201
|
Production of glutathione using a bifunctional enzyme encoded by gshF from Streptococcus thermophilus expressed in Escherichia coli. J Biotechnol 2011; 154:261-8. [DOI: 10.1016/j.jbiotec.2011.06.001] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2011] [Revised: 05/18/2011] [Accepted: 06/01/2011] [Indexed: 11/21/2022]
|
202
|
Sanssouci E, Lerat S, Grondin G, Shareck F, Beaulieu C. tdd8: a TerD domain-encoding gene involved in Streptomyces coelicolor differentiation. Antonie van Leeuwenhoek 2011; 100:385-98. [PMID: 21638113 DOI: 10.1007/s10482-011-9593-y] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/08/2011] [Accepted: 05/20/2011] [Indexed: 10/18/2022]
Abstract
The Streptomyces coelicolor genome contains 17 TerD domain-encoding genes (tdd genes) of unknown function. The proteins encoded by these genes have been presumed to be involved in tellurite resistance on the basis of their homology with the protein TerD of Serratia marcescens. To elucidate the role of a Tdd protein (Tdd8), both a deletion mutant for the corresponding gene tdd8 (SCO2368) and a recombinant strain over-expressing tdd8 were produced in S. coelicolor M145. The deletion mutant (Δtdd8), like the wild strain, was not resistant to potassium tellurite. The deletion was not lethal but had a marked effect on differentiation. The deletion strain showed more rapid growth in liquid medium and produced long chains of short spores with a dense and non-spherical spore wall on agar plates. The strain over-expressing tdd8 had a growth delay in liquid medium and produced very few spores of irregular shapes and sizes on solid medium. The results of this study demonstrated that Tdd proteins might have a function other than tellurite resistance and this function seems to be of crucial importance for the proper development of the actinomycete S. coelicolor.
Collapse
Affiliation(s)
- Edith Sanssouci
- Centre d'Étude et de Valorisation de la Diversité Microbienne, Département de biologie, Université de Sherbrooke, Sherbrooke, QC, Canada
| | | | | | | | | |
Collapse
|
203
|
Barkay T, Kritee K, Boyd E, Geesey G. A thermophilic bacterial origin and subsequent constraints by redox, light and salinity on the evolution of the microbial mercuric reductase. Environ Microbiol 2011; 12:2904-17. [PMID: 20545753 DOI: 10.1111/j.1462-2920.2010.02260.x] [Citation(s) in RCA: 73] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
Mercuric reductase (MerA) is central to the mercury (Hg) resistance (mer) system, catalyzing the reduction of ionic Hg to volatile Hg(0). A total of 213 merA homologues were identified in sequence databases, the majority of which belonged to microbial lineages that occupy oxic environments. merA was absent among phototrophs and in lineages that inhabit anoxic environments. Phylogenetic reconstructions of MerA indicate that (i) merA originated in a thermophilic bacterium following the divergence of the Archaea and Bacteria with a subsequent acquisition in Archaea via horizontal gene transfer (HGT), (ii) HGT of merA was rare across phylum boundaries and (iii) MerA from marine bacteria formed distinct and strongly supported lineages. Collectively, these observations suggest that a combination of redox, light and salinity conditions constrain MerA to microbial lineages that occupy environments where the most oxidized and toxic form of Hg, Hg(II), predominates. Further, the taxon-specific distribution of MerA with and without a 70 amino acid N-terminal extension may reflect intracellular levels of thiols. In conclusion, MerA likely evolved following the widespread oxygenation of the biosphere in a thermal environment and its subsequent evolution has been modulated by the interactions of Hg with the intra- and extracellular environment of the organism.
Collapse
Affiliation(s)
- Tamar Barkay
- Department of Biochemistry and Microbiology, Rutgers University, Lipman Hall, New Brunswick, NJ 08901, USA.
| | | | | | | |
Collapse
|
204
|
Suttisansanee U, Honek JF. Bacterial glyoxalase enzymes. Semin Cell Dev Biol 2011; 22:285-92. [DOI: 10.1016/j.semcdb.2011.02.004] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2010] [Accepted: 02/02/2011] [Indexed: 11/24/2022]
|
205
|
Repurposing lipoic acid changes electron flow in two important metabolic pathways of Escherichia coli. Proc Natl Acad Sci U S A 2011; 108:7991-6. [PMID: 21521794 DOI: 10.1073/pnas.1105429108] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
In bacteria, cysteines of cytoplasmic proteins, including the essential enzyme ribonucleotide reductase (RNR), are maintained in the reduced state by the thioredoxin and glutathione/glutaredoxin pathways. An Escherichia coli mutant lacking both glutathione reductase and thioredoxin reductase cannot grow because RNR is disulfide bonded and nonfunctional. Here we report that suppressor mutations in the lpdA gene, which encodes the oxidative enzyme lipoamide dehydrogenase required for tricarboxylic acid (TCA) cycle functioning, restore growth to this redox-defective mutant. The suppressor mutations reduce LpdA activity, causing the accumulation of dihydrolipoamide, the reduced protein-bound form of lipoic acid. Dihydrolipoamide can then provide electrons for the reactivation of RNR through reduction of glutaredoxins. Dihydrolipoamide is oxidized in the process, restoring function to the TCA cycle. Thus, two electron transfer pathways are rewired to meet both oxidative and reductive needs of the cell: dihydrolipoamide functionally replaces glutathione, and the glutaredoxins replace LpdA. Both lipoic acid and glutaredoxins act in the reverse manner from their normal cellular functions. Bioinformatic analysis suggests that such activities may also function in other bacteria.
Collapse
|
206
|
Precise null deletion mutations of the mycothiol synthesis genes reveal their role in isoniazid and ethionamide resistance in Mycobacterium smegmatis. Antimicrob Agents Chemother 2011; 55:3133-9. [PMID: 21502624 DOI: 10.1128/aac.00020-11] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Mycothiol (MSH; AcCys-GlcN-Ins) is the glutathione analogue for mycobacteria. Mutations in MSH biosynthetic genes have been associated with resistance to isoniazid (INH) and ethionamide (ETH) in mycobacteria, but rigorous genetic studies are lacking, and those that have been conducted have yielded different results. In this study, we constructed independent null deletion mutants for all four genes involved in the MSH biosynthesis pathway (mshA, mshB, mshC, and mshD) in Mycobacterium smegmatis and made complementing constructs in integrating plasmids. The resulting set of strains was analyzed for levels of MSH, INH resistance, and ETH resistance. The mshA and mshC single deletion mutants were devoid of MSH production and resistant to INH, whereas the mshB deletion mutant produced decreased levels of MSH yet was sensitive to INH, suggesting that MSH biosynthesis is essential for INH susceptibility in M. smegmatis. Further evidence supporting this conclusion was generated by deleting the gene encoding the MSH S-conjugate amidase (mca) from the ΔmshB null mutant. This double mutant, ΔmshB Δmca, completely abolished MSH production and was resistant to INH. The mshA, mshC, and mshB single deletion mutants were also resistant to ETH, indicating that ETH resistance is modulated by the level of MSH in M. smegmatis. Surprisingly, the mshD deletion mutant lacked MSH production but was sensitive to both INH and ETH. The drug sensitivity was likely mediated by the compensated synthesis of N-formyl-Cys-GlcN-Ins, previously demonstrated to substitute for MSH in an mshD mutant of M. smegmatis. We conclude that MSH or N-formyl-Cys-GlcN-Ins is required for susceptibility to INH or ETH in M. smegmatis.
Collapse
|
207
|
Organic hydroperoxide resistance protein and ergothioneine compensate for loss of mycothiol in Mycobacterium smegmatis mutants. J Bacteriol 2011; 193:1981-90. [PMID: 21335456 DOI: 10.1128/jb.01402-10] [Citation(s) in RCA: 63] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
The mshA::Tn5 mutant of Mycobacterium smegmatis does not produce mycothiol (MSH) and was found to markedly overproduce both ergothioneine and an ~15-kDa protein determined to be organic hydroperoxide resistance protein (Ohr). An mshA(G32D) mutant lacking MSH overproduced ergothioneine but not Ohr. Comparison of the mutant phenotypes with those of the wild-type strain indicated the following: Ohr protects against organic hydroperoxide toxicity, whereas ergothioneine does not; an additional MSH-dependent organic hydroperoxide peroxidase exists; and elevated isoniazid resistance in the mutant is associated with both Ohr and the absence of MSH. Purified Ohr showed high activity with linoleic acid hydroperoxide, indicating lipid hydroperoxides as the likely physiologic targets. The reduction of oxidized Ohr by NADH was shown to be catalyzed by lipoamide dehydrogenase and either lipoamide or DlaT (SucB). Since free lipoamide and lipoic acid levels were shown to be undetectable in M. smegmatis, the bound lipoyl residues of DlaT are the likely source of the physiological dithiol reductant for Ohr. The pattern of occurrence of homologs of Ohr among bacteria suggests that the ohr gene has been distributed by lateral transfer. The finding of multiple Ohr homologs with various sequence identities in some bacterial genomes indicates that there may be multiple physiologic targets for Ohr proteins.
