201
|
Roy A, Kalita B, Jayaprakash A, Kumar A, Lakshmi PTV. Computational identification and characterization of vascular wilt pathogen ( Fusarium oxysporum f. sp. lycopersici) CAZymes in tomato xylem sap. J Biomol Struct Dyn 2022:1-17. [PMID: 35470778 DOI: 10.1080/07391102.2022.2067236] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
Fusarium oxysporum f. sp. lycopersici is a devastating plant pathogenic fungi known for wilt disease in the tomato plant and secrete cell wall degrading enzymes. These enzymes are collectively known as carbohydrate-active enzymes (CAZymes), crucial for growth, colonization and pathogenesis. Therefore, the present study was aimed to identify and annotate pathogen CAZymes in the xylem sap of a susceptible tomato variety using downstream proteomics and meta servers. Further, structural elucidation and conformational stability analysis of the selected CAZyme families were done through homology modeling and molecular dynamics simulation. Among all the fungal proteins identified, the carbohydrate metabolic process was found to be enriched. Most of the annotated CAZymes belonged to the hydrolase and oxidoreductase families, and 90% were soluble and extracellular. Moreover, using a publically available interactome database, interactions were observed between the families acting on chitin, hemicellulose and pectin. Subsequently, important catalytic residues were identified in the candidate CAZymes belonging to carbohydrate esterase (CE8) and glycosyl hydrolase (GH18 and GH28). Further, essential dynamics after molecular simulation of 100 ns revealed the overall behavior of these CAZymes with distinct global minima and transition states in CE8. Thus, our study identified some of the CAZyme families that assist in pathogenesis and growth through host cell wall deconstruction with further structural insight into the selected CAZyme families.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Abhijeet Roy
- Department of Bioinformatics, School of Life Sciences, Pondicherry University, Pondicherry, India
| | - Barsha Kalita
- Department of Bioinformatics, School of Life Sciences, Pondicherry University, Pondicherry, India
| | - Aiswarya Jayaprakash
- Department of Bioinformatics, School of Life Sciences, Pondicherry University, Pondicherry, India
| | - Amrendra Kumar
- Department of Bioinformatics, School of Life Sciences, Pondicherry University, Pondicherry, India
| | - P T V Lakshmi
- Department of Bioinformatics, School of Life Sciences, Pondicherry University, Pondicherry, India
| |
Collapse
|
202
|
Wei W, Xu L, Peng H, Zhu W, Tanaka K, Cheng J, Sanguinet KA, Vandemark G, Chen W. A fungal extracellular effector inactivates plant polygalacturonase-inhibiting protein. Nat Commun 2022; 13:2213. [PMID: 35468894 PMCID: PMC9038911 DOI: 10.1038/s41467-022-29788-2] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2021] [Accepted: 03/22/2022] [Indexed: 01/16/2023] Open
Abstract
Plant pathogens degrade cell wall through secreted polygalacturonases (PGs) during infection. Plants counteract the PGs by producing PG-inhibiting proteins (PGIPs) for protection, reversibly binding fungal PGs, and mitigating their hydrolytic activities. To date, how fungal pathogens specifically overcome PGIP inhibition is unknown. Here, we report an effector, Sclerotinia sclerotiorum PGIP-INactivating Effector 1 (SsPINE1), which directly interacts with and functionally inactivates PGIP. S. sclerotiorum is a necrotrophic fungus that causes stem rot diseases on more than 600 plant species with tissue maceration being the most prominent symptom. SsPINE1 enhances S. sclerotiorum necrotrophic virulence by specifically interacting with host PGIPs to negate their polygalacturonase-inhibiting function via enhanced dissociation of PGIPs from PGs. Targeted deletion of SsPINE1 reduces the fungal virulence. Ectopic expression of SsPINE1 in plant reduces its resistance against S. sclerotiorum. Functional and genomic analyses reveal a conserved virulence mechanism of cognate PINE1 proteins in broad host range necrotrophic fungal pathogens. Plants produce polygalacuturonase-inhibiting proteins (PGIPs) to counteract cell wall degradation by pathogenic microbes. Here the authors show that Sclerotinia sclerotiorum, a fungal pathogen that causes stem rot disease, secretes a PGIP-inactivating effector to diminish plant resistance.
Collapse
Affiliation(s)
- Wei Wei
- Department of Plant Pathology, Washington State University, Pullman, WA, 99164, USA
| | - Liangsheng Xu
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Plant Protection, Northwestern A&F University, Yangling, 712100, Shaanxi, China
| | - Hao Peng
- Department of Crop & Soil Sciences, Washington State University, Pullman, WA, 99164, USA
| | - Wenjun Zhu
- School of Life Science and Technology, Wuhan Polytechnic University, Wuhan, Hubei, 430023, China
| | - Kiwamu Tanaka
- Department of Plant Pathology, Washington State University, Pullman, WA, 99164, USA.,Molecular Plant Science Program, Washington State University, Pullman, WA, 99164, USA
| | - Jiasen Cheng
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, China
| | - Karen A Sanguinet
- Department of Crop & Soil Sciences, Washington State University, Pullman, WA, 99164, USA.,Molecular Plant Science Program, Washington State University, Pullman, WA, 99164, USA
| | - George Vandemark
- Department of Plant Pathology, Washington State University, Pullman, WA, 99164, USA.,USDA Agricultural Research Service, Grain Legume Genetics and Physiology Research Unit, Pullman, WA, 99164, USA
| | - Weidong Chen
- Department of Plant Pathology, Washington State University, Pullman, WA, 99164, USA. .,Department of Crop & Soil Sciences, Washington State University, Pullman, WA, 99164, USA. .,Molecular Plant Science Program, Washington State University, Pullman, WA, 99164, USA. .,USDA Agricultural Research Service, Grain Legume Genetics and Physiology Research Unit, Pullman, WA, 99164, USA.
| |
Collapse
|
203
|
Gámez-Arjona FM, Vitale S, Voxeur A, Dora S, Müller S, Sancho-Andrés G, Montesinos JC, Di Pietro A, Sánchez-Rodríguez C. Impairment of the cellulose degradation machinery enhances Fusarium oxysporum virulence but limits its reproductive fitness. SCIENCE ADVANCES 2022; 8:eabl9734. [PMID: 35442735 PMCID: PMC9020665 DOI: 10.1126/sciadv.abl9734] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/13/2023]
Abstract
Fungal pathogens grow in the apoplastic space, in constant contact with the plant cell wall (CW) that hinders microbe progression while representing a source of nutrients. Although numerous fungal CW modifying proteins have been identified, their role during host colonization remains underexplored. Here, we show that the root-infecting plant pathogen Fusarium oxysporum (Fo) does not require its complete arsenal of cellulases to infect the host plant. Quite the opposite: Fo mutants impaired in cellulose degradation become hypervirulent by enhancing the secretion of virulence factors. On the other hand, the reduction in cellulase activity had a severe negative effect on saprophytic growth and microconidia production during the final stages of the Fo infection cycle. These findings enhance our understanding of the function of plant CW degradation on the outcome of host-microbe interactions and reveal an unexpected role of cellulose degradation in a pathogen's reproductive success.
Collapse
Affiliation(s)
| | - Stefania Vitale
- Departamento de Genética, Campus de Excelencia Internacional Agroalimentario ceiA3, Universidad de Córdoba, 14014 Córdoba, Spain
| | - Aline Voxeur
- Institut Jean-Pierre Bourgin, INRA, Centre National pour la Recherche Scientifique, AgroParisTech, Université Paris-Saclay, RD10, 78026 Versailles Cedex, France
| | - Susanne Dora
- Department of Biology, ETH Zurich, 8092 Zurich, Switzerland
| | - Sascha Müller
- Department of Biology, ETH Zurich, 8092 Zurich, Switzerland
| | | | | | - Antonio Di Pietro
- Departamento de Genética, Campus de Excelencia Internacional Agroalimentario ceiA3, Universidad de Córdoba, 14014 Córdoba, Spain
| | | |
Collapse
|
204
|
Zhang J, Liu G, Fukasawa Y. Editorial: Fungal Genetics in Plant Biomass Conversion. Front Microbiol 2022; 13:875768. [PMID: 35401427 PMCID: PMC8990774 DOI: 10.3389/fmicb.2022.875768] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2022] [Accepted: 03/04/2022] [Indexed: 11/28/2022] Open
Affiliation(s)
- Jiwei Zhang
- Department of Bioproducts and Biosystems Engineering, University of Minnesota, Saint Paul, MN, United States
| | - Guodong Liu
- State Key Laboratory for Microbial Technology, Shandong University, Qingdao, China
| | - Yu Fukasawa
- Graduate School of Agricultural Sciences, Tohoku University, Miyagi, Japan
| |
Collapse
|
205
|
Hill R, Buggs RJ, Vu DT, Gaya E. Lifestyle Transitions in Fusarioid Fungi are Frequent and Lack Clear Genomic Signatures. Mol Biol Evol 2022; 39:msac085. [PMID: 35484861 PMCID: PMC9051438 DOI: 10.1093/molbev/msac085] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
The fungal genus Fusarium (Ascomycota) includes well-known plant pathogens that are implicated in diseases worldwide, and many of which have been genome sequenced. The genus also encompasses other diverse lifestyles, including species found ubiquitously as asymptomatic-plant inhabitants (endophytes). Here, we produced structurally annotated genome assemblies for five endophytic Fusarium strains, including the first whole-genome data for Fusarium chuoi. Phylogenomic reconstruction of Fusarium and closely related genera revealed multiple and frequent lifestyle transitions, the major exception being a monophyletic clade of mutualist insect symbionts. Differential codon usage bias and increased codon optimisation separated Fusarium sensu stricto from allied genera. We performed computational prediction of candidate secreted effector proteins (CSEPs) and carbohydrate-active enzymes (CAZymes)-both likely to be involved in the host-fungal interaction-and sought evidence that their frequencies could predict lifestyle. However, phylogenetic distance described gene variance better than lifestyle did. There was no significant difference in CSEP, CAZyme, or gene repertoires between phytopathogenic and endophytic strains, although we did find some evidence that gene copy number variation may be contributing to pathogenicity. Large numbers of accessory CSEPs (i.e., present in more than one taxon but not all) and a comparatively low number of strain-specific CSEPs suggested there is a limited specialisation among plant associated Fusarium species. We also found half of the core genes to be under positive selection and identified specific CSEPs and CAZymes predicted to be positively selected on certain lineages. Our results depict fusarioid fungi as prolific generalists and highlight the difficulty in predicting pathogenic potential in the group.
Collapse
Affiliation(s)
- Rowena Hill
- Comparative Fungal Biology, Royal Botanic Gardens Kew, Jodrell Laboratory, Richmond, United Kingdom
- School of Biological and Behavioural Sciences, Queen Mary University of London, London, UK
| | - Richard J.A. Buggs
- Comparative Fungal Biology, Royal Botanic Gardens Kew, Jodrell Laboratory, Richmond, United Kingdom
- School of Biological and Behavioural Sciences, Queen Mary University of London, London, UK
| | - Dang Toan Vu
- Research Planning and International Cooperation Department, Plant Resources Center, Hanoi, Vietnam
| | - Ester Gaya
- Comparative Fungal Biology, Royal Botanic Gardens Kew, Jodrell Laboratory, Richmond, United Kingdom
| |
Collapse
|
206
|
Zhu J, Tang X, Sun Y, Li Y, Wang Y, Jiang Y, Shao H, Yong B, Li H, Tao X. Comparative Metabolomic Profiling of Compatible and Incompatible Interactions Between Potato and Phytophthora infestans. Front Microbiol 2022; 13:857160. [PMID: 35464908 PMCID: PMC9024415 DOI: 10.3389/fmicb.2022.857160] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2022] [Accepted: 03/07/2022] [Indexed: 11/13/2022] Open
Abstract
Late blight is one of the main biological stresses limiting the potato yield; however, the biochemical mechanisms underlying the infection process of Phytophthora infestans remain unrevealed. In this study, the late blight-resistant potato cultivar Ziyun No.1 (R) and the susceptible cultivar Favorita (S) were inoculated with P. infestans. Untargeted metabolomics was used to study the changes of metabolites in the compatible and incompatible interactions of the two cultivars and the pathogen at 0, 48, and 96 h postinoculation (hpi). A total of 819 metabolites were identified, and the metabolic differences mainly emerged after 48 hpi. There were 198 and 115 differentially expressed metabolites (DEMs) in the compatible and incompatible interactions. These included 147 and 100 upregulated metabolites during the compatible and incompatible interactions, respectively. Among them, 73 metabolites were identified as the P. infestans-responsive DEMs. Furthermore, the comparisons between the two cultivars identified 57 resistance-related metabolites. Resistant potato cultivar had higher levels of salicylic acid and several upstream phenylpropanoid biosynthesis metabolites, triterpenoids, and hydroxycinnamic acids and their derivatives, such as sakuranetin, ferulic acid, ganoderic acid Mi, lucidenic acid D2, and caffeoylmalic acid. These metabolites play crucial roles in cell wall thickening and have antibacterial and antifungal activities. This study reports the time-course metabolomic responses of potatoes to P. infestans. The findings reveal the responses involved in the compatible and incompatible interactions of potatoes and P. infestans.
Collapse
Affiliation(s)
- Jingyu Zhu
- College of Life Sciences, Sichuan Normal University, Chengdu, China
| | - Xue Tang
- College of Life Sciences, Sichuan Normal University, Chengdu, China
| | - Yining Sun
- College of Life Sciences, Sichuan Normal University, Chengdu, China
| | - Yan Li
- College of Life Sciences, Sichuan Normal University, Chengdu, China
| | - Yajie Wang
- College of Life Sciences, Sichuan Normal University, Chengdu, China
| | - Yusong Jiang
- Research Institute for Special Plants, Chongqing University of Arts and Sciences, Chongqing, China
| | - Huanhuan Shao
- College of Life Sciences, Sichuan Normal University, Chengdu, China
| | - Bin Yong
- College of Life Sciences, Sichuan Normal University, Chengdu, China
| | - Honghao Li
- Key Laboratory of Integrated Pest Management on Crops in Southwest, Institute of Plant Protection, Ministry of Agriculture, Sichuan Academy of Agricultural Sciences, Chengdu, China
- *Correspondence: Honghao Li,
| | - Xiang Tao
- College of Life Sciences, Sichuan Normal University, Chengdu, China
- Xiang Tao,
| |
Collapse
|
207
|
Persistence of ecologically similar fungi in a restricted floral niche. Antonie van Leeuwenhoek 2022; 115:761-771. [PMID: 35389142 DOI: 10.1007/s10482-022-01732-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/14/2021] [Accepted: 03/19/2022] [Indexed: 10/18/2022]
Abstract
Fungi in the genera Knoxdaviesia and Sporothrix dominate fungal communities within Protea flowerheads and seed cones (infructescences). Despite apparently similar ecologies, they show strong host recurrence and often occupy the same individual infructescence. Differences in host chemistry explain their host consistency, but the factors that allow co-occupancy of multiple species within individual infructescences are unknown. Sporothrix splendens and K. proteae often grow on different senescent tissue types within infructescences of their P. repens host, indicating that substrate-related differences aid their co-occupancy. Sporothrix phasma and K. capensis grow on the same tissues of P. neriifolia suggesting neutral competitive abilities. Here we test the hypothesis that differences in host-tissues dictate competitive abilities of these fungi and explain their co-occupancy of this spatially restricted niche. Media were prepared from infructescence bases, bracts, seeds, or pollen presenters of P. neriifolia and P. repens. As expected, K. capensis was unable to grow on seeds whilst S. phasma could. As hypothesised, K. capensis and S. phasma had equal competitive abilities on pollen presenters, appearing to explain their co-occupancy of this resource. Growth of K. proteae was significantly enhanced on pollen presenters while that of S. splendens was the same as the control. Knoxdavesia proteae grew significantly faster than S. splendens on all tissue types. Despite this, S. splendens was a superior competitor on all tissue types. For K. proteae to co-occupy infructescences with S. splendens for extended periods, it likely needs to colonize pollen presenters before the arrival of S. splendens.
