201
|
Abstract
Antibiotic resistance represents a threat to human health. It has been suggested that by 2050, antibiotic-resistant infections could cause ten million deaths each year. In orthopaedics, many patients undergoing surgery suffer from complications resulting from implant-associated infection. In these circumstances secondary surgery is usually required and chronic and/or relapsing disease may ensue. The development of effective treatments for antibiotic-resistant infections is needed. Recent evidence shows that bacteriophage (phages; viruses that infect bacteria) therapy may represent a viable and successful solution. In this review, a brief description of bone and joint infection and the nature of bacteriophages is presented, as well as a summary of our current knowledge on the use of bacteriophages in the treatment of bacterial infections. We present contemporary published in vitro and in vivo data as well as data from clinical trials, as they relate to bone and joint infections. We discuss the potential use of bacteriophage therapy in orthopaedic infections. This area of research is beginning to reveal successful results, but mostly in nonorthopaedic fields. We believe that bacteriophage therapy has potential therapeutic value for implant-associated infections in orthopaedics. Cite this article: Bone Joint J 2021;103-B(2):234-244.
Collapse
Affiliation(s)
- Bryan P Gibb
- Department of Biological and Chemical Sciences, New York Institute of Technology, Old Westbury, New York, USA
| | - Michael Hadjiargyrou
- Department of Biological and Chemical Sciences, New York Institute of Technology, Old Westbury, New York, USA
| |
Collapse
|
202
|
Characterization of a Novel Bacteriophage Henu2 and Evaluation of the Synergistic Antibacterial Activity of Phage-Antibiotics. Antibiotics (Basel) 2021; 10:antibiotics10020174. [PMID: 33572473 PMCID: PMC7916345 DOI: 10.3390/antibiotics10020174] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2020] [Revised: 02/05/2021] [Accepted: 02/07/2021] [Indexed: 12/14/2022] Open
Abstract
Staphylococcus aureus phage Henu2 was isolated from a sewage sample collected in Kaifeng, China, in 2017. In this study, Henu2, a linear double-stranded DNA virus, was sequenced and found to be 43,513 bp long with 35% G + C content and 63 putative open reading frames (ORFs). Phage Henu2 belongs to the family Siphoviridae and possesses an isometric head (63 nm in diameter). The latent time and burst size of Henu2 were approximately 20 min and 7.8 plaque forming unit (PFU)/infected cells. The Henu2 maintained infectivity over a wide range of temperature (10–60 °C) and pH values (4–12). Phylogenetic and comparative genomic analyses indicate that Staphylococcus aureus phage Henu2 should be a new member of the family of Siphoviridae class-II. In this paper, Phage Henu2 alone exhibited weak inhibitory activity on the growth of S. aureus. However, the combination of phage Henu2 and some antibiotics or oxides could effectively inhibit the growth of S. aureus, with a decrease of more than three logs within 24 h in vitro. These results provide useful information that phage Henu2 can be combined with antibiotics to increase the production of phage Henu2 and thus enhance the efficacy of bacterial killing.
Collapse
|
203
|
Nguyen M, Wemheuer B, Laffy PW, Webster NS, Thomas T. Taxonomic, functional and expression analysis of viral communities associated with marine sponges. PeerJ 2021; 9:e10715. [PMID: 33604175 PMCID: PMC7863781 DOI: 10.7717/peerj.10715] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2020] [Accepted: 12/15/2020] [Indexed: 12/19/2022] Open
Abstract
Viruses play an essential role in shaping the structure and function of ecological communities. Marine sponges have the capacity to filter large volumes of ‘virus-laden’ seawater through their bodies and host dense communities of microbial symbionts, which are likely accessible to viral infection. However, despite the potential of sponges and their symbionts to act as viral reservoirs, little is known about the sponge-associated virome. Here we address this knowledge gap by analysing metagenomic and (meta-) transcriptomic datasets from several sponge species to determine what viruses are present and elucidate their predicted and expressed functionality. Sponges were found to carry diverse, abundant and active bacteriophages as well as eukaryotic viruses belonging to the Megavirales and Phycodnaviridae. These viruses contain and express auxiliary metabolic genes (AMGs) for photosynthesis and vitamin synthesis as well as for the production of antimicrobials and the defence against toxins. These viral AMGs can therefore contribute to the metabolic capacities of their hosts and also potentially enhance the survival of infected cells. This suggest that viruses may play a key role in regulating the abundance and activities of members of the sponge holobiont.
Collapse
Affiliation(s)
- Mary Nguyen
- Centre for Marine Science and Innovation & School of Biological & Earth and Environmental Sciences, University of New South Wales, Sydney, NSW, Australia
| | - Bernd Wemheuer
- Centre for Marine Science and Innovation & School of Biological & Earth and Environmental Sciences, University of New South Wales, Sydney, NSW, Australia
| | - Patrick W Laffy
- Australian Institute of Marine Science, Townsville, QLD, Australia
| | - Nicole S Webster
- Australian Institute of Marine Science, Townsville, QLD, Australia.,Australian Centre for Ecogenomics, University of Queensland, Brisbane, QLD, Australia
| | - Torsten Thomas
- Centre for Marine Science and Innovation & School of Biological & Earth and Environmental Sciences, University of New South Wales, Sydney, NSW, Australia
| |
Collapse
|
204
|
Environmental Impact of Sulfate-Reducing Bacteria, Their Role in Intestinal Bowel Diseases, and Possible Control by Bacteriophages. APPLIED SCIENCES-BASEL 2021. [DOI: 10.3390/app11020735] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Sulfate-reducing bacteria (SRB) represent a group of prokaryotic microorganisms that are widely spread in the anoxic environment (seabed, riverbed and lakebed sediments, mud, intestinal tract of humans and animals, metal surfaces). SRB species also have an impact on processes occurring in the intestinal tract of humans and animals, including the connections between their presence and inflammatory bowel disease (IBD). Since these SRB can develop antimicrobial resistance toward the drugs, including antibiotics and antimicrobial agents, bacteriophages could represent an additional potential effective treatment. The main objectives of the review were as follows: (a) to review SRB (both from intestinal and environmental sources) regarding their role in intestinal diseases as well as their influence in environmental processes; and (b) to review, according to literature data, the influence of bacteriophages on SRB and their possible applications. Since SRB can have a significant adverse influence on industry as well as on humans and animals health, phage treatment of SRB can be seen as a possible effective method of SRB inhibition. However, there are relatively few studies concerning the influence of phages on SRB strains. Siphoviridae and Myoviridae families represent the main sulfide-producing bacteria phages. The most recent studies induced, by UV light, bacteriophages from Desulfovibrio vulgaris NCIMB 8303 and Desulfovibrio desulfuricans ATCC 13541. Notwithstanding costly and medically significant negative impacts of phages on SRB, they have been the subject of relatively few studies. The current search for alternatives to chemical biocides and antibiotics has led to the renewed interest in phages as antibacterial biocontrol and therapeutic agents, including their use against SRB. Hence, phages might represent a promising treatment against SRB in the future.
Collapse
|
205
|
Campbell AM, Racault MF, Goult S, Laurenson A. Cholera Risk: A Machine Learning Approach Applied to Essential Climate Variables. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2020; 17:ijerph17249378. [PMID: 33333823 PMCID: PMC7765326 DOI: 10.3390/ijerph17249378] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/07/2020] [Revised: 11/24/2020] [Accepted: 12/09/2020] [Indexed: 12/22/2022]
Abstract
Oceanic and coastal ecosystems have undergone complex environmental changes in recent years, amid a context of climate change. These changes are also reflected in the dynamics of water-borne diseases as some of the causative agents of these illnesses are ubiquitous in the aquatic environment and their survival rates are impacted by changes in climatic conditions. Previous studies have established strong relationships between essential climate variables and the coastal distribution and seasonal dynamics of the bacteria Vibrio cholerae, pathogenic types of which are responsible for human cholera disease. In this study we provide a novel exploration of the potential of a machine learning approach to forecast environmental cholera risk in coastal India, home to more than 200 million inhabitants, utilising atmospheric, terrestrial and oceanic satellite-derived essential climate variables. A Random Forest classifier model is developed, trained and tested on a cholera outbreak dataset over the period 2010–2018 for districts along coastal India. The random forest classifier model has an Accuracy of 0.99, an F1 Score of 0.942 and a Sensitivity score of 0.895, meaning that 89.5% of outbreaks are correctly identified. Spatio-temporal patterns emerged in terms of the model’s performance based on seasons and coastal locations. Further analysis of the specific contribution of each Essential Climate Variable to the model outputs shows that chlorophyll-a concentration, sea surface salinity and land surface temperature are the strongest predictors of the cholera outbreaks in the dataset used. The study reveals promising potential of the use of random forest classifiers and remotely-sensed essential climate variables for the development of environmental cholera-risk applications. Further exploration of the present random forest model and associated essential climate variables is encouraged on cholera surveillance datasets in other coastal areas affected by the disease to determine the model’s transferability potential and applicative value for cholera forecasting systems.
Collapse
Affiliation(s)
| | - Marie-Fanny Racault
- Plymouth Marine Laboratory, Prospect Place, The Hoe, Plymouth PL1 3DH, UK; (S.G.); (A.L.)
- National Centre For Earth Observation, PML, Plymouth PL1 3DH, UK
- Correspondence:
| | - Stephen Goult
- Plymouth Marine Laboratory, Prospect Place, The Hoe, Plymouth PL1 3DH, UK; (S.G.); (A.L.)
- National Centre For Earth Observation, PML, Plymouth PL1 3DH, UK
| | - Angus Laurenson
- Plymouth Marine Laboratory, Prospect Place, The Hoe, Plymouth PL1 3DH, UK; (S.G.); (A.L.)
| |
Collapse
|
206
|
Luque A, Benler S, Lee DY, Brown C, White S. The Missing Tailed Phages: Prediction of Small Capsid Candidates. Microorganisms 2020; 8:E1944. [PMID: 33302408 PMCID: PMC7762592 DOI: 10.3390/microorganisms8121944] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2020] [Revised: 12/04/2020] [Accepted: 12/05/2020] [Indexed: 12/17/2022] Open
Abstract
Tailed phages are the most abundant and diverse group of viruses on the planet. Yet, the smallest tailed phages display relatively complex capsids and large genomes compared to other viruses. The lack of tailed phages forming the common icosahedral capsid architectures T = 1 and T = 3 is puzzling. Here, we extracted geometrical features from high-resolution tailed phage capsid reconstructions and built a statistical model based on physical principles to predict the capsid diameter and genome length of the missing small-tailed phage capsids. We applied the model to 3348 isolated tailed phage genomes and 1496 gut metagenome-assembled tailed phage genomes. Four isolated tailed phages were predicted to form T = 3 icosahedral capsids, and twenty-one metagenome-assembled tailed phages were predicted to form T < 3 capsids. The smallest capsid predicted was a T = 4/3 ≈ 1.33 architecture. No tailed phages were predicted to form the smallest icosahedral architecture, T = 1. We discuss the feasibility of the missing T = 1 tailed phage capsids and the implications of isolating and characterizing small-tailed phages for viral evolution and phage therapy.
Collapse
Affiliation(s)
- Antoni Luque
- Viral Information Institute, San Diego State University, San Diego, CA 92182, USA; (D.Y.L.); (C.B.)
- Computational Science Research Center, San Diego State University, San Diego, CA 92182, USA
- Department of Mathematics and Statistics, San Diego State University, San Diego, CA 92182, USA
| | - Sean Benler
- National Center for Biotechnology Information (NCBI), Bethesda, MD 20894, USA;
| | - Diana Y. Lee
- Viral Information Institute, San Diego State University, San Diego, CA 92182, USA; (D.Y.L.); (C.B.)
- Computational Science Research Center, San Diego State University, San Diego, CA 92182, USA
| | - Colin Brown
- Viral Information Institute, San Diego State University, San Diego, CA 92182, USA; (D.Y.L.); (C.B.)
- Department of Physics, San Diego State University, San Diego, CA 92182, USA
| | - Simon White
- Department of Molecular and Cell Biology, University of Connecticut, Storrs, CT 06269, USA;
| |
Collapse
|
207
|
An epigenetic gene silencing pathway selectively acting on transgenic DNA in the green alga Chlamydomonas. Nat Commun 2020; 11:6269. [PMID: 33293544 PMCID: PMC7722844 DOI: 10.1038/s41467-020-19983-4] [Citation(s) in RCA: 51] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2019] [Accepted: 11/05/2020] [Indexed: 01/08/2023] Open
Abstract
Silencing of exogenous DNA can make transgene expression very inefficient. Genetic screens in the model alga Chlamydomonas have demonstrated that transgene silencing can be overcome by mutations in unknown gene(s), thus producing algal strains that stably express foreign genes to high levels. Here, we show that the silencing mechanism specifically acts on transgenic DNA. Once a permissive chromatin structure has assembled, transgene expression can persist even in the absence of mutations disrupting the silencing pathway. We have identified the gene conferring the silencing and show it to encode a sirtuin-type histone deacetylase. Loss of gene function does not appreciably affect endogenous gene expression. Our data suggest that transgenic DNA is recognized and then quickly inactivated by the assembly of a repressive chromatin structure composed of deacetylated histones. We propose that this mechanism may have evolved to provide protection from potentially harmful types of environmental DNA. Strong transgene suppression has been observed in Chlamydomonas reinhardtii, but the underlying mechanism is unknown. Here, the authors identify a sirtuin-type histone deacetylase that selectively acts on transgenic DNA to repress gene expression by assembling a repressive chromatin structure composed of deacetylated histones.
Collapse
|
208
|
Gong Z, Lv X, Li C, Gu Y, Fan X, Sun Q, Tong Y, Zhao F, Xing S, Pei G, Li Q, Xie L, Xie J. Genomic and proteomic portrait of a novel mycobacteriophage SWU2 isolated from China. INFECTION GENETICS AND EVOLUTION 2020; 87:104665. [PMID: 33279716 DOI: 10.1016/j.meegid.2020.104665] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/03/2020] [Revised: 11/22/2020] [Accepted: 12/01/2020] [Indexed: 11/30/2022]
Abstract
Phage therapy, especially combination with antibiotics, was revitalized to control the antibiotics resistance. Mycobacteriophage, the phage of mycobacterium with the most notorious Mycobacterium tuberculosis (M. tuberculosis), was intensively explored. A novel mycobacteriophage SWU2 was isolated from a soil sample collected at Nanchang city, Jiangxi province, China, by using Mycolicibacterium smegmatis (M. smegmatis) mc2 155 as the host. Phage morphology and biology were characterized. Phage structure proteins were analyzed by LC-MS/MS. The putative functions of phage proteins and multi-genome comparison were performed with bioinformatics. The transmission electron microscopy result indicated that this phage belongs to Siphoviridae of Caudovirales. Plaques of SWU2 appeared clear but small. In a one-step growth test, we demonstrated that SWU2 had a latent period of 30 min and a logarithmic phase of 120 min. Among the 76 predicted Open Reading Frames (ORFs), 9 ORFs were identified as phage structure proteins of SWU2. The assembled phage genome size is 50,013 bp, with 62.7% of G + C content. SWU2 genome sequence shares 88% identity with Mycobacterium phages HINdeR and Timshel, differing in substitutions, insertions and deletions in SWU2. Phylogenetic tree revealed that SWU2 is grouped into A7 sub-cluster. There are several substitutions, insertions and deletions in SWU2 genome in comparison with close cousin phages HINdeR and Timshel. The new phage adds another dimension of abundance to the mycobacteriophages.
