201
|
Peng Z, Kellenberger S. Hydrogen Sulfide Upregulates Acid-sensing Ion Channels via the MAPK-Erk1/2 Signaling Pathway. FUNCTION (OXFORD, ENGLAND) 2021; 2:zqab007. [PMID: 35330812 PMCID: PMC8833866 DOI: 10.1093/function/zqab007] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/25/2021] [Revised: 02/12/2021] [Accepted: 02/15/2021] [Indexed: 01/06/2023]
Abstract
Hydrogen sulfide (H2S) emerged recently as a new gasotransmitter and was shown to exert cellular effects by interacting with proteins, among them many ion channels. Acid-sensing ion channels (ASICs) are neuronal voltage-insensitive Na+ channels activated by extracellular protons. ASICs are involved in many physiological and pathological processes, such as fear conditioning, pain sensation, and seizures. We characterize here the regulation of ASICs by H2S. In transfected mammalian cells, the H2S donor NaHS increased the acid-induced ASIC1a peak currents in a time- and concentration-dependent manner. Similarly, NaHS potentiated also the acid-induced currents of ASIC1b, ASIC2a, and ASIC3. An upregulation induced by the H2S donors NaHS and GYY4137 was also observed with the endogenous ASIC currents of cultured hypothalamus neurons. In parallel with the effect on function, the total and plasma membrane expression of ASIC1a was increased by GYY4137, as determined in cultured cortical neurons. H2S also enhanced the phosphorylation of the extracellular signal-regulated kinase (pErk1/2), which belongs to the family of mitogen-activated protein kinases (MAPKs). Pharmacological blockade of the MAPK signaling pathway prevented the GYY4137-induced increase of ASIC function and expression, indicating that this pathway is required for ASIC regulation by H2S. Our study demonstrates that H2S regulates ASIC expression and function, and identifies the involved signaling mechanism. Since H2S shares several roles with ASICs, as for example facilitation of learning and memory, protection during seizure activity, and modulation of nociception, it may be possible that H2S exerts some of these effects via a regulation of ASIC function.
Collapse
Affiliation(s)
- Zhong Peng
- Department of Biomedical Sciences, University of Lausanne, Rue du Bugnon 27, 1011 Lausanne, Switzerland
| | - Stephan Kellenberger
- Department of Biomedical Sciences, University of Lausanne, Rue du Bugnon 27, 1011 Lausanne, Switzerland,Address correspondence to S.K. (e-mail: )
| |
Collapse
|
202
|
Iqbal IK, Bajeli S, Sahu S, Bhat SA, Kumar A. Hydrogen sulfide-induced GAPDH sulfhydration disrupts the CCAR2-SIRT1 interaction to initiate autophagy. Autophagy 2021; 17:3511-3529. [PMID: 33459133 DOI: 10.1080/15548627.2021.1876342] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
The deacetylase SIRT1 (sirtuin 1) has emerged as a major regulator of nucleocytoplasmic distribution of macroautophagy/autophagy marker MAP1LC3/LC3 (microtubule-associated protein 1 light chain 3). Activation of SIRT1 leads to the deacetylation of LC3 and its translocation from the nucleus into the cytoplasm leading to an increase in the autophagy flux. Notably, hydrogen sulfide (H2S) is a cytoprotective gasotransmitter known to activate SIRT1 and autophagy; however, the underlying mechanism for both remains unknown. Herein, we demonstrate that H2S sulfhydrates the active site cysteine of the glycolytic enzyme GAPDH (glyceraldehyde-3-phosphate dehydrogenase). Sulfhydration of GAPDH leads to its redistribution into the nucleus. Importantly, nuclear localization of GAPDH is critical for H2S-mediated activation of autophagy as H2S does not induce autophagy in cells with GAPDH ablation or cells overexpressing a GAPDH mutant lacking the active site cysteine. Importantly, we observed that nuclear GAPDH interacts with CCAR2/DBC1 (cell cycle activator a nd apoptosis regulator 2) inside the nucleus. CCAR2 interacts with the deacetylase SIRT1 to inhibit its activity. Interaction of GAPDH with CCAR2 disrupts the inhibitory effect of CCAR2 on SIRT1. Activated SIRT1 then deacetylates MAP1LC3B/LC3B (microtubule-associated protein 1 light chain 3 beta) to induce its translocation into the cytoplasm and activate autophagy. Additionally, we demonstrate this pathway's physiological role in autophagy-mediated trafficking of Mycobacterium tuberculosis into lysosomes to restrict intracellular mycobacteria growth. We think that the pathway described here could be involved in H2S-mediated clearance of intracellular pathogens and other health benefits.Abbreviations: ATG5: autophagy related 5; ATG7: autophagy related 7; BECN1: beclin 1, autophagy related; CCAR2/DBC1: cell cycle activator and apoptosis regulator 2; CFU: colony-forming units; DLG4/PSD95: discs large MAGUK scaffold protein 4; EX-527: 6-chloro-2,3,4,9-tetrahydro-1H-carbazole-1-carboxamide; GAPDH: glyceraldehyde-3-phosphate dehydrogenase; H2S: hydrogen sulfide; HEK: human embryonic kidney cells; MAP1LC3B/LC3B: microtubule-associated protein 1 light chain 3 beta; MEF: mouse embryonic fibroblast; Mtb: Mycobacterium tuberculosis; MTOR: mechanistic target of rapamycin kinase; MOI: multiplicity of infection; NO: nitric oxide; PI3K: phosphatidylinositol-4,5-bisphosphate 3-kinase; PLA: proximity ligation assay; PRKAA: protein kinase, AMP-activated, alpha catalytic subunit; SIAH1: siah E3 ubiquitin protein ligase 1A; SIRT1: sirtuin 1; TB: tuberculosis; TP53INP2/DOR: transformation related protein 53 inducible nuclear protein 2; TRP53/TP53: transformation related protein 53.
Collapse
Affiliation(s)
- Iram Khan Iqbal
- Council of Scientific and Industrial Research, Institute of Microbial Technology, Chandigarh, India
| | - Sapna Bajeli
- Council of Scientific and Industrial Research, Institute of Microbial Technology, Chandigarh, India
| | - Shivani Sahu
- Council of Scientific and Industrial Research, Institute of Microbial Technology, Chandigarh, India
| | - Shabir Ahmad Bhat
- Council of Scientific and Industrial Research, Institute of Microbial Technology, Chandigarh, India
| | - Ashwani Kumar
- Council of Scientific and Industrial Research, Institute of Microbial Technology, Chandigarh, India.,Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
| |
Collapse
|
203
|
A Turn-on Fluorescent Probe for the Discrimination of Cys/Hcy and GSH With Dual Emission Signals. J Fluoresc 2021; 31:599-607. [PMID: 33507445 DOI: 10.1007/s10895-021-02684-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2020] [Accepted: 01/10/2021] [Indexed: 10/22/2022]
Abstract
In this paper, we successfully synthesized a simple and versatile fluorescent probe. This probe was not only easily prepared with a high yield, but also showed rapid selective and sensitive responses for Cys/Hcy and GSH. The probe can be used as a naked-eye detector for Cys/Hcy and GSH from other analytes. As a fluorescent sensor, it can be used to simultaneously detect and discriminate Cys/Hcy from GSH with two fluorescent emission signals without spectral crosstalk.
Collapse
|
204
|
Szabo C. Hydrogen Sulfide, an Endogenous Stimulator of Mitochondrial Function in Cancer Cells. Cells 2021; 10:cells10020220. [PMID: 33499368 PMCID: PMC7911547 DOI: 10.3390/cells10020220] [Citation(s) in RCA: 64] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2021] [Revised: 01/20/2021] [Accepted: 01/21/2021] [Indexed: 12/12/2022] Open
Abstract
Hydrogen sulfide (H2S) has a long history as toxic gas and environmental hazard; inhibition of cytochrome c oxidase (mitochondrial Complex IV) is viewed as a primary mode of its cytotoxic action. However, studies conducted over the last two decades unveiled multiple biological regulatory roles of H2S as an endogenously produced mammalian gaseous transmitter. Cystathionine γ-lyase (CSE), cystathionine β-synthase (CBS) and 3-mercaptopyruvate sulfurtransferase (3-MST) are currently viewed as the principal mammalian H2S-generating enzymes. In contrast to its inhibitory (toxicological) mitochondrial effects, at lower (physiological) concentrations, H2S serves as a stimulator of electron transport in mammalian mitochondria, by acting as an electron donor—with sulfide:quinone oxidoreductase (SQR) being the immediate electron acceptor. The mitochondrial roles of H2S are significant in various cancer cells, many of which exhibit high expression and partial mitochondrial localization of various H2S producing enzymes. In addition to the stimulation of mitochondrial ATP production, the roles of endogenous H2S in cancer cells include the maintenance of mitochondrial organization (protection against mitochondrial fission) and the maintenance of mitochondrial DNA repair (via the stimulation of the assembly of mitochondrial DNA repair complexes). The current article overviews the state-of-the-art knowledge regarding the mitochondrial functions of endogenously produced H2S in cancer cells.
Collapse
Affiliation(s)
- Csaba Szabo
- Chair of Pharmacology, Section of Medicine, University of Fribourg, CH-1700 Fribourg, Switzerland
| |
Collapse
|
205
|
Ma Y, Xu M, Wang Y, Liu Z, Ye B. A highly sensitive and adjustable colorimetric assay of hydrogen sulfide by signal amplification based on G-quadruplex-Cu 2+ peroxidase mimetics. Analyst 2021; 145:2995-3001. [PMID: 32129377 DOI: 10.1039/d0an00093k] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
This work reports the first example of a colorimetric H2S sensor constructed through G-quadruplex-Cu2+ (G4-Cu2+) peroxidase mimetics employing Cu2+ ions and G-rich DNA with signal amplification. In the hydrogen peroxide (H2O2)-mediated oxidation of 3,3',5,5'-tetramethylbenzidine (TMB), the catalytic capacity of Cu2+ can be greatly improved in the presence of 22AG DNA, where 22AG DNA acts as a signal amplifier. However, G4-Cu2+ peroxidase mimetics lose their catalytic abilities after reacting with H2S. This is employed to develop a colorimetric assay of H2S without complex synthesis and instrumentation, with a linear range from 0.01 μM to 150 μM and a detection limit of 7.5 nM. The sensitivity of the sensor can also be adjusted by changing the concentration of Cu2+. Moreover, the developed sensor is successfully applied for the quantitative determination of H2S in human serum samples.
Collapse
Affiliation(s)
- Yu Ma
- Green Catalysis Center, and College of Chemistry, Zhengzhou University, Zhengzhou, 450001, China
| | - Maotian Xu
- Henan Key Laboratory of Biomolecular Recognition and Sensing, Henan Joint International Research Laboratory of Chemo/Biosensing and Early Diagnosis of Major Diseases, School of Chemistry and Chemical Engineering, Shangqiu Normal University, Shangqiu, 476000, China. and Green Catalysis Center, and College of Chemistry, Zhengzhou University, Zhengzhou, 450001, China
| | - Yongxiang Wang
- Henan Key Laboratory of Biomolecular Recognition and Sensing, Henan Joint International Research Laboratory of Chemo/Biosensing and Early Diagnosis of Major Diseases, School of Chemistry and Chemical Engineering, Shangqiu Normal University, Shangqiu, 476000, China.
| | - Zi Liu
- Green Catalysis Center, and College of Chemistry, Zhengzhou University, Zhengzhou, 450001, China
| | - Baoxian Ye
- Green Catalysis Center, and College of Chemistry, Zhengzhou University, Zhengzhou, 450001, China
| |
Collapse
|
206
|
Shrestha D, Bhat SM, Massey N, Santana Maldonado C, Rumbeiha WK, Charavaryamath C. Pre-exposure to hydrogen sulfide modulates the innate inflammatory response to organic dust. Cell Tissue Res 2021; 384:129-148. [PMID: 33409657 DOI: 10.1007/s00441-020-03333-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2020] [Accepted: 10/29/2020] [Indexed: 01/31/2023]
Abstract
Animal production units produce and store many contaminants on-site, including organic dust (OD) and hydrogen sulfide (H2S). Workers in these settings report various respiratory disease symptoms. Both OD and H2S have shown to induce lung inflammation. However, impact of co-exposure to both H2S and OD has not been investigated. Therefore, we tested a hypothesis that pre-exposure to H2S modulates the innate inflammatory response of the lungs to organic dust. In a mouse model of H2S and organic dust extract (ODE) exposure, we assessed lung inflammation quantitatively. We exposed human airway epithelial and monocytic cells to medium or H2S alone or H2S followed by ODE and measured cell viability, oxidative stress, and other markers of inflammation. Exposure to 10 ppm H2S followed by ODE increased the lavage fluid leukocytes. However, exposure to 10 ppm H2S alone resulted in changes in tight junction proteins, an increase in mRNA levels of tlr2 and tlr4 as well as ncf1, ncf4, hif1α, and nrf2. H2S alone or H2S and ODE exposure decreased cell viability and increased reactive nitrogen species production. ODE exposure increased the transcripts of tlr2 and tlr4 in both in vitro and in vivo models, whereas increased nfkbp65 transcripts following exposure to ODE and H2S was seen only in in vitro model. H2S alone and H2S followed by ODE exposure increased the levels of IL-1β. We conclude that pre-exposure to H2S modulates lung innate inflammatory response to ODE.
Collapse
Affiliation(s)
- Denusha Shrestha
- Biomedical Sciences, Iowa State University, Ames, IA, 50011, USA
| | - Sanjana Mahadev Bhat
- Biomedical Sciences, Iowa State University, Ames, IA, 50011, USA.,Immunobiology Interdepartmental Graduate Program, Iowa State University, Ames, IA, 50011, USA
| | - Nyzil Massey
- Biomedical Sciences, Iowa State University, Ames, IA, 50011, USA
| | | | - Wilson K Rumbeiha
- Department of Molecular Biosciences, School of Veterinary Medicine, University of California, Davis, CA, USA
| | | |
Collapse
|
207
|
Zhang K, Meng J, Bao W, Liu M, Wang X, Tian Z. Mitochondrion-targeting near-infrared fluorescent probe for detecting intracellular nanomolar level hydrogen sulfide with high recognition rate. Anal Bioanal Chem 2021; 413:1215-1224. [PMID: 33386936 DOI: 10.1007/s00216-020-03086-6] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2020] [Revised: 11/09/2020] [Accepted: 11/19/2020] [Indexed: 12/16/2022]
Abstract
Hydrogen sulfide (H2S) typically plays biphasic biological roles in living organisms with subnormal H2S exerting cytoprotective effects such as participating in cardioprotective signaling pathways while H2S with higher-than-normal concentrations in localized tissues acting the opposite way such as inhibiting mitochondrial respiration. Such concentration-dependent biological and pathological roles of H2S with the wide involvement of mitochondria and the elusive feature of H2S definitely highlight the vital significance of fast and precise estimation of the physiological level of H2S in specific microenvironments, particularly within cellular mitochondria. In this work, we developed a new type of fluorescent probe (QcyCHO) featured with H2S-triggered off-to-on near-infrared (NIR) fluorescence conversion within ~ 10 min, limit of detection (LOD) down to 8.3 nM, and high recognition specificity over other similarly interfering species. The ideal mitochondrion-targeting ability, high recognition specificity over typical interfering substances and other physiologically relevant species, and the ability for mapping intracellular H2S in living cells of QcyCHO probe were also unequivocally confirmed, which imply its potential for shedding light on the biology of H2S and therapeutic development in H2S-associated diseases by identifying the specific physiological stimuli inducing H2S production and determining the levels of H2S at the location and time of stimulation.
