201
|
Singh S, Fatima Z, Hameed S. Citronellal-induced disruption of membrane homeostasis in Candida albicans and attenuation of its virulence attributes. Rev Soc Bras Med Trop 2017; 49:465-72. [PMID: 27598633 DOI: 10.1590/0037-8682-0190-2016] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2016] [Accepted: 07/15/2016] [Indexed: 12/28/2022] Open
Abstract
INTRODUCTION There is an increasing burden of multidrug resistance. As a result, deciphering the mechanisms of action of natural compounds with antifungal activity has gained considerable prominence. We aimed to elucidate the probable mechanism of action of citronellal, a monoterpenoid found in the essential oil extracted from Cymbopogon plants, against Candida albicans. METHODS Drug susceptibility was measured by broth microdilution and spot assays. Ergosterol levels were estimated using the alcoholic potassium hydroxide method and H+ extrusion was assessed by monitoring the glucose-induced acidification of the external medium. Virulence traits were studied by hyphal morphogenesis and biofilm formation, along with fungal cell adherence to polystyrene surface and human oral epithelial cells. RESULTS Citronellal showed anticandidal activity against C. albicans and non-albicans species of Candida at a minimum inhibitory concentration of 1 mg/ml. Citronellal interfered with membrane homeostasis, which is the major target of known antifungal drugs, by increasing the hypersensitivity of the fungi to membrane-perturbing agents, reducing ergosterol levels, and diminishing glucose-induced H+ extrusion. In addition, oxidative and genotoxic stresses were induced via an increased production of reactive oxygen species. Furthermore, citronellal inhibited the virulent attributes of yeast-to-hypha transition and biofilm formation. It also reduced cell adherence to polystyrene surface and the human oral epithelial cells. CONCLUSIONS This is the first study to propose the cell membrane, morphogenetic switching, biofilm formation, and cell adherence of Candida albicans as potential targets for the anticandidal activity of citronellal. However, clinical investigations on the therapeutic applications of citronellal are required.
Collapse
Affiliation(s)
- Shweta Singh
- Amity Institute of Biotechnology, Amity University Haryana, Gurgaon (Manesar), India
| | - Zeeshan Fatima
- Amity Institute of Biotechnology, Amity University Haryana, Gurgaon (Manesar), India
| | - Saif Hameed
- Amity Institute of Biotechnology, Amity University Haryana, Gurgaon (Manesar), India
| |
Collapse
|
202
|
Muthamil S, Pandian SK. Inhibitory effect of Murraya koenigii against Candida albicans virulence and biofilm development. Biologia (Bratisl) 2016. [DOI: 10.1515/biolog-2016-0044] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
|
203
|
Bandara HMHN, Matsubara VH, Samaranayake LP. Future therapies targeted towards eliminating Candida biofilms and associated infections. Expert Rev Anti Infect Ther 2016; 15:299-318. [PMID: 27927053 DOI: 10.1080/14787210.2017.1268530] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
INTRODUCTION Candida species are common human commensals and cause either superficial or invasive opportunistic infections. The biofilm form of candida as opposed to its suspended, planktonic form, is predominantly associated with these infections. Alternative or adjunctive therapies are urgently needed to manage Candida infections as the currently available short arsenal of antifungal drugs has been compromised due to their systemic toxicity, cross-reactivity with other drugs, and above all, by the emergence of drug-resistant Candida species due to irrational drug use. Areas covered: Combination anti-Candida therapies, antifungal lock therapy, denture cleansers, and mouth rinses have all been proposed as alternatives for disrupting candidal biofilms on different substrates. Other suggested approaches for the management of candidiasis include the use of natural compounds, such as probiotics, plants extracts and oils, antifungal quorum sensing molecules, anti-Candida antibodies and vaccines, cytokine therapy, transfer of primed immune cells, photodynamic therapy, and nanoparticles. Expert commentary: The sparsity of currently available antifungals and the plethora of proposed anti-candidal therapies is a distinct indication of the urgent necessity to develop efficacious therapies for candidal infections. Alternative drug delivery approaches, such as probiotics, reviewed here is likely to be a reality in clinical settings in the not too distant future.
Collapse
Affiliation(s)
- H M H N Bandara
- a School of Dentistry , The University of Queensland , Herston , QLD , Australia
| | - V H Matsubara
- b School of Dentistry , University of São Paulo , São Paulo , SP , Brazil.,c Department of Microbiology, Institute of Biomedical Sciences , University of São Paulo , São Paulo , SP , Brazil
| | - L P Samaranayake
- a School of Dentistry , The University of Queensland , Herston , QLD , Australia.,d Faculty of Dentistry , University of Kuwait , Kuwait
| |
Collapse
|
204
|
Abstract
Candida albicans is the most common human fungal pathogen causing diseases ranging from mucosal to systemic infections. As a commensal, C. albicans asymptomatically colonizes mucosal surfaces; however, any disruption in the host environment or under conditions of immune dysfunction, C. albicans can proliferate and invade virtually any site in the host. The ability of this highly adaptable fungal species to transition from commensal to pathogen is due to a repertoire of virulence factors. Specifically, the ability to switch morphology and form biofilms are properties central to C. albicans pathogenesis. In fact, the majority of C. albicans infections are associated with biofilm formation on host or abiotic surfaces such as indwelling medical devices, which carry high morbidity and mortality. Significantly, biofilms formed by C. albicans are inherently tolerant to antimicrobial therapy and therefore, the susceptibility of Candida biofilms to the current therapeutic agents remains low. The aim of this review is to provide an overview of C. albicans highlighting some of the diverse biofilm-associated diseases caused by this opportunistic pathogen and the animal models available to study them. Further, the classes of antifungal agents used to combat these resilient infections are discussed along with mechanisms of drug resistance.
Collapse
|
205
|
Morici P, Fais R, Rizzato C, Tavanti A, Lupetti A. Inhibition of Candida albicans Biofilm Formation by the Synthetic Lactoferricin Derived Peptide hLF1-11. PLoS One 2016; 11:e0167470. [PMID: 27902776 PMCID: PMC5130267 DOI: 10.1371/journal.pone.0167470] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2016] [Accepted: 11/15/2016] [Indexed: 12/20/2022] Open
Abstract
The aim of this study was to evaluate the in vitro activity of the synthetic peptide hLF1-11 against biofilm produced by clinical isolates of Candida albicans with different fluconazole susceptibility. The antibiofilm activity of the peptide hLF1-11 was assessed in terms of reduction of biofilm cellular density, metabolic activity and sessile cell viability. The extent of morphogenesis in hLF1-11 treated and untreated biofilms was also investigated microscopically. Transcription levels of genes related to cell adhesion, hyphal development and extracellular matrix production were analysed by qRT-PCR in hLF1-11 treated and untreated biofilms. Exogenous dibutyryl-cAMP (db-cAMP) was used to rescue morphogenesis in cells exposed to the peptide. The results revealed that hLF1-11 exhibited an inhibitory effect on biofilm formation by all C. albicans isolates tested in a dose-dependent manner, regardless of their fluconazole susceptibility. Visual inspection of treated or untreated biofilm cells with an inverted microscope revealed a significant reduction in hyphal formation by hLF1-11 treated cells, as early as 3 hours of incubation. Moreover, hLF1-11 showed a reduced activity on preadherent cells. hLF1-11 induced the down-regulation of biofilm and hyphal-associated genes, which were predominantly regulated via the Ras1-cAMP-Efg1 pathway. Indeed, exogenous db-cAMP restored morphogenesis in hLF1-11 treated cells. The hLF1-11 peptide significantly inhibited biofilm formation by C. albicans mainly at early stages, interfering with biofilm cellular density and metabolic activity, and affected morphogenesis through the Ras1-cAMP-Efg1 pathway. Our findings provide the first evidence that hLF1-11 could represent a potential candidate for the prevention of biofilm formation by C. albicans.
Collapse
Affiliation(s)
- Paola Morici
- Department of Translational Research and New Technologies in Medicine and Surgery, University of Pisa, Pisa, Italy
| | - Roberta Fais
- Department of Translational Research and New Technologies in Medicine and Surgery, University of Pisa, Pisa, Italy
| | - Cosmeri Rizzato
- Department of Translational Research and New Technologies in Medicine and Surgery, University of Pisa, Pisa, Italy
| | | | - Antonella Lupetti
- Department of Translational Research and New Technologies in Medicine and Surgery, University of Pisa, Pisa, Italy
- * E-mail:
| |
Collapse
|
206
|
Temporal Profile of Biofilm Formation, Gene Expression and Virulence Analysis in Candida albicans Strains. Mycopathologia 2016; 182:285-295. [DOI: 10.1007/s11046-016-0088-2] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2016] [Accepted: 10/29/2016] [Indexed: 10/20/2022]
|
207
|
Ferreira C, Gonçalves B, Vilas Boas D, Oliveira H, Henriques M, Azeredo J, Silva S. Candida tropicalis biofilm and human epithelium invasion is highly influenced by environmental pH. Pathog Dis 2016; 74:ftw101. [PMID: 27702793 DOI: 10.1093/femspd/ftw101] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/01/2016] [Indexed: 01/12/2023] Open
Abstract
OBJECTIVE The main goal of this study was to investigate the role of pH on Candida tropicalis virulence determinants, namely the ability to form biofilms and to colonize/invade reconstituted human vaginal epithelia. METHODS Biofilm formation was evaluated by enumeration of cultivable cells, total biomass quantification and structural analysis by scanning electron microscopy and confocal laser scanning microscopy. Candida tropicalis human vaginal epithelium colonization and invasiveness were examined qualitatively by epifluorescence microscopy and quantitatively by a novel quantitative real-time PCR protocol for Candida quantification in tissues. RESULTS The results revealed that environmental pH influences C. tropicalis biofilm formation as well as the colonization and potential to invade human epithelium with intensification at neutral and alkaline conditions compared to acidic conditions. CONCLUSIONS For the first time, we have demonstrated that C. tropicalis biofilm formation and invasion is highly influenced by environmental pH.
Collapse
Affiliation(s)
- Carina Ferreira
- CEB-Center of Biological Engineering, LIBRO-Laboratório de Investigação em Biofilmes Rosário Oliveira, University of Minho, Campus de Gualtar, 4710-057 Braga, Portugal
| | - Bruna Gonçalves
- CEB-Center of Biological Engineering, LIBRO-Laboratório de Investigação em Biofilmes Rosário Oliveira, University of Minho, Campus de Gualtar, 4710-057 Braga, Portugal
| | - Diana Vilas Boas
- CEB-Center of Biological Engineering, LIBRO-Laboratório de Investigação em Biofilmes Rosário Oliveira, University of Minho, Campus de Gualtar, 4710-057 Braga, Portugal
| | - Hugo Oliveira
- CEB-Center of Biological Engineering, LIBRO-Laboratório de Investigação em Biofilmes Rosário Oliveira, University of Minho, Campus de Gualtar, 4710-057 Braga, Portugal
| | - Mariana Henriques
- CEB-Center of Biological Engineering, LIBRO-Laboratório de Investigação em Biofilmes Rosário Oliveira, University of Minho, Campus de Gualtar, 4710-057 Braga, Portugal
| | - Joana Azeredo
- CEB-Center of Biological Engineering, LIBRO-Laboratório de Investigação em Biofilmes Rosário Oliveira, University of Minho, Campus de Gualtar, 4710-057 Braga, Portugal
| | - Sónia Silva
- CEB-Center of Biological Engineering, LIBRO-Laboratório de Investigação em Biofilmes Rosário Oliveira, University of Minho, Campus de Gualtar, 4710-057 Braga, Portugal
| |
Collapse
|
208
|
Sandai D, Tabana YM, Ouweini AE, Ayodeji IO. Resistance of Candida albicans Biofilms to Drugs and the Host Immune System. Jundishapur J Microbiol 2016; 9:e37385. [PMID: 28138373 PMCID: PMC5240163 DOI: 10.5812/jjm.37385] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2016] [Revised: 09/14/2016] [Accepted: 09/14/2016] [Indexed: 01/27/2023] Open
Abstract
Background Candida albicans is a commensal fungus that resides on mucosal surfaces and in the gastrointestinal and genitourinary tracts in humans. However, it can cause an infection when the immune system of the host is impaired or if a niche becomes available. Many C. albicans infections are due to the organism’s ability to form a biofilm on implanted medical devices. A biofilm represents an optimal medium for the growth of C. albicans as it allows cells to be enclosed by a self-produced extracellular matrix (ECM). Objectives The present work investigated certain aspects of the resistance of C. albicans biofilms to drugs and the host immune system. Results An ECM was found to provide the infrastructure for biofilm formation, prevent disaggregation, and shield encapsulated C. albicans cells from antifungal drugs and the host’s immune system. By influencing FKS1 and upregulating multiple glucan modification genes, β-1, 3-glucan, an important component of ECM, was shown to be responsible for many of the biofilm’s drug-resistant properties. On being engulfed by ECM, the fungal cell was found to switch from glycolysis to gluconeogenesis. Resembling the cellular response to starvation, this was followed by the activation of the glyoxylate cycle that allowed the use of simple molecules as energy sources. Conclusion Mature biofilms were found to be much more resistant to antifungal agents and the host immune system than free cells. The factors responsible for high resistance included the complex architecture of biofilms, ECM, increased expression of drug efflux pumps, and metabolic plasticity.
