201
|
Workentine ML, Harrison JJ, Weljie AM, Tran VA, Stenroos PU, Tremaroli V, Vogel HJ, Ceri H, Turner RJ. Phenotypic and metabolic profiling of colony morphology variants evolved fromPseudomonas fluorescensbiofilms. Environ Microbiol 2010; 12:1565-77. [DOI: 10.1111/j.1462-2920.2010.02185.x] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
202
|
Hammond A, Dertien J, Colmer-Hamood JA, Griswold JA, Hamood AN. Serum Inhibits P. aeruginosa Biofilm Formation on Plastic Surfaces and Intravenous Catheters. J Surg Res 2010; 159:735-46. [DOI: 10.1016/j.jss.2008.09.003] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2008] [Revised: 08/27/2008] [Accepted: 09/02/2008] [Indexed: 11/16/2022]
|
203
|
Medeot DB, Sohlenkamp C, Dardanelli MS, Geiger O, García de Lema M, López-Lara IM. Phosphatidylcholine levels of peanut-nodulatingBradyrhizobiumsp. SEMIA 6144 affect cell size and motility. FEMS Microbiol Lett 2010; 303:123-31. [DOI: 10.1111/j.1574-6968.2009.01873.x] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
|
204
|
Flagellated but not hyperfimbriated Salmonella enterica serovar Typhimurium attaches to and forms biofilms on cholesterol-coated surfaces. J Bacteriol 2010; 192:2981-90. [PMID: 20118264 DOI: 10.1128/jb.01620-09] [Citation(s) in RCA: 78] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The asymptomatic, chronic carrier state of Salmonella enterica serovar Typhi occurs in the bile-rich gallbladder and is frequently associated with the presence of cholesterol gallstones. We have previously demonstrated that salmonellae form biofilms on human gallstones and cholesterol-coated surfaces in vitro and that bile-induced biofilm formation on cholesterol gallstones promotes gallbladder colonization and maintenance of the carrier state. Random transposon mutants of S. enterica serovar Typhimurium were screened for impaired adherence to and biofilm formation on cholesterol-coated Eppendorf tubes but not on glass and plastic surfaces. We identified 49 mutants with this phenotype. The results indicate that genes involved in flagellum biosynthesis and structure primarily mediated attachment to cholesterol. Subsequent analysis suggested that the presence of the flagellar filament enhanced binding and biofilm formation in the presence of bile, while flagellar motility and expression of type 1 fimbriae were unimportant. Purified Salmonella flagellar proteins used in a modified enzyme-linked immunosorbent assay (ELISA) showed that FliC was the critical subunit mediating binding to cholesterol. These studies provide a better understanding of early events during biofilm development, specifically how salmonellae bind to cholesterol, and suggest a target for therapies that may alleviate biofilm formation on cholesterol gallstones and the chronic carrier state.
Collapse
|
205
|
Fu W, Forster T, Mayer O, Curtin JJ, Lehman SM, Donlan RM. Bacteriophage cocktail for the prevention of biofilm formation by Pseudomonas aeruginosa on catheters in an in vitro model system. Antimicrob Agents Chemother 2010; 54:397-404. [PMID: 19822702 PMCID: PMC2798481 DOI: 10.1128/aac.00669-09] [Citation(s) in RCA: 255] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2009] [Revised: 09/05/2009] [Accepted: 10/02/2009] [Indexed: 11/20/2022] Open
Abstract
Microorganisms develop biofilms on indwelling medical devices and are associated with device-related infections, resulting in substantial morbidity and mortality. This study investigated the effect of pretreating hydrogel-coated catheters with Pseudomonas aeruginosa bacteriophages on biofilm formation by P. aeruginosa in an in vitro model. Hydrogel-coated catheters were exposed to a 10 log(10) PFU ml(-1) lysate of P. aeruginosa phage M4 for 2 h at 37 degrees C prior to bacterial inoculation. The mean viable biofilm count on untreated catheters was 6.87 log(10) CFU cm(-2) after 24 h. The pretreatment of catheters with phage reduced this value to 4.03 log(10) CFU cm(-2) (P < 0.001). Phage treatment immediately following bacterial inoculation also reduced biofilm viable counts (4.37 log(10) CFU cm(-2) reduction; P < 0.001). The regrowth of biofilms on phage-treated catheters occurred between 24 and 48 h, but supplemental treatment with phage at 24 h significantly reduced biofilm regrowth (P < 0.001). Biofilm isolates resistant to phage M4 were recovered from catheters pretreated with phage. The phage susceptibility profiles of these isolates were used to guide the development of a five-phage cocktail from a larger library of P. aeruginosa phages. The pretreatment of catheters with this cocktail reduced the 48-h mean biofilm cell density by 99.9% (from 7.13 to 4.13 log(10) CFU cm(-2); P < 0.001), but fewer biofilm isolates were resistant to these phages. These results suggest the potential of applying phages, especially phage cocktails, to the surfaces of indwelling medical devices for mitigating biofilm formation by clinically relevant bacteria.
Collapse
Affiliation(s)
- Weiling Fu
- Division of Healthcare Quality Promotion, Centers for Disease Control and Prevention, Atlanta, Georgia
| | - Terri Forster
- Division of Healthcare Quality Promotion, Centers for Disease Control and Prevention, Atlanta, Georgia
| | - Oren Mayer
- Division of Healthcare Quality Promotion, Centers for Disease Control and Prevention, Atlanta, Georgia
| | - John J. Curtin
- Division of Healthcare Quality Promotion, Centers for Disease Control and Prevention, Atlanta, Georgia
| | - Susan M. Lehman
- Division of Healthcare Quality Promotion, Centers for Disease Control and Prevention, Atlanta, Georgia
| | - Rodney M. Donlan
- Division of Healthcare Quality Promotion, Centers for Disease Control and Prevention, Atlanta, Georgia
| |
Collapse
|
206
|
Epigenetic control of virulence gene expression in Pseudomonas aeruginosa by a LysR-type transcription regulator. PLoS Genet 2009; 5:e1000779. [PMID: 20041030 PMCID: PMC2796861 DOI: 10.1371/journal.pgen.1000779] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2009] [Accepted: 11/19/2009] [Indexed: 11/24/2022] Open
Abstract
Phenotypic variation within an isogenic bacterial population is thought to ensure the survival of a subset of cells in adverse conditions. The opportunistic pathogen Pseudomonas aeruginosa variably expresses several phenotypes, including antibiotic resistance, biofilm formation, and the production of CupA fimbriae. Here we describe a previously unidentified bistable switch in P. aeruginosa. This switch controls the expression of a diverse set of genes, including aprA, which encodes the secreted virulence factor alkaline protease. We present evidence that bistable expression of PA2432, herein named bexR (bistable expression regulator), which encodes a LysR-type transcription regulator, controls this switch. In particular, using DNA microarrays, quantitative RT–PCR analysis, chromatin immunoprecipitation, and reporter gene fusions, we identify genes directly under the control of BexR and show that these genes are bistably expressed. Furthermore, we show that bexR is itself bistably expressed and positively autoregulated. Finally, using single-cell analyses of a GFP reporter fusion, we present evidence that positive autoregulation of bexR is necessary for bistable expression of the BexR regulon. Our findings suggest that a positive feedback loop involving a LysR-type transcription regulator serves as the basis for an epigenetic switch that controls virulence gene expression in P. aeruginosa. Bistable switches allow the expression of a gene, or set of genes, to switch from one stable expression state to another and can generate cells with different phenotypes in an isogenic population. In this work we uncover a previously unidentified bistable switch that controls virulence gene expression in the opportunistic pathogen P. aeruginosa. This switch is controlled by a LysR-type transcription regulator that we call BexR. As well as identifying specific genes that are regulated by BexR, we show that bexR is itself bistably expressed and positively autoregulated. Furthermore, we present evidence that positive autoregulation of bexR is necessary for bistable expression of the BexR regulon. Our findings support a model for BexR-mediated bistability in which positive feedback amplifies bexR expression in a stochastically determined subset of cells, giving rise to heterogeneous expression of BexR target genes within a cell population. By generating diversity in an isogenic population of P. aeruginosa this bistable switch may ensure the survival of a subset of cells in adverse conditions, such as those encountered in the host. Our study defines an epigenetic mechanism for phenotypic variation in P. aeruginosa.