Collapse
Affiliation(s)
- Zhen Gong
- Institute of Modern Biopharmaceuticals, State Key Laboratory Breeding Base of Eco-Environment and Bio-Resource of the Three Gorges Area, Key Laboratory of Eco-environments in Three Gorges Reservoir Region, Ministry of Education, Chongqing Municipal Key Laboratory of Karst Environment, School of Life Sciences, Southwest University, Beibei, Chongqing 400715, China
| | - Xi Lv
- Institute of Modern Biopharmaceuticals, State Key Laboratory Breeding Base of Eco-Environment and Bio-Resource of the Three Gorges Area, Key Laboratory of Eco-environments in Three Gorges Reservoir Region, Ministry of Education, Chongqing Municipal Key Laboratory of Karst Environment, School of Life Sciences, Southwest University, Beibei, Chongqing 400715, China
| | - Chunyan Li
- Institute of Modern Biopharmaceuticals, State Key Laboratory Breeding Base of Eco-Environment and Bio-Resource of the Three Gorges Area, Key Laboratory of Eco-environments in Three Gorges Reservoir Region, Ministry of Education, Chongqing Municipal Key Laboratory of Karst Environment, School of Life Sciences, Southwest University, Beibei, Chongqing 400715, China
| | - Yinzhong Gu
- Institute of Modern Biopharmaceuticals, State Key Laboratory Breeding Base of Eco-Environment and Bio-Resource of the Three Gorges Area, Key Laboratory of Eco-environments in Three Gorges Reservoir Region, Ministry of Education, Chongqing Municipal Key Laboratory of Karst Environment, School of Life Sciences, Southwest University, Beibei, Chongqing 400715, China
| | - Xiangyu Fan
- Institute of Modern Biopharmaceuticals, State Key Laboratory Breeding Base of Eco-Environment and Bio-Resource of the Three Gorges Area, Key Laboratory of Eco-environments in Three Gorges Reservoir Region, Ministry of Education, Chongqing Municipal Key Laboratory of Karst Environment, School of Life Sciences, Southwest University, Beibei, Chongqing 400715, China; School of Biological Science and Technology, University of Jinan, Jinan 250022, China
| | - Qingyu Sun
- Institute of Modern Biopharmaceuticals, State Key Laboratory Breeding Base of Eco-Environment and Bio-Resource of the Three Gorges Area, Key Laboratory of Eco-environments in Three Gorges Reservoir Region, Ministry of Education, Chongqing Municipal Key Laboratory of Karst Environment, School of Life Sciences, Southwest University, Beibei, Chongqing 400715, China
| | - Yigang Tong
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing 100071, China
| | - Feiyang Zhao
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing 100071, China
| | - Shaozhen Xing
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing 100071, China
| | - Guangqian Pei
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing 100071, China
| | - Qiming Li
- Institute of Modern Biopharmaceuticals, State Key Laboratory Breeding Base of Eco-Environment and Bio-Resource of the Three Gorges Area, Key Laboratory of Eco-environments in Three Gorges Reservoir Region, Ministry of Education, Chongqing Municipal Key Laboratory of Karst Environment, School of Life Sciences, Southwest University, Beibei, Chongqing 400715, China
| | - Longxiang Xie
- Institute of Modern Biopharmaceuticals, State Key Laboratory Breeding Base of Eco-Environment and Bio-Resource of the Three Gorges Area, Key Laboratory of Eco-environments in Three Gorges Reservoir Region, Ministry of Education, Chongqing Municipal Key Laboratory of Karst Environment, School of Life Sciences, Southwest University, Beibei, Chongqing 400715, China
| | - Jianping Xie
- Institute of Modern Biopharmaceuticals, State Key Laboratory Breeding Base of Eco-Environment and Bio-Resource of the Three Gorges Area, Key Laboratory of Eco-environments in Three Gorges Reservoir Region, Ministry of Education, Chongqing Municipal Key Laboratory of Karst Environment, School of Life Sciences, Southwest University, Beibei, Chongqing 400715, China.
| |
Collapse
|
209
|
Zheng Q, Lin W, Wang Y, Xu D, Liu Y, Jiao N. Top-down controls on nutrient cycling and population dynamics in a model estuarine photoautotroph-heterotroph co-culture system. Mol Ecol 2020; 30:592-607. [PMID: 33226689 DOI: 10.1111/mec.15750] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2020] [Revised: 11/05/2020] [Accepted: 11/19/2020] [Indexed: 11/29/2022]
Abstract
Viral lysis and protistan grazing are thought to be the major processes leading to microbial mortality in aquatic environments and thus regulate community diversity and biogeochemical cycling characteristics. Here, we studied nutrient cycling and bacterial responses to cyanophage-mediated photoautotroph lysis and ciliate predation in a model Synechococcus-heterotroph co-culture system. Both viral lysis and Euplotes grazing facilitated the transformation of organic carbon from biomass to dissolved organic matter with convention efficiencies of 20%-26%. The accumulation of ammonium after the addition of phages and ciliates suggested the importance of recycled NH4 + occurred in the interactions between Synechococcus growth and heterotrophic bacterial metabolism of photosynthate. The slower efficiency of P mineralization compared to N (primarily ammonium) indicated that P-containing organic matter was primarily integrated into bacterial biomass rather than being remineralized into inorganic phosphate under C-rich conditions. In the cyanophage addition treatment, both Fluviicola and Alteromonas exhibited rapid positive responses to Synechococcus lysing, while Marivita exhibited an apparent negative response. Further, the addition of Euplotes altered the incubation system from a Synechococcus-driven phycosphere to a ciliate-remodelled zoosphere that primarily constituted grazing-resistant bacteria and Euplotes symbionts. Top-down controls increased co-culture system diversity and resulted in a preference for free-living lifestyles of dominant populations, which was accompanied by the transfer of matter and energy. Our results indicate top-down control was particularly important for organic matter redistribution and inorganic nutrient regeneration between photoautotrophs and heterotrophs, and altered bacterial lifestyles. This study consequently sheds light on marine biogeochemical cycling and the interaction networks within these dynamic ecosystems.
Collapse
Affiliation(s)
- Qiang Zheng
- State Key Laboratory for Marine Environmental Science, Institute of Marine Microbes and Ecospheres, College of Ocean and Earth Sciences, Xiamen University, Xiamen, People's Republic of China.,Fujian Key Laboratory of Marine Carbon Sequestration, Xiamen University, Xiamen, People's Republic of China
| | - Wenxin Lin
- State Key Laboratory for Marine Environmental Science, Institute of Marine Microbes and Ecospheres, College of Ocean and Earth Sciences, Xiamen University, Xiamen, People's Republic of China.,Fujian Key Laboratory of Marine Carbon Sequestration, Xiamen University, Xiamen, People's Republic of China
| | - Yu Wang
- State Key Laboratory for Marine Environmental Science, Institute of Marine Microbes and Ecospheres, College of Ocean and Earth Sciences, Xiamen University, Xiamen, People's Republic of China.,Fujian Key Laboratory of Marine Carbon Sequestration, Xiamen University, Xiamen, People's Republic of China
| | - Dapeng Xu
- State Key Laboratory for Marine Environmental Science, Institute of Marine Microbes and Ecospheres, College of Ocean and Earth Sciences, Xiamen University, Xiamen, People's Republic of China.,Fujian Key Laboratory of Marine Carbon Sequestration, Xiamen University, Xiamen, People's Republic of China
| | - Yanting Liu
- State Key Laboratory for Marine Environmental Science, Institute of Marine Microbes and Ecospheres, College of Ocean and Earth Sciences, Xiamen University, Xiamen, People's Republic of China.,Fujian Key Laboratory of Marine Carbon Sequestration, Xiamen University, Xiamen, People's Republic of China
| | - Nianzhi Jiao
- State Key Laboratory for Marine Environmental Science, Institute of Marine Microbes and Ecospheres, College of Ocean and Earth Sciences, Xiamen University, Xiamen, People's Republic of China.,Fujian Key Laboratory of Marine Carbon Sequestration, Xiamen University, Xiamen, People's Republic of China
| |
Collapse
|
210
|
Auslander N, Gussow AB, Benler S, Wolf YI, Koonin EV. Seeker: alignment-free identification of bacteriophage genomes by deep learning. Nucleic Acids Res 2020; 48:e121. [PMID: 33045744 PMCID: PMC7708075 DOI: 10.1093/nar/gkaa856] [Citation(s) in RCA: 67] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2020] [Revised: 09/16/2020] [Accepted: 09/22/2020] [Indexed: 12/20/2022] Open
Abstract
Recent advances in metagenomic sequencing have enabled discovery of diverse, distinct microbes and viruses. Bacteriophages, the most abundant biological entity on Earth, evolve rapidly, and therefore, detection of unknown bacteriophages in sequence datasets is a challenge. Most of the existing detection methods rely on sequence similarity to known bacteriophage sequences, impeding the identification and characterization of distinct, highly divergent bacteriophage families. Here we present Seeker, a deep-learning tool for alignment-free identification of phage sequences. Seeker allows rapid detection of phages in sequence datasets and differentiation of phage sequences from bacterial ones, even when those phages exhibit little sequence similarity to established phage families. We comprehensively validate Seeker's ability to identify previously unidentified phages, and employ this method to detect unknown phages, some of which are highly divergent from the known phage families. We provide a web portal (seeker.pythonanywhere.com) and a user-friendly Python package (github.com/gussow/seeker) allowing researchers to easily apply Seeker in metagenomic studies, for the detection of diverse unknown bacteriophages.
Collapse
Affiliation(s)
- Noam Auslander
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, MD 20894, USA
| | - Ayal B Gussow
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, MD 20894, USA
| | - Sean Benler
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, MD 20894, USA
| | - Yuri I Wolf
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, MD 20894, USA
| | - Eugene V Koonin
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, MD 20894, USA
| |
Collapse
|
211
|
Jiang L, Lang S, Duan Y, Zhang X, Gao B, Chopyk J, Schwanemann LK, Ventura-Cots M, Bataller R, Bosques-Padilla F, Verna EC, Abraldes JG, Brown RS, Vargas V, Altamirano J, Caballería J, Shawcross DL, Ho SB, Louvet A, Lucey MR, Mathurin P, Garcia-Tsao G, Kisseleva T, Brenner DA, Tu XM, Stärkel P, Pride D, Fouts DE, Schnabl B. Intestinal Virome in Patients With Alcoholic Hepatitis. Hepatology 2020; 72:2182-2196. [PMID: 32654263 PMCID: PMC8159727 DOI: 10.1002/hep.31459] [Citation(s) in RCA: 97] [Impact Index Per Article: 19.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/06/2020] [Revised: 06/15/2020] [Accepted: 06/17/2020] [Indexed: 02/06/2023]
Abstract
BACKGROUND AND AIMS Alcoholic hepatitis (AH) is a severe manifestation of alcohol-associated liver disease (ALD) with high mortality. Although gut bacteria and fungi modulate disease severity, little is known about the effects of the viral microbiome (virome) in patients with ALD. APPROACH AND RESULTS We extracted virus-like particles from 89 patients with AH who were enrolled in a multicenter observational study, 36 with alcohol use disorder (AUD), and 17 persons without AUD (controls). Virus-like particles from fecal samples were fractionated using differential filtration techniques, and metagenomic sequencing was performed to characterize intestinal viromes. We observed an increased viral diversity in fecal samples from patients with ALD, with the most significant changes in samples from patients with AH. Escherichia-, Enterobacteria-, and Enterococcus phages were over-represented in fecal samples from patients with AH, along with significant increases in mammalian viruses such as Parvoviridae and Herpesviridae. Antibiotic treatment was associated with higher viral diversity. Specific viral taxa, such as Staphylococcus phages and Herpesviridae, were associated with increased disease severity, indicated by a higher median Model for End-Stage Liver Disease score, and associated with increased 90-day mortality. CONCLUSIONS In conclusion, intestinal viral taxa are altered in fecal samples from patients with AH and associated with disease severity and mortality. Our study describes an intestinal virome signature associated with AH.
Collapse
Affiliation(s)
- Lu Jiang
- Department of Medicine, University of California San Diego, La Jolla, CA, USA,Department of Medicine, VA San Diego Healthcare System, San Diego, CA, USA
| | - Sonja Lang
- Department of Medicine, University of California San Diego, La Jolla, CA, USA
| | - Yi Duan
- Department of Medicine, University of California San Diego, La Jolla, CA, USA,Department of Medicine, VA San Diego Healthcare System, San Diego, CA, USA
| | - Xinlian Zhang
- Division of Biostatistics and Bioinformatics, Department of Family Medicine and Public Health, University of California San Diego, La Jolla, CA, USA
| | - Bei Gao
- Department of Medicine, University of California San Diego, La Jolla, CA, USA
| | - Jessica Chopyk
- Department of Pathology, University of California San Diego, La Jolla, CA, USA
| | | | - Meritxell Ventura-Cots
- Division of Gastroenterology, Hepatology and Nutrition, Department of Medicine, University of Pittsburgh Medical Center, Pittsburgh Liver Research Center, Pittsburgh, PA, USA
| | - Ramon Bataller
- Division of Gastroenterology, Hepatology and Nutrition, Department of Medicine, University of Pittsburgh Medical Center, Pittsburgh Liver Research Center, Pittsburgh, PA, USA
| | - Francisco Bosques-Padilla
- Hospital Universitario, Departamento de Gastroenterología, Universidad Autonoma de Nuevo Leon, Monterrey, México
| | - Elizabeth C. Verna
- Division of Digestive and Liver Diseases, Department of Medicine, Columbia University College of Physicians and Surgeons, New York, NY, USA
| | - Juan G. Abraldes
- Division of Gastroenterology (Liver Unit). Department of Medicine, University of Alberta, Edmonton, Alberta, Canada
| | - Robert S. Brown
- Division of Gastroenterology and Hepatology, Weill Cornell Medical College, New York, NY, USA
| | - Victor Vargas
- Liver Unit, Hospital Universitari Vall d’Hebron, Universitat Autònoma de Barcelona, Barcelona, Spain,Centro de Investigación en Red de Enfermedades Hepáticas y Digestivas (CIBEREHD), Barcelona, Spain
| | - Jose Altamirano
- Liver Unit, Hospital Universitari Vall d’Hebron, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Juan Caballería
- Centro de Investigación en Red de Enfermedades Hepáticas y Digestivas (CIBEREHD), Barcelona, Spain,Liver Unit, Hospital Clinic, Barcelona, Spain
| | - Debbie L. Shawcross
- Institute of Liver Studies, King’s College London School of Medicine at King’s College Hospital, King’s College Hospital, London, UK
| | - Samuel B. Ho
- Department of Medicine, University of California San Diego, La Jolla, CA, USA,Department of Medicine, VA San Diego Healthcare System, San Diego, CA, USA
| | - Alexandre Louvet
- Service des Maladies de L’appareil Digestif et Unité INSERM, Hôpital Huriez, Lille, France
| | - Michael R. Lucey
- Division of Gastroenterology and Hepatology, Department of Medicine, University of Wisconsin School of Medicine and Public Health, WI, USA
| | - Philippe Mathurin
- Service des Maladies de L’appareil Digestif et Unité INSERM, Hôpital Huriez, Lille, France
| | - Guadalupe Garcia-Tsao
- Section of Digestive Diseases, Yale University School of Medicine, New Haven, CT, USA, and Section of Digestive Diseases, VA-CT Healthcare System, West Haven, CT, USA
| | - Tatiana Kisseleva
- Department of Medicine, University of California San Diego, La Jolla, CA, USA
| | - David A. Brenner
- Department of Medicine, University of California San Diego, La Jolla, CA, USA
| | - Xin M. Tu
- Division of Biostatistics and Bioinformatics, Department of Family Medicine and Public Health, University of California San Diego, La Jolla, CA, USA
| | - Peter Stärkel
- St. Luc University Hospital, Université Catholique de Louvain, Brussels, Belgium
| | - David Pride
- Department of Medicine, University of California San Diego, La Jolla, CA, USA,Department of Pathology, University of California San Diego, La Jolla, CA, USA,Center for Innovative Phage Applications and Therapeutics, University of California San Diego, La Jolla, CA, USA
| | | | - Bernd Schnabl
- Department of Medicine, University of California San Diego, La Jolla, CA, USA,Department of Medicine, VA San Diego Healthcare System, San Diego, CA, USA,Center for Innovative Phage Applications and Therapeutics, University of California San Diego, La Jolla, CA, USA
| |
Collapse
|
212
|
Brüssow H. Immunology ofCOVID‐19. Environ Microbiol 2020; 22:4895-4908. [PMID: 33145867 DOI: 10.1111/1462-2920.15302] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2020] [Accepted: 11/01/2020] [Indexed: 01/10/2023]
Affiliation(s)
- Harald Brüssow
- Department of Biosystems, Laboratory of Gene Technology KU Leuven Leuven Belgium
| |
Collapse
|
213
|
Sabbagh EI, Huete-Stauffer TM, Calleja MLL, Silva L, Viegas M, Morán XAG. Weekly variations of viruses and heterotrophic nanoflagellates and their potential impact on bacterioplankton in shallow waters of the central Red Sea. FEMS Microbiol Ecol 2020; 96:5800985. [PMID: 32149360 PMCID: PMC7104677 DOI: 10.1093/femsec/fiaa033] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2019] [Accepted: 03/08/2020] [Indexed: 11/14/2022] Open
Abstract
Bacterioplankton play a pivotal role in marine ecosystems. However, their temporal dynamics and underlying control mechanisms are poorly understood in tropical regions such as the Red Sea. Here, we assessed the impact of bottom-up (resource availability) and top-down (viruses and heterotrophic nanoflagellates) controls on bacterioplankton abundances by weekly sampling a coastal central Red Sea site in 2017. We monitored microbial abundances by flow cytometry together with a set of environmental variables including temperature, salinity, dissolved organic and inorganic nutrients and chlorophyll a. We distinguished five groups of heterotrophic bacteria depending on their physiological properties relative nucleic acid content, membrane integrity and cell-specific respiratory activity, two groups of Synechococcus cyanobacteria and three groups of viruses. Viruses controlled heterotrophic bacteria for most of the year, as supported by a negative correlation between their respective abundances and a positive one between bacterial mortality rates and mean viral abundances. On the contrary, heterotrophic nanoflagellates abundance covaried with that of heterotrophic bacteria. Heterotrophic nanoflagellates showed preference for larger bacteria from both the high and low nucleic acid content groups. Our results demonstrate that top-down control is fundamental in keeping heterotrophic bacterioplankton abundances low (< 5 × 10 5 cells mL−1) in Red Sea coastal waters.