Collapse
|
208
|
Jiang B, Cai T, Yang X, Dai Y, Yu K, Zhang P, Li P, Wang C, Liu N, Li B, Lian S. Comparative transcriptome analysis reveals significant differences in gene expression between pathogens of apple Glomerella leaf spot and apple bitter rot. BMC Genomics 2022; 23:246. [PMID: 35354401 PMCID: PMC8969349 DOI: 10.1186/s12864-022-08493-w] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2021] [Accepted: 03/23/2022] [Indexed: 11/19/2022] Open
Abstract
Background Apple Glomerella leaf spot (GLS) and apple bitter rot (ABR) are two devastating foliar and fruit diseases on apples. The different symptoms of GLS and ABR could be related to different transcriptome patterns. Thus, the objectives of this study were to compare the transcriptome profiles of Colletotrichum gloeosporioides species complex isolates GC20190701, FL180903, and FL180906, the pathogen of GLS and ABR, and to evaluate the involvement of the genes on pathogenicity. Results A relatively large difference was discovered between the GLS-isolate GC20190701 and ABR-isolates FL180903, FL180906, and quite many differential expression genes associated with pathogenicity were revealed. The DEGs between the GLS- and ABR-isolate were significantly enriched in GO terms of secondary metabolites, however, the categories of degradation of various cell wall components did not. Many genes associated with secondary metabolism were revealed. A total of 17 Cytochrome P450s (CYP), 11 of which were up-regulated while six were down-regulated, and five up-regulated methyltransferase genes were discovered. The genes associated with the secretion of extracellular enzymes and melanin accumulation were up-regulated. Four genes associated with the degradation of the host cell wall, three genes involved in the degradation of cellulose, and one gene involved in the degradation of xylan were revealed and all up-regulated. In addition, genes involved in melanin syntheses, such as tyrosinase and glucosyltransferase, were highly up-regulated. Conclusions The penetration ability, pathogenicity of GLS-isolate was greater than that of ABR-isolate, which might indicate that GLS-isolate originated from ABR-isolates by mutation. These results contributed to highlighting the importance to investigate such DEGs between GLS- and ABR-isolate in depth. Supplementary Information The online version contains supplementary material available at 10.1186/s12864-022-08493-w.
Collapse
Affiliation(s)
- Bowen Jiang
- College of Plant Health and Medicine, Qingdao Agricultural University, Qingdao, 266109, China.,Engineering Research Center of Fruit and Vegetable Pest Precise Control of Qingdao, Qingdao, Shandong, 266109, P. R. China
| | - Ting Cai
- College of Plant Health and Medicine, Qingdao Agricultural University, Qingdao, 266109, China.,Engineering Research Center of Fruit and Vegetable Pest Precise Control of Qingdao, Qingdao, Shandong, 266109, P. R. China
| | - Xiaoying Yang
- College of Plant Health and Medicine, Qingdao Agricultural University, Qingdao, 266109, China.,Engineering Research Center of Fruit and Vegetable Pest Precise Control of Qingdao, Qingdao, Shandong, 266109, P. R. China
| | - Yuya Dai
- College of Plant Health and Medicine, Qingdao Agricultural University, Qingdao, 266109, China.,Engineering Research Center of Fruit and Vegetable Pest Precise Control of Qingdao, Qingdao, Shandong, 266109, P. R. China
| | - Kaixuan Yu
- College of Plant Health and Medicine, Qingdao Agricultural University, Qingdao, 266109, China.,Engineering Research Center of Fruit and Vegetable Pest Precise Control of Qingdao, Qingdao, Shandong, 266109, P. R. China
| | - Pingping Zhang
- College of Plant Health and Medicine, Qingdao Agricultural University, Qingdao, 266109, China.,Engineering Research Center of Fruit and Vegetable Pest Precise Control of Qingdao, Qingdao, Shandong, 266109, P. R. China
| | - Pingliang Li
- College of Plant Health and Medicine, Qingdao Agricultural University, Qingdao, 266109, China.,Engineering Research Center of Fruit and Vegetable Pest Precise Control of Qingdao, Qingdao, Shandong, 266109, P. R. China
| | - Caixia Wang
- College of Plant Health and Medicine, Qingdao Agricultural University, Qingdao, 266109, China.,Engineering Research Center of Fruit and Vegetable Pest Precise Control of Qingdao, Qingdao, Shandong, 266109, P. R. China
| | - Na Liu
- College of Plant Health and Medicine, Qingdao Agricultural University, Qingdao, 266109, China.,Engineering Research Center of Fruit and Vegetable Pest Precise Control of Qingdao, Qingdao, Shandong, 266109, P. R. China
| | - Baohua Li
- College of Plant Health and Medicine, Qingdao Agricultural University, Qingdao, 266109, China.,Engineering Research Center of Fruit and Vegetable Pest Precise Control of Qingdao, Qingdao, Shandong, 266109, P. R. China
| | - Sen Lian
- College of Plant Health and Medicine, Qingdao Agricultural University, Qingdao, 266109, China. .,Engineering Research Center of Fruit and Vegetable Pest Precise Control of Qingdao, Qingdao, Shandong, 266109, P. R. China.
| |
Collapse
|
209
|
Fang H, Zhong C, Tang C. Predicting protein–protein interactions between banana and Fusarium oxysporum f. sp. cubense race 4 integrating sequence and domain homologous alignment and neural network verification. Proteome Sci 2022; 20:4. [PMID: 35351140 PMCID: PMC8962045 DOI: 10.1186/s12953-022-00186-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2021] [Accepted: 03/06/2022] [Indexed: 11/18/2022] Open
Abstract
Background The pathogen of banana Fusarium oxysporum f. sp. cubense race 4(Foc4) infects almost all banana species, and it is the most destructive. The molecular mechanism of the interactions between Fusarium oxysporum and banana still needs to be further investigated. Methods We use both the interolog and domain-domain method to predict the protein–protein interactions (PPIs) between banana and Foc4. The predicted protein interaction sequences are encoded by the conjoint triad and autocovariance method respectively to obtain continuous and discontinuous information of protein sequences. This information is used as the input data of the neural network model. The Long Short-Term Memory (LSTM) neural network five-fold cross-validation and independent test methods are used to verify the predicted protein interaction sequences. To further confirm the PPIs between banana and Foc4, the GO (Gene Ontology) and KEGG (Kyoto Encylopedia of Genes and Genomics) functional annotation and interaction network analysis are carried out. Results The experimental results show that the PPIs for banana and foc4 predicted by our proposed method may interact with each other in terms of sequence structure, GO and KEGG functional annotation, and Foc4 protein plays a more active role in the process of Foc4 infecting banana. Conclusions This study obtained the PPIs between banana and Foc4 by using computing means for the first time, which will provide data support for molecular biology experiments. Supplementary Information The online version contains supplementary material available at 10.1186/s12953-022-00186-2.
Collapse
|
210
|
Ali Q, Yu C, Hussain A, Ali M, Ahmar S, Sohail MA, Riaz M, Ashraf MF, Abdalmegeed D, Wang X, Imran M, Manghwar H, Zhou L. Genome Engineering Technology for Durable Disease Resistance: Recent Progress and Future Outlooks for Sustainable Agriculture. FRONTIERS IN PLANT SCIENCE 2022; 13:860281. [PMID: 35371164 PMCID: PMC8968944 DOI: 10.3389/fpls.2022.860281] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/22/2022] [Accepted: 02/22/2022] [Indexed: 05/15/2023]
Abstract
Crop production worldwide is under pressure from multiple factors, including reductions in available arable land and sources of water, along with the emergence of new pathogens and development of resistance in pre-existing pathogens. In addition, the ever-growing world population has increased the demand for food, which is predicted to increase by more than 100% by 2050. To meet these needs, different techniques have been deployed to produce new cultivars with novel heritable mutations. Although traditional breeding continues to play a vital role in crop improvement, it typically involves long and laborious artificial planting over multiple generations. Recently, the application of innovative genome engineering techniques, particularly CRISPR-Cas9-based systems, has opened up new avenues that offer the prospects of sustainable farming in the modern agricultural industry. In addition, the emergence of novel editing systems has enabled the development of transgene-free non-genetically modified plants, which represent a suitable option for improving desired traits in a range of crop plants. To date, a number of disease-resistant crops have been produced using gene-editing tools, which can make a significant contribution to overcoming disease-related problems. Not only does this directly minimize yield losses but also reduces the reliance on pesticide application, thereby enhancing crop productivity that can meet the globally increasing demand for food. In this review, we describe recent progress in genome engineering techniques, particularly CRISPR-Cas9 systems, in development of disease-resistant crop plants. In addition, we describe the role of CRISPR-Cas9-mediated genome editing in sustainable agriculture.
Collapse
Affiliation(s)
- Qurban Ali
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Institute of Agro-product Safety and Nutrition, Zhejiang Academy of Agricultural Sciences, Hangzhou, China
- Key Laboratory of Monitoring and Management of Crop Disease and Pest Insects, College of Plant Protection, Ministry of Education, Nanjing Agricultural University, Nanjing, China
| | - Chenjie Yu
- Key Laboratory of Monitoring and Management of Crop Disease and Pest Insects, College of Plant Protection, Ministry of Education, Nanjing Agricultural University, Nanjing, China
| | - Amjad Hussain
- College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Mohsin Ali
- College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Sunny Ahmar
- Institute of Biology, Biotechnology, and Environmental Protection, Faculty of Natural Sciences, University of Silesia, Katowice, Poland
| | - Muhammad Aamir Sohail
- College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Muhammad Riaz
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Root Biology Center, College of Natural Resources and Environment, South China Agricultural University, Guangzhou, China
| | - Muhammad Furqan Ashraf
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Hangzhou, China
| | - Dyaaaldin Abdalmegeed
- Key Laboratory of Monitoring and Management of Crop Disease and Pest Insects, College of Plant Protection, Ministry of Education, Nanjing Agricultural University, Nanjing, China
- Department of Botany and Microbiology, Faculty of Science, Tanta University, Tanta, Egypt
| | - Xiukang Wang
- College of Life Sciences, Yan’an University, Yan’an, China
| | - Muhammad Imran
- Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, College of Agriculture, South China Agriculture University, Guangzhou, China
| | - Hakim Manghwar
- Lushan Botanical Garden, Chinese Academy of Sciences, Jiujiang, China
| | - Lei Zhou
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Institute of Agro-product Safety and Nutrition, Zhejiang Academy of Agricultural Sciences, Hangzhou, China
| |
Collapse
|
211
|
Wang Y, Pruitt RN, Nürnberger T, Wang Y. Evasion of plant immunity by microbial pathogens. Nat Rev Microbiol 2022; 20:449-464. [PMID: 35296800 DOI: 10.1038/s41579-022-00710-3] [Citation(s) in RCA: 193] [Impact Index Per Article: 64.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/16/2022] [Indexed: 12/21/2022]
Abstract
Plant pathogenic viruses, bacteria, fungi and oomycetes cause destructive diseases in natural habitats and agricultural settings, thereby threatening plant biodiversity and global food security. The capability of plants to sense and respond to microbial infection determines the outcome of plant-microorganism interactions. Host-adapted microbial pathogens exploit various infection strategies to evade or counter plant immunity and eventually establish a replicative niche. Evasion of plant immunity through dampening host recognition or the subsequent immune signalling and defence execution is a crucial infection strategy used by different microbial pathogens to cause diseases, underpinning a substantial obstacle for efficient deployment of host genetic resistance genes for sustainable disease control. In this Review, we discuss current knowledge of the varied strategies microbial pathogens use to evade the complicated network of plant immunity for successful infection. In addition, we discuss how to exploit this knowledge to engineer crop resistance.
Collapse
Affiliation(s)
- Yan Wang
- Department of Plant Pathology, Nanjing Agricultural University, Nanjing, China.,The Key Laboratory of Plant Immunity, Nanjing Agricultural University, Nanjing, China
| | - Rory N Pruitt
- Centre for Molecular Biology of Plants (ZMBP), University of Tübingen, Tübingen, Germany
| | - Thorsten Nürnberger
- Centre for Molecular Biology of Plants (ZMBP), University of Tübingen, Tübingen, Germany.,Department of Biochemistry, University of Johannesburg, Johannesburg, South Africa
| | - Yuanchao Wang
- Department of Plant Pathology, Nanjing Agricultural University, Nanjing, China. .,The Key Laboratory of Plant Immunity, Nanjing Agricultural University, Nanjing, China.
| |
Collapse
|
212
|
Cellular Responses Required for Oxidative Stress Tolerance of the Necrotrophic Fungus Alternaria alternata, Causal Agent of Pear Black Spot. Microorganisms 2022; 10:microorganisms10030621. [PMID: 35336198 PMCID: PMC8951605 DOI: 10.3390/microorganisms10030621] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2022] [Revised: 03/11/2022] [Accepted: 03/12/2022] [Indexed: 01/02/2023] Open
Abstract
To establish successful infections in host plants, pathogenic fungi must sense and respond to an array of stresses, such as oxidative stress. In this study, we systematically analyzed the effects of 30 mM H2O2 treatment on reactive oxygen species (ROS) metabolism in Alternaria alternata. Results showed that 30 mM H2O2 treatment lead to increased O2− generation rate and H2O2 content, and simultaneously, increased the activities and transcript levels of NADPH oxidase (NOX). The activities and gene expression levels of enzymes related with ascorbic acid-glutathione cycle (AsA-GSH cycle) and thioredoxin systems, including superoxide dismutase (SOD), catalase (CAT), glutathione reductase (GR), ascorbate peroxidase (AXP) and thioredoxin (TrxR), were remarkably enhanced by 30 mM H2O2 stress treatment. Additionally, 30 mM H2O2 treatment decreased the glutathione (GSH) content, whereas it increased the amount of oxidized glutathione (GSSG), dehydroascorbate (DHA) and ascorbic acid (AsA). These results revealed that cellular responses are required for oxidative stress tolerance of the necrotrophic fungus A. alternata.
Collapse
|
213
|
Bradley EL, Ökmen B, Doehlemann G, Henrissat B, Bradshaw RE, Mesarich CH. Secreted Glycoside Hydrolase Proteins as Effectors and Invasion Patterns of Plant-Associated Fungi and Oomycetes. FRONTIERS IN PLANT SCIENCE 2022; 13:853106. [PMID: 35360318 PMCID: PMC8960721 DOI: 10.3389/fpls.2022.853106] [Citation(s) in RCA: 46] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/12/2022] [Accepted: 02/14/2022] [Indexed: 05/06/2023]
Abstract
During host colonization, plant-associated microbes, including fungi and oomycetes, deliver a collection of glycoside hydrolases (GHs) to their cell surfaces and surrounding extracellular environments. The number and type of GHs secreted by each organism is typically associated with their lifestyle or mode of nutrient acquisition. Secreted GHs of plant-associated fungi and oomycetes serve a number of different functions, with many of them acting as virulence factors (effectors) to promote microbial host colonization. Specific functions involve, for example, nutrient acquisition, the detoxification of antimicrobial compounds, the manipulation of plant microbiota, and the suppression or prevention of plant immune responses. In contrast, secreted GHs of plant-associated fungi and oomycetes can also activate the plant immune system, either by acting as microbe-associated molecular patterns (MAMPs), or through the release of damage-associated molecular patterns (DAMPs) as a consequence of their enzymatic activity. In this review, we highlight the critical roles that secreted GHs from plant-associated fungi and oomycetes play in plant-microbe interactions, provide an overview of existing knowledge gaps and summarize future directions.
