389/fmicb.2021.592291] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2020] [Accepted: 01/14/2021] [Indexed: 01/09/2023] Open
Abstract
Plasmid-mediated extended-spectrum beta-lactamase (ESBL), AmpC, and carbapenemase producing Enterobacteriaceae, in particular Escherichia coli and Klebsiella pneumoniae, with potential zoonotic transmission routes, are one of the greatest threats to global health. The aim of this study was to investigate global food products as potential vehicles for ESBL/AmpC-producing bacteria and identify plasmids harboring resistance genes. We sampled 200 food products purchased from Finland capital region during fall 2018. Products originated from 35 countries from six continents and represented four food categories: vegetables (n = 60), fruits and berries (n = 50), meat (n = 60), and seafood (n = 30). Additionally, subsamples (n = 40) were taken from broiler meat. Samples were screened for ESBL/AmpC-producing Enterobacteriaceae and whole genome sequenced to identify resistance and virulence genes and sequence types (STs). To accurately identify plasmids harboring resistance and virulence genes, a hybrid sequence analysis combining long- and short-read sequencing was employed. Sequences were compared to previously published plasmids to identify potential epidemic plasmid types. Altogether, 14 out of 200 samples were positive for ESBL/AmpC-producing E. coli and/or K. pneumoniae. Positive samples were recovered from meat (18%; 11/60) and vegetables (5%; 3/60) but were not found from seafood or fruit. ESBL/AmpC-producing E. coli and/or K. pneumoniae was found in 90% (36/40) of broiler meat subsamples. Whole genome sequencing of selected isolates (n = 21) revealed a wide collection of STs, plasmid replicons, and genes conferring multidrug resistance. blaCTX–M–15-producing K. pneumoniae ST307 was identified in vegetable (n = 1) and meat (n = 1) samples. Successful IncFII plasmid type was recovered from vegetable and both IncFII and IncI1-Iγ types from meat samples. Hybrid sequence analysis also revealed chromosomally located beta-lactamase genes in two of the isolates and indicated similarity of food-derived plasmids to other livestock-associated sources and also to plasmids obtained from human clinical samples from various countries, such as IncI type plasmid harboring blaTEM–52C from a human urine sample obtained in the Netherlands which was highly similar to a plasmid obtained from broiler meat in this study. Results indicate certain foods contain bacteria with multidrug resistance and pose a possible risk to public health, emphasizing the importance of surveillance and the need for further studies on epidemiology of epidemic plasmids.
Collapse
Affiliation(s)
- Paula Kurittu
- Department of Food Hygiene and Environmental Health, Faculty of Veterinary Medicine, University of Helsinki, Helsinki, Finland
| | - Banafsheh Khakipoor
- Department of Food Hygiene and Environmental Health, Faculty of Veterinary Medicine, University of Helsinki, Helsinki, Finland
| | | | | | | | | | | | - Annamari Heikinheimo
- Department of Food Hygiene and Environmental Health, Faculty of Veterinary Medicine, University of Helsinki, Helsinki, Finland.,Finnish Food Authority, Seinäjoki, Finland
| |
Collapse
|
229
|
Guglielmino CJD, Kakkanat A, Forde BM, Rubenach S, Merone L, Stafford R, Graham RMA, Beatson SA, Jennison AV. Outbreak of multi-drug-resistant (MDR) Shigella flexneri in northern Australia due to an endemic regional clone acquiring an IncFII plasmid. Eur J Clin Microbiol Infect Dis 2021; 40:279-286. [PMID: 32888117 PMCID: PMC7473701 DOI: 10.1007/s10096-020-04029-w] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2020] [Accepted: 08/27/2020] [Indexed: 11/12/2022]
Abstract
Epidemiological surveillance of Shigella spp. in Australia is conducted to inform public health response. Multi-drug resistance has recently emerged as a contributing factor to sustained local transmission of Shigella spp. All data were collected as part of routine public health surveillance, and strains were whole-genome sequenced for further molecular characterisation. 108 patients with an endemic regional Shigella flexneri strain were identified between 2016 and 2019. The S. flexneri phylogroup 3 strain endemic to northern Australia acquired a multi-drug resistance conferring blaDHA plasmid, which has an IncFII plasmid backbone with virulence and resistance elements typically found in IncR plasmids. This is the first report of multi-drug resistance in Shigella sp. in Australia that is not associated with men who have sex with men. This strain caused an outbreak of multi-drug-resistant S. flexneri in northern Australia that disproportionality affects Aboriginal and Torres Strait Islander children. Community controlled public health action is recommended.
Collapse
Affiliation(s)
- Christine J D Guglielmino
- Public Health Microbiology, Queensland Health Forensic and Scientific Services, Brisbane, Australia.
| | - Asha Kakkanat
- Public Health Microbiology, Queensland Health Forensic and Scientific Services, Brisbane, Australia
| | - Brian M Forde
- School of Chemistry and Molecular Biosciences, University of Queensland, Brisbane, Australia
| | - Sally Rubenach
- Tropical Public Health Services, Queensland Health, Cairns, Australia
| | - Lea Merone
- Rural and Remote Clinical Support Unit, Apunipima Cape York Health Council, Cairns, Australia
| | - Russell Stafford
- Communicable Diseases Unit, Queensland Health, Brisbane, Australia
| | - Rikki M A Graham
- Public Health Microbiology, Queensland Health Forensic and Scientific Services, Brisbane, Australia
| | - Scott A Beatson
- School of Chemistry and Molecular Biosciences, University of Queensland, Brisbane, Australia
| | - Amy V Jennison
- Public Health Microbiology, Queensland Health Forensic and Scientific Services, Brisbane, Australia
| |
Collapse
|
230
|
Indirect Selection against Antibiotic Resistance via Specialized Plasmid-Dependent Bacteriophages. Microorganisms 2021; 9:microorganisms9020280. [PMID: 33572937 PMCID: PMC7911639 DOI: 10.3390/microorganisms9020280] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2021] [Revised: 01/15/2021] [Accepted: 01/26/2021] [Indexed: 12/24/2022] Open
Abstract
Antibiotic resistance genes of important Gram-negative bacterial pathogens are residing in mobile genetic elements such as conjugative plasmids. These elements rapidly disperse between cells when antibiotics are present and hence our continuous use of antimicrobials selects for elements that often harbor multiple resistance genes. Plasmid-dependent (or male-specific or, in some cases, pilus-dependent) bacteriophages are bacterial viruses that infect specifically bacteria that carry certain plasmids. The introduction of these specialized phages into a plasmid-abundant bacterial community has many beneficial effects from an anthropocentric viewpoint: the majority of the plasmids are lost while the remaining plasmids acquire mutations that make them untransferable between pathogens. Recently, bacteriophage-based therapies have become a more acceptable choice to treat multi-resistant bacterial infections. Accordingly, there is a possibility to utilize these specialized phages, which are not dependent on any particular pathogenic species or strain but rather on the resistance-providing elements, in order to improve or enlengthen the lifespan of conventional antibiotic approaches. Here, we take a snapshot of the current knowledge of plasmid-dependent bacteriophages.
Collapse
|
231
|
Darphorn TS, Bel K, Koenders-van Sint Anneland BB, Brul S, Ter Kuile BH. Antibiotic resistance plasmid composition and architecture in Escherichia coli isolates from meat. Sci Rep 2021; 11:2136. [PMID: 33483623 PMCID: PMC7822866 DOI: 10.1038/s41598-021-81683-w] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2020] [Accepted: 01/08/2021] [Indexed: 01/30/2023] Open
Abstract
Resistance plasmids play a crucial role in the transfer of antimicrobial resistance from the veterinary sector to human healthcare. In this study plasmids from foodborne Escherichia coli isolates with a known (ES)BL or tetracycline resistance were sequenced entirely with short- and long-read technologies to obtain insight into their composition and to identify driving factors for spreading. Resistant foodborne E. coli isolates often contained several plasmids coding for resistance to various antimicrobials. Most plasmids were large and contained multiple resistance genes in addition to the selected resistance gene. The majority of plasmids belonged to the IncI, IncF and IncX incompatibility groups. Conserved and variable regions could be distinguished in each of the plasmid groups. Clusters containing resistance genes were located in the variable regions. Tetracycline and (extended spectrum) beta-lactamase resistance genes were each situated in separate clusters, but sulphonamide, macrolide and aminoglycoside formed one cluster and lincosamide and aminoglycoside another. In most plasmids, addiction systems were found to maintain presence in the cell.
