201
|
Quivy JP, Roche D, Kirschner D, Tagami H, Nakatani Y, Almouzni G. A CAF-1 dependent pool of HP1 during heterochromatin duplication. EMBO J 2004; 23:3516-26. [PMID: 15306854 PMCID: PMC516634 DOI: 10.1038/sj.emboj.7600362] [Citation(s) in RCA: 144] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2004] [Accepted: 07/15/2004] [Indexed: 11/08/2022] Open
Abstract
To investigate how the complex organization of heterochromatin is reproduced at each replication cycle, we examined the fate of HP1-rich pericentric domains in mouse cells. We find that replication occurs mainly at the surface of these domains where both PCNA and chromatin assembly factor 1 (CAF-1) are located. Pulse-chase experiments combined with high-resolution analysis and 3D modeling show that within 90 min newly replicated DNA become internalized inside the domain. Remarkably, during this time period, a specific subset of HP1 molecules (alpha and gamma) coinciding with CAF-1 and replicative sites is resistant to RNase treatment. Furthermore, these replication-associated HP1 molecules are detected in Suv39 knockout cells, which otherwise lack stable HP1 staining at pericentric heterochromatin. This replicative pool of HP1 molecules disappears completely following p150CAF-1 siRNA treatment. We conclude that during replication, the interaction of HP1 with p150CAF-1 is essential to promote delivery of HP1 molecules to heterochromatic sites, where they are subsequently retained by further interactions with methylated H3-K9 and RNA.
Collapse
Affiliation(s)
- Jean-Pierre Quivy
- Institut Curie, Section de Recherche, UMR218 du CNRS, 26, Paris, France
| | - Danièle Roche
- Institut Curie, Section de Recherche, UMR218 du CNRS, 26, Paris, France
| | - Doris Kirschner
- Institut Curie, Section de Recherche, UMR218 du CNRS, 26, Paris, France
| | - Hideaki Tagami
- Dana Farber Cancer Institute and Harvard Medical School, Boston, MA, USA
| | - Yoshihiro Nakatani
- Dana Farber Cancer Institute and Harvard Medical School, Boston, MA, USA
| | - Geneviève Almouzni
- Institut Curie, Section de Recherche, UMR218 du CNRS, 26, Paris, France
- Institut Curie, Section de Recherche, UMR218 du CNRS, 26, rue d'Ulm, 75248 Paris cedex 05, France. Tel.: + 33 1 4234 6701/6706; Fax: +33 1 4633 3016; E-mail:
| |
Collapse
|
202
|
Koundrioukoff S, Polo S, Almouzni G. Interplay between chromatin and cell cycle checkpoints in the context of ATR/ATM-dependent checkpoints. DNA Repair (Amst) 2004; 3:969-78. [PMID: 15279783 DOI: 10.1016/j.dnarep.2004.03.010] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Maintenance of both genome stability and its structural organization into chromatin are essential to avoid aberrant gene expression that could lead to neoplasia. Genome integrity being threatened by various sources of genotoxic stresses, cells have evolved regulatory mechanisms, termed cell cycle checkpoints. In general, these surveillance pathways are thought to act mainly to coordinate proficient DNA repair with cell cycle progression. To date, this cellular response to genotoxic stress has been viewed mainly as a DNA-based signal transduction pathway. Recent studies, in both yeast and human, however, highlight possible connections between chromatin structure and cell cycle checkpoints, in particular those involving kinases of the ATM and ATR family, known as key response factors activated early in the checkpoint pathway. In this review, based on this example, we will discuss hypotheses for chromatin-based events as potential initiators of a checkpoint response or conversely, for chromatin-associated factors as targets of checkpoint proteins, promoting changes in chromatin structure, in order to make a lesion more accessible and contribute to a more efficient repair response.
Collapse
Affiliation(s)
- Stephane Koundrioukoff
- Laboratory of Nuclear Dynamics and Genome Plasticity, UMR 218 CNRS/Curie Institute, 26 rue d'Ulm, 75248 Paris, cedex 5, France
| | | | | |
Collapse
|
203
|
Jiao R, Bachrati CZ, Pedrazzi G, Kuster P, Petkovic M, Li JL, Egli D, Hickson ID, Stagljar I. Physical and functional interaction between the Bloom's syndrome gene product and the largest subunit of chromatin assembly factor 1. Mol Cell Biol 2004; 24:4710-9. [PMID: 15143166 PMCID: PMC416397 DOI: 10.1128/mcb.24.11.4710-4719.2004] [Citation(s) in RCA: 39] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Bloom's syndrome (BS) is a genomic instability disorder characterized by cancer susceptibility. The protein defective in BS, BLM, belongs to the RecQ family of DNA helicases. In this study, we found that BLM interacts with hp150, the largest subunit of chromatin assembly factor 1 (CAF-1), in vitro and in vivo. Colocalization of a proportion of the cellular complement of these two proteins is found at specific nuclear foci coinciding with sites of DNA synthesis in the S phase. This colocalization increases in the presence of agents that damage DNA or inhibit DNA replication. In support of a functional interaction between BLM and CAF-1, we show that BLM inhibits CAF-1-mediated chromatin assembly during DNA repair in vitro. Although CAF-1 activity is not altered in BLM-deficient cells, the absence of BLM does impair the ability of CAF-1 to be mobilized within the nucleus in response to hydroxyurea treatment. Our results provide the first link between BLM and chromatin assembly coupled to DNA repair and suggest that BLM and CAF-1 function in a coordinated way to promote survival in response to DNA damage and/or replication blockade.
Collapse
Affiliation(s)
- Renjie Jiao
- Institute of Veterinary Biochemistry and Molecular Biology, University of Zürich, Winterthurstr. 190, CH-8057 Zürich, Switzerland
| | | | | | | | | | | | | | | | | |
Collapse
|
204
|
Affiliation(s)
- Christèle Maison
- Unité Mixte de Reserche 218, Centre National de la Recherche Scientifique/Institut Curie-Section de Recherche, 26 rue d'Ulm, 75231 Paris Cedex 05, France
| | | |
Collapse
|
205
|
Polo SE, Theocharis SE, Klijanienko J, Savignoni A, Asselain B, Vielh P, Almouzni G. Chromatin assembly factor-1, a marker of clinical value to distinguish quiescent from proliferating cells. Cancer Res 2004; 64:2371-81. [PMID: 15059888 DOI: 10.1158/0008-5472.can-03-2893] [Citation(s) in RCA: 70] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Histone synthesis and chromatin assembly are mainly associated with DNA replication and are thus intimately involved in cell cycle regulation. The expression of key components involved in these events in human cells was studied in relation to cell-proliferative status. Among several chromatin assembly factors, chromatin assembly factor (CAF)-1 stood out as the most discriminating marker of the proliferative state. We show, using both immunofluorescence and Western blot analysis, that the expression of both CAF-1 large subunits, p150 and p60, is massively down-regulated during quiescence in several cell lines. Upon exit from the quiescent state, the CAF-1 subunits are re-expressed early, before DNA replication. The amounts of either total or chromatin-associated pools of CAF-1 proteins correlate directly with cell proliferation. Regulation of CAF-1 expression is partly controlled at the RNA level, as shown by quantitative reverse transcription-PCR and Northern blot experiments. Biological material from benign and malignant human breast tumors analyzed by immunocytochemistry and immunohistochemistry exhibits a strong positive correlation between CAF-1 p60 expression and the following proliferation markers: S-phase fraction (r = 0.84, P < 0.0001); Ki-67 (r = 0.94, P < 0.0001); and proliferating cell nuclear antigen (r = 0.95, P = 0.0001). We discuss the advantages of using CAF-1 to assess cell proliferation. High CAF-1 p60 levels are also shown to be associated with various prognostic factors. Our data highlight the precise association of CAF-1 expression with the proliferative state and validate the use of this factor as a useful proliferation marker and prognostic indicator in malignant and benign breast lesions.
Collapse
MESH Headings
- Biomarkers, Tumor/biosynthesis
- Biomarkers, Tumor/genetics
- Biomarkers, Tumor/metabolism
- Biomarkers, Tumor/physiology
- Breast Neoplasms/genetics
- Breast Neoplasms/metabolism
- Breast Neoplasms/pathology
- Cell Division/physiology
- Cell Line, Tumor
- Chromatin/metabolism
- Chromatin Assembly Factor-1
- Chromosomal Proteins, Non-Histone/biosynthesis
- Chromosomal Proteins, Non-Histone/genetics
- Chromosomal Proteins, Non-Histone/metabolism
- Chromosomal Proteins, Non-Histone/physiology
- DNA-Binding Proteins/biosynthesis
- DNA-Binding Proteins/genetics
- DNA-Binding Proteins/metabolism
- DNA-Binding Proteins/physiology
- Female
- Gene Expression Regulation, Neoplastic
- HeLa Cells
- Humans
- Immunohistochemistry
- Middle Aged
- RNA, Neoplasm/genetics
- RNA, Neoplasm/metabolism
- Resting Phase, Cell Cycle/physiology
- S Phase/physiology
- Transcription Factors
Collapse
Affiliation(s)
- Sophie E Polo
- Laboratories of Nuclear Dynamics and Genome Plasticity, Curie Institute/CNRS, Paris, France
| | | | | | | | | | | | | |
Collapse
|
206
|
Nabatiyan A, Krude T. Silencing of chromatin assembly factor 1 in human cells leads to cell death and loss of chromatin assembly during DNA synthesis. Mol Cell Biol 2004; 24:2853-62. [PMID: 15024074 PMCID: PMC371118 DOI: 10.1128/mcb.24.7.2853-2862.2004] [Citation(s) in RCA: 97] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
In eukaryotic cells, chromatin serves as the physiological template for gene transcription, DNA replication, and repair. Chromatin assembly factor 1 (CAF-1) is the prime candidate protein to mediate assembly of newly replicated DNA into chromatin. To investigate the physiological role of CAF-1 in vivo, we used RNA interference (RNAi) to silence the 60-kDa subunit of CAF-1 (p60) in human cells. Transfection of a small interfering RNA (siRNA) directed against p60 resulted in efficient silencing of p60 expression within 24 h. This silencing led to an induction of programmed cell death in proliferating but not in quiescent human cells. Concomitantly, proliferating cells lacking p60 accumulated DNA double-strand breaks and increased levels of the phosphorylated histone H2A.X. Nuclear extracts from cells lacking p60 exhibited a 10-fold reduction of nucleosome assembly activity during DNA synthesis, which was restored upon addition of recombinant p60 protein. Nascent chromatin in cell nuclei lacking p60 showed significantly increased nuclease sensitivity, indicating chromatin assembly defects during DNA synthesis in vivo. Collectively, these data identify CAF-1 as an essential factor not only for S-phase-specific chromatin assembly but also for proliferating cell viability.
