201
|
Silva ACM, Dos Santos MP, de França SA, da Silva VC, da Silva LE, de Figueiredo US, Dall'Oglio EL, Júnior PTDS, Lopes CF, Baviera AM, Kawashita NH. Acute and subchronic antihyperglycemic activities of Bowdichia virgilioides roots in non-diabetic and diabetic rats. JOURNAL OF COMPLEMENTARY MEDICINE RESEARCH 2015; 4:57-63. [PMID: 26401386 PMCID: PMC4566756 DOI: 10.5455/jice.20141028022407] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2014] [Accepted: 10/28/2014] [Indexed: 11/15/2022]
Abstract
Aim: The present study was undertaken to evaluate the acute and subchronic antihyperglycemic effects of methanolic extract of Bowdichia virgilioides root bark of B. virgilioides in streptozotocin (STZ)-induced diabetic rats. Materials and Methods: The extract (100, 250 or 500 mg/kg) was orally administered to male Wistar diabetic (STZ, 42 mg/kg i.v.) and non-diabetic rats into two main protocols: (i) subchronic experiments, where animals were treated for 21 days with B. virgilioides extract and the following parameters were evaluated: Body weight, fluid and food intake (determined daily), urinary glucose and urea (every 3 days) and glycemia (every 5 days). At the end of the experimental period, skeletal muscles (extensor digitorum longus [EDL] and soleus), retroperitoneal and epididymal white adipose tissues were collected and weighed; liver samples were used for the determination of the lipid and glycogen contents; (ii) acute experiments, which evaluated the alterations on fasting and post-prandial glycemia and on glucose tolerance using the oral glucose tolerance test (OGTT). Results: In subchronic experiments, the treatment with B. virgilioides extract did not change any parameter evaluated in diabetic and non-diabetic animals. On fasting and post-prandial glycemia, the extract treatment did not promote changes in the glycemia values in diabetic or non-diabetic animals. In OGTT, the treatment with 500 mg/kg B. virgilioides extract reduced the hyperglycemia peak after a glucose overload, when compared with non-treated diabetic animals, resulting in a lower area under curve. Conclusion: The results of our work indicate that B. virgilioides root extract promotes an acute antihyperglycemic effect in STZ-diabetic rats; this effect probably occurs through an inhibition of the intestinal glucose absorption. The continuity of the research is necessary to elucidate these possibilities.
Collapse
Affiliation(s)
| | | | | | | | - Luiz Everson da Silva
- Department of Science Education, Federal University of Paraná, Coastal Sector, Matinhos, Paraná, Brazil
| | | | | | | | - Carbene França Lopes
- Department of Chemistry, Federal University of Mato Grosso, Cuiabá, Mato Grosso, Brazil
| | - Amanda Martins Baviera
- Department of Clinical Analysis, School of Pharmaceutical Sciences, São Paulo State University, Araraquara, São Paulo, Brazil
| | - Nair Honda Kawashita
- Department of Chemistry, Federal University of Mato Grosso, Cuiabá, Mato Grosso, Brazil
| |
Collapse
|
202
|
Patel C, Douard V, Yu S, Gao N, Ferraris RP. Transport, metabolism, and endosomal trafficking-dependent regulation of intestinal fructose absorption. FASEB J 2015; 29:4046-58. [PMID: 26071406 PMCID: PMC4550372 DOI: 10.1096/fj.15-272195] [Citation(s) in RCA: 69] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2015] [Accepted: 06/02/2015] [Indexed: 01/03/2023]
Abstract
Dietary fructose that is linked to metabolic abnormalities can up-regulate its own absorption, but the underlying regulatory mechanisms are not known. We hypothesized that glucose transporter (GLUT) protein, member 5 (GLUT5) is the primary fructose transporter and that fructose absorption via GLUT5, metabolism via ketohexokinase (KHK), as well as GLUT5 trafficking to the apical membrane via the Ras-related protein-in-brain 11 (Rab11)a-dependent endosomes are each required for regulation. Introducing fructose but not lysine and glucose solutions into the lumen increased by 2- to 10-fold the heterogeneous nuclear RNA, mRNA, protein, and activity levels of GLUT5 in adult wild-type mice consuming chow. Levels of GLUT5 were >100-fold that of candidate apical fructose transporters GLUTs 7, 8, and 12 whose expression, and that of GLUT 2 and the sodium-dependent glucose transporter protein 1 (SGLT1), was not regulated by luminal fructose. GLUT5-knockout (KO) mice exhibited no facilitative fructose transport and no compensatory increases in activity and expression of SGLT1 and other GLUTs. Fructose could not up-regulate GLUT5 in GLUT5-KO, KHK-KO, and intestinal epithelial cell-specific Rab11a-KO mice. The fructose-specific metabolite glyceraldehyde did not increase GLUT5 expression. GLUT5 is the primary transporter responsible for facilitative absorption of fructose, and its regulation specifically requires fructose uptake and metabolism and normal GLUT5 trafficking to the apical membrane.
Collapse
Affiliation(s)
- Chirag Patel
- *Department of Pharmacology and Physiology, New Jersey Medical School, and Department of Biological Sciences, School of Arts and Sciences, Rutgers University, Newark, New Jersey, USA
| | - Veronique Douard
- *Department of Pharmacology and Physiology, New Jersey Medical School, and Department of Biological Sciences, School of Arts and Sciences, Rutgers University, Newark, New Jersey, USA
| | - Shiyan Yu
- *Department of Pharmacology and Physiology, New Jersey Medical School, and Department of Biological Sciences, School of Arts and Sciences, Rutgers University, Newark, New Jersey, USA
| | - Nan Gao
- *Department of Pharmacology and Physiology, New Jersey Medical School, and Department of Biological Sciences, School of Arts and Sciences, Rutgers University, Newark, New Jersey, USA
| | - Ronaldo P Ferraris
- *Department of Pharmacology and Physiology, New Jersey Medical School, and Department of Biological Sciences, School of Arts and Sciences, Rutgers University, Newark, New Jersey, USA
| |
Collapse
|
203
|
Malinauskas M, Wallenius V, Fändriks L, Casselbrant A. Local expression of AP/AngIV/IRAP and effect of AngIV on glucose-induced epithelial transport in human jejunal mucosa. J Renin Angiotensin Aldosterone Syst 2015; 16:1101-8. [PMID: 26311161 DOI: 10.1177/1470320315599514] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2015] [Accepted: 07/12/2015] [Indexed: 12/19/2022] Open
Abstract
BACKGROUND Recently it was shown that the classic renin-angiotensin system (RAS) is locally expressed in small intestinal enterocytes and exerts autocrine control of glucose transport. The aim of this study was to investigate if key components for the Angiotensin III (AngIII) and IV (AngIV) formation enzymes and the AngIV receptor, insulin-regulated aminopeptidase (IRAP), are present in the healthy jejunal mucosa. A second aim was to investigate AngIV effects on glucose-induced mucosal transport in vitro. MATERIAL AND METHODS Enteroscopy with mucosal biopsy sampling was performed in healthy volunteers. ELISA, Western blotting and immunohistochemistry were used to assess the protein levels and localization. The functional effect of AngIV was examined in Ussing chambers. RESULTS The substrate Angiotensin II, the enzymes aminopeptidases-A, B, M as well as IRAP were detected in the jejunal mucosa. Immunohistochemistry localized the enzymes to the apical brush-border membrane whereas IRAP was localized in the subapical cytosolic compartment in the enterocyte. AngIV increased the glucose-induced electrogenic transport in vitro. CONCLUSION The present study indicates the presence of substrates and enzymes necessary for AngIV formation as well as the receptor IRAP in the jejunal mucosa. The functional data suggest that AngIV regulates glucose uptake in the healthy human small intestine.