Collapse
Affiliation(s)
- Doblin Sandai
- Infectomics Cluster, Advanced Medical and Dental Institute, Universiti Sains Malaysia, Malaysia
- Corresponding author: Doblin Sandai, Infectomics Cluster, Advanced Medical and Dental Institute, Universiti Sains Malaysia, Malaysia. Tel: +60-45622386, E-mail: ,
| | - Yasser M Tabana
- Infectomics Cluster, Advanced Medical and Dental Institute, Universiti Sains Malaysia, Malaysia
| | - Ahmad El Ouweini
- School of Pharmacy, Lebanese American University, Byblos, Lebanon
| | | |
Collapse
|
209
|
Truong T, Zeng G, Qingsong L, Kwang LT, Tong C, Chan FY, Wang Y, Seneviratne CJ. Comparative Ploidy Proteomics of Candida albicans Biofilms Unraveled the Role of the AHP1 Gene in the Biofilm Persistence Against Amphotericin B. Mol Cell Proteomics 2016; 15:3488-3500. [PMID: 27644984 DOI: 10.1074/mcp.m116.061523] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2016] [Indexed: 01/23/2023] Open
Abstract
Candida albicans is a major fungal pathogen causing lethal infections in immunocompromised patients. C. albicans forms antifungal tolerant biofilms contributing significantly to therapeutic failure. The recently established haploid C. albicans biofilm model provides a new toolbox to uncover the mechanism governing the higher antifungal tolerance of biofilms. Here, we comprehensively examined the proteomics and antifungal susceptibility of standard diploid (SC5314 and BWP17) and stable haploid (GZY792 and GZY803) strains of C. albicans biofilms. Subsequent downstream analyses identified alkyl hydroperoxide reductase 1 (AHP1) as a critical determinant of C. albicans biofilm's tolerance of amphotericin B. At 32 μg/ml of amphotericin B, GZY803 haploid biofilms showed 0.1% of persister population as compared with 1% of the diploid biofilms. AHP1 expression was found to be lower in GZY803 biofilms, and AHP1 overexpression in GZY803 restored the percentage of persister population. Consistently, deleting AHP1 in the diploid strain BWP17 caused a similar increase in amphotericin B susceptibility. AHP1 expression was also positively correlated with the antioxidant potential. Furthermore, C. albicans ira2Δ/Δ biofilms were susceptible to amphotericin B and had a diminished antioxidant capacity. Interestingly, AHP1 overexpression in the ira2Δ/Δ strain restored the antioxidant potential and enhanced the persister population against amphotericin B, and shutting down the AHP1 expression in ira2Δ/Δ biofilms reversed the effect. In conclusion, we provide evidence that the AHP1 gene critically determines the amphotericin B tolerance of C. albicans biofilms possibly by maintaining the persisters' antioxidant capacity. This finding will open up new avenues for developing therapies targeting the persister population of C. albicans biofilms. The mass spectrometry proteomics data are available via ProteomeXchange with identifier PXD004274.
Collapse
Affiliation(s)
- Thuyen Truong
- From the ‡Oral Sciences, Faculty of Dentistry, National University of Singapore, Singapore 119083
| | - Guisheng Zeng
- the §Institute of Molecular and Cell Biology, Agency for Science, Technology and Research, Proteos, Singapore 138673, and
| | - Lin Qingsong
- the ¶Department of Biological Sciences, Faculty of Science, National University of Singapore, Singapore 117543
| | - Lim Teck Kwang
- the ¶Department of Biological Sciences, Faculty of Science, National University of Singapore, Singapore 117543
| | - Cao Tong
- From the ‡Oral Sciences, Faculty of Dentistry, National University of Singapore, Singapore 119083
| | - Fong Yee Chan
- the §Institute of Molecular and Cell Biology, Agency for Science, Technology and Research, Proteos, Singapore 138673, and
| | - Yue Wang
- the §Institute of Molecular and Cell Biology, Agency for Science, Technology and Research, Proteos, Singapore 138673, and
| | | |
Collapse
|
210
|
Ishola OA, Ting SY, Tabana YM, Ahmed MA, Yunus MA, Mohamed R, Lung Than LT, Sandai D. The Role of Isocitrate Lyase (ICL1) in the Metabolic Adaptation of Candida albicans Biofilms. Jundishapur J Microbiol 2016; 9:e38031. [PMID: 27800147 PMCID: PMC5086032 DOI: 10.5812/jjm.38031] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2016] [Revised: 08/14/2016] [Accepted: 08/19/2016] [Indexed: 11/21/2022] Open
Abstract
Background A major characteristic of Candida biofilm cells that differentiates them from free-floating cells is their high tolerance to antifungal drugs. This high resistance is attributed to particular biofilm properties, including the accumulation of extrapolymeric substances, morphogenetic switching, and metabolic flexibility. Objectives This study evaluated the roles of metabolic processes (in particular the glyoxylate cycle) on biofilm formation, antifungal drug resistance, morphology, and cell wall components. Methods Growth, adhesion, biofilm formation, and cell wall carbohydrate composition were quantified for isogenic Candida albicans ICL1/ICL1, ICL1/icl1, and icl1/icl1 strains. The morphology and topography of these strains were compared by light microscopy and scanning electron microscopy. FKS1 (glucan synthase), ERG11 (14-α-demethylase), and CDR2 (efflux pump) mRNA levels were quantified using qRT-PCR. Results The ICL1/icl1 and icl1/icl1 strains formed similar biofilms and exhibited analogous drug-tolerance levels to the control ICL1/ICL1 strains. Furthermore, the drug sequestration ability of β-1, 3-glucan, a major carbohydrate component of the extracellular matrix, was not impaired. However, the inactivation of ICL1 did impair morphogenesis. ICL1 deletion also had a considerable effect on the expression of the FKS1, ERG11, and CDR2 genes. FKS1 and ERG11 were upregulated in ICL1/icl1 and icl1/icl1 cells throughout the biofilm developmental stages, and CDR2 was upregulated at the early phase. However, their expression was downregulated compared to the control ICL1/ICL1 strain. Conclusions We conclude that the glyoxylate cycle is not a specific determinant of biofilm drug resistance.
Collapse
Affiliation(s)
| | - Seng Yeat Ting
- Infectomics Cluster, Advanced Medical and Dental Institute, Universiti Sains Malaysia, Malaysia
| | - Yasser M Tabana
- Infectomics Cluster, Advanced Medical and Dental Institute, Universiti Sains Malaysia, Malaysia
| | - Mowaffaq Adam Ahmed
- Infectomics Cluster, Advanced Medical and Dental Institute, Universiti Sains Malaysia, Malaysia
| | - Muhammad Amir Yunus
- Infectomics Cluster, Advanced Medical and Dental Institute, Universiti Sains Malaysia, Malaysia
| | - Rafeezul Mohamed
- Regenerative Medicine Cluster, Advanced Medical and Dental Institute, Universiti Sains Malaysia, Malaysia
| | - Leslie Thian Lung Than
- Department of Medical Microbiology and Parasitology, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, Selangor, Malaysia
| | - Doblin Sandai
- Infectomics Cluster, Advanced Medical and Dental Institute, Universiti Sains Malaysia, Malaysia
- Corresponding author: Doblin Sandai, Infectomics Cluster, Advanced Medical and Dental Institute, Universiti Sains Malaysia, Malaysia. Tel: +60-45622386, Fax: +60-194951073, E-mail: ,
| |
Collapse
|
211
|
Mello TP, Aor AC, Gonçalves DS, Seabra SH, Branquinha MH, Santos ALS. Assessment of biofilm formation by Scedosporium apiospermum, S. aurantiacum, S. minutisporum and Lomentospora prolificans. BIOFOULING 2016; 32:737-749. [PMID: 27309801 DOI: 10.1080/08927014.2016.1192610] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/16/2016] [Accepted: 05/12/2016] [Indexed: 06/06/2023]
Abstract
Reported herein is the ability of Scedosporium apiospermum, S. aurantiacum, S. minutisporum and Lomentospora prolificans conidia to adhere, differentiate into hyphae and form biofilms on both polystyrene and lung epithelial cells. To different degrees, all of the fungi adhered to polystyrene after 4 h, with a predominance of those with germinated conidia. Prolonged fungi-polystyrene contact resulted in the formation of a monolayer of intertwined mycelia, which was identified as a typical biofilm structure due to the presence of a viable mycelial biomass, extracellular matrix and enhanced antifungal resistance. Ultrastructural details were revealed by SEM and CLSM, showing the dense compaction of the mycelial biomass and the presence of channels within the organized biofilm. A similar biofilm structure was observed following the co-culture of each fungus with A549 cells, revealing a mycelial trap covering all of the lung epithelial monolayer. Collectively, these results highlight the potential for biofilm formation by these clinically relevant fungal pathogens.
Collapse
Affiliation(s)
- Thaís P Mello
- a Laboratório de Investigação de Peptidases, Departamento de Microbiologia Geral, Instituto de Microbiologia Paulo de Góes , Universidade Federal do Rio de Janeiro , Rio de Janeiro , Brazil
| | - Ana Carolina Aor
- a Laboratório de Investigação de Peptidases, Departamento de Microbiologia Geral, Instituto de Microbiologia Paulo de Góes , Universidade Federal do Rio de Janeiro , Rio de Janeiro , Brazil
| | - Diego S Gonçalves
- a Laboratório de Investigação de Peptidases, Departamento de Microbiologia Geral, Instituto de Microbiologia Paulo de Góes , Universidade Federal do Rio de Janeiro , Rio de Janeiro , Brazil
- b Programa de Pós-Graduação em Bioquímica, Instituto de Química , Universidade Federal do Rio de Janeiro , Rio de Janeiro , Brazil
| | - Sergio H Seabra
- c Laboratório de Tecnologia em Cultura de Células , Centro Universitário Estadual da Zona Oeste (UEZO) , Rio de Janeiro , Brazil
| | - Marta H Branquinha
- a Laboratório de Investigação de Peptidases, Departamento de Microbiologia Geral, Instituto de Microbiologia Paulo de Góes , Universidade Federal do Rio de Janeiro , Rio de Janeiro , Brazil
| | - André L S Santos
- a Laboratório de Investigação de Peptidases, Departamento de Microbiologia Geral, Instituto de Microbiologia Paulo de Góes , Universidade Federal do Rio de Janeiro , Rio de Janeiro , Brazil
- b Programa de Pós-Graduação em Bioquímica, Instituto de Química , Universidade Federal do Rio de Janeiro , Rio de Janeiro , Brazil
| |
Collapse
|
212
|
Lipopeptides from Bacillus subtilis AC7 inhibit adhesion and biofilm formation of Candida albicans on silicone. Antonie van Leeuwenhoek 2016; 109:1375-88. [DOI: 10.1007/s10482-016-0736-z] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/27/2016] [Accepted: 07/12/2016] [Indexed: 01/23/2023]
|
213
|
Lown L, Peters BM, Walraven CJ, Noverr MC, Lee SA. An Optimized Lock Solution Containing Micafungin, Ethanol and Doxycycline Inhibits Candida albicans and Mixed C. albicans - Staphyloccoccus aureus Biofilms. PLoS One 2016; 11:e0159225. [PMID: 27428310 PMCID: PMC4948884 DOI: 10.1371/journal.pone.0159225] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2016] [Accepted: 06/29/2016] [Indexed: 12/24/2022] Open
Abstract
Candida albicans is a major cause of catheter-related bloodstream infections and is associated with high morbidity and mortality. Due to the propensity of C. albicans to form drug-resistant biofilms, the current standard of care includes catheter removal; however, reinsertion may be technically challenging or risky. Prolonged exposure of an antifungal lock solution within the catheter in conjunction with systemic therapy has been experimentally attempted for catheter salvage. Previously, we demonstrated excellent in vitro activity of micafungin, ethanol, and high-dose doxycycline as single agents for prevention and treatment of C. albicans biofilms. Thus, we sought to investigate optimal combinations of micafungin, ethanol, and/or doxycycline as a lock solution. We performed two- and three-drug checkerboard assays to determine the in vitro activity of pairwise or three agents in combination for prevention or treatment of C. albicans biofilms. Optimal lock solutions were tested for activity against C. albicans clinical isolates, reference strains and polymicrobial C. albicans-S. aureus biofilms. A solution containing 20% (v/v) ethanol, 0.01565 μg/mL micafungin, and 800 μg/mL doxycycline demonstrated a reduction of 98% metabolic activity and no fungal regrowth when used to prevent fungal biofilm formation; however there was no advantage over 20% ethanol alone. This solution was also successful in inhibiting the regrowth of C. albicans from mature polymicrobial biofilms, although it was not fully bactericidal. Solutions containing 5% ethanol with low concentrations of micafungin and doxycycline demonstrated synergistic activity when used to prevent monomicrobial C. albicans biofilm formation. A combined solution of micafungin, ethanol and doxycycline is highly effective for the prevention of C. albicans biofilm formation but did not demonstrate an advantage over 20% ethanol alone in these studies.