Collapse
Affiliation(s)
- Eman I Sabbagh
- King Abdullah University of Science and Technology (KAUST), Red Sea Research Center, Biological and Environmental Sciences and Engineering Division, Thuwal, Kingdom of Saudi Arabia
| | - Tamara M Huete-Stauffer
- King Abdullah University of Science and Technology (KAUST), Red Sea Research Center, Biological and Environmental Sciences and Engineering Division, Thuwal, Kingdom of Saudi Arabia
| | - Maria L L Calleja
- King Abdullah University of Science and Technology (KAUST), Red Sea Research Center, Biological and Environmental Sciences and Engineering Division, Thuwal, Kingdom of Saudi Arabia.,Max Planck Institute for Chemistry, Hahn-Meitner Weg 1, 55128 Mainz, Germany
| | - Luis Silva
- King Abdullah University of Science and Technology (KAUST), Red Sea Research Center, Biological and Environmental Sciences and Engineering Division, Thuwal, Kingdom of Saudi Arabia
| | - Miguel Viegas
- King Abdullah University of Science and Technology (KAUST), Red Sea Research Center, Biological and Environmental Sciences and Engineering Division, Thuwal, Kingdom of Saudi Arabia
| | - Xosé Anxelu G Morán
- King Abdullah University of Science and Technology (KAUST), Red Sea Research Center, Biological and Environmental Sciences and Engineering Division, Thuwal, Kingdom of Saudi Arabia
| |
Collapse
|
214
|
Trombetta T, Vidussi F, Roques C, Scotti M, Mostajir B. Marine Microbial Food Web Networks During Phytoplankton Bloom and Non-bloom Periods: Warming Favors Smaller Organism Interactions and Intensifies Trophic Cascade. Front Microbiol 2020; 11:502336. [PMID: 33193116 PMCID: PMC7644461 DOI: 10.3389/fmicb.2020.502336] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2019] [Accepted: 10/02/2020] [Indexed: 01/17/2023] Open
Abstract
Microbial food web organisms are at the base of the functioning of pelagic ecosystems and support the whole marine food web. They are very reactive to environmental changes and their interactions are modified in response to different productive periods such as phytoplankton bloom and non-bloom as well as contrasted climatic years. To study ecological associations, identify potential interactions between microorganisms and study the structure of the microbial food web in coastal waters, a weekly monitoring was carried out in the Thau Lagoon on the French Mediterranean coast. The monitoring lasted from winter to late spring during two contrasting climatic years, a typical Mediterranean (2015) and a year with an extreme warm winter (2016). Correlation networks comprising 110 groups/taxa/species were constructed to characterize potential possible interactions between the microorganisms during bloom and non-bloom periods. Complex correlation networks during the bloom and dominated by negative intraguild correlations and positive correlations of phytoplankton with bacteria. Such pattern can be interpreted as a dominance of competition and mutualism. In contrast, correlation networks during the non-bloom period were less complex and mostly dominated by tintinnids associations with bacteria mostly referring to potential feeding on bacteria, which suggests a shift of biomass transfer from phytoplankton-dominated food webs during bloom to more bacterioplankton-based food webs during non-bloom. Inter-annual climatic conditions significantly modified the structure of microbial food webs. The warmer year favored relationships among smaller group/taxa/species at the expense of large phytoplankton and ciliates, possibly due to an intensification of the trophic cascade with a potential shift in energy circulation through microbial food web. Our study compares a typical Mediterranean spring with another mimicking the prospected intensification of global warming; if such consideration holds true, the dominance of future coastal marine ecosystems will be shifted from the highly productive herbivorous food web to the less productive microbial food web.
Collapse
Affiliation(s)
- Thomas Trombetta
- Marine Biodiversity, Exploitation and Conservation, Centre National de la Recherche Scientifique, Institut Français de Recherche pour l'Exploitation de la Mer, Institut de Recherche pour le Développement, University of Montpellier, Montpellier, France
| | - Francesca Vidussi
- Marine Biodiversity, Exploitation and Conservation, Centre National de la Recherche Scientifique, Institut Français de Recherche pour l'Exploitation de la Mer, Institut de Recherche pour le Développement, University of Montpellier, Montpellier, France
| | - Cécile Roques
- Marine Biodiversity, Exploitation and Conservation, Centre National de la Recherche Scientifique, Institut Français de Recherche pour l'Exploitation de la Mer, Institut de Recherche pour le Développement, University of Montpellier, Montpellier, France
| | - Marco Scotti
- GEOMAR Helmholtz Centre for Ocean Research Kiel, Kiel, Germany
| | - Behzad Mostajir
- Marine Biodiversity, Exploitation and Conservation, Centre National de la Recherche Scientifique, Institut Français de Recherche pour l'Exploitation de la Mer, Institut de Recherche pour le Développement, University of Montpellier, Montpellier, France
| |
Collapse
|
215
|
Miao YH, Xiao JH, Huang DW. Distribution and Evolution of the Bacteriophage WO and Its Antagonism With Wolbachia. Front Microbiol 2020; 11:595629. [PMID: 33281793 PMCID: PMC7691483 DOI: 10.3389/fmicb.2020.595629] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2020] [Accepted: 10/21/2020] [Indexed: 01/24/2023] Open
Abstract
The symbiosis system comprising eukaryotic hosts, intracellular bacterium Wolbachia, and temperate bacteriophages WO is widely spread through nearly half the number of arthropod species. The relationships between the three components of the system are extremely intricate. Even though the bacteriophage WO can have diverse influences on the ecology and evolution of Wolbachia, little is known about the distribution and evolution of the phages. To the best of our knowledge, this study is the first to report that in infected fig wasps (Ceratosolen solmsi, Kradibia gibbosae, and Wiebesia pumilae), the genomes of all the Wolbachia strains had only one cryptic WO prophage, which contained defects in the genomic structural modules. This phenomenon was contrary to the widely accepted understanding that Wolbachia with cryptic prophages usually possesses at least one intact WO prophage consisting of gene sequences of the head, baseplate, and tail modules, through which the prophage could form intact virions. In addition to the genetic structure features, the phylogenetic relationships of WO and Wolbachia also revealed that bacteriophage WO can horizontally spread among a certain genus or a group of insect hosts, nearly free from the restriction of the affiliation of Wolbachia. Combined with the vertical transmission along with Wolbachia, the wide spread of WO phages can be explained. Furthermore, the gender preference and functional module preference for transcriptional activity of the genes in cryptic WOs implied the antagonized coevolutionary pattern between WO prophages and their Wolbachia hosts.
Collapse
Affiliation(s)
- Yun-Heng Miao
- Key Laboratory of Zoological Systematics and Evolution, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
| | - Jin-Hua Xiao
- College of Life Sciences, Nankai University, Tianjin, China
| | - Da-Wei Huang
- Key Laboratory of Zoological Systematics and Evolution, Institute of Zoology, Chinese Academy of Sciences, Beijing, China.,College of Life Sciences, Nankai University, Tianjin, China
| |
Collapse
|
216
|
Significance of Viral Activity for Regulating Heterotrophic Prokaryote Community Dynamics along a Meridional Gradient of Stratification in the Northeast Atlantic Ocean. Viruses 2020; 12:v12111293. [PMID: 33198110 PMCID: PMC7696675 DOI: 10.3390/v12111293] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2020] [Revised: 11/05/2020] [Accepted: 11/09/2020] [Indexed: 11/17/2022] Open
Abstract
How microbial populations interact influences the availability and flux of organic carbon in the ocean. Understanding how these interactions vary over broad spatial scales is therefore a fundamental aim of microbial oceanography. In this study, we assessed variations in the abundances, production, virus and grazing induced mortality of heterotrophic prokaryotes during summer along a meridional gradient in stratification in the North Atlantic Ocean. Heterotrophic prokaryote abundance and activity varied with phytoplankton biomass, while the relative distribution of prokaryotic subpopulations (ratio of high nucleic acid fluorescent (HNA) and low nucleic acid fluorescent (LNA) cells) was significantly correlated to phytoplankton mortality mode (i.e., viral lysis to grazing rate ratio). Virus-mediate morality was the primary loss process regulating the heterotrophic prokaryotic communities (average 55% of the total mortality), which may be attributed to the strong top-down regulation of the bacterivorous protozoans. Host availability, encounter rate, and HNA:LNA were important factors regulating viral dynamics. Conversely, the abundance and activity of bacterivorous protozoans were largely regulated by temperature and turbulence. The ratio of total microbial mediated mortality to total available prokaryote carbon reveals that over the latitudinal gradient the heterotrophic prokaryote community gradually moved from a near steady state system regulated by high turnover in subtropical region to net heterotrophic production in the temperate region.
Collapse
|
217
|
Jeckelmann JM, Erni B. The mannose phosphotransferase system (Man-PTS) - Mannose transporter and receptor for bacteriocins and bacteriophages. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2020; 1862:183412. [PMID: 32710850 DOI: 10.1016/j.bbamem.2020.183412] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/28/2020] [Revised: 07/08/2020] [Accepted: 07/14/2020] [Indexed: 02/06/2023]
Abstract
Mannose transporters constitute a superfamily (Man-PTS) of the Phosphoenolpyruvate Carbohydrate Phosphotransferase System (PTS). The membrane complexes are homotrimers of protomers consisting of two subunits, IIC and IID. The two subunits without recognizable sequence similarity assume the same fold, and in the protomer are structurally related by a two fold pseudosymmetry axis parallel to membrane-plane (Liu et al. (2019) Cell Research 29 680). Two reentrant loops and two transmembrane helices of each subunit together form the N-terminal transport domain. Two three-helix bundles, one of each subunit, form the scaffold domain. The protomer is stabilized by a helix swap between these bundles. The two C-terminal helices of IIC mediate the interprotomer contacts. PTS occur in bacteria and archaea but not in eukaryotes. Man-PTS are abundant in Gram-positive bacteria living on carbohydrate rich mucosal surfaces. A subgroup of IICIID complexes serve as receptors for class IIa bacteriocins and as channel for the penetration of bacteriophage lambda DNA across the inner membrane. Some Man-PTS are associated with host-pathogen and -symbiont processes.
Collapse
Affiliation(s)
- Jean-Marc Jeckelmann
- Institute of Biochemistry and Molecular Medicine, University of Bern, Bern, Switzerland.
| | - Bernhard Erni
- Department of Chemistry and Biochemistry, University of Bern, Bern, Switzerland.
| |
Collapse
|
218
|
Echeverría-Vega A, Morales-Vicencio P, Saez-Saavedra C, Alvarez MA, Gordillo F, Del-Valle R, Solís ME, Araya R. Characterization of the Bacteriophage vB_VorS-PVo5 Infection on Vibrio ordalii: A Model for Phage-Bacteria Adsorption in Aquatic Environments. Front Microbiol 2020; 11:550979. [PMID: 33193133 PMCID: PMC7661435 DOI: 10.3389/fmicb.2020.550979] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2020] [Accepted: 09/11/2020] [Indexed: 01/24/2023] Open
Abstract
A mathematical first-order difference equation was designed to predict the dynamics of the phage-bacterium adsorption process in aquatic environments, under laboratory conditions. Our model requires knowledge of bacteria and bacteriophage concentrations and the measurements of bacterial size and velocity to predict both the number of bacteriophages adsorbed onto their bacterial host and the number of infected bacteria in a given specific time. It does not require data from previously performed adhesion experiments. The predictions generated by our model were validated in laboratory. Our model was initially conceived as an estimator for the effectiveness of the inoculation of phages as antibacterial therapy for aquaculture, is also suitable for a wide range of potential applications.
Collapse
Affiliation(s)
- Alex Echeverría-Vega
- Centro de Investigación en Estudios Avanzados del Maule (CIEAM), Vicerrectoría de Investigación y Postgrado, Universidad Católica del Maule, Talca, Chile
| | - Pablo Morales-Vicencio
- Laboratorio de Microbiología Costera, Facultad de Ciencias del Mar y Recursos Biológicos, Universidad de Antofagasta, Antofagasta, Chile
| | - Camila Saez-Saavedra
- Laboratorio de Microbiología Costera, Facultad de Ciencias del Mar y Recursos Biológicos, Universidad de Antofagasta, Antofagasta, Chile
| | - María Alejandra Alvarez
- Departamento de Matemáticas, Facultad de Ciencias Básicas, Universidad de Antofagasta, Antofagasta, Chile
| | - Felipe Gordillo
- Centro de Biotecnología de los Recursos Naturales, Facultad de Agronomía y Ciencias Forestales, Universidad Católica del Maule, Talca, Chile
| | - Rodrigo Del-Valle
- Departamento de Matemática, Física y Estadística, Facultad de Ciencias Básicas, Universidad Católica del Maule, Talca, Chile
| | - Ma. Eugenia Solís
- Departamento de Matemática, Física y Estadística, Facultad de Ciencias Básicas, Universidad Católica del Maule, Talca, Chile
| | - Rubén Araya
- Instituto de Ciencias Naturales Alexander von Humboldt, Facultad de Ciencias del Mar y Recursos Biológicos, Universidad de Antofagasta, Antofagasta, Chile
| |
Collapse
|
219
|
Chopyk J, Nasko DJ, Allard S, Bui A, Pop M, Mongodin EF, Sapkota AR. Seasonal dynamics in taxonomy and function within bacterial and viral metagenomic assemblages recovered from a freshwater agricultural pond. ENVIRONMENTAL MICROBIOME 2020; 15:18. [PMID: 33902740 PMCID: PMC8067656 DOI: 10.1186/s40793-020-00365-8] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/24/2020] [Accepted: 09/29/2020] [Indexed: 06/01/2023]
Abstract
BACKGROUND Ponds are important freshwater habitats that support both human and environmental activities. However, relative to their larger counterparts (e.g. rivers, lakes), ponds are understudied, especially with regard to their microbial communities. Our study aimed to fill this knowledge gap by using culture-independent, high-throughput sequencing to assess the dynamics, taxonomy, and functionality of bacterial and viral communities in a freshwater agricultural pond. RESULTS Water samples (n = 14) were collected from a Mid-Atlantic agricultural pond between June 2017 and May 2018 and filtered sequentially through 1 and 0.2 μm filter membranes. Total DNA was then extracted from each filter, pooled, and subjected to 16S rRNA gene and shotgun sequencing on the Illumina HiSeq 2500 platform. Additionally, on eight occasions water filtrates were processed for viral metagenomes (viromes) using chemical concentration and then shotgun sequenced. A ubiquitous freshwater phylum, Proteobacteria was abundant at all sampling dates throughout the year. However, environmental characteristics appeared to drive the structure of the community. For instance, the abundance of Cyanobacteria (e.g. Nostoc) increased with rising water temperatures, while a storm event appeared to trigger an increase in overall bacterial diversity, as well as the relative abundance of Bacteroidetes. This event was also associated with an increase in the number of antibiotic resistance genes. The viral fractions were dominated by dsDNA of the order Caudovirales, namely Siphoviridae and Myovirdae. CONCLUSIONS Overall, this study provides one of the largest datasets on pond water microbial ecology to date, revealing seasonal trends in the microbial taxonomic composition and functional potential.
Collapse
Affiliation(s)
- Jessica Chopyk
- Maryland Institute for Applied Environmental Health, University of Maryland School of Public Health, College Park, MD, USA.
- Department of Pathology University of California San Diego, La Jolla, California, USA.
| | - Daniel J Nasko
- Center for Bioinformatics and Computational Biology, Institute for Advanced Computer Sciences, University of Maryland, College Park, MD, USA
| | - Sarah Allard
- Maryland Institute for Applied Environmental Health, University of Maryland School of Public Health, College Park, MD, USA
| | - Anthony Bui
- Maryland Institute for Applied Environmental Health, University of Maryland School of Public Health, College Park, MD, USA
| | - Mihai Pop
- Center for Bioinformatics and Computational Biology, Institute for Advanced Computer Sciences, University of Maryland, College Park, MD, USA
| | - Emmanuel F Mongodin
- Institute for Genome Sciences and Department of Microbiology and Immunology, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Amy R Sapkota
- Maryland Institute for Applied Environmental Health, University of Maryland School of Public Health, College Park, MD, USA
| |
Collapse
|
220
|
Fu P, Zhao Q, Shi L, Xiong Q, Ren Z, Xu H, Chai S, Xu Q, Sun X, Sang M. Identification and characterization of two bacteriophages with lytic activity against multidrug-resistant Escherichia coli. Virus Res 2020; 291:198196. [PMID: 33098914 DOI: 10.1016/j.virusres.2020.198196] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Revised: 10/02/2020] [Accepted: 10/10/2020] [Indexed: 01/21/2023]
Abstract
Escherichia coli is an opportunistic bacterial pathogen that causes a wide range of nosocomial infections. The emergence of multidrug resistance in E. coli poses a severe threat to global health. Phage therapies are an alternative method to control multidrug-resistant pathogens, which have been attracting increasing attention. Owing to their ability to lyse bacteria specifically and efficiently, bacteriophages are considered novel antimicrobial agents. In this study, we used multidrug-resistant E. coli as an indicator and isolated, characterized, and compared two new phages of the Siphoviridae family referred to as vB_EcoS_XF and vB_EcoS_XY2. These phages were able to infect several pathogenic multidrug-resistant E. coli strains. A short latent period and large burst size ensured their rapidly reproduction in host cells. Their tolerance of high temperatures and high pH levels meant that remained stable when used to control pathogenic E. coli strains. No obvious cytotoxicity was observed when either HEK293 T or A549 cells were incubated with these two phages. Mass spectrometry analysis allowed us to identify several phage-encoded proteins. Genomic analysis revealed that no toxic proteins or antibiotic proteins were encoded. Genome comparison and phylogenetic analysis indicated that the phages identified show high similarity with E. coli phages of the genus Kagunavirus. The desirable characteristics of the novel phages identified make them good potential therapeutic candidates, and components of phage cocktails to treat multidrug-resistant E. coli in the future.
