201
|
Lin CL, Li H, Wang Y, Zhu FX, Kudchodkar S, Yuan Y. Kaposi's sarcoma-associated herpesvirus lytic origin (ori-Lyt)-dependent DNA replication: identification of the ori-Lyt and association of K8 bZip protein with the origin. J Virol 2003; 77:5578-88. [PMID: 12719550 PMCID: PMC154033 DOI: 10.1128/jvi.77.10.5578-5588.2003] [Citation(s) in RCA: 83] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Herpesviruses utilize different origins of replication during lytic versus latent infection. Latent DNA replication depends on host cellular DNA replication machinery, whereas lytic cycle DNA replication requires virally encoded replication proteins. In lytic DNA replication, the lytic origin (ori-Lyt) is bound by a virus-specified origin binding protein (OBP) that recruits the core replication machinery. In this report, we demonstrated that DNA sequences in two noncoding regions of the Kaposi's sarcoma-associated herpesvirus (KSHV) genome, between open reading frames (ORFs) K4.2 and K5 and between K12 and ORF71, are able to serve as origins for lytic cycle-specific DNA replication. The two ori-Lyt domains share an almost identical 1,153-bp sequence and a 600-bp downstream GC-rich repeat sequence, and the 1.7-kb DNA sequences are sufficient to act as a cis signal for replication. We also showed that an AT-palindromic sequence in the ori-Lyt domain is essential for the DNA replication. In addition, a virally encoded bZip protein, namely K8, was found to bind to a DNA sequence within the ori-Lyt by using a DNA binding site selection assay. The binding of K8 to this region was confirmed in cells by using a chromatin immunoprecipitation method. Further analysis revealed that K8 binds to an extended region, and the entire region is 100% conserved between two KSHV ori-Lyt's. K8 protein displays significant similarity to the Zta protein of Epstein-Barr virus (EBV), which is a known OBP of EBV. This notion, together with the ability of K8 to bind to the KSHV ori-Lyt, suggests that K8 may function as an OBP in KSHV.
Collapse
Affiliation(s)
- Cui Li Lin
- Department of Microbiology, University of Pennsylvania School of Dental Medicine, Philadelphia, Pennsylvania 19104, USA
| | | | | | | | | | | |
Collapse
|
202
|
Viejo-Borbolla A, Ottinger M, Schulz TF. Human Herpesvirus 8: Biology and Role in the Pathogenesis of Kaposi's Sarcoma and Other AIDS-related Malignancies. Curr Infect Dis Rep 2003; 5:169-175. [PMID: 12642004 DOI: 10.1007/s11908-003-0054-2] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
Human herpesvirus type 8, or Kaposi's sarcoma-associated herpesvirus (KSHV), is the only known human g(2) herpesvirus (rhadinovirus) and the most recently discovered tumor virus. KSHV is associated with Kaposi's sarcoma and two other lymphoproliferative disorders in the AIDS setting: primary effusion lymphoma and the plasma cell variant of multicentric Castleman's disease. This review offers an update on the epidemiology and the role of KSHV genes in the development of disease.
Collapse
Affiliation(s)
- Abel Viejo-Borbolla
- *Department of Virology, Hannover Medical School, Carl-Neuberg-Str.1, D-30625 Hannover, Germany.
| | | | | |
Collapse
|
203
|
Nakamura H, Lu M, Gwack Y, Souvlis J, Zeichner SL, Jung JU. Global changes in Kaposi's sarcoma-associated virus gene expression patterns following expression of a tetracycline-inducible Rta transactivator. J Virol 2003; 77:4205-20. [PMID: 12634378 PMCID: PMC150665 DOI: 10.1128/jvi.77.7.4205-4220.2003] [Citation(s) in RCA: 249] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
An important step in the herpesvirus life cycle is the switch from latency to lytic reactivation. In order to study the life cycle of Kaposi's sarcoma-associated herpesvirus (KSHV), we developed a gene expression system in KSHV-infected primary effusion lymphoma cells. This system uses Flp-mediated efficient recombination and tetracycline-inducible expression. The Rta transcriptional activator, which acts as a molecular switch for lytic reactivation of KSHV, was efficiently integrated downstream of the Flp recombination target site, and its expression was tightly controlled by tetracycline. Like stimulation with tetradecanoyl phorbol acetate (TPA), the ectopic expression of Rta efficiently induced a complete cycle of viral replication, including a well-ordered program of KSHV gene expression and production of infectious viral progeny. A striking feature of Rta-mediated lytic gene expression was that Rta induced KSHV gene expression in a more powerful and efficient manner than TPA stimulation, indicating that Rta plays a central, leading role in KSHV lytic gene expression. Thus, our streamlined gene expression system provides a novel means not only to study the effects of viral gene products on overall KSHV gene expression and replication, but also to understand the natural viral reactivation process.
Collapse
Affiliation(s)
- Hiroyuki Nakamura
- Department of Microbiology and Molecular Genetics, Division of Tumor Virology, New England Regional Primate Research Center, Harvard Medical School, Southborough, Massachusetts 01772, USA
| | | | | | | | | | | |
Collapse
|
204
|
Gwack Y, Baek HJ, Nakamura H, Lee SH, Meisterernst M, Roeder RG, Jung JU. Principal role of TRAP/mediator and SWI/SNF complexes in Kaposi's sarcoma-associated herpesvirus RTA-mediated lytic reactivation. Mol Cell Biol 2003; 23:2055-67. [PMID: 12612078 PMCID: PMC149486 DOI: 10.1128/mcb.23.6.2055-2067.2003] [Citation(s) in RCA: 93] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
An important step in the herpesvirus life cycle is the switch from latency to lytic reactivation. The RTA transcription activator of Kaposi's sarcoma-associated herpesvirus (KSHV) acts as a molecular switch for lytic reactivation. Here we demonstrate that KSHV RTA recruits CBP, the SWI/SNF chromatin remodeling complex, and the TRAP/Mediator coactivator into viral promoters through interactions with a short acidic sequence in the carboxyl region and that this recruitment is essential for RTA-dependent viral gene expression. The Brg1 subunit of SWI/SNF and the TRAP230 subunit of TRAP/Mediator were shown to interact directly with RTA. Consequently, genetic ablation of these interactions abolished KSHV lytic replication. These results demonstrate that the recruitment of CBP, SWI/SNF, and TRAP/Mediator complexes by RTA is the principal mechanism to direct well-controlled viral gene expression and thereby viral lytic reactivation.