Collapse
Affiliation(s)
- Ellie L. Bradley
- Bioprotection Aotearoa, School of Agriculture and Environment, Massey University, Palmerston North, New Zealand
| | - Bilal Ökmen
- Institute for Plant Sciences and Cluster of Excellence on Plant Sciences (CEPLAS), University of Cologne, Cologne, Germany
- Department of Microbial Interactions, IMIT/ZMBP, University of Tübingen, Tübingen, Germany
| | - Gunther Doehlemann
- Institute for Plant Sciences and Cluster of Excellence on Plant Sciences (CEPLAS), University of Cologne, Cologne, Germany
| | - Bernard Henrissat
- DTU Bioengineering, Technical University of Denmark, Kongens Lyngby, Denmark
- Architecture et Fonction des Macromolécules Biologiques (AFMB), UMR 7257 Centre National de la Recherche Scientifique (CNRS), Université Aix-Marseille, Marseille, France
- Department of Biological Sciences, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Rosie E. Bradshaw
- Bioprotection Aotearoa, School of Natural Sciences, Massey University, Palmerston North, New Zealand
| | - Carl H. Mesarich
- Bioprotection Aotearoa, School of Agriculture and Environment, Massey University, Palmerston North, New Zealand
| |
Collapse
|
214
|
Li H, Hu R, Fan Z, Chen Q, Jiang Y, Huang W, Tao X. Dual RNA Sequencing Reveals the Genome-Wide Expression Profiles During the Compatible and Incompatible Interactions Between Solanum tuberosum and Phytophthora infestans. FRONTIERS IN PLANT SCIENCE 2022; 13:817199. [PMID: 35401650 PMCID: PMC8993506 DOI: 10.3389/fpls.2022.817199] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/17/2021] [Accepted: 02/07/2022] [Indexed: 06/14/2023]
Abstract
Late blight, caused by Phytophthora infestans (P. infestans), is a devastating plant disease. P. infestans genome encodes hundreds of effectors, complicating the interaction between the pathogen and its host and making it difficult to understand the interaction mechanisms. In this study, the late blight-resistant potato cultivar Ziyun No.1 and the susceptible potato cultivar Favorita were infected with P. infestans isolate SCPZ16-3-1 to investigate the global expression profiles during the compatible and incompatible interactions using dual RNA sequencing (RNA-seq). Most of the expressed Arg-X-Leu-Arg (RXLR) effector genes were suppressed during the first 24 h of infection, but upregulated after 24 h. Moreover, P. infestans induced more specifically expressed genes (SEGs), including RXLR effectors and cell wall-degrading enzymes (CWDEs)-encoding genes, in the compatible interaction. The resistant potato activated a set of biotic stimulus responses and phenylpropanoid biosynthesis SEGs, including kirola-like protein, nucleotide-binding site-leucine-rich repeat (NBS-LRR), disease resistance, and kinase genes. Conversely, the susceptible potato cultivar upregulated more kinase, pathogenesis-related genes than the resistant cultivar. This study is the first study to characterize the compatible and incompatible interactions between P. infestans and different potato cultivars and provides the genome-wide expression profiles for RXLR effector, CWDEs, NBS-LRR protein, and kinase-encoding genes.
Collapse
Affiliation(s)
- Honghao Li
- Institute of Plant Protection, Sichuan Academy of Agricultural Sciences, Key Laboratory of Integrated Pest Management on Crops in Southwest, Ministry of Agriculture, Chengdu, China
| | - Rongping Hu
- Institute of Plant Protection, Sichuan Academy of Agricultural Sciences, Key Laboratory of Integrated Pest Management on Crops in Southwest, Ministry of Agriculture, Chengdu, China
| | - Zhonghan Fan
- Institute of Plant Protection, Sichuan Academy of Agricultural Sciences, Key Laboratory of Integrated Pest Management on Crops in Southwest, Ministry of Agriculture, Chengdu, China
| | - Qinghua Chen
- Institute of Plant Protection, Sichuan Academy of Agricultural Sciences, Key Laboratory of Integrated Pest Management on Crops in Southwest, Ministry of Agriculture, Chengdu, China
| | - Yusong Jiang
- Research Institute for Special Plants, Chongqing University of Arts and Sciences, Chongqing, China
| | - Weizao Huang
- Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu, China
| | - Xiang Tao
- College of Life Sciences, Sichuan Normal University, Chengdu, China
| |
Collapse
|
215
|
Prediction of effector proteins and their implications in pathogenicity of phytopathogenic filamentous fungi: A review. Int J Biol Macromol 2022; 206:188-202. [PMID: 35227707 DOI: 10.1016/j.ijbiomac.2022.02.133] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Revised: 02/11/2022] [Accepted: 02/22/2022] [Indexed: 12/14/2022]
Abstract
Plant pathogenic fungi encode and secrete effector proteins to promote pathogenesis. In recent years, the important role of effector proteins in fungi and plant host interactions has become increasingly prominent. In this review, the functional characterization and molecular mechanisms by which fungal effector proteins modulate biological processes and suppress the defense of plant hosts are discussed, with an emphasis on cell localization during fungal infection. This paper also provides a comprehensive review of bioinformatic and experimental methods that are currently available for the identification of fungal effector proteins. We additionally summarize the secretion pathways and the methods for verifying the presence effector proteins in plant host cells. For future research, comparative genomic studies of different pathogens with varying life cycles will allow comprehensive and systematic identification of effector proteins. Additionally, functional analysis of effector protein interactions with a wider range of hosts (especially non-model crops) will provide more detailed repertoires of fungal effectors. Identifying effector proteins and verifying their functions will improve our understanding of their role in causing disease and in turn guide future strategies for combatting fungal infections.
Collapse
|
216
|
Severn-Ellis AA, Schoeman MH, Bayer PE, Hane JK, Rees DJG, Edwards D, Batley J. Genome Analysis of the Broad Host Range Necrotroph Nalanthamala psidii Highlights Genes Associated With Virulence. FRONTIERS IN PLANT SCIENCE 2022; 13:811152. [PMID: 35283890 PMCID: PMC8914235 DOI: 10.3389/fpls.2022.811152] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/08/2021] [Accepted: 01/18/2022] [Indexed: 06/14/2023]
Abstract
Guava wilt disease is caused by the fungus Nalanthamala psidii. The wilt disease results in large-scale destruction of orchards in South Africa, Taiwan, and several Southeast Asian countries. De novo assembly, annotation, and in-depth analysis of the N. psidii genome were carried out to facilitate the identification of characteristics associated with pathogenicity and pathogen evolution. The predicted secretome revealed a range of CAZymes, proteases, lipases and peroxidases associated with plant cell wall degradation, nutrient acquisition, and disease development. Further analysis of the N. psidii carbohydrate-active enzyme profile exposed the broad-spectrum necrotrophic lifestyle of the pathogen, which was corroborated by the identification of putative effectors and secondary metabolites with the potential to induce tissue necrosis and cell surface-dependent immune responses. Putative regulatory proteins including transcription factors and kinases were identified in addition to transporters potentially involved in the secretion of secondary metabolites. Transporters identified included important ABC and MFS transporters involved in the efflux of fungicides. Analysis of the repetitive landscape and the detection of mechanisms linked to reproduction such as het and mating genes rendered insights into the biological complexity and evolutionary potential of N. psidii as guava pathogen. Hence, the assembly and annotation of the N. psidii genome provided a valuable platform to explore the pathogenic potential and necrotrophic lifestyle of the guava wilt pathogen.
Collapse
Affiliation(s)
- Anita A. Severn-Ellis
- School of Biological Sciences, Institute of Agriculture, The University of Western Australia, Crawley, WA, Australia
- Aquaculture Research and Development, Department of Primary Industries and Regional Development, Indian Ocean Marine Research Centre, Watermans Bay, WA, Australia
| | - Maritha H. Schoeman
- Institute for Tropical and Subtropical Crops, Agricultural Research Council, Nelspruit, South Africa
| | - Philipp E. Bayer
- School of Biological Sciences, Institute of Agriculture, The University of Western Australia, Crawley, WA, Australia
| | - James K. Hane
- Centre for Crop and Disease Management, School of Molecular and Life Sciences, Curtin University, Bentley, WA, Australia
| | - D. Jasper G. Rees
- Agricultural Research Council, Biotechnology Platform, Pretoria, South Africa
- Botswana University of Agriculture and Natural Resources, Gaborone, Botswana
| | - David Edwards
- School of Biological Sciences, Institute of Agriculture, The University of Western Australia, Crawley, WA, Australia
| | - Jacqueline Batley
- School of Biological Sciences, Institute of Agriculture, The University of Western Australia, Crawley, WA, Australia
| |
Collapse
|
217
|
Zhang J, Meng Markillie L, Mitchell HD, Gaffrey MJ, Orr G, Schilling JS. Distinctive carbon repression effects in the carbohydrate-selective wood decay fungus Rhodonia placenta. Fungal Genet Biol 2022; 159:103673. [PMID: 35150839 DOI: 10.1016/j.fgb.2022.103673] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2021] [Revised: 01/29/2022] [Accepted: 02/06/2022] [Indexed: 11/19/2022]
Abstract
Brown rot fungi dominate the carbon degradation of northern terrestrial conifers. These fungi adapted unique genetic inventories to degrade lignocellulose and to rapidly release a large quantity of carbohydrates for fungal catabolism. We know that brown rot involves "two-step" gene regulation to delay most hydrolytic enzyme expression until after harsh oxidative pretreatments. This implies the crucial role of concise gene regulation to brown rot efficacy, but the underlying regulatory mechanisms remain uncharacterized. Here, using the combined transcriptomic and enzyme analyses we investigated the roles of carbon catabolites in controlling gene expression in model brown rot fungus Rhodonia placenta. We identified co-regulated gene regulons as shared transcriptional responses to no-carbon controls, glucose, cellobiose, or aspen wood (Populus sp.). We found that cellobiose, a common inducing catabolite for fungi, induced expression of main chain-cleaving cellulases in GH5 and GH12 families (cellobiose vs. no-carbon > 4-fold, Padj < 0.05), whereas complex aspen was a universal inducer for Carbohydrate Active Enzymes (CAZymes) expression. Importantly, we observed the attenuated glucose-mediated repression effects on cellulases expression, but not on hemicellulases and lignin oxidoreductases, suggesting fungi might have adapted diverged regulatory routes to boost cellulase production for the fast carbohydrate release. Using carbon regulons, we further predicted the cis- and trans-regulatory elements and assembled a network model of the distinctive regulatory machinery of brown rot. These results offer mechanistic insights into the energy efficiency traits of a common group of decomposer fungi with enormous influence on the carbon cycle.
Collapse
Affiliation(s)
- Jiwei Zhang
- Department of Bioproducts and Biosystems Engineering, University of Minnesota, Saint Paul, MN, United States.
| | - Lye Meng Markillie
- Environmental Molecular Sciences Laboratory, Pacific Northwest National Laboratory, Richland, WA 99354, United States
| | - Hugh D Mitchell
- Environmental Molecular Sciences Laboratory, Pacific Northwest National Laboratory, Richland, WA 99354, United States
| | - Matthew J Gaffrey
- Environmental Molecular Sciences Laboratory, Pacific Northwest National Laboratory, Richland, WA 99354, United States
| | - Galya Orr
- Environmental Molecular Sciences Laboratory, Pacific Northwest National Laboratory, Richland, WA 99354, United States
| | - Jonathan S Schilling
- Department of Plant and Microbial Biology, University of Minnesota, Saint Paul, MN, United States.
| |
Collapse
|
218
|
Chen J, Chen H, Liu F, Fu ZQ. A war on the cell wall. MOLECULAR PLANT 2022; 15:219-221. [PMID: 34958960 DOI: 10.1016/j.molp.2021.12.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/28/2021] [Revised: 12/21/2021] [Accepted: 12/22/2021] [Indexed: 06/14/2023]
Affiliation(s)
- Jian Chen
- International Genome Center, Jiangsu University, Zhenjiang 212013, China
| | - Huan Chen
- Institute of Plant Protection, Jiangsu Academy of Agricultural Sciences, Nanjing, Jiangsu 210014, China; Department of Biological Sciences, University of South Carolina, Columbia, SC 29208, USA
| | - Fengquan Liu
- Institute of Plant Protection, Jiangsu Academy of Agricultural Sciences, Nanjing, Jiangsu 210014, China.
| | - Zheng Qing Fu
- Department of Biological Sciences, University of South Carolina, Columbia, SC 29208, USA.
| |
Collapse
|
219
|
Guo X, Liu N, Zhang Y, Chen J. Pathogen-Associated Molecular Pattern Active Sites of GH45 Endoglucanohydrolase from Rhizoctonia solani. PHYTOPATHOLOGY 2022; 112:355-363. [PMID: 34165320 DOI: 10.1094/phyto-04-21-0164-r] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
A 207-amino-acid residue endoglucanohydrolase (EG1) belonging to the glycoside hydrolase 45 (GH45) from Rhizoctonia solani acts as a pathogen-associated molecular pattern (PAMP). However, the mechanism of EG1 inducing plant immunity is unclear. Here, we found that EG1 contains two domains related to its PAMP function. Transient expression showed that EG1-1, the mutation deleting 60 amino acid residues from the N-terminal, still reserved the PAMP function. Further truncation of EG1-1 obtained two truncating mutations: EG1-2, deleting seven amino acid residues from the N-terminal of EG1-1 (SPWAVND), and EG1-3, deleting five amino acid residues from the C-terminal of EG1-1 (GCSRK). Transient expression showed that the two truncating mutations EG1-2 and EG1-3 all lost the PAMP function. Site-directed mutagenesis of EG1-1 showed that the three amino acid residues (P, W, and D) in the region SPWAVND and the two amino acid residues (C and R) in the region GCSRK were involved in the PAMP function. The homology model showed that the two regions were located at a surface on the EG1 and structurally independent. These results demonstrate that there are two functional regions for the plant immune function of the EG1 released by R. solani, and the two functional regions are independent of each other.
Collapse
Affiliation(s)
- Xiuna Guo
- Department of Plant Pathology, Shandong Agricultural University, Taian, Shandong 271018, China
| | - Ning Liu
- Department of Plant Pathology, Shandong Agricultural University, Taian, Shandong 271018, China
| | - Yuanyuan Zhang
- Department of Plant Pathology, Shandong Agricultural University, Taian, Shandong 271018, China
| | - Jinyin Chen
- Department of Plant Pathology, Shandong Agricultural University, Taian, Shandong 271018, China
| |
Collapse
|
220
|
Majumdar R, Strausbaugh CA, Galewski PJ, Minocha R, Rogers CW. Cell-Wall-Degrading Enzymes-Related Genes Originating from Rhizoctonia solani Increase Sugar Beet Root Damage in the Presence of Leuconostoc mesenteroides. Int J Mol Sci 2022; 23:1366. [PMID: 35163289 PMCID: PMC8835807 DOI: 10.3390/ijms23031366] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2021] [Revised: 01/20/2022] [Accepted: 01/21/2022] [Indexed: 12/04/2022] Open
Abstract
Sugar beet crown and root rot caused by Rhizoctonia solani is a major yield constraint. Root rot is highly increased when R. solani and Leuconostoc mesenteroides co-infect roots. We hypothesized that the absence of plant cell-wall-degrading enzymes in L. mesenteroides and their supply by R. solani during close contact, causes increased damage. In planta root inoculation with or without cell-wall-degrading enzymes showed greater rot when L. mesenteroides was combined with cellulase (22 mm rot), polygalacturonase (47 mm), and pectin lyase (57 mm) versus these enzymes (0-26 mm), R. solani (20 mm), and L. mesenteroides (13 mm) individually. Carbohydrate analysis revealed increased simpler carbohydrates (namely glucose + galactose, and fructose) in the infected roots versus mock control, possibly due to the degradation of complex cell wall carbohydrates. Expression of R. solani cellulase, polygalacturonase, and pectin lyase genes during root infection corroborated well with the enzyme data. Global mRNAseq analysis identified candidate genes and highly co-expressed gene modules in all three organisms that might be critical in host plant defense and pathogenesis. Targeting R. solani cell-wall-degrading enzymes in the future could be an effective strategy to mitigate root damage during its interaction with L. mesenteroides.