Collapse
Affiliation(s)
- M Malinauskas
- Institute of Physiology and Pharmacology, Medical Academy, Lithuanian University of Health Sciences, Kaunas, Lithuania Department of Gastrosurgical Research and Education, Institute of Clinical Sciences, Sahlgrenska Academy, University of Gothenburg, Sweden
| | - V Wallenius
- Department of Gastrosurgical Research and Education, Institute of Clinical Sciences, Sahlgrenska Academy, University of Gothenburg, Sweden
| | - L Fändriks
- Department of Gastrosurgical Research and Education, Institute of Clinical Sciences, Sahlgrenska Academy, University of Gothenburg, Sweden
| | - A Casselbrant
- Department of Gastrosurgical Research and Education, Institute of Clinical Sciences, Sahlgrenska Academy, University of Gothenburg, Sweden
| |
Collapse
|
204
|
Roopchand DE, Carmody RN, Kuhn P, Moskal K, Rojas-Silva P, Turnbaugh PJ, Raskin I. Dietary Polyphenols Promote Growth of the Gut Bacterium Akkermansia muciniphila and Attenuate High-Fat Diet-Induced Metabolic Syndrome. Diabetes 2015; 64:2847-58. [PMID: 25845659 PMCID: PMC4512228 DOI: 10.2337/db14-1916] [Citation(s) in RCA: 488] [Impact Index Per Article: 48.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/19/2014] [Accepted: 03/28/2015] [Indexed: 12/12/2022]
Abstract
Dietary polyphenols protect against metabolic syndrome, despite limited absorption and digestion, raising questions about their mechanism of action. We hypothesized that one mechanism may involve the gut microbiota. To test this hypothesis, C57BL/6J mice were fed a high-fat diet (HFD) containing 1% Concord grape polyphenols (GP). Relative to vehicle controls, GP attenuated several effects of HFD feeding, including weight gain, adiposity, serum inflammatory markers (tumor necrosis factor [TNF]α, interleukin [IL]-6, and lipopolysaccharide), and glucose intolerance. GP lowered intestinal expression of inflammatory markers (TNFα, IL-6, inducible nitric oxide synthase) and a gene for glucose absorption (Glut2). GP increased intestinal expression of genes involved in barrier function (occludin) and limiting triglyceride storage (fasting-induced adipocyte factor). GP also increased intestinal gene expression of proglucagon, a precursor of proteins that promote insulin production and gut barrier integrity. 16S rRNA gene sequencing and quantitative PCR of cecal and fecal samples demonstrated that GP dramatically increased the growth of Akkermansia muciniphila and decreased the proportion of Firmicutes to Bacteroidetes, consistent with prior reports that similar changes in microbial community structure can protect from diet-induced obesity and metabolic disease. These data suggest that GP act in the intestine to modify gut microbial community structure, resulting in lower intestinal and systemic inflammation and improved metabolic outcomes. The gut microbiota may thus provide the missing link in the mechanism of action of poorly absorbed dietary polyphenols.
Collapse
Affiliation(s)
- Diana E Roopchand
- School of Environmental and Biological Sciences, Rutgers, The State University of New Jersey, New Brunswick, NJ Nutrasorb, LLC, North Brunswick, NJ
| | - Rachel N Carmody
- G.W. Hooper Research Foundation, University of California, San Francisco, San Francisco, CA
| | - Peter Kuhn
- School of Environmental and Biological Sciences, Rutgers, The State University of New Jersey, New Brunswick, NJ
| | | | - Patricio Rojas-Silva
- School of Environmental and Biological Sciences, Rutgers, The State University of New Jersey, New Brunswick, NJ
| | - Peter J Turnbaugh
- G.W. Hooper Research Foundation, University of California, San Francisco, San Francisco, CA
| | - Ilya Raskin
- School of Environmental and Biological Sciences, Rutgers, The State University of New Jersey, New Brunswick, NJ
| |
Collapse
|
205
|
Mace OJ, Tehan B, Marshall F. Pharmacology and physiology of gastrointestinal enteroendocrine cells. Pharmacol Res Perspect 2015. [PMID: 26213627 PMCID: PMC4506687 DOI: 10.1002/prp2.155] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Gastrointestinal (GI) polypeptides are secreted from enteroendocrine cells (EECs). Recent technical advances and the identification of endogenous and synthetic ligands have enabled exploration of the pharmacology and physiology of EECs. Enteroendocrine signaling pathways stimulating hormone secretion involve multiple nutrient transporters and G protein-coupled receptors (GPCRs), which are activated simultaneously under prevailing nutrient conditions in the intestine following a meal. The majority of studies investigate hormone secretion from EECs in response to single ligands and although the mechanisms behind how individual signaling pathways generate a hormonal output have been well characterized, our understanding of how these signaling pathways converge to generate a single hormone secretory response is still in its infancy. However, a picture is beginning to emerge of how nutrients and full, partial, or allosteric GPCR ligands differentially regulate the enteroendocrine system and its interaction with the enteric and central nervous system. So far, activation of multiple pathways underlies drug discovery efforts to harness the therapeutic potential of the enteroendocrine system to mimic the phenotypic changes observed in patients who have undergone Roux-en-Y gastric surgery. Typically obese patients exhibit ∼30% weight loss and greater than 80% of obese diabetics show remission of diabetes. Targeting combinations of enteroendocrine signaling pathways that work synergistically may manifest with significant, differentiated EEC secretory efficacy. Furthermore, allosteric modulators with their increased selectivity, self-limiting activity, and structural novelty may translate into more promising enteroendocrine drugs. Together with the potential to bias enteroendocrine GPCR signaling and/or to activate multiple divergent signaling pathways highlights the considerable range of therapeutic possibilities available. Here, we review the pharmacology and physiology of the EEC system.
