201
|
Boschetti C, Carr A, Crisp A, Eyres I, Wang-Koh Y, Lubzens E, Barraclough TG, Micklem G, Tunnacliffe A. Biochemical diversification through foreign gene expression in bdelloid rotifers. PLoS Genet 2012; 8:e1003035. [PMID: 23166508 PMCID: PMC3499245 DOI: 10.1371/journal.pgen.1003035] [Citation(s) in RCA: 107] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2012] [Accepted: 08/29/2012] [Indexed: 11/19/2022] Open
Abstract
Bdelloid rotifers are microinvertebrates with unique characteristics: they have survived tens of millions of years without sexual reproduction; they withstand extreme desiccation by undergoing anhydrobiosis; and they tolerate very high levels of ionizing radiation. Recent evidence suggests that subtelomeric regions of the bdelloid genome contain sequences originating from other organisms by horizontal gene transfer (HGT), of which some are known to be transcribed. However, the extent to which foreign gene expression plays a role in bdelloid physiology is unknown. We address this in the first large scale analysis of the transcriptome of the bdelloid Adineta ricciae: cDNA libraries from hydrated and desiccated bdelloids were subjected to massively parallel sequencing and assembled transcripts compared against the UniProtKB database by blastx to identify their putative products. Of ~29,000 matched transcripts, ~10% were inferred from blastx matches to be horizontally acquired, mainly from eubacteria but also from fungi, protists, and algae. After allowing for possible sources of error, the rate of HGT is at least 8%-9%, a level significantly higher than other invertebrates. We verified their foreign nature by phylogenetic analysis and by demonstrating linkage of foreign genes with metazoan genes in the bdelloid genome. Approximately 80% of horizontally acquired genes expressed in bdelloids code for enzymes, and these represent 39% of enzymes in identified pathways. Many enzymes encoded by foreign genes enhance biochemistry in bdelloids compared to other metazoans, for example, by potentiating toxin degradation or generation of antioxidants and key metabolites. They also supplement, and occasionally potentially replace, existing metazoan functions. Bdelloid rotifers therefore express horizontally acquired genes on a scale unprecedented in animals, and foreign genes make a profound contribution to their metabolism. This represents a potential mechanism for ancient asexuals to adapt rapidly to changing environments and thereby persist over long evolutionary time periods in the absence of sex.
Collapse
Affiliation(s)
- Chiara Boschetti
- Department of Chemical Engineering and Biotechnology, University of Cambridge, Cambridge, United Kingdom
| | - Adrian Carr
- Department of Genetics, University of Cambridge, Cambridge, United Kingdom
- Cambridge Systems Biology Centre, Cambridge, United Kingdom
| | - Alastair Crisp
- Department of Chemical Engineering and Biotechnology, University of Cambridge, Cambridge, United Kingdom
| | - Isobel Eyres
- Department of Life Sciences, Imperial College London, London, United Kingdom
| | - Yuan Wang-Koh
- Department of Genetics, University of Cambridge, Cambridge, United Kingdom
| | - Esther Lubzens
- Department of Chemical Engineering and Biotechnology, University of Cambridge, Cambridge, United Kingdom
- National Institute of Oceanography, Haifa, Israel
| | | | - Gos Micklem
- Department of Genetics, University of Cambridge, Cambridge, United Kingdom
- Cambridge Systems Biology Centre, Cambridge, United Kingdom
- * E-mail: (G Micklem); (A Tunnacliffe)
| | - Alan Tunnacliffe
- Department of Chemical Engineering and Biotechnology, University of Cambridge, Cambridge, United Kingdom
- * E-mail: (G Micklem); (A Tunnacliffe)
| |
Collapse
|
202
|
Early evolution of eukaryote feeding modes, cell structural diversity, and classification of the protozoan phyla Loukozoa, Sulcozoa, and Choanozoa. Eur J Protistol 2012; 49:115-78. [PMID: 23085100 DOI: 10.1016/j.ejop.2012.06.001] [Citation(s) in RCA: 110] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2012] [Revised: 06/21/2012] [Accepted: 06/26/2012] [Indexed: 11/21/2022]
Abstract
I discuss how different feeding modes and related cellular structures map onto the eukaryote evolutionary tree. Centrally important for understanding eukaryotic cell diversity are Loukozoa: ancestrally biciliate phagotrophic protozoa possessing a posterior cilium and ventral feeding groove into which ciliary currents direct prey. I revise their classification by including all anaerobic Metamonada as a subphylum and adding Tsukubamonas. Loukozoa, often with ciliary vanes, are probably ancestral to all protozoan phyla except Euglenozoa and Percolozoa and indirectly to kingdoms Animalia, Fungi, Plantae, and Chromista. I make a new protozoan phylum Sulcozoa comprising subphyla Apusozoa (Apusomonadida, Breviatea) and Varisulca (Diphyllatea; Planomonadida, Discocelida, Mantamonadida; Rigifilida). Understanding sulcozoan evolution clarifies the origins from them of opisthokonts (animals, fungi, Choanozoa) and Amoebozoa, and their evolutionary novelties; Sulcozoa and their descendants (collectively called podiates) arguably arose from Loukozoa by evolving posterior ciliary gliding and pseudopodia in their ventral groove. I explain subsequent independent cytoskeletal modifications, accompanying further shifts in feeding mode, that generated Amoebozoa, Choanozoa, and fungi. I revise classifications of Choanozoa, Conosa (Amoebozoa), and basal fungal phylum Archemycota. I use Choanozoa, Sulcozoa, Loukozoa, and Archemycota to emphasize the need for simply classifying ancestral (paraphyletic) groups and illustrate advantages of this for understanding step-wise phylogenetic advances.
Collapse
|
203
|
Bompfünewerer AF, Flamm C, Fried C, Fritzsch G, Hofacker IL, Lehmann J, Missal K, Mosig A, Müller B, Prohaska SJ, Stadler BMR, Stadler PF, Tanzer A, Washietl S, Witwer C. Evolutionary patterns of non-coding RNAs. Theory Biosci 2012; 123:301-69. [PMID: 18202870 DOI: 10.1016/j.thbio.2005.01.002] [Citation(s) in RCA: 59] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2004] [Accepted: 01/24/2005] [Indexed: 01/04/2023]
Abstract
A plethora of new functions of non-coding RNAs (ncRNAs) have been discovered in past few years. In fact, RNA is emerging as the central player in cellular regulation, taking on active roles in multiple regulatory layers from transcription, RNA maturation, and RNA modification to translational regulation. Nevertheless, very little is known about the evolution of this "Modern RNA World" and its components. In this contribution, we attempt to provide at least a cursory overview of the diversity of ncRNAs and functional RNA motifs in non-translated regions of regular messenger RNAs (mRNAs) with an emphasis on evolutionary questions. This survey is complemented by an in-depth analysis of examples from different classes of RNAs focusing mostly on their evolution in the vertebrate lineage. We present a survey of Y RNA genes in vertebrates and study the molecular evolution of the U7 snRNA, the snoRNAs E1/U17, E2, and E3, the Y RNA family, the let-7 microRNA (miRNA) family, and the mRNA-like evf-1 gene. We furthermore discuss the statistical distribution of miRNAs in metazoans, which suggests an explosive increase in the miRNA repertoire in vertebrates. The analysis of the transcription of ncRNAs suggests that small RNAs in general are genetically mobile in the sense that their association with a hostgene (e.g. when transcribed from introns of a mRNA) can change on evolutionary time scales. The let-7 family demonstrates, that even the mode of transcription (as intron or as exon) can change among paralogous ncRNA.
Collapse
|
204
|
Smith DR. Updating our view of organelle genome nucleotide landscape. Front Genet 2012; 3:175. [PMID: 22973299 PMCID: PMC3438683 DOI: 10.3389/fgene.2012.00175] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2012] [Accepted: 08/20/2012] [Indexed: 01/25/2023] Open
Abstract
Organelle genomes show remarkable variation in architecture and coding content, yet their nucleotide composition is relatively unvarying across the eukaryotic domain, with most having a high adenine and thymine (AT) content. Recent studies, however, have uncovered guanine and cytosine (GC)-rich mitochondrial and plastid genomes. These sequences come from a small but eclectic list of species, including certain green plants and animals. Here, I review GC-rich organelle DNAs and the insights they have provided into the evolution of nucleotide landscape. I emphasize that GC-biased mitochondrial and plastid DNAs are more widespread than once thought, sometimes occurring together in the same species, and suggest that the forces biasing their nucleotide content can differ both among and within lineages, and may be associated with specific genome architectural features and life history traits.
Collapse
Affiliation(s)
- David Roy Smith
- Department of Botany, Canadian Institute for Advanced Research, University of British Columbia Vancouver, British Columbia, Canada
| |
Collapse
|
205
|
Nyfeler B, Hoepfner D, Palestrant D, Kirby CA, Whitehead L, Yu R, Deng G, Caughlan RE, Woods AL, Jones AK, Barnes SW, Walker JR, Gaulis S, Hauy E, Brachmann SM, Krastel P, Studer C, Riedl R, Estoppey D, Aust T, Movva NR, Wang Z, Salcius M, Michaud GA, McAllister G, Murphy LO, Tallarico JA, Wilson CJ, Dean CR. Identification of elongation factor G as the conserved cellular target of argyrin B. PLoS One 2012; 7:e42657. [PMID: 22970117 PMCID: PMC3438169 DOI: 10.1371/journal.pone.0042657] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2012] [Accepted: 07/10/2012] [Indexed: 11/19/2022] Open
Abstract
Argyrins, produced by myxobacteria and actinomycetes, are cyclic octapeptides with antibacterial and antitumor activity. Here, we identify elongation factor G (EF-G) as the cellular target of argyrin B in bacteria, via resistant mutant selection and whole genome sequencing, biophysical binding studies and crystallography. Argyrin B binds a novel allosteric pocket in EF-G, distinct from the known EF-G inhibitor antibiotic fusidic acid, revealing a new mode of protein synthesis inhibition. In eukaryotic cells, argyrin B was found to target mitochondrial elongation factor G1 (EF-G1), the closest homologue of bacterial EF-G. By blocking mitochondrial translation, argyrin B depletes electron transport components and inhibits the growth of yeast and tumor cells. Further supporting direct inhibition of EF-G1, expression of an argyrin B-binding deficient EF-G1 L693Q variant partially rescued argyrin B-sensitivity in tumor cells. In summary, we show that argyrin B is an antibacterial and cytotoxic agent that inhibits the evolutionarily conserved target EF-G, blocking protein synthesis in bacteria and mitochondrial translation in yeast and mammalian cells.