Collapse
Affiliation(s)
- Livia Lown
- Section of Infectious Diseases, New Mexico Veterans Healthcare System, Albuquerque, New Mexico, United States of America
- Division of Infectious Diseases, University of New Mexico Health Science Center, Albuquerque, New Mexico, United States of America
| | - Brian M. Peters
- Department of Prosthodontics, LSU Health Sciences Center, School of Dentistry, New Orleans, Louisiana, United States of America
- Department of Microbiology, Immunology and Parasitology, School of Medicine, LSU Health Science Center, New Orleans, Louisiana, United States of America
- Department of Clinical Pharmacy, University of Tennessee Health Sciences Center, Memphis, Tennessee, United States of America
| | - Carla J. Walraven
- College of Pharmacy, University of New Mexico, Albuquerque, New Mexico, United States of America
| | - Mairi C. Noverr
- Department of Prosthodontics, LSU Health Sciences Center, School of Dentistry, New Orleans, Louisiana, United States of America
- Department of Microbiology, Immunology and Parasitology, School of Medicine, LSU Health Science Center, New Orleans, Louisiana, United States of America
| | - Samuel A. Lee
- Section of Infectious Diseases, New Mexico Veterans Healthcare System, Albuquerque, New Mexico, United States of America
- Division of Infectious Diseases, University of New Mexico Health Science Center, Albuquerque, New Mexico, United States of America
- * E-mail:
| |
Collapse
|
214
|
Basas J, Morer A, Ratia C, Martín MT, Del Pozo JL, Gomis X, Rojo-Molinero E, Torrents E, Almirante B, Gavaldà J. Efficacy of anidulafungin in the treatment of experimental Candida parapsilosis catheter infection using an antifungal-lock technique. J Antimicrob Chemother 2016; 71:2895-901. [PMID: 27378814 DOI: 10.1093/jac/dkw251] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2016] [Accepted: 05/24/2016] [Indexed: 01/28/2023] Open
Abstract
OBJECTIVES The effectiveness of anidulafungin versus liposomal amphotericin B (LAmB) for treating experimental Candida parapsilosis catheter-related infection by an antifungal-lock technique was assessed. METHODS Two clinical strains of C. parapsilosis (CP12 and CP54) were studied. In vitro studies were used to determine the biofilm MICs (MBIC50 and MBIC90) by XTT reduction assay and LIVE/DEAD biofilm viability for anidulafungin and LAmB on 96-well microtitre polystyrene plates and silicone discs. An intravenous catheter was implanted in New Zealand white rabbits. Infection was induced by locking the catheter for 48 h with the inoculum. The 48 h antifungal-lock treatment groups included control, 3.3 mg/mL anidulafungin and 5.5 mg/mL LAmB. RESULTS Anidulafungin showed better in vitro activity than LAmB against C. parapsilosis growing in biofilm on silicone discs. MBIC90 of LAmB: CP12, >1024 mg/L; CP54, >1024 mg/L. MBIC90 of anidulafungin: CP12, 1 mg/L; CP54, 1 mg/L (P ≤ 0.05). Moreover, only anidulafungin (1 mg/L) showed >90% non-viable cells in the LIVE/DEAD biofilm viability assay on silicone discs. No differences were observed between the in vitro susceptibility of anidulafungin or LAmB when 96-well plates were used. Anidulafungin achieved significant reductions relative to LAmB in log10 cfu recovered from the catheter tips for both strains (P ≤ 0.05). Only anidulafungin achieved negative catheter tip cultures (CP12 63%, CP54 73%, P ≤ 0.05). CONCLUSIONS Silicone discs may be a more reliable substrate for the study of in vitro biofilm susceptibility of C. parapsilosis. Anidulafungin-lock therapy showed the highest activity for experimental catheter-related infection with C. parapsilosis.
Collapse
Affiliation(s)
- Jana Basas
- Infectious Diseases Research Laboratory, Vall d'Hebron Research Institute, VHIR, Infectious Diseases Department, Hospital Universitari Vall d'Hebron, Barcelona, Spain
| | - Alba Morer
- Infectious Diseases Research Laboratory, Vall d'Hebron Research Institute, VHIR, Infectious Diseases Department, Hospital Universitari Vall d'Hebron, Barcelona, Spain
| | - Carlos Ratia
- Infectious Diseases Research Laboratory, Vall d'Hebron Research Institute, VHIR, Infectious Diseases Department, Hospital Universitari Vall d'Hebron, Barcelona, Spain
| | - María Teresa Martín
- Microbiology Department, Hospital Universitari Vall d'Hebron, Barcelona, Spain
| | - José Luis Del Pozo
- Infectious Disease Division, Laboratory of Microbial Biofilms, Clínica Universidad de Navarra, Navarra, Spain
| | - Xavier Gomis
- Infectious Diseases Research Laboratory, Vall d'Hebron Research Institute, VHIR, Infectious Diseases Department, Hospital Universitari Vall d'Hebron, Barcelona, Spain
| | - Estrella Rojo-Molinero
- Servicio de Microbiología and Unidad de Investigación, Hospital Universitario Son Espases, Instituto de Investigación Sanitaria de Palma (IdISPa), Palma de Mallorca, Spain
| | - Eduard Torrents
- Institute for Bioengineering of Catalonia (IBEC), Bacterial Infections and Antimicrobial Therapies, Barcelona, Spain
| | - Benito Almirante
- Infectious Diseases Research Laboratory, Vall d'Hebron Research Institute, VHIR, Infectious Diseases Department, Hospital Universitari Vall d'Hebron, Barcelona, Spain
| | - Joan Gavaldà
- Infectious Diseases Research Laboratory, Vall d'Hebron Research Institute, VHIR, Infectious Diseases Department, Hospital Universitari Vall d'Hebron, Barcelona, Spain
| |
Collapse
|
215
|
Design, synthesis and biological evaluation of diaziridinyl quinone isoxazole hybrids. Eur J Med Chem 2016; 117:85-98. [DOI: 10.1016/j.ejmech.2016.03.042] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2016] [Revised: 03/14/2016] [Accepted: 03/17/2016] [Indexed: 12/23/2022]
|
216
|
Abstract
In humans, microbial cells (including bacteria, archaea, and fungi) greatly outnumber host cells. Candida albicans is the most prevalent fungal species of the human microbiota; this species asymptomatically colonizes many areas of the body, particularly the gastrointestinal and genitourinary tracts of healthy individuals. Alterations in host immunity, stress, resident microbiota, and other factors can lead to C. albicans overgrowth, causing a wide range of infections, from superficial mucosal to hematogenously disseminated candidiasis. To date, most studies of C. albicans have been carried out in suspension cultures; however, the medical impact of C. albicans (like that of many other microorganisms) depends on its ability to thrive as a biofilm, a closely packed community of cells. Biofilms are notorious for forming on implanted medical devices, including catheters, pacemakers, dentures, and prosthetic joints, which provide a surface and sanctuary for biofilm growth. C. albicans biofilms are intrinsically resistant to conventional antifungal therapeutics, the host immune system, and other environmental perturbations, making biofilm-based infections a significant clinical challenge. Here, we review our current knowledge of biofilms formed by C. albicans and closely related fungal species.
Collapse
Affiliation(s)
- Clarissa J Nobile
- Department of Molecular and Cell Biology, School of Natural Sciences, University of California, Merced, California 95343;
| | - Alexander D Johnson
- Department of Microbiology and Immunology, University of California, San Francisco, California 94143;
| |
Collapse
|
217
|
Roudbarmohammadi S, Roudbary M, Bakhshi B, Katiraee F, Mohammadi R, Falahati M. ALS1 and ALS3 gene expression and biofilm formation in Candida albicans isolated from vulvovaginal candidiasis. Adv Biomed Res 2016; 5:105. [PMID: 27376044 PMCID: PMC4918214 DOI: 10.4103/2277-9175.183666] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2015] [Accepted: 12/05/2015] [Indexed: 01/09/2023] Open
Abstract
BACKGROUND A cluster of genes are involved in the pathogenesis and adhesion of Candida albicans to mucosa and epithelial cells in the vagina, the important of which is agglutinin-like sequence (ALS) genes. As well as vaginitis is a significant health problem among women, the antifungal resistance of Candida species is continually increasing. This cross-sectional study investigates the expression of ALS1 and ALS3 genes and biofilm formation in C. albicans isolate isolated from vaginitis. MATERIALS AND METHODS Fifty-three recognized isolates of C. albicans were collected from women with recurrent vulvovaginal candidiasis in Iran, cultured on sabouraud dextrose agar, and then examined for gene expression. Total messenger RNA (mRNA) extracted from C. albicans isolates and complementary DNA synthesized using reverse transcriptase enzyme. Reverse transcription-polymerase chain reaction (RT-PCR) using specific primer was used to evaluate the expression of ALS1 and ALS3 through housekeeping (ACT1) genes. 3-(4,5-dimethyl-2-thiazyl)-2,5-diphenyl-2H-tetrazolium bromide assay was performed to assess adherence capacity and biofilm formation in the isolated. RESULTS Forty isolates (75.8%) expressed ALS1 and 41 isolates (77.7%) expressed ALS3 gene. Moreover, 39 isolates (74%) were positive for both ALS1 and ALS3 mRNA by the RT-PCR. Adherence capability in isolates with ALS1 or ALS3 genes expression was greater than the control group (with any gene expression), besides, it was significantly for the most in the isolates that expressed both ALS1 and ALS3 genes simultaneously. CONCLUSION The results attained indicated that there is an association between the expression of ALS1 and ALS3 genes and fluconazole resistance in C. albicans. A considerable percent of the isolates expressing the ALS1 and ALS3 genes may have contributed to their adherence to vagina and biofilm formation.
Collapse
Affiliation(s)
- Shahla Roudbarmohammadi
- Department of Mycology, Faculty of Medical Science, Tarbiat Modares University, Tehran, Iran
| | - Maryam Roudbary
- Department of Parasitology and Mycology, School of Medicine, Iran University of Medical Science, Tehran, Iran
| | - Bita Bakhshi
- Department of Bacteriology, Faculty of Medical Science, Tarbiat Modares University, Tehran, Iran
| | - Farzad Katiraee
- Department of Pathobiology, Faculty of Veterinary Medicine, University of Tabriz, Tabriz, Iran
| | - Rasoul Mohammadi
- Department of Medical Parasitology and Mycology, School of Medicine, Isfahan University of Medical Science, Isfahan, Iran
| | - Mehraban Falahati
- Department of Parasitology and Mycology, School of Medicine, Iran University of Medical Science, Tehran, Iran
| |
Collapse
|
218
|
Manna U, Raman N, Welsh MA, Zayas-Gonzalez YM, Blackwell HE, Palecek SP, Lynn DM. Slippery Liquid-Infused Porous Surfaces that Prevent Microbial Surface Fouling and Kill Non-Adherent Pathogens in Surrounding Media: A Controlled Release Approach. ADVANCED FUNCTIONAL MATERIALS 2016; 26:3599-3611. [PMID: 28713229 PMCID: PMC5507623 DOI: 10.1002/adfm.201505522] [Citation(s) in RCA: 80] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
Many types of slippery liquid-infused porous surfaces (or 'SLIPS') can resist adhesion and colonization by microorganisms. These 'slippery' materials thus offer new approaches to prevent fouling on a range of commercial and industrial surfaces, including biomedical devices. However, while SLIPS can prevent fouling on surfaces to which they are applied, they can currently do little to prevent the proliferation of non-adherent (planktonic) organisms, stop them from colonizing other surfaces, or prevent them from engaging in other behaviors that could lead to infection and associated burdens. Here, we report an approach to the design of multi-functional SLIPS that addresses these issues and expands the potential utility of slippery surfaces in antimicrobial contexts. Our approach is based on the incorporation and controlled release of small-molecule antimicrobial agents from the porous matrices used to host infused slippery oil phases. We demonstrate that SLIPS fabricated using nanoporous polymer multilayers can prevent short- and longer-term colonization and biofilm formation by four common fungal and bacterial pathogens (Candida albicans, Pseudomonas aeruginosa, Escherichia coli, and Staphylococcus aureus), and that the polymer and oil phases comprising these materials can be exploited to load and sustain the release of triclosan, a model hydrophobic and broad-spectrum antimicrobial agent, into surrounding media. This approach both improves the inherent anti-fouling properties of these materials and endows them with the ability to efficiently kill planktonic pathogens. Finally, we show that this approach can be used to fabricate dual-action SLIPS on complex surfaces, including the luminal surfaces of flexible catheter tubes. This strategy has the potential to be general; we anticipate that the materials, strategies, and concepts reported here will enable new approaches to the design of slippery surfaces with improved anti-fouling properties and open the door to new applications of slippery liquid-infused materials that host or promote the release of a variety of other active agents.