Collapse
Affiliation(s)
- O J Mace
- Heptares Therapeutics Ltd BioPark, Broadwater Road, Welwyn Garden City, AL7 3AX, United Kingdom
| | - B Tehan
- Heptares Therapeutics Ltd BioPark, Broadwater Road, Welwyn Garden City, AL7 3AX, United Kingdom
| | - F Marshall
- Heptares Therapeutics Ltd BioPark, Broadwater Road, Welwyn Garden City, AL7 3AX, United Kingdom
| |
Collapse
|
206
|
Patel C, Douard V, Yu S, Tharabenjasin P, Gao N, Ferraris RP. Fructose-induced increases in expression of intestinal fructolytic and gluconeogenic genes are regulated by GLUT5 and KHK. Am J Physiol Regul Integr Comp Physiol 2015; 309:R499-509. [PMID: 26084694 DOI: 10.1152/ajpregu.00128.2015] [Citation(s) in RCA: 64] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2015] [Accepted: 06/16/2015] [Indexed: 01/09/2023]
Abstract
Marked increases in fructose consumption have been tightly linked to metabolic diseases. One-third of ingested fructose is metabolized in the small intestine, but the underlying mechanisms regulating expression of fructose-metabolizing enzymes are not known. We used genetic mouse models to test the hypothesis that fructose absorption via glucose transporter protein, member 5 (GLUT5), metabolism via ketohexokinase (KHK), as well as GLUT5 trafficking to the apical membrane via the Ras-related protein in brain 11a (Rab11a)-dependent endosomes are required for the regulation of intestinal fructolytic and gluconeogenic enzymes. Fructose feeding increased the intestinal mRNA and protein expression of these enzymes in the small intestine of adult wild-type (WT) mice compared with those gavage fed with lysine or glucose. Fructose did not increase expression of these enzymes in the GLUT5 knockout (KO) mice. Blocking intracellular fructose metabolism by KHK ablation also prevented fructose-induced upregulation. Glycolytic hexokinase I expression was similar between WT and GLUT5- or KHK-KO mice and did not vary with feeding solution. Gavage feeding with the fructose-specific metabolite glyceraldehyde did not increase enzyme expression, suggesting that signaling occurs before the hydrolysis of fructose to three-carbon compounds. Impeding GLUT5 trafficking to the apical membrane using intestinal epithelial cell-specific Rab11a-KO mice impaired fructose-induced upregulation. KHK expression was uniformly distributed along the villus but was localized mainly in the basal region of the cytosol of enterocytes. The feedforward upregulation of fructolytic and gluconeogenic enzymes specifically requires GLUT5 and KHK and may proactively enhance the intestine's ability to process anticipated increases in dietary fructose concentrations.
Collapse
Affiliation(s)
- Chirag Patel
- Department of Pharmacology and Physiology, New Jersey Medical School, Rutgers University, Newark, New Jersey; and
| | - Veronique Douard
- Department of Pharmacology and Physiology, New Jersey Medical School, Rutgers University, Newark, New Jersey; and
| | - Shiyan Yu
- Department of Biological Sciences, School of Arts and Sciences, Rutgers University, Newark, New Jersey
| | - Phuntila Tharabenjasin
- Department of Pharmacology and Physiology, New Jersey Medical School, Rutgers University, Newark, New Jersey; and
| | - Nan Gao
- Department of Biological Sciences, School of Arts and Sciences, Rutgers University, Newark, New Jersey
| | - Ronaldo P Ferraris
- Department of Pharmacology and Physiology, New Jersey Medical School, Rutgers University, Newark, New Jersey; and
| |
Collapse
|
207
|
Kerimi A, Williamson G. The cardiovascular benefits of dark chocolate. Vascul Pharmacol 2015; 71:11-5. [PMID: 26026398 DOI: 10.1016/j.vph.2015.05.011] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2015] [Revised: 05/11/2015] [Accepted: 05/20/2015] [Indexed: 11/16/2022]
Abstract
Dark chocolate contains many biologically active components, such as catechins, procyanidins and theobromine from cocoa, together with added sucrose and lipids. All of these can directly or indirectly affect the cardiovascular system by multiple mechanisms. Intervention studies on healthy and metabolically-dysfunctional volunteers have suggested that cocoa improves blood pressure, platelet aggregation and endothelial function. The effect of chocolate is more convoluted since the sucrose and lipid may transiently and negatively impact on endothelial function, partly through insulin signalling and nitric oxide bioavailability. However, few studies have attempted to dissect out the role of the individual components and have not explored their possible interactions. For intervention studies, the situation is complex since suitable placebos are often not available, and some benefits may only be observed in individuals showing mild metabolic dysfunction. For chocolate, the effects of some of the components, such as sugar and epicatechin on FMD, may oppose each other, or alternatively in some cases may act together, such as theobromine and epicatechin. Although clearly cocoa provides some cardiovascular benefits according to many human intervention studies, the exact components, their interactions and molecular mechanisms are still under debate.
Collapse
Affiliation(s)
- Asimina Kerimi
- School of Food Science and Nutrition, Faculty of Maths and Physical Sciences, University of Leeds, Leeds LS2 9JT, UK
| | - Gary Williamson
- School of Food Science and Nutrition, Faculty of Maths and Physical Sciences, University of Leeds, Leeds LS2 9JT, UK.
| |
Collapse
|
208
|
Ontogenic Changes of Villus Growth, Lactase Activity, and Intestinal Glucose Transporters in Preterm and Term Born Calves with or without Prolonged Colostrum Feeding. PLoS One 2015; 10:e0128154. [PMID: 26011395 PMCID: PMC4443978 DOI: 10.1371/journal.pone.0128154] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2014] [Accepted: 04/22/2015] [Indexed: 01/03/2023] Open
Abstract
Oral glucose supply is important for neonatal calves to stabilize postnatal plasma glucose concentration. The objective of this study was to investigate ontogenic development of small intestinal growth, lactase activity, and glucose transporter in calves (n = 7 per group) that were born either preterm (PT; delivered by section 9 d before term) or at term (T; spontaneous vaginal delivery) or spontaneously born and fed colostrum for 4 days (TC). Tissue samples from duodenum and proximal, mid, and distal jejunum were taken to measure villus size and crypt depth, protein concentration of mucosa and brush border membrane vesicles (BBMV), total DNA and RNA concentration of mucosa, mRNA expression and activity of lactase, and mRNA expression of sodium-dependent glucose co-transporter-1 (SGLT1) and facilitative glucose transporter 2 (GLUT2) in mucosal tissue. Additionally, protein expression of SGLT1 in BBMV and GLUT2 in crude mucosal membranes and immunochemical localization of GLUT2 in the enterocytes were determined. Villus height in distal jejunum was lower in TC than in T. Crypt depth in all segments was largest and the villus height/crypt depth ratio in jejunum was smallest in TC calves. Concentration of RNA was highest in duodenal mucosa of TC calves, but neither lactase mRNA and activity nor SGLT1 and GLUT2 mRNA and protein expression differed among groups. Localization of GLUT2 in the apical membrane was greater, whereas in the basolateral membrane was lower in TC than in T and PT calves. Our study indicates maturation processes after birth for mucosal growth and trafficking of GLUT2 from the basolateral to the apical membrane. Minor differences of mucosal growth, lactase activity, and intestinal glucose transporters were seen between PT and T calves, pointing at the importance of postnatal maturation and feeding for mucosal growth and GLUT2 trafficking.