Collapse
Affiliation(s)
- Beat Nyfeler
- Developmental and Molecular Pathways, Novartis Institutes for BioMedical Research, Cambridge, Massachussetts, United States of America
| | - Dominic Hoepfner
- Developmental and Molecular Pathways, Novartis Institutes for BioMedical Research, Basel, Switzerland
| | - Deborah Palestrant
- Center for Proteomic Chemistry, Novartis Institutes for BioMedical Research, Cambridge, Massachussetts, United States of America
| | - Christina A. Kirby
- Center for Proteomic Chemistry, Novartis Institutes for BioMedical Research, Cambridge, Massachussetts, United States of America
| | - Lewis Whitehead
- Global Discovery Chemistry, Novartis Institutes for Biomedical Research, Cambridge, Massachussetts, United States of America
| | - Robert Yu
- Infectious Diseases, Novartis Institutes for BioMedical Research, Emeryville, California, United States of America
| | - Gejing Deng
- Infectious Diseases, Novartis Institutes for BioMedical Research, Emeryville, California, United States of America
| | - Ruth E. Caughlan
- Infectious Diseases, Novartis Institutes for BioMedical Research, Emeryville, California, United States of America
| | - Angela L. Woods
- Infectious Diseases, Novartis Institutes for BioMedical Research, Emeryville, California, United States of America
| | - Adriana K. Jones
- Infectious Diseases, Novartis Institutes for BioMedical Research, Emeryville, California, United States of America
| | - S. Whitney Barnes
- Novartis Institute for Functional Genomics, Novartis Institutes for Biomedical Research, San Diego, California, United States of America
| | - John R. Walker
- Novartis Institute for Functional Genomics, Novartis Institutes for Biomedical Research, San Diego, California, United States of America
| | - Swann Gaulis
- Disease Area Oncology, Novartis Institutes for BioMedical Research, Basel, Switzerland
| | - Ervan Hauy
- Disease Area Oncology, Novartis Institutes for BioMedical Research, Basel, Switzerland
| | - Saskia M. Brachmann
- Disease Area Oncology, Novartis Institutes for BioMedical Research, Basel, Switzerland
| | - Philipp Krastel
- Center for Proteomic Chemistry, Natural Products Unit, Novartis Institutes for BioMedical Research, Basel, Switzerland
| | - Christian Studer
- Developmental and Molecular Pathways, Novartis Institutes for BioMedical Research, Basel, Switzerland
| | - Ralph Riedl
- Developmental and Molecular Pathways, Novartis Institutes for BioMedical Research, Basel, Switzerland
| | - David Estoppey
- Developmental and Molecular Pathways, Novartis Institutes for BioMedical Research, Basel, Switzerland
| | - Thomas Aust
- Developmental and Molecular Pathways, Novartis Institutes for BioMedical Research, Basel, Switzerland
| | - N. Rao Movva
- Developmental and Molecular Pathways, Novartis Institutes for BioMedical Research, Basel, Switzerland
| | - Zuncai Wang
- Developmental and Molecular Pathways, Novartis Institutes for BioMedical Research, Cambridge, Massachussetts, United States of America
| | - Michael Salcius
- Developmental and Molecular Pathways, Novartis Institutes for BioMedical Research, Cambridge, Massachussetts, United States of America
| | - Gregory A. Michaud
- Developmental and Molecular Pathways, Novartis Institutes for BioMedical Research, Cambridge, Massachussetts, United States of America
| | - Gregory McAllister
- Developmental and Molecular Pathways, Novartis Institutes for BioMedical Research, Cambridge, Massachussetts, United States of America
| | - Leon O. Murphy
- Developmental and Molecular Pathways, Novartis Institutes for BioMedical Research, Cambridge, Massachussetts, United States of America
| | - John A. Tallarico
- Developmental and Molecular Pathways, Novartis Institutes for BioMedical Research, Cambridge, Massachussetts, United States of America
| | - Christopher J. Wilson
- Developmental and Molecular Pathways, Novartis Institutes for BioMedical Research, Cambridge, Massachussetts, United States of America
| | - Charles R. Dean
- Infectious Diseases, Novartis Institutes for BioMedical Research, Emeryville, California, United States of America
- * E-mail:
| |
Collapse
|
206
|
Abstract
Viewed through the lens of the genome it contains, the mitochondrion is of unquestioned bacterial ancestry, originating from within the bacterial phylum α-Proteobacteria (Alphaproteobacteria). Accordingly, the endosymbiont hypothesis--the idea that the mitochondrion evolved from a bacterial progenitor via symbiosis within an essentially eukaryotic host cell--has assumed the status of a theory. Yet mitochondrial genome evolution has taken radically different pathways in diverse eukaryotic lineages, and the organelle itself is increasingly viewed as a genetic and functional mosaic, with the bulk of the mitochondrial proteome having an evolutionary origin outside Alphaproteobacteria. New data continue to reshape our views regarding mitochondrial evolution, particularly raising the question of whether the mitochondrion originated after the eukaryotic cell arose, as assumed in the classical endosymbiont hypothesis, or whether this organelle had its beginning at the same time as the cell containing it.
Collapse
|
207
|
Bietenhader M, Martos A, Tetaud E, Aiyar RS, Sellem CH, Kucharczyk R, Clauder-Münster S, Giraud MF, Godard F, Salin B, Sagot I, Gagneur J, Déquard-Chablat M, Contamine V, Denmat SHL, Sainsard-Chanet A, Steinmetz LM, di Rago JP. Experimental relocation of the mitochondrial ATP9 gene to the nucleus reveals forces underlying mitochondrial genome evolution. PLoS Genet 2012; 8:e1002876. [PMID: 22916027 PMCID: PMC3420929 DOI: 10.1371/journal.pgen.1002876] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2012] [Accepted: 06/19/2012] [Indexed: 01/21/2023] Open
Abstract
Only a few genes remain in the mitochondrial genome retained by every eukaryotic organism that carry out essential functions and are implicated in severe diseases. Experimentally relocating these few genes to the nucleus therefore has both therapeutic and evolutionary implications. Numerous unproductive attempts have been made to do so, with a total of only 5 successes across all organisms. We have taken a novel approach to relocating mitochondrial genes that utilizes naturally nuclear versions from other organisms. We demonstrate this approach on subunit 9/c of ATP synthase, successfully relocating this gene for the first time in any organism by expressing the ATP9 genes from Podospora anserina in Saccharomyces cerevisiae. This study substantiates the role of protein structure in mitochondrial gene transfer: expression of chimeric constructs reveals that the P. anserina proteins can be correctly imported into mitochondria due to reduced hydrophobicity of the first transmembrane segment. Nuclear expression of ATP9, while permitting almost fully functional oxidative phosphorylation, perturbs many cellular properties, including cellular morphology, and activates the heat shock response. Altogether, our study establishes a novel strategy for allotopic expression of mitochondrial genes, demonstrates the complex adaptations required to relocate ATP9, and indicates a reason that this gene was only transferred to the nucleus during the evolution of multicellular organisms.
Collapse
Affiliation(s)
- Maïlis Bietenhader
- Université Bordeaux, IBGC, UMR5095 CNRS, Bordeaux, France
- CNRS, IBGC, UMR5095 CNRS, Bordeaux, France
| | - Alexandre Martos
- Université Bordeaux, IBGC, UMR5095 CNRS, Bordeaux, France
- CNRS, IBGC, UMR5095 CNRS, Bordeaux, France
| | - Emmanuel Tetaud
- Université Bordeaux, IBGC, UMR5095 CNRS, Bordeaux, France
- CNRS, IBGC, UMR5095 CNRS, Bordeaux, France
| | - Raeka S. Aiyar
- Genome Biology Unit, European Molecular Biology Laboratory (EMBL), Heidelberg, Germany
| | - Carole H. Sellem
- Université Paris-Sud, Centre de Génétique Moléculaire, UPR3404, CNRS, Gif-sur-Yvette, France
| | - Roza Kucharczyk
- Université Bordeaux, IBGC, UMR5095 CNRS, Bordeaux, France
- CNRS, IBGC, UMR5095 CNRS, Bordeaux, France
| | | | - Marie-France Giraud
- Université Bordeaux, IBGC, UMR5095 CNRS, Bordeaux, France
- CNRS, IBGC, UMR5095 CNRS, Bordeaux, France
| | - François Godard
- Université Bordeaux, IBGC, UMR5095 CNRS, Bordeaux, France
- CNRS, IBGC, UMR5095 CNRS, Bordeaux, France
| | - Bénédicte Salin
- Université Bordeaux, IBGC, UMR5095 CNRS, Bordeaux, France
- CNRS, IBGC, UMR5095 CNRS, Bordeaux, France
| | - Isabelle Sagot
- Université Bordeaux, IBGC, UMR5095 CNRS, Bordeaux, France
- CNRS, IBGC, UMR5095 CNRS, Bordeaux, France
| | - Julien Gagneur
- Genome Biology Unit, European Molecular Biology Laboratory (EMBL), Heidelberg, Germany
| | - Michelle Déquard-Chablat
- Université Paris-Sud, Institut de Génétique et Microbiologie, UMR 8621, Orsay, France
- CNRS, Orsay, France
| | - Véronique Contamine
- Université Paris-Sud, Institut de Génétique et Microbiologie, UMR 8621, Orsay, France
- CNRS, Orsay, France
| | - Sylvie Hermann-Le Denmat
- Université Paris-Sud, Institut de Génétique et Microbiologie, UMR 8621, Orsay, France
- CNRS, Orsay, France
- Ecole Normale Supérieure, Paris, France
| | - Annie Sainsard-Chanet
- Université Paris-Sud, Centre de Génétique Moléculaire, UPR3404, CNRS, Gif-sur-Yvette, France
| | - Lars M. Steinmetz
- Genome Biology Unit, European Molecular Biology Laboratory (EMBL), Heidelberg, Germany
- * E-mail: (J-PdR); (LMS)
| | - Jean-Paul di Rago
- Université Bordeaux, IBGC, UMR5095 CNRS, Bordeaux, France
- CNRS, IBGC, UMR5095 CNRS, Bordeaux, France
- * E-mail: (J-PdR); (LMS)
| |
Collapse
|
208
|
Schimmer AD, Skrtić M. Therapeutic potential of mitochondrial translation inhibition for treatment of acute myeloid leukemia. Expert Rev Hematol 2012; 5:117-9. [PMID: 22475277 DOI: 10.1586/ehm.12.8] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
209
|
For quite a few chromosomes more: the origin of eukaryotes…. J Mol Biol 2012; 423:135-42. [PMID: 22796299 DOI: 10.1016/j.jmb.2012.07.005] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2012] [Revised: 07/01/2012] [Accepted: 07/03/2012] [Indexed: 11/21/2022]
Abstract
The evolution of eukaryotes addresses an enigmatic question: what are the evolutionary advantages of having a nucleus? The nucleus is traditionally thought to act as protection for DNA, but eukaryotes are more fragile than bacteria. The compartmentalization of the eukaryotic cell might stem from invaginations of the plasma membrane, and I argue that this autogenous origin of the nucleus constituted a selective innovation caused by cellular constraints due to a large genome. The protoeukaryotic nucleus appears to be a physical and chemical solution to the problem of large amounts of DNA in the form of many linear chromosomes. The selective advantages of having a nuclear envelope are to house a large genome in a stabilized structure and to decouple gene translation from transcription. Supporting the karyogenic model, this new hypothesis opens an original perspective to help in understanding the very ancient origin of eukaryotes.
Collapse
|
210
|
Feagin JE, Harrell MI, Lee JC, Coe KJ, Sands BH, Cannone JJ, Tami G, Schnare MN, Gutell RR. The fragmented mitochondrial ribosomal RNAs of Plasmodium falciparum. PLoS One 2012; 7:e38320. [PMID: 22761677 PMCID: PMC3382252 DOI: 10.1371/journal.pone.0038320] [Citation(s) in RCA: 96] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2012] [Accepted: 05/03/2012] [Indexed: 11/18/2022] Open
Abstract
Background The mitochondrial genome in the human malaria parasite Plasmodium falciparum is most unusual. Over half the genome is composed of the genes for three classic mitochondrial proteins: cytochrome oxidase subunits I and III and apocytochrome b. The remainder encodes numerous small RNAs, ranging in size from 23 to 190 nt. Previous analysis revealed that some of these transcripts have significant sequence identity with highly conserved regions of large and small subunit rRNAs, and can form the expected secondary structures. However, these rRNA fragments are not encoded in linear order; instead, they are intermixed with one another and the protein coding genes, and are coded on both strands of the genome. This unorthodox arrangement hindered the identification of transcripts corresponding to other regions of rRNA that are highly conserved and/or are known to participate directly in protein synthesis. Principal Findings The identification of 14 additional small mitochondrial transcripts from P. falcipaurm and the assignment of 27 small RNAs (12 SSU RNAs totaling 804 nt, 15 LSU RNAs totaling 1233 nt) to specific regions of rRNA are supported by multiple lines of evidence. The regions now represented are highly similar to those of the small but contiguous mitochondrial rRNAs of Caenorhabditis elegans. The P. falciparum rRNA fragments cluster on the interfaces of the two ribosomal subunits in the three-dimensional structure of the ribosome. Significance All of the rRNA fragments are now presumed to have been identified with experimental methods, and nearly all of these have been mapped onto the SSU and LSU rRNAs. Conversely, all regions of the rRNAs that are known to be directly associated with protein synthesis have been identified in the P. falciparum mitochondrial genome and RNA transcripts. The fragmentation of the rRNA in the P. falciparum mitochondrion is the most extreme example of any rRNA fragmentation discovered.