Collapse
Affiliation(s)
- Pan Fu
- Center for Translational Medicine, Hubei Clinical Research Center of Parkinson's disease, Hubei Key Laboratory of Wudang Local Chinese Medicine Research, Xiangyang No.1 People's Hospital, Hubei University of Medicine, Xiangyang, 441000, China.
| | - Qiang Zhao
- Center for Translational Medicine, Hubei Clinical Research Center of Parkinson's disease, Hubei Key Laboratory of Wudang Local Chinese Medicine Research, Xiangyang No.1 People's Hospital, Hubei University of Medicine, Xiangyang, 441000, China.
| | - Li Shi
- Department of Clinical Laboratory, Xiangyang No. 1 People's Hospital, Hubei University of Medicine, Xiangyang, 441000, China.
| | - Qin Xiong
- Department of Clinical Laboratory, Xiangyang No. 1 People's Hospital, Hubei University of Medicine, Xiangyang, 441000, China.
| | - Zijing Ren
- Center for Translational Medicine, Hubei Clinical Research Center of Parkinson's disease, Hubei Key Laboratory of Wudang Local Chinese Medicine Research, Xiangyang No.1 People's Hospital, Hubei University of Medicine, Xiangyang, 441000, China.
| | - Hongxia Xu
- Center for Translational Medicine, Hubei Clinical Research Center of Parkinson's disease, Hubei Key Laboratory of Wudang Local Chinese Medicine Research, Xiangyang No.1 People's Hospital, Hubei University of Medicine, Xiangyang, 441000, China.
| | - Senmao Chai
- Center for Translational Medicine, Hubei Clinical Research Center of Parkinson's disease, Hubei Key Laboratory of Wudang Local Chinese Medicine Research, Xiangyang No.1 People's Hospital, Hubei University of Medicine, Xiangyang, 441000, China.
| | - Qianqian Xu
- Center for Translational Medicine, Hubei Clinical Research Center of Parkinson's disease, Hubei Key Laboratory of Wudang Local Chinese Medicine Research, Xiangyang No.1 People's Hospital, Hubei University of Medicine, Xiangyang, 441000, China.
| | - Xiaodong Sun
- Center for Translational Medicine, Hubei Clinical Research Center of Parkinson's disease, Hubei Key Laboratory of Wudang Local Chinese Medicine Research, Xiangyang No.1 People's Hospital, Hubei University of Medicine, Xiangyang, 441000, China.
| | - Ming Sang
- Center for Translational Medicine, Hubei Clinical Research Center of Parkinson's disease, Hubei Key Laboratory of Wudang Local Chinese Medicine Research, Xiangyang No.1 People's Hospital, Hubei University of Medicine, Xiangyang, 441000, China.
| |
Collapse
|
221
|
Zhang Z, Qin F, Chen F, Chu X, Luo H, Zhang R, Du S, Tian Z, Zhao Y. Culturing novel and abundant pelagiphages in the ocean. Environ Microbiol 2020; 23:1145-1161. [PMID: 33047445 DOI: 10.1111/1462-2920.15272] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2020] [Revised: 09/27/2020] [Accepted: 10/03/2020] [Indexed: 11/26/2022]
Abstract
Viruses play a key role in biogeochemical cycling and host mortality, metabolism, physiology and evolution in the ocean. Viruses that infect the globally abundant SAR11 bacteria (pelagiphages) were reported to be an important component of the marine viral communities. Our current knowledge of pelagiphages is based on a few studies and therefore is limited. In this study, 10 new pelagiphages were isolated and genomically characterized. These pelagiphages represent the first cultivated representatives of four viral lineages only found in metagenomic sequencing datasets previously. Many abundant environmental viral sequences, i.e., single-virus vSAG 37-F6 and several Global Ocean Viromes (GOV) viral populations, are now further confirmed with these pelagiphages. Viromic read mapping reveals that these new pelagiphages are globally distributed in the ocean and can be detected throughout the water column. Remarkably, isolation of these pelagiphages contributed up to 12% of all viromic reads annotated in the analysed viromes. Altogether, this study has greatly broadened our understanding of pelagiphages regarding their morphology, genetic diversity, infection strategies, and distribution pattern. The availability of these newly isolated pelagiphages and their genome sequences will allow us to further explore their infectivities and ecological strategies.
Collapse
Affiliation(s)
- Zefeng Zhang
- Fujian Provincial Key Laboratory of Agroecological Processing and Safety Monitoring, College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, Fujian, China
| | - Fang Qin
- Fujian Provincial Key Laboratory of Agroecological Processing and Safety Monitoring, College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, Fujian, China
| | - Feng Chen
- Institute of Marine and Environmental Technology, University of Maryland Center for Environmental Science, Baltimore, MD, USA
| | - Xiao Chu
- Simon F. S. Li Marine Science Laboratory, School of Life Sciences and State Key Laboratory of Agrobiotechnology, The Chinese University of Hong Kong, Shatin, Hong Kong, SAR, China
| | - Haiwei Luo
- Simon F. S. Li Marine Science Laboratory, School of Life Sciences and State Key Laboratory of Agrobiotechnology, The Chinese University of Hong Kong, Shatin, Hong Kong, SAR, China
| | - Rui Zhang
- State Key Laboratory of Marine Environmental Science, College of Ocean and Earth Sciences, Institute of Marine Microbes and Ecospheres, Xiamen University, Xiamen, Fujian, China
| | - Sen Du
- Fujian Provincial Key Laboratory of Agroecological Processing and Safety Monitoring, College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, Fujian, China
| | - Zhen Tian
- Fujian Provincial Key Laboratory of Agroecological Processing and Safety Monitoring, College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, Fujian, China
| | - Yanlin Zhao
- Fujian Provincial Key Laboratory of Agroecological Processing and Safety Monitoring, College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, Fujian, China
| |
Collapse
|
222
|
Zhang W, Wu Q. Applications of phage-derived RNA-based technologies in synthetic biology. Synth Syst Biotechnol 2020; 5:343-360. [PMID: 33083579 PMCID: PMC7564126 DOI: 10.1016/j.synbio.2020.09.003] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2020] [Revised: 09/22/2020] [Accepted: 09/27/2020] [Indexed: 12/20/2022] Open
Abstract
As the most abundant biological entities with incredible diversity, bacteriophages (also known as phages) have been recognized as an important source of molecular machines for the development of genetic-engineering tools. At the same time, phages are crucial for establishing and improving basic theories of molecular biology. Studies on phages provide rich sources of essential elements for synthetic circuit design as well as powerful support for the improvement of directed evolution platforms. Therefore, phages play a vital role in the development of new technologies and central scientific concepts. After the RNA world hypothesis was proposed and developed, novel biological functions of RNA continue to be discovered. RNA and its related elements are widely used in many fields such as metabolic engineering and medical diagnosis, and their versatility led to a major role of RNA in synthetic biology. Further development of RNA-based technologies will advance synthetic biological tools as well as provide verification of the RNA world hypothesis. Most synthetic biology efforts are based on reconstructing existing biological systems, understanding fundamental biological processes, and developing new technologies. RNA-based technologies derived from phages will offer abundant sources for synthetic biological components. Moreover, phages as well as RNA have high impact on biological evolution, which is pivotal for understanding the origin of life, building artificial life-forms, and precisely reprogramming biological systems. This review discusses phage-derived RNA-based technologies terms of phage components, the phage lifecycle, and interactions between phages and bacteria. The significance of RNA-based technology derived from phages for synthetic biology and for understanding the earliest stages of biological evolution will be highlighted.
Collapse
Affiliation(s)
- Wenhui Zhang
- MOE Key Lab. Bioinformatics, School of Life Sciences, Tsinghua University, Beijing, 100084, China
| | - Qiong Wu
- MOE Key Lab. Bioinformatics, School of Life Sciences, Tsinghua University, Beijing, 100084, China
- Center for Synthetic and Systems Biology, Tsinghua University, Beijing, 100084, China
- Corresponding author. MOE Key Lab. Bioinformatics, School of Life Sciences, Tsinghua University, Beijing, 100084, China.
| |
Collapse
|
223
|
Michael-Kordatou I, Karaolia P, Fatta-Kassinos D. Sewage analysis as a tool for the COVID-19 pandemic response and management: the urgent need for optimised protocols for SARS-CoV-2 detection and quantification. JOURNAL OF ENVIRONMENTAL CHEMICAL ENGINEERING 2020. [PMID: 32834990 DOI: 10.1016/j.jece:2020.104306] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
COVID-19 is an ongoing global pandemic caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). As of July 29th 2020, more than 16,6 million cases have been reported in more than 188 countries/territories, leading to more than 659000 deaths. One of the main challenges facing health authorities has been testing for the virus on a sufficiently comprehensive scale. The pandemic has been an impetus for the wastewater community as it has inspired scientists to look to wastewater to help fill in the gap of measuring the prevalence of SARS-CoV-2 within a given community. Testing the wastewater may serve as an early warning system allowing timely interventions. Although viral shedding varies among individuals and over the course of their infection, the sewage system can blend these variations into an average that represents the wider studied community. The urgent need has led to a lack of coherent reporting of data regarding the analysis, as these huge and remarkable efforts by the wastewater scientific community were made in a very short time. Important information on the analytical approach is often lacking, while there is still no optimisation of the methodology, including sampling, sample storage and concentration, RNA extraction and detection/quantification. This review aims at identifying the main issues for consideration, relating to the development of validated methodological protocols for the virus quantitative analysis in wastewater. Their inclusion will enable the methodological optimisation of SARS-CoV-2 wastewater analyses, transforming the wastewater infrastructure into a source of useful information for the health sector.
Collapse
Affiliation(s)
- I Michael-Kordatou
- Nireas-International Water Research Centre, University of Cyprus, P.O. Box 20537, CY-1678, Nicosia, Cyprus
| | - P Karaolia
- Nireas-International Water Research Centre, University of Cyprus, P.O. Box 20537, CY-1678, Nicosia, Cyprus
| | - D Fatta-Kassinos
- Nireas-International Water Research Centre, University of Cyprus, P.O. Box 20537, CY-1678, Nicosia, Cyprus
- Department of Civil and Environmental Engineering, University of Cyprus, P.O. Box 20537, CY-1678, Nicosia, Cyprus
| |
Collapse
|
224
|
Pellizza L, López JL, Vázquez S, Sycz G, Guimarães BG, Rinaldi J, Goldbaum FA, Aran M, Mac Cormack WP, Klinke S. Structure of the putative long tail fiber receptor-binding tip of a novel temperate bacteriophage from the Antarctic bacterium Bizionia argentinensis JUB59. J Struct Biol 2020; 212:107595. [PMID: 32736071 DOI: 10.1016/j.jsb.2020.107595] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2020] [Revised: 07/23/2020] [Accepted: 07/24/2020] [Indexed: 11/28/2022]
Abstract
Tailed bacteriophages are one of the most widespread biological entities on Earth. Their singular structures, such as spikes or fibers are of special interest given their potential use in a wide range of biotechnological applications. In particular, the long fibers present at the termini of the T4 phage tail have been studied in detail and are important for host recognition and adsorption. Although significant progress has been made in elucidating structural mechanisms of model phages, the high-resolution structural description of the vast population of marine phages is still unexplored. In this context, we present here the crystal structure of C24, a putative receptor-binding tip-like protein from Bizionia argentinensis JUB59, a psychrotolerant bacterium isolated from the marine surface waters of Potter Cove, Antarctica. The structure resembles the receptor-binding tip from the bacteriophage T4 long tail fiber yet showing marked differences in its domain organization, size, sequence identity and metal binding nature. We confirmed the viral origin of C24 by induction experiments using mitomycin C. Our results reveal the presence of a novel uncharacterized prophage in the genome of B. argentinensis JUB59, whose morphology is compatible with the order Caudovirales and that carries the nucleotide sequence of C24 in its genome. This work provides valuable information to expand our current knowledge on the viral machinery prevalent in the oceans.
Collapse
Affiliation(s)
- Leonardo Pellizza
- Fundación Instituto Leloir, IIBBA-CONICET, Patricias Argentinas 435 (C1405BWE), Buenos Aires, Argentina
| | - José L López
- Instituto de Bacteriología y Virología Molecular (IBAVIM), Cátedra de Virología, Facultad de Farmacia y Bioquímica, Universidad de Buenos Aires, Junín 956 (C1113AAZ), Buenos Aires, Argentina
| | - Susana Vázquez
- Instituto NANOBIOTEC - Cátedra de Biotecnología, Facultad de Farmacia y Bioquímica, Universidad de Buenos Aires - Consejo Nacional de Investigaciones Científicas y Técnicas, Junín 956 (C1113AAZ), Buenos Aires, Argentina
| | - Gabriela Sycz
- Fundación Instituto Leloir, IIBBA-CONICET, Patricias Argentinas 435 (C1405BWE), Buenos Aires, Argentina
| | - Beatriz G Guimarães
- Synchrotron SOLEIL, L'Orme des Merisiers, Saint-Aubin BP 48 (91192), Gif-sur-Yvette, France
| | - Jimena Rinaldi
- Fundación Instituto Leloir, IIBBA-CONICET, Patricias Argentinas 435 (C1405BWE), Buenos Aires, Argentina
| | - Fernando A Goldbaum
- Fundación Instituto Leloir, IIBBA-CONICET, Patricias Argentinas 435 (C1405BWE), Buenos Aires, Argentina; Plataforma Argentina de Biología Estructural y Metabolómica PLABEM, Patricias Argentinas 435 (C1405BWE), Buenos Aires, Argentina
| | - Martín Aran
- Fundación Instituto Leloir, IIBBA-CONICET, Patricias Argentinas 435 (C1405BWE), Buenos Aires, Argentina.
| | - Walter P Mac Cormack
- Instituto NANOBIOTEC - Cátedra de Biotecnología, Facultad de Farmacia y Bioquímica, Universidad de Buenos Aires - Consejo Nacional de Investigaciones Científicas y Técnicas, Junín 956 (C1113AAZ), Buenos Aires, Argentina; Instituto Antártico Argentino, 25 de Mayo 1143 (B1650HMK), San Martín, Provincia de Buenos Aires, Argentina.
| | - Sebastián Klinke
- Fundación Instituto Leloir, IIBBA-CONICET, Patricias Argentinas 435 (C1405BWE), Buenos Aires, Argentina; Plataforma Argentina de Biología Estructural y Metabolómica PLABEM, Patricias Argentinas 435 (C1405BWE), Buenos Aires, Argentina.
| |
Collapse
|
225
|
Michael-Kordatou I, Karaolia P, Fatta-Kassinos D. Sewage analysis as a tool for the COVID-19 pandemic response and management: the urgent need for optimised protocols for SARS-CoV-2 detection and quantification. JOURNAL OF ENVIRONMENTAL CHEMICAL ENGINEERING 2020; 8:104306. [PMID: 32834990 PMCID: PMC7384408 DOI: 10.1016/j.jece.2020.104306] [Citation(s) in RCA: 146] [Impact Index Per Article: 29.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/02/2020] [Revised: 07/22/2020] [Accepted: 07/23/2020] [Indexed: 05/02/2023]
Abstract
COVID-19 is an ongoing global pandemic caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). As of July 29th 2020, more than 16,6 million cases have been reported in more than 188 countries/territories, leading to more than 659000 deaths. One of the main challenges facing health authorities has been testing for the virus on a sufficiently comprehensive scale. The pandemic has been an impetus for the wastewater community as it has inspired scientists to look to wastewater to help fill in the gap of measuring the prevalence of SARS-CoV-2 within a given community. Testing the wastewater may serve as an early warning system allowing timely interventions. Although viral shedding varies among individuals and over the course of their infection, the sewage system can blend these variations into an average that represents the wider studied community. The urgent need has led to a lack of coherent reporting of data regarding the analysis, as these huge and remarkable efforts by the wastewater scientific community were made in a very short time. Important information on the analytical approach is often lacking, while there is still no optimisation of the methodology, including sampling, sample storage and concentration, RNA extraction and detection/quantification. This review aims at identifying the main issues for consideration, relating to the development of validated methodological protocols for the virus quantitative analysis in wastewater. Their inclusion will enable the methodological optimisation of SARS-CoV-2 wastewater analyses, transforming the wastewater infrastructure into a source of useful information for the health sector.
Collapse
Affiliation(s)
- I Michael-Kordatou
- Nireas-International Water Research Centre, University of Cyprus, P.O. Box 20537, CY-1678, Nicosia, Cyprus
| | - P Karaolia
- Nireas-International Water Research Centre, University of Cyprus, P.O. Box 20537, CY-1678, Nicosia, Cyprus
| | - D Fatta-Kassinos
- Nireas-International Water Research Centre, University of Cyprus, P.O. Box 20537, CY-1678, Nicosia, Cyprus
- Department of Civil and Environmental Engineering, University of Cyprus, P.O. Box 20537, CY-1678, Nicosia, Cyprus
| |
Collapse
|
226
|
Chen W, Nie F, Ding H. Recent Advances of Computational Methods for Identifying Bacteriophage Virion Proteins. Protein Pept Lett 2020; 27:259-264. [PMID: 30968770 DOI: 10.2174/0929866526666190410124642] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2019] [Revised: 03/07/2019] [Accepted: 04/01/2019] [Indexed: 01/09/2023]
Abstract
Phage Virion Proteins (PVP) are essential materials of bacteriophage, which participate in a series of biological processes. Accurate identification of phage virion proteins is helpful to understand the mechanism of interaction between the phage and its host bacteria. Since experimental method is labor intensive and time-consuming, in the past few years, many computational approaches have been proposed to identify phage virion proteins. In order to facilitate researchers to select appropriate methods, it is necessary to give a comprehensive review and comparison on existing computational methods on identifying phage virion proteins. In this review, we summarized the existing computational methods for identifying phage virion proteins and also assessed their performances on an independent dataset. Finally, challenges and future perspectives for identifying phage virion proteins were presented. Taken together, we hope that this review could provide clues to researches on the study of phage virion proteins.