Collapse
|
209
|
Wang CW, Chang WL, Huang YC, Chou FC, Chan FN, Su SC, Huang SF, Ko HH, Ko YL, Lin HC, Chang TC. An essential role of cAMP response element-binding protein in epidermal growth factor-mediated induction of sodium/glucose cotransporter 1 gene expression and intestinal glucose uptake. Int J Biochem Cell Biol 2015; 64:239-51. [PMID: 25936754 DOI: 10.1016/j.biocel.2015.04.006] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2014] [Revised: 03/26/2015] [Accepted: 04/13/2015] [Indexed: 02/06/2023]
Abstract
The sodium/glucose cotransporter 1 (SGLT1) is responsible for glucose uptake in intestinal epithelial cells. Its expression is decreased in individuals with intestinal inflammatory disorders and is correlated with the pathogenesis of disease. The aim of this study was to understand the regulatory mechanism of the SGLT1 gene. Using the trinitrobenzene sulfonic acid-induced mouse models of intestinal inflammation, we observed decreased SGLT1 expression in the inflamed intestine was positively correlated with the mucosal level of epidermal growth factor (EGF) and activated CREB. Overexpression of EGF demonstrated that the effect of EGF on intestinal glucose uptake was primarily due to the increased level of SGLT1. We identified an essential cAMP binding element (CRE) confers EGF inducibility in the human SGLT1 gene promoter. ChIP assay further demonstrated the increased binding of CREB and CBP to the SGLT1 gene promoter in EGF-treated cells. In addition, the EGFR- and PI3K-dependent CREB phosphorylations are involved in the EGF-mediated SGLT1 expression. This is the first report to demonstrate that CREB is involved in EGF-mediated transcription regulation of SGLT1 gene in the normal and inflamed intestine, which can provide potential therapeutic applications for intestinal inflammatory disorders.
Collapse
Affiliation(s)
- Chun-Wen Wang
- Graduate Institute of Life Sciences, National Defense Medical Center, Taipei, Taiwan, ROC
| | - Wen-Liang Chang
- School of Pharmacy, National Defense Medical Center, Taipei, Taiwan, ROC
| | - Yu-Chuan Huang
- Institute of Preventive Medicine, National Defense Medical Center, Taipei, Taiwan, ROC
| | - Fang-Chi Chou
- Department of Biochemistry, National Defense Medical Center, Taipei, Taiwan, ROC
| | - Fang-Na Chan
- Department of Biochemistry, National Defense Medical Center, Taipei, Taiwan, ROC
| | - Shih-Chieh Su
- Department of Biochemistry, National Defense Medical Center, Taipei, Taiwan, ROC
| | - Shu-Fen Huang
- Department of Biochemistry, National Defense Medical Center, Taipei, Taiwan, ROC
| | - Hui-Hsuan Ko
- School of Medicine, National Defense Medical Center, Taipei, Taiwan, ROC
| | - Yi-Ling Ko
- School of Medicine, National Defense Medical Center, Taipei, Taiwan, ROC
| | - Hang-Chin Lin
- School of Pharmacy, National Defense Medical Center, Taipei, Taiwan, ROC
| | - Tsu-Chung Chang
- Graduate Institute of Life Sciences, National Defense Medical Center, Taipei, Taiwan, ROC; Department of Biochemistry, National Defense Medical Center, Taipei, Taiwan, ROC; Graduate Institute of Basic Medical Science, China Medical University, Taichung, Taiwan, ROC.
| |
Collapse
|
210
|
Dietary L-arginine supplementation protects weanling pigs from deoxynivalenol-induced toxicity. Toxins (Basel) 2015; 7:1341-54. [PMID: 25884909 PMCID: PMC4417970 DOI: 10.3390/toxins7041341] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2015] [Revised: 04/01/2015] [Accepted: 04/07/2015] [Indexed: 12/20/2022] Open
Abstract
This study was conducted to determine the positive effects of dietary supplementation with l-arginine (Arg) on piglets fed a deoxynivalenol (DON)-contaminated diet. A total of eighteen, 28-day-old healthy weanling pigs were randomly assigned into one of three groups: uncontaminated basal diet (control group), 6 mg/kg DON-contaminated diet (DON group) and 6 mg/kg DON + 1% l-arginine (DON + ARG group). After 21 days of Arg supplementation, piglets in the DON and DON + ARG groups were challenged by feeding 6 mg/kg DON-contaminated diet for seven days. The results showed that DON resulted in damage to piglets. However, clinical parameters, including jejunal morphology, amino acid concentrations in the serum, jejunum and ileum, were improved by Arg (p < 0.05). Furthermore, the mRNA levels for sodium-glucose transporter-1 (SGLT-1), glucose transporter type-2 (GLUT-2) and y+l-type amino acid transporter-1 (y+LAT-1) were downregulated in the DON group, but the values were increased in the DON + ARG group (p < 0.05). Collectively, these results indicate that dietary supplementation with Arg exerts a protective role in pigs fed DON-contaminated diets.
Collapse
|
211
|
Hajiaghaalipour F, Khalilpourfarshbafi M, Arya A. Modulation of glucose transporter protein by dietary flavonoids in type 2 diabetes mellitus. Int J Biol Sci 2015; 11:508-24. [PMID: 25892959 PMCID: PMC4400383 DOI: 10.7150/ijbs.11241] [Citation(s) in RCA: 112] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2014] [Accepted: 02/08/2015] [Indexed: 12/23/2022] Open
Abstract
Diabetes mellitus (DM) is a metabolic diseases characterized by hyperglycemia due to insufficient or inefficient insulin secretory response. This chronic disease is a global problem and there is a need for greater emphasis on therapeutic strategies in the health system. Phytochemicals such as flavonoids have recently attracted attention as source materials for the development of new antidiabetic drugs or alternative therapy for the management of diabetes and its related complications. The antidiabetic potential of flavonoids are mainly through their modulatory effects on glucose transporter by enhancing GLUT-2 expression in pancreatic β cells and increasing expression and promoting translocation of GLUT-4 via PI3K/AKT, CAP/Cb1/TC10 and AMPK pathways. This review highlights the recent findings on beneficial effects of flavonoids in the management of diabetes with particular emphasis on the investigations that explore the role of these compounds in modulating glucose transporter proteins at cellular and molecular level.