Collapse
|
208
|
Pieulle L, Stocker P, Vinay M, Nouailler M, Vita N, Brasseur G, Garcin E, Sebban-Kreuzer C, Dolla A. Study of the thiol/disulfide redox systems of the anaerobe Desulfovibrio vulgaris points out pyruvate:ferredoxin oxidoreductase as a new target for thioredoxin 1. J Biol Chem 2011; 286:7812-7821. [PMID: 21199874 DOI: 10.1074/jbc.m110.197988] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
Sulfate reducers have developed a multifaceted adaptative strategy to survive against oxidative stresses. Along with this oxidative stress response, we recently characterized an elegant reversible disulfide bond-dependent protective mechanism in the pyruvate:ferredoxin oxidoreductase (PFOR) of various Desulfovibrio species. Here, we searched for thiol redox systems involved in this mechanism. Using thiol fluorescent labeling, we show that glutathione is not the major thiol/disulfide balance-controlling compound in four different Desulfovibrio species and that no other plentiful low molecular weight thiol can be detected. Enzymatic analyses of two thioredoxins (Trxs) and three thioredoxin reductases allow us to propose the existence of two independent Trx systems in Desulfovibrio vulgaris Hildenborough (DvH). The TR1/Trx1 system corresponds to the typical bacterial Trx system. We measured a TR1 apparent K(m) value for Trx1 of 8.9 μM. Moreover, our results showed that activity of TR1 was NADPH-dependent. The second system named TR3/Trx3 corresponds to an unconventional Trx system as TR3 used preferentially NADH (K(m) for NADPH, 743 μM; K(m) for NADH, 5.6 μM), and Trx3 was unable to reduce insulin. The K(m) value of TR3 for Trx3 was 1.12 μM. In vitro experiments demonstrated that the TR1/Trx1 system was the only one able to reactivate the oxygen-protected form of Desulfovibrio africanus PFOR. Moreover, ex vivo pulldown assays using the mutant Trx1(C33S) as bait allowed us to capture PFOR from the DvH extract. Altogether, these data demonstrate that PFOR is a new target for Trx1, which is probably involved in the protective switch mechanism of the enzyme.
Collapse
Affiliation(s)
- Laetitia Pieulle
- From the Laboratoire Interactions et Modulateurs de Réponses, CNRS-UPR3243-IFR88, 31 Chemin Joseph Aiguier, 13402 Marseille Cedex 20 and.
| | - Pierre Stocker
- the Equipe Biosciences iSm2, UMR6263, Case 342, FST Université Paul Cézanne, St. Jérome, 13397 Marseille Cedex 20, France
| | - Manon Vinay
- From the Laboratoire Interactions et Modulateurs de Réponses, CNRS-UPR3243-IFR88, 31 Chemin Joseph Aiguier, 13402 Marseille Cedex 20 and
| | - Matthieu Nouailler
- From the Laboratoire Interactions et Modulateurs de Réponses, CNRS-UPR3243-IFR88, 31 Chemin Joseph Aiguier, 13402 Marseille Cedex 20 and
| | - Nicolas Vita
- From the Laboratoire Interactions et Modulateurs de Réponses, CNRS-UPR3243-IFR88, 31 Chemin Joseph Aiguier, 13402 Marseille Cedex 20 and
| | - Gaël Brasseur
- From the Laboratoire Interactions et Modulateurs de Réponses, CNRS-UPR3243-IFR88, 31 Chemin Joseph Aiguier, 13402 Marseille Cedex 20 and
| | - Edwige Garcin
- From the Laboratoire Interactions et Modulateurs de Réponses, CNRS-UPR3243-IFR88, 31 Chemin Joseph Aiguier, 13402 Marseille Cedex 20 and
| | - Corinne Sebban-Kreuzer
- From the Laboratoire Interactions et Modulateurs de Réponses, CNRS-UPR3243-IFR88, 31 Chemin Joseph Aiguier, 13402 Marseille Cedex 20 and
| | - Alain Dolla
- From the Laboratoire Interactions et Modulateurs de Réponses, CNRS-UPR3243-IFR88, 31 Chemin Joseph Aiguier, 13402 Marseille Cedex 20 and
| |
Collapse
|
209
|
Veeravalli K, Boyd D, Iverson BL, Beckwith J, Georgiou G. Laboratory evolution of glutathione biosynthesis reveals natural compensatory pathways. Nat Chem Biol 2010; 7:101-5. [PMID: 21186348 DOI: 10.1038/nchembio.499] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2010] [Accepted: 10/22/2010] [Indexed: 11/09/2022]
Abstract
The first and highly conserved step in glutathione (GSH) biosynthesis is formation of γ-glutamyl cysteine by the enzyme glutamate-cysteine ligase (GshA). However, bioinformatic analysis revealed that many prokaryotic species that encode GSH-dependent proteins lack the gene for this enzyme. To understand how bacteria cope without gshA, we isolated Escherichia coli ΔgshA multigenic suppressors that accumulated physiological levels of GSH. Mutations in both proB and proA, the first two genes in L-proline biosynthesis, provided a new pathway for γ-glutamyl cysteine formation via the selective interception of ProB-bound γ-glutamyl phosphate by amino acid thiols, likely through an S-to-N acyl shift mechanism. Bioinformatic analysis suggested that the L-proline biosynthetic pathway may have a second role in γ-glutamyl cysteine formation in prokaryotes. Also, we showed that this mechanism could be exploited to generate cytoplasmic redox buffers bioorthogonal to GSH.
Collapse
Affiliation(s)
- Karthik Veeravalli
- Department of Chemical Engineering, University of Texas at Austin, Austin, Texas, USA
| | | | | | | | | |
Collapse
|
210
|
Functional characterization of a gene cluster involved in gentisate catabolism in Rhodococcus sp. strain NCIMB 12038. Appl Microbiol Biotechnol 2010; 90:671-8. [DOI: 10.1007/s00253-010-3033-1] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2010] [Revised: 11/22/2010] [Accepted: 11/23/2010] [Indexed: 10/18/2022]
|
211
|
Identification and quantification of mycothiol in Actinobacteria by a novel enzymatic method. Appl Microbiol Biotechnol 2010; 88:1393-401. [DOI: 10.1007/s00253-010-2918-3] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2010] [Revised: 09/06/2010] [Accepted: 09/08/2010] [Indexed: 10/19/2022]
|
212
|
Zechmann B, Tomasić A, Horvat L, Fulgosi H. Subcellular distribution of glutathione and cysteine in cyanobacteria. PROTOPLASMA 2010; 246:65-72. [PMID: 20349253 PMCID: PMC2947007 DOI: 10.1007/s00709-010-0126-8] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/19/2009] [Accepted: 02/19/2010] [Indexed: 05/13/2023]
Abstract
Glutathione plays numerous important functions in eukaryotic and prokaryotic cells. Whereas it can be found in virtually all eukaryotic cells, its production in prokaryotes is restricted to cyanobacteria and proteobacteria and a few strains of gram-positive bacteria. In bacteria, it is involved in the protection against reactive oxygen species (ROS), osmotic shock, acidic conditions, toxic chemicals, and heavy metals. Glutathione synthesis in bacteria takes place in two steps out of cysteine, glutamate, and glycine. Cysteine is the limiting factor for glutathione biosynthesis which can be especially crucial for cyanobacteria, which rely on both the sufficient sulfur supply from the growth media and on the protection of glutathione against ROS that are produced during photosynthesis. In this study, we report a method that allows detection and visualization of the subcellular distribution of glutathione in Synechocystis sp. This method is based on immunogold cytochemistry with glutathione and cysteine antisera and computer-supported transmission electron microscopy. Labeling of glutathione and cysteine was restricted to the cytosol and interthylakoidal spaces. Glutathione and cysteine could not be detected in carboxysomes, cyanophycin granules, cell walls, intrathylakoidal spaces, periplasm, and vacuoles. The accuracy of the glutathione and cysteine labeling is supported by two observations. First, preadsorption of the antiglutathione and anticysteine antisera with glutathione and cysteine, respectively, reduced the density of the gold particles to background levels. Second, labeling of glutathione and cysteine was strongly decreased by 98.5% and 100%, respectively, in Synechocystis sp. cells grown on media without sulfur. This study indicates a strong similarity of the subcellular distribution of glutathione and cysteine in cyanobacteria and plastids of plants and provides a deeper insight into glutathione metabolism in bacteria.
Collapse
Affiliation(s)
- Bernd Zechmann
- Institute of Plant Sciences, University of Graz, Schubertstrasse 51, 8010, Graz, Austria.
| | | | | | | |
Collapse
|
213
|
Hong B, Nauss R, Harwood I, Miller SM. Direct measurement of mercury(II) removal from organomercurial lyase (MerB) by tryptophan fluorescence: NmerA domain of coevolved γ-proteobacterial mercuric ion reductase (MerA) is more efficient than MerA catalytic core or glutathione . Biochemistry 2010; 49:8187-96. [PMID: 20722420 PMCID: PMC3042367 DOI: 10.1021/bi100802k] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Aerobic and facultative bacteria and archaea harboring mer loci exhibit resistance to the toxic effects of Hg(II) and organomercurials [RHg(I)]. In broad spectrum resistance, RHg(I) is converted to less toxic Hg(0) in the cytosol by the sequential action of organomercurial lyase (MerB: RHg(I) → RH + Hg(II)) and mercuric ion reductase (MerA: Hg(II) → Hg(0)) enzymes, requiring transfer of Hg(II) from MerB to MerA. Although previous studies with γ-proteobacterial versions of MerA and a nonphysiological Hg(II)-DTT-MerB complex qualitatively support a pathway for direct transfer between proteins, assessment of the relative efficiencies of Hg(II) transfer to the two different dicysteine motifs in γ-proteobacterial MerA and to competing cellular thiol is lacking. Here we show the intrinsic tryptophan fluorescence of γ-proteobacterial MerB is sensitive to Hg(II) binding and use this to probe the kinetics of Hg(II) removal from MerB by the N-terminal domain (NmerA) and catalytic core C-terminal cysteine pairs of its coevolved MerA and by glutathione (GSH), the major competing cellular thiol in γ-proteobacteria. At physiologically relevant concentrations, reaction with a 10-fold excess of NmerA over HgMerB removes ≥92% Hg(II), while similar extents of reaction require more than 1000-fold excess of GSH. Kinetically, the apparent second-order rate constant for Hg(II) transfer from MerB to NmerA, at (2.3 ± 0.1) × 10(4) M(-1) s(-1), is ∼100-fold greater than that for GSH ((1.2 ± 0.2) × 10(2) M(-1) s(-1)) or the MerA catalytic core (1.2 × 10(2) M(-1) s(-1)), establishing transfer to the metallochaperone-like NmerA domain as the kinetically favored pathway in this coevolved system.