Collapse
Affiliation(s)
- Yousang Gwack
- Tumor Virology Division, New England Regional Primate Research Center, 1 Pine Hill Drive, Southborough, MA 01772-9102, USA
| | | | | | | | | | | | | |
Collapse
|
205
|
Wang SE, Wu FY, Fujimuro M, Zong J, Hayward SD, Hayward GS. Role of CCAAT/enhancer-binding protein alpha (C/EBPalpha) in activation of the Kaposi's sarcoma-associated herpesvirus (KSHV) lytic-cycle replication-associated protein (RAP) promoter in cooperation with the KSHV replication and transcription activator (RTA) and RAP. J Virol 2003; 77:600-23. [PMID: 12477864 PMCID: PMC140597 DOI: 10.1128/jvi.77.1.600-623.2003] [Citation(s) in RCA: 81] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The Kaposi's sarcoma-associated herpesvirus (KSHV)-encoded replication-associated protein (RAP, or K8) has been shown to induce both CCAAT/enhancer binding protein alpha (C/EBPalpha) and p21(CIP-1) expression, resulting in G(0)/G(1) cell cycle arrest during the lytic cycle. RAP and C/EBPalpha are also known to interact strongly both in vitro and in lytically infected cells. We recognized two potential consensus C/EBP binding sites in the RAP promoter and performed electrophoretic mobility shift assay (EMSA) analysis with in vitro-translated C/EBPalpha; this analysis showed that one of these sites has a very high affinity for C/EBPalpha. Luciferase (LUC) assays performed with a target RAP promoter-LUC reporter gene confirmed that C/EBPalpha can transcriptionally activate the RAP promoter up to 50-fold. Although RAP had no effect on its own promoter by itself, the addition of RAP and C/EBPalpha together resulted in a threefold increase in activity over that obtained with C/EBPalpha alone. Importantly, the introduction of exogenous Flag-tagged C/EBPalpha triggered RAP expression in BCBL-1 cells latently infected with KSHV, as detected by both reverse transcription-PCR and double-label immunofluorescence assay analyses, suggesting the presence of a self-reinforcing loop with C/EBPalpha and RAP activating each other. The RAP promoter can also be activated 50- to 120-fold by the KSHV lytic-cycle-triggering protein known as replication and transcription activator (RTA). C/EBPalpha and RTA together cooperated to elevate RAP promoter activity four- to sixfold more than either alone. Furthermore, the addition of RAP, C/EBPalpha, and RTA in LUC reporter cotransfection assays resulted in 7- to 15-fold more activation than that seen with either C/EBPalpha or RTA alone. Site-specific mutational analysis of the RAP promoter showed that the strong C/EBP binding site is crucial for C/EBPalpha-mediated transactivation of the RAP promoter. However, the C/EBP binding site also overlaps the previously reported 16-bp RTA-responsive element (RRE), and the same mutation also both reduced RTA-mediated transactivation and abolished the cooperativity between C/EBPalpha and RTA. Furthermore, in vitro-translated RTA, although capable of binding directly to the polyadenylated nuclear RNA (PAN) RRE motif, failed to bind to the RAP RRE and interfered with RRE-bound C/EBPalpha in EMSA experiments. Partial RTA responsiveness but no cooperativity could be transferred to a heterologous promoter containing added consensus C/EBP binding sites. A chromatin immunoprecipitation assay showed that all three proteins associated specifically with RAP promoter DNA in vivo and that, when C/EBPalpha was removed from a tetradecanoyl phorbol acetate-treated JSC-1 primary effusion lymphoma cell lysate, the levels of association of RTA and RAP with the RAP promoter were reduced 3- and 13-fold, respectively. Finally, RTA also proved to physically interact with both C/EBPalpha and RAP, as assayed both in vitro and by immunoprecipitation. Binding to C/EBPalpha occurred within the N-terminal DNA binding domain of RTA, and deletion of a 17-amino-acid basic motif of RTA abolished both the C/EBPalpha and DNA binding activities as well as all RTA transactivation and the cooperativity with C/EBPalpha. Therefore, we suggest that RTA transactivation of the RAP RRE is mediated by an interaction with DNA-bound C/EBPalpha but that full activity requires more than just the core C/EBP binding site.
Collapse
Affiliation(s)
- Shizhen Emily Wang
- Viral Oncology Program, Sidney Kimmel Comprehensive Cancer Center, School of Medicine, The Johns Hopkins University, Baltimore, Maryland 21231-1000, USA
| | | | | | | | | | | |
Collapse
|
206
|
Lee BS, Paulose-Murphy M, Chung YH, Connlole M, Zeichner S, Jung JU. Suppression of tetradecanoyl phorbol acetate-induced lytic reactivation of Kaposi's sarcoma-associated herpesvirus by K1 signal transduction. J Virol 2002; 76:12185-99. [PMID: 12414958 PMCID: PMC136871 DOI: 10.1128/jvi.76.23.12185-12199.2002] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The K1 protein of Kaposi's sarcoma-associated herpesvirus (KSHV) contains an immunoreceptor tyrosine-based activation motif (ITAM) in its cytoplasmic region and elicits cellular signal transduction through this motif. To investigate the role of K1 signal transduction in KSHV replication, we expressed full-length K1 and CD8-K1 chimeras in BCBL1 cells. Unlike its strong signaling activity in uninfected B lymphocytes, K1 did not induce intracellular calcium mobilization or NF-AT activation at detectable levels in KSHV-infected BCBL1 cells. Instead, K1 signaling dramatically suppressed KSHV lytic reactivation induced by tetradecanoyl phorbol acetate (TPA) stimulation, but not by ORF50 ectopic expression. Mutational analysis showed that the cytoplasmic ITAM sequence of K1 was required for this suppression. Viral microarray and immunoblot analyses demonstrated that K1 signaling suppressed the TPA-mediated increase in the expression of a large subset of viral lytic genes in KSHV-infected BCBL1 cells. Furthermore, electrophoretic mobility shift assays demonstrated that TPA-induced activation of AP-1, NF-kappaB, and Oct-1 activities was severely diminished in BCBL1 cells expressing the K1 cytoplasmic domain. The reduced activities of these transcription factors may confer the observed reduction in viral lytic gene expression. These results demonstrate that K1-mediated signal transduction in KSHV-infected cells is profoundly different from that in KSHV-negative cells. Furthermore, K1 signal transduction efficiently suppresses TPA-mediated viral reactivation in an ITAM-dependent manner, and this suppression may contribute to the establishment and/or maintenance of KSHV latency in vivo.
Collapse
Affiliation(s)
- Bok-Soo Lee
- Department of Microbiology and Molecular Genetics and Division of Tumor Virology, New England Regional Primate Research Center, Harvard Medical School, Southborough, Massachusetts 01772, USA
| | | | | | | | | | | |
Collapse
|
207
|
Okuno T, Jiang YB, Ueda K, Nishimura K, Tamura T, Yamanishi K. Activation of human herpesvirus 8 open reading frame K5 independent of ORF50 expression. Virus Res 2002; 90:77-89. [PMID: 12457964 DOI: 10.1016/s0168-1702(02)00142-9] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Open reading frame (ORF) 50 of human herpesvirus 8 (HHV8, Kaposi's sarcoma-associated herpesvirus) is one of the immediate-early gene and a homologue of BRLF1 gene of Epstein-Barr virus. It encodes a key switch protein to trigger viral lytic replication from latency. We have established several hybridoma clones producing monoclonal antibodies (MAbs) to the products of HHV8 ORFs. Using these antibodies, we analyzed antigen expression in a HHV8 infected cell line after treatment with phorbol ester (12-O-tetradecanoylphorbol-13-acetate, TPA). A MAb reacted to 110 kilodalton (kDa) and 62 kDa proteins encoded by ORF50 (ORF50 protein). Kinetic studies of antigen expression by Western blotting revealed that ORF50 protein was induced as early as 6 h after TPA treatment. The proteins encoded by ORFK3, ORFK5, ORFK9, ORF59 and ORFK8.1 were not detected earlier than ORF50 protein. However, when antigen positive cells were counted by immunofluorescent antibody (IFA) test, number of ORFK5 protein positive cells were higher than that of ORF50 protein positive cells at all time after TPA or mock treatment. To confirm the results of IFA test, individual cell was analyzed by reverse transcription polymerase chain reaction. Some cells expressed ORFK5 transcript but not ORF50 transcript. Therefore, we concluded that, although ORF50 protein is a key switch protein of ORFK3, ORFK9, ORF59 and ORFK8.1 expression, it is not essential to trigger ORFK5 gene.
Collapse
Affiliation(s)
- Toshiomi Okuno
- Department of Bacteriology, Hyogo College of Medicine, 1-1, Mukogawa-cho, Nishinomiya, Hyogo 663-8501, Japan.
| | | | | | | | | | | |
Collapse
|
208
|
Ueda K, Ishikawa K, Nishimura K, Sakakibara S, Do E, Yamanishi K. Kaposi's sarcoma-associated herpesvirus (human herpesvirus 8) replication and transcription factor activates the K9 (vIRF) gene through two distinct cis elements by a non-DNA-binding mechanism. J Virol 2002; 76:12044-54. [PMID: 12414946 PMCID: PMC136869 DOI: 10.1128/jvi.76.23.12044-12054.2002] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
The replication and transcription activator (RTA) of Kaposi's sarcoma-associated herpesvirus (KSHV), or human herpesvirus 8, a homologue of Epstein-Barr virus BRLF1 or Rta, is a strong transactivator and inducer of lytic replication. RTA acting alone can induce lytic replication of KSHV in infected cell lines that originated from primary effusion lymphomas, leading to virus production. During the lytic replication process, RTA activates many kinds of genes, including polyadenylated nuclear RNA, K8, K9 (vIRF), ORF57, and so on. We focused here on the mechanism of how RTA upregulates the K9 (vIRF) promoter and identified two independent cis-acting elements in the K9 (vIRF) promoter that responded to RTA. These elements were finally confined to the sequence 5'-TCTGGGACAGTC-3' in responsive element (RE) I-2B and the sequence 5'-GTACTTAAAATA-3' in RE IIC-2, both of which did not share sequence homology. Multiple factors bound specifically with these elements, and their binding was correlated with the RTA-responsive activity. Electrophoretic mobility shift assay with nuclear extract from infected cells and the N-terminal part of RTA expressed in Escherichia coli, however, did not show that RTA interacted directly with these elements, in contrast to the RTA responsive elements in the PAN/K12 promoter region, the ORF57/K8 promoter region. Thus, it was likely that RTA could transactivate several kinds of unique cis elements without directly binding to the responsive elements, probably through cooperation with other DNA-binding factors.