Collapse
Affiliation(s)
- Uttam Manna
- Department of Chemical & Biological Engineering, University of Wisconsin-Madison, 1415 Engineering Drive, Madison, WI 53706, USA
| | - Namrata Raman
- Department of Chemical & Biological Engineering, University of Wisconsin-Madison, 1415 Engineering Drive, Madison, WI 53706, USA
| | - Michael A Welsh
- Department of Chemistry, University of Wisconsin-Madison, 1101 University Avenue, Madison, WI 53706, USA
| | - Yashira M Zayas-Gonzalez
- Department of Chemical & Biological Engineering, University of Wisconsin-Madison, 1415 Engineering Drive, Madison, WI 53706, USA
| | - Helen E Blackwell
- Department of Chemistry, University of Wisconsin-Madison, 1101 University Avenue, Madison, WI 53706, USA
| | - Sean P Palecek
- Department of Chemical & Biological Engineering, University of Wisconsin-Madison, 1415 Engineering Drive, Madison, WI 53706, USA
| | - David M Lynn
- Department of Chemical & Biological Engineering, University of Wisconsin-Madison, 1415 Engineering Drive, Madison, WI 53706, USA
| |
Collapse
|
219
|
Tomičić Z, Zupan J, Matos T, Raspor P. Probiotic yeast Saccharomyces boulardii (nom. nud.) modulates adhesive properties of Candida glabrata. Med Mycol 2016; 54:835-45. [PMID: 27250926 DOI: 10.1093/mmy/myw026] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2016] [Accepted: 03/20/2016] [Indexed: 12/13/2022] Open
Abstract
Following the widespread use of immunosuppressive therapy together with broad-spectrum antimycotic therapy, the frequency of mucosal and systemic infections caused by the pathogenic yeast Candida glabrata has increased in the past decades. Due to the resistance of C. glabrata to existing azole drugs, it is very important to look for new strategies helping the treatment of such fungal diseases. In this study, we investigated the effect of the probiotic yeast Saccharomyces boulardii (nom. nud.) on C. glabrata adhesion at different temperatures, pH values, and in the presence of fluconazole, itraconazole and amphotericin B. We also studied the adhesion of C. glabrata co-culture with Candida krusei, Saccharomyces cerevisiae, two bacterial probiotics Lactobacillus rhamnosus and Lactobacillus casei The method used to assess adhesion was crystal violet staining. Our results showed that despite the nonadhesiveness of S. boulardii cells, this probiotic significantly affected the adherence ability of C. glabrata This effect was highly dependent on C. glabrata strain and was either antagonistic or synergistic. Regarding the extrinsic factors, temperature did not indicate any significant influence on this S. boulardii modulatory effect, while at high pH and at increased concentrations of antimycotics, S. boulardii did not manage to repress the adhesion of C. glabrata strains. The experiments of C. glabrata co-cultures with other species showed that the adhesiveness of two separate cultures could not be used to predict the adhesiveness of their co-culture.
Collapse
Affiliation(s)
- Zorica Tomičić
- Institute of Food Technology, University of Novi Sad, Bulevar cara Lazara 1, 21000 Novi Sad, Serbia
| | - Jure Zupan
- Chair of Biotechnology, Microbiology and Food Safety, Department of Food Science and Technology, Biotechnical Faculty, University of Ljubljana, Jamnikarjeva 101, 1000, Ljubljana, Slovenia (the university in the time of experiments)
| | - Tadeja Matos
- Institute of microbiology and immunology, Medical faculty, University of Ljubljana, Zaloška 4, 1000 Ljubljana, Slovenia
| | - Peter Raspor
- Chair of Biotechnology, Microbiology and Food Safety, Department of Food Science and Technology, Biotechnical Faculty, University of Ljubljana, Jamnikarjeva 101, 1000, Ljubljana, Slovenia (the university in the time of experiments)
| |
Collapse
|
220
|
Sadeghi Ardestani Z, Falahati M, Sayah Alborzi S, Ashrafi Khozani M, Rostam Khani F, Bahador A. The effect of nanochitosans particles on Candida biofilm formation. Curr Med Mycol 2016; 2:28-33. [PMID: 28681017 PMCID: PMC5490302 DOI: 10.18869/acadpub.cmm.2.2.1] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
Background and Purpose: In people wearing dentures, the growth of various Candida species under the prosthesis leads to the formation of biofilm, which can play the role of a reservoir for Candida and other kinds of microbes. Since nano-chitosan particles can cause lasting antimicrobial activity, a more recent approach that utilizes acrylic resins with nano-chitosan particles is proposed. Therefore, we aimed to study the inhibitory effect of nano-chitosan particles on the biofilm formation of Candida species in acrylic resins. Materials and Methods: In this analytical in-vitro study, acrylic resins with nano-chitosan particles with concentrations of 0, 1%, 5%, and %10 were put adjacent to the suspension of Candida cells isolated from the individuals’ mouth and biofilm formation on resins was measured and compared. Finally, the data were analyzed using Kruskal-Wallis and Chi-square tests. Results: The observed differences between unmodified acrylic resin (control) and acrylic resin with nano-chitosan particles in terms of biofilm formation were significant (P<0.05) but no significant difference was found in the formation of biofilm species on resins. Conclusion: Biofilm formation of Candida species depends on acrylic resin type, in a way that by adding nano-chitosan particles to acrylic resins, biofilm formation of Candida species was significantly reduced. To decrease the organization of biofilm and denture stomatitis, the use of acrylics with nano-chitosan particles in producing dentures is recommended.
Collapse
Affiliation(s)
- Z Sadeghi Ardestani
- Department of Medical Parasitology and Mycology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - M Falahati
- Department of Medical Parasitology and Mycology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - S Sayah Alborzi
- Department of Medical Parasitology and Mycology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - M Ashrafi Khozani
- Department of Medical Parasitology and Mycology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - F Rostam Khani
- Department of Prosthodontics, Dental School, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - A Bahador
- Department of Microbiology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
221
|
Efficacy of ferulic acid encapsulated chitosan nanoparticles against Candida albicans biofilm. Microb Pathog 2016; 95:21-31. [DOI: 10.1016/j.micpath.2016.02.007] [Citation(s) in RCA: 66] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2016] [Revised: 02/16/2016] [Accepted: 02/16/2016] [Indexed: 11/23/2022]
|
222
|
Biofilm Production and Antibiofilm Activity of Echinocandins and Liposomal Amphotericin B in Echinocandin-Resistant Yeast Species. Antimicrob Agents Chemother 2016; 60:3579-86. [PMID: 27021323 DOI: 10.1128/aac.03065-15] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2015] [Accepted: 03/21/2016] [Indexed: 11/20/2022] Open
Abstract
The echinocandins and liposomal amphotericin B are active against biofilm produced by echinocandin-susceptible Candida strains. However, few data have been reported on the production of biofilm by echinocandin-resistant isolates and their antifungal susceptibility. We studied the production of biofilm by fks mutant Candida strains and intrinsically echinocandin-resistant non-Candida isolates and the susceptibility of both entities to liposomal amphotericin B and echinocandins. We analyzed the production of biofilm by isolates from patients with fungemia (fks mutant Candida, n = 5; intrinsically echinocandin-resistant non-Candida, n = 12; and Candida wild type, n = 10). Biofilm formation was measured to classify strains according to biomass (crystal violet assay) and metabolic activity (XTT reduction assay). Preformed biofilms were tested against liposomal amphotericin B, caspofungin, micafungin, and anidulafungin. The sessile MIC was defined as the antifungal concentration yielding a 50% or 80% reduction in the metabolic activity of the biofilm compared to that of the growth control (SMIC50 and SMIC80, respectively). fks mutant Candida isolates formed biofilms in a fashion similar to that of Candida wild-type strains. The echinocandins had the highest activity against biofilms formed by wild-type Candida isolates, followed by fks mutant Candida isolates and non-Candida isolates. Liposomal amphotericin B had the highest activity against fks mutant Candida biofilms. The formation of biofilm by echinocandin-resistant strains was similar to that of wild-type strains, although resistance to echinocandins remained high.
Collapse
|
223
|
Tan Y, Leonhard M, Moser D, Schneider-Stickler B. Antibiofilm activity of carboxymethyl chitosan on the biofilms of non-Candida albicans Candida species. Carbohydr Polym 2016; 149:77-82. [PMID: 27261732 DOI: 10.1016/j.carbpol.2016.04.101] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2015] [Revised: 04/17/2016] [Accepted: 04/22/2016] [Indexed: 01/04/2023]
Abstract
Although most cases of candidiasis have been attributed to Candida albicans, non-C. albicans Candida species have been isolated in increasing numbers in patients. In this study, we determined the inhibition of carboxymethyl chitosan (CM-chitosan) on single and mixed species biofilm of non-albicans Candida species, including Candida tropicalis, Candida parapsilosis, Candida krusei and Candida glabrata. Biofilm by all tested species in microtiter plates were inhibited nearly 70%. CM-chitosan inhibited mixed species biofilm in microtiter plates and also on medical materials surfaces. To investigate the mechanism, the effect of CM-chitosan on cell viability and biofilm growth was employed. CM-chitosan inhibited Candida planktonic growth as well as adhesion. Further biofilm formation was inhibited with CM-chitosan added at 90min, 12h or 24h after biofilm initiation. CM-chitosan was not only able to inhibit the metabolic activity of Candida cells, but was also active upon the establishment and the development of biofilms.
Collapse
Affiliation(s)
- Yulong Tan
- Department of Otorhinolaryngology and Head and Neck Surgery, Medical University of Vienna, Vienna, Austria.
| | - Matthias Leonhard
- Department of Otorhinolaryngology and Head and Neck Surgery, Medical University of Vienna, Vienna, Austria.
| | - Doris Moser
- Department of Cranio-Maxillofacial and Oral Surgery, Medical University of Vienna, Vienna, Austria.
| | - Berit Schneider-Stickler
- Department of Otorhinolaryngology and Head and Neck Surgery, Medical University of Vienna, Vienna, Austria.
| |
Collapse
|
224
|
Abstract
Fungal infections constitute a major threat to an escalating number of critically ill patients. Fungi are eukaryotic organisms and, as such, there is a limited armamentarium of antifungal drugs, which leads to high mortality rates. Moreover, fungal infections are often associated with the formation of biofilms, which contribute to virulence and further complicate treatment due to the high level of antifungal drug resistance displayed by sessile cells within these microbial communities. Thus, the treatment of fungal infections associated with a biofilm etiology represents a formidable and unmet clinical challenge. The increasing importance and awareness of fungal biofilms is reflected by the fact that this is now an area of very active research. Studies in the last decade have provided important insights into fungal biofilm biology, physiology, and pathology, as well as into the molecular basis of biofilm resistance. Here we discuss how this accumulated knowledge may inform the development of new antibiofilm strategies and therapeutics that are urgently needed.
Collapse
|
225
|
Freire F, Ferraresi C, Jorge AOC, Hamblin MR. Photodynamic therapy of oral Candida infection in a mouse model. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY B-BIOLOGY 2016; 159:161-8. [PMID: 27074245 DOI: 10.1016/j.jphotobiol.2016.03.049] [Citation(s) in RCA: 67] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/07/2016] [Accepted: 03/30/2016] [Indexed: 11/17/2022]
Abstract
Species of the fungal genus Candida, can cause oral candidiasis especially in immunosuppressed patients. Many studies have investigated the use of photodynamic therapy (PDT) to kill fungi in vitro, but this approach has seldom been reported in animal models of infection. This study investigated the effects of PDT on Candida albicans as biofilms grown in vitro and also in an immunosuppressed mouse model of oral candidiasis infection. We used a luciferase-expressing strain that allowed non-invasive monitoring of the infection by bioluminescence imaging. The phenothiazinium salts, methylene blue (MB) and new methylene blue (NMB) were used as photosensitizers (PS), combined or not with potassium iodide (KI), and red laser (660nm) at four different light doses (10J, 20J, 40J and 60J). The best in vitro log reduction of CFU/ml on biofilm grown cells was: MB plus KI with 40J (2.31 log; p<0.001); and NMB without KI with 60J (1.77 log; p<0.001). These conditions were chosen for treating the in vivo model of oral Candida infection. After 5days of treatment the disease was practically eradicated, especially using MB plus KI with 40J. This study suggests that KI can potentiate PDT of fungal infection using MB (but not NMB) and could be a promising new approach for the treatment of oral candidiasis.
Collapse
Affiliation(s)
- Fernanda Freire
- Wellman Center for Photomedicine, Massachusetts General Hospital, Boston, MA, USA; Department of Biosciences and Oral Diagnosis, Institute of Science and Technology, Universidade Estadual Paulista (UNESP), São José dos Campos, São Paulo, Brazil
| | - Cleber Ferraresi
- Wellman Center for Photomedicine, Massachusetts General Hospital, Boston, MA, USA
| | - Antonio Olavo C Jorge
- Department of Biosciences and Oral Diagnosis, Institute of Science and Technology, Universidade Estadual Paulista (UNESP), São José dos Campos, São Paulo, Brazil
| | - Michael R Hamblin
- Wellman Center for Photomedicine, Massachusetts General Hospital, Boston, MA, USA; Department of Dermatology, Harvard Medical School, Boston, MA, USA; Harvard-MIT Division of Health Sciences and Technology, Cambridge, MA, USA.
| |
Collapse
|
226
|
Haque F, Alfatah M, Ganesan K, Bhattacharyya MS. Inhibitory Effect of Sophorolipid on Candida albicans Biofilm Formation and Hyphal Growth. Sci Rep 2016; 6:23575. [PMID: 27030404 PMCID: PMC4876995 DOI: 10.1038/srep23575] [Citation(s) in RCA: 124] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2015] [Accepted: 03/09/2016] [Indexed: 12/18/2022] Open
Abstract
Candida albicans causes superficial and life-threatening systemic infections.
These are difficult to treat often due to drug resistance, particularly because
C. albicans biofilms are inherently resistant to most antifungals.
Sophorolipid (SL), a glycolipid biosurfactant, has been shown to have antimicrobial
and anticancer properties. In this study, we investigated the effect of SL on C.
albicans biofilm formation and preformed biofilms. SL was found to inhibit
C. albicans biofilm formation as well as reduce the viability of
preformed biofilms. Moreover, SL, when used along with amphotericin B (AmB) or
fluconazole (FLZ), was found to act synergistically against biofilm formation and
preformed biofilms. Effect of SL on C. albicans biofilm formation was further
visualized by scanning electron microscopy (SEM) and confocal laser scanning
microscopy (CLSM), which revealed absence of hyphae, typical biofilm architecture
and alteration in the morphology of biofilm cells. We also found that SL
downregulates the expression of hypha specific genes HWP1, ALS1,
ALS3, ECE1 and SAP4, which possibly explains the inhibitory
effect of SL on hyphae and biofilm formation.