Collapse
Affiliation(s)
- Kaiquan Zhang
- School of Chemical Sciences, University of Chinese Academy of Sciences (UCAS), Beijing, 100049, China
| | - Jiaqi Meng
- School of Chemical Sciences, University of Chinese Academy of Sciences (UCAS), Beijing, 100049, China
| | - Weier Bao
- School of Chemical Sciences, University of Chinese Academy of Sciences (UCAS), Beijing, 100049, China
| | - Ming Liu
- School of Chemical Sciences, University of Chinese Academy of Sciences (UCAS), Beijing, 100049, China
| | - Xuefei Wang
- School of Chemical Sciences, University of Chinese Academy of Sciences (UCAS), Beijing, 100049, China.
| | - Zhiyuan Tian
- School of Chemical Sciences, University of Chinese Academy of Sciences (UCAS), Beijing, 100049, China.
| |
Collapse
|
208
|
Abstract
Unsymmetrical tri-functionalized perylene diimide dyes were explored for making solution- and solid-state-based colorimetric kits for the detection of gaseous and aqueous H2S.
Collapse
Affiliation(s)
- Prabhpreet Singh
- Department of Chemistry, UGC Centre for Advanced Studies, Guru Nanak Dev University, Amritsar 143 005, India
| | - Navdeep Kaur
- Department of Chemistry, UGC Centre for Advanced Studies, Guru Nanak Dev University, Amritsar 143 005, India
| |
Collapse
|
209
|
Leão LL, Felício LFF, Engedal K, Tangen GG, Kristiansen KM, Santos SHS, de Paula AMB, Monteiro-Junior RS. The Link between Exercise and Homocysteine in the Alzheimer's Disease: A Bioinformatic Network Model. CNS & NEUROLOGICAL DISORDERS DRUG TARGETS 2021; 20:814-821. [PMID: 34852739 DOI: 10.2174/1871527320666210706122618] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/13/2020] [Revised: 02/15/2021] [Accepted: 03/08/2021] [Indexed: 06/13/2023]
Abstract
Elevated peripheral expression of homocysteine (Hcy) is associated with an increased risk of coronary heart disease and stroke, diabetes, and cancer. It is also associated with cognitive impairment as it has been reported that high levels of Hcy cause cognitive dysfunction and memory deficit. Among several etiological factors that contribute to the pathogenesis of neurodegenerative diseases, including Alzheimer's disease (AD), Hcy seems to directly contribute to the generation of neurotoxicity factors. This study aims to hypothesize the molecular mechanism by which exercise can reduce the risk of neurological complications promoted by hyperhomocysteinemia (HHcy), and discuss how exercise could reduce the risk of developing AD by using bioinformatics network models. According to the genes network, there are connections between proteins and amino acids associated with Hcy, exercise, and AD. Studies have evidenced that exercise may be one of several processes by which acid nitric availability can be maximized in the human body, which is particularly important in reducing cell loss and tau pathology and, thereby, leading to a reduced risk of complications associated with HHcy and AD.
Collapse
Affiliation(s)
- Luana Lemos Leão
- Graduate Program of Health Sciences, State University of Montes Claros, Montes Claros, Minas Gerais, Brazil
| | | | - Knut Engedal
- Norwegian National Advisory Unit on Ageing and Health, Vestfold Hospital Trust, Tønsberg, Norway
| | - Gro Gujord Tangen
- Norwegian National Advisory Unit on Ageing and Health, Vestfold Hospital Trust, Tønsberg, Norway
| | - Kari Midtbø Kristiansen
- Norwegian National Advisory Unit on Ageing and Health, Vestfold Hospital Trust, Tønsberg, Norway
| | | | | | | |
Collapse
|
210
|
Chen HJ, Ngowi EE, Qian L, Li T, Qin YZ, Zhou JJ, Li K, Ji XY, Wu DD. Role of Hydrogen Sulfide in the Endocrine System. Front Endocrinol (Lausanne) 2021; 12:704620. [PMID: 34335475 PMCID: PMC8322845 DOI: 10.3389/fendo.2021.704620] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/03/2021] [Accepted: 06/25/2021] [Indexed: 12/13/2022] Open
Abstract
Hydrogen sulfide (H2S), as one of the three known gaseous signal transduction molecules in organisms, has attracted a surging amount of attention. H2S is involved in a variety of physiological and pathological processes in the body, such as dilating blood vessels (regulating blood pressure), protecting tissue from ischemia-reperfusion injury, anti-inflammation, carcinogenesis, or inhibition of cancer, as well as acting on the hypothalamus and pancreas to regulate hormonal metabolism. The change of H2S concentration is related to a variety of endocrine disorders, and the change of hormone concentration also affects the synthesis of H2S. Understanding the effect of biosynthesis and the concentration of H2S on the endocrine system is useful to develop drugs for the treatment of hypertension, diabetes, and other diseases.
Collapse
Affiliation(s)
- Hao-Jie Chen
- School of Basic Medical Sciences, Henan University, Kaifeng, China
- Henan International Joint Laboratory for Nuclear Protein Regulation, Henan University, Kaifeng, China
| | - Ebenezeri Erasto Ngowi
- School of Basic Medical Sciences, Henan University, Kaifeng, China
- Henan International Joint Laboratory for Nuclear Protein Regulation, Henan University, Kaifeng, China
- Department of Biological Sciences, Faculty of Science, Dar es Salaam University College of Education, Dar es Salaam, Tanzania
| | - Lei Qian
- School of Basic Medical Sciences, Henan University, Kaifeng, China
- Henan International Joint Laboratory for Nuclear Protein Regulation, Henan University, Kaifeng, China
| | - Tao Li
- School of Basic Medical Sciences, Henan University, Kaifeng, China
- Henan International Joint Laboratory for Nuclear Protein Regulation, Henan University, Kaifeng, China
| | - Yang-Zhe Qin
- School of Basic Medical Sciences, Henan University, Kaifeng, China
- Henan International Joint Laboratory for Nuclear Protein Regulation, Henan University, Kaifeng, China
| | - Jing-Jing Zhou
- School of Basic Medical Sciences, Henan University, Kaifeng, China
- Henan International Joint Laboratory for Nuclear Protein Regulation, Henan University, Kaifeng, China
| | - Ke Li
- School of Basic Medical Sciences, Henan University, Kaifeng, China
- Henan International Joint Laboratory for Nuclear Protein Regulation, Henan University, Kaifeng, China
| | - Xin-Ying Ji
- School of Basic Medical Sciences, Henan University, Kaifeng, China
- Henan International Joint Laboratory for Nuclear Protein Regulation, Henan University, Kaifeng, China
- Kaifeng Key Laboratory of Infection and Biological Safety, School of Basic Medical Sciences, Henan University, Kaifeng, China
- *Correspondence: Dong-Dong Wu, ; Xin-Ying Ji,
| | - Dong-Dong Wu
- School of Basic Medical Sciences, Henan University, Kaifeng, China
- Henan International Joint Laboratory for Nuclear Protein Regulation, Henan University, Kaifeng, China
- School of Stomatology, Henan University, Kaifeng, China
- *Correspondence: Dong-Dong Wu, ; Xin-Ying Ji,
| |
Collapse
|
211
|
Chaudhuri A, Paul A, Sikder A, Pradeep Singh ND. Single component photoresponsive fluorescent organic nanoparticles: a smart platform for improved biomedical and agrochemical applications. Chem Commun (Camb) 2021; 57:1715-1733. [DOI: 10.1039/d0cc07183h] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Single component photoresponsive fluorescent organic nanoparticles for the regulated release of anticancer drugs, antibacterial agents, gasotransmitters, and agrochemicals and as effective PDT agents.
Collapse
Affiliation(s)
- Amrita Chaudhuri
- Department of Chemistry
- Indian Institute of Technology Kharagpur
- 721302 Kharagpur
- India
| | - Amrita Paul
- Department of Chemistry
- Indian Institute of Technology Kharagpur
- 721302 Kharagpur
- India
| | - Antara Sikder
- Department of Chemistry
- Indian Institute of Technology Kharagpur
- 721302 Kharagpur
- India
| | - N. D. Pradeep Singh
- Department of Chemistry
- Indian Institute of Technology Kharagpur
- 721302 Kharagpur
- India
| |
Collapse
|
212
|
Tao BB, Zhu YC. A Common Molecular Switch for H 2S to Regulate Multiple Protein Targets. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2021; 1315:1-16. [PMID: 34302686 DOI: 10.1007/978-981-16-0991-6_1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Hydrogen sulfide, a small molecule, produced by endogenous enzymes, such as CTH, CBS, and MPST using L-cysteine as substrates, has been reported to have numerous protective effects. However, the key problem that the target of H2S and how it can affect the structure and activity of biological molecules is still unknown. Till now, there are two main theories of its working mechanism. One is that H2S can modify the free thiol in cysteine to produce the persulfide state of the thiol and the sulfhydration of cysteine can significantly change the structure and activity of target proteins. The other theory is that H2S, as an antioxidant molecule, can directly break the disulfide bond in target proteins, and the persulfide state of thiol can be an intermediate product during the reaction. Both phenomena exit for no doubt since they are both supported by large amounts of experiments. Here, we will summarize both theories and try to discuss which one is the more effective or direct mechanism for H2S and what is the relationship between them. Therefore, we will discover more protein targets of H2S with the mechanism and understand more about the effect of this small molecule.
Collapse
Affiliation(s)
- Bei-Bei Tao
- Shanghai Key Laboratory of Bioactive Small Molecules and Shanghai Key Laboratory of Clinical Geriatric Medicine, Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Fudan University, Shanghai, China
| | - Yi-Chun Zhu
- Shanghai Key Laboratory of Bioactive Small Molecules and Shanghai Key Laboratory of Clinical Geriatric Medicine, Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Fudan University, Shanghai, China.
| |
Collapse
|
213
|
Li J, Zhong K, Tang L, Yan X. A triphenylamine derived fluorescent probe for efficient detection of H 2S based on aggregation-induced emission. NEW J CHEM 2021. [DOI: 10.1039/d1nj02816b] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
The probe TPA-HS can quickly identify H2S (20 minutes) and release TPA-CHO with aggregation-induced emission properties.
Collapse
Affiliation(s)
- Jiaojiao Li
- College of Chemistry and Materials Engineering
- Bohai University
- Jinzhou
- China
| | - Keli Zhong
- College of Chemistry and Materials Engineering
- Bohai University
- Jinzhou
- China
| | - Lijun Tang
- College of Chemistry and Materials Engineering
- Bohai University
- Jinzhou
- China
| | - Xiaomei Yan
- College of Laboratory Medicine
- Dalian Medical University
- Dalian
- China
| |
Collapse
|
214
|
Xiang J, Xing P, Liu X, Shen P, Shao S, Zhou Q, Zhou Z, Tang J, Shen Y. Hydrogen sulfide-activatable prodrug-backboned block copolymer micelles for delivery of chemotherapeutics. Polym Chem 2021. [DOI: 10.1039/d1py00280e] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
A novel hydrogen sulfide-activatable block copolymer prodrug with high tumor specificity was developed for cancer chemotherapy.
Collapse
Affiliation(s)
- Jiajia Xiang
- Key Laboratory of Smart Biomaterials of Zhejiang Province
- College of Chemical and Biological Engineering of Zhejiang University
- Hangzhou
- China
| | - Peiwen Xing
- Key Laboratory of Smart Biomaterials of Zhejiang Province
- College of Chemical and Biological Engineering of Zhejiang University
- Hangzhou
- China
| | - Xin Liu
- Department of Orthopaedic Surgery
- Sir Run Run Shaw Hospital
- Medical College of Zhejiang University
- Hangzhou
- China
| | - Peihong Shen
- Center of Clinical Pathology
- Affiliated Cancer Hospital of Zhengzhou University
- Zhengzhou
- China
| | - Shiqun Shao
- Key Laboratory of Smart Biomaterials of Zhejiang Province
- College of Chemical and Biological Engineering of Zhejiang University
- Hangzhou
- China
| | - Quan Zhou
- Key Laboratory of Smart Biomaterials of Zhejiang Province
- College of Chemical and Biological Engineering of Zhejiang University
- Hangzhou
- China
| | - Zhuxian Zhou
- Key Laboratory of Smart Biomaterials of Zhejiang Province
- College of Chemical and Biological Engineering of Zhejiang University
- Hangzhou
- China
- Hangzhou Global Scientific and Technological Innovation Center
| | - Jianbin Tang
- Key Laboratory of Smart Biomaterials of Zhejiang Province
- College of Chemical and Biological Engineering of Zhejiang University
- Hangzhou
- China
| | - Youqing Shen
- Key Laboratory of Smart Biomaterials of Zhejiang Province
- College of Chemical and Biological Engineering of Zhejiang University
- Hangzhou
- China
- Hangzhou Global Scientific and Technological Innovation Center
| |
Collapse
|
215
|
Algieri C, Nesci S, Trombetti F, Fabbri M, Ventrella V, Pagliarani A. Mitochondrial F 1F O-ATPase and permeability transition pore response to sulfide in the midgut gland of Mytilus galloprovincialis. Biochimie 2021; 180:222-228. [PMID: 33212166 DOI: 10.1016/j.biochi.2020.11.012] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2020] [Revised: 11/10/2020] [Accepted: 11/12/2020] [Indexed: 12/16/2022]
Abstract
The molecular mechanisms which rule the formation and opening of the mitochondrial permeability transition pore (mPTP), the lethal mechanism which permeabilizes mitochondria to water and solutes and drives the cell to death, are still unclear and particularly little investigated in invertebrates. Since Ca2+ increase in mitochondria is accompanied by mPTP opening and the participation of the mitochondrial F1FO-ATPase in the mPTP is increasingly sustained, the substitution of the natural cofactor Mg2+ by Ca2+ in the F1FO-ATPase activation has been involved in the mPTP mechanism. In mussel midgut gland mitochondria the similar kinetic properties of the Mg2+- or Ca2+-dependent F1FO-ATPase activities, namely the same affinity for ATP and bi-site activation kinetics by the ATP substrate, in spite of the higher enzyme activity and coupling efficiency of the Mg2+-dependent F1FO-ATPase, suggest that both enzyme activities are involved in the bioenergetic machinery. Other than being a mitochondrial poison and environmental contaminant, sulfide at low concentrations acts as gaseous mediator and can induce post-translational modifications of proteins. The sulfide donor NaHS, at micromolar concentrations, does not alter the two F1FO-ATPase activities, but desensitizes the mPTP to Ca2+ input. Unexpectedly, NaHS, under the conditions tested, points out a chemical refractoriness of both F1FO-ATPase activities and a failed relationship between the Ca2+-dependent F1FO-ATPase and the mPTP in mussels. The findings suggest that mPTP role and regulation may be different in different taxa and that the F1FO-ATPase insensitivity to NaHS may allow mussels to cope with environmental sulfide.