Collapse
Affiliation(s)
- Keiji Ueda
- Department of Microbiology, Osaka University School of Medicine, Suita, Osaka, Japan.
| | | | | | | | | | | |
Collapse
|
209
|
DeWire SM, McVoy MA, Damania B. Kinetics of expression of rhesus monkey rhadinovirus (RRV) and identification and characterization of a polycistronic transcript encoding the RRV Orf50/Rta, RRV R8, and R8.1 genes. J Virol 2002; 76:9819-31. [PMID: 12208960 PMCID: PMC136498 DOI: 10.1128/jvi.76.19.9819-9831.2002] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Rhesus monkey rhadinovirus (RRV) is a close relative of Kaposi's sarcoma-associated herpesvirus (KSHV; human herpesvirus 8). RRV serves as an in vitro and an in vivo model for KSHV, and the mapping of its transcription program during lytic replication is significant since it represents de novo infection in the absence of stimulation with phorbol esters. Further, the RRV lytic system facilitates the making of recombinant viruses, and hence transcription profiling of the wild-type virus is important. Currently, the kinetics of lytic gene expression of RRV, the function of the RRV Orf50/Rta gene, and the presence of the RRV R8 and R8.1 genes are not known. This study details the transcription profile seen during RRV lytic replication and shows that RRV latency-associated nuclear antigen, viral FLIP (vFLIP), and vCyclin are transcribed during the RRV lytic phase. In addition, this study describes the identification of three new spliced products of the RRV Orf50, R8, and R8.1 genes, which are structural homologs of the KSHV Orf50, K8, and K8.1 genes, respectively. Characterization of the RRV Orf50 protein identifies it as a strong transcriptional transactivator capable of activating three early RRV promoters. Interestingly, the KSHV Orf50 transactivator can also activate these simian virus promoters, suggesting that there exists a conservation of gene function between the key transcription factors of KSHV and RRV.
Collapse
Affiliation(s)
- Scott M DeWire
- Curriculum in Genetics and Molecular Biology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, USA
| | | | | |
Collapse
|
210
|
Roan F, Inoue N, Offermann MK. Activation of cellular and heterologous promoters by the human herpesvirus 8 replication and transcription activator. Virology 2002; 301:293-304. [PMID: 12359431 DOI: 10.1006/viro.2002.1582] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The key regulator of the switch from latent to lytic replication of the human herpesvirus 8 (HHV-8; KSHV) is the replication and transcription activator (Rta). The ability of Rta to regulate cellular gene expression was examined by transient transfection into cells that were not infected with HHV-8. Rta induced some, but not all, NF-kappa B-responsive reporters through mechanisms that did not involve activation of classic forms of NF-kappa B. Furthermore, transfection of the NF-kappa B subunit Rel A inhibited the ability of Rta to transactivate some but not all reporters. For example, Rel A inhibited the ability of Rta to transactivate the IL-6 promoter, but only when sequences upstream of the NF-kappa B site were present. The ability of Rel A to inhibit Rta-mediated transactivation was not dependent on a functional NF-kappa B site within the promoter, suggesting an indirect mechanism for inhibition. These studies suggest that Rta expression during lytic reactivation of HHV-8 would lead to expression of some cellular genes, including IL-6, whereas activation of NF-kappa B could inhibit some responses to Rta.
Collapse
Affiliation(s)
- Florence Roan
- Winship Cancer Institute, Emory University, Atlanta, Georgia 30322, USA
| | | | | |
Collapse
|
211
|
Deng H, Song MJ, Chu JT, Sun R. Transcriptional regulation of the interleukin-6 gene of human herpesvirus 8 (Kaposi's sarcoma-associated herpesvirus). J Virol 2002; 76:8252-64. [PMID: 12134031 PMCID: PMC155161 DOI: 10.1128/jvi.76.16.8252-8264.2002] [Citation(s) in RCA: 96] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2001] [Accepted: 05/15/2002] [Indexed: 11/20/2022] Open
Abstract
Human herpesvirus 8 (HHV-8; Kaposi's sarcoma-associated herpesvirus is linked to Kaposi's sarcoma (KS), primary effusion lymphoma (PEL), and multicentric Castleman's disease (MCD), all of which are viewed as cytokine-driven malignancies. In particular, interleukin-6 (IL-6) has been found to promote the growth and proliferation of cells from KS and PEL. HHV-8 encodes a homologue of IL-6 (viral IL-6 [vIL-6]), which functions similarly to the cellular IL-6. Therefore, vIL-6 has been proposed to play an important role in tumor progression. Several groups have reported that vIL-6 is expressed from the HHV-8 genome at higher levels in PEL and MCD lesions than in KS lesions. However, it is not clear how vIL-6 expression is regulated. We characterized the transcription at the vIL-6 gene locus by Northern blot analysis and, in contrast to previous reports, we observed two distinct transcripts from induced PEL cell lines. This observation was confirmed by primer extension, as well as 5' and 3' rapid amplification of cDNA ends. Two transcription initiation sites and putative TATA boxes were mapped. A luciferase reporter system was used to show that each of the two putative TATA boxes contributed to vIL-6 promoter activity. Since virally encoded transcriptional activator Rta potently activates the viral lytic gene expression cascade, we examined the role of Rta in controlling vIL-6 gene expression and found that Rta activated the vIL-6 promoter. The Rta-responsive element was further mapped through a series of deletion constructs. Electrophoretic mobility shift assays demonstrated that Rta binds directly to the vIL-6 Rta-responsive element, and the core Rta-responsive element was mapped to a 26-bp region spanning from nucleotide 18315 to 18290 on the viral genome. We propose that the existence of two vIL-6 promoters offers opportunities for differential regulation of vIL-6 gene expression in different tissue types and may account for the variable vIL-6 levels observed in KS, PEL, and MCD.
Collapse
MESH Headings
- Amino Acid Sequence
- Base Sequence
- Castleman Disease/virology
- Cell Line
- Chromosome Mapping
- Gene Expression Regulation, Viral
- Genes, Reporter
- Genes, Viral
- Herpesviridae Infections/virology
- Herpesvirus 8, Human/genetics
- Herpesvirus 8, Human/immunology
- Herpesvirus 8, Human/physiology
- Humans
- Immediate-Early Proteins/genetics
- Interleukin-6/genetics
- Luciferases/genetics
- Lymphoma/virology
- Molecular Sequence Data
- Plasmids/genetics
- Promoter Regions, Genetic
- RNA, Messenger/genetics
- RNA, Viral/genetics
- Sarcoma, Kaposi/immunology
- Sarcoma, Kaposi/virology
- TATA Box
- Trans-Activators/genetics
- Viral Proteins/genetics
- Virus Replication
Collapse
Affiliation(s)
- Hongyu Deng
- Department of Molecular and Medical Pharmacology, UCLA AIDS Institute, Jonsson Comprehensive Cancer Center, University of California at Los Angeles, 90095, USA
| | | | | | | |
Collapse
|
212
|
AuCoin DP, Colletti KS, Xu Y, Cei SA, Pari GS. Kaposi's sarcoma-associated herpesvirus (human herpesvirus 8) contains two functional lytic origins of DNA replication. J Virol 2002; 76:7890-6. [PMID: 12097603 PMCID: PMC136389 DOI: 10.1128/jvi.76.15.7890-7896.2002] [Citation(s) in RCA: 59] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
We used a transient-transfection replication assay to identify two functional copies of the human herpesvirus 8 (HHV8) lytic origin of DNA replication (oriLyt). BCLB-1 cells were transfected with HHV8 subgenomic fragments containing the putative lytic origin along with a plasmid expressing viral transactivator open reading frame (ORF) 50. The HHV8 left-end oriLyt (oriLyt-L) lies between ORFs K4.2 and K5 and is composed of a region encoding various transcription factor binding sites and an A+T-rich region and a G+C repeat region. The right-end oriLyt (oriLyt-R) maps between ORF 69 and vFLIP, a region similar to the RRV oriLyt, and is an inverted duplication of oriLyt-L.