Collapse
Affiliation(s)
- Baoyu Hong
- Department of Pharmaceutical Chemistry, University of California San Francisco, San Francisco, CA 94158-2517
| | - Rachel Nauss
- Department of Pharmaceutical Chemistry, University of California San Francisco, San Francisco, CA 94158-2517
| | - Ian Harwood
- Graduate Group in Biophysics, University of California San Francisco, CA 94158-2517
| | - Susan M. Miller
- Department of Pharmaceutical Chemistry, University of California San Francisco, San Francisco, CA 94158-2517
- Graduate Group in Biophysics, University of California San Francisco, CA 94158-2517
| |
Collapse
|
214
|
André G, Haudecoeur E, Monot M, Ohtani K, Shimizu T, Dupuy B, Martin-Verstraete I. Global regulation of gene expression in response to cysteine availability in Clostridium perfringens. BMC Microbiol 2010; 10:234. [PMID: 20822510 PMCID: PMC2940859 DOI: 10.1186/1471-2180-10-234] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2010] [Accepted: 09/07/2010] [Indexed: 11/24/2022] Open
Abstract
Background Cysteine has a crucial role in cellular physiology and its synthesis is tightly controlled due to its reactivity. However, little is known about the sulfur metabolism and its regulation in clostridia compared with other firmicutes. In Clostridium perfringens, the two-component system, VirR/VirS, controls the expression of the ubiG operon involved in methionine to cysteine conversion in addition to the expression of several toxin genes. The existence of links between the C. perfringens virulence regulon and sulfur metabolism prompted us to analyze this metabolism in more detail. Results We first performed a tentative reconstruction of sulfur metabolism in C. perfringens and correlated these data with the growth of strain 13 in the presence of various sulfur sources. Surprisingly, C. perfringens can convert cysteine to methionine by an atypical still uncharacterized pathway. We further compared the expression profiles of strain 13 after growth in the presence of cystine or homocysteine that corresponds to conditions of cysteine depletion. Among the 177 genes differentially expressed, we found genes involved in sulfur metabolism and controlled by premature termination of transcription via a cysteine specific T-box system (cysK-cysE, cysP1 and cysP2) or an S-box riboswitch (metK and metT). We also showed that the ubiG operon was submitted to a triple regulation by cysteine availability via a T-box system, by the VirR/VirS system via the VR-RNA and by the VirX regulatory RNA. In addition, we found that expression of pfoA (theta-toxin), nagL (one of the five genes encoding hyaluronidases) and genes involved in the maintenance of cell redox status was differentially expressed in response to cysteine availability. Finally, we showed that the expression of genes involved in [Fe-S] clusters biogenesis and of the ldh gene encoding the lactate dehydrogenase was induced during cysteine limitation. Conclusion Several key functions for the cellular physiology of this anaerobic bacterium were controlled in response to cysteine availability. While most of the genes involved in sulfur metabolism are regulated by premature termination of transcription, other still uncharacterized mechanisms of regulation participated in the induction of gene expression during cysteine starvation.
Collapse
Affiliation(s)
- Gaelle André
- Institut Pasteur, Unité de Génétique des Génomes Bactériens and Unité des Bactéries Anaérobies et Toxines, 28 rue du Docteur Roux, 75015 Paris, France
| | | | | | | | | | | | | |
Collapse
|
215
|
Staphylococcus aureus NrdH redoxin is a reductant of the class Ib ribonucleotide reductase. J Bacteriol 2010; 192:4963-72. [PMID: 20675493 DOI: 10.1128/jb.00539-10] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Staphylococci contain a class Ib NrdEF ribonucleotide reductase (RNR) that is responsible, under aerobic conditions, for the synthesis of deoxyribonucleotide precursors for DNA synthesis and repair. The genes encoding that RNR are contained in an operon consisting of three genes, nrdIEF, whereas many other class Ib RNR operons contain a fourth gene, nrdH, that determines a thiol redoxin protein, NrdH. We identified a 77-amino-acid open reading frame in Staphylococcus aureus that resembles NrdH proteins. However, S. aureus NrdH differs significantly from the canonical NrdH both in its redox-active site, C-P-P-C instead of C-M/V-Q-C, and in the absence of the C-terminal [WF]SGFRP[DE] structural motif. We show that S. aureus NrdH is a thiol redox protein. It is not essential for aerobic or anaerobic growth and appears to have a marginal role in protection against oxidative stress. In vitro, S. aureus NrdH was found to be an efficient reductant of disulfide bonds in low-molecular-weight substrates and proteins using dithiothreitol as the source of reducing power and an effective reductant for the homologous class Ib RNR employing thioredoxin reductase and NADPH as the source of the reducing power. Its ability to reduce NrdEF is comparable to that of thioredoxin-thioredoxin reductase. Hence, S. aureus contains two alternative thiol redox proteins, NrdH and thioredoxin, with both proteins being able to function in vitro with thioredoxin reductase as the immediate hydrogen donors for the class Ib RNR. It remains to be clarified under which in vivo physiological conditions the two systems are used.
Collapse
|
216
|
Abstract
A protected cyclitol aglycon was tethered to an (N-arylsulfonyl)glucosamine donor by a methylene linker; the exclusively alpha-selective intramolecular glycosylation reaction was then initiated by electrophilic activation of the thioglycoside donor portion. Further transformations of the glycosylation product to give the M. tuberculosis detoxifier mycothiol and its oxidized congener, the disulfide mycothione, are detailed.
Collapse
Affiliation(s)
- Kehinde Ajayi
- Department of Chemistry and Chemical Biology, Rutgers-The State University of New Jersey, 610 Taylor Road, Piscataway, New Jersey 08854, USA
| | | | | | | |
Collapse
|
217
|
The pleiotropic CymR regulator of Staphylococcus aureus plays an important role in virulence and stress response. PLoS Pathog 2010; 6:e1000894. [PMID: 20485570 PMCID: PMC2869319 DOI: 10.1371/journal.ppat.1000894] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2009] [Accepted: 04/02/2010] [Indexed: 12/20/2022] Open
Abstract
We have characterized a novel pleiotropic role for CymR, the master regulator of cysteine metabolism. We show here that CymR plays an important role both in stress response and virulence of Staphylococcus aureus. Genes involved in detoxification processes, including oxidative stress response and metal ion homeostasis, were differentially expressed in a ΔcymR mutant. Deletion of cymR resulted in increased sensitivity to hydrogen peroxide-, disulfide-, tellurite- and copper-induced stresses. Estimation of metabolite pools suggests that this heightened sensitivity could be the result of profound metabolic changes in the ΔcymR mutant, with an increase in the intracellular cysteine pool and hydrogen sulfide formation. Since resistance to oxidative stress within the host organism is important for pathogen survival, we investigated the role of CymR during the infectious process. Our results indicate that the deletion of cymR promotes survival of S. aureus inside macrophages, whereas virulence of the ΔcymR mutant is highly impaired in mice. These data indicate that CymR plays a major role in virulence and adaptation of S. aureus for survival within the host. Staphylococcus aureus is a very harmful human pathogen that is a major cause of nosocomial infections. Humans have developed sophisticated defense strategies against invading bacteria, including the innate immune response, with the generation of an oxidative burst inside phagocytic cells. Staphylococcal infections are extremely difficult to eradicate due to the remarkable capacity of these bacteria to adapt to different environmental conditions both inside and outside the host organism. Sulfur metabolism is essential for all living organisms and is tightly controlled by regulatory proteins. In this paper, we revealed an important role for CymR, a major regulator of sulfur metabolism, in adaptation of S. aureus to the host environment. Inactivation of the gene encoding this regulator in S. aureus leads to a mutant bacterium with increased vulnerability to stress conditions including oxidative stress encountered inside the host. More importantly, the deletion of the cymR gene strongly affected the interaction of S. aureus with its host, leading to impaired virulence in mice. Our results place CymR among the potential targets for attenuation of S. aureus infections.
Collapse
|
218
|
Pyrosequencing-based comparative genome analysis of the nosocomial pathogen Enterococcus faecium and identification of a large transferable pathogenicity island. BMC Genomics 2010; 11:239. [PMID: 20398277 PMCID: PMC2858755 DOI: 10.1186/1471-2164-11-239] [Citation(s) in RCA: 157] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2009] [Accepted: 04/14/2010] [Indexed: 02/07/2023] Open
Abstract
Background The Gram-positive bacterium Enterococcus faecium is an important cause of nosocomial infections in immunocompromized patients. Results We present a pyrosequencing-based comparative genome analysis of seven E. faecium strains that were isolated from various sources. In the genomes of clinical isolates several antibiotic resistance genes were identified, including the vanA transposon that confers resistance to vancomycin in two strains. A functional comparison between E. faecium and the related opportunistic pathogen E. faecalis based on differences in the presence of protein families, revealed divergence in plant carbohydrate metabolic pathways and oxidative stress defense mechanisms. The E. faecium pan-genome was estimated to be essentially unlimited in size, indicating that E. faecium can efficiently acquire and incorporate exogenous DNA in its gene pool. One of the most prominent sources of genomic diversity consists of bacteriophages that have integrated in the genome. The CRISPR-Cas system, which contributes to immunity against bacteriophage infection in prokaryotes, is not present in the sequenced strains. Three sequenced isolates carry the esp gene, which is involved in urinary tract infections and biofilm formation. The esp gene is located on a large pathogenicity island (PAI), which is between 64 and 104 kb in size. Conjugation experiments showed that the entire esp PAI can be transferred horizontally and inserts in a site-specific manner. Conclusions Genes involved in environmental persistence, colonization and virulence can easily be aquired by E. faecium. This will make the development of successful treatment strategies targeted against this organism a challenge for years to come.