Collapse
Affiliation(s)
- Rajtilak Majumdar
- Northwest Irrigation and Soils Research, United States Department of Agriculture, Kimberly, ID 83341, USA; (P.J.G.); (C.W.R.)
| | - Carl A. Strausbaugh
- Northwest Irrigation and Soils Research, United States Department of Agriculture, Kimberly, ID 83341, USA; (P.J.G.); (C.W.R.)
| | - Paul J. Galewski
- Northwest Irrigation and Soils Research, United States Department of Agriculture, Kimberly, ID 83341, USA; (P.J.G.); (C.W.R.)
| | - Rakesh Minocha
- Northern Research Station, USDA Forest Service, Durham, NH 03824, USA;
| | - Christopher W. Rogers
- Northwest Irrigation and Soils Research, United States Department of Agriculture, Kimberly, ID 83341, USA; (P.J.G.); (C.W.R.)
| |
Collapse
|
221
|
Wang Y, Wu J, Yan J, Guo M, Xu L, Hou L, Zou Q. Comparative genome analysis of plant ascomycete fungal pathogens with different lifestyles reveals distinctive virulence strategies. BMC Genomics 2022; 23:34. [PMID: 34996360 PMCID: PMC8740420 DOI: 10.1186/s12864-021-08165-1] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2021] [Accepted: 11/10/2021] [Indexed: 12/21/2022] Open
Abstract
BACKGROUND Pathogens have evolved diverse lifestyles and adopted pivotal new roles in both natural ecosystems and human environments. However, the molecular mechanisms underlying their adaptation to new lifestyles are obscure. Comparative genomics was adopted to determine distinct strategies of plant ascomycete fungal pathogens with different lifestyles and to elucidate their distinctive virulence strategies. RESULTS We found that plant ascomycete biotrophs exhibited lower gene gain and loss events and loss of CAZyme-encoding genes involved in plant cell wall degradation and biosynthesis gene clusters for the production of secondary metabolites in the genome. Comparison with the candidate effectome detected distinctive variations between plant biotrophic pathogens and other groups (including human, necrotrophic and hemibiotrophic pathogens). The results revealed the biotroph-specific and lifestyle-conserved candidate effector families. These data have been configured in web-based genome browser applications for public display ( http://lab.malab.cn/soft/PFPG ). This resource allows researchers to profile the genome, proteome, secretome and effectome of plant fungal pathogens. CONCLUSIONS Our findings demonstrated different genome evolution strategies of plant fungal pathogens with different lifestyles and explored their lifestyle-conserved and specific candidate effectors. It will provide a new basis for discovering the novel effectors and their pathogenic mechanisms.
Collapse
Affiliation(s)
- Yansu Wang
- School of Electronic and Communication Engineering, Shenzhen Polytechnic, 518000, Shenzhen, P. R. China
- Institute of Fundamental and Frontier Sciences, University of Electronic Science and Technology of China, 610054, Chengdu, P. R. China
| | - Jie Wu
- Key Laboratory of Biotechnology for Medicinal Plants of Jiangsu Province, School of Life Sciences, Jiangsu Normal University, 221116, Xuzhou, P. R. China
| | - Jiacheng Yan
- Key Laboratory of Biotechnology for Medicinal Plants of Jiangsu Province, School of Life Sciences, Jiangsu Normal University, 221116, Xuzhou, P. R. China
| | - Ming Guo
- Department of Agronomy and Horticulture, University of Nebraska, Lincoln, USA
| | - Lei Xu
- School of Electronic and Communication Engineering, Shenzhen Polytechnic, 518000, Shenzhen, P. R. China
| | - Liping Hou
- Beidahuang Industry Group General Hospital, Harbin, China.
| | - Quan Zou
- Institute of Fundamental and Frontier Sciences, University of Electronic Science and Technology of China, 610054, Chengdu, P. R. China.
- State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, Harbin, China.
| |
Collapse
|
222
|
Monclaro AV, Gorgulho Silva CDO, Gomes HAR, Moreira LRDS, Filho EXF. The enzyme interactome concept in filamentous fungi linked to biomass valorization. BIORESOURCE TECHNOLOGY 2022; 344:126200. [PMID: 34710591 DOI: 10.1016/j.biortech.2021.126200] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/28/2021] [Revised: 10/19/2021] [Accepted: 10/20/2021] [Indexed: 05/15/2023]
Abstract
Biomass represents an abundant and inexpensive source of sugars and aromatic compounds that can be used as raw materials for conversion into value-added bioproducts. Filamentous fungi are sources of plant cell wall degrading enzymes in nature. Understanding the interactions between enzymes is crucial for optimizing biomass degradation processes. Herein, the concept of the interactome is presented as a holistic approach that depicts the interactions among enzymes, substrates, metabolites, and inhibitors. The interactome encompasses several stages of biomass degradation, starting with the sensing of the substrate and the subsequent synthesis of hydrolytic and oxidative enzymes (fungus-substrate interaction). Enzyme-enzyme interactions are exemplified in the complex processes of lignocellulosic biomass degradation. The enzyme-substrate-metabolite-inhibitor interaction also provides a better understanding of biomass conversion, allowing bioproduct production from recalcitrant agro-industrial residues, thus bringing greater value to residual biomass. Finally, technological applications are presented for optimizing the interactome at various levels.
Collapse
Affiliation(s)
- Antonielle Vieira Monclaro
- Center for Microbial Ecology and Technology (CMET), Department of Biotechnology, Faculty of Bioscience Engineering, Ghent University, Coupure Links 653, 9000 Ghent, Belgium; Center for Advanced Process Technology and Urban Resource Efficiency (CAPTURE), Frieda Saeysstraat, 9052 Ghent, Belgium
| | - Caio de Oliveira Gorgulho Silva
- Faculty of Chemistry, Biotechnology and Food Science, Norwegian University of Life Sciences (NMBU), P.O. Box 5003, 1432 Ås, Norway; Protein Chemistry and Enzyme Technology Section, DTU Bioengineering, Department of Biotechnology and Biomedicine, Technical University of Denmark, 2800 Kgs Lyngby, Denmark
| | - Helder Andrey Rocha Gomes
- Health Science School, University Center of the Federal District (UDF), DF, Brasília 70390045, Brazil
| | | | | |
Collapse
|
223
|
Liu N, Wang P, Li X, Pei Y, Sun Y, Ma X, Ge X, Zhu Y, Li F, Hou Y. Long Non-Coding RNAs profiling in pathogenesis of Verticillium dahliae: New insights in the host-pathogen interaction. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2022; 314:111098. [PMID: 34895536 DOI: 10.1016/j.plantsci.2021.111098] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/04/2021] [Revised: 09/29/2021] [Accepted: 10/18/2021] [Indexed: 06/14/2023]
Abstract
Verticillium dahliae causes vascular wilt disease on cotton (Gossypium hirsutum), resulting in devastating yield loss worldwide. While little is known about the mechanism of long non-coding RNAs (lncRNAs), several lncRNAs have been implicated in numerous physiological processes and diseases. To better understand V. dahliae pathogenesis, lncRNA was conducted in a V. dahliae virulence model. Potential target genes of significantly regulated lncRNAs were predicted using cis/trans-regulatory algorithms. This study provides evidence for lncRNAs' regulatory role in pathogenesis-related genes. Interestingly, lncRNAs were identified and varying in terms of RNA length and nutrient starvation treatments. Efficient pathogen nutrition during the interaction with the host is a requisite factor during infection. Our observations directly link to mutated V. dahliae invasion, explaining infected cotton have lower pathogenicity and lethality compared to V. dahliae. Remarkably, lncRNAs XLOC_006536 and XLOC_000836 involved in the complex regulation of pathogenesis-related genes in V. dahliae were identified. For the first time the regulatory role of lncRNAs in filamentous fungi was uncovered, and it is our contention that elucidation of lncRNAs will advance our understanding in the development and pathogenesis of V. dahliae and offer alternatives in the control of the diseases caused by fungus V. dahliae attack.
Collapse
Affiliation(s)
- Nana Liu
- College of Science, China Agricultural University, No. 2 Yuanmingyuan West Road, Beijing, 100193, People's Republic of China
| | - Ping Wang
- College of Science, China Agricultural University, No. 2 Yuanmingyuan West Road, Beijing, 100193, People's Republic of China
| | - Xiancai Li
- College of Science, China Agricultural University, No. 2 Yuanmingyuan West Road, Beijing, 100193, People's Republic of China
| | - Yakun Pei
- College of Science, China Agricultural University, No. 2 Yuanmingyuan West Road, Beijing, 100193, People's Republic of China
| | - Yun Sun
- College of Science, China Agricultural University, No. 2 Yuanmingyuan West Road, Beijing, 100193, People's Republic of China
| | - Xiaowen Ma
- College of Science, China Agricultural University, No. 2 Yuanmingyuan West Road, Beijing, 100193, People's Republic of China
| | - Xiaoyang Ge
- State Key Laboratory of Cotton Biology, Institute of Cotton Research of the Chinese Academy of Agricultural Sciences, Anyang, 455000, People's Republic of China
| | - Yutao Zhu
- College of Science, China Agricultural University, No. 2 Yuanmingyuan West Road, Beijing, 100193, People's Republic of China
| | - Fuguang Li
- State Key Laboratory of Cotton Biology, Institute of Cotton Research of the Chinese Academy of Agricultural Sciences, Anyang, 455000, People's Republic of China.
| | - Yuxia Hou
- College of Science, China Agricultural University, No. 2 Yuanmingyuan West Road, Beijing, 100193, People's Republic of China.
| |
Collapse
|
224
|
Autotoxin Rg 1 Induces Degradation of Root Cell Walls and Aggravates Root Rot by Modifying the Rhizospheric Microbiome. Microbiol Spectr 2021; 9:e0167921. [PMID: 34908454 PMCID: PMC8672892 DOI: 10.1128/spectrum.01679-21] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
Management of crop root rot disease is one of the key factors in ensuring sustainable development in agricultural production. The accumulation of autotoxins and pathogens in soil has been reported as a primary driver of root rot diseases; however, less is known about the correlation of plants, their associated pathogens and microbiome mediated by autotoxins as well as the contributions autotoxins make to the occurrence of root rot disease. Here, we integrated metabolomic, transcriptomic, and rhizosphere microbiome analyses to identify the root cell wall degradants cellobiose and d-galacturonic acid as being induced by the autotoxic ginsenoside Rg1 of Panax notoginseng, and we found that exogenous cellobiose and d-galacturonic acid in addition to Rg1 could aggravate root rot disease by modifying the rhizosphere microbiome. Microorganisms that correlated positively with root rot disease were enriched and those that correlated negatively were suppressed by exogenous cellobiose, d-galacturonic acid, and Rg1. In particular, they promoted the growth and infection of the soilborne pathogen Ilyonectria destructans by upregulating pathogenicity-related genes. Cellobiose showed the highest ability to modify the microbiome and enhance pathogenicity, followed by Rg1 and then d-galacturonic acid. Collectively, autotoxins damaged root systems to release a series of cell wall degradants, some of which modified the rhizosphere microbiome so that the host plant became more susceptible to root rot disease. IMPORTANCE The accumulation of autotoxins and pathogens in soil has been reported as a primary driver of root rot disease and one of the key factors limiting sustainable development in agricultural production. However, less is known about the correlation of plants, their associated pathogens, and the microbiome mediated by autotoxins, as well as the contributions autotoxins make to the occurrence of root rot disease. In our study, we found that autotoxins can damage root systems, thus releasing a series of cell wall degradants, and both autotoxins and the cell wall degradants they induce could aggravate root rot disease by reassembling the rhizosphere microbiome, resulting in the enrichment of pathogens and microorganisms positively related to the disease but the suppression of beneficial microorganisms. Deciphering this mechanism among plants, their associated pathogens, and the microbiome mediated by autotoxins will advance our fundamental knowledge of and ability to degrade autotoxins or employ microbiome to alleviate root rot disease in agricultural systems.
Collapse
|
225
|
Vanegas Cano LJ, Mrtinez Perala ST, Coy Barrera E, Ardila Barrantes HD. RESPUESTAS TEMPRANAS EN SIMPLASTO DE TALLO ASOCIADAS A LA RUTA DEL ÁCIDO SALICÍLICO EN LA INTERACCIÓN CLAVEL (Dianthus caryophyllus, caryophyllaceae)- FOD (Fusarium oxysporum f. sp. dianthi). ACTA BIOLÓGICA COLOMBIANA 2021. [DOI: 10.15446/abc.v27n2.85778] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
El marchitamiento vascular causado por Fusarium oxysporum f. sp. dianthi (Fod) es la enfermedad que más afecta el cultivo de clavel. Comprender la naturaleza de la interacción entre la planta y el patógeno permitirá el futuro desarrollo de nuevas alternativas de control de la enfermedad. Es por ello que se busca tener evidencia experimental que permita entender el papel de la ruta de señalización del ácido salicílico (SA) y enzimas asociadas con la resistencia de la planta como son fenilalanina amonio liasa (PAL), polifenoloxidasa (PFO), guayacol peroxidasa (GPX) y fosfolipasa D (PLD), a nivel del simplasto del tallo durante la interacción con él patógeno. Se estableció un ensayo in vivo utilizando dos variedades de clavel con diferentes niveles de resistencia a la enfermedad y se determinaron en simplasto de tallo los niveles de SA, MeSA (salicilato de metilo) y las enzimas objeto de estudio. Se presentó inducción de las enzimas estudiadas, evidenciando en el caso de la enzima GPX un aumento a nivel transcripcional. Así mismo, se presentó un incremento de MeSA en los 1 y 14 dpi, mientras que SA se acumuló en tiempos tardíos. La correlación de Pearson determinó que a este nivel existe una acumulación de la hormona MeSA al 1 dpi con los niveles de las enzimas GPX y PLD. Se propone que la respuesta en este órgano de clavel puede estar activada por la ruta de señalización que involucra SA, afectando el metabolismo secundario y la regulación de especies reactivas de oxígeno.
Collapse
|
226
|
Ustilago maydis Secreted Endo-Xylanases Are Involved in Fungal Filamentation and Proliferation on and Inside Plants. J Fungi (Basel) 2021; 7:jof7121081. [PMID: 34947062 PMCID: PMC8706147 DOI: 10.3390/jof7121081] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2021] [Revised: 12/10/2021] [Accepted: 12/12/2021] [Indexed: 01/06/2023] Open
Abstract
Plant pathogenic fungi must be able to degrade host cell walls in order to penetrate and invade plant tissues. Among the plant cell wall degrading enzymes (PCWDEs) produced, xylanases are of special interest since its degradation target, xylan, is one of the main structural polysaccharides in plant cell walls. In the biotrophic fungus Ustilago maydis, attempts to characterize PCWDEs required for virulence have been unsuccessful, most likely due to functional redundancy. In previous high-throughput screening, we found one xylanase to be important for U. maydis infection. Here, we characterize the entire U. maydis endo-xylanase family, comprising two enzymes from the glycoside hydrolase (GH) 10 family, Xyn1 and Xyn2, one from GH11, Xyn11A, and one from GH43, Xyn3. We show that all endo-xylanases except Xyn3 are secreted and involved in infection in a non-redundant manner, suggesting different roles for each xylanase in this process. Taking a closer look inside the plant during the pathogenic process, we observed that all secreted xylanases were necessary for fungal proliferation. Finally, we found that at least Xyn11A accumulated in the apoplast of the infected plant after three days, highlighting the role of these enzymes as important secreted proteins during fungal proliferation inside plant tissues.