Collapse
Affiliation(s)
- David P AuCoin
- Department of Microbiology and Cell and Molecular Biology Program, University of Nevada School of Medicine, Reno, Nevada 89557, USA
| | | | | | | | | |
Collapse
|
213
|
Liang Y, Chang J, Lynch SJ, Lukac DM, Ganem D. The lytic switch protein of KSHV activates gene expression via functional interaction with RBP-Jkappa (CSL), the target of the Notch signaling pathway. Genes Dev 2002; 16:1977-89. [PMID: 12154127 PMCID: PMC186409 DOI: 10.1101/gad.996502] [Citation(s) in RCA: 203] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
The RTA protein of the Kaposi's sarcoma (KS)-associated herpesvirus (KSHV) is responsible for the switch from latency to lytic replication, a reaction essential for viral spread and KS pathogenesis. RTA is a sequence-specific transcriptional activator, but the diversity of its target sites suggests it may act via interaction with host DNA-binding proteins as well. Here we show that KSHV RTA interacts with the RBP-Jkappa protein, the primary target of the Notch signaling pathway. This interaction targets RTA to RBP-Jkappa recognition sites on DNA and results in the replacement of RBP-Jkappa's intrinsic repressive action with activation mediated by the C-terminal domain of RTA. Mutation of such sites in target promoters strongly impairs RTA responsiveness. Similarly, such target genes are induced poorly or not at all by RTA in fibroblasts derived from RBP-Jkappa(-/-) mice, a defect that can be reversed by expression of RBP-Jkappa. In vitro, RTA binds to two adjacent regions of RBP-Jkappa, one of which is identical to the central repression domain that binds the Notch effector fragment. These results indicate that KSHV has evolved a ligand-independent mechanism for constitutive activation of the Notch pathway as a part of its strategy for reactivation from latency.
Collapse
Affiliation(s)
- Yuying Liang
- Howard Hughes Medical Institute and Departments of Microbiology and Medicine, University of California, San Francisco, California 94143-0414, USA
| | | | | | | | | |
Collapse
|
214
|
Varthakavi V, Smith RM, Deng H, Sun R, Spearman P. Human immunodeficiency virus type-1 activates lytic cycle replication of Kaposi's sarcoma-associated herpesvirus through induction of KSHV Rta. Virology 2002; 297:270-80. [PMID: 12083825 DOI: 10.1006/viro.2002.1434] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Human immunodeficiency virus type-1 (HIV-1) infection dramatically increases the risk of development of Kaposi's sarcoma (KS) in individuals infected with Kaposi's sarcoma-associated herpesvirus (KSHV). In a primary effusion lymphoma (PEL) tissue culture model system, HIV-1 replication potently induced the lytic replication of KSHV and led to the secretion of soluble factors capable of inducing lytic KSHV replication in bystander cells. Here we demonstrate that HIV induces KSHV lytic replication through activation of the KSHV Rta. HIV gene expression activated the KSHV Rta promoter following viral infection or after transfection of proviral DNA. Although HIV-1 Tat has previously been implicated as an activator of KSHV lytic replication, Tat alone was unable to activate lytic replication and failed to activate the Rta promoter. We conclude that HIV activates KSHV lytic replication by inducing the KSHV Rta promoter and that factors other than HIV-1 Tat are required to mediate this effect.
Collapse
Affiliation(s)
- Vasundhara Varthakavi
- Departments of Pediatrics and Microbiology and Immunology, Vanderbilt University, Nashville, Tennessee 37232, USA
| | | | | | | | | |
Collapse
|
215
|
Song MJ, Li X, Brown HJ, Sun R. Characterization of interactions between RTA and the promoter of polyadenylated nuclear RNA in Kaposi's sarcoma-associated herpesvirus/human herpesvirus 8. J Virol 2002; 76:5000-13. [PMID: 11967316 PMCID: PMC136175 DOI: 10.1128/jvi.76.10.5000-5013.2002] [Citation(s) in RCA: 103] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
RTA (replication and transcription activator; also referred to as ORF50, Lyta, and ART), an immediate-early gene product of Kaposi's sarcoma-associated herpesvirus (KSHV)/human herpesvirus 8, disrupts latency and drives lytic replication. RTA activates the expression of polyadenylated nuclear (PAN) RNA (also known as T1.1 or nut-1) of KSHV. This novel noncoding PAN RNA is the most abundant lytic transcript of KSHV; therefore, studying PAN RNA expression serves as a model system for understanding how RTA transactivates target genes during lytic replication. The RTA-responsive element of the PAN promoter (pPAN RRE) was previously identified, and our data suggested direct binding of full-length RTA to the pPAN RRE. Here, we present a detailed analysis of specific interactions between RTA and the PAN promoter. We expressed and purified the DNA-binding domain of RTA (Rdbd) to near homogeneity and measured its affinity for the pPAN RRE. In electrophoretic mobility shift assays (EMSAs), the dissociation constant (K(d)) of Rdbd on the pPAN RRE was determined to be approximately 8 x 10(-9) M, suggesting a strong interaction between RTA and DNA. The specificity of RTA binding to the PAN promoter was confirmed with supershift assays. The Rdbd binding sequences on the PAN promoter were mapped within a 16-bp region of the pPAN RRE by methylation interference assays. However, the minimal DNA sequence for Rdbd binding requires an additional 7 bp on both sides of the area mapped by interference assays, suggesting that non-sequence-specific as well as sequence-specific interactions between RTA and DNA contribute to high-affinity binding. To better understand the molecular interactions between RTA and the PAN promoter, an extensive mutagenesis study on the pPAN RRE was carried out by using EMSAs and reporter assays. These analyses revealed base pairs critical for both Rdbd binding in vitro and RTA transactivation in vivo of the PAN promoter. The results from methylation interference, deletion analysis, and mutagenesis using EMSAs and reporter assays were closely correlated and support the hypothesis that RTA activates PAN RNA expression through direct binding to DNA.
Collapse
Affiliation(s)
- Moon Jung Song
- Department of Molecular and Medical Pharmacology, the UCLA AIDS Institute, the Jonsson Comprehensive Cancer Center, University of California at Los Angeles, 90095-1735, USA
| | | | | | | |
Collapse
|
216
|
Curreli F, Cerimele F, Muralidhar S, Rosenthal LJ, Cesarman E, Friedman-Kien AE, Flore O. Transcriptional downregulation of ORF50/Rta by methotrexate inhibits the switch of Kaposi's sarcoma-associated herpesvirus/human herpesvirus 8 from latency to lytic replication. J Virol 2002; 76:5208-19. [PMID: 11967335 PMCID: PMC136151 DOI: 10.1128/jvi.76.10.5208-5219.2002] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Kaposi's sarcoma-associated herpesvirus (KSHV) encodes a cellular dihydrofolate reductase (DHFR) homologue. Methotrexate (MTX), a potent anti-inflammatory agent, inhibits cellular DHFR activity. We investigated the effect of noncytotoxic doses of MTX on latency and lytic KSHV replication in two KSHV-infected primary effusion lymphoma cell lines (BC-3 and BC-1) and in MTX-resistant BC-3 cells (MTX-R-BC-3 cells). Treatment with MTX completely prevented tetradecanoyl phorbol acetate-induced viral DNA replication and strongly decreased viral lytic transcript levels, even in MTX-resistant cells. However, the same treatment had no effect on transcription of cellular genes and KSHV latent genes. One of the lytic transcripts inhibited by MTX, ORF50/Rta (open reading frame), is an immediate-early gene encoding a replication-transcription activator required for expression of other viral lytic genes. Therefore, transcription of genes downstream of ORF50/Rta was inhibited, including those encoding the viral G-protein-coupled receptor (GPCR), viral interleukin-6, and K12/kaposin, which have been shown to be transforming in vitro and oncogenic in mice. Resistance to MTX has been documented in cultured cells and also in patients treated with this drug. However, MTX showed an inhibitory activity even in MTX-R-BC-3 cells. Two currently available antiherpesvirus drugs, cidofovir and foscarnet, had no effect on the transcription of these viral oncogenes and ORF50/Rta. MTX is the first example of a compound shown to downregulate the expression of ORF50/Rta and therefore prevent viral transforming gene transcription. Given that the expression of these genes may be important for tumor development, MTX could play a role in the future management of KSHV-associated malignancies.