Collapse
|
207
|
Type IV pili of Acidithiobacillus ferrooxidans are necessary for sliding, twitching motility, and adherence. Curr Microbiol 2009; 60:17-24. [PMID: 19806397 PMCID: PMC2796965 DOI: 10.1007/s00284-009-9494-8] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2009] [Accepted: 08/21/2009] [Indexed: 11/16/2022]
Abstract
We used conventional methods to investigate the mechanism by which Acidithiobacillus ferrooxidans colonizes a solid surface by assessing pili-mediated sliding, twitching motility, and adherence. A. ferrooxidans slided to form circular oxidized zones around each colony. This suggested that slide motility occurs through pili or flagella, though A. ferrooxidans strains ATCC 19859 and ATCC 23270 lack flagella. The results of reverse transcription-PCR demonstrated that the putative major pili gene of A. ferrooxidans strains ATCC 19859, ATCC 23270, and BY3 genes were transcribed. Culture of A. ferrooxidans between silicone gel and glass led to the production of type IV pili and the formation of rough twitching motility zones. When the bacteria were grown on lean ore cubes, pyrite was colonized readily by A. ferrooxidans and there is a correlation between pilus expression and strong attachment. However, non-pili bacteria attached minimally to the mineral surface. The results show a correlation between these functions and pilus expression.
Collapse
|
208
|
Phase variation has a role in Burkholderia ambifaria niche adaptation. ISME JOURNAL 2009; 4:49-60. [PMID: 19710710 DOI: 10.1038/ismej.2009.95] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Members of the Burkholderia cepacia complex (Bcc), such as B. ambifaria, are effective biocontrol strains, for instance, as plant growth-promoting bacteria; however, Bcc isolates can also cause severe respiratory infections in people suffering from cystic fibrosis (CF). No distinction is known between isolates from environmental and human origins, suggesting that the natural environment is a potential source of infectious Bcc species. While investigating the presence and role of phase variation in B. ambifaria HSJ1, an isolate recovered from a CF patient, we identified stable variants that arose spontaneously irrespective of the culture conditions. Phenotypic and proteomic approaches revealed that the transition from wild-type to variant types affects the expression of several putative virulence factors. By using four different infection models (Drosophila melanogaster, Galleria mellonella, macrophages and Dictyostelium discoideum), we showed that the wild-type was more virulent than the variant. It may be noted that the variant showed reduced replication in a human monocyte cell line when compared with the wild-type. On the other hand, the variant of isolate HSJ1 was more competitive in colonizing plant roots than the wild-type. Furthermore, we observed that only clinical B. ambifaria isolates generated phase variants, and that these variants showed the same phenotypes as observed with the HSJ1 variant. Finally, we determined that environmental B. ambifaria isolates showed traits that were characteristic of variants derived from clinical isolates. Our study therefore suggest that B. ambifaria uses phase variation to adapt to drastically different environments: the lung of patients with CF or the rhizosphere.
Collapse
|
209
|
Swarming of Pseudomonas aeruginosa is controlled by a broad spectrum of transcriptional regulators, including MetR. J Bacteriol 2009; 191:5592-602. [PMID: 19592586 DOI: 10.1128/jb.00157-09] [Citation(s) in RCA: 138] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Pseudomonas aeruginosa exhibits swarming motility on semisolid surfaces (0.5 to 0.7% agar). Swarming is a more than just a form of locomotion and represents a complex adaptation resulting in changes in virulence gene expression and antibiotic resistance. In this study, we used a comprehensive P. aeruginosa PA14 transposon mutant library to investigate how the complex swarming adaptation process is regulated. A total of 233 P. aeruginosa PA14 transposon mutants were verified to have alterations in swarming motility. The swarming-associated genes functioned not only in flagellar or type IV pilus biosynthesis but also in processes as diverse as transport, secretion, and metabolism. Thirty-three swarming-deficient and two hyperswarming mutants had transposon insertions in transcriptional regulator genes, including genes encoding two-component sensors and response regulators; 27 of these insertions were newly identified. Of the 25 regulatory mutants whose swarming motility was highly impaired (79 to 97%), only 1 (a PA1458 mutant) had a major defect in swimming, suggesting that this regulator might influence flagellar synthesis or function. Twitching motility, which requires type IV pili, was strongly affected in only two regulatory mutants (pilH and PA2571 mutants) and was moderately affected in three other mutants (algR, ntrB, and nosR mutants). Microarray analyses were performed to compare the gene expression profile of a swarming-deficient PA3587 mutant to that of the wild-type PA14 strain under swarming conditions. PA3587 showed 63% homology to metR, which encodes a regulator of methionine biosynthesis in Escherichia coli. The observed dysregulation in the metR mutant of nine different genes required for swarming motility provided a possible explanation for the swarming-deficient phenotype of this mutant.
Collapse
|
210
|
Mikkelsen H, Ball G, Giraud C, Filloux A. Expression of Pseudomonas aeruginosa CupD fimbrial genes is antagonistically controlled by RcsB and the EAL-containing PvrR response regulators. PLoS One 2009; 4:e6018. [PMID: 19547710 PMCID: PMC2696094 DOI: 10.1371/journal.pone.0006018] [Citation(s) in RCA: 68] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2009] [Accepted: 05/11/2009] [Indexed: 12/16/2022] Open
Abstract
Pseudomonas aeruginosa is a gram-negative pathogenic bacterium with a high adaptive potential that allows proliferation in a broad range of hosts or niches. It is also the causative agent of both acute and chronic biofilm-related infections in humans. Three cup gene clusters (cupA-C), involved in the assembly of cell surface fimbriae, have been shown to be involved in biofilm formation by the P. aeruginosa strains PAO1 or PAK. In PA14 isolates, a fourth cluster, named cupD, was identified within a pathogenicity island, PAPI-I, and may contribute to the higher virulence of this strain. Expression of the cupA genes is controlled by the HNS-like protein MvaT, whereas the cupB and cupC genes are under the control of the RocS1A1R two-component system. In this study, we show that cupD gene expression is positively controlled by the response regulator RcsB. As a consequence, CupD fimbriae are assembled on the cell surface, which results in a number of phenotypes such as a small colony morphotype, increased biofilm formation and decreased motility. These behaviors are compatible with the sessile bacterial lifestyle. The balance between planktonic and sessile lifestyles is known to be linked to the intracellular levels of c-di-GMP with high levels favoring biofilm formation. We showed that the EAL domain-containing PvrR response regulator counteracts the activity of RcsB on cupD gene expression. The action of PvrR is likely to involve c-di-GMP degradation through phosphodiesterase activity, confirming the key role of this second messenger in the balance between bacterial lifestyles. The regulatory network between RcsB and PvrR remains to be elucidated, but it stands as a potential model system to study how the equilibrium between the two lifestyles could be influenced by therapeutic agents that favor the planktonic lifestyle. This would render the pathogen accessible for the immune system or conventional antibiotic treatment.
Collapse
Affiliation(s)
- Helga Mikkelsen
- Imperial College London, Division of Cell and Molecular Biology, Centre for Molecular Microbiology and Infection, South Kensington Campus, London, United Kingdom
| | - Geneviève Ball
- Laboratoire d'Ingénierie des Systèmes Macromoléculaires, UPR9027, CNRS-IBSM, Marseille, France
| | - Caroline Giraud
- Laboratoire d'Ingénierie des Systèmes Macromoléculaires, UPR9027, CNRS-IBSM, Marseille, France
| | - Alain Filloux
- Imperial College London, Division of Cell and Molecular Biology, Centre for Molecular Microbiology and Infection, South Kensington Campus, London, United Kingdom
- Laboratoire d'Ingénierie des Systèmes Macromoléculaires, UPR9027, CNRS-IBSM, Marseille, France
- * E-mail:
| |
Collapse
|
211
|
Quantification of water and biomass in small colony variant PAO1 biofilms by confocal Raman microspectroscopy. Appl Microbiol Biotechnol 2009; 83:1171-82. [DOI: 10.1007/s00253-009-2072-y] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2009] [Revised: 05/26/2009] [Accepted: 06/01/2009] [Indexed: 10/20/2022]
|
212
|
Tetracycline and Chloramphenicol Efficiency Against Selected Biofilm Forming Bacteria. Curr Microbiol 2009; 59:212-20. [DOI: 10.1007/s00284-009-9424-9] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2009] [Revised: 04/23/2009] [Accepted: 04/23/2009] [Indexed: 10/20/2022]
|
213
|
Pamp SJ, Sternberg C, Tolker-Nielsen T. Insight into the microbial multicellular lifestyle via flow-cell technology and confocal microscopy. Cytometry A 2009; 75:90-103. [PMID: 19051241 DOI: 10.1002/cyto.a.20685] [Citation(s) in RCA: 83] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Biofilms are agglomerates of microorganisms surrounded by a self-produced extracellular matrix. During the last 10 years, there has been an increasing recognition of biofilms as a highly significant topic in microbiology with relevance for a variety of areas in our society including the environment, industry, and human health. Accordingly a number of biofilm model systems, molecular tools, microscopic techniques, and image analysis programs have been employed for the study of biofilms under controlled and reproducible conditions. Studies using confocal laser scanning microscopy (CLSM) of biofilms formed in flow-chamber experimental systems by genetically color-coded bacteria have provided detailed knowledge about biofilm developmental processes, cell differentiations, spatial organization, and function of laboratory-grown biofilms, in some cases down to the single cell level. In addition, the molecular mechanisms underlying the increased tolerance that biofilm cells often display towards antibiotic treatment are beginning to be unravelled.