Collapse
|
227
|
Poaceae-specific cell wall-derived oligosaccharides activate plant immunity via OsCERK1 during Magnaporthe oryzae infection in rice. Nat Commun 2021. [DOI: 10.1038/s41467-021-22456-x\] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
AbstractMany phytopathogens secrete cell wall degradation enzymes (CWDEs) to damage host cells and facilitate colonization. As the major components of the plant cell wall, cellulose and hemicellulose are the targets of CWDEs. Damaged plant cells often release damage-associated molecular patterns (DAMPs) to trigger plant immune responses. Here, we establish that the fungal pathogen Magnaporthe oryzae secretes the endoglucanases MoCel12A and MoCel12B during infection of rice (Oryza sativa). These endoglucanases target hemicellulose of the rice cell wall and release two specific oligosaccharides, namely the trisaccharide 31-β-D-Cellobiosyl-glucose and the tetrasaccharide 31-β-D-Cellotriosyl-glucose. 31-β-D-Cellobiosyl-glucose and 31-β-D-Cellotriosyl-glucose bind the immune receptor OsCERK1 but not the chitin binding protein OsCEBiP. However, they induce the dimerization of OsCERK1 and OsCEBiP. In addition, these Poaceae cell wall-specific oligosaccharides trigger a burst of reactive oxygen species (ROS) that is largely compromised in oscerk1 and oscebip mutants. We conclude that 31-β-D-Cellobiosyl-glucose and 31-β-D-Cellotriosyl-glucose are specific DAMPs released from the hemicellulose of rice cell wall, which are perceived by an OsCERK1 and OsCEBiP immune complex during M. oryzae infection in rice.
Collapse
|
228
|
Dou Y, Yang Y, Mund NK, Wei Y, Liu Y, Wei L, Wang Y, Du P, Zhou Y, Liesche J, Huang L, Fang H, Zhao C, Li J, Wei Y, Chen S. Comparative Analysis of Herbaceous and Woody Cell Wall Digestibility by Pathogenic Fungi. Molecules 2021; 26:molecules26237220. [PMID: 34885803 PMCID: PMC8659149 DOI: 10.3390/molecules26237220] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2021] [Revised: 11/21/2021] [Accepted: 11/25/2021] [Indexed: 11/16/2022] Open
Abstract
Fungal pathogens have evolved combinations of plant cell-wall-degrading enzymes (PCWDEs) to deconstruct host plant cell walls (PCWs). An understanding of this process is hoped to create a basis for improving plant biomass conversion efficiency into sustainable biofuels and bioproducts. Here, an approach integrating enzyme activity assay, biomass pretreatment, field emission scanning electron microscopy (FESEM), and genomic analysis of PCWDEs were applied to examine digestibility or degradability of selected woody and herbaceous biomass by pathogenic fungi. Preferred hydrolysis of apple tree branch, rapeseed straw, or wheat straw were observed by the apple-tree-specific pathogen Valsa mali, the rapeseed pathogen Sclerotinia sclerotiorum, and the wheat pathogen Rhizoctonia cerealis, respectively. Delignification by peracetic acid (PAA) pretreatment increased PCW digestibility, and the increase was generally more profound with non-host than host PCW substrates. Hemicellulase pretreatment slightly reduced or had no effect on hemicellulose content in the PCW substrates tested; however, the pretreatment significantly changed hydrolytic preferences of the selected pathogens, indicating a role of hemicellulose branching in PCW digestibility. Cellulose organization appears to also impact digestibility of host PCWs, as reflected by differences in cellulose microfibril organization in woody and herbaceous PCWs and variation in cellulose-binding domain organization in cellulases of pathogenic fungi, which is known to influence enzyme access to cellulose. Taken together, this study highlighted the importance of chemical structure of both hemicelluloses and cellulose in host PCW digestibility by fungal pathogens.
Collapse
Affiliation(s)
- Yanhua Dou
- College of Life Sciences, Northwest A&F University, Yangling, Xianyang 712100, China; (Y.D.); (N.K.M.); (Y.W.); (Y.L.); (L.W.); (Y.W.); (P.D.); (Y.Z.); (J.L.); (H.F.); (C.Z.); (J.L.)
- Biomass Energy Center for Arid and Semi-Arid Lands, Northwest A&F University, Yangling, Xianyang 712100, China
| | - Yan Yang
- College of Chemistry and Chemical Engineering, Shanxi Datong University, Datong 037009, China;
| | - Nitesh Kumar Mund
- College of Life Sciences, Northwest A&F University, Yangling, Xianyang 712100, China; (Y.D.); (N.K.M.); (Y.W.); (Y.L.); (L.W.); (Y.W.); (P.D.); (Y.Z.); (J.L.); (H.F.); (C.Z.); (J.L.)
- Biomass Energy Center for Arid and Semi-Arid Lands, Northwest A&F University, Yangling, Xianyang 712100, China
| | - Yanping Wei
- College of Life Sciences, Northwest A&F University, Yangling, Xianyang 712100, China; (Y.D.); (N.K.M.); (Y.W.); (Y.L.); (L.W.); (Y.W.); (P.D.); (Y.Z.); (J.L.); (H.F.); (C.Z.); (J.L.)
- Biomass Energy Center for Arid and Semi-Arid Lands, Northwest A&F University, Yangling, Xianyang 712100, China
| | - Yisong Liu
- College of Life Sciences, Northwest A&F University, Yangling, Xianyang 712100, China; (Y.D.); (N.K.M.); (Y.W.); (Y.L.); (L.W.); (Y.W.); (P.D.); (Y.Z.); (J.L.); (H.F.); (C.Z.); (J.L.)
- Biomass Energy Center for Arid and Semi-Arid Lands, Northwest A&F University, Yangling, Xianyang 712100, China
| | - Linfang Wei
- College of Life Sciences, Northwest A&F University, Yangling, Xianyang 712100, China; (Y.D.); (N.K.M.); (Y.W.); (Y.L.); (L.W.); (Y.W.); (P.D.); (Y.Z.); (J.L.); (H.F.); (C.Z.); (J.L.)
- Biomass Energy Center for Arid and Semi-Arid Lands, Northwest A&F University, Yangling, Xianyang 712100, China
| | - Yifan Wang
- College of Life Sciences, Northwest A&F University, Yangling, Xianyang 712100, China; (Y.D.); (N.K.M.); (Y.W.); (Y.L.); (L.W.); (Y.W.); (P.D.); (Y.Z.); (J.L.); (H.F.); (C.Z.); (J.L.)
- Biomass Energy Center for Arid and Semi-Arid Lands, Northwest A&F University, Yangling, Xianyang 712100, China
| | - Panpan Du
- College of Life Sciences, Northwest A&F University, Yangling, Xianyang 712100, China; (Y.D.); (N.K.M.); (Y.W.); (Y.L.); (L.W.); (Y.W.); (P.D.); (Y.Z.); (J.L.); (H.F.); (C.Z.); (J.L.)
- Biomass Energy Center for Arid and Semi-Arid Lands, Northwest A&F University, Yangling, Xianyang 712100, China
| | - Yunheng Zhou
- College of Life Sciences, Northwest A&F University, Yangling, Xianyang 712100, China; (Y.D.); (N.K.M.); (Y.W.); (Y.L.); (L.W.); (Y.W.); (P.D.); (Y.Z.); (J.L.); (H.F.); (C.Z.); (J.L.)
- Biomass Energy Center for Arid and Semi-Arid Lands, Northwest A&F University, Yangling, Xianyang 712100, China
| | - Johannes Liesche
- College of Life Sciences, Northwest A&F University, Yangling, Xianyang 712100, China; (Y.D.); (N.K.M.); (Y.W.); (Y.L.); (L.W.); (Y.W.); (P.D.); (Y.Z.); (J.L.); (H.F.); (C.Z.); (J.L.)
- Biomass Energy Center for Arid and Semi-Arid Lands, Northwest A&F University, Yangling, Xianyang 712100, China
| | - Lili Huang
- College of Plant Protection, Northwest A&F University, Yangling, Xianyang 712100, China;
| | - Hao Fang
- College of Life Sciences, Northwest A&F University, Yangling, Xianyang 712100, China; (Y.D.); (N.K.M.); (Y.W.); (Y.L.); (L.W.); (Y.W.); (P.D.); (Y.Z.); (J.L.); (H.F.); (C.Z.); (J.L.)
- Biomass Energy Center for Arid and Semi-Arid Lands, Northwest A&F University, Yangling, Xianyang 712100, China
| | - Chen Zhao
- College of Life Sciences, Northwest A&F University, Yangling, Xianyang 712100, China; (Y.D.); (N.K.M.); (Y.W.); (Y.L.); (L.W.); (Y.W.); (P.D.); (Y.Z.); (J.L.); (H.F.); (C.Z.); (J.L.)
- Biomass Energy Center for Arid and Semi-Arid Lands, Northwest A&F University, Yangling, Xianyang 712100, China
| | - Jisheng Li
- College of Life Sciences, Northwest A&F University, Yangling, Xianyang 712100, China; (Y.D.); (N.K.M.); (Y.W.); (Y.L.); (L.W.); (Y.W.); (P.D.); (Y.Z.); (J.L.); (H.F.); (C.Z.); (J.L.)
- Biomass Energy Center for Arid and Semi-Arid Lands, Northwest A&F University, Yangling, Xianyang 712100, China
| | - Yahong Wei
- College of Life Sciences, Northwest A&F University, Yangling, Xianyang 712100, China; (Y.D.); (N.K.M.); (Y.W.); (Y.L.); (L.W.); (Y.W.); (P.D.); (Y.Z.); (J.L.); (H.F.); (C.Z.); (J.L.)
- Biomass Energy Center for Arid and Semi-Arid Lands, Northwest A&F University, Yangling, Xianyang 712100, China
- Shaanxi Key Laboratory of Agricultural and Environmental Microbiology, Northwest A&F University, Yangling, Xianyang 712100, China
- Correspondence: (Y.W.); (S.C.); Tel.: +86-029-87091021 (S.C.)
| | - Shaolin Chen
- College of Life Sciences, Northwest A&F University, Yangling, Xianyang 712100, China; (Y.D.); (N.K.M.); (Y.W.); (Y.L.); (L.W.); (Y.W.); (P.D.); (Y.Z.); (J.L.); (H.F.); (C.Z.); (J.L.)
- Biomass Energy Center for Arid and Semi-Arid Lands, Northwest A&F University, Yangling, Xianyang 712100, China
- Shaanxi Key Laboratory of Agricultural and Environmental Microbiology, Northwest A&F University, Yangling, Xianyang 712100, China
- Correspondence: (Y.W.); (S.C.); Tel.: +86-029-87091021 (S.C.)
| |
Collapse
|
229
|
Reddy B, Kumar A, Mehta S, Sheoran N, Chinnusamy V, Prakash G. Hybrid de novo genome-reassembly reveals new insights on pathways and pathogenicity determinants in rice blast pathogen Magnaporthe oryzae RMg_Dl. Sci Rep 2021; 11:22922. [PMID: 34824307 PMCID: PMC8616942 DOI: 10.1038/s41598-021-01980-2] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2021] [Accepted: 11/01/2021] [Indexed: 01/20/2023] Open
Abstract
Blast disease incited by Magnaporthe oryzae is a major threat to sustain rice production in all rice growing nations. The pathogen is widely distributed in all rice paddies and displays rapid aerial transmissions, and seed-borne latent infection. In order to understand the genetic variability, host specificity, and molecular basis of the pathogenicity-associated traits, the whole genome of rice infecting Magnaporthe oryzae (Strain RMg_Dl) was sequenced using the Illumina and PacBio (RSII compatible) platforms. The high-throughput hybrid assembly of short and long reads resulted in a total of 375 scaffolds with a genome size of 42.43 Mb. Furthermore, comparative genome analysis revealed 99% average nucleotide identity (ANI) with other oryzae genomes and 83% against M. grisea, and 73% against M. poe genomes. The gene calling identified 10,553 genes with 10,539 protein-coding sequences. Among the detected transposable elements, the LTR/Gypsy and Type LINE showed high occurrence. The InterProScan of predicted protein sequences revealed that 97% protein family (PFAM), 98% superfamily, and 95% CDD were shared among RMg_Dl and reference 70-15 genome, respectively. Additionally, 550 CAZymes with high GH family content/distribution and cell wall degrading enzymes (CWDE) such endoglucanase, beta-glucosidase, and pectate lyase were also deciphered in RMg_Dl. The prevalence of virulence factors determination revealed that 51 different VFs were found in the genome. The biochemical pathway such as starch and sucrose metabolism, mTOR signaling, cAMP signaling, MAPK signaling pathways related genes were identified in the genome. The 49,065 SNPs, 3267 insertions and 3611 deletions were detected, and majority of these varinats were located on downstream and upstream region. Taken together, the generated information will be useful to develop a specific marker for diagnosis, pathogen surveillance and tracking, molecular taxonomy, and species delineation which ultimately leads to device improved management strategies for blast disease.
Collapse
Affiliation(s)
- Bhaskar Reddy
- Division of Plant Pathology, ICAR-Indian Agricultural Research Institute, New Delhi, 110012, India
| | - Aundy Kumar
- Division of Plant Pathology, ICAR-Indian Agricultural Research Institute, New Delhi, 110012, India.
| | - Sahil Mehta
- Crop Improvement Group, International Centre for Genetic Engineering and Biotechnology, New Delhi, 110067, India
| | - Neelam Sheoran
- Division of Plant Pathology, ICAR-Indian Agricultural Research Institute, New Delhi, 110012, India
| | - Viswanathan Chinnusamy
- Division of Plant Physiology, ICAR-Indian Agricultural Research Institute, New Delhi, 110012, India
| | - Ganesan Prakash
- Division of Plant Pathology, ICAR-Indian Agricultural Research Institute, New Delhi, 110012, India
| |
Collapse
|
230
|
Kelly M, Pasmans F, Muñoz JF, Shea TP, Carranza S, Cuomo CA, Martel A. Diversity, multifaceted evolution, and facultative saprotrophism in the European Batrachochytrium salamandrivorans epidemic. Nat Commun 2021; 12:6688. [PMID: 34795258 PMCID: PMC8602665 DOI: 10.1038/s41467-021-27005-0] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2021] [Accepted: 10/28/2021] [Indexed: 01/06/2023] Open
Abstract
While emerging fungi threaten global biodiversity, the paucity of fungal genome assemblies impedes thoroughly characterizing epidemics and developing effective mitigation strategies. Here, we generate de novo genomic assemblies for six outbreaks of the emerging pathogen Batrachochytrium salamandrivorans (Bsal). We reveal the European epidemic currently damaging amphibian populations to comprise multiple, highly divergent lineages demonstrating isolate-specific adaptations and metabolic capacities. In particular, we show extensive gene family expansions and acquisitions, through a variety of evolutionary mechanisms, and an isolate-specific saprotrophic lifecycle. This finding both explains the chytrid's ability to divorce transmission from host density, producing Bsal's enigmatic host population declines, and is a key consideration in developing successful mitigation measures.
Collapse
Affiliation(s)
- Moira Kelly
- Wildlife Health Ghent, Department of Pathology, Bacteriology and Avian Diseases, Faculty of Veterinary Medicine, Ghent University, 9820, Merelbeke, Belgium.
| | - Frank Pasmans
- grid.5342.00000 0001 2069 7798Wildlife Health Ghent, Department of Pathology, Bacteriology and Avian Diseases, Faculty of Veterinary Medicine, Ghent University, 9820 Merelbeke, Belgium
| | - Jose F. Muñoz
- grid.66859.34Broad Institute of MIT and Harvard, Cambridge, 02142 MA USA
| | - Terrance P. Shea
- grid.66859.34Broad Institute of MIT and Harvard, Cambridge, 02142 MA USA
| | - Salvador Carranza
- grid.507636.10000 0004 0424 5398Institute of Evolutionary Biology (CSIC-UPF), 08003 Barcelona, Spain
| | - Christina A. Cuomo
- grid.66859.34Broad Institute of MIT and Harvard, Cambridge, 02142 MA USA
| | - An Martel
- Wildlife Health Ghent, Department of Pathology, Bacteriology and Avian Diseases, Faculty of Veterinary Medicine, Ghent University, 9820, Merelbeke, Belgium.
| |
Collapse
|
231
|
Tariqjaveed M, Mateen A, Wang S, Qiu S, Zheng X, Zhang J, Bhadauria V, Sun W. Versatile effectors of phytopathogenic fungi target host immunity. JOURNAL OF INTEGRATIVE PLANT BIOLOGY 2021; 63:1856-1873. [PMID: 34383388 DOI: 10.1111/jipb.13162] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/06/2021] [Accepted: 08/10/2021] [Indexed: 06/13/2023]
Abstract
Phytopathogenic fungi secrete a large arsenal of effector molecules, including proteinaceous effectors, small RNAs, phytohormones and derivatives thereof. The pathogenicity of fungal pathogens is primarily determined by these effectors that are secreted into host cells to undermine innate immunity, as well as to facilitate the acquisition of nutrients for their in planta growth and proliferation. After conventional and non-conventional secretion, fungal effectors are translocated into different subcellular compartments of the host cells to interfere with various biological processes. In extracellular spaces, apoplastic effectors cope with physical and chemical barriers to break the first line of plant defenses. Intracellular effectors target essential immune components on the plasma membrane, in the cytosol, including cytosolic organelles, and in the nucleus to suppress host immunity and reprogram host physiology, favoring pathogen colonization. In this review, we comprehensively summarize the recent advances in fungal effector biology, with a focus on the versatile virulence functions of fungal effectors in promoting pathogen infection and colonization. A perspective of future research on fungal effector biology is also discussed.