Collapse
Affiliation(s)
- Francesca Curreli
- Department of Microbiology, New York University School of Medicine, New York, New York 10016, USA
| | | | | | | | | | | | | |
Collapse
|
217
|
Tang S, Zheng ZM. Kaposi's sarcoma-associated herpesvirus K8 exon 3 contains three 5'-splice sites and harbors a K8.1 transcription start site. J Biol Chem 2002; 277:14547-56. [PMID: 11832484 DOI: 10.1074/jbc.m111308200] [Citation(s) in RCA: 40] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Kaposi's sarcoma-associated herpesvirus (KSHV) K8 and K8.1 open reading frames are juxtaposed and span from nucleotide (nt) 74850 to 76695 of the virus genome. A K8 pre-mRNA overlaps the entire K8.1 coding region, and alternative splicing of KSHV K8 and K8.1 pre-mRNAs each produces three isoforms (alpha, beta, and gamma) of the mRNAs. We have mapped the 5' end of the K8.1 RNA in butyrate-induced KSHV-positive JSC-1 cells to nt 75901 in the KSHV genome and have shown that exon 3 of the K8 pre-mRNA in JSC-1 cells covers most part of the intron 3 defined previously and has three 5'-splice sites (ss), respectively, at nt 75838, 76155, and 76338. Selection of the nt 75838 5'-ss dictates the K8 mRNA production and overwhelms the RNA processing. Alternative selection of other two 5'-ss is feasible and leads to production of two additional bicistronic mRNAs, K8/K8.1alpha and -beta. However, the novel bicistronic K8/K8.1 mRNAs translated a little K8 and no detectable K8.1 proteins in 293 cells. Data suggest that production of the K8/K8.1 mRNAs may be an essential way to control K8 mRNAs, especially K8alpha, to a threshold at RNA processing level.
Collapse
Affiliation(s)
- Shuang Tang
- HIV and AIDS Malignancy Branch, Center for Cancer Research, NCI, National Institutes of Health, Bethesda, Maryland 20892, USA
| | | |
Collapse
|
218
|
Chang PJ, Shedd D, Gradoville L, Cho MS, Chen LW, Chang J, Miller G. Open reading frame 50 protein of Kaposi's sarcoma-associated herpesvirus directly activates the viral PAN and K12 genes by binding to related response elements. J Virol 2002; 76:3168-78. [PMID: 11884541 PMCID: PMC136055 DOI: 10.1128/jvi.76.7.3168-3178.2002] [Citation(s) in RCA: 110] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Open reading frame (ORF) 50 protein is capable of activating the entire lytic cycle of Kaposi's sarcoma-associated herpesvirus (KSHV), but its mechanism of action is not well characterized. Here we demonstrate that ORF 50 protein activates two KSHV lytic cycle genes, PAN (polyadenylated nuclear RNA) and K12, by binding to closely related response elements located approximately 60 to 100 nucleotides (nt) upstream of the start of transcription of the two genes. The 25-nt sequence 5' AAATGGGTGGCTAACCTGTCCAAAA from the PAN promoter (PANp) confers a response to ORF 50 protein in both epithelial cells and B cells in the absence of other KSHV proteins. The responsive region of DNA can be transferred to a heterologous minimal promoter. Extensive point mutagenesis showed that a span of at least 20 nt is essential for a response to ORF 50 protein. However, a minimum of six positions within this region were ambiguous. The related 26-nt responsive element in the K12 promoter (K12p), 5' GGAAATGGGTGGCTAACCCCTACATA, shares 20 nt (underlined) with the comparable region of PANp. The divergence is primarily at the 3' end. The DNA binding domain of ORF 50 protein, encompassing amino acids 1 to 490, fused to a heterologous activation domain from herpes simplex virus VP16 [ORF 50(1-490)+VP] can mediate activation of reporter constructs bearing these response elements. Most importantly, ORF 50(1-490)+VP can induce PAN RNA and K12 transcripts in transfected cells. ORF 50(1-490)+VP expressed in human cells binds specifically to duplex oligonucleotides containing the responsive regions from PANp and K12p. These DNA-protein complexes were supershifted by antibody to VP16. ORF 50(1-490) without a VP16 tag also bound to the response element. There was a strong correlation between DNA binding by ORF 50 and transcriptional activation. Mutations within PANp and K12p that impaired transactivation by ORF 50 or ORF 50(1-490)+VP also abolished DNA binding. Only one of eight related complexes formed on PANp and K12p oligonucleotides was due to ORF 50(1-490)+VP. The other complexes were due to cellular proteins. Two KSHV lytic-cycle promoters are activated by a similar mechanism that involves direct recognition of a homologous response element by the DNA binding domain of ORF 50 protein in the context of related cellular proteins.
Collapse
Affiliation(s)
- Pey-Jium Chang
- Department of Pediatrics, Yale University School of Medicine, New Haven, Connecticut, USA
| | | | | | | | | | | | | |
Collapse
|
219
|
Jenner RG, Boshoff C. The molecular pathology of Kaposi's sarcoma-associated herpesvirus. BIOCHIMICA ET BIOPHYSICA ACTA 2002; 1602:1-22. [PMID: 11960692 DOI: 10.1016/s0304-419x(01)00040-3] [Citation(s) in RCA: 58] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Kaposi's sarcoma (KS)-associated herpesvirus (KSHV) is the eighth and most recently identified human herpesvirus (HHV-8). KSHV was discovered in 1994 by Chang et al. who used representational difference analysis to search for DNA sequences present in AIDS-associated KS but not in adjacent normal skin [1]. The virus has since been shown to be specifically associated with all forms of this disease and has fulfilled all of Hill's criteria for causation (reviewed in ). KSHV is also found in all cases of primary effusion lymphoma and in a plasmablastic variant of multicentric Castleman's disease. Over the last few years a wealth of data has been gained on the role of KSHV genes during infection. This review is an attempt to assemble this information into a more complete picture of how KSHV may cause disease.
Collapse
Affiliation(s)
- Richard G Jenner
- Wohl Virion Centre, Windeyer Institute for Medical Research, Cleveland Street, UCL (University College London), London, UK.
| | | |
Collapse
|
220
|
Lagunoff M, Bechtel J, Venetsanakos E, Roy AM, Abbey N, Herndier B, McMahon M, Ganem D. De novo infection and serial transmission of Kaposi's sarcoma-associated herpesvirus in cultured endothelial cells. J Virol 2002; 76:2440-8. [PMID: 11836422 PMCID: PMC153827 DOI: 10.1128/jvi.76.5.2440-2448.2002] [Citation(s) in RCA: 158] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Infection by Kaposi's sarcoma-associated herpesvirus (KSHV) is central to the pathogenesis of the endothelial neoplasm Kaposi's sarcoma (KS) and is also linked to the rare B-cell tumor known as primary effusion lymphoma (PEL). Latently infected PEL cell lines can be induced to enter the lytic cycle and produce KSHV virions. However, such cells do not support de novo infection or serial propagation of KSHV. These limitations have prevented the development of systems for the genetic analysis of KSHV and have impeded a deeper understanding of KS pathogenesis. Here we show that human dermal microvascular endothelial cells immortalized by expression of telomerase can be readily infected by KSHV virions produced by PEL cells. Infection is predominantly latent, but a small subpopulation enters the lytic cycle spontaneously. Phorbol ester (tetradecanoyl phorbol acetate [TPA]) treatment of latently infected cells leads to enhanced induction of lytic KSHV replication, resulting in foci of cytopathic effect. There is no cytopathic effect or viral DNA expansion when infected TIME cells (telomerase-immortalized microvascular endothelial cells) are TPA induced in the presence of phosphonoacetic acid (PAA), an inhibitor of herpesvirus replication. Supernatants from phorbol-induced cultures transfer latent KSHV infection to uninfected cells, which can likewise be induced to undergo lytic replication by TPA treatment, and the virus can be further serially transmitted. Serial passage of the virus in TIME cells is completely inhibited when TPA treatment is done in the presence of PAA. Latently infected endothelial cells do not undergo major morphological changes or growth transformation, and infection is lost from the culture upon serial passage. This behavior faithfully recapitulates the behavior of spindle cells explanted from primary KS biopsies, strongly supporting the biological relevance of this culture system. These findings suggest that either the stability or the growth-deregulatory potential of the KSHV latency program in endothelial cells is more limited than might be predicted by analogy with other oncogenic viruses.