Collapse
Affiliation(s)
- Tania S. Darphorn
- grid.7177.60000000084992262Laboratory for Molecular Biology and Microbial Food Safety, Swammerdam Institute for Life Sciences, University of Amsterdam, Science Park 904, 1098 XH Amsterdam, The Netherlands
| | - Keshia Bel
- grid.7177.60000000084992262Laboratory for Molecular Biology and Microbial Food Safety, Swammerdam Institute for Life Sciences, University of Amsterdam, Science Park 904, 1098 XH Amsterdam, The Netherlands ,grid.4818.50000 0001 0791 5666Present Address: Wageningen Food Safety Research, Wageningen University and Research, Postbus 230, 6700 AE Wageningen, The Netherlands
| | - Belinda B. Koenders-van Sint Anneland
- grid.7177.60000000084992262Laboratory for Molecular Biology and Microbial Food Safety, Swammerdam Institute for Life Sciences, University of Amsterdam, Science Park 904, 1098 XH Amsterdam, The Netherlands
| | - Stanley Brul
- grid.7177.60000000084992262Laboratory for Molecular Biology and Microbial Food Safety, Swammerdam Institute for Life Sciences, University of Amsterdam, Science Park 904, 1098 XH Amsterdam, The Netherlands
| | - Benno H. Ter Kuile
- grid.7177.60000000084992262Laboratory for Molecular Biology and Microbial Food Safety, Swammerdam Institute for Life Sciences, University of Amsterdam, Science Park 904, 1098 XH Amsterdam, The Netherlands ,grid.435742.30000 0001 0726 7822Netherlands Food and Consumer Product Safety Authority, Office for Risk Assessment, Utrecht, The Netherlands
| |
Collapse
|
232
|
Anyanwu MU, Okpala COR, Chah KF, Shoyinka VS. Prevalence and Traits of Mobile Colistin Resistance Gene Harbouring Isolates from Different Ecosystems in Africa. BIOMED RESEARCH INTERNATIONAL 2021; 2021:6630379. [PMID: 33553426 PMCID: PMC7847340 DOI: 10.1155/2021/6630379] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Revised: 01/05/2021] [Accepted: 01/13/2021] [Indexed: 12/13/2022]
Abstract
The mobile colistin resistance (mcr) gene threatens the efficacy of colistin (COL), a last-line antibiotic used in treating deadly infections. For more than six decades, COL is used in livestock around the globe, including Africa. The use of critically important antimicrobial agents, like COL, is largely unregulated in Africa, and many other factors militate against effective antimicrobial stewardship in the continent. Currently, ten mcr genes (mcr-1 to mcr-10) have been described. In Africa, mcr-1, mcr-2, mcr-3, mcr-5, mcr-8, and mcr-9 have been detected in isolates from humans, animals, foods of animal origin, and the environment. These genes are harboured by Escherichia coli, Klebsiella, Salmonella, Citrobacter, Enterobacter, Pseudomonas, Aeromonas, Alcaligenes, and Acinetobacter baumannii isolates. Different conjugative and nonconjugative plasmids form the backbone for mcr in these isolates; however, mcr-1 and mcr-3 have also been integrated into the chromosome of some African strains. Insertion sequences (ISs) (especially ISApl1), either located upstream or downstream of mcr, class 1 integrons, and transposons, are drivers of mcr in Africa. Genes coding multi/extensive drug resistance and virulence are colocated with mcr on plasmids in African strains. Transmission of mcr to/among African strains is nonclonal. Contact with mcr-habouring reservoirs, the consumption of contaminated foods of animal/plant origin or fluid, animal-/plant-based food trade and travel serve as exportation, importation, and transmission routes of mcr gene-containing bacteria in Africa. Herein, the current status of plasmid-mediated COL resistance in humans, food-producing animals, foods of animal origin, and environment in Africa is discussed.
Collapse
Affiliation(s)
- Madubuike Umunna Anyanwu
- Department of Veterinary Pathology and Microbiology, University of Nigeria, Nsukka 400001, Nigeria
| | - Charles Odilichukwu R. Okpala
- Department of Functional Food Products Development, Faculty of Biotechnology and Food Science, Wroclaw University of Environmental and Life Sciences, Wroclaw, Poland
| | - Kennedy Foinkfu Chah
- Department of Veterinary Pathology and Microbiology, University of Nigeria, Nsukka 400001, Nigeria
| | | |
Collapse
|
233
|
Genetic Features of Extended-Spectrum β-Lactamase-Producing Escherichia coli from Poultry in Mayabeque Province, Cuba. Antibiotics (Basel) 2021; 10:antibiotics10020107. [PMID: 33499392 PMCID: PMC7910960 DOI: 10.3390/antibiotics10020107] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2020] [Revised: 01/13/2021] [Accepted: 01/17/2021] [Indexed: 02/07/2023] Open
Abstract
A total of 434 poultry cloacal samples were collected from seven different farms in different years (2013–2015) in the Cuban province of Mayabeque and analyzed for the presence of third-generation cephalosporin-resistant Escherichia coli (3GC-R-Ec). Sixty-two 3GC-R-Ec isolates were recovered in total from the farms, with detection rates of 2.9% in 2013, 10.3% in 2014, and 28.7% in 2015. Characterization of 32 3GC-R-Ec isolates revealed the presence of the extended-spectrum β-lactamase (ESBL) genes blaCTX-M-1 (n = 27), blaCTX-M-15 (n = 4), and blaCTX-M-1 together with blaLAP-2 (n = 1). The isolates also contained different proportions of genes conferring decreased susceptibility to sulfonamides (sul1, sul2, sul3), trimethoprim (dfrA1, dfrA7, dfrA12, dfrA14, dfrA17), tetracyclines (tet(A), tet(B)), aminoglycosides (aac(6′)-Ib-cr, strA, strB), chloramphenicol (cmlA1, floR), macrolides (mph(A), mph(D)), and quinolones (qnrS, qnrB, aac(6′)-Ib-cr) as well as mutations in the fluoroquinolone-resistance determining regions of GyrA (S83L, D87N, D87Y) and ParC (S80I, E84G). The isolates belonged to 23 different sequence types and to phylogroups A (n = 25), B1 (n = 5), and D (n = 2), and they contained plasmid-associated incompatibility groups FII, X1, HI1, HI2, N, FIA, and FIB. These findings reveal a genetically diverse population of multiresistant ESBL-producing E. coli in poultry farms in Cuba, which suggests multiple sources of contamination and the acquisition of antibiotic resistance genes.
Collapse
|
234
|
Beyond horizontal gene transfer: the role of plasmids in bacterial evolution. Nat Rev Microbiol 2021; 19:347-359. [PMID: 33469168 DOI: 10.1038/s41579-020-00497-1] [Citation(s) in RCA: 226] [Impact Index Per Article: 56.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/07/2020] [Indexed: 12/27/2022]
Abstract
Plasmids have a key role in bacterial ecology and evolution because they mobilize accessory genes by horizontal gene transfer. However, recent studies have revealed that the evolutionary impact of plasmids goes above and beyond their being mere gene delivery platforms. Plasmids are usually kept at multiple copies per cell, producing islands of polyploidy in the bacterial genome. As a consequence, the evolution of plasmid-encoded genes is governed by a set of rules different from those affecting chromosomal genes, and these rules are shaped by unusual concepts in bacterial genetics, such as genetic dominance, heteroplasmy or segregational drift. In this Review, we discuss recent advances that underscore the importance of plasmids in bacterial ecology and evolution beyond horizontal gene transfer. We focus on new evidence that suggests that plasmids might accelerate bacterial evolution, mainly by promoting the evolution of plasmid-encoded genes, but also by enhancing the adaptation of their host chromosome. Finally, we integrate the most relevant theoretical and empirical studies providing a global understanding of the forces that govern plasmid-mediated evolution in bacteria.