Collapse
Affiliation(s)
- Fatemeh Hajiaghaalipour
- 1. Department of Pharmacy, Faculty of Medicine, University of Malaya, 50603 Kuala Lumpur, Malaysia
| | - Manizheh Khalilpourfarshbafi
- 2. Faculty of Pharmacy, Universiti Teknologi MARA (UiTM), 42300 Bandar Puncak Alam, Selangor Darul Ehsan, Malaysia
| | - Aditya Arya
- 1. Department of Pharmacy, Faculty of Medicine, University of Malaya, 50603 Kuala Lumpur, Malaysia
| |
Collapse
|
212
|
Satoh T, Igarashi M, Yamada S, Takahashi N, Watanabe K. Inhibitory effect of black tea and its combination with acarbose on small intestinal α-glucosidase activity. JOURNAL OF ETHNOPHARMACOLOGY 2015; 161:147-155. [PMID: 25523370 DOI: 10.1016/j.jep.2014.12.009] [Citation(s) in RCA: 81] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/21/2014] [Revised: 12/02/2014] [Accepted: 12/04/2014] [Indexed: 06/04/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE It is said that black tea is effective against type 2 diabetes mellitus because it can help modulate postprandial hyperglycemia. However, the mechanism underlying its therapeutic and preventive effects on type 2 diabetes mellitus is unclear. In this study, we focused on the effect of black tea on the carbohydrate digestion and absorption process in the gastrointestinal tract. We examined whether black tea can modulate postprandial hyperglycemia. MATERIALS AND METHODS The freeze-dried powder of the aqueous extract of black tea leaves (JAT) was used for in vitro studies of α-amylase activity, α-glucosidase activity, and glucose uptake by glucose transporters in Caco-2 cells; ex vivo studies of small intestinal α-glucosidase activity; and in vivo studies of oral sugar tolerance in GK rats, an animal model of nonobese type 2 diabetes mellitus. RESULTS Half maximal inhibitory concentration values indicated that JAT significantly reduced α-glucosidase activity, but weakly reduced α-amylase activity. Kinetic studies of rat small intestinal α-glucosidase activity revealed that the combination of JAT and the α-glucosidase inhibitor, acarbose, showed a mixed-type inhibition. JAT had no effect on the uptake of 2'-deoxy-d-glucose by glucose transporter 2 (GLUT2) and the uptake of α-methyl-d-glucose by sodium-dependent glucose transporter 1 (SGLT1). In the oral sucrose tolerance test in GK rats, JAT reduced plasma glucose levels in a dose-dependent manner compared with the control group. The hypoglycemic action of JAT was also confirmed: JAT, in combination with acarbose, produced a synergistic inhibitory effect on plasma glucose levels in vivo. In contrast to the oral sucrose tolerance test, JAT showed no effect in the oral glucose tolerance test. CONCLUSIONS JAT was demonstrated to inhibit the degradation of disaccharides into monosaccharides by α-glucosidase in the small intestine. Thereby indirectly preventing the absorption of the dietary source of glucose mediated by SGLT1 and GLUT2 transporters localized at the apical side of enterocytes in the small intestine. The results indicate that black tea could be useful as a functional food in the dietary therapy for borderline type 2 diabetes mellitus that could modulate postprandial hyperglycemia.
Collapse
Affiliation(s)
- Takashi Satoh
- Hokkaido Pharmaceutical University School of Pharmacy, 7-1 Katsuraoka-cho, Otaru, Hokkaido 047-0264, Japan.
| | - Masaki Igarashi
- Hokkaido Pharmaceutical University School of Pharmacy, 7-1 Katsuraoka-cho, Otaru, Hokkaido 047-0264, Japan
| | - Shogo Yamada
- Hokkaido Pharmaceutical University School of Pharmacy, 7-1 Katsuraoka-cho, Otaru, Hokkaido 047-0264, Japan
| | - Natsuko Takahashi
- Hokkaido Pharmaceutical University School of Pharmacy, 7-1 Katsuraoka-cho, Otaru, Hokkaido 047-0264, Japan
| | - Kazuhiro Watanabe
- Hokkaido Pharmaceutical University School of Pharmacy, 7-1 Katsuraoka-cho, Otaru, Hokkaido 047-0264, Japan
| |
Collapse
|
213
|
Grefner NM, Gromova LV, Gruzdkov AA, Komissarchik YY. Interaction of glucose transporters SGLT1 and GLUT2 with cytoskeleton in enterocytes and Caco2 cells during hexose absorption. ACTA ACUST UNITED AC 2015. [DOI: 10.1134/s1990519x15010034] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|
214
|
Sun X, Zhang H, Sheikhahmadi A, Wang Y, Jiao H, Lin H, Song Z. Effects of heat stress on the gene expression of nutrient transporters in the jejunum of broiler chickens (Gallus gallus domesticus). INTERNATIONAL JOURNAL OF BIOMETEOROLOGY 2015; 59:127-135. [PMID: 24736810 DOI: 10.1007/s00484-014-0829-1] [Citation(s) in RCA: 62] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/19/2013] [Revised: 03/26/2014] [Accepted: 03/28/2014] [Indexed: 06/03/2023]
Abstract
In broiler chickens, heat stress disrupts nutrient digestion and absorption. However, the underlying molecular mechanism is not clearly understood. Hence, to investigate the effects of high ambient temperatures on the expression levels of nutrient transporters in the jejunum of broiler chickens, seventy-two 35-day-old male broiler chickens with similar body weights were randomly allocated into two groups: control (24 ± 1 °C) and heat-stressed (32 ± 1 °C). The chickens in the heat-stressed group were exposed to 10 h of heat daily from 08:00 to 18:00 and then raised at 24 ± 1 °C. The rectal temperature and feed intake of the chickens were recorded daily. After 7 days, nine chickens per group were sacrificed by exsanguination, and the jejunum was collected. The results show that heat exposure significantly decreased the feed intake and increased the rectal temperature of the broiler chickens. The plasma concentrations of uric acid and triglyceride significantly increased and decreased, respectively, in the heat-stressed group. No significant differences in the levels of plasma glucose, total amino acids, and very low-density lipoprotein were observed between the heat-stressed and control groups. However, the plasma concentration of glucose tended to be higher (P = 0.09) in the heat-stressed group than in the control group. Heat exposure did not significantly affect the mRNA levels of Na(+)-dependent glucose transporter 1 and amino acid transporters y + LAT1, CAT1, r-BAT, and PePT-1. However, the expression levels of GLUT-2, FABP1, and CD36 were significantly decreased by heat exposure. The results of this study provide new insights into the mechanisms by which heat stress affects nutrient absorption in broiler chickens. Our findings suggest that periodic heat exposure might alter the jejunal glucose and lipid transport rather than amino acid transport. However, intestinal epithelial damage and cell loss should be considered when interpreting the effects of heat stress on the expression of intestinal transporters.