Collapse
Affiliation(s)
- Michael Lagunoff
- Department of Microbiology and Medicine, Howard Hughes Medical Institute, University of California-San Francisco, 513 Parnassus Ave., San Francisco, CA 94143-0414, USA
| | | | | | | | | | | | | | | |
Collapse
|
221
|
Wang S, Liu S, Wu MH, Geng Y, Wood C. Identification of a cellular protein that interacts and synergizes with the RTA (ORF50) protein of Kaposi's sarcoma-associated herpesvirus in transcriptional activation. J Virol 2001; 75:11961-73. [PMID: 11711586 PMCID: PMC116091 DOI: 10.1128/jvi.75.24.11961-11973.2001] [Citation(s) in RCA: 73] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Lytic reactivation of Kaposi's sarcoma-associated herpesvirus (KSHV), or human herpesvirus 8, from latency requires transcriptional transactivation by the viral protein RTA encoded by the ORF50 gene. Very little is known about how RTA functions and the cellular factors that may be involved in its transactivation function. Using the yeast two-hybrid system, we have identified a human cellular protein that can interact with KSHV RTA. The cellular protein, referred to as the human hypothetical protein MGC2663 by GenBank, is encoded by human chromosome 19. This protein is 554 amino acids (aa) in size and displays sequence similarity with members of the Krueppel-associated box-zinc finger proteins (KRAB-ZFPs). MGC2663 expression could be detected in all primate cell lines tested, and its expression level was neither stimulated nor inhibited by RTA. MGC2663 specifically synergizes with RTA to activate viral transcription, and overexpression of MGC2663 in the presence of RTA further enhances RTA transactivation of several viral promoters that were identified as targets for RTA. Coimmunoprecipitation and pull-down assays further demonstrated that MGC2663 interacts with RTA both in vivo and in vitro, and the N-terminal 273 aa of KSHV RTA and the potential zinc finger domain of MGC2663 are required for their interaction. Our results indicate that this novel human cellular protein, MGC2663, named K-RBP (KSHV RTA binding protein) due to its RTA binding feature, specifically interacts with the KSHV RTA protein and functions as a cellular RTA cofactor to activate viral gene expression. Though its normal cellular function needs to be further studied, K-RBP may play a significant role in mediating RTA transactivation in vivo.
Collapse
Affiliation(s)
- S Wang
- Nebraska Center for Virology, University of Nebraska, Lincoln, Nebraska 68588, USA
| | | | | | | | | |
Collapse
|
222
|
Pari GS, AuCoin D, Colletti K, Cei SA, Kirchoff V, Wong SW. Identification of the rhesus macaque rhadinovirus lytic origin of DNA replication. J Virol 2001; 75:11401-7. [PMID: 11689621 PMCID: PMC114726 DOI: 10.1128/jvi.75.23.11401-11407.2001] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
We have identified a lytic origin of DNA replication (oriLyt) for rhesus macaque rhadinovirus (RRV), the rhesus macaque homolog of human herpesvirus 8 (HHV-8), also known as Kaposi's sarcoma-associated herpesvirus. RRV oriLyt maps to the region of the genome between open reading frame 69 (ORF69) and ORF71 (vFLIP) and is composed of an upstream A+T-rich region followed by a short (300-bp) downstream G+C-rich DNA sequence. A set of overlapping cosmids corresponding to the entire genome of RRV was capable of complementing oriLyt-dependent DNA replication only when additional ORF50 was supplied as an expression plasmid in the transfection mixture, suggesting that the level of ORF50 protein originating from input cosmid DNA was insufficient. The requirement of RRV ORF50 in the cotransfection replication assay may also suggest a direct role for this protein in DNA replication. RRV oriLyt shares a high degree of nucleotide sequence and G+C base distribution with the corresponding loci in HHV-8.
Collapse
Affiliation(s)
- G S Pari
- Department of Microbiology, University of Nevada-Reno, 89557, USA.
| | | | | | | | | | | |
Collapse
|
223
|
Wu TT, Tong L, Rickabaugh T, Speck S, Sun R. Function of Rta is essential for lytic replication of murine gammaherpesvirus 68. J Virol 2001; 75:9262-73. [PMID: 11533188 PMCID: PMC114493 DOI: 10.1128/jvi.75.19.9262-9273.2001] [Citation(s) in RCA: 74] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Rta, encoded primarily by open reading frame 50, is well conserved among gammaherpesviruses. It has been shown that the Rta proteins of Epstein Barr virus (EBV), Kaposi's sarcoma-associated herpesvirus (KSHV, or HHV-8), and murine gammaherpesvirus 68 (MHV-68; also referred to as gamma HV68) play an important role in viral reactivation from latency. However, the role of Rta during productive de novo infection has not been characterized in gammaherpesviruses. Since there are cell lines that can support efficient productive de novo infection by MHV-68 but not EBV or KSHV, we examined whether MHV-68 Rta plays a role in initiating viral lytic replication in productively infected cells. Rta, functioning as a transcriptional activator, can activate the viral promoter of early lytic genes. The amino acid sequence alignments of the Rta homologues suggest that the organizations of their functional domains are similar, with the DNA binding and dimerization domains at the N terminus and the trans-activation domain at the C terminus. We constructed two mutants of MHV-68 Rta, Rd1 and Rd2, with deletions of 112 and 243 amino acids from the C terminus, respectively. Rd1 and Rd2 could no longer trans-activate the promoter of MHV-68 gene 57, consistent with the deletions of their trans-activation domains at the C terminus. Furthermore, Rd1 and Rd2 were able to function as dominant-negative mutants, inhibiting trans-activation of wild-type Rta. To study whether Rd1 and Rd2 blocked viral lytic replication, purified virion DNA was cotransfected with Rd1 or Rd2 into fibroblasts. Expression of viral lytic proteins was greatly suppressed, and the yield of infectious viruses was reduced up to 10(4)-fold. Stable cell lines constitutively expressing Rd2 were established and infected with MHV-68. Transcription of the immediate-early gene, rta, and the early gene, tk, of the virus was reduced in these cell lines. The presence of Rd2 also led to attenuation of viral lytic protein expression and virion production. The ability of Rta dominant-negative mutants to inhibit productive infection suggests that the trans-activation function of Rta is essential for MHV-68 lytic replication. We propose that a single viral protein, Rta, governs the initiation of MHV-68 lytic replication during both reactivation and productive de novo infection.
Collapse
Affiliation(s)
- T T Wu
- Department of Molecular and Medical Pharmacology, UCLA AIDS Institute, Jonsson Comprehensive Cancer Center, and Molecular Biology Institute, University of California at Los Angeles, Los Angeles, California 90095, USA
| | | | | | | | | |
Collapse
|
224
|
|
225
|
Lukac DM, Garibyan L, Kirshner JR, Palmeri D, Ganem D. DNA binding by Kaposi's sarcoma-associated herpesvirus lytic switch protein is necessary for transcriptional activation of two viral delayed early promoters. J Virol 2001; 75:6786-99. [PMID: 11435557 PMCID: PMC114405 DOI: 10.1128/jvi.75.15.6786-6799.2001] [Citation(s) in RCA: 130] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Kaposi's sarcoma-associated herpesvirus (KSHV; also known as human herpesvirus-8) establishes latent and lytic infections in both lymphoid and endothelial cells and has been associated with diseases of both cell types. The KSHV open reading frame 50 (ORF50) protein is a transcriptional activator that plays a central role in the reactivation of lytic viral replication from latency. Here we identify and characterize a DNA binding site for the ORF50 protein that is shared by the promoters of two delayed early genes (ORF57 and K-bZIP). Transfer of this element to heterologous promoters confers on them high-level responsiveness to ORF50, indicating that the element is both necessary and sufficient for activation. The element consists of a conserved 12-bp palindromic sequence and less conserved sequences immediately 3' to it. Mutational analysis reveals that sequences within the palindrome are critical for binding and activation by ORF50, but the presence of a palindrome itself is not absolutely required. The 3' flanking sequences also play a critical role in DNA binding and transactivation. The strong concordance of DNA binding in vitro with transcriptional activation in vivo strongly implies that sequence-specific DNA binding is necessary for ORF50-mediated activation through this element. Expression of truncated versions of the ORF50 protein reveals that DNA binding is mediated by the amino-terminal 272 amino acids of the polypeptide.