Collapse
Affiliation(s)
- Arman Nabatiyan
- Department of Zoology, University of Cambridge, Cambridge CB2 3EJ, United Kingdom
| | | |
Collapse
|
207
|
Loyola A, Almouzni G. Histone chaperones, a supporting role in the limelight. ACTA ACUST UNITED AC 2004; 1677:3-11. [PMID: 15020040 DOI: 10.1016/j.bbaexp.2003.09.012] [Citation(s) in RCA: 255] [Impact Index Per Article: 12.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2003] [Revised: 09/25/2003] [Accepted: 09/25/2003] [Indexed: 10/26/2022]
Abstract
In eukaryotic cells, highly basic histone proteins are associated with the DNA to form the nucleosome, the fundamental unit of chromatin. Histones are closely escorted by histone chaperones from their point of synthesis up to their delivery site. We will present an overview of the histone chaperones identified to date with their various roles, in an attempt to highlight their importance in cellular metabolism. Nucleoplasmin will illustrate a role in histone storage and Nap-1, a histone translocator. CAF-1 and Hira will provide examples of distinct histone deposition factors coupled to and uncoupled from DNA synthesis, respectively, while Asf1 could act as a histone donor. We then will illustrate with two examples how histone chaperones can be associated with chromatin remodeling activities. Finally, we will discuss how the RbAp46/48 proteins, as escort factors, are part of multiple complexes with various functions. Based on these examples, we will propose a scheme in which the diverse roles of histone chaperones are integrated within an assembly line for chromatin formation and regulation. Finally, we discuss how these chaperones may have more than a supporting role in a histone metabolic pathway.
Collapse
Affiliation(s)
- Alejandra Loyola
- Institut Curie/Section de Recherche, UMR 21826, rue d'Ulm, 75231 Paris Cedex 05, France
| | | |
Collapse
|
208
|
Tagami H, Ray-Gallet D, Almouzni G, Nakatani Y. Histone H3.1 and H3.3 complexes mediate nucleosome assembly pathways dependent or independent of DNA synthesis. Cell 2004; 116:51-61. [PMID: 14718166 DOI: 10.1016/s0092-8674(03)01064-x] [Citation(s) in RCA: 1015] [Impact Index Per Article: 48.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Deposition of the major histone H3 (H3.1) is coupled to DNA synthesis during DNA replication and possibly DNA repair, whereas histone variant H3.3 serves as the replacement variant for the DNA-synthesis-independent deposition pathway. To address how histones H3.1 and H3.3 are deposited into chromatin through distinct pathways, we have purified deposition machineries for these histones. The H3.1 and H3.3 complexes contain distinct histone chaperones, CAF-1 and HIRA, that we show are necessary to mediate DNA-synthesis-dependent and -independent nucleosome assembly, respectively. Notably, these complexes possess one molecule each of H3.1/H3.3 and H4, suggesting that histones H3 and H4 exist as dimeric units that are important intermediates in nucleosome formation. This finding provides new insights into possible mechanisms for maintenance of epigenetic information after chromatin duplication.
Collapse
Affiliation(s)
- Hideaki Tagami
- Dana-Farber Cancer Institute and Harvard Medical School, Boston, MA 02115, USA
| | | | | | | |
Collapse
|
209
|
Rusche LN, Kirchmaier AL, Rine J. The establishment, inheritance, and function of silenced chromatin in Saccharomyces cerevisiae. Annu Rev Biochem 2003; 72:481-516. [PMID: 12676793 DOI: 10.1146/annurev.biochem.72.121801.161547] [Citation(s) in RCA: 598] [Impact Index Per Article: 27.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Genomes are organized into active regions known as euchromatin and inactive regions known as heterochromatin, or silenced chromatin. This review describes contemporary knowledge and models for how silenced chromatin in Saccharomyces cerevisiae forms, functions, and is inherited. In S. cerevisiae, Sir proteins are the key structural components of silenced chromatin. Sir proteins interact first with silencers, which dictate which regions are silenced, and then with histone tails in nucleosomes as the Sir proteins spread from silencers along chromosomes. Importantly, the spreading of silenced chromatin requires the histone deacetylase activity of Sir2p. This requirement leads to a general model for the spreading and inheritance of silenced chromatin or other special chromatin states. Such chromatin domains are marked by modifications of the nucleosomes or DNA, and this mark is able to recruit an enzyme that makes further marks. Thus, among different organisms, multiple forms of repressive chromatin can be formed using similar strategies but completely different proteins. We also describe emerging evidence that mutations that cause global changes in the modification of histones can alter the balance between euchromatin and silenced chromatin within a cell.
Collapse
Affiliation(s)
- Laura N Rusche
- Department of Molecular and Cell Biology, University of California Berkeley, Berkeley, California 94720-3202, USA.
| | | | | |
Collapse
|
210
|
Green CM, Almouzni G. Local action of the chromatin assembly factor CAF-1 at sites of nucleotide excision repair in vivo. EMBO J 2003; 22:5163-74. [PMID: 14517254 PMCID: PMC204462 DOI: 10.1093/emboj/cdg478] [Citation(s) in RCA: 133] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
DNA damage and its repair can cause both local and global rearrangements of chromatin structure. In each case, the epigenetic information contained within this structure must be maintained. Using the recently developed method for the localized UV irradiation of cells, we analysed responses that occur locally to damage sites and global events triggered by local damage recognition. We thus demonstrate that, within a single cell, the recruitment of chromatin assembly factor 1 (CAF-1) to UV-induced DNA damage is a strictly local phenomenon, restricted to damage sites. Concomitantly, proliferating cell nuclear antigen (PCNA) locates to the same sites. This localized recruitment suggests that CAF-1 participates directly in chromatin structural rearrangements that occur in the vicinity of the damage. Use of nucleotide excision repair (NER)-deficient cells shows that the NER pathway--specifically dual incision--is required for recruitment of CAF-1 and PCNA. This in vivo demonstration of the local role of CAF-1, depending directly on NER, supports the hypothesis that CAF-1 ensures the maintenance of epigenetic information by acting locally at repair sites.
Collapse
Affiliation(s)
- Catherine M Green
- UMR218, Institut Curie Section de Recherche, 26 rue d'Ulm, 75248 Paris 05, France
| | | |
Collapse
|
211
|
Abstract
The enzyme responsible for maintenance methylation of CpG dinucleotides in vertebrates is DNMT1. The presence of DNMT1 in DNA replication foci raises the issue of whether this enzyme needs to gain access to nascent DNA before its packaging into nucleosomes, which occurs very rapidly behind the replication fork. Using nucleosomes positioned along the 5 S rRNA gene, we find that DNMT1 is able to methylate a number of CpG sites even when the DNA major groove is oriented toward the histone surface. However, we also find that the ability of DNMT1 to methylate nucleosomal sites is highly dependent on the nature of the DNA substrate. Although nucleosomes containing the Air promoter are refractory to methylation irrespective of target cytosine location, nucleosomes reconstituted onto the H19 imprinting control region are more accessible. These results argue that although DNMT1 is intrinsically capable of methylating some DNA sequences even after their packaging into nucleosomes, this is not the case for at least a fraction of DNA sequences whose function is regulated by DNA methylation.
Collapse
Affiliation(s)
- Mitsuru Okuwaki
- Cancer Research UK, London Research Institute, Clare Hall Laboratories, South Mimms, Hertfordshire EN6 3LD, United Kingdom
| | | |
Collapse
|
212
|
Maga G, Hubscher U. Proliferating cell nuclear antigen (PCNA): a dancer with many partners. J Cell Sci 2003; 116:3051-60. [PMID: 12829735 DOI: 10.1242/jcs.00653] [Citation(s) in RCA: 834] [Impact Index Per Article: 37.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Proliferating cell nuclear antigen (PCNA) was originally characterised as a DNA sliding clamp for replicative DNA polymerases and as an essential component of the eukaryotic chromosomal DNA replisome. Subsequent studies, however, have revealed its striking ability to interact with multiple partners, which are involved in several metabolic pathways, including Okazaki fragment processing, DNA repair, translesion DNA synthesis, DNA methylation, chromatin remodeling and cell cycle regulation. PCNA in mammalian cells thus appears to play a key role in controlling several reactions through the coordination and organisation of different partners. Two major questions have emerged: how do these proteins access PCNA in a coordinated manner, and how does PCNA temporally and spatially organise their functions? Structural and biochemical studies are starting to provide a first glimpse of how both tasks can be achieved.