Collapse
Affiliation(s)
- Cristina Algieri
- Department of Veterinary Medical Sciences (DIMEVET), University of Bologna, via Tolara di Sopra, 50, 40064, Ozzano Emilia, Bologna, Italy
| | - Salvatore Nesci
- Department of Veterinary Medical Sciences (DIMEVET), University of Bologna, via Tolara di Sopra, 50, 40064, Ozzano Emilia, Bologna, Italy.
| | - Fabiana Trombetti
- Department of Veterinary Medical Sciences (DIMEVET), University of Bologna, via Tolara di Sopra, 50, 40064, Ozzano Emilia, Bologna, Italy
| | - Micaela Fabbri
- Department of Veterinary Medical Sciences (DIMEVET), University of Bologna, via Tolara di Sopra, 50, 40064, Ozzano Emilia, Bologna, Italy
| | - Vittoria Ventrella
- Department of Veterinary Medical Sciences (DIMEVET), University of Bologna, via Tolara di Sopra, 50, 40064, Ozzano Emilia, Bologna, Italy
| | - Alessandra Pagliarani
- Department of Veterinary Medical Sciences (DIMEVET), University of Bologna, via Tolara di Sopra, 50, 40064, Ozzano Emilia, Bologna, Italy
| |
Collapse
|
216
|
|
217
|
Lee S, Sung DB, Lee JS, Han MS. A Fluorescent Probe for Selective Facile Detection of H 2S in Serum Based on an Albumin-Binding Fluorophore and Effective Masking Reagent. ACS OMEGA 2020; 5:32507-32514. [PMID: 33376888 PMCID: PMC7758950 DOI: 10.1021/acsomega.0c04659] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/22/2020] [Accepted: 11/27/2020] [Indexed: 06/12/2023]
Abstract
A fluorescent probe (4-(2-(4-(diethylamino)phenyl)-4-methyl-5-oxo-4,5-dihydrothieno[3,2-b]pyridin-7-yl)phenyl 2,4-dinitrobenzenesulfonate, KF-DNBS) for facile detection of H2S in serum was developed based on the combination of an environment-sensitive fluorophore (2-(4-(diethylamino)phenyl)-7-(4-hydroxyphenyl)-4-methylthieno[3,2-b]pyridin-5(4H)-one, KF) with albumin and the 2,4-dinitrobenzene sulfonyl (DNBS) group as a recognition unit for H2S. KF-DNBS showed remarkable fluorescence enhancement due to H2S-triggered thiolysis followed by the formation of a fluorescent fluorophore (KF)-albumin complex. The H2S detection limit of KF-DNBS was estimated to be 3.2 μM, and KF-DNBS achieves a high selectivity to H2S over biothiols by employing 2-formyl benzene boronic acid (2-FBBA) as an effective masking reagent. Furthermore, under optimized sensing conditions, KF-DNBS could be applied to accurately determine spiked H2S in human serum without the need for any further procedure for the removal of serum proteins.
Collapse
Affiliation(s)
- Suji Lee
- Department
of Chemistry, Gwangju Institute of Science
and Technology (GIST), 123 Cheomdangwagi-ro, Buk-gu, Gwangju 61005, Korea
| | - Dan-Bi Sung
- Marine
Natural Products Chemistry Laboratory, Korea
Institute of Ocean Science and Technology (KIOST), Busan 49111, Korea
| | - Jong Seok Lee
- Marine
Natural Products Chemistry Laboratory, Korea
Institute of Ocean Science and Technology (KIOST), Busan 49111, Korea
- Department
of Applied Ocean Science, Korea University
of Science and Technology, Daejeon 34113, Republic of Korea
| | - Min Su Han
- Department
of Chemistry, Gwangju Institute of Science
and Technology (GIST), 123 Cheomdangwagi-ro, Buk-gu, Gwangju 61005, Korea
| |
Collapse
|
218
|
Pushchina EV, Stukaneva ME, Varaksin AA. Hydrogen Sulfide Modulates Adult and Reparative Neurogenesis in the Cerebellum of Juvenile Masu Salmon, Oncorhynchus masou. Int J Mol Sci 2020; 21:ijms21249638. [PMID: 33348868 PMCID: PMC7766854 DOI: 10.3390/ijms21249638] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2020] [Revised: 12/03/2020] [Accepted: 12/15/2020] [Indexed: 01/31/2023] Open
Abstract
Fish are a convenient model for the study of reparative and post-traumatic processes of central nervous system (CNS) recovery, because the formation of new cells in their CNS continues throughout life. After a traumatic injury to the cerebellum of juvenile masu salmon, Oncorhynchus masou, the cell composition of the neurogenic zones containing neural stem cells (NSCs)/neural progenitor cells (NPCs) in the acute period (two days post-injury) changes. The presence of neuroepithelial (NE) and radial glial (RG) neuronal precursors located in the dorsal, lateral, and basal zones of the cerebellar body was shown by the immunohistochemical (IHC) labeling of glutamine synthetase (GS). Progenitors of both types are sources of neurons in the cerebellum of juvenile O. masou during constitutive growth, thus, playing an important role in CNS homeostasis and neuronal plasticity during ontogenesis. Precursors with the RG phenotype were found in the same regions of the molecular layer as part of heterogeneous constitutive neurogenic niches. The presence of neuroepithelial and radial glia GS+ cells indicates a certain proportion of embryonic and adult progenitors and, obviously, different contributions of these cells to constitutive and reparative neurogenesis in the acute post-traumatic period. Expression of nestin and vimentin was revealed in neuroepithelial cerebellar progenitors of juvenile O. masou. Patterns of granular expression of these markers were found in neurogenic niches and adjacent areas, which probably indicates the neurotrophic and proneurogenic effects of vimentin and nestin in constitutive and post-traumatic neurogenesis and a high level of constructive metabolism. No expression of vimentin and nestin was detected in the cerebellar RG of juvenile O. masou. Thus, the molecular markers of NSCs/NPCs in the cerebellum of juvenile O. masou are as follows: vimentin, nestin, and glutamine synthetase label NE cells in intact animals and in the post-traumatic period, while GS expression is present in the RG of intact animals and decreases in the acute post-traumatic period. A study of distribution of cystathionine β-synthase (CBS) in the cerebellum of intact young O. masou showed the expression of the marker mainly in type 1 cells, corresponding to NSCs/NCPs for other molecular markers. In the post-traumatic period, the number of CBS+ cells sharply increased, which indicates the involvement of H2S in the post-traumatic response. Induction of CBS in type 3 cells indicates the involvement of H2S in the metabolism of extracellular glutamate in the cerebellum, a decrease in the production of reactive oxygen species, and also arrest of the oxidative stress development, a weakening of the toxic effects of glutamate, and a reduction in excitotoxicity. The obtained results allow us to consider H2S as a biologically active substance, the numerous known effects of which can be supplemented by participation in the processes of constitutive neurogenesis and neuronal regeneration.
Collapse
|
219
|
Dongó E, Kiss L. The Potential Role of Hydrogen Sulfide in the Regulation of Cerebrovascular Tone. Biomolecules 2020; 10:biom10121685. [PMID: 33339440 PMCID: PMC7766080 DOI: 10.3390/biom10121685] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2020] [Revised: 12/09/2020] [Accepted: 12/14/2020] [Indexed: 01/15/2023] Open
Abstract
A better understanding of the regulation of cerebrovascular circulation is of great importance because stroke and other cerebrovascular diseases represent a major concern in healthcare leading to millions of deaths yearly. The circulation of the central nervous system is regulated in a highly complex manner involving many local factors and hydrogen sulfide (H2S) is emerging as one such possible factor. Several lines of evidence support that H2S takes part in the regulation of vascular tone. Examinations using either exogenous treatment with H2S donor molecules or alterations to the enzymes that are endogenously producing this molecule revealed numerous important findings about its physiological and pathophysiological role. The great majority of these studies were performed on vessel segments derived from the systemic circulation but there are important observations made using cerebral vessels as well. The findings of these experimental works indicate that H2S is having a complex, pleiotropic effect on the vascular wall not only in the systemic circulation but in the cerebrovascular region as well. In this review, we summarize the most important experimental findings related to the potential role of H2S in the cerebral circulation.
Collapse
Affiliation(s)
- Eleni Dongó
- Department of Physiology, Semmelweis University, 1088 Budapest, Hungary
- Department of Neurology, Semmelweis University, 1088 Budapest, Hungary;
| | - Levente Kiss
- Department of Physiology, Semmelweis University, 1088 Budapest, Hungary
- Correspondence: ; Tel.: +36-20-384-5753
| |
Collapse
|
220
|
Khanna A, Indracanti N, Chakrabarti R, Indraganti PK. Short-term ex-vivo exposure to hydrogen sulfide enhances murine hematopoietic stem and progenitor cell migration, homing, and proliferation. Cell Adh Migr 2020; 14:214-226. [PMID: 33135550 PMCID: PMC7671055 DOI: 10.1080/19336918.2020.1842131] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2020] [Revised: 08/26/2020] [Accepted: 10/20/2020] [Indexed: 01/05/2023] Open
Abstract
For successful transplantation of Hematopoietic Stem cells (HSCs), it is quite necessary that efficient homing, engraftment and retention of HSC self-renewal capacity takes place, which is often restricted due to inadequate number of adult HSCs. Here, we report that short-term ex-vivo treatment of mouse bone marrow mononuclear cells (BMMNCs) to Sodium Hydrogen Sulfide (NaHS, hydrogen sulfide-H2S donor) can be used as a possible strategy to overcome such hurdle. H2S increases the expression of CXCR4 on HSPCs, enhancing their migration toward SDF-1α in-vitro and thus homing to BM niche. . Additionally, in-vitro studies revealed that H2S has a role in activating mitochondria, thus, pushing quiescent HSCs into division. These results suggest a readily available and cost-effective method to facilitate efficient HSC transplantation.
Collapse
Affiliation(s)
- Anoushka Khanna
- Drug Repurposing and Translational Research Lab, Institute of Nuclear Medicine and Allied Sciences, Defence Research and Development Organization, Delhi, India
- Aqua Research Laboratory, Department of Zoology, University of Delhi, Delhi, India
| | - Namita Indracanti
- Drug Repurposing and Translational Research Lab, Institute of Nuclear Medicine and Allied Sciences, Defence Research and Development Organization, Delhi, India
| | - Rina Chakrabarti
- Aqua Research Laboratory, Department of Zoology, University of Delhi, Delhi, India
| | - Prem Kumar Indraganti
- Drug Repurposing and Translational Research Lab, Institute of Nuclear Medicine and Allied Sciences, Defence Research and Development Organization, Delhi, India
| |
Collapse
|
221
|
GASOMEDIATOR H2S IN THROMBOSIS AND HEMOSTASIS. BIOTECHNOLOGIA ACTA 2020. [DOI: 10.15407/biotech13.06.024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
This review was aimed to briefly summarize current knowledge of the biological roles of gasomediator H2S in hemostasis and cardiovascular diseases. Since the discovery that mammalian cells are enzymatically producing H2S, this molecule underwent a dramatic metamorphosis from dangerous pollutant to a biologically relevant mediator. As a gasomediator, hydrogen sulfide plays a role of signaling molecule, which is involved in a number of processes in health and disease, including pathogenesis of cardiovascular abnormalities, mainly through modulating different patterns of vasculature functions and thrombotic events. Recently, several studies have provided unequivocal evidence that H2S reduces blood platelet reactivity by inhibiting different stages of platelet activation (platelet adhesion, secretion and aggregation) and thrombus formation. Moreover, H2S changes the structure and function of fibrinogen and proteins associated with fibrinolysis. Hydrogen sulfide regulates proliferation and apoptosis of vascular smooth muscle cells, thus modulating angiogenesis and vessel function. Undoubtedly, H2S is also involved in a multitude of other physiological functions. For example, it exhibits anti-inflammatory effects by inhibiting ROS production and increasing expression of antioxidant enzymes. Some studies have demonstrated the role of hydrogen sulfide as a therapeutic agent in various diseases, including cardiovascular pathologies. Further studies are required to evaluate its importance as a regulator of cell physiology and associated cardiovascular pathological conditions such as myocardial infarction and stroke.
Collapse
|
222
|
Kasamatsu S, Kakihana Y, Koga T, Yoshioka H, Ihara H. Generation of Rat Monoclonal Antibody to Detect Hydrogen Sulfide and Polysulfides in Biological Samples. Antioxidants (Basel) 2020; 9:antiox9111160. [PMID: 33233376 PMCID: PMC7700152 DOI: 10.3390/antiox9111160] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2020] [Revised: 11/17/2020] [Accepted: 11/19/2020] [Indexed: 02/02/2023] Open
Abstract
Hydrogen sulfide (H2S) is endogenously produced by enzymes and via reactive persulfide/polysulfide degradation; it participates in a variety of biological processes under physiological and pathological conditions. H2S levels in biological fluids, such as plasma and serum, are correlated with the severity of various diseases. Therefore, development of a simple and selective H2S measurement method would be advantageous. This study aimed to generate antibodies specifically recognizing H2S derivatives and develop a colorimetric immunoassay for measuring H2S in biological samples. We used N-ethylmaleimide (NEM) as an H2S detection agent that forms a stable bis-S-adduct (NEM-S-NEM). We also prepared bis-S-heteroadduct with 3-maleimidopropionic acid, which, in conjugation with bovine serum albumin, was to immunize Japanese white rabbits and Wistar rats to enable generation of polyclonal and monoclonal antibodies, respectively. The generated antibodies were evaluated by competitive enzyme-linked immunosorbent assay. We could obtain two stable hybridoma cell lines producing monoclonal antibodies specific for NEM-S-NEM. By immunoassay with the monoclonal antibody, the H2S level in mouse plasma was determined as 0.2 μM, which was identical to the level detected by mass spectrometry. Taken together, these monoclonal antibodies can be a useful tool for a simple and highly selective immunoassay to detect H2S in biological samples.