Collapse
Affiliation(s)
- Sünje Johanna Pamp
- Department of Systems Biology, Technical University of Denmark, Lyngby, Denmark.
| | | | | |
Collapse
|
214
|
Veesenmeyer JL, Hauser AR, Lisboa T, Rello J. Pseudomonas aeruginosa virulence and therapy: evolving translational strategies. Crit Care Med 2009; 37:1777-86. [PMID: 19325463 PMCID: PMC2749241 DOI: 10.1097/ccm.0b013e31819ff137] [Citation(s) in RCA: 131] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
OBJECTIVE Although most reviews of Pseudomonas aeruginosa therapeutics focus on antibiotics currently in use or in the pipeline, we review evolving translational strategies aimed at using virulence factor antagonists as adjunctive therapies. DATA SOURCE Current literature regarding P. aeruginosa virulence determinants and approaches that target them, with an emphasis on type III secretion, quorum-sensing, biofilms, and flagella. DATA EXTRACTION AND SYNTHESIS P. aeruginosa remains one of the most important pathogens in nosocomial infections, with high associated morbidity and mortality. Its predilection to develop resistance to antibiotics and expression of multiple virulence factors contributes to the frequent ineffectiveness of current therapies. Among the many P. aeruginosa virulence determinants that impact infections, type III secretion, quorum sensing, biofilm formation, and flagella have been the focus on much recent investigation. Here we review how increased understanding of these important bacterial structures and processes has enabled the development of novel approaches to inhibit each. These promising translational strategies may lead to the development of adjunctive therapies capable of improving outcomes. CONCLUSIONS Adjuvant therapies directed against virulence factors have the potential to improve outcomes in P. aeruginosa infections.
Collapse
Affiliation(s)
| | - Alan R. Hauser
- Department of Microbiology/Immunology, Northwestern University, Chicago, Illinois 60611
- Department of Medicine, Northwestern University, Chicago, Illinois 60611
| | - Thiago Lisboa
- Critical Care Department and CIBER Enfermedades Respiratorias (CIBERES), Joan XXIII University Hospital, University Rovira i Virgili & Pere Virgili Health Institut, Tarragona, Spain
| | - Jordi Rello
- Critical Care Department and CIBER Enfermedades Respiratorias (CIBERES), Joan XXIII University Hospital, University Rovira i Virgili & Pere Virgili Health Institut, Tarragona, Spain
| |
Collapse
|
215
|
Pseudomonas aeruginosa rugose small-colony variants have adaptations that likely promote persistence in the cystic fibrosis lung. J Bacteriol 2009; 191:3492-503. [PMID: 19329647 DOI: 10.1128/jb.00119-09] [Citation(s) in RCA: 281] [Impact Index Per Article: 17.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023] Open
Abstract
Pseudomonas aeruginosa is recognized for its ability to colonize diverse habitats, ranging from soil to immunocompromised people. The formation of surface-associated communities called biofilms is one factor thought to enhance colonization and persistence in these diverse environments. Another factor is the ability of P. aeruginosa to diversify genetically, generating phenotypically distinct subpopulations. One manifestation of diversification is the appearance of colony morphology variants on solid medium. Both laboratory biofilm growth and chronic cystic fibrosis (CF) airway infections produce rugose small-colony variants (RSCVs) characterized by wrinkled, small colonies and an elevated capacity to form biofilms. Previous reports vary on the characteristics attributable to RSCVs. Here we report a detailed comparison of clonally related wild-type and RSCV strains isolated from both CF sputum and laboratory biofilm cultures. The clinical RSCV had many characteristics in common with biofilm RSCVs. Transcriptional profiling and Biolog phenotypic analysis revealed that RSCVs display increased expression of the pel and psl polysaccharide gene clusters, decreased expression of motility functions, and a defect in growth on some amino acid and tricarboxylic acid cycle intermediates as sole carbon sources. RSCVs also elicited a reduced chemokine response from polarized airway epithelium cells compared to wild-type strains. A common feature of all RSCVs analyzed in this study is increased levels of the intracellular signaling molecule cyclic di-GMP (c-di-GMP). To assess the global transcriptional effects of elevated c-di-GMP levels, we engineered an RSCV strain that had elevated c-di-GMP levels but did not autoaggregate. Our results showed that about 50 genes are differentially expressed in response to elevated intracellular c-di-GMP levels. Among these genes are the pel and psl genes, which are upregulated, and flagellum and pilus genes, which are downregulated. RSCV traits such as increased exopolysaccharide production leading to antibiotic tolerance, altered metabolism, and reduced immunogenicity may contribute to increased persistence in biofilms and in the airways of CF lungs.
Collapse
|
216
|
Tremblay J, Déziel E. Improving the reproducibility of Pseudomonas aeruginosa swarming motility assays. J Basic Microbiol 2009; 48:509-15. [PMID: 18785657 DOI: 10.1002/jobm.200800030] [Citation(s) in RCA: 95] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Swarming motility is a rapid and coordinated migration of a bacterial population across a semi-solid surface. This multicellular phenomenon is getting increasing attention as it is suspected to be related to biofilm development of Pseudomonas aeruginosa. Published swarm plate preparation protocols differ greatly from one study to another and no reproducible and standardized protocols have been proposed to accurately study this phenomenon. We report here a rapid and highly reproducible swarm plate protocol for P. aeruginosa and show how different key parameters affect this type of motility (i.e. agar %, drying time under laminar flow, incubation temperature and pH). Results reported here will help to standardize swarming motility assays and develop effective swarm plate protocols for other bacterial species.
Collapse
|
217
|
Lai S, Tremblay J, Déziel E. Swarming motility: a multicellular behaviour conferring antimicrobial resistance. Environ Microbiol 2009; 11:126-36. [DOI: 10.1111/j.1462-2920.2008.01747.x] [Citation(s) in RCA: 157] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
218
|
|
219
|
Mulyukin AL, Kozlova AN, El’-Registan GI. Properties of the phenotypic variants of Pseudomonas aurantiaca and P. fluorescens. Microbiology (Reading) 2008. [DOI: 10.1134/s0026261708060052] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
|
220
|
Obuekwe C, Al-Jadi Z, Al-Saleh E. Comparative hydrocarbon utilization by hydrophobic and hydrophilic variants ofPseudomonas aeruginosa. J Appl Microbiol 2008; 105:1876-87. [DOI: 10.1111/j.1365-2672.2008.03887.x] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
221
|
Rossignol G, Merieau A, Guerillon J, Veron W, Lesouhaitier O, Feuilloley MGJ, Orange N. Involvement of a phospholipase C in the hemolytic activity of a clinical strain of Pseudomonas fluorescens. BMC Microbiol 2008; 8:189. [PMID: 18973676 PMCID: PMC2613904 DOI: 10.1186/1471-2180-8-189] [Citation(s) in RCA: 75] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2008] [Accepted: 10/30/2008] [Indexed: 11/21/2022] Open
Abstract
Background Pseudomonas fluorescens is a ubiquitous Gram-negative bacterium frequently encountered in hospitals as a contaminant of injectable material and surfaces. This psychrotrophic bacterium, commonly described as unable to grow at temperatures above 32°C, is now considered non pathogenic. We studied a recently identified clinical strain of P. fluorescens biovar I, MFN1032, which is considered to cause human lung infection and can grow at 37°C in laboratory conditions. Results We found that MFN1032 secreted extracellular factors with a lytic potential at least as high as that of MF37, a psychrotrophic strain of P. fluorescens or the mesophilic opportunistic pathogen, Pseudomonas aeruginosa PAO1. We demonstrated the direct, and indirect – through increases in biosurfactant release – involvement of a phospholipase C in the hemolytic activity of this bacterium. Sequence analysis assigned this phospholipase C to a new group of phospholipases C different from those produced by P. aeruginosa. We show that changes in PlcC production have pleiotropic effects and that plcC overexpression and plcC extinction increase MFN1032 toxicity and colonization, respectively. Conclusion This study provides the first demonstration that a PLC is involved in the secreted hemolytic activity of a clinical strain of Pseudomonas fluorescens. Moreover, this phospholipase C seems to belong to a complex biological network associated with the biosurfactant production.