Collapse
Affiliation(s)
- Farazul Haque
- Biocatalysis and Fermentation Science Laboratory, Biochemical Engineering Research &Process Development Center (BERPDC), CSIR-Institute of Microbial Technology, Sector 39-A, Chandigarh-160 036, India
| | - Md Alfatah
- Yeast Molecular Biology Laboratory, CSIR-Institute of Microbial Technology, Sector 39-A, Chandigarh-160 036, India
| | - K Ganesan
- Yeast Molecular Biology Laboratory, CSIR-Institute of Microbial Technology, Sector 39-A, Chandigarh-160 036, India
| | - Mani Shankar Bhattacharyya
- Biocatalysis and Fermentation Science Laboratory, Biochemical Engineering Research &Process Development Center (BERPDC), CSIR-Institute of Microbial Technology, Sector 39-A, Chandigarh-160 036, India
| |
Collapse
|
227
|
Sanglard D. Emerging Threats in Antifungal-Resistant Fungal Pathogens. Front Med (Lausanne) 2016; 3:11. [PMID: 27014694 PMCID: PMC4791369 DOI: 10.3389/fmed.2016.00011] [Citation(s) in RCA: 247] [Impact Index Per Article: 27.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2016] [Accepted: 03/03/2016] [Indexed: 12/15/2022] Open
Abstract
The use of antifungal drugs in the therapy of fungal diseases can lead to the development of antifungal resistance. Resistance has been described for virtually all antifungal agents in diverse pathogens, including Candida and Aspergillus species. The majority of resistance mechanisms have also been elucidated at the molecular level in these pathogens. Drug resistance genes and genome mutations have been identified. Therapeutic choices are limited for the control of fungal diseases, and it is tempting to combine several drugs to achieve better therapeutic efficacy. In the recent years, several novel resistance patterns have been observed, including antifungal resistance originating from environmental sources in Aspergillus fumigatus and the emergence of simultaneous resistance to different antifungal classes (multidrug resistance) in different Candida species. This review will summarize these current trends.
Collapse
Affiliation(s)
- Dominique Sanglard
- Institute of Microbiology, University Hospital Center, University of Lausanne , Lausanne , Switzerland
| |
Collapse
|
228
|
Wongsuk T, Pumeesat P, Luplertlop N. Fungal quorum sensing molecules: Role in fungal morphogenesis and pathogenicity. J Basic Microbiol 2016; 56:440-7. [PMID: 26972663 DOI: 10.1002/jobm.201500759] [Citation(s) in RCA: 110] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2015] [Accepted: 02/19/2016] [Indexed: 01/19/2023]
Abstract
When microorganisms live together in high numbers, they need to communicate with each other. To achieve cell-cell communication, microorganisms secrete molecules called quorum-sensing molecules (QSMs) that control their biological activities and behaviors. Fungi secrete QSMs such as farnesol, tyrosol, phenylethanol, and tryptophol. The role of QSMs in fungi has been widely studied in both yeasts and filamentous fungi, for example in Candida albicans, C. dubliniensis, Aspergillus niger, A. nidulans, and Fusarium graminearum. QSMs impact fungal morphogenesis (yeast-to-hypha formation) and also play a role in the germination of macroconidia. QSMs cause fungal cells to initiate programmed cell death, or apoptosis, and play a role in fungal pathogenicity. Several types of QSMs are produced during stages of biofilm development to control cell population or morphology in biofilm communities. This review article emphasizes the role of fungal QSMs, especially in fungal morphogenesis, biofilm formation, and pathogenicity. Information about QSMs may lead to improved measures for controlling fungal infection.
Collapse
Affiliation(s)
- Thanwa Wongsuk
- Department of Clinical Pathology, Faculty of Medicine, Vajira Hospital, Navamindradhiraj University, Bangkok, Thailand.,Department of Microbiology and Immunology, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
| | - Potjaman Pumeesat
- Department of Medical Technology, Faculty of Science and Technology, Bansomdejchaopraya Rajabhat University, Bangkok, Thailand.,Department of Microbiology and Immunology, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
| | - Natthanej Luplertlop
- Department of Microbiology and Immunology, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand.,Center for Emerging and Neglected Infectious Diseases, Mahidol University, Salaya Campus, Nakorn Pathom, Thailand
| |
Collapse
|
229
|
Shirazi F, Kontoyiannis DP. Micafungin triggers caspase-dependent apoptosis in Candida albicans and Candida parapsilosis biofilms, including caspofungin non-susceptible isolates. Virulence 2016; 6:385-94. [PMID: 26065323 DOI: 10.1080/21505594.2015.1027479] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Candida biofilms play an important role in infections associated with medical devices and are resistant to antifungals. We hypothesized that the echinocandin micafungin (MICA) exerts an enhanced antifungal activity against caspofungin (CAS)-susceptible (CAS-S) and CAS-non-susceptible (CAS-NS) Candida albicans and Candida parapsilosis which is at least in part through apoptosis, even in the biofilm environment. Apoptosis was characterized by detecting reactive oxygen species (ROS) accumulation, depolarization of mitochondrial membrane potential (MMP), DNA fragmentation, lack of plasma membrane integrity, and metacaspase activation following exposure of Candida biofilm to MICA for 3h at 37°C in RPMI 1640 medium. The minimum inhibitory concentration was higher for CAS (2.0-16.0 μg/mL) than for MICA (1.0-8.0 μg/mL) for Candida biofilms. Elevated intracellular ROS levels and depolarization of MMP was evident in CAS-S C. albicans (3.0-4.2 fold) and C. parapsilosis (4.8-5.4 fold) biofilms compared with CAS-NS (1.2 fold) after exposure to MICA (0.25x-1xMIC). Elevated intracellular ROS levels and depolarization of MMP was evident in CAS-S C. albicans (3.0-4.2 fold) and C. parapsilosis (4.8-5.4 fold) biofilms compared with CAS-NS (1.2 fold) after exposure to MICA (0.25x-1xMIC). Finally higher ß-1, 3 glucan levels were seen in sessile cells compared to planktonic cells, especially in CAS-NS strains. MICA treatment might induce a metacaspase-dependent apoptotic process in biofilms of both CAS-S C. albicans and C. parapsilosis, and to some degree in CAS-NS strains.
Collapse
Affiliation(s)
- F Shirazi
- a Department of Infectious Diseases; Infection Control and Employee Health ; The University of Texas MD Anderson Cancer Center ; Houston , TX USA
| | | |
Collapse
|
230
|
Cui J, Ren B, Tong Y, Dai H, Zhang L. Synergistic combinations of antifungals and anti-virulence agents to fight against Candida albicans. Virulence 2016; 6:362-71. [PMID: 26048362 DOI: 10.1080/21505594.2015.1039885] [Citation(s) in RCA: 126] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Candida albicans, one of the pathogenic Candida species, causes high mortality rate in immunocompromised and high-risk surgical patients. In the last decade, only one new class of antifungal drug echinocandin was applied. The increased therapy failures, such as the one caused by multi-drug resistance, demand innovative strategies for new effective antifungal drugs. Synergistic combinations of antifungals and anti-virulence agents highlight the pragmatic strategy to reduce the development of drug resistant and potentially repurpose known antifungals, which bypass the costly and time-consuming pipeline of new drug development. Anti-virulence and synergistic combination provide new options for antifungal drug discovery by counteracting the difficulty or failure of traditional therapy for fungal infections.
Collapse
Affiliation(s)
- Jinhui Cui
- a CAS Key Laboratory of Pathogenic Microbiology and Immunology; Institute of Microbiology; Chinese Academy of Sciences ; Beijing , China
| | | | | | | | | |
Collapse
|
231
|
Singh S, Fatima Z, Hameed S. Insights into the mode of action of anticandidal herbal monoterpenoid geraniol reveal disruption of multiple MDR mechanisms and virulence attributes in Candida albicans. Arch Microbiol 2016; 198:459-72. [DOI: 10.1007/s00203-016-1205-9] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2015] [Revised: 01/21/2016] [Accepted: 02/18/2016] [Indexed: 12/17/2022]
|
232
|
Bujdáková H. Management of Candida biofilms: state of knowledge and new options for prevention and eradication. Future Microbiol 2016; 11:235-51. [PMID: 26849383 DOI: 10.2217/fmb.15.139] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Biofilms formed by Candida species (spp.) on medical devices represent a potential health risk. The focus of current research is searching for new options for the treatment and prevention of biofilm-associated infections using different approaches including modern nanotechnology. This review summarizes current information concerning the most relevant resistance/tolerance mechanisms to conventional drugs and a role of additional factors contributing to these phenomena in Candida spp. (mostly Candida albicans). Additionally, it provides an information update in prevention and eradication of a Candida biofilm including experiences with 'lock' therapy, potential utilization of small molecules in biomedical applications, and perspectives of using photodynamic inactivation in the control of a Candida biofilm.
Collapse
Affiliation(s)
- Helena Bujdáková
- Comenius University in Bratislava, Faculty of Natural Sciences, Department of Microbiology & Virology, Mlynská dolina, Ilkovičova 6, 842 15 Bratislava, Slovak Republic
| |
Collapse
|
233
|
Kołaczkowska A, Kołaczkowski M. Drug resistance mechanisms and their regulation in non-albicans Candida species. J Antimicrob Chemother 2016; 71:1438-50. [PMID: 26801081 DOI: 10.1093/jac/dkv445] [Citation(s) in RCA: 61] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Fungal pathogens use various mechanisms to survive exposure to drugs. Prolonged treatment very often leads to the stepwise acquisition of resistance. The limited number of antifungal therapeutics and their mostly fungistatic rather than fungicidal character facilitates selection of resistant strains. These are able to cope with cytotoxic molecules by acquisition of appropriate mutations, re-wiring gene expression and metabolic adjustments. Recent evidence points to the paramount importance of the permeability barrier and cell wall integrity in the process of adaptation to high drug concentrations. Molecular details of basal and acquired drug resistance are best characterized in the most frequent human fungal pathogen, Candida albicans Effector genes directly related to the acquisition of elevated tolerance of this species to azole and echinocandin drugs are well described. The emergence of high-level drug resistance against intrinsically lower susceptibility to azoles in yeast species other than C. albicans is, however, of particular concern. This is due to their steadily increasing contribution to high mortality rates associated with disseminated infections. Recent findings concerning underlying mechanisms associated with elevated drug resistance suggest a link to cell wall and plasma membrane metabolism in non-albicans Candida species.
Collapse
Affiliation(s)
- Anna Kołaczkowska
- Department of Biochemistry, Pharmacology and Toxicology, Wroclaw University of Environmental and Life Sciences, Norwida 31, PL 50-375, Wroclaw, Poland
| | - Marcin Kołaczkowski
- Department of Biophysics, Wroclaw Medical University, Chalubinskiego 10, PL50-368, Wroclaw, Poland
| |
Collapse
|
234
|
An D, Wang X, Li J, Jiang S, Ma X, Zhang H, Shi H, Sun H, Ye L, Li J. The Activity of Fungichromin against the Formation of Candida albicans Biofilm. Biol Pharm Bull 2016; 39:1948-1954. [DOI: 10.1248/bpb.b16-00380] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Affiliation(s)
- Duopeng An
- Department of Biosynthetic Medicinal Chemistry, School of Pharmacy, Fudan University
| | - Xiang Wang
- Department of Biosynthetic Medicinal Chemistry, School of Pharmacy, Fudan University
| | - Jun Li
- Department of Biosynthetic Medicinal Chemistry, School of Pharmacy, Fudan University
| | - Shanshan Jiang
- Department of Biosynthetic Medicinal Chemistry, School of Pharmacy, Fudan University
| | | | | | | | | | - Li Ye
- Department of Biosynthetic Medicinal Chemistry, School of Pharmacy, Fudan University
| | - Jiyang Li
- Department of Biosynthetic Medicinal Chemistry, School of Pharmacy, Fudan University
| |
Collapse
|
235
|
Pellissari CVG, Pavarina AC, Bagnato VS, Mima EGDO, Vergani CE, Jorge JH. Cytotoxicity of antimicrobial photodynamic inactivation on epithelial cells when co-cultured with Candida albicans. Photochem Photobiol Sci 2016; 15:682-90. [DOI: 10.1039/c5pp00387c] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
This study assessed the cytotoxicity of antimicrobial Photodynamic Inactivation (aPDI), mediated by curcumin, using human keratinocytes co-cultured withCandida albicans.