Collapse
Affiliation(s)
| | | | | | | | - Hideshi Ihara
- Correspondence: ; Tel.: +81-72-254-9753; Fax: +81-72-254-9163
| |
Collapse
|
223
|
Cetin Z, Gunduz O, Topuz RD, Dokmeci D, Karadag HC, Ulugol A. The Role of Hydrogen Sulfide in the Development of Tolerance and Dependence to Morphine in Mice. Neuropsychobiology 2020; 80:264-270. [PMID: 33207349 DOI: 10.1159/000511541] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/03/2020] [Accepted: 09/10/2020] [Indexed: 11/19/2022]
Abstract
OBJECTIVE Hydrogen sulfide is an endogenous gaseous mediator that has been indicated to have a role in pain mechanisms. In this study, we aimed to detect brain and spinal cord hydrogen sulfide levels during different phases of tolerance and dependence to morphine and to determine the effects of inhibition of endogenous hydrogen sulfide production on the development of tolerance and dependence. METHODS Morphine tolerance and dependence was developed by subcutaneous injection of morphine (10 mg/kg) twice daily for 12 days. Physical dependence was determined by counting the jumps for 20 min, which is a withdrawal symptom occurring after a single dose of naloxone (5 mg/kg) administered intraperitoneally (i.p.). Propargylglycine (30 mg/kg, i.p.), a cystathionine-γ-lyase inhibitor, and hydroxylamine (12.5 mg/kg, i.p.), a cystathionine-β-synthase inhibitor, were used as hydrogen sulfide synthase inhibitors. The tail-flick and hot-plate tests were used to determine the loss of antinociceptive effects of morphine and development of tolerance. RESULTS It was found that chronic and acute uses of both propargylglycine and hydroxylamine prevented the development of tolerance to morphine, whereas they had no effect on morphine dependence. Chronic and acute administrations of hydrogen sulfide synthase inhibitors did not exert any difference in hydrogen sulfide levels in brain and spinal cords of both morphine-tolerant and -dependent animals. CONCLUSION It has been concluded that hydrogen sulfide synthase inhibitors may have utility in preventing morphine tolerance.
Collapse
Affiliation(s)
- Zeynep Cetin
- Vocational College of Arda, Chemistry and Chemical Processing Technologies Department, Trakya University, Edirne, Turkey
- Department of Medical Pharmacology, Faculty of Medicine, Trakya University, Edirne, Turkey
| | - Ozgur Gunduz
- Department of Medical Pharmacology, Faculty of Medicine, Trakya University, Edirne, Turkey
| | - Ruhan D Topuz
- Department of Medical Pharmacology, Faculty of Medicine, Trakya University, Edirne, Turkey
| | - Dikmen Dokmeci
- Department of Medical Pharmacology, Faculty of Medicine, Trakya University, Edirne, Turkey
| | - Hakan C Karadag
- Department of Medical Pharmacology, Faculty of Medicine, Trakya University, Edirne, Turkey
| | - Ahmet Ulugol
- Department of Medical Pharmacology, Faculty of Medicine, Trakya University, Edirne, Turkey,
| |
Collapse
|
224
|
Wang WL, Ge TY, Chen X, Mao Y, Zhu YZ. Advances in the Protective Mechanism of NO, H 2S, and H 2 in Myocardial Ischemic Injury. Front Cardiovasc Med 2020; 7:588206. [PMID: 33195476 PMCID: PMC7661694 DOI: 10.3389/fcvm.2020.588206] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2020] [Accepted: 09/28/2020] [Indexed: 12/30/2022] Open
Abstract
Myocardial ischemic injury is among the top 10 leading causes of death from cardiovascular diseases worldwide. Myocardial ischemia is caused mainly by coronary artery occlusion or obstruction. It usually occurs when the heart is insufficiently perfused, oxygen supply to the myocardium is reduced, and energy metabolism in the myocardium is abnormal. Pathologically, myocardial ischemic injury generates a large number of inflammatory cells, thus inducing a state of oxidative stress. This sharp reduction in the number of normal cells as a result of apoptosis leads to organ and tissue damage, which can be life-threatening. Therefore, effective methods for the treatment of myocardial ischemic injury and clarification of the underlying mechanisms are urgently required. Gaseous signaling molecules, such as NO, H2S, H2, and combined gas donors, have gradually become a focus of research. Gaseous signaling molecules have shown anti-apoptotic, anti-oxidative and anti-inflammatory effects as potential therapeutic agents for myocardial ischemic injury in a large number of studies. In this review, we summarize and discuss the mechanism underlying the protective effect of gaseous signaling molecules on myocardial ischemic injury.
Collapse
Affiliation(s)
| | | | - Xu Chen
- Guilin Medical College, Guilin, China
| | - Yicheng Mao
- Shanghai Key Laboratory of Bioactive Small Molecules, Department of Pharmacology, School of Pharmacy, Fudan University, Shanghai, China
| | - Yi-Zhun Zhu
- Guilin Medical College, Guilin, China.,Shanghai Key Laboratory of Bioactive Small Molecules, Department of Pharmacology, School of Pharmacy, Fudan University, Shanghai, China.,State Key Laboratory of Quality Research in Chinese Medicine and School of Pharmacy, Macau University of Science and Technology, Macau, China
| |
Collapse
|
225
|
Duzs Á, Miklovics N, Paragi G, Rákhely G, Tóth A. Insights into the catalytic mechanism of type VI sulfide:quinone oxidoreductases. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2020; 1862:148337. [PMID: 33202220 DOI: 10.1016/j.bbabio.2020.148337] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Revised: 10/09/2020] [Accepted: 11/03/2020] [Indexed: 10/23/2022]
Abstract
Sulfide oxidation is catalyzed by ancient membrane-bound sulfide:quinone oxidoreductases (SQR) which are classified into six different types. For catalysis of sulfide oxidation, all SQRs require FAD cofactor and a redox-active centre in the active site, usually formed between conserved essential cysteines. SQRs of different types have variation in the number and position of cysteines, highlighting the potential for diverse catalytic mechanisms. The photosynthetic purple sulfur bacterium, Thiocapsa roseopersicina contains a type VI SQR enzyme (TrSqrF) having unusual catalytic parameters and four cysteines likely involved in the catalysis. Site-directed mutagenesis was applied to identify the role of cysteines in the catalytic process of TrSqrF. Based on biochemical and kinetic characterization of these TrSqrF variants, Cys121 is identified as crucial for enzyme activity. The cofactor is covalently bound via a heterodisulfide bridge between Cys121 and the C8M group of FAD. Mutation of another cysteine present in all SQRs (Cys332) causes remarkably decreased enzyme activity (14.6% of wild type enzyme) proving important, but non-essential role of this residue in enzyme catalysis. The sulfhydril-blocking agent, iodoacetamide can irreversibly inactivate TrSqrF but only if substrates are present and the enzyme is actively catalyzing its reaction. When the enzyme is inhibited by iodoacetamide, the FAD cofactor is released. The inhibition studies support a mechanism that entails opening and reforming of the heterodisulfide bridge during the catalytic cycle of TrSqrF. Our study thus reports the first detailed structure-function analysis of a type VI SQR enzyme which enables the proposal of a distinct mechanism of sulfide oxidation for this class.
Collapse
Affiliation(s)
- Ágnes Duzs
- Institute of Biophysics, Biological Research Centre, Temesvári krt 62., H-6726 Szeged, Hungary; Department of Biotechnology, University of Szeged, Közép fasor 52., H-6726 Szeged, Hungary
| | - Nikolett Miklovics
- Institute of Biophysics, Biological Research Centre, Temesvári krt 62., H-6726 Szeged, Hungary; Department of Biotechnology, University of Szeged, Közép fasor 52., H-6726 Szeged, Hungary; Doctoral School in Biology, University of Szeged, Közép fasor 52., H-6726 Szeged, Hungary
| | - Gábor Paragi
- Institute of Physics, University of Pécs, Ifjúság útja 6., H-7624 Pécs, Hungary; MTA-SZTE Biomimetic Systems Research Group, Department of Medical Chemistry, University of Szeged, Dóm square 8, H-6720 Szeged, Hungary
| | - Gábor Rákhely
- Institute of Biophysics, Biological Research Centre, Temesvári krt 62., H-6726 Szeged, Hungary; Department of Biotechnology, University of Szeged, Közép fasor 52., H-6726 Szeged, Hungary.
| | - András Tóth
- Institute of Biophysics, Biological Research Centre, Temesvári krt 62., H-6726 Szeged, Hungary; Department of Biotechnology, University of Szeged, Közép fasor 52., H-6726 Szeged, Hungary
| |
Collapse
|
226
|
Faris P, Ferulli F, Vismara M, Tanzi M, Negri S, Rumolo A, Lefkimmiatis K, Maestri M, Shekha M, Pedrazzoli P, Guidetti GF, Montagna D, Moccia F. Hydrogen Sulfide-Evoked Intracellular Ca 2+ Signals in Primary Cultures of Metastatic Colorectal Cancer Cells. Cancers (Basel) 2020; 12:cancers12113338. [PMID: 33187307 PMCID: PMC7696676 DOI: 10.3390/cancers12113338] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2020] [Revised: 11/05/2020] [Accepted: 11/06/2020] [Indexed: 02/07/2023] Open
Abstract
Simple Summary Colorectal cancer (CRC) is the most common type of gastrointestinal cancer and the third most predominant cancer in the world. CRC is potentially curable with surgical resection of the primary tumor. The clinical problem of colorectal cancer, however, is the spread and outgrowth of metastases, which are difficult to eradicate and lead to a patient’s death. The failure of conventional treatment to significantly improved outcomes in mCRC has prompted the search for alternative molecular targets with the goal of ameliorating the prognosis of these patients. The present investigation revealed that exogenous delivery of hydrogen sulfide (H2S) suppresses proliferation in metastatic colorectal cancer cells by inducing an increase in intracellular Ca2+ concentration. H2S was effective on metastatic, but not normal, cells. Therefore, we propose that exogenous administration of H2S to patients affected by metastatic colorectal carcinoma could represent a promising therapeutic alternative. Abstract Exogenous administration of hydrogen sulfide (H2S) is emerging as an alternative anticancer treatment. H2S-releasing compounds have been shown to exert a strong anticancer effect by suppressing proliferation and/or inducing apoptosis in several cancer cell types, including colorectal carcinoma (CRC). The mechanism whereby exogenous H2S affects CRC cell proliferation is yet to be clearly elucidated, but it could involve an increase in intracellular Ca2+ concentration ([Ca2+]i). Herein, we sought to assess for the first time whether (and how) sodium hydrosulfide (NaHS), one of the most widely employed H2S donors, induced intracellular Ca2+ signals in primary cultures of human metastatic CRC (mCRC) cells. We provided the evidence that NaHS induced extracellular Ca2+ entry in mCRC cells by activating the Ca2+-permeable channel Transient Receptor Potential Vanilloid 1 (TRPV1) followed by the Na+-dependent recruitment of the reverse-mode of the Na+/Ca2+ (NCX) exchanger. In agreement with these observations, TRPV1 protein was expressed and capsaicin, a selective TRPV1 agonist, induced Ca2+ influx by engaging both TRPV1 and NCX in mCRC cells. Finally, NaHS reduced mCRC cell proliferation, but did not promote apoptosis or aberrant mitochondrial depolarization. These data support the notion that exogenous administration of H2S may prevent mCRC cell proliferation through an increase in [Ca2+]i, which is triggered by TRPV1.
Collapse
Affiliation(s)
- Pawan Faris
- Laboratory of General Physiology, Department of Biology and Biotechnology “L. Spallanzani”, University of Pavia, 27100 Pavia, Italy; (P.F.); (S.N.)
- Department of Biology, Cihan University-Erbil, 44001 Erbil, Iraq
| | - Federica Ferulli
- Laboratory of Immunology Transplantation, Foundation IRCCS Policlinico San Matteo, 27100 Pavia, Italy; (F.F.); (M.T.); (A.R.)
| | - Mauro Vismara
- Laboratory of Biochemistry, Department of Biology and Biotechnology “L. Spallanzani”, University of Pavia, 27100 Pavia, Italy; (M.V.); (G.F.G.)
| | - Matteo Tanzi
- Laboratory of Immunology Transplantation, Foundation IRCCS Policlinico San Matteo, 27100 Pavia, Italy; (F.F.); (M.T.); (A.R.)
| | - Sharon Negri
- Laboratory of General Physiology, Department of Biology and Biotechnology “L. Spallanzani”, University of Pavia, 27100 Pavia, Italy; (P.F.); (S.N.)
| | - Agnese Rumolo
- Laboratory of Immunology Transplantation, Foundation IRCCS Policlinico San Matteo, 27100 Pavia, Italy; (F.F.); (M.T.); (A.R.)
| | - Kostantinos Lefkimmiatis
- Department of Molecular Medicine, University of Pavia, 27100 Pavia, Italy;
- Veneto Institute of Molecular Medicine, Foundation for Advanced Biomedical Research, 35131 Padua, Italy
| | - Marcello Maestri
- Medical Surgery, Foundation IRCCS Policlinico San Matteo, 27100 Pavia, Italy;
| | - Mudhir Shekha
- Faculty of Science, Department of Medical Analysis, Tishk International University-Erbil, 44001 Erbil, Iraq;
| | - Paolo Pedrazzoli
- Medical Oncology, Foundation IRCCS Policlinico San Matteo, 27100 Pavia, Italy;
| | - Gianni Francesco Guidetti
- Laboratory of Biochemistry, Department of Biology and Biotechnology “L. Spallanzani”, University of Pavia, 27100 Pavia, Italy; (M.V.); (G.F.G.)
| | - Daniela Montagna
- Laboratory of Immunology Transplantation, Foundation IRCCS Policlinico San Matteo, 27100 Pavia, Italy; (F.F.); (M.T.); (A.R.)