Collapse
Affiliation(s)
- Wei Chen
- Innovative Institute of Chinese Medicine and Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611730, China.,Key Laboratory for Neuro-Information of Ministry of Education, School of Life Science and Technology, Center for Informational Biology, University of Electronic Science and Technology of China, Chengdu 610054, China.,Center for Genomics and Computational Biology, School of Life Sciences, North China University of Science and Technology, Tangshan 063000, China
| | - Fulei Nie
- Center for Genomics and Computational Biology, School of Life Sciences, North China University of Science and Technology, Tangshan 063000, China
| | - Hui Ding
- Key Laboratory for Neuro-Information of Ministry of Education, School of Life Science and Technology, Center for Informational Biology, University of Electronic Science and Technology of China, Chengdu 610054, China
| |
Collapse
|
227
|
Fluckiger A, Daillère R, Sassi M, Sixt BS, Liu P, Loos F, Richard C, Rabu C, Alou MT, Goubet AG, Lemaitre F, Ferrere G, Derosa L, Duong CPM, Messaoudene M, Gagné A, Joubert P, De Sordi L, Debarbieux L, Simon S, Scarlata CM, Ayyoub M, Palermo B, Facciolo F, Boidot R, Wheeler R, Boneca IG, Sztupinszki Z, Papp K, Csabai I, Pasolli E, Segata N, Lopez-Otin C, Szallasi Z, Andre F, Iebba V, Quiniou V, Klatzmann D, Boukhalil J, Khelaifia S, Raoult D, Albiges L, Escudier B, Eggermont A, Mami-Chouaib F, Nistico P, Ghiringhelli F, Routy B, Labarrière N, Cattoir V, Kroemer G, Zitvogel L. Cross-reactivity between tumor MHC class I-restricted antigens and an enterococcal bacteriophage. Science 2020; 369:936-942. [PMID: 32820119 DOI: 10.1126/science.aax0701] [Citation(s) in RCA: 255] [Impact Index Per Article: 51.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2019] [Revised: 02/28/2020] [Accepted: 06/23/2020] [Indexed: 12/28/2022]
Abstract
Intestinal microbiota have been proposed to induce commensal-specific memory T cells that cross-react with tumor-associated antigens. We identified major histocompatibility complex (MHC) class I-binding epitopes in the tail length tape measure protein (TMP) of a prophage found in the genome of the bacteriophage Enterococcus hirae Mice bearing E. hirae harboring this prophage mounted a TMP-specific H-2Kb-restricted CD8+ T lymphocyte response upon immunotherapy with cyclophosphamide or anti-PD-1 antibodies. Administration of bacterial strains engineered to express the TMP epitope improved immunotherapy in mice. In renal and lung cancer patients, the presence of the enterococcal prophage in stools and expression of a TMP-cross-reactive antigen by tumors correlated with long-term benefit of PD-1 blockade therapy. In melanoma patients, T cell clones recognizing naturally processed cancer antigens that are cross-reactive with microbial peptides were detected.
Collapse
Affiliation(s)
- Aurélie Fluckiger
- Gustave Roussy Cancer Campus (GRCC), Villejuif, France.,Institut National de la Santé et de la Recherche Médicale, U1015, Institut Gustave Roussy, Villejuif, France
| | - Romain Daillère
- Gustave Roussy Cancer Campus (GRCC), Villejuif, France.,Institut National de la Santé et de la Recherche Médicale, U1015, Institut Gustave Roussy, Villejuif, France.,everImmune, Gustave Roussy Cancer Center, Villejuif, France
| | - Mohamed Sassi
- Université Rennes 1, Laboratoire de Biochimie Pharmaceutique, Inserm U1230 - UPRES EA 2311, Rennes, France
| | - Barbara Susanne Sixt
- Laboratory for Molecular Infection Medicine Sweden, Umeå Centre for Microbial Research, Department of Molecular Biology, Umeå University, 90187, Umeå, Sweden.,Cell Biology and Metabolomics Platforms, Gustave Roussy Cancer Campus, Villejuif, France.,Equipe 11 labellisée Ligue contre le Cancer, Centre de Recherche des Cordeliers, Paris, France.,INSERM U1138, Paris, France.,Université de Paris, Paris, France.,Sorbonne Université, Paris, France
| | - Peng Liu
- Cell Biology and Metabolomics Platforms, Gustave Roussy Cancer Campus, Villejuif, France.,Equipe 11 labellisée Ligue contre le Cancer, Centre de Recherche des Cordeliers, Paris, France.,INSERM U1138, Paris, France.,Université de Paris, Paris, France.,Sorbonne Université, Paris, France
| | - Friedemann Loos
- Cell Biology and Metabolomics Platforms, Gustave Roussy Cancer Campus, Villejuif, France.,Equipe 11 labellisée Ligue contre le Cancer, Centre de Recherche des Cordeliers, Paris, France.,INSERM U1138, Paris, France.,Université de Paris, Paris, France.,Sorbonne Université, Paris, France
| | - Corentin Richard
- Research Platform in Biological Oncology, Dijon, France.,GIMI Genetic and Immunology Medical Institute, Dijon, France.,University of Burgundy-Franche Comté, Dijon, France
| | - Catherine Rabu
- CRCINA, INSERM, Université d'Angers, Université de Nantes, Nantes, France.,LabEx IGO "Immunotherapy, Graft, Oncology," Nantes, France
| | - Maryam Tidjani Alou
- Gustave Roussy Cancer Campus (GRCC), Villejuif, France.,Institut National de la Santé et de la Recherche Médicale, U1015, Institut Gustave Roussy, Villejuif, France.,UMR MEPHI, Aix-Marseille Université, IRD, AP-HM, Institut Hospitalo-Universitaire Méditerranée-Infection, 19-21 Boulevard Jean Moulin, 13385, Marseille cedex 05, France
| | - Anne-Gaëlle Goubet
- Gustave Roussy Cancer Campus (GRCC), Villejuif, France.,Institut National de la Santé et de la Recherche Médicale, U1015, Institut Gustave Roussy, Villejuif, France
| | - Fabien Lemaitre
- Gustave Roussy Cancer Campus (GRCC), Villejuif, France.,everImmune, Gustave Roussy Cancer Center, Villejuif, France
| | - Gladys Ferrere
- Gustave Roussy Cancer Campus (GRCC), Villejuif, France.,Institut National de la Santé et de la Recherche Médicale, U1015, Institut Gustave Roussy, Villejuif, France
| | - Lisa Derosa
- Gustave Roussy Cancer Campus (GRCC), Villejuif, France.,Institut National de la Santé et de la Recherche Médicale, U1015, Institut Gustave Roussy, Villejuif, France.,Université Paris-Saclay, Villejuif, F-94805, France
| | - Connie P M Duong
- Gustave Roussy Cancer Campus (GRCC), Villejuif, France.,Institut National de la Santé et de la Recherche Médicale, U1015, Institut Gustave Roussy, Villejuif, France
| | - Meriem Messaoudene
- Institut Universitaire de Cardiologie et de Pneumologie de Québec, Research Center and Department of Cytology and Pathology, Québec City, Québec, Canada
| | - Andréanne Gagné
- Institut Universitaire de Cardiologie et de Pneumologie de Québec, Research Center and Department of Cytology and Pathology, Québec City, Québec, Canada
| | - Philippe Joubert
- Institut Universitaire de Cardiologie et de Pneumologie de Québec, Research Center and Department of Cytology and Pathology, Québec City, Québec, Canada
| | - Luisa De Sordi
- Bacteriophage, Bacterium, Host Laboratory, Institut Pasteur, F-75015 Paris, France.,Sorbonne Université, Centre de Recherche Saint Antoine, INSERM UMRS_938, Paris, France
| | - Laurent Debarbieux
- Bacteriophage, Bacterium, Host Laboratory, Institut Pasteur, F-75015 Paris, France
| | - Sylvain Simon
- CRCINA, INSERM, Université d'Angers, Université de Nantes, Nantes, France.,LabEx IGO "Immunotherapy, Graft, Oncology," Nantes, France
| | - Clara-Maria Scarlata
- Cancer Research Centre of Toulouse, INSERM UMR 1037, 31037 Toulouse, France; Université Toulouse III Paul Sabatier, 31330 Toulouse, France; Institut Universitaire du Cancer de Toulouse-Oncopole, 31100 Toulouse, France
| | - Maha Ayyoub
- Cancer Research Centre of Toulouse, INSERM UMR 1037, 31037 Toulouse, France; Université Toulouse III Paul Sabatier, 31330 Toulouse, France; Institut Universitaire du Cancer de Toulouse-Oncopole, 31100 Toulouse, France
| | - Belinda Palermo
- Unit of Tumor Immunology and Immunotherapy, Department of Research, Advanced Diagnostics and Technological Innovation, IRCCS Regina Elena National Cancer Institute, Rome, Italy
| | - Francesco Facciolo
- Thoracic Surgery Unit, Department of Surgical Oncology, IRCCS Regina Elena National Cancer Institute, Rome, Italy
| | - Romain Boidot
- Unit of Molecular Biology, Department of Biology and Pathology of Tumors, Georges-François Leclerc Anticancer Center, UNICANCER, Dijon, France
| | - Richard Wheeler
- Institut Pasteur, Unit Biology and Genetics of the Bacterial Cell Wall, Paris, France
| | - Ivo Gomperts Boneca
- Institut Pasteur, Unit Biology and Genetics of the Bacterial Cell Wall, Paris, France
| | - Zsofia Sztupinszki
- Computational Health Informatics Program (CHIP), Boston Children's Hospital, Boston, MA, USA
| | - Krisztian Papp
- Department of Physics of Complex Systems, ELTE Eötvös Loránd University, Budapest, Hungary
| | - Istvan Csabai
- Department of Physics of Complex Systems, ELTE Eötvös Loránd University, Budapest, Hungary
| | - Edoardo Pasolli
- Department of Agricultural Sciences, University of Naples Federico II, Naples, Italy
| | - Nicola Segata
- Department CIBIO, University of Trento, Trento, Italy
| | - Carlos Lopez-Otin
- Equipe 11 labellisée Ligue contre le Cancer, Centre de Recherche des Cordeliers, Paris, France.,INSERM U1138, Paris, France.,Université de Paris, Paris, France.,Sorbonne Université, Paris, France.,Departamento de Bioquímica y Biología Molecular, Instituto Universitario de Oncología (IUOPA), Universidad de Oviedo, Oviedo, Spain
| | - Zoltan Szallasi
- Computational Health Informatics Program (CHIP), Boston Children's Hospital, Boston, MA, USA.,Harvard Medical School, Boston, MA, USA.,Danish Cancer Society Research Center, Copenhagen, Denmark.,MTA-SE-NAP, Brain Metastasis Research Group, 2nd Department of Pathology, Semmelweis University, Budapest, Hungary
| | - Fabrice Andre
- Department of Cancer Medicine, Breast Cancer Committee, Gustave Roussy, Villejuif, France.,INSERM Unit 981, Gustave Roussy, Villejuif, France
| | - Valerio Iebba
- Gustave Roussy Cancer Campus (GRCC), Villejuif, France.,Institut National de la Santé et de la Recherche Médicale, U1015, Institut Gustave Roussy, Villejuif, France.,Department of Medical Sciences, University of Trieste, 34137 Trieste, Italy
| | - Valentin Quiniou
- AP-HP, Hôpital Pitié-Salpêtrière, Clinical Investigation Center in Biotherapy (CIC-BTi) and Immunology-Inflammation-Infectiology and Dermatology Department (3iD), F-75651, Paris, France.,Sorbonne Université, INSERM, Immunology-Immunopathology-Immunotherapy (i3), F-75651, Paris, France
| | - David Klatzmann
- AP-HP, Hôpital Pitié-Salpêtrière, Clinical Investigation Center in Biotherapy (CIC-BTi) and Immunology-Inflammation-Infectiology and Dermatology Department (3iD), F-75651, Paris, France.,Sorbonne Université, INSERM, Immunology-Immunopathology-Immunotherapy (i3), F-75651, Paris, France
| | - Jacques Boukhalil
- UMR MEPHI, Aix-Marseille Université, IRD, AP-HM, Institut Hospitalo-Universitaire Méditerranée-Infection, 19-21 Boulevard Jean Moulin, 13385, Marseille cedex 05, France
| | - Saber Khelaifia
- UMR MEPHI, Aix-Marseille Université, IRD, AP-HM, Institut Hospitalo-Universitaire Méditerranée-Infection, 19-21 Boulevard Jean Moulin, 13385, Marseille cedex 05, France
| | - Didier Raoult
- UMR MEPHI, Aix-Marseille Université, IRD, AP-HM, Institut Hospitalo-Universitaire Méditerranée-Infection, 19-21 Boulevard Jean Moulin, 13385, Marseille cedex 05, France
| | - Laurence Albiges
- Gustave Roussy Cancer Campus (GRCC), Villejuif, France.,Department of Medical Oncology, Gustave Roussy, Villejuif, France
| | - Bernard Escudier
- Gustave Roussy Cancer Campus (GRCC), Villejuif, France.,Department of Medical Oncology, Gustave Roussy, Villejuif, France.,INSERM U981, GRCC, Villejuif, France
| | - Alexander Eggermont
- Gustave Roussy Cancer Campus (GRCC), Villejuif, France.,Princess Maxima Center, CS 3584 Utrecht, the Netherlands
| | - Fathia Mami-Chouaib
- INSERM UMR 1186, Integrative Tumor Immunology and Immunotherapy, Gustave Roussy, Fac. de Médecine - Univ. Paris-Sud, Université Paris-Saclay, 94805, Villejuif, France
| | - Paola Nistico
- Unit of Tumor Immunology and Immunotherapy, Department of Research, Advanced Diagnostics and Technological Innovation, IRCCS Regina Elena National Cancer Institute, Rome, Italy.,Thoracic Surgery Unit, Department of Surgical Oncology, IRCCS Regina Elena National Cancer Institute, Rome, Italy
| | | | - Bertrand Routy
- Institut Universitaire de Cardiologie et de Pneumologie de Québec, Research Center and Department of Cytology and Pathology, Québec City, Québec, Canada.,Division d'Hémato-Oncologie, Département de Médicine, Centre Hospitalier de l'Université de Montréal (CHUM), Montréal, Québec, Canada
| | - Nathalie Labarrière
- CRCINA, INSERM, Université d'Angers, Université de Nantes, Nantes, France.,LabEx IGO "Immunotherapy, Graft, Oncology," Nantes, France
| | - Vincent Cattoir
- Université Rennes 1, Laboratoire de Biochimie Pharmaceutique, Inserm U1230 - UPRES EA 2311, Rennes, France.,CHU de Rennes - Hôpital Ponchaillou, Service de Bactériologie-Hygiène Hospitalière, Rennes, France.,CNR de la Résistance aux Antibiotiques (laboratoire associé 'Entérocoques'), Rennes, France
| | - Guido Kroemer
- Cell Biology and Metabolomics Platforms, Gustave Roussy Cancer Campus, Villejuif, France. .,Equipe 11 labellisée Ligue contre le Cancer, Centre de Recherche des Cordeliers, Paris, France.,INSERM U1138, Paris, France.,Université de Paris, Paris, France.,Sorbonne Université, Paris, France.,Pôle de Biologie, Hôpital Européen Georges Pompidou, Assistance Publique-Hôpitaux de Paris, Paris, France.,Department of Women's and Children's Health, Karolinska University Hospital, 1 Stockholm, Sweden.,Suzhou Institute for Systems Biology, Chinese Academy of Medical Sciences, Suzhou, China.,Institut Universitaire de France, Paris, France
| | - Laurence Zitvogel
- Gustave Roussy Cancer Campus (GRCC), Villejuif, France. .,Institut National de la Santé et de la Recherche Médicale, U1015, Institut Gustave Roussy, Villejuif, France.,Université Paris-Saclay, Villejuif, F-94805, France.,Suzhou Institute for Systems Biology, Chinese Academy of Medical Sciences, Suzhou, China
| |
Collapse
|
228
|
Zheng L, Liang X, Shi R, Li P, Zhao J, Li G, Wang S, Han S, Radosevich M, Zhang Y. Viral Abundance and Diversity of Production Fluids in Oil Reservoirs. Microorganisms 2020; 8:microorganisms8091429. [PMID: 32957569 PMCID: PMC7563284 DOI: 10.3390/microorganisms8091429] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2020] [Revised: 09/11/2020] [Accepted: 09/15/2020] [Indexed: 11/16/2022] Open
Abstract
Viruses are widely distributed in various ecosystems and have important impacts on microbial evolution, community structure and function and nutrient cycling in the environment. Viral abundance, diversity and distribution are important for a better understanding of ecosystem functioning and have often been investigated in marine, soil, and other environments. Though microbes have proven useful in oil recovery under extreme conditions, little is known about virus community dynamics in such systems. In this study, injection water and production fluids were sampled in two blocks of the Daqing oilfield limited company where water flooding and microbial flooding were continuously used to improve oil recovery. Virus-like particles (VLPs) and bacteria in these samples were extracted and enumerated with epifluorescence microscopy, and viromes of these samples were also sequenced with Illumina Hiseq PE150. The results showed that a large number of viruses existed in the oil reservoir, and VLPs abundance of production wells was 3.9 ± 0.7 × 108 mL-1 and virus to bacteria ratio (VBR) was 6.6 ± 1.1 during water flooding. Compared with water flooding, the production wells of microbial flooding had relative lower VLPs abundance (3.3 ± 0.3 × 108 mL-1) but higher VBR (7.9 ± 2.2). Assembled viral contigs were mapped to an in-house virus reference data separate from the GenBank non-redundant nucleotide (NT) database, and the sequences annotated as virus accounted for 35.34 and 55.04% of total sequences in samples of water flooding and microbial flooding, respectively. In water flooding, 7 and 6 viral families were identified in the injection and production wells, respectively. In microbial flooding, 6 viral families were identified in the injection and production wells. The total number of identified viral species in the injection well was higher than that in the production wells for both water flooding and microbial flooding. The Shannon diversity index was higher in the production well of water flooding than in the production well of microbial flooding. These results show that viruses are very abundant and diverse in the oil reservoir's ecosystem, and future efforts are needed to reveal the potential function of viral communities in this extreme environment.
Collapse
Affiliation(s)
- Liangcan Zheng
- Key Laboratory of Pollution Ecology and Environmental Engineering, Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang 110016, China; (L.Z.); (R.S.); (P.L.); (S.W.); (S.H.)
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xiaolong Liang
- Department of Biosystems Engineering and Soil Science, The University of Tennessee, Knoxville, TN 37996, USA; (X.L.); (M.R.)
| | - Rongjiu Shi
- Key Laboratory of Pollution Ecology and Environmental Engineering, Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang 110016, China; (L.Z.); (R.S.); (P.L.); (S.W.); (S.H.)
| | - Ping Li
- Key Laboratory of Pollution Ecology and Environmental Engineering, Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang 110016, China; (L.Z.); (R.S.); (P.L.); (S.W.); (S.H.)