Collapse
Affiliation(s)
- Gaelle Rossignol
- Laboratory of Cold Microbiology, UPRES EA 4312, University of Rouen, 55 rue Saint Germain, 27000 Evreux, France
| | | | | | | | | | | | | |
Collapse
|
222
|
|
223
|
Endogenous oxidative stress produces diversity and adaptability in biofilm communities. Proc Natl Acad Sci U S A 2008; 105:12503-8. [PMID: 18719125 DOI: 10.1073/pnas.0801499105] [Citation(s) in RCA: 240] [Impact Index Per Article: 14.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Abstract
Many bacterial species are capable of biofilm growth, in which cells live and replicate within multicellular community groups. Recent work shows that biofilm growth by a wide variety of bacterial species can generate genetic diversity in microbial populations. This finding is significant because the presence of diverse subpopulations can extend the range of conditions in which communities can thrive. Here, we used biofilms formed by the pathogen Pseudomonas aeruginosa to investigate how this population diversity is produced. We found that some cells within biofilms incur double-stranded DNA breaks caused by endogenous oxidative stress. Genetic variants then result when breaks are repaired by a mutagenic mechanism involving recombinatorial DNA repair genes. We hypothesized that the mutations produced could promote the adaptation of biofilm communities to changing conditions in addition to generating diversity. To test this idea, we exposed biofilms to an antibiotic and found that the oxidative stress-break repair mechanism increased the emergence of antibiotic-resistant bacteria. The diversity and adaptability produced by this mechanism could help biofilm communities survive in harsh environments.
Collapse
|
224
|
Phase and antigenic variation mediated by genome modifications. Antonie van Leeuwenhoek 2008; 94:493-515. [DOI: 10.1007/s10482-008-9267-6] [Citation(s) in RCA: 63] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/06/2008] [Accepted: 07/09/2008] [Indexed: 11/26/2022]
|
225
|
Formation of Streptococcus pneumoniae non-phase-variable colony variants is due to increased mutation frequency present under biofilm growth conditions. J Bacteriol 2008; 190:6330-9. [PMID: 18658260 DOI: 10.1128/jb.00707-08] [Citation(s) in RCA: 61] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
In this report, we show that biofilm formation by Streptococcus pneumoniae serotype 19 gives rise to variants (the small mucoid variant [SMV] and the acapsular small-colony variant [SCV]) differing in capsule production, attachment, and biofilm formation compared to wild-type strains. All biofilm-derived variants harbored SNPs in cps19F. SCVs reverted to SMV, but no reversion to the wild-type phenotype was noted, indicating that these variants were distinct from opaque- and transparent-phase variants. The SCV-SMV reversion frequency was dependent on growth conditions and treatment with tetracycline. Increased reversion rates were coincident with antibiotic treatment, implicating oxidative stress as a trigger for the SCV-SMV switch. We, therefore, evaluated the role played by hydrogen peroxide, the oxidizing chemical, in the reversion and emergence of variants. Biofilms of S. pneumoniae TIGR4-DeltaspxB, defective in hydrogen peroxide production, showed a significant reduction in variant formation. Similarly, supplementing the medium with catalase or sodium thiosulfate yielded a significant reduction in variants formed by wild-type biofilms. Resistance to rifampin, an indicator for mutation frequency, was found to increase approximately 55-fold in biofilms compared to planktonic cells for each of the three wild-type strains examined. In contrast, TIGR4-DeltaspxB grown as a biofilm showed no increase in rifampin resistance compared to the same cells grown planktonically. Furthermore, addition of 2.5 and 10 mM hydrogen peroxide to planktonic cells resulted in a 12- and 160-fold increase in mutation frequency, respectively, and gave rise to variants similar in appearance, biofilm-related phenotypes, and distribution of biofilm-derived variants. The results suggest that hydrogen peroxide and environmental conditions specific to biofilms are responsible for the development of non-phase-variable colony variants.
Collapse
|
226
|
Abstract
Biofilms contain bacterial cells that are in a wide range of physiological states. Within a biofilm population, cells with diverse genotypes and phenotypes that express distinct metabolic pathways, stress responses and other specific biological activities are juxtaposed. The mechanisms that contribute to this genetic and physiological heterogeneity include microscale chemical gradients, adaptation to local environmental conditions, stochastic gene expression and the genotypic variation that occurs through mutation and selection. Here, we discuss the processes that generate chemical gradients in biofilms, the genetic and physiological responses of the bacteria as they adapt to these gradients and the techniques that can be used to visualize and measure the microscale physiological heterogeneities of bacteria in biofilms.
Collapse
|
227
|
Clinical characteristics associated with isolation of small-colony variants of Staphylococcus aureus and Pseudomonas aeruginosa from respiratory secretions of patients with cystic fibrosis. J Clin Microbiol 2008; 46:1832-4. [PMID: 18322058 DOI: 10.1128/jcm.00361-08] [Citation(s) in RCA: 57] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
During a 3-month period, small-colony variant phenotypes of both Staphylococcus aureus and Pseudomonas aeruginosa were isolated from respiratory secretions of 8.2% and 9.2%, respectively, of 98 patients with cystic fibrosis, particularly those with advanced pulmonary disease and prolonged antibiotic exposure.
Collapse
|
228
|
Brooke JS, Vo A, Watts P, Davis NA. Mutation of a lipopolysaccharide synthesis gene results in increased biofilm ofStenotrophomonas maltophilia on plastic and glass surfaces. ANN MICROBIOL 2008. [DOI: 10.1007/bf03179442] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
|
229
|
Barkovits K, Harms A, Benkartek C, Smart JL, Frankenberg-Dinkel N. Expression of the phytochrome operon in Pseudomonas aeruginosa is dependent on the alternative sigma factor RpoS. FEMS Microbiol Lett 2008; 280:160-8. [DOI: 10.1111/j.1574-6968.2007.01058.x] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
|
230
|
Ikeno T, Fukuda K, Ogawa M, Honda M, Tanabe T, Taniguchi H. Small and rough colony pseudomonas aeruginosa with elevated biofilm formation ability isolated in hospitalized patients. Microbiol Immunol 2008; 51:929-38. [PMID: 17951982 DOI: 10.1111/j.1348-0421.2007.tb03989.x] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Pseudomonas aeruginosa is a key pathogen of nosocomial infection, and causes persistent infection in patients with specific diseases like cystic fibrosis (CF). It has been reported that patients affected with CF discharge, at a high frequency, small colony variants with high adherence ability. In routine laboratory testing, we found atypical small and rough type (SR) colony variants of P. aeruginosa. The SRs and the counterpart wild type (WT) colonies showed similar biochemical features, antimicrobial susceptibilities, pulsed-field gel electrophoresis (PFGE) profiles, serotypes, and twitching motilities. The biofilm formation abilities of all the SR colonies, however, were extremely elevated as compared to those of the counterpart WT colonies. The frequency of SR-positive patients was 3.1% of the P. aeruginosa-positive inpatients (5/160), and that of the SR isolates was 0.6% of the P. aeruginosa strains (6/970) isolated in our laboratory over a period of 6 months. The SR-positive patients did not have any common disease or particular antibiotics treatment. The PFGE profiles showed that the SRs and the counterpart WTs were identical to each other, and also that three of the five SR/WT pairs were clonally similar. The three pairs were recovered from the feces, urine, and endotracheal secretion, respectively, of three patients hospitalized in two distinct wards. The results suggest that P. aeruginosa spontaneously produced highly adherent SR colonies in hospitalized patients, and these colonies may tend to spread in a hospital.
Collapse
Affiliation(s)
- Takako Ikeno
- Department of Microbiology, School of Medicine, University Hospital, University of Occupational and Environmental Health, Japan Kitakyushu, Fukuoka 807-8555, Japan
| | | | | | | | | | | |
Collapse
|
231
|
Ahn SJ, Yang CH, Cooksey DA. Pseudomonas putida 06909 genes expressed during colonization on mycelial surfaces and phenotypic characterization of mutants. J Appl Microbiol 2008; 103:120-32. [PMID: 17584458 DOI: 10.1111/j.1365-2672.2006.03232.x] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
AIMS The main focus of this study was to gain an overall view of Pseudomonas putida 06909 genes involved in the Pseudomonas-Phytophthora interaction as a biological control mechanism, and to understand the roles of these genes. METHODS AND RESULTS Sixteen Ps. putida genes with increased expression on Phytophthora mycelial surfaces were identified using in vivo expression technology (IVET) screening. Sequence analysis of these Phytophthora mycelium-induced (pmi) genes revealed that many of them display similarity to genes known or predicted to be involved in carbohydrate catabolism, energy metabolism, amino acid/nucleotide metabolism, and membrane transport processes. Disruption of three pmi genes encoding succinate semialdehyde dehydrogenase, a dicarboxylic acid transporter, and glyceraldehyde-3-phosphate dehydrogenase showed significant phenotypic differences involved in the colonization processes, including motility, biofilm formation on abiotic surfaces, colony morphology, and competitive colonization of fungal mycelia. All three of these pmi genes were induced by glycogen and other substances, such as organic acids and amino acids utilized by Ps. putida. CONCLUSIONS The IVET screening and mutant characterization can be used to identify bacterial genes that are induced on the mycelial surface and provide insight into the possible mechanisms of mycelial colonization by this bacterium. SIGNIFICANCE AND IMPACT OF THE STUDY The IVET screening through a bacterial genome library might be a huge task. However, because the genes involved in direct interaction with Phytophthora and in bacterial adaptation can be identified, the IVET system will be a valuable tool in studying biocontrol bacteria at the molecular and ecological levels.