- Diagnostic and Pediatric, Department of Sciences Clinic-Surgical, University of Pavia, 27100 Pavia, Italy
- Correspondence: (D.M.); (F.M.); Tel.: +39-382-987-619 (F.M.)
| | - Francesco Moccia
- Laboratory of General Physiology, Department of Biology and Biotechnology “L. Spallanzani”, University of Pavia, 27100 Pavia, Italy; (P.F.); (S.N.)
- Correspondence: (D.M.); (F.M.); Tel.: +39-382-987-619 (F.M.)
| |
Collapse
|
227
|
Sun J, Bai Y, Ma Q, Zhang H, Wu M, Wang C, Tian M. A FRET-based ratiometric fluorescent probe for highly selective detection of hydrogen polysulfides based on a coumarin-rhodol derivative. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2020; 241:118650. [PMID: 32629399 DOI: 10.1016/j.saa.2020.118650] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/16/2020] [Revised: 06/22/2020] [Accepted: 06/23/2020] [Indexed: 05/28/2023]
Abstract
In modern biology, hydrogen polysulfides (H2Sn, n > 1) are members of reactive sulfur species (RSS), with anti-oxidation, cell protection and redox signals in tissues and organs. Therefore, it is crucial to develop a method to monitor the changes of H2Sn level in organisms. We designed and synthesized a ratiometric fluorescent probe for highly selective detection of H2Sn based on the fluorescence resonance energy transfer (FRET) process. In this work, a coumarin derivative was chosen as an energy donor, a rhodol derivative was used as an energy acceptor and a 2-fluoro-5-nitrobenzoate group was applied as a recognition unit for H2Sn. In the absence of H2Sn, the rhodol receptor existed in the non-fluorescent spirolactone state and FRET process was disabled. In the presence of H2Sn, the closed spirolactone form was converted to a conjugated fluorescent xanthenes form to invoke the occurrence of FRET which resulted in a 77 nm red-shift of fluorescence emission from 460 nm to 537 nm. The ratio value of the fluorescence intensity between 537 nm and 460 nm (I537nm/I460nm) of the probe exhibited a good linear relationship toward H2Sn in the range of 3.0 × 10-6-1.0 × 10-4 mol·L-1, and the detection limit was estimated to be 8.0 × 10-7 mol·L-1. In addition, the ratiometric fluorescent probe showed high specificity for H2Sn over other biologically related species. Moreover, the probe displayed little cell toxicity and had been successfully used to the confocal imaging of H2Sn in HepG2 cells by dual emission channels.
Collapse
Affiliation(s)
- Jingguo Sun
- School of Pharmacy, Henan University of Chinese Medicine, Zhengzhou 450046, PR China
| | - Yu Bai
- School of Pharmacy, Henan University of Chinese Medicine, Zhengzhou 450046, PR China
| | - Qiujuan Ma
- School of Pharmacy, Henan University of Chinese Medicine, Zhengzhou 450046, PR China.
| | - Hongtao Zhang
- Department of Dynamical Engineering, North China University of Water Resources and Electric Power, Zhengzhou 450011, PR China.
| | - Mingxia Wu
- School of Pharmacy, Henan University of Chinese Medicine, Zhengzhou 450046, PR China.
| | - Chunyan Wang
- School of Pharmacy, Henan University of Chinese Medicine, Zhengzhou 450046, PR China
| | - Meiju Tian
- School of Pharmacy, Henan University of Chinese Medicine, Zhengzhou 450046, PR China
| |
Collapse
|
228
|
Martin KE, Currie S. Hydrogen sulphide sensitivity and tolerance in genetically distinct lineages of a selfing mangrove fish (Kryptolebias marmoratus). J Comp Physiol B 2020; 190:761-770. [PMID: 32789701 DOI: 10.1007/s00360-020-01302-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2020] [Revised: 07/16/2020] [Accepted: 08/04/2020] [Indexed: 02/06/2023]
Abstract
Mangroves are critical marine habitats. High hydrogen sulphide (H2S) is a feature of these important ecosystems and its toxicity creates a challenge for mangrove inhabitants. The mangrove rivulus (Kryptolebias marmoratus) is a selfing, hermaphroditic, amphibious fish that can survive exposure to 1116 μM H2S in the wild. These fish rely on cutaneous respiration for gas and ion exchange when emerged. We hypothesized that the skin surface is fundamentally important in H2S tolerance in these mangrove fish by limiting H2S permeability. To test our hypothesis, we first disrupted the skin surface in one isogenic lineage and measured H2S tolerance and sensitivity. We increased water H2S concentration until emersion as a measure of the ability to sense and react to H2S, which we refer to as sensitivity. We then determined H2S tolerance by preventing emersion and increasing H2S until loss of equilibrium (LOE). The H2S concentration at emersion and LOE were significantly affected by disrupting the skin surface, providing support that the skin is involved in limiting H2S permeability. Capitalizing on their unique reproductive strategy, we used three distinct isogenic lineages to test the hypothesis that there would be genetic differences in H2S sensitivity and tolerance. We found significant differences in emersion concentration only among lineages, suggesting a genetic component to H2S sensitivity but not tolerance. Our study also demonstrated that external skin modifications and avoidance behaviours are two distinct strategies used to tolerate ecologically relevant H2S concentrations and likely facilitate survival in challenging mangrove habitats.
Collapse
Affiliation(s)
- Keri E Martin
- Department of Biology, Mount Allison University, Sackville, NB, Canada
| | - Suzanne Currie
- Department of Biology, Acadia University, Wolfville, NS, Canada.
| |
Collapse
|
229
|
Fang Z, Su Z, Qin W, Li H, Fang B, Du W, Wu Q, Peng B, Li P, Yu H, Li L, Huang W. Two-photon dual-channel fluorogenic probe for in situ imaging the mitochondrial H2S/viscosity in the brain of drosophila Parkinson’s disease model. CHINESE CHEM LETT 2020. [DOI: 10.1016/j.cclet.2020.03.063] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
230
|
Effects of endogenous H 2S production inhibition on the homeostatic responses induced by acute high-salt diet consumption. Mol Cell Biochem 2020; 476:715-725. [PMID: 33128215 DOI: 10.1007/s11010-020-03938-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2020] [Accepted: 10/09/2020] [Indexed: 12/31/2022]
Abstract
The gaseous modulator hydrogen sulfide (H2S) is synthesized, among other routes, by the action of cystathionine-γ-lyase (CSE) and importantly participates in body fluid homeostasis. Therefore, the present study aimed to evaluate the participation of H2S in behavioral, renal and neuroendocrine homeostatic responses triggered by the acute consumption of a high Na+ diet. After habituation, adult male Wistar rats were randomly distributed and maintained for seven days on a control [CD (0.27% of Na+)] or hypersodic diet [HD (0.81% of Na+)]. CD and HD-fed animals were treated with DL-Propargylglycine (PAG, 25 mg/kg/day, ip) or vehicle (0.9% NaCl in equivalent volume) for the same period. At the end of the experiment, animals were euthanized for blood and tissue collection. We demonstrated that a short-term increase in dietary Na+ intake, in values that mimic the variations in human consumption (two times the recommended) significantly modified hydroelectrolytic homeostasis, with repercussions in the hypothalamic-neurohypophysial system and hypothalamic-pituitary-adrenal axis function. These findings were accompanied by the development of a clear inflammatory response in renal tubular cells and microvascular components. On the other hand, the inhibition of the endogenous production of H2S by CSE provided by PAG treatment prevented the inflammation induced by HD. In the kidney, PAG treatment induced the overexpression of inducible nitric oxide synthase in animals fed with HD. Taken together, these data suggest, therefore, that HD-induced H2S production plays an important proinflammatory role in the kidney, apparently counter regulating nitric oxide actions in renal tissue.
Collapse
|
231
|
Luo S, Tang Z, Yu J, Liao W, Xie J, Lv J, Feng Z, Dawuda MM. Hydrogen sulfide negatively regulates cd-induced cell death in cucumber (Cucumis sativus L) root tip cells. BMC PLANT BIOLOGY 2020; 20:480. [PMID: 33087071 PMCID: PMC7579943 DOI: 10.1186/s12870-020-02687-8] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/12/2020] [Accepted: 10/07/2020] [Indexed: 05/05/2023]
Abstract
BACKGROUND Hydrogen sulfide (H2S) is a gas signal molecule involved in regulating plants tolerance to heavy metals stress. In this study, we investigated the role of H2S in cadmium-(Cd-) induced cell death of root tips of cucumber seedlings. RESULTS The results showed that the application of 200 μM Cd caused cell death, increased the content of reactive oxygen species (ROS), chromatin condensation, the release of Cytochrome c (Cyt c) from mitochondria and activated caspase-3-like protease. Pretreatment of seedlings with 100 μM sodium hydrogen sulfide (NaHS, a H2S donor) effectively alleviated the growth inhibition and reduced cell death of root tips caused by Cd stress. Additionally, NaHS + Cd treatment could decrease the ROS level and enhanced antioxidant enzyme activity. Pretreatment with NaHS also inhibited the release of Cyt c from the mitochondria, the opening of the mitochondrial permeability transition pore (MPTP), and the activity of caspase-3-like protease in the root tips of cucumber seedling under Cd stress. CONCLUSION H2S inhibited Cd-induced cell death in cucumber root tips by reducing ROS accumulation, activating the antioxidant system, inhibiting mitochondrial Cyt c release and reducing the opening of the MPTP. The results suggest that H2S is a negative regulator of Cd-induced cell death in the root tips of cucumber seedling.
Collapse
Affiliation(s)
- Shilei Luo
- College of Horticulture, Gansu Agricultural University, Lanzhou, 730070 China
| | - Zhongqi Tang
- College of Horticulture, Gansu Agricultural University, Lanzhou, 730070 China
| | - Jihua Yu
- College of Horticulture, Gansu Agricultural University, Lanzhou, 730070 China
| | - Weibiao Liao
- College of Horticulture, Gansu Agricultural University, Lanzhou, 730070 China
| | - Jianming Xie
- College of Horticulture, Gansu Agricultural University, Lanzhou, 730070 China
| | - Jian Lv
- College of Horticulture, Gansu Agricultural University, Lanzhou, 730070 China
| | - Zhi Feng
- College of Horticulture, Gansu Agricultural University, Lanzhou, 730070 China
| | - Mohammed Mujitaba Dawuda
- College of Horticulture, Gansu Agricultural University, Lanzhou, 730070 China
- Horticulture Department, FoA University For Development Studies, Box TL, 1350 Tamale, Ghana
| |
Collapse
|
232
|
Mi H, Wang S, Yin H, Wang L, Mei L, Zhu X, Zhang N, Jiang R. (Gold triangular nanoplate core)@(silver shell) nanostructures as highly sensitive and selective plasmonic nanoprobes for hydrogen sulfide detection. NANOSCALE 2020; 12:20250-20257. [PMID: 33026023 DOI: 10.1039/d0nr05728b] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Hydrogen sulfide plays a significant role in living beings, while its abnormal concentration is related to many diseases. Besides, H2S gas is harmful to human beings and the environment. The detection of H2S has therefore attracted much attention in the past several decades. Herein, highly sensitive and selective H2S plasmonic nanoprobes (gold triangular nanoplate core)@(silver shell) (AuTNP@Ag) are reported. By virtue of the high refractive index sensitivity of Au TNPs to the surrounding medium and facile sulfurization of silver by sulfur ions, AuTNP@Ag exhibits great sensitivity to both sulfur ions and H2S gas. The shifts of the plasmon peak are as large as 16 nm for the ventilation of 1 ppm hydrogen sulfide. AuTNP@Ag nanoprobes also exhibit very good sensing linearity at low concentrations of sulfur ions. Moreover, excellent sensing selectivity for sulfur ions is obtained. A type of test gel, which can produce a naked-eye observable color change when exposed to 1-100 ppm hydrogen sulfide gas, is developed using AuTNP@Ag nanoprobes. Owing to the high sensitivity, linearity, and selectivity of the Au TNP@Ag nanoprobes for hydrogen sulfide sensing, this work paves the way for the plasmonic detection of hydrogen sulfide in both biological and environmental applications.
Collapse
Affiliation(s)
- Hua Mi
- Shaanxi Key Laboratory for Advanced Energy Devices, Shaanxi Engineering Lab for Advanced Energy Technology, School of Materials Science and Engineering, Shaanxi Normal University, Xi'an 710119, China.
| | - Shengyan Wang
- Shaanxi Key Laboratory for Advanced Energy Devices, Shaanxi Engineering Lab for Advanced Energy Technology, School of Materials Science and Engineering, Shaanxi Normal University, Xi'an 710119, China.
| | - Hang Yin
- Shaanxi Key Laboratory for Advanced Energy Devices, Shaanxi Engineering Lab for Advanced Energy Technology, School of Materials Science and Engineering, Shaanxi Normal University, Xi'an 710119, China.
| | - Le Wang
- Shaanxi Key Laboratory for Advanced Energy Devices, Shaanxi Engineering Lab for Advanced Energy Technology, School of Materials Science and Engineering, Shaanxi Normal University, Xi'an 710119, China.
| | - Lin Mei
- Shaanxi Key Laboratory for Advanced Energy Devices, Shaanxi Engineering Lab for Advanced Energy Technology, School of Materials Science and Engineering, Shaanxi Normal University, Xi'an 710119, China.
| | - Xingzhong Zhu
- College of Science, Nanjing University of Aeronautics and Astronautics, Nanjing 210016, China
| | - Nan Zhang
- Shaanxi Key Laboratory for Advanced Energy Devices, Shaanxi Engineering Lab for Advanced Energy Technology, School of Materials Science and Engineering, Shaanxi Normal University, Xi'an 710119, China.
| | - Ruibin Jiang
- Shaanxi Key Laboratory for Advanced Energy Devices, Shaanxi Engineering Lab for Advanced Energy Technology, School of Materials Science and Engineering, Shaanxi Normal University, Xi'an 710119, China. and The State Key Laboratory of Optoelectronic Materials and Technologies (Sun Yat-sen University), China
| |
Collapse
|
233
|
Jing X, Yu F, Lin W. A fluorescent probe for specific detection of cysteine in lysosomes via dual-color mode imaging. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2020; 240:118555. [PMID: 32516703 DOI: 10.1016/j.saa.2020.118555] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/03/2020] [Revised: 05/25/2020] [Accepted: 05/26/2020] [Indexed: 06/11/2023]
Abstract
Biothiols, as part of the reactive sulfur species (RSS), are a class of bioactive molecules that play important physiological roles in human body. However, due to the similarity in structure and reaction sites of biothiols, it is difficult to differentiated detection them at the same time. In this work, a fluorescent probe CM-NBD combined coumarin derivative and 7-nitrobenzofurazan has been developed, which can effectively detect biothiols through simple ether cleavage. Because of a specific location group, CM-NBD can well localize in lysosomes with a high co-localization coefficient. Interesting, due to the weakly acidic environment of lysosomes, Cys can be distinguished from Hcy/GSH and H2S via dual-color mode. The probe is able not only to image exogenous biothiols but also to discriminate Cys from Hcy/GSH and H2S in cells and zebrafish model.