Collapse
Affiliation(s)
- Jean E Feagin
- Seattle Biomedical Research Institute, Seattle, Washington, United States of America.
| | | | | | | | | | | | | | | | | |
Collapse
|
211
|
van de Sande WWJ. Phylogenetic analysis of the complete mitochondrial genome of Madurella mycetomatis confirms its taxonomic position within the order Sordariales. PLoS One 2012; 7:e38654. [PMID: 22701687 PMCID: PMC3368884 DOI: 10.1371/journal.pone.0038654] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2012] [Accepted: 05/08/2012] [Indexed: 11/19/2022] Open
Abstract
BACKGROUND Madurella mycetomatis is the most common cause of human eumycetoma. The genus Madurella has been characterized by overall sterility on mycological media. Due to this sterility and the absence of other reliable morphological and ultrastructural characters, the taxonomic classification of Madurella has long been a challenge. Mitochondria are of monophyletic origin and mitochondrial genomes have been proven to be useful in phylogenetic analyses. RESULTS The first complete mitochondrial DNA genome of a mycetoma-causative agent was sequenced using 454 sequencing. The mitochondrial genome of M. mycetomatis is a circular DNA molecule with a size of 45,590 bp, encoding for the small and the large subunit rRNAs, 27 tRNAs, 11 genes encoding subunits of respiratory chain complexes, 2 ATP synthase subunits, 5 hypothetical proteins, 6 intronic proteins including the ribosomal protein rps3. In phylogenetic analyses using amino acid sequences of the proteins involved in respiratory chain complexes and the 2 ATP synthases it appeared that M. mycetomatis clustered together with members of the order Sordariales and that it was most closely related to Chaetomium thermophilum. Analyses of the gene order showed that within the order Sordariales a similar gene order is found. Furthermore also the tRNA order seemed mostly conserved. CONCLUSION Phylogenetic analyses of fungal mitochondrial genomes confirmed that M. mycetomatis belongs to the order of Sordariales and that it was most closely related to Chaetomium thermophilum, with which it also shared a comparable gene and tRNA order.
Collapse
Affiliation(s)
- Wendy W J van de Sande
- Department of Medical Microbiology and Infectious Diseases, Erasmus MC, Rotterdam, The Netherlands.
| |
Collapse
|
212
|
The influence of ATP-dependent proteases on a variety of nucleoid-associated processes. J Struct Biol 2012; 179:181-92. [PMID: 22683345 DOI: 10.1016/j.jsb.2012.05.018] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2012] [Revised: 05/24/2012] [Accepted: 05/26/2012] [Indexed: 01/07/2023]
Abstract
ATP-dependent proteases are crucial components of all living cells and are involved in a variety of responses to physiological and environmental changes. Nucleoids are dynamic nucleoprotein complexes present in bacteria and eukaryotic organelles (mitochondria and plastids) and are the place where the majority of cellular responses to stress begin. These structures are actively remodeled in reaction to changing environmental and physiological conditions. The levels of nucleoid protein components (e.g. DNA-stabilizing proteins, transcription factors, replication proteins) therefore have to be continually regulated. ATP-dependent proteases have all the characteristics needed to fulfill this requirement. Some of them bind nucleic acids, but above all, they control and maintain the level of many DNA-binding proteins. In this review we will discuss the roles of the Lon, ClpAP, ClpXP, HslUV and FtsH proteases in the maintenance, stability, transcription and repair of DNA in eubacterial and mitochondrial nucleoids.
Collapse
|
213
|
Fang Y, Wu H, Zhang T, Yang M, Yin Y, Pan L, Yu X, Zhang X, Hu S, Al-Mssallem IS, Yu J. A complete sequence and transcriptomic analyses of date palm (Phoenix dactylifera L.) mitochondrial genome. PLoS One 2012; 7:e37164. [PMID: 22655034 PMCID: PMC3360038 DOI: 10.1371/journal.pone.0037164] [Citation(s) in RCA: 68] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2011] [Accepted: 04/16/2012] [Indexed: 11/21/2022] Open
Abstract
Based on next-generation sequencing data, we assembled the mitochondrial (mt) genome of date palm (Phoenix dactylifera L.) into a circular molecule of 715,001 bp in length. The mt genome of P. dactylifera encodes 38 proteins, 30 tRNAs, and 3 ribosomal RNAs, which constitute a gene content of 6.5% (46,770 bp) over the full length. The rest, 93.5% of the genome sequence, is comprised of cp (chloroplast)-derived (10.3% with respect to the whole genome length) and non-coding sequences. In the non-coding regions, there are 0.33% tandem and 2.3% long repeats. Our transcriptomic data from eight tissues (root, seed, bud, fruit, green leaf, yellow leaf, female flower, and male flower) showed higher gene expression levels in male flower, root, bud, and female flower, as compared to four other tissues. We identified 120 potential SNPs among three date palm cultivars (Khalas, Fahal, and Sukry), and successfully found seven SNPs in the coding sequences. A phylogenetic analysis, based on 22 conserved genes of 15 representative plant mitochondria, showed that P. dactylifera positions at the root of all sequenced monocot mt genomes. In addition, consistent with previous discoveries, there are three co-transcribed gene clusters–18S-5S rRNA, rps3-rpl16 and nad3-rps12–in P. dactylifera, which are highly conserved among all known mitochondrial genomes of angiosperms.
Collapse
Affiliation(s)
- Yongjun Fang
- Joint Center for Genomics Research (JCGR), King Abdulaziz City for Science and Technology (KACST) and Chinese Academy of Sciences (CAS), Riyadh, Kingdom of Saudi Arabia
- James D. Watson Institute of Genome Sciences, Zhejiang University, Hangzhou, China
- CAS Key Laboratory of Genome Sciences and Information, Beijing Institute of Genomics (BIG), Chinese Academy of Sciences (CAS), Beijing, China
| | - Hao Wu
- Joint Center for Genomics Research (JCGR), King Abdulaziz City for Science and Technology (KACST) and Chinese Academy of Sciences (CAS), Riyadh, Kingdom of Saudi Arabia
- James D. Watson Institute of Genome Sciences, Zhejiang University, Hangzhou, China
- CAS Key Laboratory of Genome Sciences and Information, Beijing Institute of Genomics (BIG), Chinese Academy of Sciences (CAS), Beijing, China
| | - Tongwu Zhang
- Joint Center for Genomics Research (JCGR), King Abdulaziz City for Science and Technology (KACST) and Chinese Academy of Sciences (CAS), Riyadh, Kingdom of Saudi Arabia
- James D. Watson Institute of Genome Sciences, Zhejiang University, Hangzhou, China
- CAS Key Laboratory of Genome Sciences and Information, Beijing Institute of Genomics (BIG), Chinese Academy of Sciences (CAS), Beijing, China
| | - Meng Yang
- Joint Center for Genomics Research (JCGR), King Abdulaziz City for Science and Technology (KACST) and Chinese Academy of Sciences (CAS), Riyadh, Kingdom of Saudi Arabia
- CAS Key Laboratory of Genome Sciences and Information, Beijing Institute of Genomics (BIG), Chinese Academy of Sciences (CAS), Beijing, China
| | - Yuxin Yin
- Joint Center for Genomics Research (JCGR), King Abdulaziz City for Science and Technology (KACST) and Chinese Academy of Sciences (CAS), Riyadh, Kingdom of Saudi Arabia
- CAS Key Laboratory of Genome Sciences and Information, Beijing Institute of Genomics (BIG), Chinese Academy of Sciences (CAS), Beijing, China
| | - Linlin Pan
- Joint Center for Genomics Research (JCGR), King Abdulaziz City for Science and Technology (KACST) and Chinese Academy of Sciences (CAS), Riyadh, Kingdom of Saudi Arabia
- CAS Key Laboratory of Genome Sciences and Information, Beijing Institute of Genomics (BIG), Chinese Academy of Sciences (CAS), Beijing, China
| | - Xiaoguang Yu
- Joint Center for Genomics Research (JCGR), King Abdulaziz City for Science and Technology (KACST) and Chinese Academy of Sciences (CAS), Riyadh, Kingdom of Saudi Arabia
- CAS Key Laboratory of Genome Sciences and Information, Beijing Institute of Genomics (BIG), Chinese Academy of Sciences (CAS), Beijing, China
| | - Xiaowei Zhang
- Joint Center for Genomics Research (JCGR), King Abdulaziz City for Science and Technology (KACST) and Chinese Academy of Sciences (CAS), Riyadh, Kingdom of Saudi Arabia
- CAS Key Laboratory of Genome Sciences and Information, Beijing Institute of Genomics (BIG), Chinese Academy of Sciences (CAS), Beijing, China
- * E-mail: (JY); (XZ); (SH); (ISAM)
| | - Songnian Hu
- Joint Center for Genomics Research (JCGR), King Abdulaziz City for Science and Technology (KACST) and Chinese Academy of Sciences (CAS), Riyadh, Kingdom of Saudi Arabia
- James D. Watson Institute of Genome Sciences, Zhejiang University, Hangzhou, China
- CAS Key Laboratory of Genome Sciences and Information, Beijing Institute of Genomics (BIG), Chinese Academy of Sciences (CAS), Beijing, China
- * E-mail: (JY); (XZ); (SH); (ISAM)
| | - Ibrahim S. Al-Mssallem
- Joint Center for Genomics Research (JCGR), King Abdulaziz City for Science and Technology (KACST) and Chinese Academy of Sciences (CAS), Riyadh, Kingdom of Saudi Arabia
- CAS Key Laboratory of Genome Sciences and Information, Beijing Institute of Genomics (BIG), Chinese Academy of Sciences (CAS), Beijing, China
- Department of Biotechnology, College of Agriculture and Food Sciences, King Faisal University, Hofuf, Kingdom of Saudi Arabia
- * E-mail: (JY); (XZ); (SH); (ISAM)
| | - Jun Yu
- Joint Center for Genomics Research (JCGR), King Abdulaziz City for Science and Technology (KACST) and Chinese Academy of Sciences (CAS), Riyadh, Kingdom of Saudi Arabia
- James D. Watson Institute of Genome Sciences, Zhejiang University, Hangzhou, China
- CAS Key Laboratory of Genome Sciences and Information, Beijing Institute of Genomics (BIG), Chinese Academy of Sciences (CAS), Beijing, China
- * E-mail: (JY); (XZ); (SH); (ISAM)
| |
Collapse
|
214
|
Wei DD, Shao R, Yuan ML, Dou W, Barker SC, Wang JJ. The multipartite mitochondrial genome of Liposcelis bostrychophila: insights into the evolution of mitochondrial genomes in bilateral animals. PLoS One 2012; 7:e33973. [PMID: 22479490 PMCID: PMC3316519 DOI: 10.1371/journal.pone.0033973] [Citation(s) in RCA: 55] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2012] [Accepted: 02/24/2012] [Indexed: 11/18/2022] Open
Abstract
Booklice (order Psocoptera) in the genus Liposcelis are major pests to stored grains worldwide and are closely related to parasitic lice (order Phthiraptera). We sequenced the mitochondrial (mt) genome of Liposcelis bostrychophila and found that the typical single mt chromosome of bilateral animals has fragmented into and been replaced by two medium-sized chromosomes in this booklouse; each of these chromosomes has about half of the genes of the typical mt chromosome of bilateral animals. These mt chromosomes are 8,530 bp (mt chromosome I) and 7,933 bp (mt chromosome II) in size. Intriguingly, mt chromosome I is twice as abundant as chromosome II. It appears that the selection pressure for compact mt genomes in bilateral animals favors small mt chromosomes when small mt chromosomes co-exist with the typical large mt chromosomes. Thus, small mt chromosomes may have selective advantages over large mt chromosomes in bilateral animals. Phylogenetic analyses of mt genome sequences of Psocodea (i.e. Psocoptera plus Phthiraptera) indicate that: 1) the order Psocoptera (booklice and barklice) is paraphyletic; and 2) the order Phthiraptera (the parasitic lice) is monophyletic. Within parasitic lice, however, the suborder Ischnocera is paraphyletic; this differs from the traditional view that each suborder of parasitic lice is monophyletic.