Collapse
Affiliation(s)
- Muhammad Tariqjaveed
- Department of Plant Pathology, College of Plant Protection, China Agricultural University, Beijing, 100193, China
- The Ministry of Agriculture Key Laboratory of Pest Monitoring and Green Management, and Joint Laboratory for International Cooperation in Crop Molecular Breeding, Ministry of Education, China Agricultural University, Beijing, 100193, China
| | - Abdul Mateen
- Department of Plant Pathology, College of Plant Protection, China Agricultural University, Beijing, 100193, China
- The Ministry of Agriculture Key Laboratory of Pest Monitoring and Green Management, and Joint Laboratory for International Cooperation in Crop Molecular Breeding, Ministry of Education, China Agricultural University, Beijing, 100193, China
| | - Shanzhi Wang
- Department of Plant Pathology, College of Plant Protection, China Agricultural University, Beijing, 100193, China
- The Ministry of Agriculture Key Laboratory of Pest Monitoring and Green Management, and Joint Laboratory for International Cooperation in Crop Molecular Breeding, Ministry of Education, China Agricultural University, Beijing, 100193, China
| | - Shanshan Qiu
- Department of Plant Pathology, College of Plant Protection, China Agricultural University, Beijing, 100193, China
- The Ministry of Agriculture Key Laboratory of Pest Monitoring and Green Management, and Joint Laboratory for International Cooperation in Crop Molecular Breeding, Ministry of Education, China Agricultural University, Beijing, 100193, China
| | - Xinhang Zheng
- Department of Plant Pathology, College of Plant Protection, China Agricultural University, Beijing, 100193, China
- The Ministry of Agriculture Key Laboratory of Pest Monitoring and Green Management, and Joint Laboratory for International Cooperation in Crop Molecular Breeding, Ministry of Education, China Agricultural University, Beijing, 100193, China
| | - Jie Zhang
- Institute of Microbiology, The Chinese Academy of Sciences, Beijing, 100101, China
| | - Vijai Bhadauria
- Department of Plant Pathology, College of Plant Protection, China Agricultural University, Beijing, 100193, China
| | - Wenxian Sun
- Department of Plant Pathology, College of Plant Protection, China Agricultural University, Beijing, 100193, China
- The Ministry of Agriculture Key Laboratory of Pest Monitoring and Green Management, and Joint Laboratory for International Cooperation in Crop Molecular Breeding, Ministry of Education, China Agricultural University, Beijing, 100193, China
- Department of Plant Pathology, College of Plant Protection, Jilin Agricultural University, Changchun, 130118, China
| |
Collapse
|
232
|
Production of an endo-polygalacturonase from Fusarium proliferatum isolated from agro-industrial waste. BIOCATALYSIS AND AGRICULTURAL BIOTECHNOLOGY 2021. [DOI: 10.1016/j.bcab.2021.102199] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
233
|
Carlos-Shanley C, Guerra T, Hahn D. Draft genomes of non-nitrogen-fixing Frankia strains. J Genomics 2021; 9:68-75. [PMID: 34703504 PMCID: PMC8542509 DOI: 10.7150/jgen.65429] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2021] [Accepted: 09/14/2021] [Indexed: 12/04/2022] Open
Abstract
In this study, we describe the genomes of two novel candidate species of non-nitrogen fixing Frankia that were isolated from the root nodules of Coriaria nepalensis and Alnus glutinosa, genospecies CN and Ag, respectively. Comparative genomic analyses revealed that both genospecies lack genes essential for nitrogen-fixation and possess genes involved in the degradation of plant cell walls. Additionally, we found distinct biosynthetic gene clusters in each genospecies. The availability of these genomes will contribute to the study of the taxonomy and evolution of actinorhizal symbioses.
Collapse
Affiliation(s)
- Camila Carlos-Shanley
- Texas State University, Department of Biology, 601 University Drive, San Marcos, TX 78666, USA
| | - Trina Guerra
- Texas State University, Department of Biology, 601 University Drive, San Marcos, TX 78666, USA
| | - Dittmar Hahn
- Texas State University, Department of Biology, 601 University Drive, San Marcos, TX 78666, USA
| |
Collapse
|
234
|
Oberti H, Spangenberg G, Cogan N, Reyno R, Feijoo M, Murchio S, Dalla-Rizza M. Genome-wide analysis of Claviceps paspali: insights into the secretome of the main species causing ergot disease in Paspalum spp. BMC Genomics 2021; 22:766. [PMID: 34702162 PMCID: PMC8549174 DOI: 10.1186/s12864-021-08077-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2020] [Accepted: 10/11/2021] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND The phytopatogen Claviceps paspali is the causal agent of Ergot disease in Paspalum spp., which includes highly productive forage grasses such as P. dilatatum. This disease impacts dairy and beef production by affecting seed quality and producing mycotoxins that can affect performance in feeding animals. The molecular basis of pathogenicity of C. paspali remains unknown, which makes it more difficult to find solutions for this problem. Secreted proteins are related to fungi virulence and can manipulate plant immunity acting on different subcellular localizations. Therefore, identifying and characterizing secreted proteins in phytopathogenic fungi will provide a better understanding of how they overcome host defense and cause disease. The aim of this work is to analyze the whole genome sequences of three C. paspali isolates to obtain a comparative genome characterization based on possible secreted proteins and pathogenicity factors present in their genome. In planta RNA-seq analysis at an early stage of the interaction of C. paspali with P. dilatatum stigmas was also conducted in order to determine possible secreted proteins expressed in the infection process. RESULTS C. paspali isolates had compact genomes and secretome which accounted for 4.6-4.9% of the predicted proteomes. More than 50% of the predicted secretome had no homology to known proteins. RNA-Seq revealed that three protein-coding genes predicted as secreted have mayor expression changes during 1 dpi vs 4 dpi. Also, three of the first 10 highly expressed genes in both time points were predicted as effector-like. CAZyme-like proteins were found in the predicted secretome and the most abundant family could be associated to pectine degradation. Based on this, pectine could be a main component affected by the cell wall degrading enzymes of C. paspali. CONCLUSIONS Based on predictions from DNA sequence and RNA-seq, unique probable secreted proteins and probable pathogenicity factors were identified in C. paspali isolates. This information opens new avenues in the study of the biology of this fungus and how it modulates the interaction with its host. Knowledge of the diversity of the secretome and putative pathogenicity genes should facilitate future research in disease management of Claviceps spp.
Collapse
Affiliation(s)
- H Oberti
- Instituto Nacional de Investigación Agropecuaria (INIA). Unidad de Biotecnología. Estación Experimental INIA Las Brujas, Ruta 48 km, 10, Canelones, Uruguay
| | - G Spangenberg
- Agriculture Victoria, AgriBio, Centre for AgriBioscience, 5 Ring Road, Bundoora, VIC, 3083, Australia
- School of Applied Systems Biology, La Trobe University, 5 Ring Road, Bundoora, VIC, 3083, Australia
| | - N Cogan
- Agriculture Victoria, AgriBio, Centre for AgriBioscience, 5 Ring Road, Bundoora, VIC, 3083, Australia
- School of Applied Systems Biology, La Trobe University, 5 Ring Road, Bundoora, VIC, 3083, Australia
| | - R Reyno
- Instituto Nacional de Investigación Agropecuaria (INIA). Programa Pasturas y Forrajes. Estación Experimental INIA Tacuarembó, Ruta 5 km, 386, Tacuarembó, Uruguay
| | - M Feijoo
- Centro Universitario Regional del Este (CURE), Polo de Desarrollo Universitario: Patogenicidad, toxicidad y genética en los ecosistemas pastoriles de la región Este de Uruguay, Ruta 8 km, 281, Treinta y Tres, Uruguay
| | - S Murchio
- Instituto Nacional de Investigación Agropecuaria (INIA). Unidad de Biotecnología. Estación Experimental INIA Las Brujas, Ruta 48 km, 10, Canelones, Uruguay
| | - M Dalla-Rizza
- Instituto Nacional de Investigación Agropecuaria (INIA). Unidad de Biotecnología. Estación Experimental INIA Las Brujas, Ruta 48 km, 10, Canelones, Uruguay.
| |
Collapse
|
235
|
Coexpression of Fungal Cell Wall-Modifying Enzymes Reveals Their Additive Impact on Arabidopsis Resistance to the Fungal Pathogen, Botrytis cinerea. BIOLOGY 2021; 10:biology10101070. [PMID: 34681168 PMCID: PMC8533531 DOI: 10.3390/biology10101070] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/22/2021] [Revised: 10/13/2021] [Accepted: 10/14/2021] [Indexed: 01/04/2023]
Abstract
Simple Summary In the present study, we created transgenic Arabidopsis plants overexpressing two fungal acetylesterases and a fungal feruloylesterase that acts on cell wall polysaccharides and studied their possible complementary additive effects on host defense reactions against the fungal pathogen, Botrytis cinerea. Our results showed that the Arabidopsis plants overexpressing two acetylesterases together contributed significantly higher resistance to B. cinerea in comparison with single protein expression. Conversely, coexpression of either of the acetyl esterases together with feruloylesterase compensates the latter’s negative impact on plant resistance. The results also provided evidence that combinatorial coexpression of some cell wall polysaccharide-modifying enzymes might exert an additive effect on plant immune response by constitutively priming plant defense pathways even before pathogen invasion. These findings have potential uses in protecting valuable crops against pathogens. Abstract The plant cell wall (CW) is an outer cell skeleton that plays an important role in plant growth and protection against both biotic and abiotic stresses. Signals and molecules produced during host–pathogen interactions have been proven to be involved in plant stress responses initiating signal pathways. Based on our previous research findings, the present study explored the possibility of additively or synergistically increasing plant stress resistance by stacking beneficial genes. In order to prove our hypothesis, we generated transgenic Arabidopsis plants constitutively overexpressing three different Aspergillus nidulans CW-modifying enzymes: a xylan acetylesterase, a rhamnogalacturonan acetylesterase and a feruloylesterase. The two acetylesterases were expressed either together or in combination with the feruloylesterase to study the effect of CW polysaccharide deacetylation and deferuloylation on Arabidopsis defense reactions against a fungal pathogen, Botrytis cinerea. The transgenic Arabidopsis plants expressing two acetylesterases together showed higher CW deacetylation and increased resistance to B. cinerea in comparison to wild-type (WT) Col-0 and plants expressing single acetylesterases. While the expression of feruloylesterase alone compromised plant resistance, coexpression of feruloylesterase together with either one of the two acetylesterases restored plant resistance to the pathogen. These CW modifications induced several defense-related genes in uninfected healthy plants, confirming their impact on plant resistance. These results demonstrated that coexpression of complementary CW-modifying enzymes in different combinations have an additive effect on plant stress response by constitutively priming the plant defense pathways. These findings might be useful for generating valuable crops with higher protections against biotic stresses.
Collapse
|
236
|
Turning Waste into Beneficial Resource: Implication of Ageratum conyzoides L. in Sustainable Agriculture, Environment and Biopharma Sectors. Mol Biotechnol 2021; 64:221-244. [PMID: 34628588 PMCID: PMC8502239 DOI: 10.1007/s12033-021-00409-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2021] [Accepted: 09/21/2021] [Indexed: 12/14/2022]
Abstract
The annual herb, Ageratum conyzoides L. (Asteraceae), is distributed throughout the world. Although invasive, it can be very useful as a source of essential oils, pharmaceuticals, biopesticides, and bioenergy. However, very limited information exists on the molecular basis of its different utility as previous investigations were mainly focused on phytochemical/biological activity profiling. Here we have explored various properties of A. conyzoides that may offer environmental, ecological, agricultural, and health benefits. As this aromatic plant harbors many important secondary metabolites that may have various implications, biotechnological interventions such as genomics, metabolomics and tissue-culture can be indispensable tools for their mass-production. Further, A. conyzoides acts as a natural reservoir of begomoviruses affecting a wide range of plant species. As the mechanisms of disease spreading and crop infection are not fully clear, whole-genome sequencing and various advanced molecular technologies including RNAi, CRISPER/Cas9, multi-omics approaches, etc., may aid to decipher the molecular mechanism of such disease development and thus, can be useful in crop protection. Overall, improved knowledge of A. conyzoides is not only essential for developing sustainable weed control strategy but can also offer potential ways for biomedicinal, environment, safe and clean agriculture applications.
Collapse
|
237
|
Yu M, Yu J, Cao H, Song T, Pan X, Qi Z, Du Y, Zhang R, Huang S, Liu W, Liu Y. SUN-Family Protein UvSUN1 Regulates the Development and Virulence of Ustilaginoidea virens. Front Microbiol 2021; 12:739453. [PMID: 34589077 PMCID: PMC8473917 DOI: 10.3389/fmicb.2021.739453] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2021] [Accepted: 08/26/2021] [Indexed: 11/28/2022] Open
Abstract
Ustilaginoidea virens, the causal agent of rice false smut disease, is an important plant pathogen that causes severe quantitative and qualitative losses in rice worldwide. UvSUN1 is the only member of Group-I SUN family proteins in U. virens. In this work, the role of UvSUN1 in different aspects of the U. virens biology was studied by phenotypic analysis of Uvsun1 knockout strains. We identified that UvSUN1 was expressed during both conidial germination and the infection of rice. Disruption of the Uvsun1 gene affected the hyphal growth, conidiation, morphology of hyphae and conidia, adhesion and virulence. We also found that UvSUN1 is involved in the production of toxic compounds, which are able to inhibit elongation of the germinated seeds. Moreover, RNA-seq data showed that knockout of Uvsun1 resulted in misregulation of a subset of genes involved in signal recognition and transduction system, glycometabolism, cell wall integrity, and secondary metabolism. Collectively, this study reveals that Uvsun1 is required for growth, cell wall integrity and pathogenicity of U. virens, thereby providing new insights into the function of SUN family proteins in the growth and pathogenesis of this pathogen.
Collapse
Affiliation(s)
- Mina Yu
- Institute of Plant Protection, Jiangsu Academy of Agricultural Science, Nanjing, China.,State Key Laboratory of Rice Biology, China National Rice Research Institute, Hangzhou, China.,State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences (CAS), Beijing, China
| | - Junjie Yu
- Institute of Plant Protection, Jiangsu Academy of Agricultural Science, Nanjing, China
| | - Huijuan Cao
- Institute of Plant Protection, Jiangsu Academy of Agricultural Science, Nanjing, China
| | - Tianqiao Song
- Institute of Plant Protection, Jiangsu Academy of Agricultural Science, Nanjing, China
| | - Xiayan Pan
- Institute of Plant Protection, Jiangsu Academy of Agricultural Science, Nanjing, China
| | - Zhongqiang Qi
- Institute of Plant Protection, Jiangsu Academy of Agricultural Science, Nanjing, China
| | - Yan Du
- Institute of Plant Protection, Jiangsu Academy of Agricultural Science, Nanjing, China
| | - Rongsheng Zhang
- Institute of Plant Protection, Jiangsu Academy of Agricultural Science, Nanjing, China
| | - Shiwen Huang
- State Key Laboratory of Rice Biology, China National Rice Research Institute, Hangzhou, China
| | - Wende Liu
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences (CAS), Beijing, China
| | - Yongfeng Liu
- Institute of Plant Protection, Jiangsu Academy of Agricultural Science, Nanjing, China
| |
Collapse
|
238
|
Rao Y, Mei L, Zhang L, Jiang H, Ma L, Wang Y. Genome Sequence Resource of Botryosphaeria dothidea CK16, a Fungal Pathogen Causing Chinese Hickory Trunk Canker Disease. PLANT DISEASE 2021; 105:3282-3284. [PMID: 33761770 DOI: 10.1094/pdis-02-21-0254-a] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Botryosphaeria dothidea is a latent fungal pathogen that causes cankers or diebacks on a variety of host woody plants worldwide. The symptomatic necrosis on the host plants can be triggered by abiotic stress, such as drought and soil acidification. Here we report a high-quality genome assembly and announcement of the B. dothidea strain CK16 (CGMCC 19654), which causes trunk canker disease on Carya cathayensis in China. The genome sequence of strain CK16 will be useful for studying the evolution, host adaption, and pathogenicity of B. dothidea, which will be beneficial for a better understanding of the mechanisms of host-pathogen interaction during the endophytic period.