Collapse
Affiliation(s)
- Xinying Jing
- Institute of Fluorescent Probes for Biological Imaging, School of Chemistry and Chemical Engineering, School of Materials Science and Engineering, University of Jinan, Jinan, Shandong 250022, PR China
| | - Faqi Yu
- Institute of Fluorescent Probes for Biological Imaging, School of Chemistry and Chemical Engineering, School of Materials Science and Engineering, University of Jinan, Jinan, Shandong 250022, PR China
| | - Weiying Lin
- Institute of Fluorescent Probes for Biological Imaging, School of Chemistry and Chemical Engineering, School of Materials Science and Engineering, University of Jinan, Jinan, Shandong 250022, PR China.
| |
Collapse
|
234
|
Zhou L, Cheng ZQ, Li N, Ge YX, Xie HX, Zhu K, Zhou A, Zhang J, Wang KM, Jiang CS. A highly sensitive endoplasmic reticulum-targeting fluorescent probe for the imaging of endogenous H 2S in live cells. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2020; 240:118578. [PMID: 32534426 DOI: 10.1016/j.saa.2020.118578] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/28/2020] [Revised: 05/30/2020] [Accepted: 06/01/2020] [Indexed: 06/11/2023]
Abstract
Hydrogen sulfide (H2S) as an important signaling biomolecule participates in a series of complex physiological and pathological processes. In situ and rapid detection of H2S levels in endoplasmic reticulum (ER) is of great importance for the in-depth study of its virtual functional roles. However, the ER-targeting fluorescent probe for the detection of H2S in live cells is still quite rare. Herein, a new ER-targeting fluorescent probe (FER-H2S) for detecting H2S in live cells was characterized in the present study. This probe FER-H2S was built from the hybridization of three parts, including fluorescein-based skeleton, p-toluenesulfonamide as ER-specific group, and 2,4-nitrobenzene sulfonate as a response site for H2S. The response mechanism of the probe FER-H2S to H2S is on the basis of the ring-opening and ring-closing processes in fluorescein moiety. Moreover, the probe FER-H2S was successfully used for the imaging of exogenous and endogenous H2S in ER of live cells.
Collapse
Affiliation(s)
- Lei Zhou
- School of Biological Science and Technology, University of Jinan, Jinan 250022, China
| | - Zhi-Qiang Cheng
- School of Biological Science and Technology, University of Jinan, Jinan 250022, China
| | - Ning Li
- School of Biological Science and Technology, University of Jinan, Jinan 250022, China
| | - Yong-Xi Ge
- School of Biological Science and Technology, University of Jinan, Jinan 250022, China
| | - Hong-Xu Xie
- School of Biological Science and Technology, University of Jinan, Jinan 250022, China
| | - Kongkai Zhu
- College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao 266042, China
| | - Aiqin Zhou
- College of Horticulture, Qingdao Agricultural University, Qingdao 266109, China
| | - Juan Zhang
- School of Biological Science and Technology, University of Jinan, Jinan 250022, China.
| | - Kai-Ming Wang
- School of Biological Science and Technology, University of Jinan, Jinan 250022, China.
| | - Cheng-Shi Jiang
- School of Biological Science and Technology, University of Jinan, Jinan 250022, China.
| |
Collapse
|
235
|
Sun F, Luo JH, Yue TT, Wang FX, Yang CL, Zhang S, Wang XQ, Wang CY. The role of hydrogen sulphide signalling in macrophage activation. Immunology 2020; 162:3-10. [PMID: 32876334 PMCID: PMC7730026 DOI: 10.1111/imm.13253] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2020] [Revised: 07/27/2020] [Accepted: 07/30/2020] [Indexed: 01/05/2023] Open
Abstract
Hydrogen sulphide (H2S) is the latest identified small gaseous mediator enabled by its lipophilic nature to freely permeate the biological membranes. Initially, H2S was recognized by its roles in neuronal activity and vascular relaxation, which makes it an important molecule involved in paracrine signalling pathways. Recently, the immune regulatory function of gasotransmitters, H2S in particular, is increasingly being appreciated. Endogenous H2S level has been linked to macrophage activation, polarization and inflammasome formation. Mechanistically, H2S‐induced protein S‐sulphydration suppresses several inflammatory pathways including NF‐κB and JNK signalling. Moreover, H2S serves as a potent cellular redox regulator to modulate epigenetic alterations and to promote mitochondrial biogenesis in macrophages. Here in this review, we intend to summarize the recent advancements of H2S studies in macrophages, and to discuss with focus on the therapeutic potential of H2S donors by targeting macrophages. The feasibility of H2S signalling component as a macrophage biomarker under disease conditions would be also discussed.
Collapse
Affiliation(s)
- Fei Sun
- The Center for Biomedical Research, Tongji Hospital, Tongji Medical College, Huazhong University of Sciences and Technology, Wuhan, China
| | - Jia-Hui Luo
- The Center for Biomedical Research, Tongji Hospital, Tongji Medical College, Huazhong University of Sciences and Technology, Wuhan, China
| | - Tian-Tian Yue
- The Center for Biomedical Research, Tongji Hospital, Tongji Medical College, Huazhong University of Sciences and Technology, Wuhan, China
| | - Fa-Xi Wang
- The Center for Biomedical Research, Tongji Hospital, Tongji Medical College, Huazhong University of Sciences and Technology, Wuhan, China
| | - Chun-Liang Yang
- The Center for Biomedical Research, Tongji Hospital, Tongji Medical College, Huazhong University of Sciences and Technology, Wuhan, China
| | - Shu Zhang
- The Center for Biomedical Research, Tongji Hospital, Tongji Medical College, Huazhong University of Sciences and Technology, Wuhan, China
| | - Xin-Qiang Wang
- Institute of Organ Transplantation, Tongji Hospital, Tongji Medical College, Huazhong University of Sciences and Technology, Wuhan, China
| | - Cong-Yi Wang
- The Center for Biomedical Research, Tongji Hospital, Tongji Medical College, Huazhong University of Sciences and Technology, Wuhan, China.,Key Laboratory of Pulmonary Diseases of Health Ministry, Tongji Hospital, Tongji Medical College, Huazhong University of Sciences and Technology, Wuhan, China.,Department of Respiratory and Critical Care Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Sciences and Technology, Wuhan, China
| |
Collapse
|
236
|
Jia CS, Li J, Liu YS, Peng XL, Jia X, Zhang LH, Jiang R, Li XP, Liu JY, Zhao YL. Predictions of thermodynamic properties for hydrogen sulfide. J Mol Liq 2020. [DOI: 10.1016/j.molliq.2020.113751] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
237
|
Cao X, Cao L, Zhang W, Lu R, Bian JS, Nie X. Therapeutic potential of sulfur-containing natural products in inflammatory diseases. Pharmacol Ther 2020; 216:107687. [PMID: 32966837 DOI: 10.1016/j.pharmthera.2020.107687] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2020] [Revised: 09/17/2020] [Accepted: 09/17/2020] [Indexed: 02/07/2023]
Abstract
Owing to the prevalence of chronic inflammation and its related disorders, there is a demand for novel therapeutic agents capable of preventing or suppressing inflammation. Natural products (NPs) are well established as an important resource for drug development and provide an almost infinite array of molecular entities. Sulfur-containing NPs (i.e., NPs containing one or more sulfur atoms) are abundant throughout nature, from bacteria to animals. The aim of this review was to survey the emerging evidence on role of sulfur-containing NPs, such as glutathione, garlic-derived sulfur compounds, Epipolythiodioxopiperazines (EPTs), Isothiocyanates (ITCs), and Ergothioneine (EGT), in the control of inflammation and to determine the possible underlying mechanisms. A discussion of how hydrogen sulfide (H2S), an endogenous gaseous signaling molecule, links sulfur-containing NPs and their anti-inflammatory action is also performed. This review may help to further the development of sulfur-based compounds by providing a guide for structure-activity relationship-based modification for use in modern medicinal chemistry. However, as this field is still in its infancy, the review is concluded by an overview of the progression of these promising entities as therapeutic agents.
Collapse
Affiliation(s)
- Xu Cao
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117600, Republic of Singapore
| | - Lei Cao
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117600, Republic of Singapore
| | - Wencan Zhang
- Food Science and Technology Program, Department of Chemistry, National University of Singapore, Singapore 117600, Republic of Singapore
| | - Rongzhu Lu
- Department of Preventive Medicine and Public Health Laboratory Science, School of Medicine, Jiangsu University, Zhenjiang, Jiangsu 212013, PR China
| | - Jin-Song Bian
- School of Medicine, Southern University of Science and Technology, Shenzhen 518055, PR China; Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117600, Republic of Singapore.
| | - Xiaowei Nie
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117600, Republic of Singapore; Institute of Hepatology, The Second Affiliated Hospital, Southern University of Science and Technology, Shenzhen 518055, PR China.
| |
Collapse
|
238
|
Venditti A, Bianco A. Sulfur-containing Secondary Metabolites as Neuroprotective Agents. Curr Med Chem 2020; 27:4421-4436. [PMID: 30207214 DOI: 10.2174/0929867325666180912105036] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2017] [Revised: 08/03/2018] [Accepted: 08/03/2018] [Indexed: 12/15/2022]
Abstract
Sulfur-containing secondary metabolites are a relatively small group of substances of plant origin. The present review is focused on their neuroprotective properties. The results obtained in a series of in vitro and in vivo studies are reported. Among glucosinolates, the wide class of compounds in the sulfur-containing metabolites, glucoraphanin, sulforaphane and isothiocyanates proved to be the more studied in this context and showed interesting properties as modulators of several systems involved in the pathogenesis of neurologic diseases such as oxidative stress, inflammation and apoptosis. Allium sativum L. (garlic) is widely known for its sulfur-containing components endowed with health-promoting activities and its medicinal properties are known from ancient times. In recent studies, garlic components proved active in neuroprotection due to the direct and indirect antioxidant properties, modulation of apoptosis mediators and inhibiting the formation of amyloid protein. Dihydroasparagusic acid, the first dimercaptanic compound isolated from a natural source, effectively inhibited inflammatory and oxidative processes that are important factors for the etiopathogenesis of neurodegenerative diseases, not only for its antioxidant and radical scavenging properties but also because it may down-regulate the expression of several microglial-derived inflammatory mediators. Serofendic acid represents a rare case of sulfur-containing animal-derived secondary metabolite isolated from fetal calf serum extract. It proved effective in the suppression of ROS generation and in the expression of several inflammatory and apoptosis mediators and showed a cytotrophic property in astrocytes, promoting the stellation process. Lastly, the properties of hydrogen sulfide were also reported since in recent times it has been recognized as a signaling molecule and as a mediator in regulating neuron death or survival. It may be produced endogenously from cysteine but may also be released by sulfur-containing secondary metabolites, mainly from those present in garlic.
Collapse
Affiliation(s)
- Alessandro Venditti
- Dipartimento di Chimica, Universita di Roma "La Sapienza", Piazzale Aldo Moro 5, 00185, Rome, Italy
| | - Armandodoriano Bianco
- Dipartimento di Chimica, Universita di Roma "La Sapienza", Piazzale Aldo Moro 5, 00185, Rome, Italy
| |
Collapse
|
239
|
Zatsepina O, Karpov D, Chuvakova L, Rezvykh A, Funikov S, Sorokina S, Zakluta A, Garbuz D, Shilova V, Evgen'ev M. Genome-wide transcriptional effects of deletions of sulphur metabolism genes in Drosophila melanogaster. Redox Biol 2020; 36:101654. [PMID: 32769010 PMCID: PMC7414014 DOI: 10.1016/j.redox.2020.101654] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2020] [Accepted: 07/21/2020] [Indexed: 01/15/2023] Open
Abstract
In recent years, the gasotransmitter hydrogen sulphide (H2S), produced by the transsulphuration pathway, has been recognized as a biological mediator playing an important role under normal conditions and in various pathologies in both eukaryotes and prokaryotes. The transsulphuration pathway (TSP) includes the conversion of homocysteine to cysteine following the breakdown of methionine. In Drosophila melanogaster and other eukaryotes, H2S is produced by cystathionine β-synthase (CBS), cystathionine γ-lyase (CSE), and 3-mercaptopyruvate sulphurtransferase (MST). In the experiments performed in this study, we were able to explore the CRISPR/Cas9 technique to obtain single and double deletions in homozygotes of these three major genes responsible for H2S production in Drosophila melanogaster. In most cases, the deletion of one studied gene does not result in the compensatory induction of two other genes responsible for H2S production. Transcriptomic studies demonstrated that the deletions of the above CBS and CSE genes alter genome expression to different degrees, with a more pronounced effect being exerted by deletion of the CBS gene. Furthermore, the double deletion of both CBS and CSE resulted in a cumulative effect on transcription in the resulting strains. Overall, we found that the obtained deletions affect numerous genes involved in various biological pathways. Specifically, genes involved in the oxidative reduction process, stress-response genes, housekeeping genes, and genes participating in olfactory and reproduction are among the most strongly affected. Furthermore, characteristic differences in the response to the deletions of the studied genes are apparently organ-specific and have clear-cut sex-specific characteristics. Single and double deletions of the three genes responsible for the production of H2S helped to elucidate new aspects of the biological significance of this vital physiological mediator.