Collapse
Affiliation(s)
- D M Lukac
- Howard Hughes Medical Institute and Department of Microbiology, University of California Medical Center, San Francisco, California 94143-0414, USA
| | | | | | | | | |
Collapse
|
226
|
Rimessi P, Bonaccorsi A, Stürzl M, Fabris M, Brocca-Cofano E, Caputo A, Melucci-Vigo G, Falchi M, Cafaro A, Cassai E, Ensoli B, Monini P. Transcription pattern of human herpesvirus 8 open reading frame K3 in primary effusion lymphoma and Kaposi's sarcoma. J Virol 2001; 75:7161-74. [PMID: 11435597 PMCID: PMC114445 DOI: 10.1128/jvi.75.15.7161-7174.2001] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Human herpesvirus 8 (HHV-8) is found in immunoblastic B cells of patients with multicentric Castleman's disease (MCD) and, predominantly in a latent form, in primary effusion lymphoma (PEL) cells and Kaposi's sarcoma (KS) spindle cells. Recent studies have shown that upon reactivation, HHV-8 expresses factors that downregulate major histocompatibility class I proteins and coactivation molecules and that may enable productively infected cells to escape cytotoxic T lymphocytes and natural killer cell responses. One of these viral factors is encoded by open reading frame (ORF) K3. Here we show that in PEL cells, ORF K3 is expressed through viral transcripts that are induced very early upon virus reactivation, including bicistronic RNA molecules containing coding sequences from viral ORFs K3 and 70. Specifically, we found that a bicistronic transcript was expressed in the absence of de novo protein synthesis, thereby identifying a novel HHV-8 immediate-early gene product. Several features of the RNA molecules encoding the K3 product, including multiple transcriptional start sites, multiple donor splicing sites, and potential alternative ATG usage, suggest that there exists a finely tuned modulation of ORF K3 expression. By contrast, ORF K3 transcripts are not detected in the majority of cells present in KS lesions that are latently infected by the virus, suggesting that there are other, as-yet-unknown mechanisms of immune evasion for infected KS spindle cells. Nevertheless, because HHV-8 viremia precedes the development of KS lesions and is associated with the recrudescence of MCD symptoms, the prompt expression of ORF K3 in productively infected circulating cells may be important for virus pathogenesis. Thus, molecules targeting host or viral factors that activate ORF K3 expression or inactivate the biological functions of the K3 product should be exploited for the prevention or treatment of HHV-8-associated diseases in at-risk individuals.
Collapse
Affiliation(s)
- P Rimessi
- Section of Microbiology, Department of Diagnostic and Experimental Medicine, University of Ferrara, 44100 Ferrara, Italy
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
227
|
Sakakibara S, Ueda K, Chen J, Okuno T, Yamanishi K. Octamer-binding sequence is a key element for the autoregulation of Kaposi's sarcoma-associated herpesvirus ORF50/Lyta gene expression. J Virol 2001; 75:6894-900. [PMID: 11435569 PMCID: PMC114417 DOI: 10.1128/jvi.75.15.6894-6900.2001] [Citation(s) in RCA: 122] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The expression of the Kaposi's sarcoma-associated herpesvirus (KSHV) open reading frame 50 (ORF50) protein, Lyta (lytic transactivator), marks the switch from latent KSHV infection to the lytic phase. ORF50/Lyta upregulates several target KSHV genes, such as K8 (K-bZip), K9 (vIRF1), and ORF57, finally leading to the production of mature viruses. The auto-upregulation of ORF50/Lyta is thought to be an important mechanism for efficient lytic viral replication. In this study, we focused on this autoregulation and identified the promoter element required for it. An electrophoretic mobility shift assay indicated that the octamer-binding protein 1 (Oct-1) bound to this element. Mutations in the octamer-binding motif resulted in refractoriness of the ORF50/Lyta promoter to transactivation by ORF50/Lyta, and Oct-1 expression enhanced this transactivation. These results suggest that the autoregulation of ORF50/Lyta is mediated by Oct-1.
Collapse
Affiliation(s)
- S Sakakibara
- Department of Microbiology, Osaka University Medical School, Suita, Osaka 565-0871, Japan
| | | | | | | | | |
Collapse
|
228
|
Moore PS, Chang Y. Molecular virology of Kaposi's sarcoma-associated herpesvirus. Philos Trans R Soc Lond B Biol Sci 2001; 356:499-516. [PMID: 11313008 PMCID: PMC1088441 DOI: 10.1098/rstb.2000.0777] [Citation(s) in RCA: 106] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Abstract
Kaposi's sarcoma-associated herpesvirus (KSHV), the most recently discovered human tumour virus, is the causative agent of Kaposi's sarcoma, primary effusion lymphoma and some forms of Castleman's disease. KSHV is a rhadinovirus, and like other rhadinoviruses, it has an extensive array of regulatory genes obtained from the host cell genome. These pirated KSHV proteins include homologues to cellular CD21, three different beta-chemokines, IL-6, BCL-2, several different interferon regulatory factor homologues, Fas-ligand ICE inhibitory protein (FLIP), cyclin D and a G-protein-coupled receptor, as well as DNA synthetic enzymes including thymidylate synthase, dihydrofolate reductase, DNA polymerase, thymidine kinase and ribonucleotide reductases. Despite marked differences between KSHV and Epstein-Barr virus, both viruses target many of the same cellular pathways, but use different strategies to achieve the same effects. KSHV proteins have been identified which inhibit cell-cycle regulation checkpoints, apoptosis control mechanisms and the immune response regulatory machinery. Inhibition of these cellular regulatory networks app ears to be a defensive means of allowing the virus to escape from innate antiviral immune responses. However, due to the overlapping nature of innate immune and tumour-suppressor pathways, inhibition of these regulatory networks can lead to unregulated cell proliferation and may contribute to virus-induced tumorigenesis.
Collapse
Affiliation(s)
- P S Moore
- School of Public Health and Department of Pathology, Columbia University College of Physicians and Surgeons, 630 West 168th Street, New York, NY 10032, USA.
| | | |
Collapse
|
229
|
Zoeteweij JP, Moses AV, Rinderknecht AS, Davis DA, Overwijk WW, Yarchoan R, Orenstein JM, Blauvelt A. Targeted inhibition of calcineurin signaling blocks calcium-dependent reactivation of Kaposi sarcoma-associated herpesvirus. Blood 2001; 97:2374-80. [PMID: 11290600 DOI: 10.1182/blood.v97.8.2374] [Citation(s) in RCA: 44] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Kaposi sarcoma-associated herpesvirus (KSHV) is associated with KS, primary effusion lymphoma (PEL), and multicentric Castleman disease. Reactivation of KSHV in latently infected cells and subsequent plasma viremia occur before the development of KS. Intracellular signaling pathways involved in KSHV reactivation were studied. In latently infected PEL cells (BCBL-1), KSHV reactivation in single cells was determined by quantitative flow cytometry. Viral particle production was determined by electron microscope analyses and detection of minor capsid protein in culture supernatants. Agents that mobilized intracellular calcium (ionomycin, thapsigargin) induced expression of KSHV lytic cycle-associated proteins and led to increased virus production. Calcium-mediated virus reactivation was blocked by specific inhibitors of calcineurin-dependent signal transduction (cyclosporine, FK506). Similarly, calcium-mediated virus reactivation in KSHV-infected dermal microvascular endothelial cells was blocked by cyclosporine. Furthermore, retroviral transduction with plasmid DNA encoding VIVIT, a peptide specifically blocking calcineurin-NFAT interactions, inhibited calcium-dependent KSHV reactivation. By contrast, chemical induction of lytic-phase infection by the phorbol ester 12-O-tetradecanoyl-phorbol-13-acetate was blocked by protein kinase C inhibitors, but not by calcineurin inhibitors. In summary, calcineurin-dependent signal transduction, an important signaling cascade in vivo, induces calcium-dependent KSHV replication, providing a possible target for the design of antiherpesvirus strategies in KSHV-infected patients.