Collapse
Affiliation(s)
- S-J Ahn
- Department of Plant Pathology, University of California, Riverside 92521-0122, CA, USA
| | | | | |
Collapse
|
232
|
Pseudomonas aeruginosa AlgR regulates type IV pilus biosynthesis by activating transcription of the fimU-pilVWXY1Y2E operon. J Bacteriol 2008; 190:2023-30. [PMID: 18178737 DOI: 10.1128/jb.01623-07] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The response regulator AlgR is required for Pseudomonas aeruginosa type IV pilus-dependent twitching motility, a flagellum-independent mode of solid surface translocation. Prior work showed that AlgR is phosphorylated at aspartate 54, and cells expressing an AlgR variant that cannot undergo phosphorylation (AlgRD54N) lack twitching motility. However, the mechanism by which AlgR controls twitching motility is not completely understood. We hypothesized that AlgR functioned by activating genes within the prepilin fimU-pilVWXY1Y2E cluster that are necessary for type IV pilin biogenesis. Reverse transcriptase PCR analysis showed that the fimU-pilVWXY1Y2E genes are cotranscribed in an operon, which is under the control of AlgR. This supports prior transcriptional profiling studies of wild-type strains and algR mutants. Moreover, expression of the fimU-pilVWXY1Y2E operon was reduced in strains expressing AlgRD54N. DNase footprinting and electrophoretic mobility shift assays demonstrate that AlgR but not AlgRD54N bound with high affinity to two sites upstream of the fimU-pilVWXY1Y2E operon. Altogether, our findings indicate that AlgR is essential for proper pilin localization and that phosphorylation of AlgR results in direct activation of the fimU-pilVWXY1Y2E operon, which is required for the assembly and export of a functional type IV pilus.
Collapse
|
233
|
Tremblay J, Richardson AP, Lépine F, Déziel E. Self-produced extracellular stimuli modulate the Pseudomonas aeruginosa swarming motility behaviour. Environ Microbiol 2008; 9:2622-30. [PMID: 17803784 DOI: 10.1111/j.1462-2920.2007.01396.x] [Citation(s) in RCA: 141] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Pseudomonas aeruginosa presents three types of motilities: swimming, twitching and swarming. The latter is characterized by rapid and coordinated group movement over a semisolid surface resulting from morphological differentiation and intercellular interactions. A striking feature of P. aeruginosa swarming motility is the formation of migrating tendrils producing colonies with complex fractal-like patterns. Previous studies have shown that normal swarming motility is intimately related to the production of extracellular surface-active molecules: rhamnolipids (RLs), composed of monorhamnolipids (mono-RLs) and dirhamnolipids (di-RLs), and 3-(3-hydroxyalkanoyloxy) alkanoic acids (HAAs). Here, we report that (i) di-RLs attract active swarming cells while HAAs behave as strong repellents, (ii) di-RLs promote and HAAs inhibit tendril formation and migration, (iii) di-RLs and HAAs display different diffusion kinetics on a surface as di-RLs spread faster than HAAs in agar, (iv) di-RLs and HAAs have no effect on swimming cells, suggesting that swarming cells are different from swimming cells not only in morphology but also at the regulatory level and (v) mono-RLs act as wetting agents. We propose a model explaining how HAAs and di-RLs together modulate the behaviour of swarming migrating cells by acting as self-produced negative and positive chemotactic-like stimuli.
Collapse
Affiliation(s)
- Julien Tremblay
- INRS-Institut Armand-Frappier, Laval (Québec), H7V 1B7, Canada
| | | | | | | |
Collapse
|
234
|
Meissner A, Wild V, Simm R, Rohde M, Erck C, Bredenbruch F, Morr M, Römling U, Häussler S. Pseudomonas aeruginosa cupA-encoded fimbriae expression is regulated by a GGDEF and EAL domain-dependent modulation of the intracellular level of cyclic diguanylate. Environ Microbiol 2008; 9:2475-85. [PMID: 17803773 DOI: 10.1111/j.1462-2920.2007.01366.x] [Citation(s) in RCA: 85] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Cyclic-diguanylate (c-di-GMP) is a widespread bacterial signal molecule that plays a major role in the modulation of cellular surface components, such as exopolysaccharides and fimbriae, and in the establishment of a sessile life style. Here, we report that intracellular c-di-GMP levels influence cupA-encoded fimbriae expression in Pseudomonas aeruginosa. In an autoaggregative P. aeruginosa small colony variant (SCV) CupA fimbriae and the intracellular c-di-GMP concentration were found to be enhanced as compared with the clonal wild-type. The SCV morphology and the expression of CupA fimbriae were dependent on a functional PA1120 and morA gene both encoding a GGDEF domain. Overexpression of the GGDEF domain protein PA1120 complemented the PA1120 and the morA mutant with respect to CupA fimbriae expression. In agreement with these findings, overexpression of the EAL domain containing phenotypic variance regulator (PvrR) in the SCV resulted in a decreased intracellular level of c-di-GMP, a reduced cupA fimbriae expression and a switch to wild-type colony morphology.
Collapse
Affiliation(s)
- Andree Meissner
- Division of Cell Biology and Immunology, Helmholtz Centre for Infection Research, Inhoffenstrasse 7, 38124 Braunschweig, Germany
| | | | | | | | | | | | | | | | | |
Collapse
|
235
|
In vivo growth of Pseudomonas aeruginosa strains PAO1 and PA14 and the hypervirulent strain LESB58 in a rat model of chronic lung infection. J Bacteriol 2007; 190:2804-13. [PMID: 18083816 DOI: 10.1128/jb.01572-07] [Citation(s) in RCA: 76] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
Pseudomonas aeruginosa chronic lung infections are the major cause of morbidity and mortality in cystic fibrosis (CF) patients. The P. aeruginosa strains PAO1 and PA14 were compared with the Liverpool epidemic strain LESB58 to assess in vivo growth, infection kinetics, and bacterial persistence and localization within tissues in a rat model of chronic lung infection. The three P. aeruginosa strains demonstrated similar growth curves in vivo but differences in tissue distribution. The LESB58 strain persisted in the bronchial lumen, while the PAO1 and PA14 strains were found localized in the alveolar regions and grew as macrocolonies after day 7 postinfection. Bacterial strains were compared for swimming and twitching motility and for the production of biofilm. The P. aeruginosa LESB58 strain produced more biofilm than PAO1 and PA14. Competitive index (CI) analysis of PAO1, PA14, and LESB58 in vivo indicated CI values of 0.002, 0.0002, and 0.14 between PAO1-PA14, PAO1-LESB58, and LESB58-PA14, respectively. CI analysis comparing the in vivo growth of the PAO1 DeltaPA5441 mutant and four PA14 surface attachment-defective (sad) mutants gave CI values 10 to 1,000 times lower in competitions with their respective wild-type strains PAO1 and PA14. P. aeruginosa strains studied in the rat model of chronic lung infection demonstrated similar in vivo growth but differences in virulence as shown with a competitive in vivo assay. These differences were further confirmed with biofilm and motility in vitro assays, where strain LESB58 produced more biofilm but had less capacity for motility than PAO1 and PA14.