Collapse
|
235
|
Tsunoda R, Usui M, Tagaki C, Fukuda A, Boonla C, Anomasiri W, Sukpanyatham N, Akapelwa ML, Nakajima C, Tamura Y, Suzuki Y. Genetic characterization of coliform bacterial isolates from environmental water in Thailand. J Infect Chemother 2021; 27:722-728. [PMID: 33468426 DOI: 10.1016/j.jiac.2020.12.023] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2020] [Revised: 12/21/2020] [Accepted: 12/24/2020] [Indexed: 10/22/2022]
Abstract
INTRODUCTION In contrast to the study in other part of the world, information about characteristics of plasmids carrying antimicrobial resistance genes (ARGs) in Enterobacteriaceae derived from environmental water in tropical Asian countries including Thailand is limited. This study, therefore, aimed to gain insight into genetic information of antimicrobial resistance in environmental water in Thailand. METHODS Coliform bacteria were isolated from environmental water collected at 20 locations in Thailand and identified. Then, susceptibility profiles to ampicillin, cefazoline, cefotaxime, kanamycin, ciprofloxacin, sulfamethoxazole, tetracycline, and nalidixic acid were assessed. In addition, antimicrobial resistant genes integrons, and replicon types were analyzed. And furthermore, plasmids carrying blaTEM and tetM were identified by S1-PFGE analysis and confirmed transmissibility by transconjugation experiments. RESULTS In 130 coliform bacteria isolated, 89 were resistant to cefazoline while 41 isolates were susceptible. Cefazoline-resistant coliform bacteria were found to be significantly resistant to cefotaxime and tetracycline as compared to susceptible isolates. Hence, blaTEM and tetM correlating with β-lactam antibiotics and tetracycline, respectively, were analyzed found to co-localize on the IncFrepB plasmids in isolates from pig farms' wastewater by S1-PFGE analysis. And furthermore, transmissibility of the plasmids was confirmed. CONCLUSIONS Results obtained in this study suggested that ARGs in coliform bacteria may have been spreading on the farm via IncFrepB plasmids. Hence, appropriate use of antimicrobials and good hygiene management on the farm are required to prevent the emergence and spread of resistant bacteria.
Collapse
Affiliation(s)
- Risa Tsunoda
- Division of Bioresources, Research Center for Zoonosis Control, Hokkaido University, Sapporo, Japan
| | - Masaru Usui
- Laboratory of Food Microbiology and Food Safety, School of Veterinary Medicine, Rakuno Gakuen University, Ebetsu, Japan.
| | - Chie Tagaki
- Laboratory of Food Microbiology and Food Safety, School of Veterinary Medicine, Rakuno Gakuen University, Ebetsu, Japan
| | - Akira Fukuda
- Laboratory of Food Microbiology and Food Safety, School of Veterinary Medicine, Rakuno Gakuen University, Ebetsu, Japan
| | - Chanchai Boonla
- Department of Biochemistry, Chulalongkorn University, Bangkok, Thailand
| | - Wilai Anomasiri
- Department of Biochemistry, Chulalongkorn University, Bangkok, Thailand
| | - Nop Sukpanyatham
- Quality Vet Product Co., Ltd, Klongsamwa District, Bangkok, Thailand
| | - Mwangala Lonah Akapelwa
- Division of Bioresources, Research Center for Zoonosis Control, Hokkaido University, Sapporo, Japan
| | - Chie Nakajima
- Division of Bioresources, Research Center for Zoonosis Control, Hokkaido University, Sapporo, Japan; International Collaboration Unit, Research Center for Zoonosis Control, Hokkaido University, Sapporo, Hokkaido, Japan
| | - Yutaka Tamura
- Laboratory of Food Microbiology and Food Safety, School of Veterinary Medicine, Rakuno Gakuen University, Ebetsu, Japan.
| | - Yasuhiko Suzuki
- Division of Bioresources, Research Center for Zoonosis Control, Hokkaido University, Sapporo, Japan; International Collaboration Unit, Research Center for Zoonosis Control, Hokkaido University, Sapporo, Hokkaido, Japan.
| |
Collapse
|
236
|
Gazal LEDS, Medeiros LP, Dibo M, Nishio EK, Koga VL, Gonçalves BC, Grassotti TT, de Camargo TCL, Pinheiro JJ, Vespero EC, de Brito KCT, de Brito BG, Nakazato G, Kobayashi RKT. Detection of ESBL/AmpC-Producing and Fosfomycin-Resistant Escherichia coli From Different Sources in Poultry Production in Southern Brazil. Front Microbiol 2021; 11:604544. [PMID: 33505374 PMCID: PMC7829455 DOI: 10.3389/fmicb.2020.604544] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2020] [Accepted: 12/08/2020] [Indexed: 12/30/2022] Open
Abstract
This study discussed the use of antimicrobials in the commercial chicken production system and the possible factors influencing the presence of Extended-spectrum β-lactamase (ESBL)/AmpC producers strains in the broiler production chain. The aim of this study was to perform longitudinal monitoring of ESBL-producing and fosfomycin-resistant Escherichia coli from poultry farms in southern Brazil (Paraná and Rio Grande do Sul states) and determine the possible critical points that may be reservoirs for these strains. Samples of poultry litter, cloacal swabs, poultry feed, water, and beetles (Alphitobius sp.) were collected during three distinct samplings. Phenotypic and genotypic tests were performed for characterization of antimicrobial resistant strains. A total of 117 strains were isolated and 78 (66%) were positive for ESBL production. The poultry litter presented ESBL positive strains in all three sampled periods, whereas the cloacal swab presented positive strains only from the second period. The poultry litter represents a significant risk factor mainly at the beginning poultry production (odds ratio 6.43, 95% confidence interval 1-41.21, p < 0.05). All beetles presented ESBL positive strains. The predominant gene was bla CTX-M group 2, which occurred in approximately 55% of the ESBL-producing E. coli. The cit gene was found in approximately 13% of the ESBL-producing E. coli as AmpC type determinants. A total of 19 out of 26 fosfomycin-resistant strains showed the fosA3 gene, all of which produced ESBL. The correlation between fosA3 and bla CTX-M group 1 (bla CTX-M55 ) genes was significant among ESBL-producing E. coli isolated from Paraná (OR 3.66, 95% CI 1.9-9.68) and these genetic determinants can be transmitted by conjugation to broiler chicken microbiota strains. Our data revealed that poultry litter and beetles were critical points during poultry production and the presence of fosfomycin-resistant strains indicate the possibility of risks associated with the use of this antimicrobial during production. Furthermore, the genetic determinants encoding CTX-M and fosA3 enzymes can be transferred to E. coli strains from broiler chicken microbiota, thereby creating a risk to public health.
Collapse
Affiliation(s)
| | - Leonardo Pinto Medeiros
- Department of Microbiology, Biological Sciences Center, State University of Londrina, Londrina, Brazil
| | - Miriam Dibo
- Department of Microbiology, Biological Sciences Center, State University of Londrina, Londrina, Brazil
| | - Erick Kenji Nishio
- Department of Microbiology, Biological Sciences Center, State University of Londrina, Londrina, Brazil
| | - Vanessa Lumi Koga
- Department of Microbiology, Biological Sciences Center, State University of Londrina, Londrina, Brazil
| | - Bruna Carolina Gonçalves
- Department of Microbiology, Biological Sciences Center, State University of Londrina, Londrina, Brazil
| | - Tiela Trapp Grassotti
- Postgraduate Program in Animal Health, Avian Health Laboratory, Veterinary Research Institute Desidério Finamor, Agricultural Diagnosis and Research Department, Secretariat of Agriculture Livestock Rural and Development, Eldorado do Sul, Brazil
| | - Taiara Carolaine Leal de Camargo
- Postgraduate Program in Animal Health, Avian Health Laboratory, Veterinary Research Institute Desidério Finamor, Agricultural Diagnosis and Research Department, Secretariat of Agriculture Livestock Rural and Development, Eldorado do Sul, Brazil
| | - João Juliano Pinheiro
- Postgraduate Program in Animal Health, Avian Health Laboratory, Veterinary Research Institute Desidério Finamor, Agricultural Diagnosis and Research Department, Secretariat of Agriculture Livestock Rural and Development, Eldorado do Sul, Brazil
| | - Eliana Carolina Vespero
- Department of Pathology, Clinical Analysis and Toxicology, Health Sciences Center, State University of Londrina, Londrina, Brazil
| | - Kelly Cristina Tagliari de Brito
- Postgraduate Program in Animal Health, Avian Health Laboratory, Veterinary Research Institute Desidério Finamor, Agricultural Diagnosis and Research Department, Secretariat of Agriculture Livestock Rural and Development, Eldorado do Sul, Brazil
| | - Benito Guimarães de Brito
- Postgraduate Program in Animal Health, Avian Health Laboratory, Veterinary Research Institute Desidério Finamor, Agricultural Diagnosis and Research Department, Secretariat of Agriculture Livestock Rural and Development, Eldorado do Sul, Brazil
| | - Gerson Nakazato
- Department of Microbiology, Biological Sciences Center, State University of Londrina, Londrina, Brazil
| | | |
Collapse
|
237
|
Foster-Nyarko E, Alikhan NF, Ikumapayi UN, Sarwar G, Okoi C, Tientcheu PEM, Defernez M, O'Grady J, Antonio M, Pallen MJ. Genomic diversity of Escherichia coli from healthy children in rural Gambia. PeerJ 2021; 9:e10572. [PMID: 33505796 PMCID: PMC7796664 DOI: 10.7717/peerj.10572] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2020] [Accepted: 11/23/2020] [Indexed: 01/21/2023] Open
Abstract
Little is known about the genomic diversity of Escherichia coli in healthy children from sub-Saharan Africa, even though this is pertinent to understanding bacterial evolution and ecology and their role in infection. We isolated and whole-genome sequenced up to five colonies of faecal E. coli from 66 asymptomatic children aged three-to-five years in rural Gambia (n = 88 isolates from 21 positive stools). We identified 56 genotypes, with an average of 2.7 genotypes per host. These were spread over 37 seven-allele sequence types and the E. coli phylogroups A, B1, B2, C, D, E, F and Escherichia cryptic clade I. Immigration events accounted for three-quarters of the diversity within our study population, while one-quarter of variants appeared to have arisen from within-host evolution. Several isolates encode putative virulence factors commonly found in Enteropathogenic and Enteroaggregative E. coli, and 53% of the isolates encode resistance to three or more classes of antimicrobials. Thus, resident E. coli in these children may constitute reservoirs of virulence- and resistance-associated genes. Moreover, several study strains were closely related to isolates that caused disease in humans or originated from livestock. Our results suggest that within-host evolution plays a minor role in the generation of diversity compared to independent immigration and the establishment of strains among our study population. Also, this study adds significantly to the number of commensal E. coli genomes, a group that has been traditionally underrepresented in the sequencing of this species.