Collapse
Affiliation(s)
- Xiaolei Sun
- Department of Animal Science and Technology, Shandong Agricultural University, Taian, Shandong, 271018, China
| | | | | | | | | | | | | |
Collapse
|
215
|
Kuhre RE, Frost CR, Svendsen B, Holst JJ. Molecular mechanisms of glucose-stimulated GLP-1 secretion from perfused rat small intestine. Diabetes 2015; 64:370-82. [PMID: 25157092 DOI: 10.2337/db14-0807] [Citation(s) in RCA: 133] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Glucose is an important stimulus for glucagon-like peptide 1 (GLP-1) secretion, but the mechanisms of secretion have not been investigated in integrated physiological models. We studied glucose-stimulated GLP-1 secretion from isolated perfused rat small intestine. Luminal glucose (5% and 20% w/v) stimulated the secretion dose dependently, but vascular glucose was without significant effect at 5, 10, 15, and 25 mmol/L. GLP-1 stimulation by luminal glucose (20%) secretion was blocked by the voltage-gated Ca channel inhibitor, nifedipine, or by hyperpolarization with diazoxide. Luminal administration (20%) of the nonmetabolizable sodium-glucose transporter 1 (SGLT1) substrate, methyl-α-D-glucopyranoside (α-MGP), stimulated release, whereas the SGLT1 inhibitor phloridzin (luminally) abolished responses to α-MGP and glucose. Furthermore, in the absence of luminal NaCl, luminal glucose (20%) did not stimulate a response. Luminal glucose-stimulated GLP-1 secretion was also sensitive to luminal GLUT2 inhibition (phloretin), but in contrast to SGLT1 inhibition, phloretin did not eliminate the response, and luminal glucose (20%) stimulated larger GLP-1 responses than luminal α-MGP in matched concentrations. Glucose transported by GLUT2 may act after metabolization, closing KATP channels similar to sulfonylureas, which also stimulated secretion. Our data indicate that SGLT1 activity is the driving force for glucose-stimulated GLP-1 secretion and that KATP-channel closure is required to stimulate a full-blown glucose-induced response.
Collapse
Affiliation(s)
- Rune E Kuhre
- Novo Nordisk Foundation Center for Basic Metabolic Research and Department of Biomedical Sciences, the Panum Institute, University of Copenhagen, Copenhagen, Denmark
| | - Charlotte R Frost
- Novo Nordisk Foundation Center for Basic Metabolic Research and Department of Biomedical Sciences, the Panum Institute, University of Copenhagen, Copenhagen, Denmark
| | - Berit Svendsen
- Novo Nordisk Foundation Center for Basic Metabolic Research and Department of Biomedical Sciences, the Panum Institute, University of Copenhagen, Copenhagen, Denmark
| | - Jens J Holst
- Novo Nordisk Foundation Center for Basic Metabolic Research and Department of Biomedical Sciences, the Panum Institute, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
216
|
Andres SF, Santoro MA, Mah AT, Keku JA, Bortvedt AE, Blue RE, Lund PK. Deletion of intestinal epithelial insulin receptor attenuates high-fat diet-induced elevations in cholesterol and stem, enteroendocrine, and Paneth cell mRNAs. Am J Physiol Gastrointest Liver Physiol 2015; 308:G100-11. [PMID: 25394660 PMCID: PMC4297856 DOI: 10.1152/ajpgi.00287.2014] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
The insulin receptor (IR) regulates nutrient uptake and utilization in multiple organs, but its role in the intestinal epithelium is not defined. This study developed a mouse model with villin-Cre (VC) recombinase-mediated intestinal epithelial cell (IEC)-specific IR deletion (VC-IR(Δ/Δ)) and littermate controls with floxed, but intact, IR (IR(fl/fl)) to define in vivo roles of IEC-IR in mice fed chow or high-fat diet (HFD). We hypothesized that loss of IEC-IR would alter intestinal growth, biomarkers of intestinal epithelial stem cells (IESC) or other lineages, body weight, adiposity, and glucose or lipid handling. In lean, chow-fed mice, IEC-IR deletion did not affect body or fat mass, plasma glucose, or IEC proliferation. In chow-fed VC-IR(Δ/Δ) mice, mRNA levels of the Paneth cell marker lysozyme (Lyz) were decreased, but markers of other differentiated lineages were unchanged. During HFD-induced obesity, IR(fl/fl) and VC-IR(Δ/Δ) mice exhibited similar increases in body and fat mass, plasma insulin, mRNAs encoding several lipid-handling proteins, a decrease in Paneth cell number, and impaired glucose tolerance. In IR(fl/fl) mice, HFD-induced obesity increased circulating cholesterol; numbers of chromogranin A (CHGA)-positive enteroendocrine cells (EEC); and mRNAs encoding Chga, glucose-dependent insulinotrophic peptide (Gip), glucagon (Gcg), Lyz, IESC biomarkers, and the enterocyte cholesterol transporter Scarb1. All these effects were attenuated or lost in VC-IR(Δ/Δ) mice. These results demonstrate that IEC-IR is not required for normal growth of the intestinal epithelium in lean adult mice. However, our findings provide novel evidence that, during HFD-induced obesity, IEC-IR contributes to increases in EEC, plasma cholesterol, and increased expression of Scarb1 or IESC-, EEC-, and Paneth cell-derived mRNAs.
Collapse
Affiliation(s)
- Sarah F. Andres
- 1Department of Cell Biology and Physiology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina; and
| | - M. Agostina Santoro
- 1Department of Cell Biology and Physiology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina; and
| | - Amanda T. Mah
- 2Department of Nutrition, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
| | - J. Adeola Keku
- 1Department of Cell Biology and Physiology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina; and
| | - Amy E. Bortvedt
- 1Department of Cell Biology and Physiology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina; and
| | - R. Eric Blue
- 1Department of Cell Biology and Physiology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina; and
| | - P. Kay Lund
- 1Department of Cell Biology and Physiology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina; and
| |
Collapse
|
217
|
Abstract
It has been proposed that the non-saturable component of intestinal glucose absorption, apparent following prolonged exposure to high intraluminal glucose concentrations, is mediated via the low affinity glucose and fructose transporter, GLUT2, upregulated within the small intestinal apical border. The evidence that the non-saturable transport component is mediated via an apical membrane sugar transporter is that it is inhibited by phloretin, after exposure to phloridzin. Since the other apical membrane sugar transporter, GLUT5, is insensitive to inhibition by either cytochalasin B, or phloretin, GLUT2 was deduced to be the low affinity sugar transport route. As in its uninhibited state, polarized intestinal glucose absorption depends both on coupled entry of glucose and sodium across the brush border membrane and on the enterocyte cytosolic glucose concentration exceeding that in both luminal and submucosal interstitial fluids, upregulation of GLUT2 within the intestinal brush border will usually stimulate downhill glucose reflux to the intestinal lumen from the enterocytes; thereby reducing, rather than enhancing net glucose absorption across the luminal surface. These states are simulated with a computer model generating solutions to the differential equations for glucose, Na and water flows between luminal, cell, interstitial and capillary compartments. The model demonstrates that uphill glucose transport via SGLT1 into enterocytes, when short-circuited by any passive glucose carrier in the apical membrane, such as GLUT2, will reduce transcellular glucose absorption and thereby lead to increased paracellular flow. The model also illustrates that apical GLUT2 may usefully act as an osmoregulator to prevent excessive enterocyte volume change with altered luminal glucose concentrations.