Collapse
|
219
|
Gammon DW, Steenkamp DJ, Mavumengwana V, Marakalala MJ, Mudzunga TT, Hunter R, Munyololo M. Conjugates of plumbagin and phenyl-2-amino-1-thioglucoside inhibit MshB, a deacetylase involved in the biosynthesis of mycothiol. Bioorg Med Chem 2010; 18:2501-14. [DOI: 10.1016/j.bmc.2010.02.049] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2009] [Revised: 02/21/2010] [Accepted: 02/23/2010] [Indexed: 11/26/2022]
|
220
|
Biosynthesis and functions of bacillithiol, a major low-molecular-weight thiol in Bacilli. Proc Natl Acad Sci U S A 2010; 107:6482-6. [PMID: 20308541 DOI: 10.1073/pnas.1000928107] [Citation(s) in RCA: 193] [Impact Index Per Article: 12.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Bacillithiol (BSH), the alpha-anomeric glycoside of L-cysteinyl-D-glucosamine with L-malic acid, is a major low-molecular-weight thiol in Bacillus subtilis and related bacteria. Here, we identify genes required for BSH biosynthesis and provide evidence that the synthetic pathway has similarities to that established for the related thiol (mycothiol) in the Actinobacteria. Consistent with a key role for BSH in detoxification of electrophiles, the BshA glycosyltransferase and BshB1 deacetylase are encoded in an operon with methylglyoxal synthase. BshB1 is partially redundant in function with BshB2, a deacetylase of the LmbE family. Phylogenomic profiling identified a conserved unknown function protein (COG4365) as a candidate cysteine-adding enzyme (BshC) that co-occurs in genomes also encoding BshA, BshB1, and BshB2. Additional evolutionarily linked proteins include a thioredoxin reductase homolog and two thiol:disulfide oxidoreductases of the DUF1094 (CxC motif) family. Mutants lacking BshA, BshC, or both BshB1 and BshB2 are devoid of BSH. BSH is at least partially redundant in function with other low-molecular-weight thiols: redox proteomics indicates that protein thiols are largely reduced even in the absence of BSH. At the transcriptional level, the induction of genes controlled by two thiol-based regulators (OhrR, Spx) occurs normally. However, BSH null cells are significantly altered in acid and salt resistance, sporulation, and resistance to electrophiles and thiol reactive compounds. Moreover, cells lacking BSH are highly sensitive to fosfomycin, an epoxide-containing antibiotic detoxified by FosB, a prototype for bacillithiol-S-transferase enzymes.
Collapse
|
221
|
Movahedzadeh F, Wheeler PR, Dinadayala P, Av-Gay Y, Parish T, Daffé M, Stoker NG. Inositol monophosphate phosphatase genes of Mycobacterium tuberculosis. BMC Microbiol 2010; 10:50. [PMID: 20167072 PMCID: PMC2834668 DOI: 10.1186/1471-2180-10-50] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2009] [Accepted: 02/18/2010] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Mycobacteria use inositol in phosphatidylinositol, for anchoring lipoarabinomannan (LAM), lipomannan (LM) and phosphatidylinosotol mannosides (PIMs) in the cell envelope, and for the production of mycothiol, which maintains the redox balance of the cell. Inositol is synthesized by conversion of glucose-6-phosphate to inositol-1-phosphate, followed by dephosphorylation by inositol monophosphate phosphatases (IMPases) to form myo-inositol. To gain insight into how Mycobacterium tuberculosis synthesises inositol we carried out genetic analysis of the four IMPase homologues that are present in the Mycobacterium tuberculosis genome. RESULTS Mutants lacking either impA (Rv1604) or suhB (Rv2701c) were isolated in the absence of exogenous inositol, and no differences in levels of PIMs, LM, LAM or mycothiol were observed. Mutagenesis of cysQ (Rv2131c) was initially unsuccessful, but was possible when a porin-like gene of Mycobacterium smegmatis was expressed, and also by gene switching in the merodiploid strain. In contrast, we could only obtain mutations in impC (Rv3137) when a second functional copy was provided in trans, even when exogenous inositol was provided. Experiments to obtain a mutant in the presence of a second copy of impC containing an active-site mutation, in the presence of porin-like gene of M. smegmatis, or in the absence of inositol 1-phosphate synthase activity, were also unsuccessful. We showed that all four genes are expressed, although at different levels, and levels of inositol phosphatase activity did not fall significantly in any of the mutants obtained. CONCLUSIONS We have shown that neither impA, suhB nor cysQ is solely responsible for inositol synthesis. In contrast, we show that impC is essential for mycobacterial growth under the conditions we used, and suggest it may be required in the early stages of mycothiol synthesis.
Collapse
Affiliation(s)
- Farahnaz Movahedzadeh
- Department of Pathology and Infectious Diseases, Royal Veterinary College, Royal College Street, London NW1 0TU, UK.
| | | | | | | | | | | | | |
Collapse
|
222
|
Response of the oxygen sensor NreB to air in vivo: Fe-S-containing NreB and apo-NreB in aerobically and anaerobically growing Staphylococcus carnosus. J Bacteriol 2010; 192:86-93. [PMID: 19854899 DOI: 10.1128/jb.01248-09] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The sensor kinase NreB from Staphylococcus carnosus contains an O(2)-sensitive [4Fe-4S](2+) cluster which is converted by O(2) to a [2Fe-2S](2+) cluster, followed by complete degradation and formation of Fe-S-less apo-NreB. NreB.[2Fe-2S](2+) and apoNreB are devoid of kinase activity. NreB contains four Cys residues which ligate the Fe-S clusters. The accessibility of the Cys residues to alkylating agents was tested and used to differentiate Fe-S-containing and Fe-S-less NreB. In a two-step labeling procedure, accessible Cys residues in the native protein were first labeled by iodoacetate. In the second step, Cys residues not labeled in the first step were alkylated with the fluorescent monobromobimane (mBBr) after denaturing of the protein. In purified (aerobic) apoNreB, most (96%) of the Cys residues were alkylated in the first step, but in anaerobic (Fe-S-containing) NreB only a small portion (23%) were alkylated. In anaerobic bacteria, a very small portion of the Cys residues of NreB (9%) were accessible to alkylation in the native state, whereas most (89%) of the Cys residues from aerobic bacteria were accessible. The change in accessibility allowed determination of the half-time (6 min) for the conversion of NreB x [4Fe-4S](2+) to apoNreB after the addition of air in vitro. Overall, in anaerobic bacteria most of the NreB exists as NreB x [4Fe-4S](2+), whereas in aerobic bacteria the (Fe-S-less) apoNreB is predominant and represents the physiological form. The number of accessible Cys residues was also determined by iodoacetate alkylation followed by mass spectrometry of Cys-containing peptides. The pattern of mass increases confirmed the results from the two-step labeling experiments.
Collapse
|
223
|
Characterization of the ars gene cluster from extremely arsenic-resistant Microbacterium sp. strain A33. Appl Environ Microbiol 2009; 76:948-55. [PMID: 19966021 DOI: 10.1128/aem.01738-09] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The arsenic resistance gene cluster of Microbacterium sp. A33 contains a novel pair of genes (arsTX) encoding a thioredoxin system that are cotranscribed with an unusual arsRC2 fusion gene, ACR3, and arsC1 in an operon divergent from arsC3. The whole ars gene cluster is required to complement an Escherichia coli ars mutant. ArsRC2 negatively regulates the expression of the pentacistronic operon. ArsC1 and ArsC3 are related to thioredoxin-dependent arsenate reductases; however, ArsC3 lacks the two distal catalytic cysteine residues of this class of enzymes.
Collapse
|
224
|
Hugo M, Turell L, Manta B, Botti H, Monteiro G, Netto LES, Alvarez B, Radi R, Trujillo M. Thiol and sulfenic acid oxidation of AhpE, the one-cysteine peroxiredoxin from Mycobacterium tuberculosis: kinetics, acidity constants, and conformational dynamics. Biochemistry 2009; 48:9416-26. [PMID: 19737009 DOI: 10.1021/bi901221s] [Citation(s) in RCA: 93] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Drug resistance and virulence of Mycobacterium tuberculosis are partially related to the pathogen's antioxidant systems. Peroxide detoxification in this bacterium is achieved by the heme-containing catalase peroxidase and different two-cysteine peroxiredoxins. M. tuberculosis genome also codifies for a putative one-cysteine peroxiredoxin, alkyl hydroperoxide reductase E (MtAhpE). Its expression was previously demonstrated at a transcriptional level, and the crystallographic structure of the recombinant protein was resolved under reduced and oxidized states. Herein, we report that the conformation of MtAhpE changed depending on its single cysteine redox state, as reflected by different tryptophan fluorescence properties and changes in quaternary structure. Dynamics of fluorescence changes, complemented by competition kinetic assays, were used to perform protein functional studies. MtAhpE reduced peroxynitrite 2 orders of magnitude faster than hydrogen peroxide (1.9 x 10(7) M(-1) s(-1) vs 8.2 x 10(4) M(-1) s(-1) at pH 7.4 and 25 degrees C, respectively). The latter also caused cysteine overoxidation to sulfinic acid, but at much slower rate constant (40 M(-1) s(-1)). The pK(a) of the thiol in the reduced enzyme was 5.2, more than one unit lower than that of the sulfenic acid in the oxidized enzyme. The pH profile of hydrogen peroxide-mediated thiol and sulfenic acid oxidations indicated thiolate and sulfenate as the reacting species. The formation of sulfenic acid as well as the catalytic peroxidase activity of MtAhpE was demonstrated using the artificial reducing substrate thionitrobenzoate. Taken together, our results indicate that MtAhpE is a relevant component in the antioxidant repertoire of M. tuberculosis probably involved in peroxide and specially peroxynitrite detoxification.