Collapse
Affiliation(s)
- Ebenezer Foster-Nyarko
- Quadram Institute Bioscience, Norwich Research Park, Norfolk, United Kingdom.,Medical Research Council Unit The Gambia at the London School of Hygiene and Tropical Medicine, Fajara, The Gambia
| | | | - Usman N Ikumapayi
- Medical Research Council Unit The Gambia at the London School of Hygiene and Tropical Medicine, Fajara, The Gambia
| | - Golam Sarwar
- Medical Research Council Unit The Gambia at the London School of Hygiene and Tropical Medicine, Fajara, The Gambia
| | - Catherine Okoi
- Medical Research Council Unit The Gambia at the London School of Hygiene and Tropical Medicine, Fajara, The Gambia
| | | | - Marianne Defernez
- Quadram Institute Bioscience, Norwich Research Park, Norfolk, United Kingdom
| | - Justin O'Grady
- Quadram Institute Bioscience, Norwich Research Park, Norfolk, United Kingdom
| | - Martin Antonio
- Medical Research Council Unit The Gambia at the London School of Hygiene and Tropical Medicine, Fajara, The Gambia.,Microbiology and Infection Unit, Warwick Medical School, University of Warwick, Coventry, United Kingdom
| | - Mark J Pallen
- Quadram Institute Bioscience, Norwich Research Park, Norfolk, United Kingdom.,School of Veterinary Medicine, University of Surrey, Surrey, United Kingdom
| |
Collapse
|
238
|
Braz VS, Melchior K, Moreira CG. Escherichia coli as a Multifaceted Pathogenic and Versatile Bacterium. Front Cell Infect Microbiol 2020; 10:548492. [PMID: 33409157 PMCID: PMC7779793 DOI: 10.3389/fcimb.2020.548492] [Citation(s) in RCA: 73] [Impact Index Per Article: 14.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2020] [Accepted: 11/17/2020] [Indexed: 12/20/2022] Open
Abstract
Genetic plasticity promotes evolution and a vast diversity in Escherichia coli varying from avirulent to highly pathogenic strains, including the emergence of virulent hybrid microorganism. This ability also contributes to the emergence of antimicrobial resistance. These hybrid pathogenic E. coli (HyPEC) are emergent threats, such as O104:H4 from the European outbreak in 2011, aggregative adherent bacteria with the potent Shiga-toxin. Here, we briefly revisited the details of these E. coli classic and hybrid pathogens, the increase in antimicrobial resistance in the context of a genetically empowered multifaceted and versatile bug and the growing need to advance alternative therapies to fight these infections.
Collapse
Affiliation(s)
- Vânia Santos Braz
- Department of Biological Sciences, School of Pharmaceutical Sciences, São Paulo State University (UNESP), Araraquara, Brazil
| | - Karine Melchior
- Department of Biological Sciences, School of Pharmaceutical Sciences, São Paulo State University (UNESP), Araraquara, Brazil
| | - Cristiano Gallina Moreira
- Department of Biological Sciences, School of Pharmaceutical Sciences, São Paulo State University (UNESP), Araraquara, Brazil
| |
Collapse
|
239
|
Findlay J, Mounsey O, Lee WWY, Newbold N, Morley K, Schubert H, Gould VC, Cogan TA, Reyher KK, Avison MB. Molecular Epidemiology of Escherichia coli Producing CTX-M and pAmpC β-Lactamases from Dairy Farms Identifies a Dominant Plasmid Encoding CTX-M-32 but No Evidence for Transmission to Humans in the Same Geographical Region. Appl Environ Microbiol 2020; 87:e01842-20. [PMID: 33067197 PMCID: PMC7755243 DOI: 10.1128/aem.01842-20] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2020] [Accepted: 10/08/2020] [Indexed: 12/28/2022] Open
Abstract
Third-generation cephalosporin resistance (3GC-R) in Escherichia coli is a rising problem in human and farmed-animal populations. We conducted whole-genome sequencing analysis of 138 representative 3GC-R isolates previously collected from dairy farms in southwest England and confirmed by PCR to carry acquired 3GC-R genes. This analysis identified blaCTX-M (131 isolates encoding CTX-M-1, -14, -15, -and 32 and the novel variant CTX-M-214), blaCMY-2 (6 isolates), and blaDHA-1 (1 isolate). A highly conserved plasmid was identified in 73 isolates, representing 27 E. coli sequence types. This novel ∼220-kb IncHI2 plasmid carrying blaCTX-M-32 was sequenced to closure and designated pMOO-32. It was found experimentally to be stable in cattle and human transconjugant E. coli even in the absence of selective pressure and was found by multiplex PCR to be present on 26 study farms representing a remarkable range of transmission over 1,500 square kilometers. However, the plasmid was not found among human urinary E. coli isolates we recently characterized from people living in the same geographical location, collected in parallel with farm sampling. There were close relatives of two blaCTX-M plasmids circulating among eight human and two cattle isolates, and a closely related blaCMY-2 plasmid was found in one cattle and one human isolate. However, phylogenetic evidence of recent sharing of 3GC-R strains between farms and humans in the same region was not found.IMPORTANCE Third-generation cephalosporins (3GCs) are critically important antibacterials, and 3GC resistance (3GC-R) threatens human health, particularly in the context of opportunistic pathogens such as Escherichia coli There is some evidence for zoonotic transmission of 3GC-R E. coli through food, but little work has been done examining possible transmission via interaction of people with the local near-farm environment. We characterized acquired 3GC-R E. coli found on dairy farms in a geographically restricted region of the United Kingdom and compared these with E. coli from people living in the same region, collected in parallel. While there is strong evidence for recent farm-to-farm transmission of 3GC-R strains and plasmids-including one epidemic plasmid that has a remarkable capacity to be transmitted-there was no evidence that 3GC-R E. coli found on study farms had a significant impact on circulating 3GC-R E. coli strains or plasmids in the local human population.