Collapse
|
236
|
Kirov SM, Webb JS, O'May CY, Reid DW, Woo JKK, Rice SA, Kjelleberg S. Biofilm differentiation and dispersal in mucoid Pseudomonas aeruginosa isolates from patients with cystic fibrosis. MICROBIOLOGY-SGM 2007; 153:3264-3274. [PMID: 17906126 DOI: 10.1099/mic.0.2007/009092-0] [Citation(s) in RCA: 75] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Intractable biofilm infections with Pseudomonas aeruginosa are the major cause of premature death associated with cystic fibrosis (CF). Few studies have explored the biofilm developmental cycle of P. aeruginosa isolates from chronically infected individuals. This study shows that such clinical isolates exhibit biofilm differentiation and dispersal processes similar to those of the better-studied laboratory P. aeruginosa strain PAO1 in the glass flow-cell (continuous-culture) biofilm model, albeit they are initially less adherent and their microcolonies are slower to develop and show heterogeneous, strain-specific variations in architecture. Confocal scanning laser microscopy combined with LIVE/DEAD viability staining revealed that in all CF biofilms bacterial cell death occurred in maturing biofilms, extending from the substratum to the central regions of mature microcolonies to varying degrees, depending on the strain. Bacteriophage activity was detected in the maturing biofilms of all CF strains examined and the amount of phage produced paralleled the degree of cell death seen in the biofilm. Some CF strains exhibited 'seeding dispersal' associated with the above phenomena, producing 'hollowing' as motile cells evacuated from the microcolony interiors as has been described for strain PAO1. Moreover, morphotypic cell variants were seen in the biofilm effluents of all CF strains. For those CF strains where marked cell death and seeding dispersal occurred in the microcolonies, variants were more diverse (up to five morphotypes) compared to those of strain PAO1 (two morphotypes). Given that variants of strain PAO1 have enhanced colonization traits, it seems likely that the similar biofilm dispersal events described here for CF strains contribute to the variability seen in clinical isolates and the overall persistence of the P. aeruginosa in the CF airway.
Collapse
Affiliation(s)
- Sylvia M Kirov
- School of Medicine, University of Tasmania Clinical School, 43 Collins St, Hobart, Tasmania 7001, Australia
| | - Jeremy S Webb
- School of Biotechnology and Biomolecular Sciences and Centre for Marine Biofouling and Bio-innovation, University of New South Wales, Sydney, NSW 2052, Australia
| | - Che Y O'May
- School of Medicine, University of Tasmania Clinical School, 43 Collins St, Hobart, Tasmania 7001, Australia
| | - David W Reid
- School of Medicine, University of Tasmania Clinical School, 43 Collins St, Hobart, Tasmania 7001, Australia
| | - Jerry K K Woo
- School of Biotechnology and Biomolecular Sciences and Centre for Marine Biofouling and Bio-innovation, University of New South Wales, Sydney, NSW 2052, Australia
| | - Scott A Rice
- School of Biotechnology and Biomolecular Sciences and Centre for Marine Biofouling and Bio-innovation, University of New South Wales, Sydney, NSW 2052, Australia
| | - Staffan Kjelleberg
- School of Biotechnology and Biomolecular Sciences and Centre for Marine Biofouling and Bio-innovation, University of New South Wales, Sydney, NSW 2052, Australia
| |
Collapse
|
237
|
Mooij MJ, Drenkard E, Llamas MA, Vandenbroucke-Grauls CMJE, Savelkoul PHM, Ausubel FM, Bitter W. Characterization of the integrated filamentous phage Pf5 and its involvement in small-colony formation. MICROBIOLOGY-SGM 2007; 153:1790-1798. [PMID: 17526836 PMCID: PMC3820363 DOI: 10.1099/mic.0.2006/003533-0] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/02/2022]
Abstract
Bacteriophages play an important role in bacterial virulence and phenotypic variation. It has been shown that filamentous bacteriophage Pf4 of Pseudomonas aeruginosa strain PAO1 mediates the formation of small-colony variants (SCVs) in biofilms. This morphology type is associated with parameters of poor lung function in cystic fibrosis patients, and SCVs are often more resistant to antibiotics than wild-type cells. P. aeruginosa strain PA14 also contains a Pf1-like filamentous prophage, which is designated Pf5, and is highly homologous to Pf4. Since P. aeruginosa PA14 produces SCVs very efficiently in biofilms grown in static cultures, the role of Pf5 in SCV formation under these conditions was investigated. The presence of the Pf5 replicative form in total DNA from SCVs and wild-type cells was detected, but it was not possible to detect the Pf5 major coat protein by immunoblot analysis in PA14 SCV cultures. This suggests that the Pf5 filamentous phage is not present at high densities in the PA14 SCVs. Consistent with these results, we were unable to detect coaB expression in SCV cultures and SCV colonies. The SCV variants formed under static conditions were not linked to Pf5 phage activity, since Pf5 insertion mutants with decreased or no production of the Pf5 RF produced SCVs as efficiently as the wild-type strain. Finally, analysis of 48 clinical P. aeruginosa isolates showed no association between the presence of Pf1-like filamentous phages and the ability to form SCVs under static conditions; this suggests that filamentous phages are generally not involved in the emergence of P. aeruginosa SCVs.
Collapse
Affiliation(s)
- Marlies J. Mooij
- Department of Medical Microbiology and Infection Control, VU medical centre, van der Boechorststraat 7, 1081 BT Amsterdam, The Netherlands
| | - Eliana Drenkard
- Department of Genetics, Harvard Medical School and Department of Molecular Biology, Massachusetts General Hospital, Boston, MA 02114, USA
| | - María A. Llamas
- Department of Medical Microbiology and Infection Control, VU medical centre, van der Boechorststraat 7, 1081 BT Amsterdam, The Netherlands
| | | | - Paul H. M. Savelkoul
- Department of Medical Microbiology and Infection Control, VU medical centre, van der Boechorststraat 7, 1081 BT Amsterdam, The Netherlands
| | - Frederick M. Ausubel
- Department of Genetics, Harvard Medical School and Department of Molecular Biology, Massachusetts General Hospital, Boston, MA 02114, USA
| | - Wilbert Bitter
- Department of Medical Microbiology and Infection Control, VU medical centre, van der Boechorststraat 7, 1081 BT Amsterdam, The Netherlands
| |
Collapse
|
238
|
Klebensberger J, Lautenschlager K, Bressler D, Wingender J, Philipp B. Detergent-induced cell aggregation in subpopulations of Pseudomonas aeruginosa as a preadaptive survival strategy. Environ Microbiol 2007; 9:2247-59. [PMID: 17686022 DOI: 10.1111/j.1462-2920.2007.01339.x] [Citation(s) in RCA: 53] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
During growth of Pseudomonas aeruginosa strain PAO1 with the toxic detergent SDS, a part of the population actively formed macroscopic cell aggregates while the other part grew as freely suspended cells. The physiological function of aggregation for growth with SDS was investigated. Three mutants growing with SDS without aggregation were isolated: the spontaneous mutant strain N and two mutants with transposon insertions in the psl operon for exopolysaccharide synthesis. SDS-induced aggregation in strain N but not in a pslJ mutant was restored by complementation with two genes encoding diguanylate cyclases responsible for synthesis of cyclic-di-guanosine monophosphate (c-di-GMP). By expressing a c-di-GMP-specific phosphodiesterase SDS-induced aggregation of strain PAO1 was reduced. Upon exposure to SDS in the presence of the uncoupler carbonyl cyanide chlorophenylhydrazone, the aggregating strains had ca. 500-fold higher survival rates than the non-aggregating strains. Co-incubation experiments revealed that strain N could integrate into aggregates of strain PAO1 and thereby increase its survival rate more than 1000-fold. These results showed that SDS-induced aggregation involved c-di-GMP signalling with the psl operon as a possible target. Cell aggregation could serve as a pre-adaptive strategy ensuring survival and growth of P. aeruginosa populations in environments with multiple toxic chemicals.
Collapse
Affiliation(s)
- Janosch Klebensberger
- Universität Konstanz, Fachbereich Biologie, Mikrobielle Okologie, Fach M654, 78457 Konstanz, Germany
| | | | | | | | | |
Collapse
|
239
|
Costa R, Gomes NCM, Krögerrecklenfort E, Opelt K, Berg G, Smalla K. Pseudomonas community structure and antagonistic potential in the rhizosphere: insights gained by combining phylogenetic and functional gene-based analyses. Environ Microbiol 2007; 9:2260-73. [PMID: 17686023 DOI: 10.1111/j.1462-2920.2007.01340.x] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
The Pseudomonas community structure and antagonistic potential in the rhizospheres of strawberry and oilseed rape (host plants of the fungal phytopathogen Verticillium dahliae) were assessed. The use of a new PCR-DGGE system, designed to target Pseudomonas-specific gacA gene fragments in environmental DNA, circumvented common biases of 16S rRNA gene-based DGGE analyses and proved to be a reliable tool to unravel the diversity of uncultured Pseudomonas in bulk and rhizosphere soils. Pseudomonas-specific gacA fingerprints of total-community (TC) rhizosphere DNA were surprisingly diverse, plant-specific and differed markedly from those of the corresponding bulk soils. By combining multiple culture-dependent and independent surveys, a group of Pseudomonas isolates antagonistic towards V. dahliae was shown to be genotypically conserved, to carry the phlD biosynthetic locus (involved in the biosynthesis of 2,4-diacetylphloroglucinol - 2,4-DAPG), and to correspond to a dominant and highly frequent Pseudomonas population in the rhizosphere of field-grown strawberries planted at three sites in Germany which have different land use histories. This population belongs to the Pseudomonas fluorescens phylogenetic lineage and showed closest relatedness to P. fluorescens strain F113 (97% gacA gene sequence identity in 492-bp sequences), a biocontrol agent and 2,4-DAPG producer. Partial gacA gene sequences derived from isolates, clones of the strawberry rhizosphere and DGGE bands retrieved in this study represent previously undescribed Pseudomonas gacA gene clusters as revealed by phylogenetic analysis.