Collapse
Affiliation(s)
- O Zatsepina
- Engelhardt Institute of Molecular Biology of Russian Academy of Sciences, Moscow, Russia
| | - D Karpov
- Engelhardt Institute of Molecular Biology of Russian Academy of Sciences, Moscow, Russia
| | - L Chuvakova
- Engelhardt Institute of Molecular Biology of Russian Academy of Sciences, Moscow, Russia
| | - A Rezvykh
- Engelhardt Institute of Molecular Biology of Russian Academy of Sciences, Moscow, Russia; Moscow Institute of Physics and Technology, Dolgoprudny, Moscow Region, Russia
| | - S Funikov
- Engelhardt Institute of Molecular Biology of Russian Academy of Sciences, Moscow, Russia
| | - S Sorokina
- Koltzov Institute of Developmental Biology of Russian Academy of Sciences, Moscow, Russia
| | - A Zakluta
- Engelhardt Institute of Molecular Biology of Russian Academy of Sciences, Moscow, Russia
| | - D Garbuz
- Engelhardt Institute of Molecular Biology of Russian Academy of Sciences, Moscow, Russia
| | - V Shilova
- Engelhardt Institute of Molecular Biology of Russian Academy of Sciences, Moscow, Russia
| | - M Evgen'ev
- Engelhardt Institute of Molecular Biology of Russian Academy of Sciences, Moscow, Russia.
| |
Collapse
|
240
|
Cui M, Li H, Ren X, Xia L, Deng D, Gu Y, Li D, Wang P. A FRET-based upconversion nanoprobe assembled with an electrochromic chromophore for sensitive detection of hydrogen sulfide in vitro and in vivo. NANOSCALE 2020; 12:17517-17529. [PMID: 32812601 DOI: 10.1039/d0nr03884a] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Hydrogen sulfide (H2S) as an important gaseous signaling molecule is closely related to numerous biological processes in living systems. To further study the physiological and pathological roles of H2S, convenient and efficient detection techniques for endogenous H2S in vivo are still in urgent demand. In this study, an electrochromic chromophore, dicationic 1,1,4,4-tetra-aryl butadiene (EM1), was innovatively introduced into upconversion nanoparticles (UCNPs) and a nanoprobe, PAAO-UCNPs-EM1, was constructed for the detection of H2S. This nanosystem was made of core-shell upconversion nanoparticles (NaYF4:Yb,Tm@NaYF4:Yb,Er), EM1, and polyacrylic acid (PAA)-octylamine. The EM1 with strong absorption ranging from 500 to 850 nm could serve as an energy acceptor to quench the upconversion luminescence of UCNPs through the Förster resonance energy transfer (FRET) process. In the presence of H2S, the EM1 in the nanoprobe was reduced to a colorless diene (EM2), resulting in the linear enhancement of luminescence emissions at 660 nm and 800 nm under the excitation of 980 nm light because the FRET was switched off. The nanoprobe PAAO-UCNPs-EM1PAAO-UCNPs-EM1 exhibited fast response and high sensitivity to H2S with a LoD of 1.21 × 10-7 M. Moreover, it was successfully employed in detecting the endogenous and exogenous H2S in living cells with high selectivity and low cytotoxicity. Also, this nanoprobe could distinguish normal and tumor cells by an upconversion luminescence imaging of endogenous H2S. Furthermore, the nanoprobe could significantly monitor H2S in a tumor-bearing nude mouse model. Therefore, we anticipate that this novel nanoprobe assembled with an electrochromic chromophore for responding to H2S and for bioimaging this molecule would have a promising prospect in biological and clinical investigations.
Collapse
Affiliation(s)
- Mengyuan Cui
- Department of Biomedical Engineering, School of Engineering, China Pharmaceutical University, Nanjing 210009, P. R. China.
| | - Haonan Li
- Key Laboratory of Structure-Based Drug Design & Discovery, Ministry of Education, and School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang 110016, P. R. China
| | - Xiangyu Ren
- Department of Biomedical Engineering, School of Engineering, China Pharmaceutical University, Nanjing 210009, P. R. China.
| | - Lili Xia
- Department of Biomedical Engineering, School of Engineering, China Pharmaceutical University, Nanjing 210009, P. R. China.
| | - Dawei Deng
- Department of Biomedical Engineering, School of Engineering, China Pharmaceutical University, Nanjing 210009, P. R. China.
| | - Yueqing Gu
- Department of Biomedical Engineering, School of Engineering, China Pharmaceutical University, Nanjing 210009, P. R. China.
| | - Dahong Li
- Key Laboratory of Structure-Based Drug Design & Discovery, Ministry of Education, and School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang 110016, P. R. China
| | - Peng Wang
- Department of Biomedical Engineering, School of Engineering, China Pharmaceutical University, Nanjing 210009, P. R. China.
| |
Collapse
|
241
|
Szteyn K, Singh H. BK Ca Channels as Targets for Cardioprotection. Antioxidants (Basel) 2020; 9:antiox9080760. [PMID: 32824463 PMCID: PMC7463653 DOI: 10.3390/antiox9080760] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2020] [Revised: 08/09/2020] [Accepted: 08/13/2020] [Indexed: 12/16/2022] Open
Abstract
The large-conductance calcium- and voltage-activated K+ channel (BKCa) are encoded by the Kcnma1 gene. They are ubiquitously expressed in neuronal, smooth muscle, astrocytes, and neuroendocrine cells where they are known to play an important role in physiological and pathological processes. They are usually localized to the plasma membrane of the majority of the cells with an exception of adult cardiomyocytes, where BKCa is known to localize to mitochondria. BKCa channels couple calcium and voltage responses in the cell, which places them as unique targets for a rapid physiological response. The expression and activity of BKCa have been linked to several cardiovascular, muscular, and neurological defects, making them a key therapeutic target. Specifically in the heart muscle, pharmacological and genetic activation of BKCa channels protect the heart from ischemia-reperfusion injury and also facilitate cardioprotection rendered by ischemic preconditioning. The mechanism involved in cardioprotection is assigned to the modulation of mitochondrial functions, such as regulation of mitochondrial calcium, reactive oxygen species, and membrane potential. Here, we review the progress made on BKCa channels and cardioprotection and explore their potential roles as therapeutic targets for preventing acute myocardial infarction.
Collapse
|
242
|
Denoix N, McCook O, Ecker S, Wang R, Waller C, Radermacher P, Merz T. The Interaction of the Endogenous Hydrogen Sulfide and Oxytocin Systems in Fluid Regulation and the Cardiovascular System. Antioxidants (Basel) 2020; 9:E748. [PMID: 32823845 PMCID: PMC7465147 DOI: 10.3390/antiox9080748] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2020] [Revised: 08/10/2020] [Accepted: 08/11/2020] [Indexed: 12/11/2022] Open
Abstract
The purpose of this review is to explore the parallel roles and interaction of hydrogen sulfide (H2S) and oxytocin (OT) in cardiovascular regulation and fluid homeostasis. Their interaction has been recently reported to be relevant during physical and psychological trauma. However, literature reports on H2S in physical trauma and OT in psychological trauma are abundant, whereas available information regarding H2S in psychological trauma and OT in physical trauma is much more limited. This review summarizes recent direct and indirect evidence of the interaction of the two systems and their convergence in downstream nitric oxide-dependent signaling pathways during various types of trauma, in an effort to better understand biological correlates of psychosomatic interdependencies.
Collapse
Affiliation(s)
- Nicole Denoix
- Clinic for Psychosomatic Medicine and Psychotherapy, Ulm University Medical Center, 89081 Ulm, Germany;
- Institute for Anesthesiological Pathophysiology and Process Engineering, Ulm University Medical Center, 89081 Ulm, Germany; (S.E.); (P.R.); (T.M.)
| | - Oscar McCook
- Institute for Anesthesiological Pathophysiology and Process Engineering, Ulm University Medical Center, 89081 Ulm, Germany; (S.E.); (P.R.); (T.M.)
| | - Sarah Ecker
- Institute for Anesthesiological Pathophysiology and Process Engineering, Ulm University Medical Center, 89081 Ulm, Germany; (S.E.); (P.R.); (T.M.)
| | - Rui Wang
- Faculty of Science, York University, Toronto, ON M3J 1P3, Canada;
| | - Christiane Waller
- Department of Psychosomatic Medicine and Psychotherapy, Nuremberg General Hospital, Paracelsus Medical University, 90419 Nuremberg, Germany;
| | - Peter Radermacher
- Institute for Anesthesiological Pathophysiology and Process Engineering, Ulm University Medical Center, 89081 Ulm, Germany; (S.E.); (P.R.); (T.M.)
| | - Tamara Merz
- Institute for Anesthesiological Pathophysiology and Process Engineering, Ulm University Medical Center, 89081 Ulm, Germany; (S.E.); (P.R.); (T.M.)
| |
Collapse
|
243
|
Lobov GI. The Role of Hydrogen Sulfide in the Dilatation of Mesenteric Lymphatic Vessels in Bulls. Bull Exp Biol Med 2020; 169:302-305. [PMID: 32748133 DOI: 10.1007/s10517-020-04874-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2019] [Indexed: 12/22/2022]
Abstract
We studied the effects and mechanisms of action of NaHS, an H2S donor, on bovine isolated mesenteric efferent lymphatic vessels pre-contracted with phenylephrine. NaHS induced concentration-dependent relaxation of lymphatic vessels. Removal of the endothelium reduced, but did not completely abolish the relaxing effect of NaHS. Application of NO synthase inhibitor L-NAME, soluble guanylyl cyclase inhibitor ODQ, blocker ATP-sensitive K+ channels glibenclamide, and a combination of blockers of Ca-activated K+ channels of small and intermediate conductance charybdotoxin and apamin attenuated relaxation of lymphatic vessels. Thus, H2S produces a pleiotropic effect on lymphatic vessels; vasorelaxant effect is achieved by several parallel mechanisms. H2S induces relaxation of lymphatic vessels and modulates the rate of lymph transport, thereby affecting the development of immune processes in the body.
Collapse
Affiliation(s)
- G I Lobov
- Laboratory of Physiology of Cardiovascular and Lymphatic Systems, I. P. Pavlov Institute of Physiology, Russian Academy of Sciences, St. Petersburg, Russia.
| |
Collapse
|
244
|
Bernardini C, La Mantia D, Nesci S, Salaroli R, Algieri C, Pagliarani A, Zannoni A, Forni M. Effects of Hydrogen Sulfide Donor NaHS on Porcine Vascular Wall-Mesenchymal Stem Cells. Int J Mol Sci 2020; 21:5267. [PMID: 32722269 PMCID: PMC7432345 DOI: 10.3390/ijms21155267] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2020] [Revised: 07/22/2020] [Accepted: 07/23/2020] [Indexed: 02/07/2023] Open
Abstract
Hydrogen sulfide (H2S) is now considered not only for its toxicity, but also as an endogenously produced gas transmitter with multiple physiological roles, also in maintaining and regulating stem cell physiology. In the present work, we evaluated the effect of a common H2S donor, NaHS, on porcine vascular wall-mesenchymal stem cells (pVW-MSCs). pVW-MSCs were treated for 24 h with increasing doses of NaHS, and the cell viability, cell cycle, and reactive oxygen species (ROS) production were evaluated. Moreover, the long-term effects of NaHS administration on the noteworthy characteristics of pVW-MSCs were analyzed. The MTT test revealed no alteration in cell viability, however, the cell cycle analysis demonstrated that the highest NaHS dose tested (300 μM) determined a block in S phase, which did not depend on the ROS production. Moreover, NaHS (10 μM), continuously administered in culture for 21 days, was able to significantly reduce NG2, Nestin and PDGFR-β expression. The pro-angiogenic attitude of pVW-MSCs was partially reduced by NaHS: the cells maintained the ability to grow in spheroid and sprouting from that, but endothelial markers (Factor VIII and CD31) were reduced. In conclusion, NaHS can be toxic for pVW-MSCs in high doses, while in low doses, it influences cellular physiology, by affecting the gene expression with a slowing down of the endothelial lineage.
Collapse
Affiliation(s)
- Chiara Bernardini
- Department of Veterinary Medical Science, University of Bologna, Via Tolara di Sopra, 50-40064 Ozzano Emilia (BO), Italy; (C.B.); (D.L.M.); (S.N.); (R.S.); (C.A.); (A.P.); (M.F.)
| | - Debora La Mantia
- Department of Veterinary Medical Science, University of Bologna, Via Tolara di Sopra, 50-40064 Ozzano Emilia (BO), Italy; (C.B.); (D.L.M.); (S.N.); (R.S.); (C.A.); (A.P.); (M.F.)
| | - Salvatore Nesci
- Department of Veterinary Medical Science, University of Bologna, Via Tolara di Sopra, 50-40064 Ozzano Emilia (BO), Italy; (C.B.); (D.L.M.); (S.N.); (R.S.); (C.A.); (A.P.); (M.F.)
| | - Roberta Salaroli
- Department of Veterinary Medical Science, University of Bologna, Via Tolara di Sopra, 50-40064 Ozzano Emilia (BO), Italy; (C.B.); (D.L.M.); (S.N.); (R.S.); (C.A.); (A.P.); (M.F.)
| | - Cristina Algieri
- Department of Veterinary Medical Science, University of Bologna, Via Tolara di Sopra, 50-40064 Ozzano Emilia (BO), Italy; (C.B.); (D.L.M.); (S.N.); (R.S.); (C.A.); (A.P.); (M.F.)
| | - Alessandra Pagliarani
- Department of Veterinary Medical Science, University of Bologna, Via Tolara di Sopra, 50-40064 Ozzano Emilia (BO), Italy; (C.B.); (D.L.M.); (S.N.); (R.S.); (C.A.); (A.P.); (M.F.)
| | - Augusta Zannoni
- Department of Veterinary Medical Science, University of Bologna, Via Tolara di Sopra, 50-40064 Ozzano Emilia (BO), Italy; (C.B.); (D.L.M.); (S.N.); (R.S.); (C.A.); (A.P.); (M.F.)
- Health Sciences and Technologies—Interdepartmental Center for Industrial Research (CIRI-SDV), Alma Mater Studiorum—University of Bologna, 40100 Bologna, Italy
| | - Monica Forni
- Department of Veterinary Medical Science, University of Bologna, Via Tolara di Sopra, 50-40064 Ozzano Emilia (BO), Italy; (C.B.); (D.L.M.); (S.N.); (R.S.); (C.A.); (A.P.); (M.F.)
- Health Sciences and Technologies—Interdepartmental Center for Industrial Research (CIRI-SDV), Alma Mater Studiorum—University of Bologna, 40100 Bologna, Italy
| |
Collapse
|
245
|
Coumarin-Based Reversible Fluorescent Probe for Selective Detection of Cu 2+ in Living Cells. J Fluoresc 2020; 30:1171-1179. [PMID: 32683577 DOI: 10.1007/s10895-020-02585-0] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2020] [Accepted: 07/09/2020] [Indexed: 01/29/2023]
Abstract
Copper ion plays an important role in many biological processes in human body. H2S is considered as the third gasses transmitter after carbon monoxide and nitric oxide. Here a novel ICT-based fluorescent ON-OFF-ON probe for Cu2+ and H2S detection was developed. Selectivity and sensitivity of probe was confirmed in aqueous Tris-HCl buffer (10 mM, pH 7.4, containing 90% acetonitrile). Probe DF-CU shows high selectivity over other analytes. The degree of fluorescence quenching is linearly associated with the concentration of Cu2+ (R2 = 0.9919). The limit of detection (LOD, calculated according to the 3σ/slope) for Cu2+ was 6.4 μM. Probe can work in almost all pH. The probe shows a very fast response to Cu2+ (within 10 s). Its response to copper ion could be reversed by H2S. The complex of probe with Cu2+ could be used for H2S detection. Furthermore, this ON-OFF-ON fluorescent probe successfully applied in the living cells for the detection of Cu2+ and H2S.