Collapse
Affiliation(s)
- Jacqueline Findlay
- School of Cellular & Molecular Medicine, Biomedical Sciences Building, University of Bristol, Bristol, United Kingdom
| | - Oliver Mounsey
- School of Cellular & Molecular Medicine, Biomedical Sciences Building, University of Bristol, Bristol, United Kingdom
| | - Winnie W Y Lee
- School of Cellular & Molecular Medicine, Biomedical Sciences Building, University of Bristol, Bristol, United Kingdom
| | - Nerissa Newbold
- School of Cellular & Molecular Medicine, Biomedical Sciences Building, University of Bristol, Bristol, United Kingdom
- Bristol Veterinary School, University of Bristol, Langford, United Kingdom
| | - Katy Morley
- Bristol Veterinary School, University of Bristol, Langford, United Kingdom
| | - Hannah Schubert
- Bristol Veterinary School, University of Bristol, Langford, United Kingdom
| | - Virginia C Gould
- School of Cellular & Molecular Medicine, Biomedical Sciences Building, University of Bristol, Bristol, United Kingdom
- Bristol Veterinary School, University of Bristol, Langford, United Kingdom
| | - Tristan A Cogan
- Bristol Veterinary School, University of Bristol, Langford, United Kingdom
| | - Kristen K Reyher
- Bristol Veterinary School, University of Bristol, Langford, United Kingdom
| | - Matthew B Avison
- School of Cellular & Molecular Medicine, Biomedical Sciences Building, University of Bristol, Bristol, United Kingdom
| |
Collapse
|
240
|
Cho GS, Stein M, Fiedler G, Igbinosa EO, Koll LP, Brinks E, Rathje J, Neve H, Franz CMAP. Polyphasic study of antibiotic-resistant enterobacteria isolated from fresh produce in Germany and description of Enterobacter vonholyi sp. nov. isolated from marjoram and Enterobacter dykesii sp. nov. isolated from mung bean sprout. Syst Appl Microbiol 2020; 44:126174. [PMID: 33370657 DOI: 10.1016/j.syapm.2020.126174] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2020] [Revised: 12/02/2020] [Accepted: 12/04/2020] [Indexed: 11/29/2022]
Abstract
Forty-two antibiotic-resistant enterobacteria strains were isolated from fresh produce obtained from the northern German retail market. A polyphasic characterization based on both phenotypic and genotypic methods was used to identify predominant strains as Citrobacter (C.) gillenii, C. portucalensis, Enterobacter (En.) ludwigii, Escherichia (E.) coli and Klebsiella (K.) pneumoniae. 38.1% of the enterobacteria strains were resistant to tetracycline, while 23.8% and 9.5% of strains were resistant to streptomycin and chloramphenicol, respectively. A high percentage of Klebsiella (100%), Enterobacter (57.1%) and Citrobacter (42.9%) strains were also resistant to ampicillin, with some strains showing multiple resistances. For unequivocal species identification, the genomes of thirty strains were sequenced. Multilocus sequence analysis, average nucleotide identity and digital DNA-DNA hybridization showed that Enterobacter strains E1 and E13 were clearly clustered apart from Enterobacter species type strains below the species delineation cutoff values. Thus, strains E1T (=DSM 111347T, LMG 31875T) represents a novel species proposed as Enterobacter dykesii sp. nov., while strain E13T (=DSM 110788T, LMG 31764T) represent a novel species proposed as Enterobacter vonholyi sp. nov. Strains often possessed different serine β-lactamase genes, tet(A) and tet(D) tetracycline resistance genes and other acquired antibiotic resistance genes. Typical plasmid replicon types were determined. This study thus accurately identified the enterobacteria from fresh produce as species belonging to the genera Citrobacter, Enterobacter, Escherichia and Klebsiella, but also showed that these can carry potentially transferable antibiotic resistance genes and may thus contribute to the spread of these via the food route.
Collapse
Affiliation(s)
- Gyu-Sung Cho
- Department of Microbiology and Biotechnology, Max Rubner-Institut Kiel, Hermann-Weigmann-Str. 1, 24103 Kiel, Germany
| | - Maria Stein
- Department of Microbiology and Biotechnology, Max Rubner-Institut Kiel, Hermann-Weigmann-Str. 1, 24103 Kiel, Germany
| | - Gregor Fiedler
- Department of Microbiology and Biotechnology, Max Rubner-Institut Kiel, Hermann-Weigmann-Str. 1, 24103 Kiel, Germany
| | - Etinosa O Igbinosa
- Department of Microbiology and Biotechnology, Max Rubner-Institut Kiel, Hermann-Weigmann-Str. 1, 24103 Kiel, Germany; Department of Microbiology, Faculty of Life Sciences, University of Benin, Benin City, Nigeria
| | - Linnéa Philine Koll
- Department of Microbiology and Biotechnology, Max Rubner-Institut Kiel, Hermann-Weigmann-Str. 1, 24103 Kiel, Germany
| | - Erik Brinks
- Department of Microbiology and Biotechnology, Max Rubner-Institut Kiel, Hermann-Weigmann-Str. 1, 24103 Kiel, Germany
| | - Jana Rathje
- Department of Microbiology and Biotechnology, Max Rubner-Institut Kiel, Hermann-Weigmann-Str. 1, 24103 Kiel, Germany
| | - Horst Neve
- Department of Microbiology and Biotechnology, Max Rubner-Institut Kiel, Hermann-Weigmann-Str. 1, 24103 Kiel, Germany
| | - Charles M A P Franz
- Department of Microbiology and Biotechnology, Max Rubner-Institut Kiel, Hermann-Weigmann-Str. 1, 24103 Kiel, Germany.
| |
Collapse
|
241
|
Genomic Analysis of CTX-M-Group-1-Producing Extraintestinal Pathogenic E. coli (ExPEc) from Patients with Urinary Tract Infections (UTI) from Colombia. Antibiotics (Basel) 2020; 9:antibiotics9120899. [PMID: 33322118 PMCID: PMC7763464 DOI: 10.3390/antibiotics9120899] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2020] [Revised: 11/25/2020] [Accepted: 11/27/2020] [Indexed: 12/20/2022] Open
Abstract
Background: The dissemination of the uropathogenic O25b-ST131 Escherichia coli clone constitutes a threat to public health. We aimed to determine the circulation of E. coli strains belonging to O25b:H4-B2-ST131 and the H30-Rx epidemic subclone causing hospital and community-acquired urinary tract infections (UTI) in Colombia. Methods: Twenty-six nonduplicate, CTX-M group-1-producing isolates causing UTI in the hospital and community were selected for this study. Results: Twenty-two E. coli isolates harboring CTX-M-15, one CTX-M-3, and three CTX-M-55 were identified. Multilocus Sequence Typing (MLST) showed a variety of sequence types (STs), among which, ST131, ST405, and ST648 were reported as epidemic clones. All the E. coli ST131 sequences carried CTX-M-15, from which 80% belonged to the O25b:H4-B2 and H30-Rx pandemic subclones and were associated with virulence factors iss, iha, and sat. E. coli isolates (23/26) were resistant to ciprofloxacin and associated with amino acid substitutions in quinolone resistance-determining regions (QRDR). We detected two carbapenem-resistant E. coli isolates, one coproducing CTX-M-15, KPC-2, and NDM-1 while the other presented mutations in ompC. Additionally, one isolate harbored the gene mcr-1. Conclusions: Our study revealed the circulation of the E. coli ST131, O25b:H4-B2-H30-Rx subclone, harboring CTX-M-15, QRDR mutations, and other resistant genes. The association of the H30-Rx subclone with sepsis and rapid dissemination warrants attention from the public health and infections control.
Collapse
|
242
|
Girlich D, Bonnin RA, Naas T. Occurrence and Diversity of CTX-M-Producing Escherichia coli From the Seine River. Front Microbiol 2020; 11:603578. [PMID: 33362749 PMCID: PMC7755597 DOI: 10.3389/fmicb.2020.603578] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2020] [Accepted: 11/09/2020] [Indexed: 12/23/2022] Open
Abstract
CTX-M-producing Escherichia coli are spreading since 1999 both in clinical and in community settings. Environmental samples such as rivers have also been pointed out as being vectors for ESBL producers. In this report, we have investigated the presence and the diversity of CTX-M-producing E. coli isolates in two samplings of the Seine River (next to Notre Dame), Paris France, performed in June 2016 and 2017. The total number of bacteria growing on the selective ChromID ESBL agar was 3.1 × 105 cfu/L (23.8% of all growing bacteria) in 2016, whereas it was 100-fold lower in 2017 (3 × 103 cfu/L; 8.3% of all growing bacteria). However, among them, the prevalence of ESBL-producing E. coli increased from <0.1 to 1.1% in one-year. ESBLs were exclusively of the CTX-M-type: CTX-M-1 (n = 5), CTX-M-15 (n = 7), CTX-M-14 (n = 1), and CTX-M-27 (n = 2). The isolates belonged to several multi locus sequence types, and a wide diversity of incompatibility groups of plasmids were identified in those E. coli isolates. The occurrence and diversity of E. coli isolates belonging to many clones and producing many CTX-M-variants have been identified in our study. The presence of these bacteria in rivers that are open again for recreational usage (swimming) is worrying as it may contribute to further dissemination of ESBL producers in the community.