Collapse
Affiliation(s)
- Martín Hugo
- Departamento de Bioqumica, Facultad de Medicina, Center for Free Radical and Biomedical Research, Universidad de la República, Montevideo, Uruguay
| | | | | | | | | | | | | | | | | |
Collapse
|
225
|
Singh AK, Zhang YM, Zhu K, Subramanian C, Li Z, Jayaswal RK, Gatto C, Rock CO, Wilkinson BJ. FabH selectivity for anteiso branched-chain fatty acid precursors in low-temperature adaptation in Listeria monocytogenes. FEMS Microbiol Lett 2009; 301:188-92. [PMID: 19863661 PMCID: PMC2818224 DOI: 10.1111/j.1574-6968.2009.01814.x] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
Abstract
Gram-positive bacteria, including Listeria monocytogenes, adjust membrane fluidity by shortening the fatty acid chain length and increasing the proportional production of anteiso fatty acids at lower growth temperatures. The first condensation reaction in fatty acid biosynthesis is carried out by beta-ketoacyl-acyl carrier protein synthase III (FabH), which determines the type of fatty acid produced in bacteria. Here, we measured the initial rates of FabH-catalyzed condensation of malonyl-acyl carrier protein and alternate branched-chain precursor acyl-CoAs utilizing affinity-purified His-tagged L. monocytogenes FabH heterologously expressed in Escherichia coli. Listeria monocytogenes FabH showed a preference for 2-methylbutyryl-CoA, the precursor of odd-numbered anteiso fatty acids, at 30 degrees C, which was further increased at a low temperature (10 degrees C), suggesting that temperature-dependent substrate selectivity of FabH underlies the increased formation of anteiso branched-chain fatty acids during low-temperature adaptation. The increased FabH preferential condensation of 2-methylbutyryl-CoA could not be attributed to a significantly higher availability of this fatty acid precursor as acyl-CoA pool levels were reduced similarly for all fatty acid precursors at low temperatures.
Collapse
Affiliation(s)
- Atul K Singh
- Microbiology Group, School of Biological Sciences, Illinois State University, Normal, IL 61790-4120, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
226
|
Sachdeva P, Misra R, Tyagi AK, Singh Y. The sigma factors of Mycobacterium tuberculosis: regulation of the regulators. FEBS J 2009; 277:605-26. [DOI: 10.1111/j.1742-4658.2009.07479.x] [Citation(s) in RCA: 120] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
227
|
Abstract
The spore-forming bacterium and model prokaryotic genetic system, Bacillus subtilis, is extremely useful in the study of oxidative stress management through proteomic and genome-wide transcriptomic analyses, as well as through detailed structural studies of the regulatory factors that govern the oxidative stress response. The factors that sense oxidants and induce expression of protective activities include the PerR and OhrR proteins, which show acute discrimination for their peroxide stimuli, whereas the general stress control factor, the RNA polymerase sigma(B) subunit and the thiol-based sensor Spx, govern the protective response to oxidants under multiple stress conditions. Some specific and some redundant protective mechanisms are mobilized at different stages of the Bacillus developmental cycle to deal with vulnerable cells in stationary-phase conditions and during spore germination and outgrowth. An important unknown is the nature and influence of the low-molecular-weight thiols that mediate the buffering of the redox environment.
Collapse
Affiliation(s)
- Peter Zuber
- Department of Science & Engineering, School of Medicine, Oregon Health & Science University, Beaverton, Oregon 97006, USA.
| |
Collapse
|
228
|
Diamide triggers mainly S Thiolations in the cytoplasmic proteomes of Bacillus subtilis and Staphylococcus aureus. J Bacteriol 2009; 191:7520-30. [PMID: 19837798 DOI: 10.1128/jb.00937-09] [Citation(s) in RCA: 61] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
Abstract
Glutathione constitutes a key player in the thiol redox buffer in many organisms. However, the gram-positive bacteria Bacillus subtilis and Staphylococcus aureus lack this low-molecular-weight thiol. Recently, we identified S-cysteinylated proteins in B. subtilis after treatment of cells with the disulfide-generating electrophile diamide. S cysteinylation is thought to protect protein thiols against irreversible oxidation to sulfinic and sulfonic acids. Here we show that S thiolation occurs also in S. aureus proteins after exposure to diamide. We further analyzed the formation of inter- and intramolecular disulfide bonds in cytoplasmic proteins using diagonal nonreducing/reducing sodium dodecyl sulfate gel electrophoresis. However, only a few proteins were identified that form inter- or intramolecular disulfide bonds under control and diamide stress conditions in B. subtilis and S. aureus. Depletion of the cysteine pool was concomitantly measured in B. subtilis using a metabolomics approach. Thus, the majority of reversible thiol modifications that were previously detected by two-dimensional gel fluorescence-based thiol modification assay are most likely based on S thiolations. Finally, we found that a glutathione-producing B. subtilis strain which expresses the Listeria monocytogenes gshF gene did not show enhanced oxidative stress resistance compared to the wild type.
Collapse
|
229
|
Wallen JR, Mallett TC, Boles W, Parsonage D, Furdui CM, Karplus PA, Claiborne A. Crystal structure and catalytic properties of Bacillus anthracis CoADR-RHD: implications for flavin-linked sulfur trafficking. Biochemistry 2009; 48:9650-67. [PMID: 19725515 PMCID: PMC2758330 DOI: 10.1021/bi900887k] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Rhodanese homology domains (RHDs) play important roles in sulfur trafficking mechanisms essential to the biosynthesis of sulfur-containing cofactors and nucleosides. We have now determined the crystal structure at 2.10 A resolution for the Bacillus anthracis coenzyme A-disulfide reductase isoform (BaCoADR-RHD) containing a C-terminal RHD domain; this is the first structural representative of the multidomain proteins class of the rhodanese superfamily. The catalytic Cys44 of the CoADR module is separated by 25 A from the active-site Cys514' of the RHD domain from the complementary subunit. In stark contrast to the B. anthracis CoADR [Wallen, J. R., Paige, C., Mallett, T. C., Karplus, P. A., and Claiborne, A. (2008) Biochemistry 47, 5182-5193], the BaCoADR-RHD isoform does not catalyze the reduction of coenzyme A-disulfide, although both enzymes conserve the Cys-SSCoA redox center. NADH titrations have been combined with a synchrotron reduction protocol for examination of the structural and redox behavior of the Cys44-SSCoA center. The synchrotron-reduced (Cys44 + CoASH) structure reveals ordered binding for the adenosine 3'-phosphate 5'-pyrophosphate moiety of CoASH, but the absence of density for the pantetheine arm indicates that it is flexible within the reduced active site. Steady-state kinetic analyses with the alternate disulfide substrates methyl methanethiolsulfonate (MMTS) and 5,5'-dithiobis(2-nitrobenzoate) (DTNB), including the appropriate Cys --> Ser mutants, demonstrate that MMTS reduction occurs within the CoADR active site. NADH-dependent DTNB reduction, on the other hand, requires communication between Cys44 and Cys514', and we propose that reduction of the Cys44-SSCoA disulfide promotes the transfer of reducing equivalents to the RHD, with the swinging pantetheine arm serving as a ca. 20 A bridge.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Al Claiborne
- To whom correspondence should be addressed. Tel.: (336) 716-3914; Fax: (336) 777-3242
| |
Collapse
|
230
|
Poor CB, Chen PR, Duguid E, Rice PA, He C. Crystal structures of the reduced, sulfenic acid, and mixed disulfide forms of SarZ, a redox active global regulator in Staphylococcus aureus. J Biol Chem 2009; 284:23517-24. [PMID: 19586910 PMCID: PMC2749125 DOI: 10.1074/jbc.m109.015826] [Citation(s) in RCA: 79] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2009] [Revised: 06/17/2009] [Indexed: 12/16/2022] Open
Abstract
SarZ is a global transcriptional regulator that uses a single cysteine residue, Cys(13), to sense peroxide stress and control metabolic switching and virulence in Staphylococcus aureus. SarZ belongs to the single-cysteine class of OhrR-MgrA proteins that play key roles in oxidative resistance and virulence regulation in various bacteria. We present the crystal structures of the reduced form, sulfenic acid form, and mixed disulfide form of SarZ. Both the sulfenic acid and mixed disulfide forms are structurally characterized for the first time for this class of proteins. The Cys(13) sulfenic acid modification is stabilized through two hydrogen bonds with surrounding residues, and the overall DNA-binding conformation is retained. A further reaction of the Cys(13) sulfenic acid with an external thiol leads to formation of a mixed disulfide bond, which results in an allosteric change in the DNA-binding domains, disrupting DNA binding. Thus, the crystal structures of SarZ in three different states provide molecular level pictures delineating the mechanism by which this class of redox active regulators undergoes activation. These structures help to understand redox-mediated virulence regulation in S. aureus and activation of the MarR family proteins in general.
Collapse
Affiliation(s)
| | | | - Erica Duguid
- From the Departments of Chemistry and
- Biochemistry and Molecular Biology, The University of Chicago, Chicago, Illinois 60637
| | - Phoebe A. Rice
- Biochemistry and Molecular Biology, The University of Chicago, Chicago, Illinois 60637
| | - Chuan He
- From the Departments of Chemistry and
| |
Collapse
|
231
|
Fan F, Vetting MW, Frantom PA, Blanchard JS. Structures and mechanisms of the mycothiol biosynthetic enzymes. Curr Opin Chem Biol 2009; 13:451-9. [PMID: 19699138 DOI: 10.1016/j.cbpa.2009.07.018] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2009] [Revised: 07/13/2009] [Accepted: 07/21/2009] [Indexed: 11/27/2022]
Abstract
In the past decade, the genes encoding all four enzymes responsible for the biosynthesis of mycothiol in Mycobacterium tuberculosis have been identified. Orthologs of each of these have been stably expressed and structurally characterized. The chemical mechanisms of all the four have also been studied. Because of the unique phylogenetic distribution of mycothiol, and the enzymes responsible for its biosynthesis, these enzymes represent interesting potential targets for antimycobacterial agents.