Collapse
Affiliation(s)
- Giovanni Maga
- DNA Enzymology and Molecular Virology, Istituto di Genetica Molecolare, IGM-CNR, National Research Council, via Abbiategrasso 207, I-27100 Pavia, Italy
| | | |
Collapse
|
213
|
Hengstschläger M, Rosner M, Fountoulakis M, Lubec G. Regulation of PCNA and CAF-1 expression by the two tuberous sclerosis gene products. Biochem Biophys Res Commun 2003; 307:737-42. [PMID: 12893285 DOI: 10.1016/s0006-291x(03)01238-5] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Tuberous sclerosis is an autosomal dominant tumor suppressor gene syndrome affecting about 1 in 6000 individuals. Two genes have been shown to be responsible for this disease: TSC1, encoding hamartin and TSC, encoding tuberin. A variety of tumors characteristically occur in different organs of tuberous sclerosis patients and are believed to result from defects in cell cycle/cell size control. In this study, we performed two-dimensional gel electrophoresis with subsequent mass spectrometrical identification of protein spots after overexpression of TSC1 or TSC2. We found expression of PCNA and the p48 subunit of CAF-1 to be regulated by two tuberous sclerosis gene products. CAF-1 and PCNA interact as major regulators of chromatin assembly during DNA repair. We suggest that deregulation of the control of chromatin assembly might contribute to development of tumors in tuberous sclerosis patients and provide important new insights into the molecular development, especially since deregulation of chromatin assembly and DNA repair results in genomic instability, a hallmark of tumor development.
Collapse
Affiliation(s)
- Markus Hengstschläger
- Obstetrics and Gynecology, University of Vienna, Prenatal Diagnosis and Therapy, Währinger Gürtel 18-20, A-1090, Vienna, Austria
| | | | | | | |
Collapse
|
214
|
Abstract
Chromatin assembly is required for the duplication of eukaryotic chromosomes and functions at the interface between cell-cycle progression and gene expression. The central machinery that mediates chromatin assembly consists of histone chaperones, which deliver histones to the DNA, and ATP-utilizing motor proteins, which are DNA-translocating factors that act in conjunction with the histone chaperones to mediate the deposition of histones into periodic nucleosome arrays. Here, we describe these factors and propose possible mechanisms by which DNA-translocating motors might catalyse chromatin assembly.
Collapse
Affiliation(s)
- Karl A Haushalter
- Section of Molecular Biology, University of California, 9500 Gilman Drive, La Jolla, San Diego, California 92093-0347, USA
| | | |
Collapse
|
215
|
Abstract
DNA polymerase sliding clamps are a family of ring-shaped proteins that play essential roles in DNA metabolism. The proteins from the three domains of life, Bacteria, Archaea and Eukarya, as well as those from bacteriophages and viruses, were shown to interact with a large number of cellular factors and to influence their activity. In the last several years a large number of such proteins have been identified and studied. Here the various proteins that have been shown to interact with the sliding clamps of Bacteria, Archaea and Eukarya are summarized.
Collapse
Affiliation(s)
- Jonathan B Vivona
- University of Maryland Biotechnology Institute, Center for Advanced Research in Biotechnology, 9600 Gudelsky Drive, Rockville, MD 20850, USA
| | | |
Collapse
|
216
|
Okano S, Lan L, Caldecott KW, Mori T, Yasui A. Spatial and temporal cellular responses to single-strand breaks in human cells. Mol Cell Biol 2003; 23:3974-81. [PMID: 12748298 PMCID: PMC155230 DOI: 10.1128/mcb.23.11.3974-3981.2003] [Citation(s) in RCA: 275] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
DNA single-strand breaks (SSB) are one of the most frequent DNA lesions produced by reactive oxygen species and during DNA metabolism, but the analysis of cellular responses to SSB remains difficult due to the lack of an experimental method to produce SSB alone in cells. By using human cells expressing a foreign UV damage endonuclease (UVDE) and irradiating the cells with UV through tiny pores in membrane filters, we created SSB in restricted areas in the nucleus by the immediate action of UVDE on UV-induced DNA lesions. Cellular responses to the SSB were characterized by using antibodies and fluorescence microscopy. Upon UV irradiation, poly(ADP-ribose) synthesis occurred immediately in the irradiated area. Simultaneously, but dependent on poly(ADP-ribosyl)ation, XRCC1 was translocated from throughout the nucleus, including nucleoli, to the SSB. The BRCT1 domain of XRCC1 protein was indispensable for its poly(ADP-ribose)-dependent recruitment to the SSB. Proliferating cell nuclear antigen and the p150 subunit of chromatin assembly factor 1 also accumulated at the SSB in a detergent-resistant form, which was significantly reduced by inhibition of poly(ADP-ribose) synthesis. Our results show the importance of poly(ADP-ribosyl)ation in sequential cellular responses to SSB.
Collapse
Affiliation(s)
- Satoshi Okano
- Department of Molecular Genetics, Institute of Development, Aging and Cancer, Tohoku University, 980-8575 Sendai, Japan
| | | | | | | | | |
Collapse
|
217
|
Myung K, Pennaneach V, Kats ES, Kolodner RD. Saccharomyces cerevisiae chromatin-assembly factors that act during DNA replication function in the maintenance of genome stability. Proc Natl Acad Sci U S A 2003; 100:6640-5. [PMID: 12750463 PMCID: PMC164500 DOI: 10.1073/pnas.1232239100] [Citation(s) in RCA: 118] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Some spontaneous gross chromosomal rearrangements (GCRs) seem to result from DNA-replication errors. The chromatin-assembly factor I (CAF-I) and replication-coupling assembly factor (RCAF) complexes function in chromatin assembly during DNA replication and repair and could play a role in maintaining genome stability. Inactivation of CAF-I or RCAF increased the rate of accumulating different types of GCRs including translocations and deletion of chromosome arms with associated de novo telomere addition. Inactivation of CAF-I seems to cause damage that activates the DNA-damage checkpoints, whereas inactivation of RCAF seems to cause damage that activates the DNA-damage and replication checkpoints. Both defects result in increased genome instability that is normally suppressed by these checkpoints, RAD52-dependent recombination, and PIF1-dependent inhibition of de novo telomere addition. Treatment of CAF-I- or RCAF-defective cells with methyl methanesulfonate increased the induction of GCRs compared with that seen for a wild-type strain. These results indicate that coupling of chromatin assembly to DNA replication and DNA repair is critical to maintaining genome stability.
Collapse
Affiliation(s)
- Kyungjae Myung
- Ludwig Institute for Cancer Research, Cancer Center and Department of Medicine, University of California at San Diego School of Medicine, La Jolla 92093, USA
| | | | | | | |
Collapse
|
218
|
Reese BE, Bachman KE, Baylin SB, Rountree MR. The methyl-CpG binding protein MBD1 interacts with the p150 subunit of chromatin assembly factor 1. Mol Cell Biol 2003; 23:3226-36. [PMID: 12697822 PMCID: PMC153189 DOI: 10.1128/mcb.23.9.3226-3236.2003] [Citation(s) in RCA: 75] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
DNA promoter hypermethylation has been shown to be a functional mechanism of transcriptional repression. This epigenetic gene silencing is thought to involve the recruitment of chromatin-remodeling factors, such as histone deacetylases, to methylated DNA via a family of proteins called methyl-CpG binding proteins (MBD1 to -4). MBD1, a member of this family, exhibits transcription-repressive activity, but to this point no interacting protein partners have been identified. In this study, we demonstrate that MBD1 partners with the p150 subunit of chromatin assembly factor 1 (CAF-1), forming a multiprotein complex that also contains HP1alpha. The MBD1-CAF-1 p150 interaction requires the methyl-CpG binding domain of MBD1, and the association occurs in the C terminus of CAF-1 p150. The two proteins colocalize to regions of dense heterochromatin in mouse cells, and overexpression of the C terminus of CAF-1 p150 prevents the targeting of MBD1 in these cells without disrupting global heterochromatin structure. This interaction suggests a role for MBD1 and CAF-1 p150 in methylation-mediated transcriptional repression and the inheritance of epigenetically determined chromatin states.
Collapse
Affiliation(s)
- Brian E Reese
- Tumor Biology Division, The Sidney Kimmel Comprehensive Cancer Center, The Johns Hopkins University School of Medicine, Baltimore, Maryland 21231, USA
| | | | | | | |
Collapse
|
219
|
Abstract
Recent structures of the nucleosome core particle reveal details of histone-histone and histone-DNA interactions. These structures have now set the stage for understanding chromatin assembly and dynamics during replication and transcription. Histone chaperones and chromatin remodeling complexes are important in both of these processes. The nucleosome and its protein core, the histone octamer, have twofold symmetry, which histone chaperones may use to bind core histones. Recent studies suggest that the nucleoplasmin pentamer may mediate histone storage, sperm chromatin decondensation and nucleosome assembly, by dimerizing to form a decamer. In this model, histone binding on the lateral surface of the chaperone involves stereospecific interactions and a shared twofold axis.