Collapse
|
246
|
Lobov GI. Relaxing Effect of Hydrogen Sulfide on Isolated Bovine Mesenteric Lymph Nodes. Bull Exp Biol Med 2020; 169:192-196. [PMID: 32651810 DOI: 10.1007/s10517-020-04848-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2019] [Indexed: 11/29/2022]
Abstract
We studied the effects and mechanisms of action of NaHS, an H2S donor, on isolated phenylephrine-precontracted bovine mesenteric lymph nodes. NaHS induced concentration-dependent relaxation of lymph nodes. Removal of the endothelium reduced, but did not abolish the relaxing effect of NaHS. The relaxing effect was reduced by NO synthase inhibitor L-NAME, soluble guanylate cyclase inhibitor ODQ, ATP-sensitive K+ channel blocker glibenclamide, and a combination charybdotoxin+apamin (blockers of small- and intermediate-conductance Ca2+-activated K+ channels). Thus, the relaxing effect of H2S on lymph nodes is mediated by several parallel mechanisms. H2S induces relaxation of LN and modulates the rate of lymph transport, thereby affecting the development of immune processes in the body.
Collapse
Affiliation(s)
- G I Lobov
- Laboratory of Physiology of Cardiovascular and Lymphatic Systems, I. P. Pavlov Institute of Physiology, Russian Academy of Sciences, St. Petersburg, Russia.
| |
Collapse
|
247
|
Ismail I, Chen Z, Sun L, Ji X, Ye H, Kang X, Huang H, Song H, Bolton SG, Xi Z, Pluth MD, Yi L. Highly efficient H 2S scavengers via thiolysis of positively-charged NBD amines. Chem Sci 2020; 11:7823-7828. [PMID: 34094155 PMCID: PMC8163142 DOI: 10.1039/d0sc01518k] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2020] [Accepted: 07/02/2020] [Indexed: 01/19/2023] Open
Abstract
H2S is a well-known toxic gas and also a gaseous signaling molecule involved in many biological processes. Advanced chemical tools that can regulate H2S levels in vivo are useful for understanding H2S biology as well as its potential therapeutic effects. To this end, we have developed a series of 7-nitro-1,2,3-benzoxadiazole (NBD) amines as potential H2S scavengers. The kinetic studies of thiolysis reactions revealed that incorporation of positively-charged groups onto the NBD amines greatly increased the rate of the H2S-specific thiolysis reaction. We demonstrate that these reactions proceed effectively, with second order rate constants (k 2) of >116 M-1 s-1 at 37 °C for NBD-S8. Additionally, we demonstrate that NBD-S8 can effectively scavenge enzymatically-produced and endogenous H2S in live cells. Furthering the biological significance, we demonstrate NBD-S8 mediates scavenging of H2S in mice.
Collapse
Affiliation(s)
- Ismail Ismail
- State Key Laboratory of Elemento-Organic Chemistry and Department of Chemical Biology, College of Chemistry, National Pesticide Engineering Research Center, Collaborative Innovation Center of Chemical Science and Engineering, Nankai University Tianjin 300071 China
| | - Zhuoyue Chen
- State Key Laboratory of Organic-Inorganic Composites, Beijing Key Lab of Bioprocess, Beijing University of Chemical Technology (BUCT) Beijing 100029 China
| | - Lu Sun
- Tianjin Key Laboratory on Technologies Enabling Development of Clinical Therapeutics and Diagnostics (Theranostics), School of Pharmacy, Tianjin Medical University Tianjin 300070 China
| | - Xiuru Ji
- Tianjin Key Laboratory on Technologies Enabling Development of Clinical Therapeutics and Diagnostics (Theranostics), School of Pharmacy, Tianjin Medical University Tianjin 300070 China
| | - Haishun Ye
- State Key Laboratory of Organic-Inorganic Composites, Beijing Key Lab of Bioprocess, Beijing University of Chemical Technology (BUCT) Beijing 100029 China
| | - Xueying Kang
- State Key Laboratory of Organic-Inorganic Composites, Beijing Key Lab of Bioprocess, Beijing University of Chemical Technology (BUCT) Beijing 100029 China
| | - Haojie Huang
- State Key Laboratory of Organic-Inorganic Composites, Beijing Key Lab of Bioprocess, Beijing University of Chemical Technology (BUCT) Beijing 100029 China
| | - Haibin Song
- State Key Laboratory of Elemento-Organic Chemistry and Department of Chemical Biology, College of Chemistry, National Pesticide Engineering Research Center, Collaborative Innovation Center of Chemical Science and Engineering, Nankai University Tianjin 300071 China
| | - Sarah G Bolton
- Department of Chemistry and Biochemistry, Materials Science Institute, Knight Campus for Accelerating Scientific Impact, Institute of Molecular Biology, University of Oregon Eugene OR 97403 USA
| | - Zhen Xi
- State Key Laboratory of Elemento-Organic Chemistry and Department of Chemical Biology, College of Chemistry, National Pesticide Engineering Research Center, Collaborative Innovation Center of Chemical Science and Engineering, Nankai University Tianjin 300071 China
| | - Michael D Pluth
- Department of Chemistry and Biochemistry, Materials Science Institute, Knight Campus for Accelerating Scientific Impact, Institute of Molecular Biology, University of Oregon Eugene OR 97403 USA
| | - Long Yi
- State Key Laboratory of Organic-Inorganic Composites, Beijing Key Lab of Bioprocess, Beijing University of Chemical Technology (BUCT) Beijing 100029 China
| |
Collapse
|
248
|
Hatai J, Hirschhäuser C, Schmuck C, Niemeyer J. A Metallosupramolecular Coordination Polymer for the 'Turn-on' Fluorescence Detection of Hydrogen Sulfide. ChemistryOpen 2020; 9:786-792. [PMID: 32760642 PMCID: PMC7391242 DOI: 10.1002/open.202000163] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2020] [Revised: 06/29/2020] [Indexed: 12/20/2022] Open
Abstract
A coumarin based probe for the efficient detection of hydrogen sulfide in aqueous medium is reported. The investigated coumarine-based derivative forms spherical nanoparticles in aqueous media. In presence of Pd2+, a metallosupramolecular coordination polymer is formed, which is accompanied by quenching of the coumarin emission at 390 nm. Its Pd2+ complex could be used as a probe for chemoselective detection of monohydrogensulfide (HS-). Presence of HS- leads to a'turn-on' fluorescence signal, resulting from decomplexation of Pd2+ from the metallosupramolecular probe. The probe was successfully applied for qualitative and quantitative detection of HS- in different sources of water directly collected from sea, river, tap and laboratory drain water, as well as in growth media for aquatic species.
Collapse
Affiliation(s)
- Joydev Hatai
- Faculty of Chemistry (Organic Chemistry) and Center for Nanointegration Duisburg- Essen (CENIDE)University of Duisburg-EssenUniversitätsstrasse 745141EssenGermany
| | - Christoph Hirschhäuser
- Faculty of Chemistry (Organic Chemistry) and Center for Nanointegration Duisburg- Essen (CENIDE)University of Duisburg-EssenUniversitätsstrasse 745141EssenGermany
| | - Carsten Schmuck
- Faculty of Chemistry (Organic Chemistry) and Center for Nanointegration Duisburg- Essen (CENIDE)University of Duisburg-EssenUniversitätsstrasse 745141EssenGermany
| | - Jochen Niemeyer
- Faculty of Chemistry (Organic Chemistry) and Center for Nanointegration Duisburg- Essen (CENIDE)University of Duisburg-EssenUniversitätsstrasse 745141EssenGermany
| |
Collapse
|
249
|
Zhou W, Yang Q, Yu H, Zhang Q, Zou Y, Chen X, Yang Z, Qu Y, Tan R, Li L, Zhu S, He Y, Luo B, Gao Y. Association between an indel polymorphism within CTH and the risk of sudden cardiac death in a Chinese population. Leg Med (Tokyo) 2020; 46:101736. [PMID: 32563979 DOI: 10.1016/j.legalmed.2020.101736] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2019] [Revised: 05/12/2020] [Accepted: 06/09/2020] [Indexed: 10/24/2022]
Abstract
Individuals harbouring specific genetic variations might trend towards suffering sudden cardiac death. Cystathionine-γ-lyase is one of the key enzymes of endogenous hydrogen sulfide production, and a key factor on the expression regulation of hydrogen sulfide in human heart. Compelling studies have suggested the cardioprotective effects of hydrogen sulfide, while it remains controversial whether cystathionine-γ-lyase and hydrogen sulfide are beneficial to cardiovascular diseases. In this study, we performed a candidate-gene-based study to evaluate the association of the Indel polymorphism rs113044851 within the 3' untranslated region of Cystathionine-γ-lyase gene and risk of sudden cardiac death in a Chinese Han population. Logistic regression analysis showed that the insertion allele of rs113044851 significantly decreased the risk of sudden cardiac death [odds ratio = 0.58; 95% confidence interval:0.38-0.88; P = 0.0076]. Further genotype-phenotype association analysis indicated that the insertion allele was significantly associated with lower expression of cystathionine-γ-lyase in myocardium tissues. The subsequently in-silico predication revealed that compared with the deletion allele, the binding of the insertion allele with miR-1324 matched better. Finally, dual-luciferase activity assay validated the prediction that the gene transcriptional activity indicated by firefly luciferase activity with ins/ins genotype was lower than that with del/del genotype. In summary, our data suggested that rs113044851 might contribute to susceptibility of sudden cardiac death via regulating gene expression at post-transcriptional level. This indel has the potential to become a molecular diagnosis marker and genetic counseling of sudden cardiac death.
Collapse
Affiliation(s)
- Wei Zhou
- Department of Forensic Medicine, Medical College of Soochow University, Suzhou, China
| | - Qi Yang
- Department of Forensic Medicine, Medical College of Soochow University, Suzhou, China
| | - Huan Yu
- Department of Forensic Medicine, Medical College of Soochow University, Suzhou, China
| | - Qing Zhang
- Department of Forensic Medicine, Medical College of Soochow University, Suzhou, China
| | - Yan Zou
- Department of Forensic Medicine, Medical College of Soochow University, Suzhou, China
| | - Xuekun Chen
- Department of Forensic Medicine, Medical College of Soochow University, Suzhou, China
| | - Zhenzhen Yang
- Department of Forensic Medicine, Medical College of Soochow University, Suzhou, China
| | - Yiling Qu
- Department of Forensic Medicine, Medical College of Soochow University, Suzhou, China
| | - Rui Tan
- Department of Forensic Medicine, Medical College of Soochow University, Suzhou, China
| | - Lijuan Li
- Department of Forensic Medicine, Medical College of Soochow University, Suzhou, China
| | - Shaohua Zhu
- Department of Forensic Medicine, Medical College of Soochow University, Suzhou, China
| | - Yan He
- Department of Epidemiology, Medical College of Soochow University, Suzhou, China
| | - Bin Luo
- Faculty of Forensic Medicine, Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou, China.
| | - Yuzhen Gao
- Department of Forensic Medicine, Medical College of Soochow University, Suzhou, China.
| |
Collapse
|
250
|
Ng LT, Ng LF, Tang RMY, Barardo D, Halliwell B, Moore PK, Gruber J. Lifespan and healthspan benefits of exogenous H 2S in C. elegans are independent from effects downstream of eat-2 mutation. NPJ Aging Mech Dis 2020; 6:6. [PMID: 32566245 PMCID: PMC7287109 DOI: 10.1038/s41514-020-0044-8] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2019] [Accepted: 03/12/2020] [Indexed: 12/23/2022] Open
Abstract
Caloric restriction (CR) is one of the most effective interventions to prolong lifespan and promote health. Recently, it has been suggested that hydrogen sulfide (H2S) may play a pivotal role in mediating some of these CR-associated benefits. While toxic at high concentrations, H2S at lower concentrations can be biologically advantageous. H2S levels can be artificially elevated via H2S-releasing donor drugs. In this study, we explored the function of a novel, slow-releasing H2S donor drug (FW1256) and used it as a tool to investigate H2S in the context of CR and as a potential CR mimetic. We show that exposure to FW1256 extends lifespan and promotes health in Caenorhabditis elegans (C. elegans) more robustly than some previous H2S-releasing compounds, including GYY4137. We looked at the extent to which FW1256 reproduces CR-associated physiological effects in normal-feeding C. elegans. We found that FW1256 promoted healthy longevity to a similar degree as CR but with fewer fitness costs. In contrast to CR, FW1256 actually enhanced overall reproductive capacity and did not reduce adult body length. FW1256 further extended the lifespan of already long-lived eat-2 mutants without further detriments in developmental timing or fertility, but these lifespan and healthspan benefits required H2S exposure to begin early in development. Taken together, these observations suggest that FW1256 delivers exogenous H2S efficiently and supports a role for H2S in mediating longevity benefits of CR. Delivery of H2S via FW1256, however, does not mimic CR perfectly, suggesting that the role of H2S in CR-associated longevity is likely more complex than previously described.
Collapse
Affiliation(s)
- Li Theng Ng
- Ageing Research Laboratory, Science Division, Yale-NUS College, Singapore, 138527 Singapore.,Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 117600 Singapore.,Neurobiology Programme, Life Sciences Institute, National University of Singapore, Singapore, 117456 Singapore
| | - Li Fang Ng
- Ageing Research Laboratory, Science Division, Yale-NUS College, Singapore, 138527 Singapore
| | - Richard Ming Yi Tang
- Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 117596 Singapore.,Neurobiology Programme, Life Sciences Institute, National University of Singapore, Singapore, 117456 Singapore.,NUS Graduate School for Integrative Sciences & Engineering, National University of Singapore, Singapore, 117456 Singapore
| | - Diogo Barardo
- Ageing Research Laboratory, Science Division, Yale-NUS College, Singapore, 138527 Singapore.,Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 117596 Singapore
| | - Barry Halliwell
- Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 117596 Singapore.,Neurobiology Programme, Life Sciences Institute, National University of Singapore, Singapore, 117456 Singapore
| | - Philip Keith Moore
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 117600 Singapore.,Neurobiology Programme, Life Sciences Institute, National University of Singapore, Singapore, 117456 Singapore
| | - Jan Gruber
- Ageing Research Laboratory, Science Division, Yale-NUS College, Singapore, 138527 Singapore.,Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 117596 Singapore
| |
Collapse
|