Collapse
Affiliation(s)
- Fan Fan
- Department of Biochemistry, Albert Einstein College of Medicine, 1300 Morris Park Avenue, Bronx, NY 10461, USA
| | | | | | | |
Collapse
|
232
|
Fan F, Blanchard JS. Toward the catalytic mechanism of a cysteine ligase (MshC) from Mycobacterium smegmatis: an enzyme involved in the biosynthetic pathway of mycothiol. Biochemistry 2009; 48:7150-9. [PMID: 19505149 PMCID: PMC2748416 DOI: 10.1021/bi900457x] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Mycobacterium tuberculosis and other members of the actinomycete family produce mycothiol (MSH or acetylcysteine-glucosamine-inositol, AcCys-GlcN-Ins) to protect the organism against oxidative and antibiotic stress. The biosynthesis of MSH proceeds via a five-step process that involves four unique enzymes, MshA-D, which represent specific targets for inhibitor design. Recombinant Mycobacterium smegmatis MshC catalyzes the ATP-dependent condensation of glucosamine-inositol (GlcN-Ins) and cysteine to form Cys-GlcN-Ins. The 1.6 A three-dimensional structure of MshC in complex with a tight binding bisubstrate analogue, 5'-O-[N-(L-cysteinyl)sulfamonyl]adenosine (CSA), has suggested specific roles for T46, H55, T83, W227, and D251. In addition, a catalytic role for H55 has been proposed on the basis of studies of related aminoacyl-tRNA synthetases. Site-directed mutagenesis was conducted to evaluate the functional roles of these highly conserved residues. All mutants exhibited significantly decreased k(cat) values, with the exception of T83V for which a <7-fold decrease was observed compared to that of the wild type (WT). For the T46V, H55A, W227F, and D251N mutants, the rate of cysteine activation decreased 100-1400-fold compared to that of WT, consistent with the important roles of these residues in the first half-reaction. The approximately 2000-fold decrease in k(cat)/K(m) as well as the approximately 20-fold decrease in K(m) for cysteine suggested a significant role for T46 in cysteine binding. Kinetic studies also indicate a function for W227 in cysteine binding but not in substrate discrimination against serine. H55 was also observed to play a significant role in ATP binding as well as cysteine adenylation. The activity of H55A was partially rescued with exogenous imidazole at acidic pH values, suggesting that the protonated form of histidine is exerting a catalytic role. The pH dependence of the kinetic parameters with the WT enzyme suggests an additional requirement for a catalytic base in cysteinyl ligation.
Collapse
Affiliation(s)
- Fan Fan
- Department of Biochemistry, Albert Einstein College of Medicine, 1300 Morris Park Avenue, Bronx, New York 10461, USA
| | | |
Collapse
|
233
|
Nakashima Y, Nii H, Janowiak BE, Griffith OW, Hibi T. Crystallization and preliminary crystallographic analysis of bifunctional gamma-glutamylcysteine synthetase-glutatione synthetase from Streptococcus agalactiae. Acta Crystallogr Sect F Struct Biol Cryst Commun 2009; 65:678-80. [PMID: 19574637 PMCID: PMC2705632 DOI: 10.1107/s1744309109018636] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2009] [Accepted: 05/17/2009] [Indexed: 11/10/2022]
Abstract
gamma-Glutamylcysteine synthetase-glutathione synthetase (gammaGCS-GS) is a bifunctional enzyme that catalyzes two consecutive steps of ATP-dependent peptide formation in glutathione biosynthesis. Streptococcus agalactiae gammaGCS-GS is a target for the development of potential therapeutic agents. gammaGCS-GS was crystallized using the sitting-drop vapour-diffusion method. The crystals grew to dimensions of 0.3 x 0.2 x 0.2 mm under reducing conditions with 5 mM TCEP. X-ray data were collected to 2.8 A resolution from a tetragonal crystal that belonged to space group I4(1).
Collapse
Affiliation(s)
- Yasunori Nakashima
- Department of Bioscience, Fukui Prefectural University, Fukui 910-1195, Japan
| | - Hiroshi Nii
- Department of Bioscience, Fukui Prefectural University, Fukui 910-1195, Japan
| | - Blythe E. Janowiak
- Department of Biochemistry, Medical College of Wisconsin, Milwaukee, WI 53226, USA
| | - Owen W. Griffith
- Department of Biochemistry, Medical College of Wisconsin, Milwaukee, WI 53226, USA
| | - Takao Hibi
- Department of Bioscience, Fukui Prefectural University, Fukui 910-1195, Japan
| |
Collapse
|
234
|
Identification and characterization of gshA, a gene encoding the glutamate-cysteine ligase in the halophilic archaeon Haloferax volcanii. J Bacteriol 2009; 191:5196-204. [PMID: 19525351 DOI: 10.1128/jb.00297-09] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Halophilic archaea were found to contain in their cytoplasm millimolar concentrations of gamma-glutamylcysteine (gamma GC) instead of glutathione. Previous analysis of the genome sequence of the archaeon Halobacterium sp. strain NRC-1 has indicated the presence of a sequence homologous to sequences known to encode the glutamate-cysteine ligase GshA. We report here the identification of the gshA gene in the extremely halophilic archaeon Haloferax volcanii and show that H. volcanii gshA directs in vivo the synthesis and accumulation of gamma GC. We also show that the H. volcanii gene when expressed in an Escherichia coli strain lacking functional GshA is able to restore synthesis of glutathione.
Collapse
|
235
|
Ordóñez E, Van Belle K, Roos G, De Galan S, Letek M, Gil JA, Wyns L, Mateos LM, Messens J. Arsenate reductase, mycothiol, and mycoredoxin concert thiol/disulfide exchange. J Biol Chem 2009; 284:15107-16. [PMID: 19286650 DOI: 10.1074/jbc.m900877200] [Citation(s) in RCA: 76] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
We identified the first enzymes that use mycothiol and mycoredoxin in a thiol/disulfide redox cascade. The enzymes are two arsenate reductases from Corynebacterium glutamicum (Cg_ArsC1 and Cg_ArsC2), which play a key role in the defense against arsenate. In vivo knockouts showed that the genes for Cg_ArsC1 and Cg_ArsC2 and those of the enzymes of the mycothiol biosynthesis pathway confer arsenate resistance. With steady-state kinetics, arsenite analysis, and theoretical reactivity analysis, we unraveled the catalytic mechanism for the reduction of arsenate to arsenite in C. glutamicum. The active site thiolate in Cg_ArsCs facilitates adduct formation between arsenate and mycothiol. Mycoredoxin, a redox enzyme for which the function was never shown before, reduces the thiol-arseno bond and forms arsenite and a mycothiol-mycoredoxin mixed disulfide. A second molecule of mycothiol recycles mycoredoxin and forms mycothione that, in its turn, is reduced by the NADPH-dependent mycothione reductase. Cg_ArsCs show a low specificity constant of approximately 5 m(-1) s(-1), typically for a thiol/disulfide cascade with nucleophiles on three different molecules. With the in vitro reconstitution of this novel electron transfer pathway, we have paved the way for the study of redox mechanisms in actinobacteria.
Collapse
Affiliation(s)
- Efrén Ordóñez
- Department of Molecular Biology, Area of Microbiology, University of León, 24071 León, Spain
| | | | | | | | | | | | | | | | | |
Collapse
|
236
|
Cystathionine gamma-lyase is a component of cystine-mediated oxidative defense in Lactobacillus reuteri BR11. J Bacteriol 2009; 191:1827-37. [PMID: 19124577 DOI: 10.1128/jb.01553-08] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Abstract
Lactobacillus reuteri BR11 possesses a novel mechanism of oxidative defense involving an abundant cystine ABC transporter encoded by the cyuABC gene cluster. Large amounts of thiols, including H(2)S, are secreted upon cystine uptake by the CyuC transporter. A cystathionine gamma-lyase (cgl) gene is cotranscribed with the cyu genes in several L. reuteri strains and was hypothesized to participate in cystine-mediated oxidative defense by producing reducing equivalents. This hypothesis was tested with L. reuteri BR11 by constructing a cgl mutant (PNG901) and comparing it to a similarly constructed cyuC mutant (PNG902). Although Cgl was required for H(2)S production from cystine, it was not crucial for oxidative defense in de Mann-Rogosa-Sharpe medium, in contrast to CyuC, whose inactivation resulted in lag-phase arrest in aerated cultures. The importance of Cgl in oxidative defense was seen only in the presence of hemin, which poses severe oxidative stress. The growth defects in aerated cultures of both mutants were alleviated by supplementation with cysteine (and cystine in the cgl mutant) but not methionine, with the cyuC mutant showing a much higher concentration requirement. We conclude that L. reuteri BR11 requires a high concentration of exogenous cysteine/cystine to grow optimally under aerobic conditions. This requirement is fulfilled by the abundant CyuC transporter, which has probably arisen due to the broad substrate specificity of Cgl, resulting in a futile pathway which degrades cystine taken up by the CyuC transporter to H(2)S. Cgl plays a secondary role in oxidative defense by its well-documented function of cysteine biosynthesis.