Collapse
Affiliation(s)
- Yuxin Rao
- College of Forestry and Biotechnology, Zhejiang A&F University, Hangzhou, 311300, China
| | - Li Mei
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Hangzhou, 311300, China
| | - Liqin Zhang
- Key Laboratory of Vector Biology and Pathogen Control of Zhejiang Province, Huzhou University, Huzhou 313000, China
| | - Hong Jiang
- College of Forestry and Biotechnology, Zhejiang A&F University, Hangzhou, 311300, China
| | - Liangjin Ma
- College of Forestry and Biotechnology, Zhejiang A&F University, Hangzhou, 311300, China
| | - Yongjun Wang
- College of Forestry and Biotechnology, Zhejiang A&F University, Hangzhou, 311300, China
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Hangzhou, 311300, China
| |
Collapse
|
239
|
Cai S, Shen Q, Huang Y, Han Z, Wu D, Chen ZH, Nevo E, Zhang G. Multi-Omics Analysis Reveals the Mechanism Underlying the Edaphic Adaptation in Wild Barley at Evolution Slope (Tabigha). ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2021; 8:e2101374. [PMID: 34390227 PMCID: PMC8529432 DOI: 10.1002/advs.202101374] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/04/2021] [Revised: 06/27/2021] [Indexed: 06/13/2023]
Abstract
At the microsite "Evolution Slope", Tabigha, Israel, wild barley (Hordeum spontaneum) populations adapted to dry Terra Rossa soil, and its derivative abutting wild barley population adapted to moist and fungi-rich Basalt soil. However, the mechanisms underlying the edaphic adaptation remain elusive. Accordingly, whole genome bisulfite sequencing, RNA-sequencing, and metabolome analysis are performed on ten wild barley accessions inhabiting Terra Rossa and Basalt soil. A total of 121 433 differentially methylated regions (DMRs) and 10 478 DMR-genes are identified between the two wild barley populations. DMR-genes in CG context (CG-DMR-genes) are enriched in the pathways related with the fundamental processes, and DMR-genes in CHH context (CHH-DMR-genes) are mainly associated with defense response. Transcriptome and metabolome analysis reveal that the primary and secondary metabolisms are more active in Terra Rossa and Basalt wild barley populations, respectively. Multi-omics analysis indicate that sugar metabolism facilitates the adaptation of wild barley to dry Terra Rossa soil, whereas the enhancement of phenylpropanoid/phenolamide biosynthesis is beneficial for wild barley to inhabit moist and fungi pathogen-rich Basalt soil. The current results make a deep insight into edaphic adaptation of wild barley and provide elite genetic and epigenetic resources for developing barley with high abiotic stress tolerance.
Collapse
Affiliation(s)
- Shengguan Cai
- College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, 310058, China
| | - Qiufang Shen
- College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, 310058, China
| | - Yuqing Huang
- College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, 310058, China
- Institute of Crop Science, Hangzhou Academy of Agricultural Sciences, Hangzhou, 310024, China
| | - Zhigang Han
- College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, 310058, China
| | - Dezhi Wu
- College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, 310058, China
| | - Zhong-Hua Chen
- School of Science, Western Sydney University, Penrith, NSW, 2751, Australia
- Hawkesbury Institute for the Environment, Western Sydney University, Penrith, NSW, 2751, Australia
| | - Eviatar Nevo
- Institute of Evolution, University of Haifa, Mount Carmel, Haifa, 34988384, Israel
| | - Guoping Zhang
- College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, 310058, China
| |
Collapse
|
240
|
Meng XL, Yang R, Liu AT, Hu TL, Wang YN, Cao KQ, Wang ST. The Influence of Lower Temperature Induction of Valsa mali on the Infection of Apple Trees. PLANT DISEASE 2021; 105:2776-2780. [PMID: 33908791 DOI: 10.1094/pdis-01-21-0086-sc] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Apple valsa canker (AVC), caused by Valsa mali, is one of the most important diseases of apple trees in China. AVC occurred severely along with cold winter or cold spring. However, the effect of lower temperature on V. mali is poorly understood. This study evaluated the influence of lower temperature pretreatment of V. mali on the infection of apple twigs and leaves. The results showed that exposing V. mali to lower temperatures (between -10°C and 10°C) for more than 18 h significantly increased the disease severity of apple leaves and twigs, with a higher lesion area ratio (LAR), lesion length, and disease incidence (DI) than that at 25°C. In addition, cold treatment ranging from -5°C to 10°C promoted colony growth. Meanwhile, the relative expression of four cell wall degrading enzyme (CWDE)-related genes pretreated at -5°C and 5°C were significantly higher than that at 25°C. The results indicated that the virulence of V. mali mycelium is sensitive to lower temperatures. After sensing lower temperature changes, V. mali can adjust its infection of apple trees by regulating the expression of pathogenicity gene and growth rate. Spring has very frequent temperature changes, and V. mali is highly invasive in this season. Therefore, more attention should be paid in spring to protecting apple trees from infection of V. mali, by reducing pruning wound formation in spring and applying protective agents to pruning wounds in time.
Collapse
Affiliation(s)
- Xiang-Long Meng
- College of Plant Protection, Hebei Agricultural University, Baoding 071000, China
| | - Rui Yang
- College of Plant Protection, Hebei Agricultural University, Baoding 071000, China
| | - An-Tai Liu
- College of Plant Protection, Hebei Agricultural University, Baoding 071000, China
| | - Tong-le Hu
- College of Plant Protection, Hebei Agricultural University, Baoding 071000, China
| | - Ya-Nan Wang
- College of Plant Protection, Hebei Agricultural University, Baoding 071000, China
| | - Ke-Qiang Cao
- College of Plant Protection, Hebei Agricultural University, Baoding 071000, China
| | - Shu-Tong Wang
- College of Plant Protection, Hebei Agricultural University, Baoding 071000, China
| |
Collapse
|
241
|
Zhou T, Liu H, Huang Y, Wang Z, Shan Y, Yue Y, Xia Z, Liang Y, An M, Wu Y. ε-poly- L-lysine Affects the Vegetative Growth, Pathogenicity and Expression Regulation of Necrotrophic Pathogen Sclerotinia sclerotiorum and Botrytis cinerea. J Fungi (Basel) 2021; 7:jof7100821. [PMID: 34682242 PMCID: PMC8540936 DOI: 10.3390/jof7100821] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2021] [Revised: 09/27/2021] [Accepted: 09/27/2021] [Indexed: 02/04/2023] Open
Abstract
Microbial secondary metabolites produced by Streptomyces are applied to control plant diseases. The metabolite, ε-poly-l-lysine (ε-PL), is a non-toxic food preservative, but the potential application of this compound as a microbial fungicide in agriculture is rarely reported. In this study, the effect and mode of action of ε-PL on two necrotrophic pathogenic fungi, Sclerotinia sclerotiorum and Botrytis cinerea, were investigated. The results showed that ε-PL effectively inhibited the mycelial growth of S. sclerotiorum and B. cinerea with EC50 values of 283 μg/mL and 281 μg/mL, respectively. In addition, ε-PL at the dose of 150 and 300 μg/mL reduced S. sclerotiorum sclerotia formation. The results of the RNA-seq and RT-qPCR validation indicated that ε-PL significantly regulated the gene expression of critical differential expressed genes (DEGs) involved in fungal growth, metabolism, pathogenicity, and induced an increase in the expression of the fungal stress responses and the detoxification genes. These results provided new insights for understanding the modes of action of ε-PL on S. sclerotiorum and B. cinerea and improved the sustainable management of these plant diseases.
Collapse
|
242
|
Buijs VA, Zuijdgeest XCL, Groenewald JZ, Crous PW, de Vries RP. Carbon utilization and growth-inhibition of citrus-colonizing Phyllosticta species. Fungal Biol 2021; 125:815-825. [PMID: 34537177 DOI: 10.1016/j.funbio.2021.05.003] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2020] [Revised: 05/09/2021] [Accepted: 05/21/2021] [Indexed: 11/15/2022]
Abstract
The genus Phyllosticta includes both endophytic and phytopathogenic species that occur on a broad range of plant hosts, including Citrus. Some pathogenic species cause severe disease, such as Phyllosticta citricarpa, the causal agent of Citrus Black Spot (CBS). In contrast, other species, such as Phyllosticta capitalensis, have an endophytic lifestyle in numerous plant hosts. Carbon utilization capabilities are hypothesized to influence both host range and lifestyle, and are in part determined by the set of Carbohydrate Active Enzyme (CAZyme) encoding genes of a species. In this study, carbon utilization capabilities of five Phyllosticta species were determined, as well as the CAZyme repertoire (CAZome) encoded in their genomes. Little variation was found among species in terms of carbon utilization capabilities and CAZome. However, one of the tested carbon sources, sugar beet pulp (SBP), inhibited growth of the plant pathogens, also when combined with another carbon source, while endophytic species remained unaffected.
Collapse
Affiliation(s)
- Valerie A Buijs
- Evolutionary Phytopathology, Westerdijk Fungal Biodiversity Institute, Uppsalalaan 8, 3584, CT, Utrecht, the Netherlands; Laboratory of Phytopathology, Wageningen University and Research, Droevendaalsesteeg 1, 6708 PB, Wageningen, the Netherlands
| | - Xander C L Zuijdgeest
- Evolutionary Phytopathology, Westerdijk Fungal Biodiversity Institute, Uppsalalaan 8, 3584, CT, Utrecht, the Netherlands
| | - Johannes Z Groenewald
- Evolutionary Phytopathology, Westerdijk Fungal Biodiversity Institute, Uppsalalaan 8, 3584, CT, Utrecht, the Netherlands
| | - Pedro W Crous
- Evolutionary Phytopathology, Westerdijk Fungal Biodiversity Institute, Uppsalalaan 8, 3584, CT, Utrecht, the Netherlands; Laboratory of Phytopathology, Wageningen University and Research, Droevendaalsesteeg 1, 6708 PB, Wageningen, the Netherlands
| | - Ronald P de Vries
- Fungal Physiology, Westerdijk Fungal Biodiversity Institute & Fungal Molecular Physiology, Utrecht University, Uppsalalaan 8, 3584 CT, Utrecht, the Netherlands.
| |
Collapse
|
243
|
Feruloyl esterase Fae1 is required specifically for host colonisation by the rice-blast fungus Magnaporthe oryzae. Curr Genet 2021; 68:97-113. [PMID: 34524467 DOI: 10.1007/s00294-021-01213-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2021] [Revised: 08/29/2021] [Accepted: 09/03/2021] [Indexed: 10/20/2022]
Abstract
Plant cell wall acts as a primary barrier for microbial pathogens during infection. A cell wall-degrading enzyme thus may be a crucial virulence factor, as it may aid the pathogen in successful host invasion. Nine genes coding for feruloyl esterases (Fae), likely involved in plant cell wall degradation, have been annotated in the genome of the cereal-blast fungus Magnaporthe oryzae. However, role of any Fae in pathogenicity of M. oryzae remains hitherto under explored. Here, we identified FAE1 gene (MGG_08737) that was significantly upregulated during host penetration and subsequent colonisation stages of infection. Accordingly, while deletion of FAE1 in M. oryzae did not affect the vegetative growth and asexual development, the fae1Δ mutant showed significantly reduced pathogenesis on rice plants, mainly due to impaired host invasion and colonisation. Very few (< 10%) fae1Δ appressoria that formed the primary invasive hyphae failed to elaborate from the first invaded cell to the neighbouring plant cells. Interestingly, exogenously added glucose, as a simple carbon source, or ferulic acid, a product of the Fae activity, significantly supported the invasive growth of the fae1Δ mutant. We show that the Fae1-based feruloyl esterase activity, by targeting the plant cell wall, plays an important role in accumulating ferulic acid and/or sugar molecules, as a likely energy source, to enable host invasion and colonisation by M. oryzae. Given its role in plant cell wall digestion and host colonisation, M. oryzae Fae1 could be a potential candidate for a novel antifungal strategy and a biotechnological application in biofuel production.
Collapse
|
244
|
Villa-Rivera MG, Cano-Camacho H, López-Romero E, Zavala-Páramo MG. The Role of Arabinogalactan Type II Degradation in Plant-Microbe Interactions. Front Microbiol 2021; 12:730543. [PMID: 34512607 PMCID: PMC8424115 DOI: 10.3389/fmicb.2021.730543] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2021] [Accepted: 08/04/2021] [Indexed: 11/13/2022] Open
Abstract
Arabinogalactans (AGs) are structural polysaccharides of the plant cell wall. A small proportion of the AGs are associated with hemicellulose and pectin. Furthermore, AGs are associated with proteins forming the so-called arabinogalactan proteins (AGPs), which can be found in the plant cell wall or attached through a glycosylphosphatidylinositol (GPI) anchor to the plasma membrane. AGPs are a family of highly glycosylated proteins grouped with cell wall proteins rich in hydroxyproline. These glycoproteins have important and diverse functions in plants, such as growth, cellular differentiation, signaling, and microbe-plant interactions, and several reports suggest that carbohydrate components are crucial for AGP functions. In beneficial plant-microbe interactions, AGPs attract symbiotic species of fungi or bacteria, promote the development of infectious structures and the colonization of root tips, and furthermore, these interactions can activate plant defense mechanisms. On the other hand, plants secrete and accumulate AGPs at infection sites, creating cross-links with pectin. As part of the plant cell wall degradation machinery, beneficial and pathogenic fungi and bacteria can produce the enzymes necessary for the complete depolymerization of AGs including endo-β-(1,3), β-(1,4) and β-(1,6)-galactanases, β-(1,3/1,6) galactanases, α-L-arabinofuranosidases, β-L-arabinopyranosidases, and β-D-glucuronidases. These hydrolytic enzymes are secreted during plant-pathogen interactions and could have implications for the function of AGPs. It has been proposed that AGPs could prevent infection by pathogenic microorganisms because their degradation products generated by hydrolytic enzymes of pathogens function as damage-associated molecular patterns (DAMPs) eliciting the plant defense response. In this review, we describe the structure and function of AGs and AGPs as components of the plant cell wall. Additionally, we describe the set of enzymes secreted by microorganisms to degrade AGs from AGPs and its possible implication for plant-microbe interactions.