Collapse
Affiliation(s)
- Delphine Girlich
- Team Resist, UMR1184, LabEx Lermit, Bacteriology-Hygiene unit, APHP, Hôpital Bicêtre, Université Paris-Saclay, Le Kremlin-Bicêtre, France
| | - Rémy A Bonnin
- Team Resist, UMR1184, LabEx Lermit, Bacteriology-Hygiene unit, APHP, Hôpital Bicêtre, Université Paris-Saclay, Le Kremlin-Bicêtre, France
| | - Thierry Naas
- Team Resist, UMR1184, LabEx Lermit, Bacteriology-Hygiene unit, APHP, Hôpital Bicêtre, Université Paris-Saclay, Le Kremlin-Bicêtre, France
| |
Collapse
|
243
|
Garcia-Fulgueiras V, Magallanes C, Reyes V, Cayota C, Galiana A, Vieytes M, Vignoli R, Márquez C. In Vivo High Plasticity of Multi-Drug Resistant ST258 Klebsiella pneumoniae. Microb Drug Resist 2020; 27:1126-1130. [PMID: 33275861 DOI: 10.1089/mdr.2020.0310] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Carbapenemase production in Enterobacterales clinical isolates is a global threat. Multi-drug resistant Klebsiella pneumoniae harboring carbapenemases are a major concern among the hospital settings in Latin America. Aim: The aim of this study was to analyze the genetic relatedness between three isolates of K. pneumoniae recovered from one patient in the same bacteriological round on the same day, which exhibited different susceptibility profiles to carbapenems (CP) and to colistin (Col). Isolates' profiles were as follows (susceptible-S/resistant-R): CPS/ColR, CPR/ColR, and CPR/ColS. Pulse-field gel electrophoresis, multilocus sequence typing, and whole genome sequencing were performed. Conjugation assays were carried out and PCR determination in transconjugants (Tcs) was made for: blaCTX-M-groups, blaNDM, blaKPC, blaTEM, qnr alleles, aac(6')Ib-cr, ermB, and plasmid incompatibility groups (Inc). Results: All isolates belonged to the same clone, to ST258 and harbored blaCTX-M-14, blaCTX-M-15, qnrA1, qnrB1, aac(6')Ib-cr, and wzi154 (capsule-locus KL107). One isolate had additional wzi gene, wzi109 (capsule-locus KL36). In CPR isolates, the pattern was explained for blaNDM-1 or blaNDM-1/blaKPC-2 presence, and in ColR for IS5-like element insertion in mgrB at different positions. Co-mobilization of blaNDM-1/qnrA1 was associated to a different plasmid Inc (A/C-FII) in both blaNDM-1 donors. Mobilization of blaCTX-M-14 was related to IncI1 in one donor. Conclusion: These findings highlight the potential plasticity of ST258 K. pneumoniae clone. To the best of our knowledge, this is the first description of blaNDM-1/blaKPC-2-producing K. pneumoniae ST258 in Latin America.
Collapse
Affiliation(s)
- Virginia Garcia-Fulgueiras
- Departamento de Bacteriología y Virología, Instituto de Higiene, Facultad de Medicina, Universidad de la República, Montevideo, Uruguay
| | - Carmen Magallanes
- Laboratorio de Microbiología Clínica, Departamento de Bioquímica Clínica, Facultad de Química, Universidad de la República, Montevideo, Uruguay
| | - Victoria Reyes
- Laboratorio de Microbiología Clínica, Departamento de Bioquímica Clínica, Facultad de Química, Universidad de la República, Montevideo, Uruguay
| | - Camila Cayota
- Laboratorio de Microbiología Clínica, Departamento de Bioquímica Clínica, Facultad de Química, Universidad de la República, Montevideo, Uruguay
| | - Antonio Galiana
- Laboratorio de Microbiología, Hospital Maciel, Montevideo, Uruguay
| | - Mariela Vieytes
- Laboratorio de Microbiología, Hospital Maciel, Montevideo, Uruguay
| | - Rafael Vignoli
- Departamento de Bacteriología y Virología, Instituto de Higiene, Facultad de Medicina, Universidad de la República, Montevideo, Uruguay
| | - Carolina Márquez
- Laboratorio de Microbiología Clínica, Departamento de Bioquímica Clínica, Facultad de Química, Universidad de la República, Montevideo, Uruguay.,Instituto de Química Biológica, Facultad de Ciencias, Universidad de la República, Montevideo, Uruguay
| |
Collapse
|
244
|
Kloos J, Johnsen PJ, Harms K. Tn 1 transposition in the course of natural transformation enables horizontal antibiotic resistance spread in Acinetobacter baylyi. MICROBIOLOGY-SGM 2020; 167. [PMID: 33270000 PMCID: PMC8116780 DOI: 10.1099/mic.0.001003] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Transposons are genetic elements that change their intracellular genomic position by transposition and are spread horizontally between bacteria when located on plasmids. It was recently discovered that transposition from fully heterologous DNA also occurs in the course of natural transformation. Here, we characterize the molecular details and constraints of this process using the replicative transposon Tn1 and the naturally competent bacterium Acinetobacter baylyi. We find that chromosomal insertion of Tn1 by transposition occurs at low but detectable frequencies and preferably around the A. baylyi terminus of replication. We show that Tn1 transposition is facilitated by transient expression of the transposase and resolvase encoded by the donor DNA. RecA protein is essential for the formation of a circular, double-stranded cytoplasmic intermediate from incoming donor DNA, and RecO is beneficial but not essential in this process. Absence of the recipient RecBCD nuclease stabilizes the double-stranded intermediate. Based on these results, we suggest a mechanistic model for transposition during natural transformation.
Collapse
Affiliation(s)
- Julia Kloos
- Microbial Pharmacology and Population Biology Research Group, Department of Pharmacy, Faculty of Health Sciences, UiT The Arctic University of Norway, Tromsø, Norway
| | - Pål J Johnsen
- Microbial Pharmacology and Population Biology Research Group, Department of Pharmacy, Faculty of Health Sciences, UiT The Arctic University of Norway, Tromsø, Norway
| | - Klaus Harms
- Microbial Pharmacology and Population Biology Research Group, Department of Pharmacy, Faculty of Health Sciences, UiT The Arctic University of Norway, Tromsø, Norway
| |
Collapse
|
245
|
Soekoyo AR, Sulistiawati S, Setyorini W, Kuntaman K. The Epidemiological Pattern and Risk Factor of ESBL (Extended Spectrum Β-Lactamase) Producing Enterobacteriaceae in Gut Bacterial Flora of Dairy Cows and People Surrounding in Rural Area, Indonesia. INDONESIAN JOURNAL OF TROPICAL AND INFECTIOUS DISEASE 2020. [DOI: 10.20473/ijtid.v8i3.17553] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Livestock would be a risk factor of resistant bacteria that impact on human health. Rural area with farms as major economic source has become a risk of the spread of the ESBL producing Enterobacteriaceae The aim of the study was to explore the distribution and risk factor of ESBL (extended-spectrum β-lactamase) producing Enterobacteriaceae in the gut bacterial flora of dairy cows and people surrounding farming area. Total of 204 fecal swab samples were collected, 102 from dairy cows and 102 from farmers. Samples were sub-cultured by streaking on MacConkey agar supplemented with 2 mg/L cefotaxime. The growing colonies were confirmed of the ESBL producer by Modified Double Disk Test (M-DDST) and identification of Enterobacteriaceae by biochemical test. ESBL genes were identified by PCR. ESBL producing bacteria were found 13.7% in dairy cows and 34.3% in farmers. ESBL producing Enterobacteriaceae in dairy cows were 6.9% and in farmers of 33.3%. Statistical analysis showed: Distribution of ESBL producing Enterobacteriaceae strain were insignificant among dairy cows and farmers while blaTEM distribution was significantly different (p= 0,035) and use of antibiotic was identified as a risk factor of colonization of ESBL producing Enterobacteriaceae in farmers (p= 0,007). Farmers had suspected as the source of ESBL producing Enterobacteriaceae based on higher prevalence. Further education of appropriate use of antibiotic need to enhance to control risk factor and prevent the colonization of ESBL producing Enterobacteriaceae
Collapse
|
246
|
Decano AG, Tran N, Al-Foori H, Al-Awadi B, Campbell L, Ellison K, Mirabueno LP, Nelson M, Power S, Smith G, Smyth C, Vance Z, Woods C, Rahm A, Downing T. Plasmids shape the diverse accessory resistomes of Escherichia coli ST131. Access Microbiol 2020; 3:acmi000179. [PMID: 33997610 PMCID: PMC8115979 DOI: 10.1099/acmi.0.000179] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2020] [Accepted: 10/27/2020] [Indexed: 12/22/2022] Open
Abstract
The human gut microbiome includes beneficial, commensal and pathogenic bacteria that possess antimicrobial resistance (AMR) genes and exchange these predominantly through conjugative plasmids. Escherichia coli is a significant component of the gastrointestinal microbiome and is typically non-pathogenic in this niche. In contrast, extra-intestinal pathogenic E. coli (ExPEC) including ST131 may occupy other environments like the urinary tract or bloodstream where they express genes enabling AMR and host cell adhesion like type 1 fimbriae. The extent to which commensal E. coli and uropathogenic ExPEC ST131 share AMR genes remains understudied at a genomic level, and we examined this here using a preterm infant resistome. We found that individual ST131 had small differences in AMR gene content relative to a larger shared resistome. Comparisons with a range of plasmids common in ST131 showed that AMR gene composition was driven by conjugation, recombination and mobile genetic elements. Plasmid pEK499 had extended regions in most ST131 Clade C isolates, and it had evidence of a co-evolutionary signal based on protein-level interactions with chromosomal gene products, as did pEK204 that had a type IV fimbrial pil operon. ST131 possessed extensive diversity of selective type 1, type IV, P and F17-like fimbriae genes that was highest in subclade C2. The structure and composition of AMR genes, plasmids and fimbriae vary widely in ST131 Clade C and this may mediate pathogenicity and infection outcomes.