Collapse
Affiliation(s)
- Rodrigo Costa
- Federal Biological Research Centre for Agriculture and Forestry (BBA), Messeweg 11/12, D-38104 Braunschweig, Germany
| | | | | | | | | | | |
Collapse
|
240
|
Fonseca AP, Correia P, Sousa JC, Tenreiro R. Association patterns of Pseudomonas aeruginosa clinical isolates as revealed by virulence traits, antibiotic resistance, serotype and genotype. ACTA ACUST UNITED AC 2007; 51:505-16. [PMID: 17877730 DOI: 10.1111/j.1574-695x.2007.00328.x] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
The aims of this study were to assess the association patterns of 96 clinical isolates of Pseudomonas aeruginosa using hierarchical cluster analysis from data obtained from the measurement of the physicochemical cell surface properties, adhesion and initial biofilm formation abilities, to investigate any correspondence with source, serotype, beta-lactam pattern, motility and M13-PCR genogroup or clonal lineage, as well as to select clinical isolates that could act as representatives of the genotypic and phenotypic diversity of this P. aeruginosa population from a Portuguese Central Hospital. The isolates were phenotypically characterized by their ability to adhere and form biofilms on polystyrene surfaces, their affinity to hexadecane and silicone, their swimming and twitching abilities, their antibiotic susceptibility patterns and their serotypes. No particular phenotypic cluster associated with the same source, serotype, beta-lactam pattern, motility and M13-PCR genogroup and clonal lineage was found. Nevertheless, five representative strains of the P. aeruginosa population from this Hospital, selected on the basis of low genetic similarity, were also found to be dispersed among the phenotypic clusters.
Collapse
Affiliation(s)
- António Pedro Fonseca
- Serviço e Laboratório de Microbiologia, Faculdade de Medicina, Universidade do Porto, Alameda Professor Hernâni Monteiro, Porto, Portugal.
| | | | | | | |
Collapse
|
241
|
Abbas A, Adams C, Scully N, Glennon J, O'Gara F. A role for TonB1 in biofilm formation and quorum sensing inPseudomonas aeruginosa. FEMS Microbiol Lett 2007; 274:269-78. [PMID: 17623027 DOI: 10.1111/j.1574-6968.2007.00845.x] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
This study revealed that a Pseudomonas aeruginosa tonB1 mutant was unable to produce a mature biofilm and showed reduced swarming and twitching motilities compared with the parent strain. The tonB1 mutant was also found to produce significantly lower cell-free and cell-associated levels of the quorum sensing (QS) signal molecule 3-oxo-C12-AHL. Altered biofilm and motility phenotypes were restored to wildtype with the addition of exogenous N-acylhomoserine lactones. These functions were independent of the role of TonB1 in iron uptake. This is the first time that a link has been established between TonB1 activity and QS.
Collapse
Affiliation(s)
- Abdelhamid Abbas
- Microbiology Department, National University of Ireland, Cork, Ireland
| | | | | | | | | |
Collapse
|
242
|
Boşgelmez-Tinaz G, Ulusoy S. Characterization of N-butanoyl-L-homoserine lactone (C4-HSL) deficient clinical isolates of Pseudomonas aeruginosa. Microb Pathog 2007; 44:13-9. [PMID: 17689222 DOI: 10.1016/j.micpath.2007.06.005] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2007] [Accepted: 06/13/2007] [Indexed: 10/23/2022]
Abstract
In the opportunistic pathogen Pseudomonas aeruginosa, the production of several virulence factors such as elastase, rhamnolipids and pyocyanin depends on cell-to-cell signaling or quorum sensing (QS) involving N-acylhomoserine lactone (AHL) signal molecules. In vitro studies with laboratory strains and virulence studies in animals with these same strains have demonstrated the contribution of QS to the pathogenesis of P. aeruginosa. However, the importance of P. aeruginosa QS systems in the development of human infections is not clearly known. In order to determine if deficiency within the QS system compromises the ability of P. aeruginosa to cause infections in humans, we collected 50 P. aeruginosa clinical isolates. Phenotypic characterization showed that isolates I-457, I-458, I-459 and I-461 were defective in the production of N-butanoyl-l-homoserine lactone (C4-HSL) signaling molecule and virulence factors elastase, protease, pyocyanin and rhamnolipids. Analysis of the sequences of the lasR, lasI, rhlR and rhlI genes of these four isolates showed that two of the four isolates had mutational defects in both rhlR and rhlI genes while other two isolates were only mutated in the rhlI gene. The combination of rhlR and rhlI mutations or only rhlI mutation probably explains their C4-HSL and virulence factors deficiencies. These observations suggest that QS deficient P. aeruginosa clinical isolates are able to cause infections and that in addition to known virulence factors, factors yet unidentified may contribute to the pathogenesis of P. aeruginosa.
Collapse
|
243
|
Fonseca A, Sousa J. Effect of antibiotic-induced morphological changes on surface properties, motility and adhesion of nosocomial Pseudomonas aeruginosa strains under different physiological states. J Appl Microbiol 2007; 103:1828-37. [DOI: 10.1111/j.1365-2672.2007.03422.x] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
244
|
Schaber JA, Hammond A, Carty NL, Williams SC, Colmer-Hamood JA, Burrowes BH, Dhevan V, Griswold JA, Hamood AN. Diversity of biofilms produced by quorum-sensing-deficient clinical isolates of Pseudomonas aeruginosa. J Med Microbiol 2007; 56:738-748. [PMID: 17510257 DOI: 10.1099/jmm.0.47031-0] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The quorum-sensing (QS) systems control several virulence attributes of Pseudomonas aeruginosa. Five QS-deficient P. aeruginosa clinical isolates (CI) that were obtained from wound (CI-1), tracheal (CI-2, CI-3, CI-4) and urinary tract (CI-5) infections had previously been characterized. In this study, a flow-through continuous-culture system was utilized to examine in detail the biofilms formed by these isolates in comparison with the P. aeruginosa prototrophic strain PAO1. Analysis of the biofilms by confocal laser scanning microscopy and COMSTAT image analysis at 1 and 7 days post-inoculation showed that the isolates produced diverse biofilms. In comparison with PAO1, the CI produced biofilms that scarcely or partially covered the surface at day 1, although CI-1 produced larger microcolonies. At day 7, CI-2 and CI-4 produced mature biofilms denser than that produced by PAO1, while the biofilm formed by CI-1 changed very little from day 1. CI-1 was defective in both swarming and twitching motilities, and immunoblotting analysis confirmed that it produced a reduced level of PilA protein. The twitching-motility defect of CI-1 was not complemented by a plasmid carrying intact pilA. In the 48 h colony biofilm assay, the CI varied in susceptibility to imipenem, gentamicin and piperacillin/tazobactam. These results suggest that: (1) the isolates produced biofilms with different structures and densities from that of PAO1; (2) biofilm formation by the isolates was not influenced by either the isolation site or the QS deficiencies of the isolates; (3) the behaviour of CI-1 in the different biofilm systems may be due to its lack of swarming motility and type IV pilus-related twitching motility.