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jinyi Zhao
- No. 2 Oil Production Company, Daqing Oilfield Limited Company, Daqing 163414, China; (J.Z.); (G.L.)
| | - Guoqiao Li
- No. 2 Oil Production Company, Daqing Oilfield Limited Company, Daqing 163414, China; (J.Z.); (G.L.)
| | - Shuang Wang
- Key Laboratory of Pollution Ecology and Environmental Engineering, Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang 110016, China; (L.Z.); (R.S.); (P.L.); (S.W.); (S.H.)
| | - Siqin Han
- Key Laboratory of Pollution Ecology and Environmental Engineering, Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang 110016, China; (L.Z.); (R.S.); (P.L.); (S.W.); (S.H.)
| | - Mark Radosevich
- Department of Biosystems Engineering and Soil Science, The University of Tennessee, Knoxville, TN 37996, USA; (X.L.); (M.R.)
| | - Ying Zhang
- Key Laboratory of Pollution Ecology and Environmental Engineering, Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang 110016, China; (L.Z.); (R.S.); (P.L.); (S.W.); (S.H.)
- Correspondence:
| |
Collapse
|
229
|
Temperate infection in a virus-host system previously known for virulent dynamics. Nat Commun 2020; 11:4626. [PMID: 32934228 PMCID: PMC7493887 DOI: 10.1038/s41467-020-18078-4] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2020] [Accepted: 07/28/2020] [Indexed: 12/15/2022] Open
Abstract
The blooming cosmopolitan coccolithophore Emiliania huxleyi and its viruses (EhVs) are a model for density-dependent virulent dynamics. EhVs commonly exhibit rapid viral reproduction and drive host death in high-density laboratory cultures and mesocosms that simulate blooms. Here we show that this system exhibits physiology-dependent temperate dynamics at environmentally relevant E. huxleyi host densities rather than virulent dynamics, with viruses switching from a long-term non-lethal temperate phase in healthy hosts to a lethal lytic stage as host cells become physiologically stressed. Using this system as a model for temperate infection dynamics, we present a template to diagnose temperate infection in other virus-host systems by integrating experimental, theoretical, and environmental approaches. Finding temperate dynamics in such an established virulent host-virus model system indicates that temperateness may be more pervasive than previously considered, and that the role of viruses in bloom formation and decline may be governed by host physiology rather than by host-virus densities.
Collapse
|
230
|
Mruwat N, Carlson MCG, Goldin S, Ribalet F, Kirzner S, Hulata Y, Beckett SJ, Shitrit D, Weitz JS, Armbrust EV, Lindell D. A single-cell polony method reveals low levels of infected Prochlorococcus in oligotrophic waters despite high cyanophage abundances. ISME JOURNAL 2020; 15:41-54. [PMID: 32918065 PMCID: PMC7853090 DOI: 10.1038/s41396-020-00752-6] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/07/2020] [Revised: 08/05/2020] [Accepted: 08/17/2020] [Indexed: 12/14/2022]
Abstract
Long-term stability of picocyanobacteria in the open oceans is maintained by a balance between synchronous division and death on daily timescales. Viruses are considered a major source of microbial mortality, however, current methods to measure infection have significant methodological limitations. Here we describe a method that pairs flow-cytometric sorting with a PCR-based polony technique to simultaneously screen thousands of taxonomically resolved individual cells for intracellular virus DNA, enabling sensitive, high-throughput, and direct quantification of infection by different virus lineages. Under controlled conditions with picocyanobacteria-cyanophage models, the method detected infection throughout the lytic cycle and discriminated between varying infection levels. In North Pacific subtropical surface waters, the method revealed that only a small percentage of Prochlorococcus (0.35–1.6%) were infected, predominantly by T4-like cyanophages, and that infection oscillated 2-fold in phase with the diel cycle. This corresponds to 0.35–4.8% of Prochlorococcus mortality daily. Cyanophages were 2–4-fold more abundant than Prochlorococcus, indicating that most encounters did not result in infection and suggesting infection is mitigated via host resistance, reduced phage infectivity and inefficient adsorption. This method will enable quantification of infection for key microbial taxa across oceanic regimes and will help determine the extent that viruses shape microbial communities and ecosystem level processes.
Collapse
Affiliation(s)
- Noor Mruwat
- Faculty of Biology, Technion - Israel Institute of Technology, Haifa, 3200003, Israel
| | - Michael C G Carlson
- Faculty of Biology, Technion - Israel Institute of Technology, Haifa, 3200003, Israel
| | - Svetlana Goldin
- Faculty of Biology, Technion - Israel Institute of Technology, Haifa, 3200003, Israel
| | - François Ribalet
- School of Oceanography, University of Washington, Seattle, WA, 98195, USA
| | - Shay Kirzner
- Faculty of Biology, Technion - Israel Institute of Technology, Haifa, 3200003, Israel
| | - Yotam Hulata
- Faculty of Biology, Technion - Israel Institute of Technology, Haifa, 3200003, Israel
| | - Stephen J Beckett
- School of Biological Sciences, Georgia Institute of Technology, Atlanta, GA, 30332, USA
| | - Dror Shitrit
- Faculty of Biology, Technion - Israel Institute of Technology, Haifa, 3200003, Israel
| | - Joshua S Weitz
- School of Biological Sciences, Georgia Institute of Technology, Atlanta, GA, 30332, USA.,School of Physics, Georgia Institute of Technology, Atlanta, GA, 30332, USA
| | | | - Debbie Lindell
- Faculty of Biology, Technion - Israel Institute of Technology, Haifa, 3200003, Israel.
| |
Collapse
|
231
|
Guerin E, Hill C. Shining Light on Human Gut Bacteriophages. Front Cell Infect Microbiol 2020; 10:481. [PMID: 33014897 PMCID: PMC7511551 DOI: 10.3389/fcimb.2020.00481] [Citation(s) in RCA: 52] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2020] [Accepted: 08/04/2020] [Indexed: 12/15/2022] Open
Abstract
The human gut is a complex environment that contains a multitude of microorganisms that are collectively termed the microbiome. Multiple factors have a role to play in driving the composition of human gut bacterial communities either toward homeostasis or the instability that is associated with many disease states. One of the most important forces are likely to be bacteriophages, bacteria-infecting viruses that constitute by far the largest portion of the human gut virome. Despite this, bacteriophages (phages) are the one of the least studied residents of the gut. This is largely due to the challenges associated with studying these difficult to culture entities. Modern high throughput sequencing technologies have played an important role in improving our understanding of the human gut phageome but much of the generated sequencing data remains uncharacterised. Overcoming this requires database-independent bioinformatic pipelines and even those phages that are successfully characterized only provide limited insight into their associated biological properties, and thus most viral sequences have been characterized as “viral dark matter.” Fundamental to understanding the role of phages in shaping the human gut microbiome, and in turn perhaps influencing human health, is how they interact with their bacterial hosts. An essential aspect is the isolation of novel phage-bacteria host pairs by direct isolation through various screening methods, which can transform in silico phages into a biological reality. However, this is also beset with multiple challenges including culturing difficulties and the use of traditional methods, such as plaquing, which may bias which phage-host pairs that can be successfully isolated. Phage-bacteria interactions may be influenced by many aspects of complex human gut biology which can be difficult to reproduce under laboratory conditions. Here we discuss some of the main findings associated with the human gut phageome to date including composition, our understanding of phage-host interactions, particularly the observed persistence of virulent phages and their hosts, as well as factors that may influence these highly intricate relationships. We also discuss current methodologies and bottlenecks hindering progression in this field and identify potential steps that may be useful in overcoming these hurdles.
Collapse
Affiliation(s)
- Emma Guerin
- APC Microbiome Ireland, University College Cork, Cork, Ireland.,School of Microbiology, University College Cork, Cork, Ireland
| | - Colin Hill
- APC Microbiome Ireland, University College Cork, Cork, Ireland.,School of Microbiology, University College Cork, Cork, Ireland
| |
Collapse
|
232
|
Isolation, characterization, and efficacy of bacteriophages isolated against Citrobacter spp. an in vivo approach in a zebrafish model (Danio rerio). Res Microbiol 2020; 171:341-350. [PMID: 32919052 DOI: 10.1016/j.resmic.2020.08.003] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2020] [Revised: 08/27/2020] [Accepted: 08/28/2020] [Indexed: 12/14/2022]
Abstract
Citrobacter infections are becoming an increasingly significant health problem in aquaculture in South-Eastern countries. The objective of this study was to isolate and evaluate the potential of lytic bacteriophages against Citrobacter infections. TEM analysis revealed that the isolated phages Citrophage MRM19 and Citrophage MRM57 were identified to be Siphovirus and Podovirus family of the order Caudovirales. The phage life-cycle studies showed that Citrophage MRM19 had an adsorption time of 18 ± 1 min and a latency period of 25 ± 3 min with burst size of 110 ± 20 phages/infected cell and Citrophage MRM57 had an adsorption time of 15 ± 1 min and a latency period of 25 ± 2 min with burst size of 50 ± 5 phages/infected cell. In vitro studies indicated that the bacterial load was reduced by 5 and 7 log units within 12 h by Citrophage MRM19 and Citrophage MRM57. The in vivo efficacy of the phages was studied using zebrafish (Danio rerio) as a model organism in low-scale tanks. The study unveiled that the use of phages increased the survival up to 17%, 23%, and 26% in the case of Citrophage MRM19, Citrophage MRM57, and phage cocktail treatment, respectively. Our study indicated that bacteriophages are suitable biocontrol agents against Citrobacter spp. especially in aquaculture industry.
Collapse
|
233
|
Endo H, Blanc-Mathieu R, Li Y, Salazar G, Henry N, Labadie K, de Vargas C, Sullivan MB, Bowler C, Wincker P, Karp-Boss L, Sunagawa S, Ogata H. Biogeography of marine giant viruses reveals their interplay with eukaryotes and ecological functions. Nat Ecol Evol 2020; 4:1639-1649. [DOI: 10.1038/s41559-020-01288-w] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2020] [Accepted: 07/22/2020] [Indexed: 12/18/2022]
|
234
|
Hisee AR, Hisee M, McKerral JC, Rosenbauer SR, Paterson JS, Mitchell JG, Fallowfield HJ. Changes of viral and prokaryote abundances in a high rate algal pond using flow cytometry detection. WATER SCIENCE AND TECHNOLOGY : A JOURNAL OF THE INTERNATIONAL ASSOCIATION ON WATER POLLUTION RESEARCH 2020; 82:1062-1069. [PMID: 33055396 DOI: 10.2166/wst.2020.379] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
High rate algal ponds (HRAPs) are shallow, mixed systems for wastewater treatment, which use sunlight exposure for disinfection. Little is known regarding the relationships between the bacteria and viruses within HRAP systems. Uniquely, flow cytometry permits the rapid identification of bacterial and viral populations in wastewater samples, separating populations based on genome and particle size. Treated wastewater samples were collected from an HRAP at Kingston on Murray, South Australia. Flow cytometry analysis detected bacterial populations and discriminated virus-like particles (VLP) and large VLP (LVLP). Rapid, short term, fluctuations in the abundance of all three populations were observed. Changes in the abundance of these populations was compared; wastewater composition was used as metadata for the comparisons. Linear regression determined relationships in abundances between bacteria and LVLP (R2 0.2985); LVLP and VLP (R2 0.5829) and bacteria and VLP (R2 0.5778) all with p-values of <0.001. Bacterial, LVLP and VLP abundance positively correlated with each other, indicating potential microbial interactions. Overall, the results suggest a parasitic relationship was occurring and driving the abundances of bacteria and viruses within the system.
Collapse
Affiliation(s)
- Ashleigh R Hisee
- College of Science and Engineering, Flinders University, Adelaide, Australia E-mail:
| | - Matthew Hisee
- College of Science and Engineering, Flinders University, Adelaide, Australia E-mail:
| | - Jody C McKerral
- College of Science and Engineering, Flinders University, Adelaide, Australia E-mail:
| | | | - James S Paterson
- College of Science and Engineering, Flinders University, Adelaide, Australia E-mail:
| | - James G Mitchell
- College of Science and Engineering, Flinders University, Adelaide, Australia E-mail:
| | - Howard J Fallowfield
- College of Science and Engineering, Flinders University, Adelaide, Australia E-mail:
| |
Collapse
|
235
|
JANG SOPHIARJ, WEI HSIUCHUAN. DETERMINISTIC PREDATOR–PREY MODELS WITH DISEASE IN THE PREY POPULATION. J BIOL SYST 2020. [DOI: 10.1142/s0218339020500151] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
A class of deterministic predator–prey systems, where the prey population is subject to an infectious disease, is studied. The disease can be transmitted both horizontally and vertically within the host population but cannot be spread between the two trophic levels. Using the mathematical tools of uniform persistence, we derive sufficient conditions for which the interacting populations can coexist. Criteria based on model parameters for which either only the infected prey or healthy prey persists are also provided. It is found through numerical investigations that predation can change competition outcomes between healthy and infected prey populations. Depending on the parameter regimes and initial conditions, predation can either eradicate or promote the disease. As infected prey provides a resource for the predators, disease may promote persistence of the predators. However, infected prey may dominate the predator–prey community if disease is very infectious. In addition, disease in the prey population can mediate a hydra effect in predators and may induce chaotic interactions.
Collapse
Affiliation(s)
- SOPHIA R.-J. JANG
- Department of Mathematics and Statistics, Texas Tech University, Lubbock, TX 79409, USA
| | - HSIU-CHUAN WEI
- Department of Applied Mathematics, Feng Chia University, Taichung 40724, Taiwan
| |
Collapse
|
236
|
Colombet J, Fuster M, Billard H, Sime-Ngando T. Femtoplankton: What's New? Viruses 2020; 12:E881. [PMID: 32806713 PMCID: PMC7472349 DOI: 10.3390/v12080881] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2020] [Revised: 08/10/2020] [Accepted: 08/10/2020] [Indexed: 01/01/2023] Open
Abstract
Since the discovery of high abundances of virus-like particles in aquatic environment, emergence of new analytical methods in microscopy and molecular biology has allowed significant advances in the characterization of the femtoplankton, i.e., floating entities filterable on a 0.2 µm pore size filter. The successive evidences in the last decade (2010-2020) of high abundances of biomimetic mineral-organic particles, extracellular vesicles, CPR/DPANN (Candidate phyla radiation/Diapherotrites, Parvarchaeota, Aenigmarchaeota, Nanoarchaeota and Nanohaloarchaeota), and very recently of aster-like nanoparticles (ALNs), show that aquatic ecosystems form a huge reservoir of unidentified and overlooked femtoplankton entities. The purpose of this review is to highlight this unsuspected diversity. Herein, we focus on the origin, composition and the ecological potentials of organic femtoplankton entities. Particular emphasis is given to the most recently discovered ALNs. All the entities described are displayed in an evolutionary context along a continuum of complexity, from minerals to cell-like living entities.
Collapse
Affiliation(s)
- Jonathan Colombet
- Laboratoire Microorganismes: Génome et Environnement (LMGE), UMR CNRS 6023, Université Clermont Auvergne, F-63000 Clermont-Ferrand, France; (M.F.); (H.B.); (T.S.-N.)
| | | | | | | |
Collapse
|
237
|
Zeng Z, Salmond GPC. Bacteriophage host range evolution through engineered enrichment bias, exploiting heterologous surface receptor expression. Environ Microbiol 2020; 22:5207-5221. [PMID: 32776385 DOI: 10.1111/1462-2920.15188] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2020] [Revised: 08/05/2020] [Accepted: 08/05/2020] [Indexed: 01/16/2023]
Abstract
Research on the initial phage-host interaction has been conducted on a limited repertoire of phages and their cognate receptors, such as phage λ and the Escherichia coli LamB (EcLamB) protein. Apart from phage λ, little is known about other phages that target EcLamB. Here, we developed a simple method for isolating novel environmental phages in a predictable way, i.e. isolating phages that target a particular receptor(s) of a bacterium, in this case, the EcLamB protein. A plasmid (pMUT13) encoding the EcLamB porin was transferred into three different enterobacterial genera. By enrichment with these engineered bacteria, a number of phages (ZZ phages) that targeted EcLamB were easily isolated from the environment. Interestingly, although EcLamB-dependent in their recombinant heterologous hosts, these newly isolated ZZ phages also targeted OmpC as an alternative receptor when infecting E. coli. Moreover, the phage host range was readily extended within three different bacterial genera with heterologously expressed EcLamB. Unlike phage λ, which is a member of the Siphoviridae family, these newly isolated EcLamB-dependent phages were more commonly members of the Myoviridae family, based on transmission electron microscopy and genomic sequences. Modifications of this convenient and efficient phage enrichment method could be useful for the discovery of novel phages.
Collapse
Affiliation(s)
- Ziyue Zeng
- Department of Biochemistry, University of Cambridge, Cambridge, UK
| | | |
Collapse
|
238
|
Sieiro C, Areal-Hermida L, Pichardo-Gallardo Á, Almuiña-González R, de Miguel T, Sánchez S, Sánchez-Pérez Á, Villa TG. A Hundred Years of Bacteriophages: Can Phages Replace Antibiotics in Agriculture and Aquaculture? Antibiotics (Basel) 2020; 9:E493. [PMID: 32784768 PMCID: PMC7460141 DOI: 10.3390/antibiotics9080493] [Citation(s) in RCA: 52] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2020] [Revised: 08/04/2020] [Accepted: 08/04/2020] [Indexed: 12/12/2022] Open
Abstract
Agriculture, together with aquaculture, supplies most of the foodstuffs required by the world human population to survive. Hence, bacterial diseases affecting either agricultural crops, fish, or shellfish not only cause large economic losses to producers but can even create food shortages, resulting in malnutrition, or even famine, in vulnerable populations. Years of antibiotic use in the prevention and the treatment of these infections have greatly contributed to the emergence and the proliferation of multidrug-resistant bacteria. This review addresses the urgent need for alternative strategies for the use of antibiotics, focusing on the use of bacteriophages (phages) as biocontrol agents. Phages are viruses that specifically infect bacteria; they are highly host-specific and represent an environmentally-friendly alternative to antibiotics to control and kill pathogenic bacteria. The information evaluated here highlights the effectiveness of phages in the control of numerous major pathogens that affect both agriculture and aquaculture, with special emphasis on scientific and technological aspects still requiring further development to establish phagotherapy as a real universal alternative to antibiotic treatment.