Collapse
Affiliation(s)
- Arun Gonzales Decano
- School of Biotechnology, Dublin City University, Ireland.,Present address: School of Medicine, University of St., Andrews, UK
| | - Nghia Tran
- School of Maths, Applied Maths and Statistics, National University of Ireland Galway, Ireland
| | | | | | | | - Kevin Ellison
- School of Biotechnology, Dublin City University, Ireland
| | - Louisse Paolo Mirabueno
- School of Biotechnology, Dublin City University, Ireland.,Present address: National Institute of Agricultural Botany - East Malling Research, Kent, UK
| | - Maddy Nelson
- School of Biotechnology, Dublin City University, Ireland
| | - Shane Power
- School of Biotechnology, Dublin City University, Ireland
| | | | - Cian Smyth
- School of Biotechnology, Dublin City University, Ireland.,Present address: Dept of Biology, Maynooth University, Dublin, Ireland
| | - Zoe Vance
- School of Genetics & Microbiology, Trinity College Dublin, Ireland
| | | | - Alexander Rahm
- School of Maths, Applied Maths and Statistics, National University of Ireland Galway, Ireland.,Present address: GAATI Lab, Université de la Polynésie Française, Puna'auia, French Polynesia
| | - Tim Downing
- School of Biotechnology, Dublin City University, Ireland
| |
Collapse
|
247
|
De Belder D, Ghiglione B, Pasteran F, de Mendieta JM, Corso A, Curto L, Di Bella A, Gutkind G, Gomez SA, Power P. Comparative Kinetic Analysis of OXA-438 with Related OXA-48-Type Carbapenem-Hydrolyzing Class D β-Lactamases. ACS Infect Dis 2020; 6:3026-3033. [PMID: 32970406 DOI: 10.1021/acsinfecdis.0c00537] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Novel variants of OXA-48-type enzymes with the ability to hydrolyze oxyimino-cephalosporins and carbapenems are increasingly reported. Since its first report in 2011, OXA-163 is now extensively spread throughout Argentina, and several variants like OXA-247 have emerged. Here, we characterized a new blaOXA-48-like variant, OXA-438, and we performed a comparative kinetic analysis with the local variants OXA-247 and OXA-163 and the internationally disseminated OXA-48. blaOXA-163, blaOXA-247, and blaOXA-438 were located in a 70 kb IncN2 conjugative plasmid. OXA-438 presented mutations in the vicinity of conserved KTG (214-216), with a 2-aa deletion (R220-I221) and a D224E shift (as in OXA-163) compared to OXA-48. Despite Kpn163 (OXA-163), Kpn247 (OXA-247) and Eco438 (OXA-438) were resistant to meropenem and ertapenem, and the transconjugants (TC) remained susceptible (however, the carbapenems minimum inhibitory concentrations were ≥3 times 2-fold dilutions higher than the acceptor strain). TC163 and Eco48 were resistant to oxyimino-cephalosporins, unlike TC247 and TC438. kcat/Km values for cefotaxime in OXA-163 were slightly higher than the rest of the variants that were accompanied by a lower Km for carbapenems. For OXA-163, OXA-247, and OXA-438, the addition of NaHCO3 improved kcat values for both cefotaxime and ceftazidime; carbapenems kcat/Km values were higher than for oxyimino-cephalosporins. Mutations occurring near the conserved KTG in OXA-247 and OXA-438 are probably responsible for the improved carbapenems hydrolysis and decreased inactivation of oxyimino-cephalosporins compared to OXA-163. Dichroism results suggest that deletions at the β5-β6 loop seem to impact the structural stability of OXA-48 variants. Finally, additional mechanisms are probably involved in the resistance pattern observed in the clinical isolates.
Collapse
Affiliation(s)
- Denise De Belder
- Servicio Antimicrobianos - National Reference Laboratory in Antimicrobial Resistance (NRLAR), Instituto Nacional de Enfermedades Infecciosas-ANLIS “Dr. Carlos G. Malbrán”, Buenos Aires 1282, Argentina
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires 1452, Argentina
| | - Barbara Ghiglione
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires 1452, Argentina
- Facultad de Farmacia y Bioquímica, Instituto de Investigaciones en Bacteriología y Virología Molecular (IBaViM), Departamento de Microbiología, Inmunología, Biotecnología y Genética, Laboratorio de Resistencia Bacteriana, Universidad de Buenos Aires, Buenos Aires 1113, Argentina
| | - Fernando Pasteran
- Servicio Antimicrobianos - National Reference Laboratory in Antimicrobial Resistance (NRLAR), Instituto Nacional de Enfermedades Infecciosas-ANLIS “Dr. Carlos G. Malbrán”, Buenos Aires 1282, Argentina
| | - Juan Manuel de Mendieta
- Servicio Antimicrobianos - National Reference Laboratory in Antimicrobial Resistance (NRLAR), Instituto Nacional de Enfermedades Infecciosas-ANLIS “Dr. Carlos G. Malbrán”, Buenos Aires 1282, Argentina
| | - Alejandra Corso
- Servicio Antimicrobianos - National Reference Laboratory in Antimicrobial Resistance (NRLAR), Instituto Nacional de Enfermedades Infecciosas-ANLIS “Dr. Carlos G. Malbrán”, Buenos Aires 1282, Argentina
| | - Lucrecia Curto
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires 1452, Argentina
- IQUIFIB, Universidad de Buenos Aires, Facultad de Farmacia y Bioquímica, Buenos Aires 1113, Argentina
| | - Adriana Di Bella
- Hospital Nacional “Profesor Alejandro Posadas”, El Palomar, Buenos Aires 1684, Argentina
| | - Gabriel Gutkind
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires 1452, Argentina
- Facultad de Farmacia y Bioquímica, Instituto de Investigaciones en Bacteriología y Virología Molecular (IBaViM), Departamento de Microbiología, Inmunología, Biotecnología y Genética, Laboratorio de Resistencia Bacteriana, Universidad de Buenos Aires, Buenos Aires 1113, Argentina
| | - Sonia A. Gomez
- Servicio Antimicrobianos - National Reference Laboratory in Antimicrobial Resistance (NRLAR), Instituto Nacional de Enfermedades Infecciosas-ANLIS “Dr. Carlos G. Malbrán”, Buenos Aires 1282, Argentina
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires 1452, Argentina
| | - Pablo Power
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires 1452, Argentina
- Facultad de Farmacia y Bioquímica, Instituto de Investigaciones en Bacteriología y Virología Molecular (IBaViM), Departamento de Microbiología, Inmunología, Biotecnología y Genética, Laboratorio de Resistencia Bacteriana, Universidad de Buenos Aires, Buenos Aires 1113, Argentina
| |
Collapse
|
248
|
Perez-Lopez A, Sundararaju S, Al-Mana H, Tsui KM, Hasan MR, Suleiman M, Janahi M, Al Maslamani E, Tang P. Molecular Characterization of Extended-Spectrum β-Lactamase-Producing Escherichia coli and Klebsiella pneumoniae Among the Pediatric Population in Qatar. Front Microbiol 2020; 11:581711. [PMID: 33262745 PMCID: PMC7686840 DOI: 10.3389/fmicb.2020.581711] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2020] [Accepted: 10/12/2020] [Indexed: 11/13/2022] Open
Abstract
INTRODUCTION Although extended-spectrum β-lactamase (ESBL)-producing Enterobacterales are a public health problem in the Arabian Peninsula, data on the molecular characteristic of their antimicrobial resistance determinants in children is limited. AIM To determine the molecular characteristics of ESBL-producing Escherichia coli and Klebsiella pneumoniae in the pediatric population of Qatar. METHODS Whole-genome sequencing was performed on ESBL-producing E. coli and K. pneumoniae isolates recovered from screening and clinical specimens from pediatric patients at Sidra Medicine in Doha from January to December 2018. RESULTS A total of 327 ESBL producers were sequenced: 254 E. coli and 73 K. pneumoniae. Non-susceptibility rates to non-β-lactam antibiotics for both species were 18.1 and 30.1% for gentamicin, 0.8 and 4.1% for amikacin, 41.3 and 41.1% for ciprofloxacin, and 65.8 and 76.1% for cotrimoxazole. The most common sequence types (STs) were ST131 (16.9%), ST38 and ST10 (8.2% each) in E. coli and ST307 (9.7%), and ST45 and ST268 (6.9% each) in K. pneumoniae. CTX-M type ESBLs were found in all but one isolate, with CTX-M-15 accounting for 87.8%. Among other β-lactamases, TEM-1B and OXA-1 were coproduced in 41 and 19.6% of isolates. The most common plasmid-mediated quinolone resistance genes cocarried were qnr A/B/E/S (45.3%). Ninety percent of gentamicin non-susceptible isolates harbored genes encoding AAC(3) enzymes, mainly aac(3)-IIa. Only two of 57 isolates harboring aac(6')-Ib-cr were non-susceptible to amikacin. Chromosomal mutations in genes encoding DNA gyrase and topoisomerase IV enzymes were detected in 96.2% fluoroquinolone-non-susceptible E. coli and 26.7% fluoroquinolone-non-susceptible K. pneumoniae. CONCLUSION Our data show that CTX-M enzymes are largely the most prevalent ESBLs in children in Qatar with a predominance of CTX-M-15. Carbapenem-sparing options to treat ESBL infections are limited, given the frequent coproduction of OXA-1 and TEM-1B enzymes and coresistance to antibiotic classes other than β-lactams.