Collapse
Affiliation(s)
- Dan-Dan Wei
- Key Laboratory of Entomology and Pest Control Engineering, College of Plant Protection, Southwest University, Chongqing, China
| | - Renfu Shao
- School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, Queensland, Australia
- School of Science, Education and Engineering, University of the Sunshine Coast, Maroochydore, Queensland, Australia
- * E-mail: (RS) (RS); (JW) (JW)
| | - Ming-Long Yuan
- Key Laboratory of Entomology and Pest Control Engineering, College of Plant Protection, Southwest University, Chongqing, China
| | - Wei Dou
- Key Laboratory of Entomology and Pest Control Engineering, College of Plant Protection, Southwest University, Chongqing, China
| | - Stephen C. Barker
- School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, Queensland, Australia
| | - Jin-Jun Wang
- Key Laboratory of Entomology and Pest Control Engineering, College of Plant Protection, Southwest University, Chongqing, China
- * E-mail: (RS) (RS); (JW) (JW)
| |
Collapse
|
215
|
Herrmann JM, Woellhaf MW, Bonnefoy N. Control of protein synthesis in yeast mitochondria: the concept of translational activators. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2012; 1833:286-94. [PMID: 22450032 DOI: 10.1016/j.bbamcr.2012.03.007] [Citation(s) in RCA: 107] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/26/2012] [Revised: 03/01/2012] [Accepted: 03/08/2012] [Indexed: 12/18/2022]
Abstract
Mitochondria contain their own genome which codes for a small number of proteins. Most mitochondrial translation products are part of the membrane-embedded reaction centers of the respiratory chain complexes. In the yeast Saccharomyces cerevisiae, the expression of these proteins is regulated by translational activators that bind mitochondrial mRNAs, in most cases to their 5'-untranslated regions, and each mitochondrial mRNA appears to have its own translational activator(s). Recent studies showed that these translational activators can be part of feedback control loops which only permit translation if the downstream assembly of nascent translation products can occur. In several cases, the accumulation of a non-assembled protein prevents further synthesis of this protein but not translation in general. These control loops prevent the synthesis of potentially harmful assembly intermediates of the reaction centers of mitochondrial enzymes. Since such regulatory feedback loops only work if translation occurs in the compartment in which the complexes of the respiratory chain are assembled, these control mechanisms require the presence of a translation machinery in mitochondria. This might explain why eukaryotic cells maintained DNA in mitochondria during the last two billion years of evolution. This review gives an overview of the mitochondrial translation system and summarizes the current knowledge on translational activators and their role in the regulation of mitochondrial protein synthesis. This article is part of a Special Issue entitled: Protein import and quality control in mitochondria and plastids.
Collapse
Affiliation(s)
- Johannes M Herrmann
- Cell Biology, Erwin-Schrödinger-Strasse 13, University of Kaiserslautern, 67663 Kaiserslautern, Germany.
| | | | | |
Collapse
|
216
|
Mechanism of transcription initiation by the yeast mitochondrial RNA polymerase. BIOCHIMICA ET BIOPHYSICA ACTA-GENE REGULATORY MECHANISMS 2012; 1819:930-8. [PMID: 22353467 DOI: 10.1016/j.bbagrm.2012.02.003] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/21/2011] [Revised: 02/03/2012] [Accepted: 02/04/2012] [Indexed: 02/03/2023]
Abstract
Mitochondria are the major supplier of cellular energy in the form of ATP. Defects in normal ATP production due to dysfunctions in mitochondrial gene expression are responsible for many mitochondrial and aging related disorders. Mitochondria carry their own DNA genome which is transcribed by relatively simple transcriptional machinery consisting of the mitochondrial RNAP (mtRNAP) and one or more transcription factors. The mtRNAPs are remarkably similar in sequence and structure to single-subunit bacteriophage T7 RNAP but they require accessory transcription factors for promoter-specific initiation. Comparison of the mechanisms of T7 RNAP and mtRNAP provides a framework to better understand how mtRNAP and the transcription factors work together to facilitate promoter selection, DNA melting, initiating nucleotide binding, and promoter clearance. This review focuses primarily on the mechanistic characterization of transcription initiation by the yeast Saccharomyces cerevisiae mtRNAP (Rpo41) and its transcription factor (Mtf1) drawing insights from the homologous T7 and the human mitochondrial transcription systems. We discuss regulatory mechanisms of mitochondrial transcription and the idea that the mtRNAP acts as the in vivo ATP "sensor" to regulate gene expression. This article is part of a Special Issue entitled: Mitochondrial Gene Expression.
Collapse
|
217
|
The SAR11 group of alpha-proteobacteria is not related to the origin of mitochondria. PLoS One 2012; 7:e30520. [PMID: 22291975 PMCID: PMC3264578 DOI: 10.1371/journal.pone.0030520] [Citation(s) in RCA: 64] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2011] [Accepted: 12/18/2011] [Indexed: 11/23/2022] Open
Abstract
Although free living, members of the successful SAR11 group of marine alpha-proteobacteria contain a very small and A+T rich genome, two features that are typical of mitochondria and related obligate intracellular parasites such as the Rickettsiales. Previous phylogenetic analyses have suggested that Candidatus Pelagibacter ubique, the first cultured member of this group, is related to the Rickettsiales+mitochondria clade whereas others disagree with this conclusion. In order to determine the evolutionary position of the SAR11 group and its relationship to the origin of mitochondria, we have performed phylogenetic analyses on the concatenation of 24 proteins from 5 mitochondria and 71 proteobacteria. Our results support that SAR11 group is not the sistergroup of the Rickettsiales+mitochondria clade and confirm that the position of this group in the alpha-proteobacterial tree is strongly affected by tree reconstruction artefacts due to compositional bias. As a consequence, genome reduction and bias toward a high A+T content may have evolved independently in the SAR11 species, which points to a different direction in the quest for the closest relatives to mitochondria and Rickettsiales. In addition, our analyses raise doubts about the monophyly of the newly proposed Pelagibacteraceae family.
Collapse
|
218
|
Sloan DB, Alverson AJ, Chuckalovcak JP, Wu M, McCauley DE, Palmer JD, Taylor DR. Rapid evolution of enormous, multichromosomal genomes in flowering plant mitochondria with exceptionally high mutation rates. PLoS Biol 2012; 10:e1001241. [PMID: 22272183 PMCID: PMC3260318 DOI: 10.1371/journal.pbio.1001241] [Citation(s) in RCA: 436] [Impact Index Per Article: 33.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2011] [Accepted: 11/30/2011] [Indexed: 11/28/2022] Open
Abstract
A pair of species within the genus Silene have evolved the largest known mitochondrial genomes, coinciding with extreme changes in mutation rate, recombination activity, and genome structure. Genome size and complexity vary tremendously among eukaryotic species and their organelles. Comparisons across deeply divergent eukaryotic lineages have suggested that variation in mutation rates may explain this diversity, with increased mutational burdens favoring reduced genome size and complexity. The discovery that mitochondrial mutation rates can differ by orders of magnitude among closely related angiosperm species presents a unique opportunity to test this hypothesis. We sequenced the mitochondrial genomes from two species in the angiosperm genus Silene with recent and dramatic accelerations in their mitochondrial mutation rates. Contrary to theoretical predictions, these genomes have experienced a massive proliferation of noncoding content. At 6.7 and 11.3 Mb, they are by far the largest known mitochondrial genomes, larger than most bacterial genomes and even some nuclear genomes. In contrast, two slowly evolving Silene mitochondrial genomes are smaller than average for angiosperms. Consequently, this genus captures approximately 98% of known variation in organelle genome size. The expanded genomes reveal several architectural changes, including the evolution of complex multichromosomal structures (with 59 and 128 circular-mapping chromosomes, ranging in size from 44 to 192 kb). They also exhibit a substantial reduction in recombination and gene conversion activity as measured by the relative frequency of alternative genome conformations and the level of sequence divergence between repeat copies. The evolution of mutation rate, genome size, and chromosome structure can therefore be extremely rapid and interrelated in ways not predicted by current evolutionary theories. Our results raise the hypothesis that changes in recombinational processes, including gene conversion, may be a central force driving the evolution of both mutation rate and genome structure. A fundamental challenge in evolutionary biology is to explain why organisms exhibit dramatic variation in genome size and complexity. One hypothesis predicts that high rates of mutation in DNA sequence create selection against large and complex genomes, which are more susceptible to mutational disruption. Species of flowering plants in the genus Silene vary by approximately 100-fold in the rates of mutation in their mitochondrial DNA, providing an excellent opportunity to test the predicted effects of high mutation rates on genome evolution. Contrary to expectation, Silene species with elevated mutation rates have experienced dramatic expansions in mitochondrial genome size compared to their slowly evolving relatives, resulting in the largest known mitochondrial genomes. In addition to the increases in size and mutation rate, these genomes also reveal a history of rapid change in genome structure. They have been fragmented into dozens of chromosomes and appear to have experienced major reductions in recombination activity. All of these changes have occurred in just the past few million years. This mitochondrial genome diversity within the genus Silene provides a striking example of rapid genomic change and raises new hypotheses regarding the relationship between mutation rate and genome evolution.
Collapse
Affiliation(s)
- Daniel B Sloan
- Department of Biology, University of Virginia, Charlottesville, Virginia, United States of America.
| | | | | | | | | | | | | |
Collapse
|
219
|
|
220
|
Suzuki T, Nagao A, Suzuki T. Human Mitochondrial tRNAs: Biogenesis, Function, Structural Aspects, and Diseases. Annu Rev Genet 2011; 45:299-329. [DOI: 10.1146/annurev-genet-110410-132531] [Citation(s) in RCA: 432] [Impact Index Per Article: 30.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/30/2023]
Abstract
Mitochondria are eukaryotic organelles that generate most of the energy in the cell by oxidative phosphorylation (OXPHOS). Each mitochondrion contains multiple copies of a closed circular double-stranded DNA genome (mtDNA). Human (mammalian) mtDNA encodes 13 essential subunits of the inner membrane complex responsible for OXPHOS. These mRNAs are translated by the mitochondrial protein synthesis machinery, which uses the 22 species of mitochondrial tRNAs (mt tRNAs) encoded by mtDNA. The unique structural features of mt tRNAs distinguish them from cytoplasmic tRNAs bearing the canonical cloverleaf structure. The genes encoding mt tRNAs are highly susceptible to point mutations, which are a primary cause of mitochondrial dysfunction and are associated with a wide range of pathologies. A large number of nuclear factors involved in the biogenesis and function of mt tRNAs have been identified and characterized, including processing endonucleases, tRNA-modifying enzymes, and aminoacyl-tRNA synthetases. These nuclear factors are also targets of pathogenic mutations linked to various diseases, indicating the functional importance of mt tRNAs for mitochondrial activity.
Collapse
Affiliation(s)
| | - Asuteka Nagao
- Department of Chemistry and Biotechnology, Graduate School of Engineering, University of Tokyo, Tokyo 113-8656, Japan
| | - Takeo Suzuki
- Department of Chemistry and Biotechnology, Graduate School of Engineering, University of Tokyo, Tokyo 113-8656, Japan
| |
Collapse
|
221
|
Derelle R, Lang BF. Rooting the eukaryotic tree with mitochondrial and bacterial proteins. Mol Biol Evol 2011; 29:1277-89. [PMID: 22135192 DOI: 10.1093/molbev/msr295] [Citation(s) in RCA: 102] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Abstract
By exploiting the large body of genome data and the considerable progress in phylogenetic methodology, recent phylogenomic studies have provided new insights into the relationships among major eukaryotic groups. However, confident placement of the eukaryotic root remains a major challenge. This is due to the large evolutionary distance separating eukaryotes from their closest relatives, the Archaea, implying a weak phylogenetic signal and strong long-branch attraction artifacts. Here, we apply a new approach to the rooting of the eukaryotic tree by using a subset of genomic information with more recent evolutionary origin-mitochondrial sequences, whose closest relatives are α-Proteobacteria. For this, we identified and assembled a data set of 42 mitochondrial proteins (mainly encoded by the nuclear genome) and performed Bayesian and maximum likelihood analyses. Taxon sampling includes the recently sequenced Thecamonas trahens, a member of the phylogenetically elusive Apusozoa. This data set confirms the relationships of several eukaryotic supergroups seen before and places the eukaryotic root between the monophyletic "unikonts" and "bikonts." We further show that T. trahens branches sister to Opisthokonta with significant statistical support and question the bikont/excavate affiliation of Malawimonas species. The mitochondrial data set developed here (to be expanded in the future) constitutes a unique alternative means in resolving deep eukaryotic relationships.