Collapse
Affiliation(s)
- Carmen Sieiro
- Department of Functional Biology and Health Sciences, Microbiology Area, University of Vigo, Lagoas-Marcosende, 36310 Vigo, Spain; (L.A.-H.); (Á.P.-G.); (R.A.-G.)
| | - Lara Areal-Hermida
- Department of Functional Biology and Health Sciences, Microbiology Area, University of Vigo, Lagoas-Marcosende, 36310 Vigo, Spain; (L.A.-H.); (Á.P.-G.); (R.A.-G.)
| | - Ángeles Pichardo-Gallardo
- Department of Functional Biology and Health Sciences, Microbiology Area, University of Vigo, Lagoas-Marcosende, 36310 Vigo, Spain; (L.A.-H.); (Á.P.-G.); (R.A.-G.)
| | - Raquel Almuiña-González
- Department of Functional Biology and Health Sciences, Microbiology Area, University of Vigo, Lagoas-Marcosende, 36310 Vigo, Spain; (L.A.-H.); (Á.P.-G.); (R.A.-G.)
| | - Trinidad de Miguel
- Department of Microbiology and Parasitology, University of Santiago de Compostela, 5706 Santiago de Compostela, Spain; (T.d.M.); (S.S.)
| | - Sandra Sánchez
- Department of Microbiology and Parasitology, University of Santiago de Compostela, 5706 Santiago de Compostela, Spain; (T.d.M.); (S.S.)
| | - Ángeles Sánchez-Pérez
- Sydney School of Veterinary Science, Faculty of Science, University of Sydney, Sydnay NSN 2006, Australia;
| | - Tomás G. Villa
- Department of Microbiology and Parasitology, University of Santiago de Compostela, 5706 Santiago de Compostela, Spain; (T.d.M.); (S.S.)
| |
Collapse
|
239
|
Olivenza DR, Casadesús J, Ansaldi M. Epigenetic biosensors for bacteriophage detection and phage receptor discrimination. Environ Microbiol 2020; 22:3126-3142. [PMID: 32363756 PMCID: PMC7496735 DOI: 10.1111/1462-2920.15050] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2019] [Revised: 03/23/2020] [Accepted: 04/24/2020] [Indexed: 12/13/2022]
Abstract
Environmental monitoring of bacteria using phage-based biosensors has been widely developed for many different species. However, there are only a few available methods to detect specific bacteriophages in raw environmental samples. In this work, we developed a simple and efficient assay to rapidly monitor the phage content of a given sample. The assay is based on the bistable expression of the Salmonella enterica opvAB operon. Under regular growth conditions, opvAB is only expressed by a small fraction of the bacterial subpopulation. In the OpvABON subpopulation, synthesis of the OpvA and OpvB products shortens the O-antigen and confers resistance to phages that use LPS as a receptor. As a consequence, the OpvABON subpopulation is selected in the presence of such phages. Using an opvAB::gfp fusion, we could monitor LPS-binding phages in various media, including raw water samples. To enlarge our phage-biosensor panoply, we also developed biosensors able to detect LPS, as well as protein-binding coliphages. Moreover, the combination of these tools allowed to identify the bacterial receptor triggering phage infection. The epigenetic opvAB::gfp biosensor thus comes in different flavours to detect a wide range of bacteriophages and identify the type of receptor they recognize.
Collapse
Affiliation(s)
- David R. Olivenza
- Departamento de Genética, Facultad de BiologíaUniversidad de SevillaSevillaSpain
| | - Josep Casadesús
- Departamento de Genética, Facultad de BiologíaUniversidad de SevillaSevillaSpain
| | - Mireille Ansaldi
- Departamento de Genética, Facultad de BiologíaUniversidad de SevillaSevillaSpain
- Laboratoire de Chimie Bactérienne, Centre National de la Recherche ScientifiqueAix‐Marseille UniversitéMarseilleFrance
| |
Collapse
|
240
|
Virus and Potential Host Microbes from Viral-Enriched Metagenomic Characterization in the High-Altitude Wetland, Salar de Huasco, Chile. Microorganisms 2020; 8:microorganisms8071077. [PMID: 32698305 PMCID: PMC7409041 DOI: 10.3390/microorganisms8071077] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2020] [Revised: 07/02/2020] [Accepted: 07/03/2020] [Indexed: 12/18/2022] Open
Abstract
Salar de Huasco is a wetland in the Andes mountains, located 3800 m above sea level at the Chilean Altiplano. Here we present a study aimed at characterizing the viral fraction and the microbial communities through metagenomic analysis. Two ponds (H0 and H3) were examined in November 2015. Water samples were processed using tangential flow filtration to obtain metagenomes from which the DNA fraction of the sample was amplified and sequenced (HiSeq system, Illumina). The ponds were characterized by freshwater and the viral-like particles to picoplankton ratio was 12.1 and 2.3 for H0 and H3, respectively. A great number of unassigned viral sequences were found in H0 (55.8%) and H3 (32.8%), followed by the family Fuselloviridae 20.8% (H0) and other less relatively abundant groups such as Microviridae (H0, 11.7% and H3, 3.3%) and Inoviridae (H3, 2.7%). The dominant viral sequences in both metagenomes belong to the order Caudovirales, with Siphoviridae being the most important family, especially in H3 (32.7%). The most important bacteria phyla were Proteobacteria, Bacteroidetes and Firmicutes in both sites, followed by Cyanobacteria (H0). Genes encoding lysogenic and lytic enzymes (i.e., recombinases and integrases) were found in H0 and H3, indicating a potential for active viral replication at the time of sampling; this was supported by the presence of viral metabolic auxiliary genes at both sites (e.g., cysteine hydrolase). In total, our study indicates a great novelty of viral groups, differences in taxonomic diversity and replication pathways between sites, which contribute to a better understanding of how viruses balance the cycling of energy and matter in this extreme environment.
Collapse
|
241
|
Castillo YM, Sebastián M, Forn I, Grimsley N, Yau S, Moraru C, Vaqué D. Visualization of Viral Infection Dynamics in a Unicellular Eukaryote and Quantification of Viral Production Using Virus Fluorescence in situ Hybridization. Front Microbiol 2020; 11:1559. [PMID: 32765451 PMCID: PMC7379908 DOI: 10.3389/fmicb.2020.01559] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2020] [Accepted: 06/16/2020] [Indexed: 11/13/2022] Open
Abstract
One of the major challenges in viral ecology is to assess the impact of viruses in controlling the abundance of specific hosts in the environment. To this end, techniques that enable the detection and quantification of virus-host interactions at the single-cell level are essential. With this goal in mind, we implemented virus fluorescence in situ hybridization (VirusFISH) using as a model the marine picoeukaryote Ostreococcus tauri and its virus Ostreococcus tauri virus 5 (OtV5). VirusFISH allowed the visualization and quantification of the proportion of infected cells during an infection cycle in experimental conditions. We were also able to quantify the abundance of free viruses released during cell lysis, discriminating OtV5 from other mid-level fluorescence phages in our non-axenic infected culture that were not easily distinguishable with flow cytometry. Our results showed that although the major lysis of the culture occurred between 24 and 48 h after OtV5 inoculation, some new viruses were already produced between 8 and 24 h. With this work, we demonstrate that VirusFISH is a promising technique to study specific virus-host interactions in non-axenic cultures and establish a framework for its application in complex natural communities.
Collapse
Affiliation(s)
- Yaiza M Castillo
- Department of Marine Biology and Oceanography, Institute of Marine Sciences (CSIC), Barcelona, Spain
| | - Marta Sebastián
- Department of Marine Biology and Oceanography, Institute of Marine Sciences (CSIC), Barcelona, Spain.,Institute of Oceanography and Global Change (IOCAG), University of Las Palmas de Gran Canaria (ULPGC), Las Palmas de Gran Canaria, Spain
| | - Irene Forn
- Department of Marine Biology and Oceanography, Institute of Marine Sciences (CSIC), Barcelona, Spain
| | - Nigel Grimsley
- Integrative Biology of Marine Organisms (BIOM), Sorbonne University, CNRS, Oceanographic Observatory of Banyuls, Banyuls-sur-Mer, France
| | - Sheree Yau
- Department of Marine Biology and Oceanography, Institute of Marine Sciences (CSIC), Barcelona, Spain.,Integrative Biology of Marine Organisms (BIOM), Sorbonne University, CNRS, Oceanographic Observatory of Banyuls, Banyuls-sur-Mer, France
| | - Cristina Moraru
- Department of the Biology of Geological Processes, Institute for Chemistry and Biology of the Marine Environment, Oldenburg, Germany
| | - Dolors Vaqué
- Department of Marine Biology and Oceanography, Institute of Marine Sciences (CSIC), Barcelona, Spain
| |
Collapse
|
242
|
Abdulrahman Ashy R, Agustí S. Low Host Abundance and High Temperature Determine Switching from Lytic to Lysogenic Cycles in Planktonic Microbial Communities in a Tropical Sea (Red Sea). Viruses 2020; 12:v12070761. [PMID: 32679656 PMCID: PMC7411798 DOI: 10.3390/v12070761] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2020] [Revised: 06/15/2020] [Accepted: 06/17/2020] [Indexed: 12/26/2022] Open
Abstract
The lytic and lysogenic life cycles of marine phages are influenced by environmental conditions such as solar radiation, temperature, and host abundance. Temperature can regulate phage infection, but its role is difficult to discern in oligotrophic waters where there is typically low host abundance and high temperatures. Here, we study the temporal variability of viral dynamics and the occurrence of lysogeny using mitomycin C in a eutrophic coastal lagoon in the oligotrophic Red Sea, which showed strong seasonality in terms of temperature (22.1–33.3 °C) and large phytoplankton blooms. Viral abundances ranged from 2.2 × 106 to 1.5 × 107 viruses mL−1 and were closely related to chlorophyll a (chl a) concentration. Observed high virus-to-bacterium ratio (VBR) (4–79; 16 ± 4 (SE)) suggests that phages exerted a tight control of their hosts as indicated by the significant decrease in bacterial abundance with increasing virus concentration. Heterotrophic bacterial abundance also showed a significant decrease with increasing temperature. However, viral abundance was not related to temperature changes and the interaction of water temperature, suggesting an indirect effect of temperature on decreased host abundance, which was observed at the end of the summertime. From the estimated burst size (BS), we observed lysogeny (undetectable to 29.1%) at low percentages of 5.0% ± 1.2 (SE) in half of the incubations with mitomycin C, while it increased to 23.9% ± 2.8 (SE) when the host abundance decreased. The results suggest that lytic phages predominate, switching to a moderate proportion of temperate phages when the host abundance reduces.
Collapse
Affiliation(s)
- Ruba Abdulrahman Ashy
- Red Sea Research Center, Division of Biological and Environmental Science and Engineering, King Abdullah University of Science and Technology, Thuwal 23955, Saudi Arabia
- Department of Biological Sciences, Faculty of Science, University of Jeddah, Jeddah 23445, Saudi Arabia
- Correspondence: or (R.A.A.); (S.A.)
| | - Susana Agustí
- Red Sea Research Center, Division of Biological and Environmental Science and Engineering, King Abdullah University of Science and Technology, Thuwal 23955, Saudi Arabia
- Correspondence: or (R.A.A.); (S.A.)
| |
Collapse
|
243
|
Botella L, Janoušek J, Maia C, Jung MH, Raco M, Jung T. Marine Oomycetes of the Genus Halophytophthora Harbor Viruses Related to Bunyaviruses. Front Microbiol 2020; 11:1467. [PMID: 32760358 PMCID: PMC7375090 DOI: 10.3389/fmicb.2020.01467] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2020] [Accepted: 06/04/2020] [Indexed: 12/14/2022] Open
Abstract
We investigated the incidence of RNA viruses in a collection of Halophytophthora spp. from estuarine ecosystems in southern Portugal. The first approach to detect the presence of viruses was based on the occurrence of dsRNA, typically considered as a viral molecule in plants and fungi. Two dsRNA-banding patterns (∼7 and 9 kb) were observed in seven of 73 Halophytophthora isolates tested (9.6%). Consequently, two dsRNA-hosting isolates were chosen to perform stranded RNA sequencing for de novo virus sequence assembly. A total of eight putative novel virus species with genomic affinities to members of the order Bunyavirales were detected and their full-length RdRp gene characterized by RACE. Based on the direct partial amplification of their RdRp gene by RT-PCR multiple viral infections occur in both isolates selected. Likewise, the screening of those viruses in the whole collection of Halophytophthora isolates showed that their occurrence is limited to one single Halophytophthora species. To our knowledge, this is the first report demonstrating the presence of negative (−) ssRNA viruses in marine oomycetes.
Collapse
Affiliation(s)
- Leticia Botella
- Phytophthora Research Centre, Department of Forest Protection and Wildlife Management, Faculty of Forestry and Wood Technology, Mendel University in Brno, Brno, Czechia.,Biotechnological Centre, Faculty of Agriculture, University of South Bohemia, Ceske Budejovice, Czechia
| | - Josef Janoušek
- Phytophthora Research Centre, Department of Forest Protection and Wildlife Management, Faculty of Forestry and Wood Technology, Mendel University in Brno, Brno, Czechia
| | - Cristiana Maia
- Centre for Marine Sciences (CCMAR), University of Algarve, Faro, Portugal
| | - Marilia Horta Jung
- Phytophthora Research Centre, Department of Forest Protection and Wildlife Management, Faculty of Forestry and Wood Technology, Mendel University in Brno, Brno, Czechia
| | - Milica Raco
- Phytophthora Research Centre, Department of Forest Protection and Wildlife Management, Faculty of Forestry and Wood Technology, Mendel University in Brno, Brno, Czechia
| | - Thomas Jung
- Phytophthora Research Centre, Department of Forest Protection and Wildlife Management, Faculty of Forestry and Wood Technology, Mendel University in Brno, Brno, Czechia
| |
Collapse
|
244
|
Roy K, Ghosh D, DeBruyn JM, Dasgupta T, Wommack KE, Liang X, Wagner RE, Radosevich M. Temporal Dynamics of Soil Virus and Bacterial Populations in Agricultural and Early Plant Successional Soils. Front Microbiol 2020; 11:1494. [PMID: 32733413 PMCID: PMC7358527 DOI: 10.3389/fmicb.2020.01494] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2020] [Accepted: 06/08/2020] [Indexed: 12/15/2022] Open
Abstract
As reported in many aquatic environments, recent studies in terrestrial ecosystems implicate a role for viruses in shaping the structure, function, and evolution of prokaryotic soil communities. However, given the heterogeneity of soil and the physical constraints (i.e., pore-scale hydrology and solid-phase adsorption of phage and host cells) on the mobility of viruses and bacteria, phage-host interactions likely differ from those in aquatic systems. In this study, temporal changes in the population dynamics of viruses and bacteria in soils under different land management practices were examined. The results showed that bacterial abundance was significantly and positively correlated to both virus and inducible prophage abundance. Bacterial and viral abundance were also correlated with soil organic carbon and nitrogen content as well as with C:N ratio. The seasonal variability in viral abundance increased with soil organic carbon content. The prokaryotic community structure was influenced more by land use than by seasonal variation though considerable variation was evident in the early plant successional and grassland sites. The free extracellular viral communities were also separated by land use, and the forest soil viral assemblage exhibiting the most seasonal variability was more distinct from the other sites. Viral assemblages from the agricultural soils exhibited the least seasonal variability. Similar patterns were observed for inducible prophage viral assemblages. Seasonal variability of viral assemblages was greater in mitomycin-C (mitC) induced prophages than in extracellular viruses irrespective of land use and management. Taken together, the data suggest that soil viral production and decay are likely balanced but there was clear evidence that the structure of viral assemblages is influenced by land use and by season.
Collapse
Affiliation(s)
- Krishnakali Roy
- Department of Biosystems Engineering and Soil Science, University of Tennessee, Knoxville, Knoxville, TN, United States
| | - Dhritiman Ghosh
- Department of Biosystems Engineering and Soil Science, University of Tennessee, Knoxville, Knoxville, TN, United States
| | - Jennifer M DeBruyn
- Department of Biosystems Engineering and Soil Science, University of Tennessee, Knoxville, Knoxville, TN, United States
| | | | - K Eric Wommack
- Department of Plant and Soil Sciences, University of Delaware, Newark, DE, United States
| | - Xiaolong Liang
- Department of Biosystems Engineering and Soil Science, University of Tennessee, Knoxville, Knoxville, TN, United States
| | - Regan E Wagner
- Department of Biosystems Engineering and Soil Science, University of Tennessee, Knoxville, Knoxville, TN, United States
| | - Mark Radosevich
- Department of Biosystems Engineering and Soil Science, University of Tennessee, Knoxville, Knoxville, TN, United States
| |
Collapse
|
245
|
Butina TV, Bukin YS, Krasnopeev AS, Belykh OI, Tupikin AE, Kabilov MR, Sakirko МV, Belikov SI. Estimate of the diversity of viral and bacterial assemblage in the coastal water of Lake Baikal. FEMS Microbiol Lett 2020; 366:5484837. [PMID: 31049590 DOI: 10.1093/femsle/fnz094] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2017] [Accepted: 04/30/2019] [Indexed: 12/27/2022] Open
Abstract
In this study, we analysed the diversity and composition of double-stranded DNA viral and bacterial communities within the sample of surface coastal water of Southern Baikal through metagenomics and deep sequencing of the 16S ribosomal RNA gene, respectively. The 16S rRNA gene analysis has revealed 14 phyla and dominance of the 'Actinobacteria' (43.6%), 'Proteobacteria' (25.2%) and 'Bacteroidetes' (11.5%). The bacterial composition was similar to that obtained previously in Lake Baikal littoral zone. Out of 1 030 169 processed virome reads, 37.4% of sequences (385 421) were identified as viral; 15.1% were identified as nonviral and related to the domains Eukarya, Bacteria and Archaea; and 47.5% had no matches in the databases. The identified virotypes belonged to different families and were predicted to infect a wide range of organisms, from bacteria to mammals. Six families (Myoviridae, Poxviridae, Mimiviridae, Siphoviridae, Phycodnaviridae and Podoviridae) were dominant accounting for more than 90% of the identified sequences (48.3%, 17.4%, 8.3%, 6.8%, 5.8% and 4.1%, respectively). In contrast to other freshwater systems, high percentage of the Poxviridae and Mimiviridae was recorded in the water sample of Lake Baikal.