Collapse
Affiliation(s)
| | - Ana Claudia Pavarina
- Department of Dental Materials and Prosthodontics
- Araraquara Dental School
- Univ Estadual Paulista – UNESP
- Brazil
| | | | | | - Carlos Eduardo Vergani
- Department of Dental Materials and Prosthodontics
- Araraquara Dental School
- Univ Estadual Paulista – UNESP
- Brazil
| | - Janaina Habib Jorge
- Department of Dental Materials and Prosthodontics
- Araraquara Dental School
- Univ Estadual Paulista – UNESP
- Brazil
| |
Collapse
|
236
|
Fungal Biofilms: Update on Resistance. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2016; 931:37-47. [DOI: 10.1007/5584_2016_7] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
237
|
Arantes PT, Sanitá PV, Santezi C, Barbeiro CDO, Reina BD, Vergani CE, Dovigo LN. Reliability of the agar based method to assess the production of degradative enzymes in clinical isolates of Candida albicans. Med Mycol 2015; 54:266-74. [PMID: 26705836 DOI: 10.1093/mmy/myv103] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2015] [Accepted: 10/21/2015] [Indexed: 12/28/2022] Open
Abstract
The aim of this study was to establish a reproducible protocol using the methodology of hyaline zones around the colonies on specific agar plates for phospholipase and proteinase production. This was an in vitro double-blind experiment, in which the dependent variables were the enzymatic activity measurements (Pz) for the production of phospholipase (Pz-ph) and the production of secreted aspartyl proteinases (Pz-sap). Three independent variables give rise to different measurement protocols. All measurements were carried out at two different moments by four examiners (E1, E2, E3, and E4). The minimum sample size was 30 Candida albicans clinical isolates. Specific agar plates for phospholipase and SAPs production were prepared according the literature. The intra-and inter-examiner reproducibility for each protocol was estimated using the Intraclass Correlation Coefficient (ICC) and its confidence interval (95% CI). Based on the results obtained for both phospholipase and SAPs, there appears to be no consensus on the protocol chosen for each particular examiner. Measuring the colonies in triplicate may be the main factor associated with the increase in measurement accuracy and should therefore take precedence over measuring only one colony. When only one examiner is responsible for taking measurements, a standard protocol should be put in place and the statistical calibration of this researcher should be done prior to data collection. However, if two or more researchers are involved in the assessment of agar plates, our results suggest that the protocols using software to undertake plate reading is preferred.
Collapse
Affiliation(s)
- Paula Tamião Arantes
- Department of Social Dentistry, Araraquara Dental School, UNESP- Univ Estadual Paulista. Humaitá Street, 1680, 14801-903, Araraquara, SP, Brazil
| | - Paula Volpato Sanitá
- Department of Dental Materials and Prosthodontics, Araraquara Dental School, UNESP- Univ Estadual Paulista. Humaitá Street, 1680, 14801-903, Araraquara, SP, Brazil
| | - Carolina Santezi
- Department of Social Dentistry, Araraquara Dental School, UNESP- Univ Estadual Paulista. Humaitá Street, 1680, 14801-903, Araraquara, SP, Brazil
| | - Camila de Oliveira Barbeiro
- Department of Social Dentistry, Araraquara Dental School, UNESP- Univ Estadual Paulista. Humaitá Street, 1680, 14801-903, Araraquara, SP, Brazil
| | - Bárbara Donadon Reina
- Department of Social Dentistry, Araraquara Dental School, UNESP- Univ Estadual Paulista. Humaitá Street, 1680, 14801-903, Araraquara, SP, Brazil
| | - Carlos Eduardo Vergani
- Department of Dental Materials and Prosthodontics, Araraquara Dental School, UNESP- Univ Estadual Paulista. Humaitá Street, 1680, 14801-903, Araraquara, SP, Brazil
| | - Lívia Nordi Dovigo
- Department of Social Dentistry, Araraquara Dental School, UNESP- Univ Estadual Paulista. Humaitá Street, 1680, 14801-903, Araraquara, SP, Brazil
| |
Collapse
|
238
|
Gowri M, Sofi Beaula W, Biswal J, Dhamodharan P, Saiharish R, Rohan prasad S, Pitani R, Kandaswamy D, Raghunathan R, Jeyakanthan J, Rayala SK, Venkatraman G. β-lactam substituted polycyclic fused pyrrolidine/pyrrolizidine derivatives eradicate C. albicans in an ex vivo human dentinal tubule model by inhibiting sterol 14-α demethylase and cAMP pathway. Biochim Biophys Acta Gen Subj 2015; 1860:636-47. [PMID: 26723175 DOI: 10.1016/j.bbagen.2015.12.020] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2015] [Revised: 12/17/2015] [Accepted: 12/22/2015] [Indexed: 10/22/2022]
Abstract
BACKGROUND Further quest for new anti-fungal compounds with proven mechanisms of action arises due to resistance and dose limiting toxicity of existing agents. Among the human fungal pathogens C. albicans predominate by infecting several sites in the body and in particular oral cavity and root canals of human tooth. METHODS In the present study, we screened a library of β-lactam substituted polycyclic fused pyrrolidine/pyrrolizidine compounds against Candida sp. Detailed molecular studies were carried out with the active compound 3 on C. albicans. Morphological damage and antibiofilm activity of compound 3 on C. albicans was studied using scanning electron microscopy (SEM). Biochemical evidence for membrane damage was studied using flow cytometry. In silico docking studies were carried out to elucidate the mechanism of action of compound 3. Further, the antifungal activity of compound 3 was evaluated in an ex vivo dentinal tubule infection model. RESULTS Screening data showed that several new compounds were active against Candida sp. Among them, Compound 3 was most potent and exerted time kill effect at 4h, post antifungal effect up to 6h. When used in combination with fluconazole or nystatin, compound 3 revealed an minimum inhibitory concentration (MIC) decrease by 4 fold for both drugs used. In-depth molecular studies with compound 3 on C. albicans showed that this compound inhibited yeast to hyphae (Y-H) conversion and this involved the cAMP pathway. Further, SEM images of C. albicans showed that compound 3 caused membrane damage and inhibited biofilm formation. Biochemical evidence for membrane damage was confirmed by increased propidium iodide (PI) uptake in flow cytometry. Further, in silico studies revealed that compound 3 docks with the active site of the key enzyme 14-α-demethylase and this might inhibit ergosterol synthesis. In support of this, ergosterol levels were found to be decreased by 32 fold in compound 3 treated samples as analyzed by high performance liquid chromatography (HPLC). Further, the antifungal activity of compound 3 was evaluated in an ex vivo dentinal tubule infection model, which mimics human tooth root canal infection. Confocal laser scanning microscopy studies showed 83% eradication of C. albicans and a 6 log reduction in colony forming unit (CFU) after 24h treatment in the infected tooth samples in this model. CONCLUSION Compound 3 was found to be very effective in eradicating C. albicans by inhibiting cAMP pathway and ergosterol biosynthesis. GENERAL SIGNIFICANCE The results of this study can pave the way for developing new antifungal agents with well deciphered mechanisms of action and can be a promising antifungal agent or medicament against root canal infection.
Collapse
Affiliation(s)
- Meiyazhagan Gowri
- Department of Human Genetics, College of Biomedical Sciences, Technology & Research, Sri Ramachandra University, Porur, Chennai- 600 116, India
| | - Winfred Sofi Beaula
- Department of Human Genetics, College of Biomedical Sciences, Technology & Research, Sri Ramachandra University, Porur, Chennai- 600 116, India
| | - Jayashree Biswal
- Department of Bioinformatics, Alagappa University, Karaikudi- 630003, India
| | - Prabhu Dhamodharan
- Department of Bioinformatics, Alagappa University, Karaikudi- 630003, India
| | - Raghavan Saiharish
- Department of Medicinal Chemistry, College of Biomedical Sciences, Technology & Research,Sri Ramachandra University, Porur, Chennai- 600 116, India
| | - Surabi Rohan prasad
- Department of Biotechnology, Indian Institute of Technology, Madras (IIT M), Chennai- 600 025, India
| | - Ravishankar Pitani
- Department of Community Medicine, Sri Ramachandra Medical College & Research Institute, Sri Ramachandra University, Porur, Chennai-600 116, India
| | - Deivanayagam Kandaswamy
- Department of Conservative Dentistry and Endodontics, College of Dental Sciences, Sri Ramachandra University, Porur, Chennai-600 116, India
| | - Ragavachary Raghunathan
- Department of Organic Chemistry, University of Madras, Guindy Campus, Chennai- 600 025, India
| | | | - Suresh K Rayala
- Department of Biotechnology, Indian Institute of Technology, Madras (IIT M), Chennai- 600 025, India.
| | - Ganesh Venkatraman
- Department of Human Genetics, College of Biomedical Sciences, Technology & Research, Sri Ramachandra University, Porur, Chennai- 600 116, India.
| |
Collapse
|
239
|
Watamoto T, Egusa H, Sawase T, Yatani H. Screening of Pharmacologically Active Small Molecule Compounds Identifies Antifungal Agents Against Candida Biofilms. Front Microbiol 2015; 6:1453. [PMID: 26733987 PMCID: PMC4686731 DOI: 10.3389/fmicb.2015.01453] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2015] [Accepted: 12/04/2015] [Indexed: 11/13/2022] Open
Abstract
Candida species have emerged as important and common opportunistic human pathogens, particularly in immunocompromised individuals. The current antifungal therapies either have toxic side effects or are insufficiently effect. The aim of this study is develop new small-molecule antifungal compounds by library screening methods using Candida albicans, and to evaluate their antifungal effects on Candida biofilms and cytotoxic effects on human cells. Wild-type C. albicans strain SC5314 was used in library screening. To identify antifungal compounds, we screened a small-molecule library of 1,280 pharmacologically active compounds (LOPAC(1280TM)) using an antifungal susceptibility test (AST). To investigate the antifungal effects of the hit compounds, ASTs were conducted using Candida strains in various growth modes, including biofilms. We tested the cytotoxicity of the hit compounds using human gingival fibroblast (hGF) cells to evaluate their clinical safety. Only 35 compounds were identified by screening, which inhibited the metabolic activity of C. albicans by >50%. Of these, 26 compounds had fungistatic effects and nine compounds had fungicidal effects on C. albicans. Five compounds, BAY11-7082, BAY11-7085, sanguinarine chloride hydrate, ellipticine and CV-3988, had strong fungicidal effects and could inhibit the metabolic activity of Candida biofilms. However, BAY11-7082, BAY11-7085, sanguinarine chloride hydrate and ellipticine were cytotoxic to hGF cells at low concentrations. CV-3988 showed no cytotoxicity at a fungicidal concentration. Four of the compounds identified, BAY11-7082, BAY11-7085, sanguinarine chloride hydrate and ellipticine, had toxic effects on Candida strains and hGF cells. In contrast, CV-3988 had fungicidal effects on Candida strains, but low cytotoxic effects on hGF cells. Therefore, this screening reveals agent, CV-3988 that was previously unknown to be antifungal agent, which could be a novel therapies for superficial mucosal candidiasis.
Collapse
Affiliation(s)
- Takao Watamoto
- Department of Applied Prosthodontics, Graduate School of Biomedical Sciences, Nagasaki University Nagasaki, Japan
| | - Hiroshi Egusa
- Division of Molecular and Regenerative Prosthodontics, Tohoku University Graduate School of Dentistry Sendai, Japan
| | - Takashi Sawase
- Department of Applied Prosthodontics, Graduate School of Biomedical Sciences, Nagasaki University Nagasaki, Japan
| | - Hirofumi Yatani
- Department of Fixed Prosthodontics, Osaka University Graduate School of Dentistry Suita, Japan
| |
Collapse
|
240
|
Lara HH, Romero-Urbina DG, Pierce C, Lopez-Ribot JL, Arellano-Jiménez MJ, Jose-Yacaman M. Effect of silver nanoparticles on Candida albicans biofilms: an ultrastructural study. J Nanobiotechnology 2015; 13:91. [PMID: 26666378 PMCID: PMC4678641 DOI: 10.1186/s12951-015-0147-8] [Citation(s) in RCA: 190] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2015] [Accepted: 11/09/2015] [Indexed: 12/02/2022] Open
Abstract
Background Candida albicans is the most common pathogenic fungus isolated in bloodstream infections in hospitalized patients, and candidiasis represents the fourth most common infection in United States hospitals, mostly due to the increasing numbers of immune- and medically-compromised patients. C. albicans has the ability to form biofilms and morphogenetic conversions between yeast and hyphal morphologies contribute to biofilm development and represent an essential virulence factor. Moreover, these attached communities of cells are surrounded by a protective exopolymeric matrix that effectively shelters Candida against the action of antifungals. Because of dismal outcomes, novel antifungal strategies, and in particular those targeting biofilms are urgently required. As fungi are eukaryotic, research and development of new antifungal agents has been difficult due to the limited number of selective targets, also leading to toxicity. Results By microwave-assisted techniques we obtained pure 1 nm spherical silver nanoparticles ideal for their potential biological applications without adding contaminants. A phenotypic assay of C. albicans demonstrated a potent dose-dependent inhibitory effect of silver nanoparticles on biofilm formation, with an IC50 of 0.089 ppm. Also silver nanoparticles demonstrated efficacy when tested against pre-formed C. albicans biofilms resulting in an IC50 of 0.48 ppm. The cytotoxicity assay resulted in a CC50 of 7.03 ppm. The ultrastructural differences visualized under SEM with silver nanoparticles treatment were changes in the surface appearance of the yeast from smooth to rough thus indicating outer cell wall damage. On the fungal pre-formed biofilm true hyphae was mostly absent, as filamentation was inhibited. TEM measurement of the cell-wall width of C. albicans after treatment resulted in significant enlargement (206 ± 11 nm) demonstrating membrane permeabilization. Conclusions Our results demonstrate that silver nanoparticles are potent inhibitors of C. albicans biofilm formation. SEM observations are consistent with an overall loss of structure of biofilms mostly due to disruption of the outer cell membrane/wall and inhibition of filamentation.TEM indicates the permeabilization of the cell wall and subsequent disruption of the structural layers of the outer fungal cell wall. The anti-biofilm effects are via cell wall disruption. Electronic supplementary material The online version of this article (doi:10.1186/s12951-015-0147-8) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Humberto H Lara
- Department of Physics and Astronomy, The University of Texas at San Antonio, One UTSA Circle, San Antonio, TX, 78249, USA.