Collapse
|
237
|
Singleton C, Le Brun NE. The N-terminal soluble domains of Bacillus subtilis CopA exhibit a high affinity and capacity for Cu(i) ions. Dalton Trans 2009:688-96. [DOI: 10.1039/b810412c] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
|
238
|
Johnson T, Newton GL, Fahey RC, Rawat M. Unusual production of glutathione in Actinobacteria. Arch Microbiol 2009; 191:89-93. [PMID: 18719892 PMCID: PMC2605195 DOI: 10.1007/s00203-008-0423-1] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2008] [Revised: 07/16/2008] [Accepted: 07/25/2008] [Indexed: 11/25/2022]
Abstract
Most Actinobacteria produce mycothiol as the major thiol. In addition to mycothiol Rhodococcus AD45 generates a substantial level of glutathione possibly using genes acquired in a lateral transfer. Instead of mycothiol, Rubrobacter radiotolerans and Rubrobacter xylanophilus produce glutathione, whose synthesis appears to involve enzymes substantially different from those in other organisms.
Collapse
Affiliation(s)
- Todd Johnson
- Department of Biology, California State University-Fresno, Fresno, CA 93740, USA
| | | | | | | |
Collapse
|
239
|
Tremblay L, Fan F, Vetting M, Blanchard J. The 1.6 A crystal structure of Mycobacterium smegmatis MshC: the penultimate enzyme in the mycothiol biosynthetic pathway. Biochemistry 2008; 47:13326-35. [PMID: 19053270 PMCID: PMC2628295 DOI: 10.1021/bi801708f] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Mycobacterium smegmatis MshC catalyzes the ATP-dependent condensation of GlcN-Ins and l-cysteine to form l-Cys-GlcN-Ins, the penultimate step in mycothiol biosynthesis. Attempts to crystallize the native, full-length MshC have been unsuccessful. However, incubation of the enzyme with the cysteinyl adenylate analogue, 5'-O-[N-(l-cysteinyl)-sulfamonyl]adenosine (CSA), followed by a 24-h limited trypsin proteolysis yielded an enzyme preparation that readily crystallized. The three-dimensional structure of MshC with CSA bound in the active site was solved and refined to 1.6 A. The refined structure exhibited electron density corresponding to the entire 47 kDa MshC molecule, with the exception of the KMSKS loop (residues 285-297), a loop previously implicated in the formation of the adenylate in related tRNA synthases. The overall tertiary fold of MshC is similar to that of cysteinyl-tRNA synthetase, with a Rossmann fold catalytic domain. The interaction of the thiolate of CSA with a zinc ion at the base of the active site suggests that the metal ion participates in amino acid binding and discrimination. A number of active site residues were observed to interact with the ligand, suggesting a role in substrate binding and catalysis. Analysis utilizing modeling of the proteolyzed loop and GlcN-Ins docking, as well as the examination of sequence conservation in the active site suggests similarities and differences between cysteinyl-tRNA synthetases and MshC in recognition of the substrates for their respective reactions.
Collapse
Affiliation(s)
| | | | - M.W. Vetting
- Department of Biochemistry, Albert Einstein College of Medicine, 1300 Morris Park Avenue, Bronx, New York 10461
| | - J.S. Blanchard
- Department of Biochemistry, Albert Einstein College of Medicine, 1300 Morris Park Avenue, Bronx, New York 10461
| |
Collapse
|
240
|
Wolf C, Hochgräfe F, Kusch H, Albrecht D, Hecker M, Engelmann S. Proteomic analysis of antioxidant strategies of Staphylococcus aureus: diverse responses to different oxidants. Proteomics 2008; 8:3139-53. [PMID: 18604844 DOI: 10.1002/pmic.200701062] [Citation(s) in RCA: 98] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
The high resolution 2-D protein gel electrophoresis technique combined with MALDI-TOF MS and a recently developed fluorescence-based thiol modification assay were used to investigate the cellular response of Staphylococcus aureus to oxidative stress. Addition of hydrogen peroxide, diamide, and the superoxide generating agent paraquat to exponentially growing cells revealed complex changes in the protein expression pattern. In particular, proteins involved in detoxification, repair systems, and intermediary metabolism were found to be up-regulated. Interestingly, there is only a small overlap of proteins induced by all these stressors. Exposure to hydrogen peroxide mediated a significant increase of DNA repair enzymes, whereas treatment with diamide affected proteins involved in protein repair and degradation. The activity of proteins under oxidative stress conditions can be modulated by oxidation of thiol groups. In growing cells, protein thiols were found to be mainly present in the reduced state. Diamide mediated a strong increase of reversibly oxidized thiols in a variety of metabolic enzymes. By contrast, hydrogen peroxide resulted in the reversible oxidation especially of proteins with active site cysteines. Moreover, high levels of hydrogen peroxide influenced the pI of three proteins containing cysteines within their active sites (GapA1, AhpC, and HchA) indicating the generation of sulfinic or sulfonic acid by irreversible oxidation of thiols.
Collapse
Affiliation(s)
- Carmen Wolf
- Institut für Mikrobiologie, Ernst-Moritz-Arndt-Universität, Greifswald, Germany
| | | | | | | | | | | |
Collapse
|
241
|
Hecker M, Antelmann H, Büttner K, Bernhardt J. Gel-based proteomics of Gram-positive bacteria: A powerful tool to address physiological questions. Proteomics 2008; 8:4958-75. [DOI: 10.1002/pmic.200800278] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
242
|
Alam MS, Garg SK, Agrawal P. Studies on structural and functional divergence among seven WhiB proteins of Mycobacterium tuberculosis H37Rv. FEBS J 2008; 276:76-93. [DOI: 10.1111/j.1742-4658.2008.06755.x] [Citation(s) in RCA: 67] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
243
|
Biosynthesis and functions of mycothiol, the unique protective thiol of Actinobacteria. Microbiol Mol Biol Rev 2008; 72:471-94. [PMID: 18772286 DOI: 10.1128/mmbr.00008-08] [Citation(s) in RCA: 272] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Mycothiol (MSH; AcCys-GlcN-Ins) is the major thiol found in Actinobacteria and has many of the functions of glutathione, which is the dominant thiol in other bacteria and eukaryotes but is absent in Actinobacteria. MSH functions as a protected reserve of cysteine and in the detoxification of alkylating agents, reactive oxygen and nitrogen species, and antibiotics. MSH also acts as a thiol buffer which is important in maintaining the highly reducing environment within the cell and protecting against disulfide stress. The pathway of MSH biosynthesis involves production of GlcNAc-Ins-P by MSH glycosyltransferase (MshA), dephosphorylation by the MSH phosphatase MshA2 (not yet identified), deacetylation by MshB to produce GlcN-Ins, linkage to Cys by the MSH ligase MshC, and acetylation by MSH synthase (MshD), yielding MSH. Studies of MSH mutants have shown that the MSH glycosyltransferase MshA and the MSH ligase MshC are required for MSH production, whereas mutants in the MSH deacetylase MshB and the acetyltransferase (MSH synthase) MshD produce some MSH and/or a closely related thiol. Current evidence indicates that MSH biosynthesis is controlled by transcriptional regulation mediated by sigma(B) and sigma(R) in Streptomyces coelicolor. Identified enzymes of MSH metabolism include mycothione reductase (disulfide reductase; Mtr), the S-nitrosomycothiol reductase MscR, the MSH S-conjugate amidase Mca, and an MSH-dependent maleylpyruvate isomerase. Mca cleaves MSH S-conjugates to generate mercapturic acids (AcCySR), excreted from the cell, and GlcN-Ins, used for resynthesis of MSH. The phenotypes of MSH-deficient mutants indicate the occurrence of one or more MSH-dependent S-transferases, peroxidases, and mycoredoxins, which are important targets for future studies. Current evidence suggests that several MSH biosynthetic and metabolic enzymes are potential targets for drugs against tuberculosis. The functions of MSH in antibiotic-producing streptomycetes and in bioremediation are areas for future study.
Collapse
|
244
|
Newton GL, Fahey RC. An N-acyl homolog of mycothiol is produced in marine actinomycetes. Arch Microbiol 2008; 190:547-57. [PMID: 18629474 PMCID: PMC2574923 DOI: 10.1007/s00203-008-0405-3] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2008] [Revised: 06/13/2008] [Accepted: 06/25/2008] [Indexed: 10/21/2022]
Abstract
Marine actinomycetes have generated much recent interest as a potentially valuable source of novel antibiotics. Like terrestrial actinomycetes the marine actinomycetes are shown here to produce mycothiol as their protective thiol. However, a novel thiol, U25, was produced by MAR2 strain CNQ703 upon progression into stationary phase when secondary metabolite production occurred and became the dominant thiol. MSH and U25 were maintained in a reduced state during early stationary phase, but become significantly oxidized after 10 days in culture. Isolation and structural analysis of the monobromobimane derivative identified U25 as a homolog of mycothiol in which the acetyl group attached to the nitrogen of cysteine is replaced by a propionyl residue. This N-propionyl-desacetyl-mycothiol was present in 13 of the 17 strains of marine actinomycetes examined, including five strains of Salinispora and representatives of the MAR2, MAR3, MAR4 and MAR6 groups. Mycothiol and its precursor, the pseudodisaccharide 1-O-(2-amino-2-deoxy-alpha-D-glucopyranosyl)-D-myo-inositol, were found in all strains. High levels of mycothiol S-conjugate amidase activity, a key enzyme in mycothiol-dependent detoxification, were found in most strains. The results demonstrate that major thiol/disulfide changes accompany secondary metabolite production and suggest that mycothiol-dependent detoxification is important at this developmental stage.