Collapse
Affiliation(s)
- Christopher W Akey
- Department of Physiology and Biophysics, Boston University School of Medicine, 700 Albany Street, Boston, MA 02118-2526, USA.
| | | |
Collapse
|
220
|
Ye X, Franco AA, Santos H, Nelson DM, Kaufman PD, Adams PD. Defective S phase chromatin assembly causes DNA damage, activation of the S phase checkpoint, and S phase arrest. Mol Cell 2003; 11:341-51. [PMID: 12620223 DOI: 10.1016/s1097-2765(03)00037-6] [Citation(s) in RCA: 199] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
The S phase checkpoint protects the genome from spontaneous damage during DNA replication, although the cause of damage has been unknown. We used a dominant-negative mutant of a subunit of CAF-I, a complex that assembles newly synthesized DNA into nucleosomes, to inhibit S phase chromatin assembly and found that this induced S phase arrest. Arrest was accompanied by DNA damage and S phase checkpoint activation and required ATR or ATM kinase activity. These results show that in human cells CAF-I activity is required for completion of S phase and that a defect in chromatin assembly can itself induce DNA damage. We propose that errors in chromatin assembly, occurring spontaneously or caused by genetic mutations or environmental agents, contribute to genome instability.
Collapse
Affiliation(s)
- Xiaofen Ye
- Division of Basic Science, Fox Chase Cancer Center, Philadelphia, PA 19111, USA
| | | | | | | | | | | |
Collapse
|
221
|
Ray-Gallet D, Almouzni G. DNA Synthesis-Dependent and -Independent Chromatin Assembly Pathways in Xenopus Egg Extracts. Methods Enzymol 2003; 375:117-31. [PMID: 14870663 DOI: 10.1016/s0076-6879(03)75008-3] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
|
222
|
Reyes JC, Hennig L, Gruissem W. Chromatin-remodeling and memory factors. New regulators of plant development. PLANT PHYSIOLOGY 2002; 130:1090-101. [PMID: 12427976 PMCID: PMC1540260 DOI: 10.1104/pp.006791] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/17/2023]
Affiliation(s)
- José C Reyes
- Instituto de Bioquímica Vegetal y Fotosíntesis, Centro de Investigaciones Isla de la Cartuja, Avenida Américo Vespucio s/n, 41092 Sevilla, Spain
| | | | | |
Collapse
|
223
|
Lu X, Tan CK, Zhou JQ, You M, Carastro LM, Downey KM, So AG. Direct interaction of proliferating cell nuclear antigen with the small subunit of DNA polymerase delta. J Biol Chem 2002; 277:24340-5. [PMID: 11986310 DOI: 10.1074/jbc.m200065200] [Citation(s) in RCA: 42] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The interaction between proliferating cell nuclear antigen (PCNA) and DNA polymerase delta is essential for processive DNA synthesis during DNA replication/repair; however, the identity of the subunit of DNA polymerase delta that directly interacts with PCNA has not been resolved until now. In the present study we have used reciprocal co-immunoprecipitation experiments to determine which of the two subunits of core DNA polymerase delta, the 125-kDa catalytic subunit or the 50-kDa small subunit, directly interacts with PCNA. We found that PCNA co-immunoprecipitated with human p50, as well as calf thymus DNA polymerase delta heterodimer, but not with p125 alone, suggesting that PCNA directly interacts with p50 but not with p125. A PCNA-binding motif, similar to the sliding clamp-binding motif of bacteriophage RB69 DNA polymerase, was identified in the N terminus of p50. A 22-amino acid oligopeptide containing this sequence (MRPFL) was shown to bind PCNA by far Western analysis and to compete with p50 for binding to PCNA in co-immunoprecipitation experiments. The binding of p50 to PCNA was inhibited by p21, suggesting that the two proteins compete for the same binding site on PCNA. These results establish that the interaction of PCNA with DNA polymerase delta is mediated through the small subunit of the enzyme.
Collapse
Affiliation(s)
- Xiaoqing Lu
- Departments of Medicine and Biochemistry and Molecular Biology, University of Miami School of Medicine, Miami, Florida 33101, USA
| | | | | | | | | | | | | |
Collapse
|
224
|
Abstract
Fundamental mechanisms that regulate chromatin assembly and transcription have been elucidated recently using genetics and highly defined biochemical systems. Once DNA is packaged into chromatin, its function is controlled by the ordered recruitment of diverse enzymatic complexes that structurally remodel or chemically modify nucleosomes. Recent studies provide insight into the functional selectivity of chromatin-remodeling and -modifying complexes and how they act in specific combinations to regulate individual genes and cellular pathways.
Collapse
Affiliation(s)
- Shilpa Kadam
- Regulatory Biology Laboratory, The Salk Institute for Biological Studies, 10010 North Torrey Pines Road, La Jolla, CA 92037, USA
| | | |
Collapse
|
225
|
Ray-Gallet D, Quivy JP, Scamps C, Martini EMD, Lipinski M, Almouzni G. HIRA is critical for a nucleosome assembly pathway independent of DNA synthesis. Mol Cell 2002; 9:1091-100. [PMID: 12049744 DOI: 10.1016/s1097-2765(02)00526-9] [Citation(s) in RCA: 324] [Impact Index Per Article: 14.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
The mammalian HIRA gene encodes a histone-interacting protein whose homolog in Xenopus laevis is characterized here. In vitro, recombinant Xenopus HIRA bound purified core histones and promoted their deposition onto plasmid DNA. The Xenopus HIRA protein, tightly associated with nuclear structures in somatic cells, was found in a soluble maternal pool in early embryos. Xenopus egg extracts, known for their chromatin assembly efficiency, were specifically immunodepleted for HIRA. These depleted extracts were severely impaired in their ability to assemble nucleosomes on nonreplicated DNA, although nucleosome formation associated with DNA synthesis remained efficient. Furthermore, this defect was largely corrected by reintroduction of HIRA along with (H3-H4)(2) tetramers. We thus delineate a nucleosome assembly pathway that depends on HIRA.
Collapse
|
226
|
Tyler JK. Chromatin assembly. Cooperation between histone chaperones and ATP-dependent nucleosome remodeling machines. EUROPEAN JOURNAL OF BIOCHEMISTRY 2002; 269:2268-74. [PMID: 11985607 DOI: 10.1046/j.1432-1033.2002.02890.x] [Citation(s) in RCA: 110] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Chromatin is a highly dynamic structure that plays an essential role in regulating all nuclear processes that utilize the DNA template including DNA repair, replication, transcription and recombination. Thus, the mechanisms by which chromatin structures are assembled and modified are questions of broad interest. This minireview will focus on two groups of proteins: (a) histone chaperones and (b) ATP-dependent chromatin remodeling machines, that co-operate to assemble DNA and histone proteins into chromatin. The current understanding of how histone chaperones and ATP-dependent remodeling machines coordinately assemble chromatin in vitro will be discussed, together with the growing body of genetic evidence that supports the role of histone chaperones in the cell.
Collapse
Affiliation(s)
- Jessica K Tyler
- Department of Biochemistry and Molecular Genetics, School of Medicine, University of Colorado Health Sciences Center, Denver 80262, USA.
| |
Collapse
|
227
|
Mello JA, Silljé HHW, Roche DMJ, Kirschner DB, Nigg EA, Almouzni G. Human Asf1 and CAF-1 interact and synergize in a repair-coupled nucleosome assembly pathway. EMBO Rep 2002; 3:329-34. [PMID: 11897662 PMCID: PMC1084056 DOI: 10.1093/embo-reports/kvf068] [Citation(s) in RCA: 233] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
The efficient assembly of newly replicated and repaired DNA into chromatin is essential for proper genome function. Based on genetic studies in Saccharomyces cerevisiae, the histone chaperone anti-silencing function 1 (Asf1) has been implicated in the DNA repair response. Here, the human homologs are shown to function synergistically with human CAF-1 to assemble nucleosomes during nucleotide excision repair in vitro. Furthermore, we demonstrate that hAsf1 proteins can interact directly with the p60 subunit of hCAF-1. In contrast to hCAF-1 p60, the nuclear hAsf1 proteins are not significantly associated with chromatin in cells before or after the induction of DNA damage, nor specifically recruited to damaged DNA during repair in a bead-linked DNA assay. A model is proposed in which the synergism between hAsf1 and CAF-1 for nucleosome formation during DNA repair is achieved through a transient physical interaction allowing histone delivery from Asf1 to CAF-1.
Collapse
Affiliation(s)
- Jill A Mello
- Institut Curie, Research Section, UMR 218 du Centre National de la Recherche Scientifique (CNRS), 26 rue d'Ulm, 75248 Paris cedex 05, France
| | | | | | | | | | | |
Collapse
|
228
|
Abstract
The study of DNA replication in eukaryotic chromosomes has revealed a multitude of different regulatory levels. Nuclear and chromosomal location as well as chromatin structure may affect the activity of replication origins and their modulation during development.