Collapse
Affiliation(s)
- Maria Guadalupe Villa-Rivera
- Departamento de Ingeniería Genética, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, Irapuato, Mexico
| | - Horacio Cano-Camacho
- Centro Multidisciplinario de Estudios en Biotecnología, FMVZ, Universidad Michoacana de San Nicolás de Hidalgo, Tarímbaro, Mexico
| | - Everardo López-Romero
- División de Ciencias Naturales y Exactas, Departamento de Biología, Universidad de Guanajuato, Guanajuato, Mexico
| | - María Guadalupe Zavala-Páramo
- Centro Multidisciplinario de Estudios en Biotecnología, FMVZ, Universidad Michoacana de San Nicolás de Hidalgo, Tarímbaro, Mexico
| |
Collapse
|
245
|
Perincherry L, Urbaniak M, Pawłowicz I, Kotowska K, Waśkiewicz A, Stępień Ł. Dynamics of Fusarium Mycotoxins and Lytic Enzymes during Pea Plants' Infection. Int J Mol Sci 2021; 22:9888. [PMID: 34576051 PMCID: PMC8467997 DOI: 10.3390/ijms22189888] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2021] [Revised: 08/01/2021] [Accepted: 09/08/2021] [Indexed: 11/17/2022] Open
Abstract
Fusarium species are common plant pathogens that cause several important diseases. They produce a wide range of secondary metabolites, among which mycotoxins and extracellular cell wall-degrading enzymes (CWDEs) contribute to weakening and invading the host plant successfully. Two species of Fusarium isolated from peas were monitored for their expression profile of three cell wall-degrading enzyme coding genes upon culturing with extracts from resistant (Sokolik) and susceptible (Santana) pea cultivars. The extracts from Santana induced a sudden increase in the gene expression, whereas Sokolik elicited a reduced expression. The coherent observation was that the biochemical profile of the host plant plays a major role in regulating the fungal gene expression. In order to uncover the fungal characteristics in planta, both pea cultivars were infected with two strains each of F. proliferatum and F. oxysporum on the 30th day of growth. The enzyme activity assays from both roots and rhizosphere indicated that more enzymes were used for degrading the cell wall of the resistant host compared to the susceptible host. The most commonly produced enzymes were cellulase, β-glucosidase, xylanase, pectinase and lipase, where the pathogen selectively degraded the components of both the primary and secondary cell walls. The levels of beauvericin accumulated in the infected roots of both cultivars were also monitored. There was a difference between the levels of beauvericin accumulated in both the cultivars, where the susceptible cultivar had more beauvericin than the resistant one, showing that the plants susceptible to the pathogen were also susceptible to the toxin accumulation.
Collapse
Affiliation(s)
- Lakshmipriya Perincherry
- Department of Plant-Pathogen Interaction, Institute of Plant Genetics, Polish Academy of Sciences, 60-479 Poznań, Poland; (M.U.); (K.K.)
| | - Monika Urbaniak
- Department of Plant-Pathogen Interaction, Institute of Plant Genetics, Polish Academy of Sciences, 60-479 Poznań, Poland; (M.U.); (K.K.)
| | - Izabela Pawłowicz
- Department of Plant Physiology, Institute of Plant Genetics, Polish Academy of Sciences, 60-479 Poznań, Poland;
| | - Karolina Kotowska
- Department of Plant-Pathogen Interaction, Institute of Plant Genetics, Polish Academy of Sciences, 60-479 Poznań, Poland; (M.U.); (K.K.)
| | - Agnieszka Waśkiewicz
- Department of Chemistry, Poznań University of Life Sciences, 60-625 Poznań, Poland;
| | - Łukasz Stępień
- Department of Plant-Pathogen Interaction, Institute of Plant Genetics, Polish Academy of Sciences, 60-479 Poznań, Poland; (M.U.); (K.K.)
| |
Collapse
|
246
|
Xu Y, Zhang Y, Zhu J, Sun Y, Guo B, Liu F, Huang J, Wang H, Dong S, Wang Y, Wang Y. Phytophthora sojae apoplastic effector AEP1 mediates sugar uptake by mutarotation of extracellular aldose and is recognized as a MAMP. PLANT PHYSIOLOGY 2021; 187:321-335. [PMID: 34618132 PMCID: PMC8418418 DOI: 10.1093/plphys/kiab239] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/07/2020] [Accepted: 05/04/2021] [Indexed: 05/03/2023]
Abstract
Diseases caused by Phytophthora pathogens devastate many crops worldwide. During infection, Phytophthora pathogens secrete effectors, which are central molecules for understanding the complex plant-Phytophthora interactions. In this study, we profiled the effector repertoire secreted by Phytophthora sojae into the soybean (Glycine max) apoplast during infection using liquid chromatography-mass spectrometry. A secreted aldose 1-epimerase (AEP1) was shown to induce cell death in Nicotiana benthamiana, as did the other two AEP1s from different Phytophthora species. AEP1 could also trigger immune responses in N. benthamiana, other Solanaceae plants, and Arabidopsis (Arabidopsis thaliana). A glucose dehydrogenase assay revealed AEP1 encodes an active AEP1. The enzyme activity of AEP1 is dispensable for AEP1-triggered cell death and immune responses, while AEP-triggered immune signaling in N. benthamiana requires the central immune regulator BRASSINOSTEROID INSENSITIVE 1-associated receptor kinase 1. In addition, AEP1 acts as a virulence factor that mediates P. sojae extracellular sugar uptake by mutarotation of extracellular aldose from the α-anomer to the β-anomer. Taken together, these results revealed the function of a microbial apoplastic effector, highlighting the importance of extracellular sugar uptake for Phytophthora infection. To counteract, the key effector for sugar conversion can be recognized by the plant membrane receptor complex to activate plant immunity.
Collapse
Affiliation(s)
- Yuanpeng Xu
- Department of Plant Pathology, the Key Laboratory of Integrated Management of Crop Diseases and Pests, Ministry of Education, the Key Laboratory of Plant Immunity, Nanjing Agricultural University, Nanjing 210095, China
| | - Yunhuan Zhang
- Department of Plant Pathology, the Key Laboratory of Integrated Management of Crop Diseases and Pests, Ministry of Education, the Key Laboratory of Plant Immunity, Nanjing Agricultural University, Nanjing 210095, China
| | - Jinyin Zhu
- Department of Plant Pathology, the Key Laboratory of Integrated Management of Crop Diseases and Pests, Ministry of Education, the Key Laboratory of Plant Immunity, Nanjing Agricultural University, Nanjing 210095, China
| | - Yujing Sun
- Department of Plant Pathology, the Key Laboratory of Integrated Management of Crop Diseases and Pests, Ministry of Education, the Key Laboratory of Plant Immunity, Nanjing Agricultural University, Nanjing 210095, China
| | - Baodian Guo
- Department of Plant Pathology, the Key Laboratory of Integrated Management of Crop Diseases and Pests, Ministry of Education, the Key Laboratory of Plant Immunity, Nanjing Agricultural University, Nanjing 210095, China
| | - Fan Liu
- Department of Plant Pathology, the Key Laboratory of Integrated Management of Crop Diseases and Pests, Ministry of Education, the Key Laboratory of Plant Immunity, Nanjing Agricultural University, Nanjing 210095, China
| | - Jie Huang
- Department of Plant Pathology, the Key Laboratory of Integrated Management of Crop Diseases and Pests, Ministry of Education, the Key Laboratory of Plant Immunity, Nanjing Agricultural University, Nanjing 210095, China
| | - Haonan Wang
- Department of Plant Pathology, the Key Laboratory of Integrated Management of Crop Diseases and Pests, Ministry of Education, the Key Laboratory of Plant Immunity, Nanjing Agricultural University, Nanjing 210095, China
| | - Suomeng Dong
- Department of Plant Pathology, the Key Laboratory of Integrated Management of Crop Diseases and Pests, Ministry of Education, the Key Laboratory of Plant Immunity, Nanjing Agricultural University, Nanjing 210095, China
| | - Yan Wang
- Department of Plant Pathology, the Key Laboratory of Integrated Management of Crop Diseases and Pests, Ministry of Education, the Key Laboratory of Plant Immunity, Nanjing Agricultural University, Nanjing 210095, China
| | - Yuanchao Wang
- Department of Plant Pathology, the Key Laboratory of Integrated Management of Crop Diseases and Pests, Ministry of Education, the Key Laboratory of Plant Immunity, Nanjing Agricultural University, Nanjing 210095, China
- Author for communication:
| |
Collapse
|
247
|
Yan Y, Tang J, Yuan Q, Liu L, Liu H, Huang J, Hsiang T, Zheng L. iTRAQ-Based Quantitative Proteomics Reveals ChAcb1 as a Novel Virulence Factor in Colletotrichum higginsianum. PHYTOPATHOLOGY 2021; 111:1571-1582. [PMID: 33567906 DOI: 10.1094/phyto-01-21-0028-r] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Colletotrichum higginsianum is an important hemibiotrophic fungal pathogen that causes anthracnose disease on various cruciferous plants. Discovery of new virulence factors could lead to strategies for effectively controlling anthracnose. Acyl-CoA binding proteins (ACBPs) are mainly involved in binding and trafficking acyl-CoA esters in eukaryotic cells. However, the functions of this important class of proteins in plant fungal pathogens remain unclear. In this study, we performed an isobaric tags for relative and absolute quantification (iTRAQ)-based quantitative proteomic analysis to identify differentially expressed proteins (DEPs) between a nonpathogenic mutant ΔCh-MEL1 and the wild type. Based on iTRAQ data, DEPs in the ΔCh-MEL1 mutant were mainly associated with melanin biosynthesis, carbohydrate and energy metabolism, lipid metabolism, redox processes, and amino acid metabolism. Proteomic analysis revealed that many DEPs might be involved in growth and pathogenesis of C. higginsianum. Among them, an acyl-CoA binding protein, ChAcb1, was selected for further functional studies. Deletion of ChAcb1 caused defects in vegetative growth and conidiation. ChAcb1 is also required for response to hyperosmotic and oxidative stresses, and maintenance of cell wall integrity. Importantly, the ΔChAcb1 mutant exhibited reduced virulence, and microscopic examination revealed that it was defective in appressorial penetration and infectious growth. Furthermore, the ΔChAcb1 mutant was impaired in fatty acid and lipid metabolism. Taken together, ChAcb1 was identified as a new virulence gene in this plant pathogenic fungus.
Collapse
Affiliation(s)
- Yaqin Yan
- Hubei Key Laboratory of Plant Pathology, Huazhong Agricultural University, Wuhan 430070, China
- Institute of Vegetables Research, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China
| | - Jintian Tang
- Zhejiang Provincial Key Laboratory of Biometrology and Inspection & Quarantine, College of Life Sciences, China Jiliang University, Hangzhou 310018, China
| | - Qinfeng Yuan
- Hubei Key Laboratory of Plant Pathology, Huazhong Agricultural University, Wuhan 430070, China
| | - Liping Liu
- Laboratory of Plant Pathology, Department of Agronomy, Jilin Agricultural University, Changchun 130118, China
| | - Hao Liu
- Hubei Key Laboratory of Plant Pathology, Huazhong Agricultural University, Wuhan 430070, China
| | - Junbin Huang
- Hubei Key Laboratory of Plant Pathology, Huazhong Agricultural University, Wuhan 430070, China
| | - Tom Hsiang
- School of Environmental Sciences, University of Guelph, Guelph N1G 2W1, Ontario, Canada
| | - Lu Zheng
- Hubei Key Laboratory of Plant Pathology, Huazhong Agricultural University, Wuhan 430070, China
| |
Collapse
|
248
|
Hao Z, Li Y, Jiang Y, Xu J, Li J, Luo L. Genome Sequence Analysis of the Fungal Pathogen Fusarium graminearum Using Oxford Nanopore Technology. J Fungi (Basel) 2021; 7:jof7090699. [PMID: 34575738 PMCID: PMC8465144 DOI: 10.3390/jof7090699] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2021] [Revised: 08/23/2021] [Accepted: 08/25/2021] [Indexed: 12/20/2022] Open
Abstract
Fusarium graminearum is a plant pathogen of global importance which causes not only significant yield loss but also crop spoilage due to mycotoxins that render grain unsafe for human or livestock consumption. Although the full genome of several F. graminearum isolates from different parts of the world have been sequenced, there are no similar studies of isolates originating from China. The current study sought to address this by sequencing the F. graminearum isolate FG-12, which was isolated from the roots of maize seedlings exhibiting typical symptoms of blight growing in the Gansu province, China, using Oxford Nanopore Technology (ONT). The FG-12 isolate was found to have a 35.9 Mb genome comprised of five scaffolds corresponding to the four chromosomes and mitochondrial DNA of the F. graminearum type strain, PH-1. The genome was found to contain an approximately 2.23% repetitive sequence and encode 12,470 predicted genes. Additional bioinformatic analysis identified 437 genes that were predicted to be secreted effectors, one of which was confirmed to trigger a hypersensitive responses (HR) in the leaves of Nicotiana benthamiana during transient expression experiments utilizing agro-infiltration. The F. graminearum FG-12 genome sequence and annotation data produced in the current study provide an extremely useful resource for both intra- and inter-species comparative analyses as well as for gene functional studies, and could greatly advance our understanding of this important plant pathogen.
Collapse
|
249
|
Havenga M, Wingfield BD, Wingfield MJ, Dreyer LL, Roets F, Aylward J. Genetic response to nitrogen starvation in the aggressive Eucalyptus foliar pathogen Teratosphaeria destructans. Curr Genet 2021; 67:981-990. [PMID: 34432124 DOI: 10.1007/s00294-021-01208-w] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2021] [Revised: 07/20/2021] [Accepted: 08/21/2021] [Indexed: 12/13/2022]
Abstract
Teratosphaeria destructans is one of the most aggressive foliar pathogens of Eucalyptus. The biological factors underpinning T. destructans infections, which include shoot and leaf blight on young trees, have never been interrogated. Thus, the means by which the pathogen modifies its host environment to overcome host defences remain unknown. By applying transcriptome sequencing, the aim of this study was to compare gene expression in a South African isolate of T. destructans grown on nitrogen-deficient and complete media. This made it possible to identify upregulated genes in a nitrogen-starved environment, often linked to the pathogenicity of the fungus. The results support the hypothesis that nitrogen starvation in T. destructans likely mirrors an in planta genetic response. This is because 45% of genes that were highly upregulated under nitrogen starvation have previously been reported to be associated with infection in other pathogen systems. These included several CAZymes, fungal effector proteins, peptidases, kinases, toxins, lipases and proteins associated with detoxification of toxic compounds. Twenty-five secondary metabolites were identified and expressed in both nitrogen-deficient and complete conditions. Additionally, the most highly expressed genes in both growth conditions had pathogenicity-related functions. This study highlights the large number of expressed genes associated with pathogenicity and overcoming plant defences. As such, the generated baseline knowledge regarding pathogenicity and aggressiveness in T. destructans is a valuable reference for future in planta work.
Collapse
Affiliation(s)
- Minette Havenga
- Department of Biochemistry, Genetics and Microbiology, Forestry and Agricultural Biotechnology Institute (FABI), University of Pretoria, Pretoria, South Africa. .,Department of Conservation Ecology and Entomology, Stellenbosch University, Stellenbosch, South Africa.
| | - Brenda D Wingfield
- Department of Biochemistry, Genetics and Microbiology, Forestry and Agricultural Biotechnology Institute (FABI), University of Pretoria, Pretoria, South Africa
| | - Michael J Wingfield
- Department of Biochemistry, Genetics and Microbiology, Forestry and Agricultural Biotechnology Institute (FABI), University of Pretoria, Pretoria, South Africa
| | - Léanne L Dreyer
- Department of Botany and Zoology, Stellenbosch University, Stellenbosch, South Africa
| | - Francois Roets
- Department of Conservation Ecology and Entomology, Stellenbosch University, Stellenbosch, South Africa
| | - Janneke Aylward
- Department of Biochemistry, Genetics and Microbiology, Forestry and Agricultural Biotechnology Institute (FABI), University of Pretoria, Pretoria, South Africa.,Department of Conservation Ecology and Entomology, Stellenbosch University, Stellenbosch, South Africa
| |
Collapse
|
250
|
Chethana KWT, Jayawardena RS, Chen YJ, Konta S, Tibpromma S, Phukhamsakda C, Abeywickrama PD, Samarakoon MC, Senwanna C, Mapook A, Tang X, Gomdola D, Marasinghe DS, Padaruth OD, Balasuriya A, Xu J, Lumyong S, Hyde KD. Appressorial interactions with host and their evolution. FUNGAL DIVERS 2021. [DOI: 10.1007/s13225-021-00487-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
|