Collapse
Affiliation(s)
- J P Zoeteweij
- Dermatology Branch, National Cancer Institute, Bethesda, MD 20892-1908, USA
| | | | | | | | | | | | | | | |
Collapse
|
230
|
Goodwin DJ, Walters MS, Smith PG, Thurau M, Fickenscher H, Whitehouse A. Herpesvirus saimiri open reading frame 50 (Rta) protein reactivates the lytic replication cycle in a persistently infected A549 cell line. J Virol 2001; 75:4008-13. [PMID: 11264393 PMCID: PMC114895 DOI: 10.1128/jvi.75.8.4008-4013.2001] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
Herpesviruses occur in two distinct forms of infection, lytic replication and latent persistence. In this study, we investigated the molecular mechanisms that govern the latent-lytic switch in the prototype gamma-2 herpesvirus, herpesvirus saimiri (HVS). We utilized a persistently HVS-infected A549 cell line, in which HVS DNA is stably maintained as nonintegrated circular episomes, to assess the role of the open reading frame 50 (ORF 50) (Rta) proteins in the latent-lytic switch. Northern blot analysis and virus recovery assays determined that the ORF 50a gene product, when expressed under the control of a constitutively active promoter, was sufficient to reactivate the entire lytic replication cycle, producing infectious virus particles. Furthermore, although the ORF 50 proteins of HVS strains A11 and C488 are structurally divergent, they were both capable of inducing the lytic replication cycle in this model of HVS latency.
Collapse
Affiliation(s)
- D J Goodwin
- Molecular Medicine Unit, St. James's University Hospital, University of Leeds, Leeds LS9 7TF, United Kingdom
| | | | | | | | | | | |
Collapse
|
231
|
Chen J, Ueda K, Sakakibara S, Okuno T, Parravicini C, Corbellino M, Yamanishi K. Activation of latent Kaposi's sarcoma-associated herpesvirus by demethylation of the promoter of the lytic transactivator. Proc Natl Acad Sci U S A 2001; 98:4119-24. [PMID: 11274437 PMCID: PMC31189 DOI: 10.1073/pnas.051004198] [Citation(s) in RCA: 117] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Kaposi's sarcoma-associated herpesvirus (KSHV) is strongly linked to Kaposi's sarcoma, primary effusion lymphomas, and a subset of multicentric Castleman's disease. The mechanism by which this virus establishes latency and reactivation is unknown. KSHV Lyta (lytic transactivator, also named KSHV/Rta), mainly encoded by the ORF 50 gene, is a lytic switch gene for viral reactivation from latency, inasmuch as it is both essential and sufficient to drive the entire viral lytic cycle. Here we show that the Lyta promoter region was heavily methylated in latently infected cells. Treatment of primary effusion lymphoma-delivered cell lines with tetradecanoylphorbol acetate caused demethylation of the Lyta promoter and induced KSHV lytic phase in vitro. Methylation cassette assay shows demethylation of the Lyta promoter region was essential for the expression of Lyta. In vivo, biopsy samples obtained from patients with KSHV-related diseases show the most demethylation in the Lyta promoter region, whereas samples from a latently infected KSHV carrier remained in a methylated status. These results suggest a relationship among a demethylation status in the Lyta promoter, the reactivation of KSHV, and the development of KSHV-associated diseases.
Collapse
Affiliation(s)
- J Chen
- Department of Microbiology, Osaka University Medical School, 2-2 Yamada-oka, Suita, Osaka 565-0871, Japan
| | | | | | | | | | | | | |
Collapse
|
232
|
Jeong J, Papin J, Dittmer D. Differential regulation of the overlapping Kaposi's sarcoma-associated herpesvirus vGCR (orf74) and LANA (orf73) promoters. J Virol 2001; 75:1798-807. [PMID: 11160678 PMCID: PMC114089 DOI: 10.1128/jvi.75.4.1798-1807.2001] [Citation(s) in RCA: 95] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Similar to that of other herpesviruses, Kaposi's sarcoma-associated herpesvirus (KSHV/HHV-8) lytic replication destroys the host cell, while the virus can persist in a latent state in synchrony with the host. During latency only a few genes are transcribed, and the question becomes one of what determines latent versus lytic gene expression. Here we undertake a detailed analysis of the latency-associated nuclear antigen (LANA [orf73]) promoter (LANAp). We characterized a minimal region that is necessary and sufficient to maintain high-level transcription in all tissues tested, including primary endothelial cells and B cells, which are the suspected natural host for KSHV. We show that in transient-transfection assays LANAp mimics the expression pattern observed for the authentic promoter in the context of the KSHV episome. Unlike other KSHV promoters tested thus far, LANAp is not affected by tetradecanoyl phorbol acetate or viral lytic cycle functions. It is, however, subject to control by LANA itself and cellular regulatory factors, such as p53. This is in contrast to the K14/vGCR (orf74) promoter, which overlaps LANAp and directs transcription on the opposite strand. We isolated a minimal cis-regulatory region sufficient for K14/vGCR promoter activity and show that it, too, mimics the regulation observed for the authentic viral promoter. In particular, we demonstrate that its activity is absolutely dependent on the immediate-early transactivator orf50, the KSHV homolog of the Epstein-Barr virus Rta transactivator.
Collapse
Affiliation(s)
- J Jeong
- Department of Microbiology and Immunology, The University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma 73104, USA
| | | | | |
Collapse
|
233
|
Wu FY, Ahn JH, Alcendor DJ, Jang WJ, Xiao J, Hayward SD, Hayward GS. Origin-independent assembly of Kaposi's sarcoma-associated herpesvirus DNA replication compartments in transient cotransfection assays and association with the ORF-K8 protein and cellular PML. J Virol 2001; 75:1487-506. [PMID: 11152521 PMCID: PMC114054 DOI: 10.1128/jvi.75.3.1487-1506.2001] [Citation(s) in RCA: 137] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Six predicted Kaposi's sarcoma virus herpesvirus (KSHV) proteins have homology with other well-characterized herpesvirus core DNA replication proteins and are expected to be essential for viral DNA synthesis. Intact Flag-tagged protein products from all six were produced from genomic expression vectors, although the ORF40/41 transcript encoding a primase-helicase component proved to be spliced with a 127-bp intron. The intracellular localization of these six KSHV replication proteins and the mechanism of their nuclear translocation were investigated. SSB (single-stranded DNA binding protein, ORF6) and PPF (polymerase processivity factor, ORF59) were found to be intrinsic nuclear proteins, whereas POL (polymerase, ORF9), which localized in the cytoplasm on its own, was translocated to the nucleus when cotransfected with PPF. PAF (primase-associated factor, ORF40/41), a component of the primase-helicase tripartite subcomplex together with PRI (primase, ORF56) and HEL (helicase, ORF44), required the presence of all five other replication proteins for efficient nuclear translocation. Surprisingly, even in the absence of a lytic cycle replication origin (ori-Lyt) and any known initiator or origin binding protein, the protein products of all six KSHV core replication genes cooperated in a transient cotransfection assay to form large globular shaped pseudo-replication compartments (pseudo-RC), which excluded cellular DNA. These pseudo-RC structures were confirmed to include POL, SSB, PRI, and PAF but did not contain any newly synthesized DNA. Similar to the human cytomegalovirus system, the peripheries of these KSHV pre-RC were also found to be surrounded by punctate PML oncogenic domains (PODs). Furthermore, by transient cotransfection, the six KSHV core replication machinery proteins successfully replicated a plasmid containing EBV ori-Lyt in the presence of the Epstein-Barr virus-encoded DNA binding initiator protein, ZTA. The KSHV-encoded K8 (ORF-K8) protein, which is a distant evolutionary homologue to ZTA, was incorporated into pseudo-RC structures formed by transient cotransfection with the six core KSHV replication genes. However, unlike ZTA, K8 displayed a punctate nuclear pattern both in transfected cells and at early stages of lytic infection and colocalized with the cellular PML proteins in PODs. Finally, K8 was also found to accumulate in functional viral RC, detected by incorporation of pulse-labeled bromodeoxyuridine into newly synthesized DNA in both tetradecanoyl phorbol acetate-induced JSC-1 primary effusion lymphoblasts and in KSHV lytically infected endothelial cells.
Collapse
Affiliation(s)
- F Y Wu
- Molecular Virology Laboratories, Department of Pharmacology and Molecular Sciences, Johns Hopkins University School of Medicine, Baltimore, Maryland 21231-1000, USA
| | | | | | | | | | | | | |
Collapse
|