Collapse
Affiliation(s)
- Andres Perez-Lopez
- Division of Microbiology, Department of Pathology, Sidra Medicine, Doha, Qatar
- Weill Cornell Medical College in Qatar, Doha, Qatar
| | | | - Hassan Al-Mana
- Division of Microbiology, Department of Pathology, Sidra Medicine, Doha, Qatar
- Biomedical Research Centre, Qatar University, Doha, Qatar
| | - Kin Ming Tsui
- Division of Microbiology, Department of Pathology, Sidra Medicine, Doha, Qatar
- Weill Cornell Medical College in Qatar, Doha, Qatar
- Division of Infectious Diseases, Faculty of Medicine, University of British Columbia, Vancouver, BC, Canada
| | - Mohammad Rubayet Hasan
- Division of Microbiology, Department of Pathology, Sidra Medicine, Doha, Qatar
- Weill Cornell Medical College in Qatar, Doha, Qatar
| | - Mohammed Suleiman
- Division of Microbiology, Department of Pathology, Sidra Medicine, Doha, Qatar
| | - Mohammed Janahi
- Weill Cornell Medical College in Qatar, Doha, Qatar
- Division of Pediatric Infectious Diseases, Sidra Medicine, Doha, Qatar
| | - Eman Al Maslamani
- Weill Cornell Medical College in Qatar, Doha, Qatar
- Division of Pediatric Infectious Diseases, Sidra Medicine, Doha, Qatar
| | - Patrick Tang
- Division of Microbiology, Department of Pathology, Sidra Medicine, Doha, Qatar
- Weill Cornell Medical College in Qatar, Doha, Qatar
| |
Collapse
|
249
|
F4- and F18-Positive Enterotoxigenic Escherichia coli Isolates from Diarrhea of Postweaning Pigs: Genomic Characterization. Appl Environ Microbiol 2020; 86:AEM.01913-20. [PMID: 32948526 DOI: 10.1128/aem.01913-20] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2020] [Accepted: 09/07/2020] [Indexed: 12/11/2022] Open
Abstract
This study aimed to characterize in silico enterotoxigenic Escherichia coli F4- and F18-positive isolates (n = 90) causing swine postweaning diarrhea, including pathogenic potential, phylogenetic relationship, antimicrobial and biocide resistance, prophage content, and metal tolerance rates. F4 strains belonged mostly to the O149 and O6 serogroups and ST100 and ST48 sequence types (STs). F18 strains were mainly assigned to the O8 and O147 serogroups and ST10, ST23, and ST42. The highest rates of antimicrobial resistance were found against streptomycin, sulfamethoxazole, tetracycline, trimethoprim, and ampicillin. No resistance was found toward ciprofloxacin, cefotaxime, ceftiofur, and colistin. Genes conferring tolerance to copper (showing the highest diversity), cadmium, silver, and zinc were predicted in all genomes. Enterotoxin genes (ltcA, 100% F4, 62% F18; astA, 100% F4, 38.1% F18; sta, 18.8% F4, 38.1% F18; stb, 100% F4, 76.2% F18) and fimbria-encoding genes typed as F4ac and F18ac were detected in all strains, in addition to up to 16 other virulence genes in individual strains. Phage analysis predicted between 7 and 20 different prophage regions in each strain. A highly diverse variety of plasmids was found; IncFII, IncFIB, and IncFIC were prevalent among F4 isolates, while IncI1 and IncX1 were dominant among F18 strains. Interestingly, F4 isolates from the early 1990s belonged to the same clonal group detected for most of the F4 strains from 2018 to 2019 (ONT:H10-A-ST100-CH27-0). The small number of single-nucleotide polymorphism differences between the oldest and recent F4 ST100 isolates suggests a relatively stable genome. Overall, the isolates analyzed in this study showed remarkably different genetic traits depending on the fimbria type.IMPORTANCE Diarrhea in the postweaning period due to enterotoxigenic E. coli (ETEC) is an economically relevant disease in pig production worldwide. In Denmark, prevention is mainly achieved by zinc oxide administration (to be discontinued by 2022). In addition, a breeding program has been implemented that aims to reduce the prevalence of this illness. Treatment with antimicrobials contributes to the problem of antimicrobial resistance (AMR) development. As a novelty, this study aims to deeply understand the genetic population structure and variation among diarrhea-associated isolates by whole-genome sequencing characterization. ST100-F4ac is the dominant clonal group circulating in Danish herds and showed high similarity to ETEC ST100 isolates from China, the United States, and Spain. High rates of AMR and high diversity of virulence genes were detected. The characterization of diarrhea-related ETEC is important for understanding the disease epidemiology and pathogenesis and for implementation of new strategies aiming to reduce the impact of the disease in pig production.
Collapse
|
250
|
Discovery of small-molecule inhibitors of multidrug-resistance plasmid maintenance using a high-throughput screening approach. Proc Natl Acad Sci U S A 2020; 117:29839-29850. [PMID: 33168749 DOI: 10.1073/pnas.2005948117] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Carbapenem-resistant Enterobacteriaceae (CRE) are multidrug-resistant pathogens for which new treatments are desperately needed. Carbapenemases and other types of antibiotic resistance genes are carried almost exclusively on large, low-copy-number plasmids (pCRE). Accordingly, small molecules that efficiently evict pCRE plasmids should restore much-needed treatment options. We therefore designed a high-throughput screen to identify such compounds. A synthetic plasmid was constructed containing the plasmid replication machinery from a representative Escherichia coli CRE isolate as well as a fluorescent reporter gene to easily monitor plasmid maintenance. The synthetic plasmid was then introduced into an E. coli K12 tolC host. We used this screening strain to test a library of over 12,000 known bioactive agents for molecules that selectively reduce plasmid levels relative to effects on bacterial growth. From 366 screen hits we further validated the antiplasmid activity of kasugamycin, an aminoglycoside; CGS 15943, a nucleoside analog; and Ro 90-7501, a bibenzimidazole. All three compounds exhibited significant antiplasmid activity including up to complete suppression of plasmid replication and/or plasmid eviction in multiple orthogonal readouts and potentiated activity of the carbapenem, meropenem, against a strain carrying the large, pCRE plasmid from which we constructed the synthetic screening plasmid. Additionally, we found kasugamycin and CGS 15943 blocked plasmid replication, respectively, by inhibiting expression or function of the plasmid replication initiation protein, RepE. In summary, we validated our approach to identify compounds that alter plasmid maintenance, confer resensitization to antimicrobials, and have specific mechanisms of action.
Collapse
|