Collapse
Affiliation(s)
- Romain Derelle
- Bioinformatics and Genomics Program, Centre for Genomic Regulation and Universitat Pompeu Fabra, Barcelona, Spain.
| | | |
Collapse
|
222
|
Škrtić M, Sriskanthadevan S, Jhas B, Gebbia M, Wang X, Wang Z, Hurren R, Jitkova Y, Gronda M, Maclean N, Lai CK, Eberhard Y, Bartoszko J, Spagnuolo P, Rutledge AC, Datti A, Ketela T, Moffat J, Robinson BH, Cameron JH, Wrana J, Eaves CJ, Minden MD, Wang JC, Dick JE, Humphries K, Nislow C, Giaever G, Schimmer AD. Inhibition of mitochondrial translation as a therapeutic strategy for human acute myeloid leukemia. Cancer Cell 2011; 20:674-88. [PMID: 22094260 PMCID: PMC3221282 DOI: 10.1016/j.ccr.2011.10.015] [Citation(s) in RCA: 519] [Impact Index Per Article: 37.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/06/2011] [Revised: 09/05/2011] [Accepted: 10/14/2011] [Indexed: 12/17/2022]
Abstract
To identify FDA-approved agents targeting leukemic cells, we performed a chemical screen on two human leukemic cell lines and identified the antimicrobial tigecycline. A genome-wide screen in yeast identified mitochondrial translation inhibition as the mechanism of tigecycline-mediated lethality. Tigecycline selectively killed leukemia stem and progenitor cells compared to their normal counterparts and also showed antileukemic activity in mouse models of human leukemia. ShRNA-mediated knockdown of EF-Tu mitochondrial translation factor in leukemic cells reproduced the antileukemia activity of tigecycline. These effects were derivative of mitochondrial biogenesis that, together with an increased basal oxygen consumption, proved to be enhanced in AML versus normal hematopoietic cells and were also important for their difference in tigecycline sensitivity.
Collapse
Affiliation(s)
- Marko Škrtić
- The Campbell Family Cancer Research Institute, The Princess Margaret Hospital, The Ontario Cancer Institute, Toronto, ON, M5G 2M9 Canada
| | - Shrivani Sriskanthadevan
- The Campbell Family Cancer Research Institute, The Princess Margaret Hospital, The Ontario Cancer Institute, Toronto, ON, M5G 2M9 Canada
| | - Bozhena Jhas
- The Campbell Family Cancer Research Institute, The Princess Margaret Hospital, The Ontario Cancer Institute, Toronto, ON, M5G 2M9 Canada
| | - Marinella Gebbia
- Department of Molecular Genetics, Donnelly Centre for Cellular and Biomolecular Research, University of Toronto, Toronto, Ontario, M5S 3E1 Canada
| | - Xiaoming Wang
- The Campbell Family Cancer Research Institute, The Princess Margaret Hospital, The Ontario Cancer Institute, Toronto, ON, M5G 2M9 Canada
| | - Zezhou Wang
- The Campbell Family Cancer Research Institute, The Princess Margaret Hospital, The Ontario Cancer Institute, Toronto, ON, M5G 2M9 Canada
| | - Rose Hurren
- The Campbell Family Cancer Research Institute, The Princess Margaret Hospital, The Ontario Cancer Institute, Toronto, ON, M5G 2M9 Canada
| | - Yulia Jitkova
- The Campbell Family Cancer Research Institute, The Princess Margaret Hospital, The Ontario Cancer Institute, Toronto, ON, M5G 2M9 Canada
| | - Marcela Gronda
- The Campbell Family Cancer Research Institute, The Princess Margaret Hospital, The Ontario Cancer Institute, Toronto, ON, M5G 2M9 Canada
| | - Neil Maclean
- The Campbell Family Cancer Research Institute, The Princess Margaret Hospital, The Ontario Cancer Institute, Toronto, ON, M5G 2M9 Canada
| | - Courteney K. Lai
- Terry Fox Laboratory, British Columbia Cancer Agency, Vancouver, British Columbia, V5Z 1L3 Canada
| | - Yanina Eberhard
- The Campbell Family Cancer Research Institute, The Princess Margaret Hospital, The Ontario Cancer Institute, Toronto, ON, M5G 2M9 Canada
| | - Justyna Bartoszko
- The Campbell Family Cancer Research Institute, The Princess Margaret Hospital, The Ontario Cancer Institute, Toronto, ON, M5G 2M9 Canada
| | - Paul Spagnuolo
- The Campbell Family Cancer Research Institute, The Princess Margaret Hospital, The Ontario Cancer Institute, Toronto, ON, M5G 2M9 Canada
| | - Angela C. Rutledge
- The Campbell Family Cancer Research Institute, The Princess Margaret Hospital, The Ontario Cancer Institute, Toronto, ON, M5G 2M9 Canada
| | - Alessandro Datti
- Samuel Lunenfeld Research Institute, Mount Sinai Hospital, Toronto, ON, M5G 1X5 Canada
| | - Troy Ketela
- Department of Molecular Genetics, Donnelly Centre for Cellular and Biomolecular Research, University of Toronto, Toronto, Ontario, M5S 3E1 Canada
| | - Jason Moffat
- Department of Molecular Genetics, Donnelly Centre for Cellular and Biomolecular Research, University of Toronto, Toronto, Ontario, M5S 3E1 Canada
| | - Brian H. Robinson
- Genetics and Genome Biology, The Research Institute, The Hospital for Sick Children, Toronto, ON, M5G 1X8 Canada
| | - Jessie H. Cameron
- Genetics and Genome Biology, The Research Institute, The Hospital for Sick Children, Toronto, ON, M5G 1X8 Canada
| | - Jeffery Wrana
- Samuel Lunenfeld Research Institute, Mount Sinai Hospital, Toronto, ON, M5G 1X5 Canada
| | - Connie J. Eaves
- Terry Fox Laboratory, British Columbia Cancer Agency, Vancouver, British Columbia, V5Z 1L3 Canada
| | - Mark D. Minden
- The Campbell Family Cancer Research Institute, The Princess Margaret Hospital, The Ontario Cancer Institute, Toronto, ON, M5G 2M9 Canada
| | - Jean C.Y. Wang
- The Campbell Family Cancer Research Institute, The Princess Margaret Hospital, The Ontario Cancer Institute, Toronto, ON, M5G 2M9 Canada
- Division of Stem Cell and Developmental Biology, Campbell Family Institute for Cancer Research/Ontario Cancer Institute, Toronto, Ontario M5G 1L7, Canada
| | - John E. Dick
- Division of Stem Cell and Developmental Biology, Campbell Family Institute for Cancer Research/Ontario Cancer Institute, Toronto, Ontario M5G 1L7, Canada
| | - Keith Humphries
- Terry Fox Laboratory, British Columbia Cancer Agency, Vancouver, British Columbia, V5Z 1L3 Canada
| | - Corey Nislow
- Department of Molecular Genetics, Donnelly Centre for Cellular and Biomolecular Research, University of Toronto, Toronto, Ontario, M5S 3E1 Canada
| | - Guri Giaever
- Department of Molecular Genetics, Donnelly Centre for Cellular and Biomolecular Research, University of Toronto, Toronto, Ontario, M5S 3E1 Canada
| | - Aaron D. Schimmer
- The Campbell Family Cancer Research Institute, The Princess Margaret Hospital, The Ontario Cancer Institute, Toronto, ON, M5G 2M9 Canada
- To whom correspondence should be addressed: Aaron D. Schimmer, Princess Margaret Hospital, Rm 9-516, 610 University Ave, Toronto, ON, Canada M5G 2M9, Tel: 416-946-2838, Fax: 416-946-6546,
| |
Collapse
|
223
|
Georgiades K, Merhej V, Raoult D. The influence of rickettsiologists on post-modern microbiology. Front Cell Infect Microbiol 2011; 1:8. [PMID: 22919574 PMCID: PMC3417371 DOI: 10.3389/fcimb.2011.00008] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2011] [Accepted: 10/10/2011] [Indexed: 11/29/2022] Open
Abstract
Many of the definitions in microbiology are currently false. We have reviewed the great denominations of microbiology and attempted to free microorganisms from the theories of the twentieth century. The presence of compartmentation and a nucleoid in Planctomycetes clearly calls into question the accuracy of the definitions of eukaryotes and prokaryotes. Archaea are viewed as prokaryotes resembling bacteria. However, the name archaea, suggesting an archaic origin of lifestyle, is inconsistent with the lifestyle of this family. Viruses are defined as small, filterable infectious agents, but giant viruses challenge the size criteria used for the definition of a virus. Pathogenicity does not require the acquisition of virulence factors (except for toxins), and in many cases, gene loss is significantly inked to the emergence of virulence. Species classification based on 16S rRNA is useless for taxonomic purposes of human pathogens, as a 2% divergence would classify all Rickettsiae within the same species and would not identify bacteria specialized for mammal infection. The use of metagenomics helps us to understand evolution and physiology by elucidating the structure, function, and interactions of the major microbial communities, but it neglects the minority populations. Finally, Darwin’s descent with modification theory, as represented by the tree of life, no longer matches our current genomic knowledge because genomics has revealed the occurrence of de novo-created genes and the mosaic structure of genomes, the Rhizome of life is therefore more appropriate.
Collapse
Affiliation(s)
- Kalliopi Georgiades
- Unité de Recherche en Maladies Infectieuses Tropical Emergentes, CNRS-IRD UMR 6236-198, Université de la Méditerranée Marseille, France.
| | | | | |
Collapse
|
224
|
The falsifiability of the models for the origin of eukaryotes. Curr Genet 2011; 57:367-90. [DOI: 10.1007/s00294-011-0357-z] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2011] [Revised: 09/29/2011] [Accepted: 09/30/2011] [Indexed: 01/13/2023]
|
225
|
Chang S, Yang T, Du T, Huang Y, Chen J, Yan J, He J, Guan R. Mitochondrial genome sequencing helps show the evolutionary mechanism of mitochondrial genome formation in Brassica. BMC Genomics 2011; 12:497. [PMID: 21988783 PMCID: PMC3204307 DOI: 10.1186/1471-2164-12-497] [Citation(s) in RCA: 85] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2011] [Accepted: 10/11/2011] [Indexed: 11/24/2022] Open
Abstract
Background Angiosperm mitochondrial genomes are more complex than those of other organisms. Analyses of the mitochondrial genome sequences of at least 11 angiosperm species have showed several common properties; these cannot easily explain, however, how the diverse mitotypes evolved within each genus or species. We analyzed the evolutionary relationships of Brassica mitotypes by sequencing. Results We sequenced the mitotypes of cam (Brassica rapa), ole (B. oleracea), jun (B. juncea), and car (B. carinata) and analyzed them together with two previously sequenced mitotypes of B. napus (pol and nap). The sizes of whole single circular genomes of cam, jun, ole, and car are 219,747 bp, 219,766 bp, 360,271 bp, and 232,241 bp, respectively. The mitochondrial genome of ole is largest as a resulting of the duplication of a 141.8 kb segment. The jun mitotype is the result of an inherited cam mitotype, and pol is also derived from the cam mitotype with evolutionary modifications. Genes with known functions are conserved in all mitotypes, but clear variation in open reading frames (ORFs) with unknown functions among the six mitotypes was observed. Sequence relationship analysis showed that there has been genome compaction and inheritance in the course of Brassica mitotype evolution. Conclusions We have sequenced four Brassica mitotypes, compared six Brassica mitotypes and suggested a mechanism for mitochondrial genome formation in Brassica, including evolutionary events such as inheritance, duplication, rearrangement, genome compaction, and mutation.
Collapse
Affiliation(s)
- Shengxin Chang
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing 210095, PR China
| | | | | | | | | | | | | | | |
Collapse
|
226
|
Galluzzi L, Morselli E, Kepp O, Vitale I, Pinti M, Kroemer G. Mitochondrial liaisons of p53. Antioxid Redox Signal 2011; 15:1691-714. [PMID: 20712408 DOI: 10.1089/ars.2010.3504] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Mitochondria play a central role in cell survival and cell death. While producing the bulk of intracellular ATP, mitochondrial respiration represents the most prominent source of harmful reactive oxygen species. Mitochondria participate in many anabolic pathways, including cholesterol and nucleotide biosynthesis, yet also control multiple biochemical cascades that contribute to the programmed demise of cells. The tumor suppressor protein p53 is best known for its ability to orchestrate a transcriptional response to stress that can have multiple outcomes, including cell cycle arrest and cell death. p53-mediated tumor suppression, however, also involves transcription-independent mechanisms. Cytoplasmic p53 can physically interact with members of the BCL-2 protein family, thereby promoting mitochondrial membrane permeabilization. Moreover, extranuclear p53 can suppress autophagy, a major prosurvival mechanism that is activated in response to multiple stress conditions. Thirty years have passed since its discovery, and p53 has been ascribed with an ever-increasing number of functions. For instance, p53 has turned out to influence the cell's redox status, by transactivating either anti- or pro-oxidant factors, and to regulate the metabolic switch between glycolysis and aerobic respiration. In this review, we will analyze the mechanisms by which p53 affects the balance between the vital and lethal functions of mitochondria.