| | - Dulce G Romero-Urbina
- Department of Physics and Astronomy, The University of Texas at San Antonio, One UTSA Circle, San Antonio, TX, 78249, USA.
| | - Christopher Pierce
- Department of Biology and South Texas Center for Emerging Infectious Diseases, The University of Texas at San Antonio, San Antonio, TX, 78249, USA.
| | - Jose L Lopez-Ribot
- Department of Biology and South Texas Center for Emerging Infectious Diseases, The University of Texas at San Antonio, San Antonio, TX, 78249, USA.
| | - M Josefina Arellano-Jiménez
- Department of Physics and Astronomy, The University of Texas at San Antonio, One UTSA Circle, San Antonio, TX, 78249, USA.
| | - Miguel Jose-Yacaman
- Department of Physics and Astronomy, The University of Texas at San Antonio, One UTSA Circle, San Antonio, TX, 78249, USA.
| |
Collapse
|
241
|
Raman N, Marchillo K, Lee MR, Rodríguez López ADL, Andes DR, Palecek SP, Lynn DM. Intraluminal Release of an Antifungal β-Peptide Enhances the Antifungal and Anti-Biofilm Activities of Multilayer-Coated Catheters in a Rat Model of Venous Catheter Infection. ACS Biomater Sci Eng 2015; 2:112-121. [PMID: 26807439 PMCID: PMC4711346 DOI: 10.1021/acsbiomaterials.5b00427] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2015] [Accepted: 12/08/2015] [Indexed: 12/31/2022]
Abstract
Candida albicans is the most prevalent cause of hospital-acquired fungal infections and forms biofilms on indwelling medical devices that are notoriously difficult to treat or remove. We recently demonstrated that the colonization of C. albicans on the surfaces of catheter tube segments can be reduced in vitro by coating them with polyelectrolyte multilayers (PEMs) that release a potent antifungal β-peptide. Here, we report on the impact of polymer structure and film composition on both the inherent and β-peptide-mediated ability of PEM-coated catheters to prevent or reduce the formation of C. albicans biofilms in vitro and in vivo using a rat model of central venous catheter infection. Coatings fabricated using polysaccharide-based components [hyaluronic acid (HA) and chitosan (CH)] and coatings fabricated using polypeptide-based components [poly-l-lysine (PLL) and poly-l-glutamic acid (PGA)] both served as reservoirs for the loading and sustained release of β-peptide, but differed substantially in loading and release profiles and in their inherent antifungal properties (e.g., the ability to prevent colonization and biofilm growth in the absence of β-peptide). In particular, CH/HA films exhibited inherent antifungal and antibiofilm behaviors in vitro and in vivo, a result we attribute to the incorporation of CH, a weak polycation demonstrated to exhibit antimicrobial properties in other contexts. The antifungal properties of both types of films were improved substantially when β-peptide was incorporated. Catheter segments coated with β-peptide-loaded CH/HA and PLL/PGA films were both strongly antifungal against planktonic C. albicans and the formation of surface-associated biofilms in vitro and in vivo. Our results demonstrate that PEM coatings provide a useful platform for the design of new antifungal materials, and suggest opportunities to design multifunctional or dual-action platforms to prevent or reduce the severity of fungal infections in applied biomedical contexts or other areas in which fungal biofilms are endemic.
Collapse
Affiliation(s)
- Namrata Raman
- Department of Chemical and Biological Engineering, 1415 Engineering Drive, Department of Medicine, 600 Highland Avenue, Materials Science Program, 1509 University Avenue, and Department of Chemistry, 1101 University Avenue, University of Wisconsin-Madison , Madison, Wisconsin 53706, United States
| | - Karen Marchillo
- Department of Chemical and Biological Engineering, 1415 Engineering Drive, Department of Medicine, 600 Highland Avenue, Materials Science Program, 1509 University Avenue, and Department of Chemistry, 1101 University Avenue, University of Wisconsin-Madison , Madison, Wisconsin 53706, United States
| | - Myung-Ryul Lee
- Department of Chemical and Biological Engineering, 1415 Engineering Drive, Department of Medicine, 600 Highland Avenue, Materials Science Program, 1509 University Avenue, and Department of Chemistry, 1101 University Avenue, University of Wisconsin-Madison , Madison, Wisconsin 53706, United States
| | - Angélica de L Rodríguez López
- Department of Chemical and Biological Engineering, 1415 Engineering Drive, Department of Medicine, 600 Highland Avenue, Materials Science Program, 1509 University Avenue, and Department of Chemistry, 1101 University Avenue, University of Wisconsin-Madison , Madison, Wisconsin 53706, United States
| | - David R Andes
- Department of Chemical and Biological Engineering, 1415 Engineering Drive, Department of Medicine, 600 Highland Avenue, Materials Science Program, 1509 University Avenue, and Department of Chemistry, 1101 University Avenue, University of Wisconsin-Madison , Madison, Wisconsin 53706, United States
| | - Sean P Palecek
- Department of Chemical and Biological Engineering, 1415 Engineering Drive, Department of Medicine, 600 Highland Avenue, Materials Science Program, 1509 University Avenue, and Department of Chemistry, 1101 University Avenue, University of Wisconsin-Madison , Madison, Wisconsin 53706, United States
| | - David M Lynn
- Department of Chemical and Biological Engineering, 1415 Engineering Drive, Department of Medicine, 600 Highland Avenue, Materials Science Program, 1509 University Avenue, and Department of Chemistry, 1101 University Avenue, University of Wisconsin-Madison , Madison, Wisconsin 53706, United States
| |
Collapse
|
242
|
Serrano-Fujarte I, López-Romero E, Cuéllar-Cruz M. Moonlight-like proteins of the cell wall protect sessile cells of Candida from oxidative stress. Microb Pathog 2015; 90:22-33. [PMID: 26550764 DOI: 10.1016/j.micpath.2015.10.001] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2015] [Revised: 09/23/2015] [Accepted: 10/04/2015] [Indexed: 11/25/2022]
Abstract
Biofilms of Candida species are associated with high morbidity and hospital mortality. Candida forms biofilms by adhering to human host epithelium through cell wall proteins (CWP) and simultaneously neutralizing the reactive oxygen species (ROS) produced during the respiratory burst by phagocytic cells. The purpose of this paper is to identify the CWP of Candida albicans, Candida glabrata, Candida krusei and Candida parapsilosis expressed after exposure to different concentrations of H2O2 using a proteomic approach. CWP obtained from sessile cells, both treated and untreated with the oxidizing agent, were resolved by one and two-dimensional (2D-PAGE) gels and identified by liquid chromatography-tandem mass spectrometry (LC-MS/MS) analysis. Some of these proteins were identified and found to correspond to moonlighting CWP such as: (i) glycolytic enzymes, (ii) heat shock, (iii) OSR proteins, (iv) general metabolic enzymes and (v) highly conserved proteins, which are up- or down-regulated in the presence or absence of ROS. We also found that the expression of these CWP is different for each Candida species. Moreover, RT-PCR assays allowed us to demonstrate that transcription of the gene coding for Eno1, one of the moonlight-like CWP identified in response to the oxidant agent, is differentially regulated. To our knowledge this is the first demonstration that, in response to oxidative stress, each species of Candida, differentially regulates the expression of moonlighting CWP, which may protect the organism from the ROS generated during phagocytosis. Presumptively, these proteins allow the pathogen to adhere and form a biofilm, and eventually cause invasive candidiasis in the human host. We propose that, in addition to the antioxidant mechanisms present in Candida, the moonlighting CWP also confer protection to these pathogens from oxidative stress.
Collapse
Affiliation(s)
- Isela Serrano-Fujarte
- Departamento de Biología, División de Ciencias Naturales y Exactas, Campus Guanajuato, Universidad de Guanajuato, Guanajuato, Mexico
| | - Everardo López-Romero
- Departamento de Biología, División de Ciencias Naturales y Exactas, Campus Guanajuato, Universidad de Guanajuato, Guanajuato, Mexico
| | - Mayra Cuéllar-Cruz
- Departamento de Biología, División de Ciencias Naturales y Exactas, Campus Guanajuato, Universidad de Guanajuato, Guanajuato, Mexico.
| |
Collapse
|
243
|
Bhatt M, Sarangi G, Paty BP, Mohapatra D, Chayani N, Mahapatra A, Das P, Sahoo D. Biofilm as a virulence marker in Candida species in Nosocomial blood stream infection and its correlation with antifungal resistance. Indian J Med Microbiol 2015; 33 Suppl:112-4. [PMID: 25657126 DOI: 10.4103/0255-0857.150909] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Nosocomial blood stream infections (BSI) due to fungi especially Candida is increasing steadily. A two year prospective study was conducted in the S.C.B. Medical College with an aim to evaluate the species distribution, antifungal susceptibility and biofilm formation of Candida spp. isolated from nosocomial BSIs. 34 Candida spp. were isolated from 359 blood cultures. Antifungal susceptibility was performed by microbroth dilution technique and both visual and spectrophotometric method were used for biofilm detection. C. tropicalis was the common spp. isolated followed by C. parapsilosis and others. Most (92%) of the isolates were susceptible to Amphoterecin-B and highest resistance was observed against Flucytosine (37%) and Fluconazole(35%). Biofilm production and antifungal resistance was observed more in nonalbicans Candida spp.
Collapse
Affiliation(s)
- M Bhatt
- Department of Microbiology, Shri Ramachandra Bhanj Medical College and Hospital, Cuttack, India
| | | | | | | | | | | | | | | |
Collapse
|
244
|
Ma C, Du F, Yan L, He G, He J, Wang C, Rao G, Jiang Y, Xu G. Potent Activities of Roemerine against Candida albicans and the Underlying Mechanisms. Molecules 2015; 20:17913-28. [PMID: 26426004 PMCID: PMC6332056 DOI: 10.3390/molecules201017913] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2015] [Revised: 09/07/2015] [Accepted: 09/22/2015] [Indexed: 12/11/2022] Open
Abstract
Roemerine (RM) is an aporphine alkaloid isolated from the fresh rattan stem of Fibraurea recisa, and it has been demonstrated to have certain antifungal activity. This study aimed to investigate the antifungal activity of RM and the underlying mechanisms in Candida albicans (C. albicans). The in vitro antifungal activity of RM was evaluated by a series of experiments, including the XTT reduction assay, confocal laser scanning microscopy assay, scanning electron microscope assay. Results showed that 1 μg/mL RM inhibited biofilm formation significantly (p < 0.01) both in Spider medium and Lee’s medium. In addition, RM could inhibit yeast-to-hyphae transition of C. albicans in a dose-dependent manner. The biofilm-specific and hypha-specific genes such as YWP1, SAP5, SAP6, HWP1, ECE1 were up-regulated and EFG1 was down-regulated after 8 μg/mL RM treatment. Furthermore, the toxicity of RM was investigated using C. elegans worms, three cancer cells and one normal cell. The date showed that RM had no significant toxicity. In conclusion, RM could inhibited the formation of C. albicans biofilm in vitro, but it had no fungicidal effect on planktonic C. albicans cells, and the anti-biofilm mechanism may be related to the cAMP pathway.
Collapse
Affiliation(s)
- Chaoyu Ma
- Department of Pharmacy, Kunming General Hospital of Chengdu Military Region, 212 Da-Guan Road, Kunming 650032, China.
- School of Pharmacy, Kunming Medical University, 1168 Yu-Hua Road, Kunming 650500, China.
| | - Faya Du
- Department of Pharmacy, Kunming General Hospital of Chengdu Military Region, 212 Da-Guan Road, Kunming 650032, China.
| | - Lan Yan
- New Drug Research and Development Center, School of Pharmacy, Second Military Medical University, Shanghai 200433, China.
| | - Gonghao He
- Department of Pharmacy, Kunming General Hospital of Chengdu Military Region, 212 Da-Guan Road, Kunming 650032, China.
| | - Jianchang He
- Department of Pharmacy, Kunming General Hospital of Chengdu Military Region, 212 Da-Guan Road, Kunming 650032, China.
| | - Chengying Wang
- School of Pharmacy, Yunnan College of Traditional Chinese Medicine, 1076 Yu-Hua Road, Kunming 650500, China.
| | - Gaoxiong Rao
- School of Pharmacy, Yunnan College of Traditional Chinese Medicine, 1076 Yu-Hua Road, Kunming 650500, China.
| | - Yuanying Jiang
- New Drug Research and Development Center, School of Pharmacy, Second Military Medical University, Shanghai 200433, China.
| | - Guili Xu
- Department of Pharmacy, Kunming General Hospital of Chengdu Military Region, 212 Da-Guan Road, Kunming 650032, China.
| |
Collapse
|
245
|
Palmeira-de-Oliveira R, Palmeira-de-Oliveira A, Martinez-de-Oliveira J. New strategies for local treatment of vaginal infections. Adv Drug Deliv Rev 2015; 92:105-22. [PMID: 26144995 DOI: 10.1016/j.addr.2015.06.008] [Citation(s) in RCA: 116] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2015] [Revised: 06/15/2015] [Accepted: 06/24/2015] [Indexed: 01/07/2023]
Abstract
Vaginal infections are extremely prevalent, particularly among women of reproductive age. Although they do not result in high mortality rates, these infections are associated with high levels of anxiety and reduction of quality of life. In most cases, topical treatment of vaginal infections has been shown to be at least as effective as oral treatment, resulting in higher local drug concentrations, with fewer drug interactions and adverse effects. Furthermore, the emergence of microbial resistance to chemotherapeutics and the difficulties in managing infection recurrences sustain the need for more effective local treatments. However, conventional dosage forms have been associated with low retention in the vagina and discomfort. Formulation strategies such as the development of bioadhesive, thermogelling systems and microtechnological or nanotechnological approaches have been proposed to improve delivery of traditional drugs, and other treatment modalities such as new drugs, plant extracts, and probiotics are being studied. This article reviews the recent strategies studied to improve the treatment and prevention of the commonest vaginal infections-namely, vaginal bacteriosis, aerobic vaginitis, vulvovaginal candidosis, and trichomoniasis-through the intravaginal route.