Collapse
Affiliation(s)
- Richard J Naftalin
- Department of Physiology and BHF Centre of Research Excellence, King's College London, School of Medicine, London, SE1 9HN, UK
| |
Collapse
|
218
|
Limmer S, Weiler A, Volkenhoff A, Babatz F, Klämbt C. The Drosophila blood-brain barrier: development and function of a glial endothelium. Front Neurosci 2014; 8:365. [PMID: 25452710 PMCID: PMC4231875 DOI: 10.3389/fnins.2014.00365] [Citation(s) in RCA: 146] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2014] [Accepted: 10/23/2014] [Indexed: 01/01/2023] Open
Abstract
The efficacy of neuronal function requires a well-balanced extracellular ion homeostasis and a steady supply with nutrients and metabolites. Therefore, all organisms equipped with a complex nervous system developed a so-called blood-brain barrier, protecting it from an uncontrolled entry of solutes, metabolites or pathogens. In higher vertebrates, this diffusion barrier is established by polarized endothelial cells that form extensive tight junctions, whereas in lower vertebrates and invertebrates the blood-brain barrier is exclusively formed by glial cells. Here, we review the development and function of the glial blood-brain barrier of Drosophila melanogaster. In the Drosophila nervous system, at least seven morphologically distinct glial cell classes can be distinguished. Two of these glial classes form the blood-brain barrier. Perineurial glial cells participate in nutrient uptake and establish a first diffusion barrier. The subperineurial glial (SPG) cells form septate junctions, which block paracellular diffusion and thus seal the nervous system from the hemolymph. We summarize the molecular basis of septate junction formation and address the different transport systems expressed by the blood-brain barrier forming glial cells.
Collapse
Affiliation(s)
- Stefanie Limmer
- Institut für Neuro- und Verhaltensbiologie, Universität Münster Münster, Germany
| | - Astrid Weiler
- Institut für Neuro- und Verhaltensbiologie, Universität Münster Münster, Germany
| | - Anne Volkenhoff
- Institut für Neuro- und Verhaltensbiologie, Universität Münster Münster, Germany
| | - Felix Babatz
- Institut für Neuro- und Verhaltensbiologie, Universität Münster Münster, Germany
| | - Christian Klämbt
- Institut für Neuro- und Verhaltensbiologie, Universität Münster Münster, Germany
| |
Collapse
|
219
|
Abstract
The kidneys in normoglycemic humans filter 160-180 g of glucose per day (∼30% of daily calorie intake), which is reabsorbed and returned to the systemic circulation by the proximal tubule. Hyperglycemia increases the filtered and reabsorbed glucose up to two- to three-fold. The sodium glucose cotransporter SGLT2 in the early proximal tubule is the major pathway for renal glucose reabsorption. Inhibition of SGLT2 increases urinary glucose and calorie excretion, thereby reducing plasma glucose levels and body weight. The first SGLT2 inhibitors have been approved as a new class of antidiabetic drugs in type 2 diabetes mellitus, and studies are under way to investigate their use in type 1 diabetes mellitus. These compounds work independent of insulin, improve glycemic control in all stages of diabetes mellitus in the absence of clinically relevant hypoglycemia, and can be combined with other antidiabetic agents. By lowering blood pressure and diabetic glomerular hyperfiltration, SGLT2 inhibitors may induce protective effects on the kidney and cardiovascular system beyond blood glucose control.
Collapse
Affiliation(s)
- Volker Vallon
- Division of Nephrology & Hypertension, Departments of Medicine and Pharmacology, University of California San Diego, La Jolla, California 92093;
| |
Collapse
|
220
|
Al-Waili N, Salom K, Al-Ghamdi A, Ansari MJ, Al-Waili A, Al-Waili T. Honey and cardiovascular risk factors, in normal individuals and in patients with diabetes mellitus or dyslipidemia. J Med Food 2014; 16:1063-78. [PMID: 24328699 DOI: 10.1089/jmf.2012.0285] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Diabetes mellitus, hypercholesteremia, hypertension (HTN), and obesity are well-known risk factors for cardiovascular diseases (CVD). Various medications are currently in use for management of these comorbidities. Undesirable side effects are unavoidable and the ultimate and ideal goal is hardly achieved. Honey and other bee products are widely used in traditional medicine for management of many diseases. Others and the authors have found potent biological activities of these products. Honey is now reintroduced in modern medicine as part of wound and burn management. Honey has antioxidant, anti-inflammatory, and antimicrobial activities. More studies are exploring other aspects of honey activity such as its effect on blood sugar, body weight, lipid profile, C-reactive protein, nitric oxide, proinflammatory prostaglandins, and homocysteine. Growing evidence and scientific data support the use of honey in patients with diabetes, HTN, dyslipidemia, obesity, and CVD. This review discusses clinical and preclinical studies on potential influence of honey on diabetes mellitus and cardiovascular risk factors, and emphasizes the importance of conducting more clinical and controlled studies.
Collapse
|
221
|
Moradi SV, Varamini P, Toth I. The transport and efflux of glycosylated luteinising hormone-releasing hormone analogues in caco-2 cell model: contributions of glucose transporters and efflux systems. J Pharm Sci 2014; 103:3217-24. [PMID: 25174499 DOI: 10.1002/jps.24120] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2014] [Revised: 07/14/2014] [Accepted: 07/14/2014] [Indexed: 12/21/2022]
Abstract
Luteinising hormone-releasing hormone (LHRH) analogues have wide therapeutic applications in the treatment of prostate cancers and endocrine disorders. The structure of LHRH was modified using a glycosylation strategy to increase the permeability of the peptide across biological membranes. Lactose, galactose and glucose units were coupled to LHRH peptide, and the impact of glucose transporters, GLUT2 and SGLT1, was investigated in the transport of the analogues. Results showed the contribution of both transporters in the transport of all LHRH analogues. In the presence of glucose transporter inhibitors, reduction in the apparent permeability (Papp ) was greatest for compound 6, which contains a glucose unit in the middle of the sequence (Papp = 58.54 ± 4.72 cm/s decreased to Papp = 1.6 ± 0.345 cm/s). The basolateral to apical flux of the glycosylated derivatives and the impact of two efflux pumps was also examined in Caco-2 cell monolayers. The efflux ratios (ERs) of all LHRH analogues in Caco-2 cells were in the range of 0.06-0.2 except for compound 4 (galactose modified, ER = 8.03). We demonstrated that the transport of the glycosylated peptides was facilitated through glucose transporters. The proportion of glucose and lactose derivatives pumped out by efflux pumps did not affect the Papp values of the analogues.