Collapse
Affiliation(s)
- Lorenzo Galluzzi
- INSERM U848, Institut Gustave Roussy, Pavillon de Recherche 1, Villejuif (Paris), France
| | | | | | | | | | | |
Collapse
|
227
|
Pett W, Ryan JF, Pang K, Mullikin JC, Martindale MQ, Baxevanis AD, Lavrov DV. Extreme mitochondrial evolution in the ctenophore Mnemiopsis leidyi: Insight from mtDNA and the nuclear genome. MITOCHONDRIAL DNA 2011; 22:130-42. [PMID: 21985407 PMCID: PMC3313829 DOI: 10.3109/19401736.2011.624611] [Citation(s) in RCA: 66] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Recent advances in sequencing technology have led to a rapid accumulation of mitochondrial DNA (mtDNA) sequences, which now represent the wide spectrum of animal diversity. However, one animal phylum--Ctenophora--has, to date, remained completely unsampled. Ctenophores, a small group of marine animals, are of interest due to their unusual biology, controversial phylogenetic position, and devastating impact as invasive species. Using data from the Mnemiopsis leidyi genome sequencing project, we Polymerase Chain Reaction (PCR) amplified and analyzed its complete mitochondrial (mt-) genome. At just over 10 kb, the mt-genome of M. leidyi is the smallest animal mtDNA ever reported and is among the most derived. It has lost at least 25 genes, including atp6 and all tRNA genes. We show that atp6 has been relocated to the nuclear genome and has acquired introns and a mitochondrial targeting presequence, while tRNA genes have been genuinely lost, along with nuclear-encoded mt-aminoacyl tRNA synthetases. The mt-genome of M. leidyi also displays extremely high rates of sequence evolution, which likely led to the degeneration of both protein and rRNA genes. In particular, encoded rRNA molecules possess little similarity with their homologs in other organisms and have highly reduced secondary structures. At the same time, nuclear encoded mt-ribosomal proteins have undergone expansions, likely to compensate for the reductions in mt-rRNA. The unusual features identified in M. leidyi mtDNA make this organism an interesting system for the study of various aspects of mitochondrial biology, particularly protein and tRNA import and mt-ribosome structures, and add to its value as an emerging model species. Furthermore, the fast-evolving M. leidyi mtDNA should be a convenient molecular marker for species- and population-level studies.
Collapse
Affiliation(s)
- Walker Pett
- Department of Ecology, Evolution and Organismal Biology, Iowa State University, Ames, IA 50010, USA
| | - Joseph F. Ryan
- Genome Technology Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Kevin Pang
- Kewalo Marine Laboratory, Pacific Bioscience Research Center, University of Hawaii, Honolulu, HI 96813, USA
| | - James C. Mullikin
- Genome Technology Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Mark Q. Martindale
- Kewalo Marine Laboratory, Pacific Bioscience Research Center, University of Hawaii, Honolulu, HI 96813, USA
| | - Andreas D. Baxevanis
- Genome Technology Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Dennis V. Lavrov
- Department of Ecology, Evolution and Organismal Biology, Iowa State University, Ames, IA 50010, USA
| |
Collapse
|
228
|
Rubio MAT, Hopper AK. Transfer RNA travels from the cytoplasm to organelles. WILEY INTERDISCIPLINARY REVIEWS-RNA 2011; 2:802-17. [PMID: 21976284 DOI: 10.1002/wrna.93] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Transfer RNAs (tRNAs) encoded by the nuclear genome are surprisingly dynamic. Although tRNAs function in protein synthesis occurring on cytoplasmic ribosomes, tRNAs can transit from the cytoplasm to the nucleus and then again return to the cytoplasm by a process known as the tRNA retrograde process. Subsets of the cytoplasmic tRNAs are also imported into mitochondria and function in mitochondrial protein synthesis. The numbers of tRNA species that are imported into mitochondria differ among organisms, ranging from just a few to the entire set needed to decode mitochondrially encoded mRNAs. For some tRNAs, import is dependent on the mitochondrial protein import machinery, whereas the majority of tRNA mitochondrial import is independent of this machinery. Although cytoplasmic proteins and proteins located on the mitochondrial surface participating in the tRNA import process have been described for several organisms, the identity of these proteins differ among organisms. Likewise, the tRNA determinants required for mitochondrial import differ among tRNA species and organisms. Here, we present an overview and discuss the current state of knowledge regarding the mechanisms involved in the tRNA retrograde process and continue with an overview of tRNA import into mitochondria. Finally, we highlight areas of future research to understand the function and regulation of movement of tRNAs between the cytoplasm and organelles.
Collapse
Affiliation(s)
- Mary Anne T Rubio
- Department of Microbiology and Center for RNA Biology, Ohio State University, Columbus, OH 43210, USA
| | | |
Collapse
|
229
|
Silverio ALF, Saier MH. Bioinformatic characterization of the trimeric intracellular cation-specific channel protein family. J Membr Biol 2011; 241:77-101. [PMID: 21519847 DOI: 10.1007/s00232-011-9364-8] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2010] [Accepted: 03/26/2011] [Indexed: 12/29/2022]
Abstract
Trimeric intracellular cation-specific (TRIC) channels are integral to muscle excitation-contraction coupling. TRIC channels provide counter-ionic flux when calcium is rapidly transported from intracellular stores to the cell cytoplasm. Until recently, knowledge of the presence of these proteins was limited to animals. We analyzed the TRIC family and identified a profusion of prokaryotic family members with topologies and motifs similar to those of their eukaryotic counterparts. Prokaryotic members far outnumber eukaryotic members, and although none has been functionally characterized, the evidence suggests that they function as secondary carriers. The presence of fused N- or C-terminal domains of known biochemical functions as well as genomic context analyses provide clues about the functions of these prokaryotic homologs. They are proposed to function in metabolite (e.g., amino acid/nucleotide) efflux. Phylogenetic analysis revealed that TRIC channel homologs diverged relatively early during evolutionary history and that horizontal gene transfer was frequent in prokaryotes but not in eukaryotes. Topological analyses of TRIC channels revealed that these proteins possess seven putative transmembrane segments (TMSs), which arose by intragenic duplication of a three-TMS polypeptide-encoding genetic element followed by addition of a seventh TMS at the C terminus to give the precursor of all current TRIC family homologs. We propose that this family arose in prokaryotes.
Collapse
Affiliation(s)
- Abe L F Silverio
- Division of Biological Sciences, University of California at San Diego, La Jolla, CA 92093-0116, USA
| | | |
Collapse
|
230
|
Neira-Oviedo M, Tsyganov-Bodounov A, Lycett GJ, Kokoza V, Raikhel AS, Krzywinski J. The RNA-Seq approach to studying the expression of mosquito mitochondrial genes. INSECT MOLECULAR BIOLOGY 2011; 20:141-152. [PMID: 20958808 DOI: 10.1111/j.1365-2583.2010.01053.x] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/30/2023]
Abstract
In this study, we used extensive expressed sequence tag evidence obtained through 454 and Solexa next-generation sequencing to explore mtDNA transcription in male and female first instar larvae of Aedes aegypti and adults of Aedes aegypti, Anopheles gambiae, and Anopheles quadrimaculatus. Relative abundances of individual transcripts differed considerably within each sample, consistent with the differential stability of messenger RNA species. Large differences were also observed between species and between larval and adult stages; however, the male and female larval samples were remarkably similar. Quantitative PCR analysis of selected genes, cox1, l-rRNA and nd5, in larvae and adults of Ae. aegypti and in An. gambiae adults was consistent with the RNA-Seq-based quantification of expression. Finally, the absence of a conserved mtDNA region involved in transcriptional control in other dipterans suggests that mosquitoes have evolved a distinct mechanism of regulation of gene expression in the mitochondrion.
Collapse
Affiliation(s)
- M Neira-Oviedo
- Vector Group, Liverpool School of Tropical Medicine, Liverpool, UK
| | | | | | | | | | | |
Collapse
|
231
|
de Graaf RM, Ricard G, van Alen TA, Duarte I, Dutilh BE, Burgtorf C, Kuiper JWP, van der Staay GWM, Tielens AGM, Huynen MA, Hackstein JHP. The organellar genome and metabolic potential of the hydrogen-producing mitochondrion of Nyctotherus ovalis. Mol Biol Evol 2011; 28:2379-91. [PMID: 21378103 PMCID: PMC3144386 DOI: 10.1093/molbev/msr059] [Citation(s) in RCA: 57] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
It is generally accepted that hydrogenosomes (hydrogen-producing organelles) evolved from a mitochondrial ancestor. However, until recently, only indirect evidence for this hypothesis was available. Here, we present the almost complete genome of the hydrogen-producing mitochondrion of the anaerobic ciliate Nyctotherus ovalis and show that, except for the notable absence of genes encoding electron transport chain components of Complexes III, IV, and V, it has a gene content similar to the mitochondrial genomes of aerobic ciliates. Analysis of the genome of the hydrogen-producing mitochondrion, in combination with that of more than 9,000 genomic DNA and cDNA sequences, allows a preliminary reconstruction of the organellar metabolism. The sequence data indicate that N. ovalis possesses hydrogen-producing mitochondria that have a truncated, two step (Complex I and II) electron transport chain that uses fumarate as electron acceptor. In addition, components of an extensive protein network for the metabolism of amino acids, defense against oxidative stress, mitochondrial protein synthesis, mitochondrial protein import and processing, and transport of metabolites across the mitochondrial membrane were identified. Genes for MPV17 and ACN9, two hypothetical proteins linked to mitochondrial disease in humans, were also found. The inferred metabolism is remarkably similar to the organellar metabolism of the phylogenetically distant anaerobic Stramenopile Blastocystis. Notably, the Blastocystis organelle and that of the related flagellate Proteromonas lacertae also lack genes encoding components of Complexes III, IV, and V. Thus, our data show that the hydrogenosomes of N. ovalis are highly specialized hydrogen-producing mitochondria.
Collapse
Affiliation(s)
- Rob M de Graaf
- Department of Evolutionary Microbiology, Institute for Water and Wetland Research, Radboud University Nijmegen, Nijmegen, The Netherlands
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
232
|
Chateigner-Boutin AL, Small I. Organellar RNA editing. WILEY INTERDISCIPLINARY REVIEWS-RNA 2011; 2:493-506. [PMID: 21957039 DOI: 10.1002/wrna.72] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
RNA editing is a term used for a number of mechanistically different processes that alter the nucleotide sequence of RNA molecules to differ from the gene sequence. RNA editing occurs in a wide variety of organisms and is particularly frequent in organelle transcripts of eukaryotes. The discontiguous phylogenetic distribution of mRNA editing, the mechanistic differences observed in different organisms, and the nonhomologous editing machinery described in different taxonomic groups all suggest that RNA editing has appeared independently several times. This raises questions about the selection pressures acting to maintain editing that are yet to be completely resolved. Editing tends to be frequent in organisms with atypical organelle genomes and acts to correct the effect of DNA mutations that would otherwise compromise the synthesis of functional proteins. Additional functions of editing in generating protein diversity or regulating gene expression have been proposed but so far lack widespread experimental evidence, at least in organelles.
Collapse
|
233
|
Dynamic Behavior of Double-Membrane-Bounded Organelles in Plant Cells. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2011; 286:181-222. [DOI: 10.1016/b978-0-12-385859-7.00004-5] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
234
|
Leister D, Kleine T. Role of intercompartmental DNA transfer in producing genetic diversity. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2011; 291:73-114. [PMID: 22017974 DOI: 10.1016/b978-0-12-386035-4.00003-3] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
In eukaryotic cells, genes are found in three compartments-the nucleus, mitochondria, and plastids-and extensive gene transfer has occurred between them. Most organellar genes in the nucleus migrated there long ago, but transfer is ongoing and ubiquitous. It now generates mostly noncoding nuclear DNA, can also disrupt gene functions, and reshape genes by adding novel exons. Plastid or nuclear sequences have also contributed to the formation of mitochondrial tRNA genes. It is now clear that organelle-to-nucleus DNA transfer involves the escape of DNA molecules from the organelles at times of stress or at certain developmental stages, and their subsequent incorporation at sites of double-stranded breaks in nuclear DNA by nonhomologous recombination. Intercompartmental DNA transfer thus appears to be an inescapable phenomenon that has had a broad impact on eukaryotic evolution, affecting DNA repair, gene and genome evolution, and redirecting proteins to different target compartments.