Collapse
Affiliation(s)
- Susan A Gerbi
- Department of Molecular Biology, Cell Biology and Biochemistry, Brown University, Division of Biology and Medicine, Providence, Rhode Island 02912, USA.
| | | |
Collapse
|
229
|
Abstract
In eukaryotic cells, the inheritance of both the DNA sequence and its organization into chromatin is critical to maintain genome stability. This maintenance is challenged by DNA damage. To fully understand how the cell can tolerate genotoxic stress, it is necessary to integrate knowledge of the nature of DNA damage, its detection and its repair within the chromatin environment of a eukaryotic nucleus. The multiplicity of the DNA damage and repair processes, as well as the complex nature of chromatin, have made this issue difficult to tackle. Recent progress in each of these areas enables us to address, both at a molecular and a cellular level, the importance of inter-relationships between them. In this review we revisit the 'access, repair, restore' model, which was proposed to explain how the conserved process of nucleotide excision repair operates within chromatin. Recent studies have identified factors potentially involved in this process and permit refinement of the basic model. Drawing on this model, the chromatin alterations likely to be required during other processes of DNA damage repair, particularly double-strand break repair, are discussed and recently identified candidates that might perform such alterations are highlighted.
Collapse
Affiliation(s)
- Catherine M Green
- UMR 218, Pavillion Pasteur, Institut Curie section de recherche, 26, rue d'Ulm, 75248 Paris cedex 05, France
| | | |
Collapse
|
230
|
Krawitz DC, Kama T, Kaufman PD. Chromatin assembly factor I mutants defective for PCNA binding require Asf1/Hir proteins for silencing. Mol Cell Biol 2002; 22:614-25. [PMID: 11756556 PMCID: PMC139734 DOI: 10.1128/mcb.22.2.614-625.2002] [Citation(s) in RCA: 139] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Chromatin assembly factor I (CAF-I) is a conserved histone H3/H4 deposition complex. Saccharomyces cerevisiae mutants lacking CAF-I subunit genes (CAC1 to CAC3) display reduced heterochromatic gene silencing. In a screen for silencing-impaired cac1 alleles, we isolated a mutation that reduced binding to the Cac3p subunit and another that impaired binding to the DNA replication protein PCNA. Surprisingly, mutations in Cac1p that abolished PCNA binding resulted in very minor telomeric silencing defects but caused silencing to be largely dependent on Hir proteins and Asf1p, which together comprise an alternative silencing pathway. Consistent with these phenotypes, mutant CAF-I complexes defective for PCNA binding displayed reduced nucleosome assembly activity in vitro but were stimulated by Asf1p-histone complexes. Furthermore, these mutant CAF-I complexes displayed a reduced preference for depositing histones onto newly replicated DNA. We also observed a weak interaction between Asf1p and Cac2p in vitro, and we hypothesize that this interaction underlies the functional synergy between these histone deposition proteins.
Collapse
Affiliation(s)
- Denise C Krawitz
- Lawrence Berkeley National Laboratory and Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, California 94720, USA
| | | | | |
Collapse
|
231
|
Lu P, Ren M, Zhai ZH. Nuclear reconstitution of plant (Orychophragmus violaceus) demembranated sperm in cell-free extracts from animal (Xenopus laevis) eggs. J Struct Biol 2001; 136:89-95. [PMID: 11886209 DOI: 10.1006/jsbi.2001.4425] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Cell-free extracts from animal Xenopus laevis egg could induce chromatin decondensation and pronuclear formation from demembranated plant (Orychophragmus violaceus) sperm. When incubated with Xenopus egg extracts, the demembranated sperm began to swell and then gradually decondensed. The assembly of the nuclear envelope in the reconstituted nuclei was visualized by means of electron microscopy and fluorescence microscopy. Membrane vesicles fused to form the double envelope around the periphery of the decondensed chromatin. The morphology of the newly formed nuclei, with a double membrane, was similar to that of nuclei after fertilization. The electron micrograph of the whole-mount prepared nuclear matrix--lamina showed the reconstituted nucleus to be filled with a dense network.
Collapse
Affiliation(s)
- P Lu
- Department of Cell Biology and Genetics, School of Life Sciences, Peking University, Beijing 100871, China.
| | | | | |
Collapse
|
232
|
He H, Tan CK, Downey KM, So AG. A tumor necrosis factor alpha- and interleukin 6-inducible protein that interacts with the small subunit of DNA polymerase delta and proliferating cell nuclear antigen. Proc Natl Acad Sci U S A 2001; 98:11979-84. [PMID: 11593007 PMCID: PMC59753 DOI: 10.1073/pnas.221452098] [Citation(s) in RCA: 41] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
A cDNA encoding a protein of 36 kDa, polymerase delta-interacting protein 1 (PDIP1), that interacts with the small subunit (p50) of DNA polymerase delta (pol delta) was identified in a two-hybrid screen of a HepG2 cDNA library by using p50 as bait. The interaction of PDIP1 with p50 was confirmed by pull-down assays, and a similar assay was used to demonstrate that PDIP1 interacts directly with the proliferating cell nuclear antigen (PCNA). PCNA and p50 bound to PDIP1 simultaneously, and PDIP1 stimulated pol delta activity in vitro in the presence, but not the absence, of PCNA, suggesting that PDIP1 also interacts functionally with both p50 and PCNA. Subcellular localization studies demonstrated that PDIP1 is a nuclear protein that colocalizes with PCNA at replication foci. A putative PCNA-binding motif was identified within the C terminus of PDIP1, and a synthetic peptide containing this PCNA-binding motif was shown to bind PCNA by far-Western analysis. Northern analysis demonstrated that PDIP1 mRNA is present in a wide variety of human tissues. PDIP1 was found to be highly homologous to a previously identified protein, B12 [Wolf, F. W., Marks, R. M., Sarma. V., Byers, M. G., Katz, R. W., Shows, T. B. & Dixit, V. M. (1992) J. Biol. Chem. 267, 1317-1326], one of the early response genes induced by tumor necrosis factor alpha. PDIP1 synthesis can also be induced by tumor necrosis factor alpha and by IL-6, cytokines essential for liver regeneration after loss of hepatic tissue. It is suggested that PDIP1 provides a link between cytokine activation and DNA replication in liver as well as in other tissues.
Collapse
Affiliation(s)
- H He
- Department of Biochemistry, University of Miami School of Medicine, Miami, FL 33101, USA
| | | | | | | |
Collapse
|
233
|
Tyler JK, Collins KA, Prasad-Sinha J, Amiott E, Bulger M, Harte PJ, Kobayashi R, Kadonaga JT. Interaction between the Drosophila CAF-1 and ASF1 chromatin assembly factors. Mol Cell Biol 2001; 21:6574-84. [PMID: 11533245 PMCID: PMC99803 DOI: 10.1128/mcb.21.19.6574-6584.2001] [Citation(s) in RCA: 172] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The assembly of newly synthesized DNA into chromatin is essential for normal growth, development, and differentiation. To gain a better understanding of the assembly of chromatin during DNA synthesis, we identified, cloned, and characterized the 180- and 105-kDa polypeptides of Drosophila chromatin assembly factor 1 (dCAF-1). The purified recombinant p180+p105+p55 dCAF-1 complex is active for DNA replication-coupled chromatin assembly. Furthermore, we have established that the putative 75-kDa polypeptide of dCAF-1 is a C-terminally truncated form of p105 that does not coexist in dCAF-1 complexes containing the p105 subunit. The analysis of native and recombinant dCAF-1 revealed an interaction between dCAF-1 and the Drosophila anti-silencing function 1 (dASF1) component of replication-coupling assembly factor (RCAF). The binding of dASF1 to dCAF-1 is mediated through the p105 subunit of dCAF-1. Consistent with the interaction between dCAF-1 p105 and dASF1 in vitro, we observed that dASF1 and dCAF-1 p105 colocalized in vivo in Drosophila polytene chromosomes. This interaction between dCAF-1 and dASF1 may be a key component of the functional synergy observed between RCAF and dCAF-1 during the assembly of newly synthesized DNA into chromatin.
Collapse
Affiliation(s)
- J K Tyler
- Section of Molecular Biology, University of California, San Diego, La Jolla, California 92093-0347, USA
| | | | | | | | | | | | | | | |
Collapse
|
234
|
Dalrymple BP, Kongsuwan K, Wijffels G, Dixon NE, Jennings PA. A universal protein-protein interaction motif in the eubacterial DNA replication and repair systems. Proc Natl Acad Sci U S A 2001; 98:11627-32. [PMID: 11573000 PMCID: PMC58780 DOI: 10.1073/pnas.191384398] [Citation(s) in RCA: 257] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The interaction between DNA polymerases and sliding clamp proteins confers processivity in DNA synthesis. This interaction is critical for most DNA replication machines from viruses and prokaryotes to higher eukaryotes. The clamp proteins also participate in a variety of dynamic and competing protein-protein interactions. However, clamp-protein binding sequences have not so far been identified in the eubacteria. Here we show from three lines of evidence, bioinformatics, yeast two-hybrid analysis, and inhibition of protein-protein interaction by modified peptides, that variants of a pentapeptide motif (consensus QL[SD]LF) are sufficient to enable interaction of a number of proteins with an archetypal eubacterial sliding clamp (the beta subunit of Escherichia coli DNA polymerase III holoenzyme). Representatives of this motif are present in most sequenced members of the eubacterial DnaE, PolC, PolB, DinB, and UmuC families of DNA polymerases and the MutS1 mismatch repair protein family. The component tripeptide DLF inhibits the binding of the alpha (DnaE) subunit of E. coli DNA polymerase III to beta at microM concentration, identifying key residues. Comparison of the eubacterial, eukaryotic, and archaeal sliding clamp binding motifs suggests that the basic interactions have been conserved across the evolutionary landscape.