Collapse
Affiliation(s)
- Tatyana V Butina
- Laboratory of Analytical and Bioorganic Chemistry, Limnological Institute, Siberian Branch of Russian Academy of Sciences, 3, Ulan-Batorskaya street, Irkutsk, 664033, Russia
| | - Yurij S Bukin
- Laboratory of Genosystematics, Limnological Institute, Siberian Branch of Russian Academy of Sciences, 3, Ulan-Batorskaya street, Irkutsk, 664033, Russia.,Department of Biotechnology and Bioinformatics, National Research Irkutsk State Technical University, 83, Lermontov street, Irkutsk, 664074, Russia
| | - Andrey S Krasnopeev
- Laboratory of Aquatic Microbiology, Limnological Institute, Siberian Branch of Russian Academy of Sciences, 3, Ulan-Batorskaya street, Irkutsk, 664033, Russia
| | - Olga I Belykh
- Laboratory of Aquatic Microbiology, Limnological Institute, Siberian Branch of Russian Academy of Sciences, 3, Ulan-Batorskaya street, Irkutsk, 664033, Russia
| | - Aleksey E Tupikin
- SB RAS Genomics Core Facility, Institute of Chemical Biology and Fundamental Medicine, Siberian Branch of Russian Academy of Sciences, 8, Lavrentiev Avenue, Novosibirsk, 630090, Russia
| | - Marsel R Kabilov
- SB RAS Genomics Core Facility, Institute of Chemical Biology and Fundamental Medicine, Siberian Branch of Russian Academy of Sciences, 8, Lavrentiev Avenue, Novosibirsk, 630090, Russia
| | - Мaria V Sakirko
- Laboratory of Hydrochemistry and Atmosphere Chemistry, Limnological Institute, Siberian Branch of Russian Academy of Sciences, 3, Ulan-Batorskaya street, Irkutsk, 664033, Russia
| | - Sergey I Belikov
- Laboratory of Analytical and Bioorganic Chemistry, Limnological Institute, Siberian Branch of Russian Academy of Sciences, 3, Ulan-Batorskaya street, Irkutsk, 664033, Russia
| |
Collapse
|
246
|
Novel Genus of Phages Infecting Streptococcus thermophilus: Genomic and Morphological Characterization. Appl Environ Microbiol 2020; 86:AEM.00227-20. [PMID: 32303549 DOI: 10.1128/aem.00227-20] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2020] [Accepted: 04/13/2020] [Indexed: 12/26/2022] Open
Abstract
Streptococcus thermophilus is a lactic acid bacterium commonly used for the manufacture of yogurt and specialty cheeses. Virulent phages represent a major risk for milk fermentation processes worldwide, as they can inactivate the added starter bacterial cells, leading to low-quality fermented dairy products. To date, four genetically distinct groups of phages infecting S. thermophilus have been described. Here, we describe a fifth group. Phages P738 and D4446 are virulent siphophages that infect a few industrial strains of S. thermophilus The genomes of phages P738 and D4446 were sequenced and found to contain 34,037 and 33,656 bp as well as 48 and 46 open reading frames, respectively. Comparative genomic analyses revealed that the two phages are closely related to each other but display very limited similarities to other S. thermophilus phages. In fact, these two novel S. thermophilus phages share similarities with streptococcal phages of nondairy origin, suggesting that they emerged recently in the dairy environment.IMPORTANCE Despite decades of research and adapted antiphage strategies such as CRISPR-Cas systems, virulent phages are still a persistent risk for the milk fermentation industry worldwide, as they can cause manufacturing failures and alter product quality. Phages P738 and D4446 are novel virulent phages that infect the food-grade Gram-positive bacterial species Streptococcus thermophilus These two related viruses represent a fifth group of S. thermophilus phages, as they are significantly distinct from other known S. thermophilus phages. Both phages share similarities with phages infecting nondairy streptococci, suggesting their recent emergence and probable coexistence in dairy environments. These findings highlight the necessity of phage surveillance programs as the phage population evolves in response to the application of antiphage strategies.
Collapse
|
247
|
Zhong ZP, Rapp JZ, Wainaina JM, Solonenko NE, Maughan H, Carpenter SD, Cooper ZS, Jang HB, Bolduc B, Deming JW, Sullivan MB. Viral Ecogenomics of Arctic Cryopeg Brine and Sea Ice. mSystems 2020; 5:e00246-20. [PMID: 32546670 PMCID: PMC7300359 DOI: 10.1128/msystems.00246-20] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2020] [Accepted: 05/24/2020] [Indexed: 01/09/2023] Open
Abstract
Arctic regions, which are changing rapidly as they warm 2 to 3 times faster than the global average, still retain microbial habitats that serve as natural laboratories for understanding mechanisms of microbial adaptation to extreme conditions. Seawater-derived brines within both sea ice (sea-ice brine) and ancient layers of permafrost (cryopeg brine) support diverse microbes adapted to subzero temperatures and high salinities, yet little is known about viruses in these extreme environments, which, if analogous to other systems, could play important evolutionary and ecosystem roles. Here, we characterized viral communities and their functions in samples of cryopeg brine, sea-ice brine, and melted sea ice. Viral abundance was high in cryopeg brine (1.2 × 108 ml-1) and much lower in sea-ice brine (1.3 × 105 to 2.1 × 105 ml-1), which roughly paralleled the differences in cell concentrations in these samples. Five low-input, quantitative viral metagenomes were sequenced to yield 476 viral populations (i.e., species level; ≥10 kb), only 12% of which could be assigned taxonomy by traditional database approaches, indicating a high degree of novelty. Additional analyses revealed that these viruses: (i) formed communities that differed between sample type and vertically with sea-ice depth; (ii) infected hosts that dominated these extreme ecosystems, including Marinobacter, Glaciecola, and Colwellia; and (iii) encoded fatty acid desaturase (FAD) genes that likely helped their hosts overcome cold and salt stress during infection, as well as mediated horizontal gene transfer of FAD genes between microbes. Together, these findings contribute to understanding viral abundances and communities and how viruses impact their microbial hosts in subzero brines and sea ice.IMPORTANCE This study explores viral community structure and function in remote and extreme Arctic environments, including subzero brines within marine layers of permafrost and sea ice, using a modern viral ecogenomics toolkit for the first time. In addition to providing foundational data sets for these climate-threatened habitats, we found evidence that the viruses had habitat specificity, infected dominant microbial hosts, encoded host-derived metabolic genes, and mediated horizontal gene transfer among hosts. These results advance our understanding of the virosphere and how viruses influence extreme ecosystems. More broadly, the evidence that virally mediated gene transfers may be limited by host range in these extreme habitats contributes to a mechanistic understanding of genetic exchange among microbes under stressful conditions in other systems.
Collapse
Affiliation(s)
- Zhi-Ping Zhong
- Byrd Polar and Climate Research Center, The Ohio State University, Columbus, Ohio, USA
- Department of Microbiology, The Ohio State University, Columbus, Ohio, USA
| | - Josephine Z Rapp
- School of Oceanography, University of Washington, Seattle, Washington, USA
| | - James M Wainaina
- Department of Microbiology, The Ohio State University, Columbus, Ohio, USA
| | | | | | - Shelly D Carpenter
- School of Oceanography, University of Washington, Seattle, Washington, USA
| | - Zachary S Cooper
- School of Oceanography, University of Washington, Seattle, Washington, USA
| | - Ho Bin Jang
- Department of Microbiology, The Ohio State University, Columbus, Ohio, USA
| | - Benjamin Bolduc
- Department of Microbiology, The Ohio State University, Columbus, Ohio, USA
| | - Jody W Deming
- School of Oceanography, University of Washington, Seattle, Washington, USA
| | - Matthew B Sullivan
- Byrd Polar and Climate Research Center, The Ohio State University, Columbus, Ohio, USA
- Department of Microbiology, The Ohio State University, Columbus, Ohio, USA
- Department of Civil, Environmental and Geodetic Engineering, The Ohio State University, Columbus, Ohio, USA
- Center of Microbiome Science, The Ohio State University, Columbus, Ohio, USA
| |
Collapse
|
248
|
Abstract
Wastewater is a rich source of microbial life and contains bacteria, viruses, and other microbes found in human waste as well as environmental runoff sources. As part of an effort to characterize the New York City wastewater metagenome, we profiled the viral community of sewage samples across all five boroughs of NYC and found that local sampling sites have unique sets of viruses. We focused on bacteriophages, or viruses of bacteria, to understand how they may influence the microbial ecology of this system. We identified several new clusters of phages and successfully associated them with bacterial hosts, providing insight into virus-host interactions in urban wastewater. This study provides a first look into the viral communities present across the wastewater system in NYC and points to their functional importance in this environment. Bacteriophages are abundant members of all microbiomes studied to date, influencing microbial communities through interactions with their bacterial hosts. Despite their functional importance and ubiquity, phages have been underexplored in urban environments compared to their bacterial counterparts. We profiled the viral communities in New York City (NYC) wastewater using metagenomic data collected in November 2014 from 14 wastewater treatment plants. We show that phages accounted for the largest viral component of the sewage samples and that specific virus communities were associated with local environmental conditions within boroughs. The vast majority of the virus sequences had no homology matches in public databases, forming an average of 1,700 unique virus clusters (putative genera). These new clusters contribute to elucidating the overwhelming proportion of data that frequently goes unidentified in viral metagenomic studies. We assigned potential hosts to these phages, which appear to infect a wide range of bacterial genera, often outside their presumed host. We determined that infection networks form a modular-nested pattern, indicating that phages include a range of host specificities, from generalists to specialists, with most interactions organized into distinct groups. We identified genes in viral contigs involved in carbon and sulfur cycling, suggesting functional importance of viruses in circulating pathways and gene functions in the wastewater environment. In addition, we identified virophage genes as well as a nearly complete novel virophage genome. These findings provide an understanding of phage abundance and diversity in NYC wastewater, previously uncharacterized, and further examine geographic patterns of phage-host association in urban environments. IMPORTANCE Wastewater is a rich source of microbial life and contains bacteria, viruses, and other microbes found in human waste as well as environmental runoff sources. As part of an effort to characterize the New York City wastewater metagenome, we profiled the viral community of sewage samples across all five boroughs of NYC and found that local sampling sites have unique sets of viruses. We focused on bacteriophages, or viruses of bacteria, to understand how they may influence the microbial ecology of this system. We identified several new clusters of phages and successfully associated them with bacterial hosts, providing insight into virus-host interactions in urban wastewater. This study provides a first look into the viral communities present across the wastewater system in NYC and points to their functional importance in this environment.
Collapse
|
249
|
Kieft K, Zhou Z, Anantharaman K. VIBRANT: automated recovery, annotation and curation of microbial viruses, and evaluation of viral community function from genomic sequences. MICROBIOME 2020; 8:90. [PMID: 32522236 PMCID: PMC7288430 DOI: 10.1186/s40168-020-00867-0] [Citation(s) in RCA: 550] [Impact Index Per Article: 110.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/27/2020] [Accepted: 05/13/2020] [Indexed: 05/08/2023]
Abstract
BACKGROUND Viruses are central to microbial community structure in all environments. The ability to generate large metagenomic assemblies of mixed microbial and viral sequences provides the opportunity to tease apart complex microbiome dynamics, but these analyses are currently limited by the tools available for analyses of viral genomes and assessing their metabolic impacts on microbiomes. DESIGN Here we present VIBRANT, the first method to utilize a hybrid machine learning and protein similarity approach that is not reliant on sequence features for automated recovery and annotation of viruses, determination of genome quality and completeness, and characterization of viral community function from metagenomic assemblies. VIBRANT uses neural networks of protein signatures and a newly developed v-score metric that circumvents traditional boundaries to maximize identification of lytic viral genomes and integrated proviruses, including highly diverse viruses. VIBRANT highlights viral auxiliary metabolic genes and metabolic pathways, thereby serving as a user-friendly platform for evaluating viral community function. VIBRANT was trained and validated on reference virus datasets as well as microbiome and virome data. RESULTS VIBRANT showed superior performance in recovering higher quality viruses and concurrently reduced the false identification of non-viral genome fragments in comparison to other virus identification programs, specifically VirSorter, VirFinder, and MARVEL. When applied to 120,834 metagenome-derived viral sequences representing several human and natural environments, VIBRANT recovered an average of 94% of the viruses, whereas VirFinder, VirSorter, and MARVEL achieved less powerful performance, averaging 48%, 87%, and 71%, respectively. Similarly, VIBRANT identified more total viral sequence and proteins when applied to real metagenomes. When compared to PHASTER, Prophage Hunter, and VirSorter for the ability to extract integrated provirus regions from host scaffolds, VIBRANT performed comparably and even identified proviruses that the other programs did not. To demonstrate applications of VIBRANT, we studied viromes associated with Crohn's disease to show that specific viral groups, namely Enterobacteriales-like viruses, as well as putative dysbiosis associated viral proteins are more abundant compared to healthy individuals, providing a possible viral link to maintenance of diseased states. CONCLUSIONS The ability to accurately recover viruses and explore viral impacts on microbial community metabolism will greatly advance our understanding of microbiomes, host-microbe interactions, and ecosystem dynamics. Video Abstract.
Collapse
Affiliation(s)
- Kristopher Kieft
- Department of Bacteriology, University of Wisconsin-Madison, Madison, WI, 53706, USA
| | - Zhichao Zhou
- Department of Bacteriology, University of Wisconsin-Madison, Madison, WI, 53706, USA
| | - Karthik Anantharaman
- Department of Bacteriology, University of Wisconsin-Madison, Madison, WI, 53706, USA.
| |
Collapse
|
250
|
Wang M, Zeng Z, Jiang F, Zheng Y, Shen H, Macedo N, Sun Y, Sahin O, Li G. Role of enterotoxigenic Escherichia coli prophage in spreading antibiotic resistance in a porcine-derived environment. Environ Microbiol 2020; 22:4974-4984. [PMID: 32419209 DOI: 10.1111/1462-2920.15084] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2019] [Accepted: 05/13/2020] [Indexed: 11/27/2022]
Abstract
Enterotoxigenic Escherichia coli (ETEC) cause acute secretory diarrhoea in pigs, posing a great economic loss to the swine industry. This study analysed the prevalence and genetic characteristics of prophages from 132 ETEC isolates from symptomatic pigs to determine their potential for spreading antibiotic resistance. A total of 1105 potential prophages were identified, and the distribution of the genome size showed three 'overlapping' trends. Similarity matrix comparison showed that prophages correlated with the ETEC lineage distribution, and further identification of these prophages corroborated the lineage specificity. In total, 1206 antibiotic resistance genes (ARGs) of 52 different categories were identified in 132 ETEC strains; among these, 2.65% (32/1206) of ARGs were found to be carried by prophages. Analysis of flanking sequences showed that almost all the ARGs could be grouped into two types: 'blaTEM-1B ' and 'classic class 1 integron (IntI1)'. They co-occurred with a strictly conserved recombinase and transposon Tn3 family but with a difference: the 'blaTEM-1B type' prophages exhibited a classic Tn2 transposon structure with 100% sequence identity, whereas the 'IntI1 type' co-occurred with the TnAs2 transposon with only 84% sequence identity. These results imply that ARGs might be pervasive in natural bacterial populations through transmission by transposable bacteriophages.
Collapse
Affiliation(s)
- Mianzhi Wang
- Department of Veterinary Diagnostic and Production Animal Medicine, College of Veterinary Medicine, Iowa State University, Ames, IA, 50011, USA.,Guangdong Provincial Key Laboratory of Veterinary Pharmaceutics Development and Safety Evaluation, College of Veterinary Medicine, South China Agricultural University, Guangzhou, 510642, China
| | - Zhenling Zeng
- Guangdong Provincial Key Laboratory of Veterinary Pharmaceutics Development and Safety Evaluation, College of Veterinary Medicine, South China Agricultural University, Guangzhou, 510642, China
| | - Fengwei Jiang
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, 150069, China
| | - Ying Zheng
- Department of Veterinary Diagnostic and Production Animal Medicine, College of Veterinary Medicine, Iowa State University, Ames, IA, 50011, USA
| | - Huigang Shen
- Department of Veterinary Diagnostic and Production Animal Medicine, College of Veterinary Medicine, Iowa State University, Ames, IA, 50011, USA
| | - Nubia Macedo
- Department of Veterinary Diagnostic and Production Animal Medicine, College of Veterinary Medicine, Iowa State University, Ames, IA, 50011, USA
| | - Yongxue Sun
- Guangdong Provincial Key Laboratory of Veterinary Pharmaceutics Development and Safety Evaluation, College of Veterinary Medicine, South China Agricultural University, Guangzhou, 510642, China
| | - Orhan Sahin
- Department of Veterinary Diagnostic and Production Animal Medicine, College of Veterinary Medicine, Iowa State University, Ames, IA, 50011, USA
| | - Ganwu Li
- Department of Veterinary Diagnostic and Production Animal Medicine, College of Veterinary Medicine, Iowa State University, Ames, IA, 50011, USA.,State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, 150069, China
| |
Collapse
|