Collapse
Affiliation(s)
- Dario Leister
- Lehrstuhl für Molekularbiologie der Pflanzen, Department Biologie I, Ludwig-Maximilians-Universität München-LMU, Planegg-Martinsried, Germany
| | | |
Collapse
|
235
|
Abhishek A, Bavishi A, Bavishi A, Choudhary M. Bacterial genome chimaerism and the origin of mitochondria. Can J Microbiol 2011; 57:49-61. [DOI: 10.1139/w10-099] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Many studies have sought to determine the origin and evolution of mitochondria. Although the Alphaproteobacteria are thought to be the closest relatives of the mitochondrial progenitor, there is dispute as to what its particular sister group is. Some have argued that mitochondria originated from ancestors of the order Rickettsiales, or more specifically of the Rickettsiaceae family, while others believe that ancestors of the family Rhodospirillaceae are also equally likely the progenitors. To resolve some of these disputes, sequence similarity searches and phylogenetic analyses were performed against mitochondria-related proteins in Saccharomyces cerevisiae . The 86 common matches of 5 Alphaproteobacteria ( Rickettsia prowazekii , Rhodospirillum rubrum , R hodopseudomonas palustris , Rhodobacter sphaeroides , and Ochrobactrum anthropi ) to yeast mitochondrial proteins were distributed fairly evenly among the 5 species when sorted by highest identity or score. Moreover, exploratory phylogenetic analyses revealed that among these common matches, 44.19% (38) had branched most closely with O. anthropi, while only 34.88% (30) corresponded with Rickettsia prowazekii. More detailed phylogenetic analyses with additional Alphaproteobacteria and including genes from the mitochondria of Reclinomonas americana found matches of mitochondrial genes to those of members of the Rickettsiaceae, Anaplasmataceae, and Rhodospirillaceae families. The results support the idea that notable bacterial genome chimaerism has occurred en route to the formation of mitochondria.
Collapse
Affiliation(s)
- Ankur Abhishek
- Department of Biological Sciences, Sam Houston State University, Huntsville, TX 77431, USA
| | - Anish Bavishi
- Department of Biological Sciences, Sam Houston State University, Huntsville, TX 77431, USA
| | - Ashay Bavishi
- Department of Biological Sciences, Sam Houston State University, Huntsville, TX 77431, USA
| | - Madhusudan Choudhary
- Department of Biological Sciences, Sam Houston State University, Huntsville, TX 77431, USA
| |
Collapse
|
236
|
Desmond E, Brochier-Armanet C, Forterre P, Gribaldo S. On the last common ancestor and early evolution of eukaryotes: reconstructing the history of mitochondrial ribosomes. Res Microbiol 2011; 162:53-70. [DOI: 10.1016/j.resmic.2010.10.004] [Citation(s) in RCA: 68] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2010] [Accepted: 10/04/2010] [Indexed: 12/31/2022]
|
237
|
Tong J, Dolezal P, Selkrig J, Crawford S, Simpson AGB, Noinaj N, Buchanan SK, Gabriel K, Lithgow T. Ancestral and derived protein import pathways in the mitochondrion of Reclinomonas americana. Mol Biol Evol 2010; 28:1581-91. [PMID: 21081480 DOI: 10.1093/molbev/msq305] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
The evolution of mitochondria from ancestral bacteria required that new protein transport machinery be established. Recent controversy over the evolution of these new molecular machines hinges on the degree to which ancestral bacterial transporters contributed during the establishment of the new protein import pathway. Reclinomonas americana is a unicellular eukaryote with the most gene-rich mitochondrial genome known, and the large collection of membrane proteins encoded on the mitochondrial genome of R. americana includes a bacterial-type SecY protein transporter. Analysis of expressed sequence tags shows R. americana also has components of a mitochondrial protein translocase or "translocase in the inner mitochondrial membrane complex." Along with several other membrane proteins encoded on the mitochondrial genome Cox11, an assembly factor for cytochrome c oxidase retains sequence features suggesting that it is assembled by the SecY complex in R. americana. Despite this, protein import studies show that the RaCox11 protein is suited for import into mitochondria and functional complementation if the gene is transferred into the nucleus of yeast. Reclinomonas americana provides direct evidence that bacterial protein transport pathways were retained, alongside the evolving mitochondrial protein import machinery, shedding new light on the process of mitochondrial evolution.
Collapse
Affiliation(s)
- Janette Tong
- Department of Biochemistry & Molecular Biology, Monash University, Clayton, Australia
| | | | | | | | | | | | | | | | | |
Collapse
|
238
|
Handa Y, Inaho N, Nameki N. YaeJ is a novel ribosome-associated protein in Escherichia coli that can hydrolyze peptidyl-tRNA on stalled ribosomes. Nucleic Acids Res 2010; 39:1739-48. [PMID: 21051357 PMCID: PMC3061065 DOI: 10.1093/nar/gkq1097] [Citation(s) in RCA: 89] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
In bacteria, ribosomes often become stalled and are released by a trans-translation process mediated by transfer-messenger RNA (tmRNA). In the absence of tmRNA, however, there is evidence that stalled ribosomes are released from non-stop mRNAs. Here, we show a novel ribosome rescue system mediated by a small basic protein, YaeJ, from Escherichia coli, which is similar in sequence and structure to the catalytic domain 3 of polypeptide chain release factor (RF). In vitro translation experiments using the E. coli-based reconstituted cell-free protein synthesis system revealed that YaeJ can hydrolyze peptidyl-tRNA on ribosomes stalled by both non-stop mRNAs and mRNAs containing rare codon clusters that extend downstream from the P-site and prevent Ala-tmRNA•SmpB from entering the empty A-site. In addition, YaeJ had no effect on translation of a normal mRNA with a stop codon. These results suggested a novel tmRNA-independent rescue system for stalled ribosomes in E. coli. YaeJ was almost exclusively found in the 70S ribosome and polysome fractions after sucrose density gradient sedimentation, but was virtually undetectable in soluble fractions. The C-terminal basic residue-rich extension was also found to be required for ribosome binding. These findings suggest that YaeJ functions as a ribosome-attached rescue device for stalled ribosomes.
Collapse
Affiliation(s)
- Yoshihiro Handa
- Department of Chemistry and Chemical Biology, Graduate School of Engineering, Gunma University, 1-5-1 Tenjin-cho, Kiryu-shi, Gunma 376-8515, Japan
| | | | | |
Collapse
|
239
|
Dai Z, Yin J, He H, Li W, Hou C, Qian X, Mao N, Pan L. Mitochondrial comparative proteomics of human ovarian cancer cells and their platinum-resistant sublines. Proteomics 2010; 10:3789-99. [DOI: 10.1002/pmic.200900685] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
|
240
|
Vlcek C, Marande W, Teijeiro S, Lukes J, Burger G. Systematically fragmented genes in a multipartite mitochondrial genome. Nucleic Acids Res 2010; 39:979-88. [PMID: 20935050 PMCID: PMC3035467 DOI: 10.1093/nar/gkq883] [Citation(s) in RCA: 61] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Arguably, the most bizarre mitochondrial DNA (mtDNA) is that of the euglenozoan eukaryote Diplonema papillatum. The genome consists of numerous small circular chromosomes none of which appears to encode a complete gene. For instance, the cox1 coding sequence is spread out over nine different chromosomes in non-overlapping pieces (modules), which are transcribed separately and joined to a contiguous mRNA by trans-splicing. Here, we examine how many genes are encoded by Diplonema mtDNA and whether all are fragmented and their transcripts trans-spliced. Module identification is challenging due to the sequence divergence of Diplonema mitochondrial genes. By employing most sensitive protein profile search algorithms and comparing genomic with cDNA sequence, we recognize a total of 11 typical mitochondrial genes. The 10 protein-coding genes are systematically chopped up into three to 12 modules of 60–350 bp length. The corresponding mRNAs are all trans-spliced. Identification of ribosomal RNAs is most difficult. So far, we only detect the 3′-module of the large subunit ribosomal RNA (rRNA); it does not trans-splice with other pieces. The small subunit rRNA gene remains elusive. Our results open new intriguing questions about the biochemistry and evolution of mitochondrial trans-splicing in Diplonema.
Collapse
Affiliation(s)
- Cestmir Vlcek
- Institute of Molecular Genetics, Academy of Sciences of the Czech Republic, Department of Genomics and Bioinformatics, 142 20 Prague, Czech Republic
| | | | | | | | | |
Collapse
|
241
|
Carrie C, Giraud E, Duncan O, Xu L, Wang Y, Huang S, Clifton R, Murcha M, Filipovska A, Rackham O, Vrielink A, Whelan J. Conserved and novel functions for Arabidopsis thaliana MIA40 in assembly of proteins in mitochondria and peroxisomes. J Biol Chem 2010; 285:36138-48. [PMID: 20829360 DOI: 10.1074/jbc.m110.121202] [Citation(s) in RCA: 94] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The disulfide relay system of the mitochondrial intermembrane space has been extensively characterized in Saccharomyces cerevisiae. It contains two essential components, Mia40 and Erv1. The genome of Arabidopsis thaliana contains a single gene for each of these components. Although insertional inactivation of Erv1 leads to a lethal phenotype, inactivation of Mia40 results in no detectable deleterious phenotype. A. thaliana Mia40 is targeted to and accumulates in mitochondria and peroxisomes. Inactivation of Mia40 results in an alteration of several proteins in mitochondria, an absence of copper/zinc superoxide dismutase (CSD1), the chaperone for superoxide dismutase (Ccs1) that inserts copper into CSD1, and a decrease in capacity and amount of complex I. In peroxisomes the absence of Mia40 leads to an absence of CSD3 and a decrease in abnormal inflorescence meristem 1 (Aim1), a β-oxidation pathway enzyme. Inactivation of Mia40 leads to an alteration of the transcriptome of A. thaliana, with genes encoding peroxisomal proteins, redox functions, and biotic stress significantly changing in abundance. Thus, the mechanistic operation of the mitochondrial disulfide relay system is different in A. thaliana compared with other systems, and Mia40 has taken on new roles in peroxisomes and mitochondria.
Collapse
Affiliation(s)
- Chris Carrie
- Australian Research Council Centre of Excellence in Plant Energy Biology, University of Western Australia, Crawley, Western Australia 6009, Australia
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
242
|
Mitochondrial damage associated molecular patterns from femoral reamings activate neutrophils through formyl peptide receptors and P44/42 MAP kinase. J Orthop Trauma 2010; 24:534-8. [PMID: 20736789 PMCID: PMC2945259 DOI: 10.1097/bot.0b013e3181ec4991] [Citation(s) in RCA: 89] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
HYPOTHESIS Fractures and femoral reaming are associated with lung injury. The mechanisms linking fractures and inflammation are unclear, but tissue disruption might release mitochondria. Mitochondria are evolutionarily derived from bacteria and contain "damage associated molecular patterns" like formylated peptides that can activate immunocytes. We therefore studied whether fracture reaming releases mitochondrial damage associated molecular patterns (MTD) and how MTD act on immune cells. METHODS Femur fracture reamings (FFx) from 10 patients were spun to remove bone particulates. Supernatants were assayed for mitochondrial DNA. Mitochondria were isolated from the residual reaming slurry, sonicated, and spun at 12,000 g. The resultant MTD were assayed for their ability to cause neutrophil (PMN) Ca transient production, p44/42 MAPK phosphorylation, interleukin-8 release, and matrix metalloproteinase-9 release with and without formyl peptide receptor-1 blockade. Rats were injected with MTD and whole lung assayed for p44/42 activation. RESULTS Mitochondrial DNA appears at many thousand-fold normal plasma levels in FFx and at intermediate levels in patients' plasma, suggesting release from fracture to plasma. FFx MTD caused brisk PMN Ca flux, activated PMN p44/42 MAPK, and caused PMN release of interleukin-8 and matrix metalloproteinase-9. Responses to MTD were inhibited by formyl peptide receptor-1 blockade using cyclosporine H or anti-formyl peptide receptor-1. MTD injection caused P44/42 phosphorylation in rat lung. CONCLUSIONS FFx reaming releases mitochondria into the wound and circulation. MTD then activates PMN. Release of damage signals like MTD from FFx may underlie activation of the cytokine cascades known to be associated with fracture fixation and lung injury.