Collapse
Affiliation(s)
- B P Dalrymple
- Commonwealth Scientific and Industrial Research Organisation Livestock Industries, 120 Meiers Road, Indooroopilly QLD 4068, Australia
| | | | | | | | | |
Collapse
|
235
|
Brand M, Moggs JG, Oulad-Abdelghani M, Lejeune F, Dilworth F, Stevenin J, Almouzni G, Tora L. UV-damaged DNA-binding protein in the TFTC complex links DNA damage recognition to nucleosome acetylation. EMBO J 2001; 20:3187-96. [PMID: 11406595 PMCID: PMC150203 DOI: 10.1093/emboj/20.12.3187] [Citation(s) in RCA: 163] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Initiation of transcription of protein-encoding genes by RNA polymerase II (Pol II) was thought to require transcription factor TFIID, a complex comprised of the TATA box-binding protein (TBP) and TBP-associated factors (TAF(II)s). In the presence of TBP-free TAF(II) complex (TFTC), initiation of Pol II transcription can occur in the absence of TFIID. TFTC containing the GCN5 acetyltransferase acetylates histone H3 in a nucleosomal context. We have identified a 130 kDa subunit of TFTC (SAP130) that shares homology with the large subunit of UV-damaged DNA-binding factor. TFTC preferentially binds UV-irradiated DNA, UV-damaged DNA inhibits TFTC-mediated Pol II transcription and TFTC is recruited in parallel with the nucleotide excision repair protein XP-A to UV-damaged DNA. TFTC preferentially acetylates histone H3 in nucleosomes assembled on UV-damaged DNA. In agreement with this, strong histone H3 acetylation occurs in intact cells after UV irradiation. These results suggest that the access of DNA repair machinery to lesions within chromatin may be facilitated by TFTC via covalent modification of chromatin. Thus, our experiments reveal a molecular link between DNA damage recognition and chromatin modification.
Collapse
Affiliation(s)
| | - Jonathan G. Moggs
- Institut de Génétique et de Biologie Moléculaire et Cellulaire, Department of ‘Transcriptional and post-transcriptional control of gene regulation’, CNRS/INSERM/ULP, BP 163, 67404 Illkirch Cedex, CU de Strasbourg and
Institut Curie, UMR 218 du CNRS, 26, rue d’Ulm, 75248 Paris Cedex 05, France Present address: Zeneca Central Toxicology Laboratory, Alderley Park, Cheshire SK10 4TJ, UK Corresponding author e-mail:
| | | | | | | | | | - Geneviève Almouzni
- Institut de Génétique et de Biologie Moléculaire et Cellulaire, Department of ‘Transcriptional and post-transcriptional control of gene regulation’, CNRS/INSERM/ULP, BP 163, 67404 Illkirch Cedex, CU de Strasbourg and
Institut Curie, UMR 218 du CNRS, 26, rue d’Ulm, 75248 Paris Cedex 05, France Present address: Zeneca Central Toxicology Laboratory, Alderley Park, Cheshire SK10 4TJ, UK Corresponding author e-mail:
| | - Làszlò Tora
- Institut de Génétique et de Biologie Moléculaire et Cellulaire, Department of ‘Transcriptional and post-transcriptional control of gene regulation’, CNRS/INSERM/ULP, BP 163, 67404 Illkirch Cedex, CU de Strasbourg and
Institut Curie, UMR 218 du CNRS, 26, rue d’Ulm, 75248 Paris Cedex 05, France Present address: Zeneca Central Toxicology Laboratory, Alderley Park, Cheshire SK10 4TJ, UK Corresponding author e-mail:
| |
Collapse
|
236
|
Stunkel W, Ait-Si-Ali S, Jones PL, Wolffe AP. Programming the transcriptional state of replicating methylated dna. J Biol Chem 2001; 276:20743-9. [PMID: 11278800 DOI: 10.1074/jbc.m010967200] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
CpG methylation is maintained in daughter chromatids by the action of DNA methyltransferase at the replication fork. An opportunity exists for transcription factors at replication forks to bind their cognate sequences and thereby prevent remethylation by DNA methyltransferase. To test this hypothesis, we injected a linearized, methylated, and partially single-stranded reporter plasmid into the nuclei of Xenopus oocytes and followed changes in the transcriptional activity after DNA replication. We find that dependent on Gal4-VP16, the action of DNA methyltransferase, and replication-coupled chromatin assembly DNA replication provides a window of time in which regulatory factors can activate or repress gene activity. Demethylation in the promoter region near the GAL4 binding sites of the newly synthesized DNA did not occur even though the Gal4 binding sites were occupied and transcription was activated. We conclude that "passive" demethylation at the replication fork is not simply dependent on the presence of DNA binding transcriptional activators.
Collapse
Affiliation(s)
- W Stunkel
- NICHD, National Institutes of Health, Bethesda, Maryland 20814, USA.
| | | | | | | |
Collapse
|
237
|
Mattock H, Jares P, Zheleva DI, Lane DP, Warbrick E, Blow JJ. Use of peptides from p21 (Waf1/Cip1) to investigate PCNA function in Xenopus egg extracts. Exp Cell Res 2001; 265:242-51. [PMID: 11302689 DOI: 10.1006/excr.2001.5181] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Cell-free systems derived from unfertilized Xenopus eggs have been particularly informative in the study of the regulation and biochemistry of DNA replication. We have developed a Xenopus-based system to analyze proliferating cell nuclear antigen (PCNA)-specific effects on the functional properties of egg extracts. To do this, we have coupled peptides derived from p21 (Waf1/Cip1) to beads and used these to deplete PCNA from Xenopus egg extracts. The effect on various aspects of DNA replication can be analyzed after the readdition of PCNA and other purified proteins. Using this system, we have shown that replication of single-stranded M13 DNA is entirely dependent upon PCNA. By adding exogenous T7 DNA polymerase to PCNA-depleted extracts, we have uncoupled processive DNA replication from PCNA activity and so created an experimental system to analyze the dependence of postreplicative processes on PCNA function. We have shown that successful chromatin assembly is specifically dependent on PCNA. However, systems for analyzing the far more complex mechanisms required for the replication of nuclear double-stranded DNA have proved so far to be refractory to specific PCNA depletion.
Collapse
Affiliation(s)
- H Mattock
- Department of Surgery and Molecular Oncology, University of Dundee, Ninewells Hospital and Medical School, Dundee DD1 9SY, United Kingdom
| | | | | | | | | | | |
Collapse
|
238
|
Quivy JP, Grandi P, Almouzni G. Dimerization of the largest subunit of chromatin assembly factor 1: importance in vitro and during Xenopus early development. EMBO J 2001; 20:2015-27. [PMID: 11296234 PMCID: PMC125230 DOI: 10.1093/emboj/20.8.2015] [Citation(s) in RCA: 89] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2000] [Revised: 02/01/2001] [Accepted: 02/20/2001] [Indexed: 11/14/2022] Open
Abstract
To date, the in vivo importance of chromatin assembly factors during development in vertebrates is unknown. Chromatin assembly factor 1 (CAF-1) represents the best biochemically characterized factor promoting chromatin assembly during DNA replication or repair in human cell-free systems. Here, we identify a Xenopus homologue of the largest subunit of CAF-1 (p150). Novel dimerization properties are found conserved in both Xenopus and human p150. A region of 36 amino acids required for p150 dimerization was identified. Deletion of this domain abolishes the ability of p150 to promote chromatin assembly in vitro. A dominant-negative interference based on these dimerization properties occurs both in vitro and in vivo. In the embryo, nuclear organization was severely affected and cell cycle progression was impaired during the rapid early cleaving stages of Xenopus development. We propose that the rapid proliferation at early developmental stages necessitates the unique properties of an assembly factor that can ensure a tight coupling between DNA replication or repair and chromatin assembly.
Collapse
Affiliation(s)
| | - Paola Grandi
- Laboratoire de Dynamique Nucléaire et Plasticité du Génome (UMR 218 du CNRS), Institut Curie/Section de Recherche, 26 rue d’Ulm, 75231 Paris Cedex 05, France
Present address; CellZome, Meyerhofstrasse 1, D-69117 Heidelberg, Germany Corresponding author e-mail: J.-P.Quivy and P.Grandi contributed equally to this work
| | - Geneviève Almouzni
- Laboratoire de Dynamique Nucléaire et Plasticité du Génome (UMR 218 du CNRS), Institut Curie/Section de Recherche, 26 rue d’Ulm, 75231 Paris Cedex 05, France
Present address; CellZome, Meyerhofstrasse 1, D-69117 Heidelberg, Germany Corresponding author e-mail: J.-P.Quivy and P.Grandi contributed equally to this work
| |
Collapse
|
239
|
Ura K, Araki M, Saeki H, Masutani C, Ito T, Iwai S, Mizukoshi T, Kaneda Y, Hanaoka F. ATP-dependent chromatin remodeling facilitates nucleotide excision repair of UV-induced DNA lesions in synthetic dinucleosomes. EMBO J 2001; 20:2004-14. [PMID: 11296233 PMCID: PMC125421 DOI: 10.1093/emboj/20.8.2004] [Citation(s) in RCA: 129] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
To investigate the relationship between chromatin dynamics and nucleotide excision repair (NER), we have examined the effect of chromatin structure on the formation of two major classes of UV-induced DNA lesions in reconstituted dinucleosomes. Furthermore, we have developed a model chromatin-NER system consisting of purified human NER factors and dinucleosome substrates that contain pyrimidine (6-4) pyrimidone photoproducts (6-4PPs) either at the center of the nucleosome or in the linker DNA. We have found that the two classes of UV-induced DNA lesions are formed efficiently at every location on dinucleosomes in a manner similar to that of naked DNA, even in the presence of histone H1. On the other hand, excision of 6-4PPs is strongly inhibited by dinucleosome assembly, even within the linker DNA region. These results provide direct evidence that the human NER machinery requires a space greater than the size of the linker DNA to excise UV lesions efficiently. Interestingly, NER dual incision in dinucleosomes is facilitated by recombinant ACF, an ATP-dependent chromatin remodeling factor. Our results indicate that there is a functional connection between chromatin remodeling and the initiation step of NER.