Collapse
Affiliation(s)
- J Andy Schaber
- Department of Surgery, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA
- Department of Microbiology and Immunology, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA
| | - Adrienne Hammond
- Department of Surgery, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA
- Department of Microbiology and Immunology, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA
| | - Nancy L Carty
- Department of Microbiology and Immunology, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA
| | - Simon C Williams
- Department of Cell Biology and Biochemistry, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA
| | - Jane A Colmer-Hamood
- Department of Microbiology and Immunology, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA
| | - Ben H Burrowes
- Department of Microbiology and Immunology, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA
| | - Vijian Dhevan
- School of Medicine, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA
| | - John A Griswold
- Department of Surgery, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA
- Department of Microbiology and Immunology, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA
| | - Abdul N Hamood
- Department of Surgery, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA
- Department of Microbiology and Immunology, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA
| |
Collapse
|
245
|
Obuekwe CO, Al-Jadi ZK, Al-Saleh ES. Sequential hydrophobic partitioning of cells ofPseudomonas aeruginosagives rise to variants of increasing cell-surface hydrophobicity. FEMS Microbiol Lett 2007; 270:214-9. [PMID: 17391374 DOI: 10.1111/j.1574-6968.2007.00685.x] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
Abstract
The partitioning of bacterial cells in a dual aqueous-solvent phase system leads to separation into 'hydrophilic' and hydrophobic functions. Sequential multistep partitioning, accompanied by successive enrichment, gives rise to several cycles of hydrophobic and hydrophilic cell populations which possess different cell-surface hydrophobicity characteristics. Characterization of the cell-surface hydrophobicity by several methods (salting-out aggregation test, bacterial adherence to hydrocarbon, polystyrene binding and hydrophobic interaction chromatography) was carried out. The cell-surface hydrophobicity varied in the order: hydrophilic fraction < parental strain < first cycle hydrophobic variant < second cycle hydrophobic variant < third cycle hydrophobic variant. Electron microscopy showed that the most hydrophobic variant was densely covered by hydrophobic structures - fimbriae - whereas the parental strain was covered by a mixture of surface structures. The hydrophilic variant was covered by an amorphous exopolymeric substance, which is a polysaccharide, shown by its reaction with Alcian blue.
Collapse
Affiliation(s)
- Christian O Obuekwe
- Microbiology Division, Department of Biological Sciences, Faculty of Science, Kuwait University, Kuwait City, Kuwait.
| | | | | |
Collapse
|
246
|
Caiazza NC, Merritt JH, Brothers KM, O'Toole GA. Inverse regulation of biofilm formation and swarming motility by Pseudomonas aeruginosa PA14. J Bacteriol 2007; 189:3603-12. [PMID: 17337585 PMCID: PMC1855903 DOI: 10.1128/jb.01685-06] [Citation(s) in RCA: 222] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2006] [Accepted: 02/15/2007] [Indexed: 11/20/2022] Open
Abstract
We previously reported that SadB, a protein of unknown function, is required for an early step in biofilm formation by the opportunistic pathogen Pseudomonas aeruginosa. Here we report that a mutation in sadB also results in increased swarming compared to the wild-type strain. Our data are consistent with a model in which SadB inversely regulates biofilm formation and swarming motility via its ability both to modulate flagellar reversals in a viscosity-dependent fashion and to influence the production of the Pel exopolysaccharide. We also show that SadB is required to properly modulate flagellar reversal rates via chemotaxis cluster IV (CheIV cluster). Mutational analyses of two components of the CheIV cluster, the methyl-accepting chemotaxis protein PilJ and the PilJ demethylase ChpB, support a model wherein this chemotaxis cluster participates in the inverse regulation of biofilm formation and swarming motility. Epistasis analysis indicates that SadB functions upstream of the CheIV cluster. We propose that P. aeruginosa utilizes a SadB-dependent, chemotaxis-like regulatory pathway to inversely regulate two key surface behaviors, biofilm formation and swarming motility.
Collapse
Affiliation(s)
- Nicky C Caiazza
- Dept. of Microbiology & Immunology, Rm. 505, Vail Building, Dartmouth Medical School, Hanover, NH 03755, USA
| | | | | | | |
Collapse
|
247
|
Hasegawa H, Tanikawa T, Nozawa T, Nakazawa K, Nakagawa Y, Matsuyama T. Distinct function of Pseudomonas aeruginosa type IV pili disclosed in the bacterial pass-through of membrane filter with smaller pore sizes. Microbiol Immunol 2007; 51:429-33. [PMID: 17446682 DOI: 10.1111/j.1348-0421.2007.tb03930.x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Membrane filter pass-through ability of Pseudomonas aeruginosa was analyzed with isogenic mutants. A flagellum-deficient fliC mutant required two-times longer time (12 hr) to pass through a 0.45-microm pore size filter. With 0.3- and 0.22-microm filters, however, the fliC mutant showed no remarkable disability. Meanwhile a pilA mutant defective in twitching motility failed to pass through the 0.22-microm filter. Complementation of the mutant with pilA gene on a plasmid restored the twitching motility and the 0.22-microm filter pass-through activity. Thus, the distinctive role of P. aeruginosa type IV pili in infiltration into finer reticulate structures was indicated.
Collapse
Affiliation(s)
- Hiroyuki Hasegawa
- Department of Applied Biological Chemistry, Faculty of Agriculture, Niigata University, Niigata, Japan
| | | | | | | | | | | |
Collapse
|
248
|
Abstract
Cyclic-di-GMP is a ubiquitous second messenger in bacteria. The recent discovery that c-di-GMP antagonistically controls motility and virulence of single, planktonic cells on one hand and cell adhesion and persistence of multicellular communities on the other has spurred interest in this regulatory compound. Cellular levels of c-di-GMP are controlled through the opposing activities of diguanylate cyclases and phosphodiesterases, which represent two large families of output domains found in bacterial one- and two-component systems. This review concentrates on structural and functional aspects of diguanylate cyclases and phosphodiesterases, and on their role in transmitting environmental stimuli into a range of different cellular functions. In addition, we examine several well-established model systems for c-di-GMP signaling, including Pseudomonas, Vibrio, Caulobacter, and Salmonella.
Collapse
Affiliation(s)
- Urs Jenal
- Biozentrum of the University of Basel, CH-4056 Basel, Switzerland.
| | | |
Collapse
|
249
|
Clutterbuck AL, Woods EJ, Knottenbelt DC, Clegg PD, Cochrane CA, Percival SL. Biofilms and their relevance to veterinary medicine. Vet Microbiol 2007; 121:1-17. [PMID: 17276630 DOI: 10.1016/j.vetmic.2006.12.029] [Citation(s) in RCA: 70] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2006] [Revised: 11/08/2006] [Accepted: 12/18/2006] [Indexed: 10/23/2022]
Abstract
Bacteria are renowned for their ability to tolerate and adapt to a wide range of adverse environmental conditions. The primary mechanism that facilitates these adaptations is thought to be the capacity to form and maintain biofilms. Within a biofilm, bacteria become attached to a surface where they exist in complex communities which are able to interact with each other through intracellular communication and thus rapidly adapt to changing environments. The organisms within biofilms are notorious for their resistance towards the host immune response and antibacterial agents compared to their free-living planktonic counterparts. Consequently, biofilms are of significant importance to both clinical and veterinary science. However, although bacterial infections are widely reported in animals their association with biofilms is rarely discussed. The aim of this review is to look at the characteristics of biofilm infections in humans and to relate this knowledge to veterinary science in order to assess their relevance in this area.
Collapse
Affiliation(s)
- A L Clutterbuck
- University of Wales, Institute of Rural Studies, Aberystwyth, Ceredigion, Wales SY23 3AL, United Kingdom
| | | | | | | | | | | |
Collapse
|
250
|
Davies JA, Harrison JJ, Marques LLR, Foglia GR, Stremick CA, Storey DG, Turner RJ, Olson ME, Ceri H. The GacS sensor kinase controls phenotypic reversion of small colony variants isolated from biofilms of Pseudomonas aeruginosa PA14. FEMS Microbiol Ecol 2007; 59:32-46. [PMID: 17233744 DOI: 10.1111/j.1574-6941.2006.00196.x] [Citation(s) in RCA: 57] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
The GacS/GacA two-component regulatory system in pseudomonads regulates genes involved in virulence, secondary metabolism and biofilm formation. Despite these regulatory functions, some Pseudomonas species are prone to spontaneous inactivating mutations in gacA and gacS. A gacS(-) strain of Pseudomonas aeruginosa PA14 was constructed to study the physiological role of this sensor histidine kinase. This loss-of-function mutation was associated with hypermotility, reduced production of acylhomoserine lactones, impaired biofilm maturation, and decreased antimicrobial resistance. Biofilms of the gacS(-) mutant gave rise to phenotypically stable small colony variants (SCVs) with increasing frequency when exposed to silver cations, hydrogen peroxide, human serum, or certain antibiotics (tobramicin, amikacin, azetronam, ceftrioxone, oxacilin, piperacillin or rifampicin). When cultured, the SCV produced thicker biofilms with greater cell density and greater antimicrobial resistance than did the wild-type or parental gacS(-) strains. Similar to other colony morphology variants described in the literature, this SCV was less motile than the wild-type strain and autoaggregated in broth culture. Complementation with gacS in trans restored the ability of the SCV to revert to a normal colony morphotype. These findings indicate that mutation of gacS is associated with the occurrence of stress-resistant SCV cells in P. aeruginosa biofilms and suggests that in some instances GacS may be necessary for reversion of these variants to a wild-type state.
Collapse
Affiliation(s)
- James A Davies
- Department of Biological Sciences, University of Calgary, Calgary, AB, Canada
| | | | | | | | | | | | | | | | | |
Collapse
|