Collapse
|
243
|
Minor modifications and major adaptations: the evolution of molecular machines driving mitochondrial protein import. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2010; 1808:947-54. [PMID: 20659421 DOI: 10.1016/j.bbamem.2010.07.019] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/23/2010] [Revised: 07/17/2010] [Accepted: 07/20/2010] [Indexed: 11/23/2022]
Abstract
Bacterial endosymbionts gave rise to mitochondria in a process that depended on the acquisition of protein import pathways. Modification and in some cases major re-tooling of the endosymbiont's cellular machinery produced these pathways, establishing mitochondria as organelles common to all eukaryotic cells. The legacy of this evolutionary tinkering can be seen in the homologies and structural similarities between mitochondrial protein import machinery and modern day bacterial proteins. Comparative analysis of these systems is revealing both possible routes for the evolution of the mitochondrial membrane translocases and a greater understanding of the mechanisms behind mitochondrial protein import. This article is part of a Special Issue entitled Protein translocation across or insertion into membranes.
Collapse
|
244
|
Soh S, Byrska M, Kandere-Grzybowska K, Grzybowski BA. Reaction-diffusion systems in intracellular molecular transport and control. Angew Chem Int Ed Engl 2010; 49:4170-98. [PMID: 20518023 PMCID: PMC3697936 DOI: 10.1002/anie.200905513] [Citation(s) in RCA: 130] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Chemical reactions make cells work only if the participating chemicals are delivered to desired locations in a timely and precise fashion. Most research to date has focused on active-transport mechanisms, although passive diffusion is often equally rapid and energetically less costly. Capitalizing on these advantages, cells have developed sophisticated reaction-diffusion (RD) systems that control a wide range of cellular functions-from chemotaxis and cell division, through signaling cascades and oscillations, to cell motility. These apparently diverse systems share many common features and are "wired" according to "generic" motifs such as nonlinear kinetics, autocatalysis, and feedback loops. Understanding the operation of these complex (bio)chemical systems requires the analysis of pertinent transport-kinetic equations or, at least on a qualitative level, of the characteristic times of the constituent subprocesses. Therefore, in reviewing the manifestations of cellular RD, we also describe basic theory of reaction-diffusion phenomena.
Collapse
Affiliation(s)
- Siowling Soh
- Department of Chemical and Biological Engineering, Northwestern University, 2145 Sheridan Rd, Evanston, IL 60208
| | - Marta Byrska
- Department of Chemical and Biological Engineering, Northwestern University, 2145 Sheridan Rd, Evanston, IL 60208
| | - Kristiana Kandere-Grzybowska
- Department of Chemical and Biological Engineering, Northwestern University, 2145 Sheridan Rd, Evanston, IL 60208
| | - Bartosz A. Grzybowski
- Department of Chemistry, Department of Chemical and Biological Engineering, Northwestern University, 2145 Sheridan Rd, Evanston, IL 60208, Homepage: http://www.dysa.northwestern.edu
| |
Collapse
|
245
|
Soh S, Byrska M, Kandere-Grzybowska K, Grzybowski B. Reaktions-Diffusions-Systeme für intrazellulären Transport und Kontrolle. Angew Chem Int Ed Engl 2010. [DOI: 10.1002/ange.200905513] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
|
246
|
Wilson DM, Brooks PJ. The mitochondrial genome: dynamics, mechanisms of repair, and a target in disease and therapy. ENVIRONMENTAL AND MOLECULAR MUTAGENESIS 2010; 51:349-351. [PMID: 20544877 PMCID: PMC2940707 DOI: 10.1002/em.20584] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/29/2023]
|
247
|
Bullerwell CE, Burger G, Gott JM, Kourennaia O, Schnare MN, Gray MW. Abundant 5S rRNA-like transcripts encoded by the mitochondrial genome in amoebozoa. EUKARYOTIC CELL 2010; 9:762-73. [PMID: 20304999 PMCID: PMC2863963 DOI: 10.1128/ec.00013-10] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/18/2010] [Accepted: 03/14/2010] [Indexed: 11/20/2022]
Abstract
5S rRNAs are ubiquitous components of prokaryotic, chloroplast, and eukaryotic cytosolic ribosomes but are apparently absent from mitochondrial ribosomes (mitoribosomes) of many eukaryotic groups including animals and fungi. Nevertheless, a clearly identifiable, mitochondrion-encoded 5S rRNA is present in Acanthamoeba castellanii, a member of Amoebozoa. During a search for additional mitochondrial 5S rRNAs, we detected small abundant RNAs in other members of Amoebozoa, namely, in the lobose amoeba Hartmannella vermiformis and in the myxomycete slime mold Physarum polycephalum. These RNAs are encoded by mitochondrial DNA (mtDNA), cosediment with mitoribosomes in glycerol gradients, and can be folded into a secondary structure similar to that of bona fide 5S rRNAs. Further, in the mtDNA of another slime mold, Didymium nigripes, we identified a region that in sequence, potential secondary structure, and genomic location is similar to the corresponding region encoding the Physarum small RNA. A mtDNA-encoded small RNA previously identified in Dictyostelium discoideum is here shown to share several characteristics with known 5S rRNAs. Again, we detected genes encoding potential homologs of this RNA in the mtDNA of three other species of the genus Dictyostelium as well as in a related genus, Polysphondylium. Taken together, our results indicate a widespread occurrence of small, abundant, mtDNA-encoded RNAs with 5S rRNA-like structures that are associated with the mitoribosome in various amoebozoan taxa. Our working hypothesis is that these novel small abundant RNAs represent radically divergent mitochondrial 5S rRNA homologs. We posit that currently unrecognized 5S-like RNAs may exist in other mitochondrial systems in which a conventional 5S rRNA cannot be identified.
Collapse
MESH Headings
- Amoebozoa/cytology
- Amoebozoa/genetics
- Animals
- Base Sequence
- Cell Fractionation
- Computational Biology
- Conserved Sequence
- DNA, Mitochondrial/genetics
- Dictyostelium/genetics
- Genome, Mitochondrial/genetics
- Hartmannella/genetics
- Mitochondria/genetics
- Molecular Sequence Data
- Nucleic Acid Conformation
- Phylogeny
- Physarum polycephalum/genetics
- RNA, Messenger/genetics
- RNA, Messenger/metabolism
- RNA, Ribosomal, 5S/chemistry
- RNA, Ribosomal, 5S/genetics
- Ribosome Subunits, Large, Eukaryotic/genetics
- Sequence Homology, Amino Acid
Collapse
Affiliation(s)
- Charles E. Bullerwell
- Department of Biochemistry and Molecular Biology, Dalhousie University, Halifax, Nova Scotia B3H 1X5, Canada
| | - Gertraud Burger
- Robert Cedergren Center for Bioinformatics and Genomics, Département de Biochimie, Université de Montréal, Montréal, Quebec H3T 1J4, Canada; and
| | - Jonatha M. Gott
- Center for RNA Molecular Biology, School of Medicine, Case Western Reserve University, 10900 Euclid Avenue, Cleveland, Ohio 44106
| | - Olga Kourennaia
- Center for RNA Molecular Biology, School of Medicine, Case Western Reserve University, 10900 Euclid Avenue, Cleveland, Ohio 44106
| | - Murray N. Schnare
- Department of Biochemistry and Molecular Biology, Dalhousie University, Halifax, Nova Scotia B3H 1X5, Canada
| | - Michael W. Gray
- Department of Biochemistry and Molecular Biology, Dalhousie University, Halifax, Nova Scotia B3H 1X5, Canada
| |
Collapse
|
248
|
Ravin NV, Galachyants YP, Mardanov AV, Beletsky AV, Petrova DP, Sherbakova TA, Zakharova YR, Likhoshway YV, Skryabin KG, Grachev MA. Complete sequence of the mitochondrial genome of a diatom alga Synedra acus and comparative analysis of diatom mitochondrial genomes. Curr Genet 2010; 56:215-23. [PMID: 20309551 DOI: 10.1007/s00294-010-0293-3] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2009] [Revised: 02/19/2010] [Accepted: 02/23/2010] [Indexed: 10/19/2022]
Abstract
The first two mitochondrial genomes of marine diatoms were previously reported for the centric Thalassiosira pseudonana and the raphid pennate Phaeodactylum tricornutum. As part of a genomic project, we sequenced the complete mitochondrial genome of the freshwater araphid pennate diatom Synedra acus. This 46,657 bp mtDNA encodes 2 rRNAs, 24 tRNAs, and 33 proteins. The mtDNA of S. acus contains three group II introns, two inserted into the cox1 gene and containing ORFs, and one inserted into the rnl gene and lacking an ORF. The compact gene organization contrasts with the presence of a 4.9-kb-long intergenic region, which contains repeat sequences. Comparison of the three sequenced mtDNAs showed that these three genomes carry similar gene pools, but the positions of some genes are rearranged. Phylogenetic analysis performed with a fragment of the cox1 gene of diatoms and other heterokonts produced a tree that is similar to that derived from 18S RNA genes. The introns of mtDNA in the diatoms seem to be polyphyletic. This study demonstrates that pyrosequencing is an efficient method for complete sequencing of mitochondrial genomes from diatoms, and may soon give valuable information about the molecular phylogeny of this outstanding group of unicellular organisms.
Collapse
|
249
|
Lithgow T, Schneider A. Evolution of macromolecular import pathways in mitochondria, hydrogenosomes and mitosomes. Philos Trans R Soc Lond B Biol Sci 2010; 365:799-817. [PMID: 20124346 PMCID: PMC2817224 DOI: 10.1098/rstb.2009.0167] [Citation(s) in RCA: 92] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
All eukaryotes require mitochondria for survival and growth. The origin of mitochondria can be traced down to a single endosymbiotic event between two probably prokaryotic organisms. Subsequent evolution has left mitochondria a collection of heterogeneous organelle variants. Most of these variants have retained their own genome and translation system. In hydrogenosomes and mitosomes, however, the entire genome was lost. All types of mitochondria import most of their proteome from the cytosol, irrespective of whether they have a genome or not. Moreover, in most eukaryotes, a variable number of tRNAs that are required for mitochondrial translation are also imported. Thus, import of macromolecules, both proteins and tRNA, is essential for mitochondrial biogenesis. Here, we review what is known about the evolutionary history of the two processes using a recently revised eukaryotic phylogeny as a framework. We discuss how the processes of protein import and tRNA import relate to each other in an evolutionary context.
Collapse
Affiliation(s)
- Trevor Lithgow
- Department of Biochemistry and Molecular Biology, Monash University, Clayton 3800, Australia
| | - André Schneider
- Department of Chemistry and Biochemistry, University of Bern, Freiestr. 3, CH-3012 Bern, Switzerland
| |
Collapse
|
250
|
Hendrickson PG, Silliker ME. RNA editing in six mitochondrial ribosomal protein genes of Didymium iridis. Curr Genet 2010; 56:203-13. [PMID: 20169440 DOI: 10.1007/s00294-010-0292-4] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2009] [Revised: 01/29/2010] [Accepted: 02/01/2010] [Indexed: 11/30/2022]
Abstract
Similarity searches with Didymium iridis mitochondrial genomic DNA identified six possible ribosomal protein-coding regions, however, each region contained stop codons that would need to be removed by RNA editing to produce functional transcripts. RT-PCR was used to amplify these regions from total RNA for cloning and sequencing. Six functional transcripts were verified for the following ribosomal protein genes: rpS12, rpS7, rpL2, rpS19, rpS3, and rpL16. The editing events observed, such as single C and U nucleotide insertions and a dinucleotide insertion, were consistent with previously observed editing patterns seen in D. iridis. Additionally, a new form of insertional editing, a single A insertion, was observed in a conserved region of the rpL16 gene. While the majority of codons created by editing specify hydrophobic amino acids, a greater proportion of the codons created in these hydrophilic ribosomal proteins called for positively charged amino acids in comparison to the previously characterized hydrophobic respiratory protein genes. This first report of edited soluble mitochondrial ribosomal proteins in myxomycetes expands upon the RNA editing patterns previously seen; there was: a greater proportion of created codons specifying positively charged amino acids, a shift in the codon position edited, and the insertion of single A nucleotides.
Collapse
Affiliation(s)
- Peter G Hendrickson
- Immunology Department, Children's Memorial Research Center, Chicago, IL 60614, USA
| | | |
Collapse
|