Collapse
Affiliation(s)
- Gerald L. Newton
- Department of Chemistry and Biochemistry, University of California, San Diego, La Jolla, CA 92093, USA e-mail: fax: 858-5344864
| | - Robert C. Fahey
- Department of Chemistry and Biochemistry, University of California, San Diego, La Jolla, CA 92093, USA e-mail: fax: 858-5344864
| |
Collapse
|
245
|
Characterization of a mycothiol ligase mutant of Rhodococcus jostii RHA1. Res Microbiol 2008; 159:643-50. [DOI: 10.1016/j.resmic.2008.08.006] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2008] [Revised: 07/31/2008] [Accepted: 08/26/2008] [Indexed: 11/17/2022]
|
246
|
Modulation of thiol-disulfide oxidoreductases for increased production of disulfide-bond-containing proteins in Bacillus subtilis. Appl Environ Microbiol 2008; 74:7536-45. [PMID: 18952880 DOI: 10.1128/aem.00894-08] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Disulfide bonds are important for the correct folding, structural integrity, and activity of many biotechnologically relevant proteins. For synthesis and subsequent secretion of these proteins in bacteria, such as the well-known "cell factory" Bacillus subtilis, it is often the correct formation of disulfide bonds that is the greatest bottleneck. Degradation of inefficiently or incorrectly oxidized proteins and the requirement for costly and time-consuming reduction and oxidation steps in the downstream processing of the proteins still are major limitations for full exploitation of B. subtilis for biopharmaceutical production. Therefore, the present study was aimed at developing a novel in vivo strategy for improved production of secreted disulfide-bond-containing proteins. Three approaches were tested: depletion of the major cytoplasmic reductase TrxA; introduction of the heterologous oxidase DsbA from Staphylococcus carnosus; and addition of redox-active compounds to the growth medium. As shown using the disulfide-bond-containing molecule Escherichia coli PhoA as a model protein, combined use of these three approaches resulted in secretion of amounts of active PhoA that were approximately 3.5-fold larger than the amounts secreted by the parental strain B. subtilis 168. Our findings indicate that Bacillus strains with improved oxidizing properties can be engineered for biotechnological production of heterologous high-value proteins containing disulfide bonds.
Collapse
|
247
|
Jothivasan VK, Hamilton CJ. Mycothiol: synthesis, biosynthesis and biological functions of the major low molecular weight thiol in actinomycetes. Nat Prod Rep 2008; 25:1091-117. [PMID: 19030604 DOI: 10.1039/b616489g] [Citation(s) in RCA: 120] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
Actinomycetes produce mycothiol as their major low molecular weight thiol, which parallels the functions of glutathione found in prokaryotes and most Gram-negative bacteria. This review covers progress that has so far been made in terms of its distribution, biosynthesis and metabolic functions, as well as chemical syntheses of mycothiol and alternative substrates and inhibitors of mycothiol biosynthesis and mycothiol-dependent enzymes. 152 references are cited.
Collapse
|
248
|
Mostertz J, Hochgräfe F, Jürgen B, Schweder T, Hecker M. The role of thioredoxin TrxA in Bacillus subtilis: a proteomics and transcriptomics approach. Proteomics 2008; 8:2676-90. [PMID: 18601268 DOI: 10.1002/pmic.200701015] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Thiol-disulfide oxidoreductases of the thioredoxin superfamily are crucial for maintaining the thiol redox state in living organisms. For the bacterium Bacillus subtilis thioredoxin A (TrxA) was described as the product of an essential gene indicating a key role during growth. By means of mRNA profiling Smits et al. (J. Bacteriol. 2005, 187, 3921-3930) suggested a critical function for TrxA in sulfur utilization during stationary phase. We extended the analysis of TrxA to exponential growth and characterized a trxA conditional mutant by proteome analysis complemented by transcriptomics. After TrxA-depletion, the growth rate was dramatically decreased. The cells responded at mRNA and protein level by the increased expression of genes involved in the utilization of sulfur, which represents the most obvious response as visualized by gel-based proteomics. Furthermore, several genes of the antioxidant response were found at higher expression levels after TrxA-depletion. When sulfate was replaced by thiosulfate or methionine as sulfur source, the growth inhibition was abolished. In the presence of thiosulfate but in the absence of TrxA, the induction of the sulfur limitation response and the oxidative stress response was not observed. Our results show that the global change of gene expression is primarily caused by the interruption of the sulfate utilization after TrxA depletion. Thus, its function in sulfate assimilation renders TrxA an essential protein in growing B. subtilis cells.
Collapse
Affiliation(s)
- Jörg Mostertz
- Institute of Microbiology, Ernst-Moritz-Arndt-University Greifswald, Greifswald, Germany.
| | | | | | | | | |
Collapse
|
249
|
Ma P, Yuille HM, Blessie V, Göhring N, Iglói Z, Nishiguchi K, Nakayama J, Henderson PJF, Phillips-Jones MK. Expression, purification and activities of the entire family of intact membrane sensor kinases from Enterococcus faecalis. Mol Membr Biol 2008; 25:449-73. [PMID: 18785057 DOI: 10.1080/09687680802359885] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
Two-component signal transduction systems are the main mechanism by which bacteria sense and respond to their environment, and their membrane-located histidine protein kinases generally constitute the sensory components of these systems. Relatively little is known about their fundamental mechanisms and precise nature of the molecular signals sensed, because of the technical challenges of producing sufficient quantities of these hydrophobic membrane proteins. This study evaluated the heterologous production, purification and activities of the 16 intact membrane sensor kinases of Enterococcus faecalis. Following the cloning of the genes into expression plasmid pTTQ18His, all but one kinase was expressed successfully in Escherichia coli inner membranes. Purification of the hexa-histidine 'tagged' recombinant proteins was achieved for 13, and all but one were verified as intact. Thirteen intact kinases possessed autophosphorylation activity with no added signal when assayed in membrane vesicles or as purified proteins. Signal testing of two functionally-characterized kinases, FsrC and VicK, was successful examplifying the potential use of in vitro activity assays of intact proteins for systematic signal identification. Intact FsrC exhibited an approximately 10-fold increase in activity in response to a two-fold molar excess of synthetic GBAP pheromone, whilst glutathione, and possibly redox potential, were identified for the first time as direct modulators of VicK activity in vitro. The impact of DTT on VicK phosphorylation resulted in increased levels of phosphorylated VicR, the downstream response regulator, thereby confirming the potential of this in vitro approach for investigations of modulator effects on the entire signal transduction process of two-component systems.
Collapse
Affiliation(s)
- Pikyee Ma
- Astbury Centre for Structural Molecular Biology, University of Leeds, Leeds, UK
| | | | | | | | | | | | | | | | | |
Collapse
|
250
|
Vilchèze C, Av-Gay Y, Attarian R, Liu Z, Hazbón MH, Colangeli R, Chen B, Liu W, Alland D, Sacchettini JC, Jacobs WR. Mycothiol biosynthesis is essential for ethionamide susceptibility in Mycobacterium tuberculosis. Mol Microbiol 2008; 69:1316-29. [PMID: 18651841 PMCID: PMC2628429 DOI: 10.1111/j.1365-2958.2008.06365.x] [Citation(s) in RCA: 122] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/05/2008] [Indexed: 11/30/2022]
Abstract
Spontaneous mutants of Mycobacterium tuberculosis that were resistant to the anti-tuberculosis drugs ethionamide and isoniazid were isolated and found to map to mshA, a gene encoding the first enzyme involved in the biosynthesis of mycothiol, a major low-molecular-weight thiol in M. tuberculosis. Seven independent missense or frameshift mutations within mshA were identified and characterized. Precise null deletion mutations of the mshA gene were generated by specialized transduction in three different strains of M. tuberculosis. The mshA deletion mutants were defective in mycothiol biosynthesis, were only ethionamide-resistant and required catalase to grow. Biochemical studies suggested that the mechanism of ethionamide resistance in mshA mutants was likely due to a defect in ethionamide activation. In vivo, a mycothiol-deficient strain grew normally in immunodeficient mice, but was slightly defective for growth in immunocompetent mice. Mutations in mshA demonstrate the non-essentiality of mycothiol for growth in vitro and in vivo, and provide a novel mechanism of ethionamide resistance in M. tuberculosis.
Collapse
Affiliation(s)
- Catherine Vilchèze
- Howard Hughes Medical Institute, Department of Microbiology and Immunology, Albert Einstein College of MedicineBronx, NY 10461, USA
| | - Yossef Av-Gay
- Division of Infectious Diseases, University of British ColumbiaVancouver, BC V5Z 3J5, Canada
| | - Rodgoun Attarian
- Division of Infectious Diseases, University of British ColumbiaVancouver, BC V5Z 3J5, Canada
| | - Zhen Liu
- Department of Biochemistry and Biophysics, Texas A&M UniversityCollege Station, TX 77843, USA
| | - Manzour H Hazbón
- Division of Infectious Disease, Department of Medicine and the Ruy V. Lourenço Center for the Study of Emerging and Re-emerging Pathogens, New Jersey Medical School, University of Medicine and Dentistry of New JerseyNewark, NJ 07103, USA
| | - Roberto Colangeli
- Division of Infectious Disease, Department of Medicine and the Ruy V. Lourenço Center for the Study of Emerging and Re-emerging Pathogens, New Jersey Medical School, University of Medicine and Dentistry of New JerseyNewark, NJ 07103, USA
| | - Bing Chen
- Howard Hughes Medical Institute, Department of Microbiology and Immunology, Albert Einstein College of MedicineBronx, NY 10461, USA
| | - Weijun Liu
- Howard Hughes Medical Institute, Department of Microbiology and Immunology, Albert Einstein College of MedicineBronx, NY 10461, USA
| | - David Alland
- Division of Infectious Disease, Department of Medicine and the Ruy V. Lourenço Center for the Study of Emerging and Re-emerging Pathogens, New Jersey Medical School, University of Medicine and Dentistry of New JerseyNewark, NJ 07103, USA
| | - James C Sacchettini
- Department of Biochemistry and Biophysics, Texas A&M UniversityCollege Station, TX 77843, USA
| | - William R Jacobs
- Howard Hughes Medical Institute, Department of Microbiology and Immunology, Albert Einstein College of MedicineBronx, NY 10461, USA
| |
Collapse
|