Collapse
|
246
|
Mota S, Alves R, Carneiro C, Silva S, Brown AJ, Istel F, Kuchler K, Sampaio P, Casal M, Henriques M, Paiva S. Candida glabrata susceptibility to antifungals and phagocytosis is modulated by acetate. Front Microbiol 2015; 6:919. [PMID: 26388859 PMCID: PMC4560035 DOI: 10.3389/fmicb.2015.00919] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2015] [Accepted: 08/21/2015] [Indexed: 11/13/2022] Open
Abstract
Candida glabrata is considered a major opportunistic fungal pathogen of humans. The capacity of this yeast species to cause infections is dependent on the ability to grow within the human host environment and to assimilate the carbon sources available. Previous studies have suggested that C. albicans can encounter glucose-poor microenvironments during infection and that the ability to use alternative non-fermentable carbon sources, such as carboxylic acids, contributes to the virulence of this fungus. Transcriptional studies on C. glabrata cells identified a similar response, upon nutrient deprivation. In this work, we aimed at analyzing biofilm formation, antifungal drug resistance, and phagocytosis of C. glabrata cells grown in the presence of acetic acid as an alternative carbon source. C. glabrata planktonic cells grown in media containing acetic acid were more susceptible to fluconazole and were better phagocytosed and killed by macrophages than when compared to media lacking acetic acid. Growth in acetic acid also affected the ability of C. glabrata to form biofilms. The genes ADY2a, ADY2b, FPS1, FPS2, and ATO3, encoding putative carboxylate transporters, were upregulated in C. glabrata planktonic and biofilm cells in the presence of acetic acid. Phagocytosis assays with fps1 and ady2a mutant strains suggested a potential role of FPS1 and ADY2a in the phagocytosis process. These results highlight how acidic pH niches, associated with the presence of acetic acid, can impact in the treatment of C. glabrata infections, in particular in vaginal candidiasis.
Collapse
Affiliation(s)
- Sandra Mota
- Centre of Molecular and Environmental Biology, Department of Biology, University of Minho Braga, Portugal ; Centre of Health and Environmental Research, School of Allied Health Sciences, Polytechnic Institute of Porto Porto, Portugal
| | - Rosana Alves
- Centre of Molecular and Environmental Biology, Department of Biology, University of Minho Braga, Portugal
| | - Catarina Carneiro
- Centre of Molecular and Environmental Biology, Department of Biology, University of Minho Braga, Portugal
| | - Sónia Silva
- Centre for Biological Engineering, University of Minho Braga, Portugal
| | - Alistair J Brown
- Institute of Medical Sciences - School of Medical Sciences, University of Aberdeen Aberdeen, UK
| | - Fabian Istel
- Department of Medical Biochemistry, Max F. Perutz Laboratories, Medical University of Vienna Vienna, Austria
| | - Karl Kuchler
- Department of Medical Biochemistry, Max F. Perutz Laboratories, Medical University of Vienna Vienna, Austria
| | - Paula Sampaio
- Centre of Molecular and Environmental Biology, Department of Biology, University of Minho Braga, Portugal
| | - Margarida Casal
- Centre of Molecular and Environmental Biology, Department of Biology, University of Minho Braga, Portugal
| | - Mariana Henriques
- Centre for Biological Engineering, University of Minho Braga, Portugal
| | - Sandra Paiva
- Centre of Molecular and Environmental Biology, Department of Biology, University of Minho Braga, Portugal
| |
Collapse
|
247
|
Pereira CA, Domingues N, Silva MP, Costa ACBP, Junqueira JC, Jorge AOC. Photodynamic inactivation of virulence factors of Candida strains isolated from patients with denture stomatitis. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY B-BIOLOGY 2015; 153:82-9. [PMID: 26398815 DOI: 10.1016/j.jphotobiol.2015.08.029] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/04/2015] [Revised: 08/02/2015] [Accepted: 08/30/2015] [Indexed: 01/12/2023]
Abstract
Candida species are major microorganisms isolated in denture stomatitis (DS), an inflammatory process of the mucosa underlying removable dental prostheses, and express a variety of virulence factors that can increase their pathogenicity. The potential of Photodynamic inactivation (PDI) in planktonic culture, biofilms and virulence factors of Candida strains was evaluated. A total of 48 clinical Candida isolates from individuals wearing removable maxillary prostheses with DS were included in the study. The effects of erythrosine (ER, 200 μM) and a green LED (λ 532 ± 10 nm, 237 mW/cm(2) and 42.63 J/cm(2)) in a planktonic culture were evaluated. The effect of the addition of ER at a concentration of 400 μM together with a green LED was evaluated in biofilms. The virulence factors of all of the Candida strains were evaluated before and after the PDI process in cells derived from biofilm and planktonic assays. All of the Candida species were susceptible to ER and green LED. However, the biofilm structures were more resistant to PDI than the planktonic cultures. PDI also promoted slight reductions in most of the virulence factors of C. albicans and some of the Candida tropicalis strains. These results suggest that the addition of PDI is effective for reducing yeasts and may also reduce the virulence of certain Candida species and decrease their pathogenicity.
Collapse
Affiliation(s)
- Cristiane Aparecida Pereira
- UNESP, Univ Estadual Paulista, Institute of Science and Technology, School of Dentistry, Department of Biosciences and Oral Diagnosis, Francisco José Longo 777, São Dimas, São José dos Campos, CEP: 12245-000 SP, Brazil.
| | - Nádia Domingues
- UNESP, Univ Estadual Paulista, Institute of Science and Technology, School of Dentistry, Department of Biosciences and Oral Diagnosis, Francisco José Longo 777, São Dimas, São José dos Campos, CEP: 12245-000 SP, Brazil.
| | - Michelle Peneluppi Silva
- UNESP, Univ Estadual Paulista, Institute of Science and Technology, School of Dentistry, Department of Biosciences and Oral Diagnosis, Francisco José Longo 777, São Dimas, São José dos Campos, CEP: 12245-000 SP, Brazil.
| | - Anna Carolina Borges Pereira Costa
- UNESP, Univ Estadual Paulista, Institute of Science and Technology, School of Dentistry, Department of Biosciences and Oral Diagnosis, Francisco José Longo 777, São Dimas, São José dos Campos, CEP: 12245-000 SP, Brazil.
| | - Juliana Campos Junqueira
- UNESP, Univ Estadual Paulista, Institute of Science and Technology, School of Dentistry, Department of Biosciences and Oral Diagnosis, Francisco José Longo 777, São Dimas, São José dos Campos, CEP: 12245-000 SP, Brazil.
| | - Antonio Olavo Cardoso Jorge
- UNESP, Univ Estadual Paulista, Institute of Science and Technology, School of Dentistry, Department of Biosciences and Oral Diagnosis, Francisco José Longo 777, São Dimas, São José dos Campos, CEP: 12245-000 SP, Brazil.
| |
Collapse
|
248
|
Raman N, Lee MR, Lynn DM, Palecek SP. Antifungal Activity of 14-Helical β-Peptides against Planktonic Cells and Biofilms of Candida Species. Pharmaceuticals (Basel) 2015; 8:483-503. [PMID: 26287212 PMCID: PMC4588179 DOI: 10.3390/ph8030483] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2015] [Revised: 07/29/2015] [Accepted: 08/04/2015] [Indexed: 12/16/2022] Open
Abstract
Candida albicans is the most prevalent cause of fungal infections and treatment is further complicated by the formation of drug resistant biofilms, often on the surfaces of implanted medical devices. In recent years, the incidence of fungal infections by other pathogenic Candida species such as C. glabrata, C. parapsilosis and C. tropicalis has increased. Amphiphilic, helical β-peptide structural mimetics of natural antimicrobial α-peptides have been shown to exhibit specific planktonic antifungal and anti-biofilm formation activity against C. albicans in vitro. Here, we demonstrate that β-peptides are also active against clinically isolated and drug resistant strains of C. albicans and against other opportunistic Candida spp. Different Candida species were susceptible to β-peptides to varying degrees, with C. tropicalis being the most and C. glabrata being the least susceptible. β-peptide hydrophobicity directly correlated with antifungal activity against all the Candida clinical strains and species tested. While β-peptides were largely ineffective at disrupting existing Candida biofilms, hydrophobic β-peptides were able to prevent the formation of C. albicans, C. glabrata, C. parapsilosis and C. tropicalis biofilms. The broad-spectrum antifungal activity of β-peptides against planktonic cells and in preventing biofilm formation suggests the promise of this class of molecules as therapeutics.
Collapse
Affiliation(s)
- Namrata Raman
- Department of Chemical and Biological Engineering, University of Wisconsin-Madison, 1415 Engineering Drive, Madison, WI 53706, USA.
| | - Myung-Ryul Lee
- Department of Chemical and Biological Engineering, University of Wisconsin-Madison, 1415 Engineering Drive, Madison, WI 53706, USA.
| | - David M Lynn
- Department of Chemical and Biological Engineering, University of Wisconsin-Madison, 1415 Engineering Drive, Madison, WI 53706, USA.
- Department of Chemistry, University of Wisconsin-Madison, 1415 Engineering Drive, Madison, WI 53706, USA.
| | - Sean P Palecek
- Department of Chemical and Biological Engineering, University of Wisconsin-Madison, 1415 Engineering Drive, Madison, WI 53706, USA.
| |
Collapse
|
249
|
Wibawa T, Praseno, Aman AT. Virulence of Candida albicans isolated from HIV infected and non infected individuals. SPRINGERPLUS 2015; 4:408. [PMID: 26266079 PMCID: PMC4530540 DOI: 10.1186/s40064-015-1215-0] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/24/2014] [Accepted: 08/03/2015] [Indexed: 11/10/2022]
Abstract
Candida sp contributes 33.1 % of fungal infections among HIV patients. Among the species of the genus Candida, Candida albicans is the most frequently isolated from HIV patients. This study aimed to analyze putative virulence factors of C. albicans isolated from oral cavities of HIV infected patients and healthy individuals. Twenty isolates from HIV infected patients and fourteen from healthy individuals were analyzed for phenotypic switching, cell growth rate, hyphae formation, hemolytic activity and biofilm formation characteristics. The frequency of phenotypic switching was low in both groups. The cell growth rate of C. albicans from HIV infected patients were significantly higher than those from healthy individuals (p < 0.001). After 48 h incubation, the concentration of C. albicans isolated from HIV infected patients was 8.6 × 106 cells/ml while the concentration of C. albicans isolated from healthy individuals was 7.8 × 106 cells/ml. After 72 h incubation, the concentration of C. albicans isolated from HIV infected patients was 9.5 × 106 cells/ml while the concentration of C. albicans isolated from healthy individuals was 8.2 × 106 cells/ml. In contrast, the hemolytic activity of C. albicans isolated from healthy individuals were significantly higher compared to those from HIV infected patients (p < 0.001) at both aerobic (6 vs. 3.5 mm) and anaerobic (3.8 vs. 1.3 mm) conditions. The percentages of hyphae forming cells were higher in C. albicans collected from HIV infected patients (27.5 %) compared to the healthy individual group (14.7 %). However, this trend was not statistically significant (p = 0.1). Candida albicans isolated from HIV infected patients have similar ability to develop biofilms compared to those from healthy individuals. (OR = 4.2; 95 % CI 0.724–26.559). The virulence factors of C. albicans isolated from HIV infected patients were not significantly different from those of healthy individuals. The results add new insights into the contribution of virulence factors in the pathogenesis of C. albicans infection in HIV infected patients.
Collapse
Affiliation(s)
- Tri Wibawa
- Department of Microbiology, Faculty of Medicine, Universitas Gadjah Mada, Jl. Farmako, Sekip Utara, Depok, Sleman, Yogyakarta, 55281 Indonesia
| | - Praseno
- Department of Microbiology, Faculty of Medicine, Universitas Gadjah Mada, Jl. Farmako, Sekip Utara, Depok, Sleman, Yogyakarta, 55281 Indonesia
| | - Abu Tholib Aman
- Department of Microbiology, Faculty of Medicine, Universitas Gadjah Mada, Jl. Farmako, Sekip Utara, Depok, Sleman, Yogyakarta, 55281 Indonesia
| |
Collapse
|
250
|
de Cássia J, de Souza N, Gullo F, Fusco-Almeida A, Mendes-Giannini M. Fungal Biofilms: Formation, Resistance and Pathogenicity. Med Mycol 2015. [DOI: 10.1201/b18707-17] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
|