Collapse
Affiliation(s)
- Kiyoe Ura
- Division of Gene Therapy Science, Osaka University School of Medicine, 2-2 Yamada-oka, Suita,
Institute for Molecular and Cellular Biology, Osaka University and CREST, JST, 1-3 Yamada-oka, Suita, Osaka 565-0870, Second Department of Biochemistry, Saitama Medical School, Moroyama, Iruma-gun, Saitama 350-0495 and Biomolecular Engineering Research Institute, 6-2-3 Furuedai, Suita, Osaka 565-0874, Japan Present address: Department of Genetics, Box 3657, Duke University Medical Center, Durham, NC 27710, USA Corresponding author e-mail:
| | - Marito Araki
- Division of Gene Therapy Science, Osaka University School of Medicine, 2-2 Yamada-oka, Suita,
Institute for Molecular and Cellular Biology, Osaka University and CREST, JST, 1-3 Yamada-oka, Suita, Osaka 565-0870, Second Department of Biochemistry, Saitama Medical School, Moroyama, Iruma-gun, Saitama 350-0495 and Biomolecular Engineering Research Institute, 6-2-3 Furuedai, Suita, Osaka 565-0874, Japan Present address: Department of Genetics, Box 3657, Duke University Medical Center, Durham, NC 27710, USA Corresponding author e-mail:
| | | | - Chikahide Masutani
- Division of Gene Therapy Science, Osaka University School of Medicine, 2-2 Yamada-oka, Suita,
Institute for Molecular and Cellular Biology, Osaka University and CREST, JST, 1-3 Yamada-oka, Suita, Osaka 565-0870, Second Department of Biochemistry, Saitama Medical School, Moroyama, Iruma-gun, Saitama 350-0495 and Biomolecular Engineering Research Institute, 6-2-3 Furuedai, Suita, Osaka 565-0874, Japan Present address: Department of Genetics, Box 3657, Duke University Medical Center, Durham, NC 27710, USA Corresponding author e-mail:
| | - Takashi Ito
- Division of Gene Therapy Science, Osaka University School of Medicine, 2-2 Yamada-oka, Suita,
Institute for Molecular and Cellular Biology, Osaka University and CREST, JST, 1-3 Yamada-oka, Suita, Osaka 565-0870, Second Department of Biochemistry, Saitama Medical School, Moroyama, Iruma-gun, Saitama 350-0495 and Biomolecular Engineering Research Institute, 6-2-3 Furuedai, Suita, Osaka 565-0874, Japan Present address: Department of Genetics, Box 3657, Duke University Medical Center, Durham, NC 27710, USA Corresponding author e-mail:
| | - Shigenori Iwai
- Division of Gene Therapy Science, Osaka University School of Medicine, 2-2 Yamada-oka, Suita,
Institute for Molecular and Cellular Biology, Osaka University and CREST, JST, 1-3 Yamada-oka, Suita, Osaka 565-0870, Second Department of Biochemistry, Saitama Medical School, Moroyama, Iruma-gun, Saitama 350-0495 and Biomolecular Engineering Research Institute, 6-2-3 Furuedai, Suita, Osaka 565-0874, Japan Present address: Department of Genetics, Box 3657, Duke University Medical Center, Durham, NC 27710, USA Corresponding author e-mail:
| | - Toshimi Mizukoshi
- Division of Gene Therapy Science, Osaka University School of Medicine, 2-2 Yamada-oka, Suita,
Institute for Molecular and Cellular Biology, Osaka University and CREST, JST, 1-3 Yamada-oka, Suita, Osaka 565-0870, Second Department of Biochemistry, Saitama Medical School, Moroyama, Iruma-gun, Saitama 350-0495 and Biomolecular Engineering Research Institute, 6-2-3 Furuedai, Suita, Osaka 565-0874, Japan Present address: Department of Genetics, Box 3657, Duke University Medical Center, Durham, NC 27710, USA Corresponding author e-mail:
| | | | - Fumio Hanaoka
- Division of Gene Therapy Science, Osaka University School of Medicine, 2-2 Yamada-oka, Suita,
Institute for Molecular and Cellular Biology, Osaka University and CREST, JST, 1-3 Yamada-oka, Suita, Osaka 565-0870, Second Department of Biochemistry, Saitama Medical School, Moroyama, Iruma-gun, Saitama 350-0495 and Biomolecular Engineering Research Institute, 6-2-3 Furuedai, Suita, Osaka 565-0874, Japan Present address: Department of Genetics, Box 3657, Duke University Medical Center, Durham, NC 27710, USA Corresponding author e-mail:
| |
Collapse
|
240
|
Abstract
De novo nucleosome assembly coupled to DNA replication and repair in vitro involves the histone chaperone chromatin assembly factor 1 (CAF-1). Recent studies support a model in which CAF-1 can be targeted to newly synthesized DNA through a direct interaction with proliferating cell nuclear antigen (PCNA) and can act synergistically with a newly identified histone chaperone. Insights have also been obtained into mechanisms by which this CAF-1-dependent pathway can establish a repressed chromatin state.
Collapse
Affiliation(s)
- J A Mello
- Institut Curie, Research section, UMR 218 du Centre National de la Recherche Scientifique (CNRS), 75248 Paris 05, Cedex, France.
| | | |
Collapse
|
241
|
Balajee AS, Geard CR. Chromatin-bound PCNA complex formation triggered by DNA damage occurs independent of the ATM gene product in human cells. Nucleic Acids Res 2001; 29:1341-51. [PMID: 11239001 PMCID: PMC29758 DOI: 10.1093/nar/29.6.1341] [Citation(s) in RCA: 65] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Proliferating cell nuclear antigen (PCNA), a processivity factor for DNA polymerases delta and epsilon, is involved in DNA replication as well as in diverse DNA repair pathways. In quiescent cells, UV light-induced bulky DNA damage triggers the transition of PCNA from a soluble to an insoluble chromatin-bound form, which is intimately associated with the repair synthesis by polymerases delta and epsilon. In this study, we investigated the efficiency of PCNA complex formation in response to ionizing radiation-induced DNA strand breaks in normal and radiation-sensitive Ataxia telangiectasia (AT) cells by immunofluorescence and western blot techniques. Exposure of normal cells to gamma-rays rapidly triggered the formation of PCNA foci in a dose-dependent manner in the nuclei and the PCNA foci (40-45%) co-localized with sites of repair synthesis detected by bromodeoxyuridine labeling. The chromatin-bound PCNA gradually declined with increasing post-irradiation times and almost reached the level of unirradiated cells by 6 h. The PCNA foci formed after gamma-irradiation was resistant to high salt extraction and the chromatin association of PCNA was lost after DNase I digestion. Interestingly, two radiosensitive primary fibroblast cell lines, derived from AT patients harboring homozygous mutations in the ATM gene, displayed an efficient PCNA redistribution after gamma-irradiation. We also analyzed the PCNA complex induced by a radiomimetic agent, Bleomycin (BLM), which produces predominantly single- and double-strand DNA breaks. The efficiency and the time course of PCNA complex induced by BLM were identical in both normal and AT cells. Our study demonstrates for the first time that the ATM gene product is not required for PCNA complex assembly in response to DNA strand breaks. Additionally, we observed an increased interaction of PCNA with the Ku70 and Ku80 heterodimer after DNA damage, suggestive of a role for PCNA in the non-homologous end-joining repair pathway of DNA strand breaks.
Collapse
Affiliation(s)
- A S Balajee
- Department of Radiation Oncology, Center for Radiological Research, College of Physicians and Surgeons, Columbia University, VC-11, Room 243, 630 West, 168th Street, New York, NY 10032, USA.
| | | |
Collapse
|
242
|
Hasan S, Hassa PO, Imhof R, Hottiger MO. Transcription coactivator p300 binds PCNA and may have a role in DNA repair synthesis. Nature 2001; 410:387-91. [PMID: 11268218 DOI: 10.1038/35066610] [Citation(s) in RCA: 131] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
The transcriptional coactivator p300 interacts with many transcription factors that participate in a broad spectrum of biological activities, such as cellular differentiation, homeostasis and growth control. Mouse embryos lacking both p300 alleles die around mid-gestation, with pleiotropic defects in morphogenesis, in cell differentiation and, unexpectedly, in cell proliferation because of reduced DNA synthesis. Here we show that p300 may have a role in DNA repair synthesis through its interaction with proliferating cell nuclear antigen (PCNA). We show that in vitro and in vivo p300 forms a complex with PCNA that does not depend on the S phase of cell cycle. A large fraction of both p300 and PCNA colocalize to speckled structures in the nucleus. Furthermore, the endogenous p300-PCNA complex stimulates DNA synthesis in vitro. Chromatin immunoprecipitation experiments indicate that p300 is associated with freshly synthesized DNA after ultraviolet irradiation. Our results suggest that p300 may participate in chromatin remodelling at DNA lesion sites to facilitate PCNA function in DNA repair synthesis.
Collapse
Affiliation(s)
- S Hasan
- institute of Veterinary Biochemistry, University of Zürich, Switzerland
| | | | | | | |
Collapse
|
243
|
Tchénio T, Casella JF, Heidmann T. A truncated form of the human CAF-1 p150 subunit impairs the maintenance of transcriptional gene silencing in mammalian cells. Mol Cell Biol 2001; 21:1953-61. [PMID: 11238931 PMCID: PMC86785 DOI: 10.1128/mcb.21.6.1953-1961.2001] [Citation(s) in RCA: 41] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Chromatin assembly factor 1 (CAF-1) is a protein complex formed of three subunits, p150, p60, and p48, conserved from the yeast Saccharomyces cerevisiae to humans, which can promote nucleosome assembly onto newly replicated DNA. In S. cerevisiae, deletion of the genes encoding any of the three CAF-1 subunits (cacDelta mutants), although nonlethal, results in a silencing defect of genes packaged into heterochromatin. Here we report on a mammalian cell model that we devised to monitor gene silencing and its reversal in a quantitative manner. This model relies on the use of a cell line stably transfected with a reporter gene in a silenced state. Reversal of reporter gene silencing was achieved upon treatment of the cells with 5-azacytidine, which resulted in the demethylation of the reporter gene copies. We show that expression of a cDNA for the human p150 CAF-1 subunit harboring 5' truncations, but not that of a cDNA encoding the full-length p150 CAF-1 subunit, increases by more than 500-fold the frequency at which transcriptional silencing of the reporter gene copies is reversed in these cells. Reversal of gene silencing is dependent upon expression of a truncated protein, possibly acting as a dominant negative mutant of the wild-type CAF-1, is associated with alterations in chromatin structure as measured by an endonuclease sensitivity assay and is not associated with detectable changes in the methylation status of the silenced genes. These results suggest that the role of CAF-1 in the epigenetic control of gene expression has been conserved between yeast and mammals, despite the lack of DNA methylation in yeast chromatin.
Collapse
Affiliation(s)
- T Tchénio
- Unité des Rétrovirus Endogènes et Eléments Rétroïdes des Eucaryotes Supérieurs, CNRS UMR 1573, Institut Gustave Roussy, 94805 Villejuif, France.
| | | | | |
Collapse
|
244
|
Keller C, Krude T. Requirement of Cyclin/Cdk2 and protein phosphatase 1 activity for chromatin assembly factor 1-dependent chromatin assembly during DNA synthesis. J Biol Chem 2000; 275:35512-21. [PMID: 10938080 DOI: 10.1074/jbc.m003073200] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
The influence of reversible protein phosphorylation on nucleosome assembly during DNA replication was analyzed in extracts from human cells. Inhibitor studies and add-back experiments indicated requirements of cyclin A/Cdk2, cyclin E/Cdk2, and protein phosphatase type 1 (PP1) activities for nucleosome assembly during DNA synthesis by chromatin assembly factor 1 (CAF-1). The p60 subunit of CAF-1 is a molecular target for reversible phosphorylation by cyclin/Cdk complexes and PP1 during nucleosome assembly and DNA synthesis in vitro. Purified p60 can be directly phosphorylated by purified cyclin A/Cdk2, cyclin E/Cdk2, and cyclin B1/Cdk1, but not by cyclin D/Cdk4 complexes in vitro. Cyclin B1/Cdk1 triggers hyperphosphorylation of p60 in the presence of additional cytosolic factors. CAF-1 containing hyperphosphorylated p60 prepared from mitotic cells is inactive in nucleosome assembly and becomes activated by dephosphorylation in vitro. These data provide functional evidence for a requirement of the cell cycle machinery for nucleosome assembly by CAF-1 during DNA replication.
Collapse
Affiliation(s)
- C Keller
- Wellcome/Cancer Research Campaign Institute, University of Cambridge, Tennis Court Road, Cambridge CB2 1QR, United Kingdom
| | | |
Collapse
|
245
|
Zhang Z, Shibahara K, Stillman B. PCNA connects DNA replication to epigenetic inheritance in yeast. Nature 2000; 408:221-5. [PMID: 11089978 DOI: 10.1038/35041601] [Citation(s) in RCA: 222] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Formation of a heterochromatin-like structure results in transcriptional silencing at the HM mating-type loci and telomeres in Saccharomyces cerevisiae. Once formed, such epigenetically determined structures are inherited for many mitotic divisions. Here we show that mutations in the proliferating cell nuclear antigen (PCNA), an essential component at the DNA replication fork, reduced repression of genes near a telomere and at the silent mating-typelocus, HMR. The pol30-8 mutant displayed coexistence of both repressed (pink) and de-repressed (white) cells within a single colony when assayed with the ADE2 gene inserted at HMR. Unlike pol30-8, the pol30-6 and pol30-79 mutants partially reduced gene silencing at telomeres and the HMR and synergistically decreased silencing in cells lacking chromatin assembly factor 1 (CAF-1). All silencing defective mutants showed reduced binding to CAF-1 in vitro and altered chromatin association of the CAF-1 large subunit in vivo. Thus, PCNA participates in inheritance of both DNA and epigenetic chromatin structures during the S phase of the cell cycle, the latter by at least two mechanisms.
Collapse
Affiliation(s)
- Z Zhang
- Cold Spring Harbor Laboratory, New York 11724, USA
| | | | | |
Collapse
|
246
|
Ridgway P, Almouzni G. CAF-1 and the inheritance of chromatin states: at the crossroads of DNA replication and repair. J Cell Sci 2000; 113 ( Pt 15):2647-58. [PMID: 10893180 DOI: 10.1242/jcs.113.15.2647] [Citation(s) in RCA: 81] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Chromatin is no longer considered to be a static structural framework for packaging DNA within the nucleus but is instead believed to be an interactive component of DNA metabolism. The ordered assembly of chromatin produces a nucleoprotein template capable of epigenetically regulating the expression and maintenance of the genome. Factors have been isolated from cell extracts that stimulate early steps in chromatin assembly in vitro. The function of one such factor, chromatin-assembly factor 1 (CAF-1), might extend beyond simply facilitating the progression through an individual assembly reaction to its active participation in a marking system. This marking system could be exploited at the crossroads of DNA replication and repair to monitor genome integrity and to define particular epigenetic states.
Collapse
Affiliation(s)
- P Ridgway
- Institut Curie/Section de Recherche UMR218 du CNRS, Paris cedex 05, France
| | | |
Collapse
|
247
|
|
248
|
Abstract
How a cell distinguishes a double-strand break from the end of a chromosome has long fascinated cell biologists. It was thought that the protection of chromosomal ends required either a telomere-specific complex or the looping back of the 3' TG-rich overhang to anneal with a homologous double-stranded repeat. These models must now accommodate the findings that complexes involved in nonhomologous end joining play important roles in normal telomere length maintenance, and that subtelomeric chromatin changes in response to the DNA damage checkpoint. A hypothetical chromatin assembly checkpoint may help to explain why telomeres and the double-strand break repair machinery share essential components.
Collapse
Affiliation(s)
- S M Gasser
- Swiss Institute for Experimental Cancer Research, Chemin des Boveresses 155, CH-1066 Epalinges, Switzerland.
| |
Collapse
|
249
|
Ridgway P, Quivy JP, Almouzni G. Tetracycline-regulated gene expression switch in Xenopus laevis. Exp Cell Res 2000; 256:392-9. [PMID: 10772812 DOI: 10.1006/excr.2000.4853] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Xenopus is a well-characterized model system for the investigation of biological processes at the molecular, cellular, and developmental level. The successful application of a rapid and reliable method for transgenic approaches in Xenopus has led to renewed interest in this system. We have explored the applicability of tetracycline-regulated gene expression, first described by Gossen and Bujard in 1992, to the Xenopus system. By optimizing conditions, tetracycline repressor induced expression of a luciferase reporter gene was readily and reproducibly achieved in both the Xenopus oocyte and developing embryo. This high level of expression was effectively abrogated by addition of low levels of tetracycline. The significance of this newly defined system for studies of chromatin dynamics and developmental processes is discussed.
Collapse
Affiliation(s)
- P Ridgway
- Section de Recherche UMR218 du CNRS, Institut Curie, 26 rue d'Ulm, Paris Cedex 05, 75231, France
| | | | | |
Collapse
|
250
|
Abstract
The acetylation of the core histone N-terminal "tail" domains is now recognized as a highly conserved mechanism for regulating chromatin functional states. The following article examines possible roles of acetylation in two critically important cellular processes: replication-coupled nucleosome assembly, and reversible transitions in chromatin higher order structure. After a description of the acetylation of newly synthesized histones, and of the likely acetyltransferases involved, an overview of histone octamer assembly is presented. Our current understanding of the factors thought to assemble chromatin in vivo is then described. Genetic and biochemical investigations of the function the histone tails, and their acetylation, in nucleosome assembly are detailed, followed by an analysis of the importance of histone deacetylation in the maturation of newly replicated chromatin. In the final section the involvement of the histone tail domains in chromatin higher order structures is addressed, along with the role of histone acetylation in chromatin folding. Suggestions for future research are offered in the concluding remarks.
Collapse
Affiliation(s)
- A T Annunziato
- Department of Biology, Boston College, Chestnut Hill, MA 02467, USA.
| | | |
Collapse
|