Collapse
Affiliation(s)
- Shayli Varasteh Moradi
- School of Chemistry and Molecular Biosciences, The University of Queensland, St. Lucia, Queensland, 4072, Australia
| | | | | |
Collapse
|
222
|
Wu P, He P, Zhao S, Huang T, Lu Y, Zhang K. Effects of ursolic acid derivatives on Caco-2 cells and their alleviating role in streptozocin-induced type 2 diabetic rats. Molecules 2014; 19:12559-76. [PMID: 25153871 PMCID: PMC6270814 DOI: 10.3390/molecules190812559] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2014] [Revised: 08/01/2014] [Accepted: 08/11/2014] [Indexed: 11/17/2022] Open
Abstract
In this study, the effect and mechanism of a series of ursolic acid (UA) derivatives on glucose uptake were investigated in a Caco-2 cells model. Their effect on hyperglycemia, hyperlipidemia and oxidative stress were also demonstrated in streptozocin (STZ)-induced diabetic rats. 2-[N-(7-nitrobenz-2-oxa-1,3-diazol-4-yl)amino]-2-deoxy-glucose (2-NBDG) was used as a fluorescein in Caco-2 cells model to screen UA derivatives by glucose uptake and expression of glucose transporter protein (SGLT-1, GLUT-2). Moreover, STZ-induced diabetic rats were administered with these derivatives for 4 weeks of treatment. The fasting blood glucose (FBG), insulin levels, biochemical parameters, lipid levels, and oxidative stress markers were finally evaluated. The results of this study indicated that compounds 10 and 11 significantly inhibited 2-NBDG uptake under both Na+-dependent and Na+-independent conditions by decreasing SGLT-1 and GLUT-2 expression in the Caco-2 cells model. Further in vivo studies revealed that compound 10 significantly reduced hyperglycemia by increasing levels of serum insulin, total protein, and albumin, while the fasting blood glucose, body weight and food intake were restored much closer to those of normal rats. Compounds 10 and 11 showed hypolipidemic activity by decreasing the total amounts of cholesterol (TC) and triglycerides (TG). Furthermore, compound 10 showed antioxidant potential which was confirmed by elevation of glutathione (GSH) and superoxide dismutase (SOD) and reduction of malondialdehyde (MDA) levels in the liver and kidney of diabetic rats. It was concluded that compound 10 caused an apparent inhibition of intestinal glucose uptake in Caco-2 cells and hypoglycemia, hypolipidemia and augmented oxidative stress in STZ-induced diabetic rats. Thus, compound 10 could be developed as a potentially complementary therapeutic or prophylactic agent for diabetics mellitus and its complications.
Collapse
Affiliation(s)
- Panpan Wu
- Department of Pharmaceutical Engineering, Faculty of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou 510006, China
| | - Ping He
- Department of Pharmaceutical Engineering, Faculty of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou 510006, China
| | - Suqing Zhao
- Department of Pharmaceutical Engineering, Faculty of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou 510006, China.
| | - Tianming Huang
- Department of Pharmaceutical Engineering, Faculty of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou 510006, China
| | - Yujing Lu
- Department of Pharmaceutical Engineering, Faculty of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou 510006, China
| | - Kun Zhang
- Department of Pharmaceutical Engineering, Faculty of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou 510006, China.
| |
Collapse
|
223
|
Steinhoff-Wagner J, Zitnan R, Schönhusen U, Pfannkuche H, Hudakova M, Metges CC, Hammon HM. Diet effects on glucose absorption in the small intestine of neonatal calves: importance of intestinal mucosal growth, lactase activity, and glucose transporters. J Dairy Sci 2014; 97:6358-69. [PMID: 25108868 DOI: 10.3168/jds.2014-8391] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2014] [Accepted: 06/28/2014] [Indexed: 01/07/2023]
Abstract
Colostrum (C) feeding in neonatal calves improves glucose status and stimulates intestinal absorptive capacity, leading to greater glucose absorption when compared with milk-based formula feeding. In this study, diet effects on gut growth, lactase activity, and glucose transporters were investigated in several gut segments of the small intestine. Fourteen male German Holstein calves received either C of milkings 1, 3, and 5 (d 1, 2, and 3 in milk) or respective formulas (F) twice daily from d 1 to d 3 after birth. Nutrient content, and especially lactose content, of C and respective F were the same. On d 4, calves were fed C of milking 5 or respective F and calves were slaughtered 2h after feeding. Tissue samples from duodenum and proximal, mid-, and distal jejunum were taken to measure villus size and crypt depth, mucosa and brush border membrane vesicles (BBMV) were taken to determine protein content, and mRNA expression and activity of lactase and mRNA expression of sodium-dependent glucose co-transporter-1 (SGLT1) and facilitative glucose transporter (GLUT2) were determined from mucosal tissue. Additionally, protein expression of SGLT1 in BBMV and GLUT2 in crude mucosal membranes and BBMV were determined, as well as immunochemically localized GLUT2 in the intestinal mucosa. Villus circumference, area, and height were greater, whereas crypt depth was smaller in C than in F. Lactase activity tended to be greater in C than in F. Protein expression of SGLT1 was greater in F than in C. Parameters of villus size, lactase activity, SGLT1 protein expression, as well as apical and basolateral GLUT2 localization in the enterocytes differed among gut segments. In conclusion, C feeding, when compared with F feeding, enhances glucose absorption in neonatal calves primarily by stimulating mucosal growth and increasing absorptive capacity in the small intestine, but not by stimulating abundance of intestinal glucose transporters.
Collapse
Affiliation(s)
- Julia Steinhoff-Wagner
- Institute of Nutritional Physiology "Oskar Kellner," Leibniz Institute for Farm Animal Biology (FBN), 18196 Dummerstorf, Germany
| | - Rudolf Zitnan
- Institute of Nutrition, National Centre of Agriculture and Food Nitra, 04181 Kosice, Slovakia
| | - Ulrike Schönhusen
- Institute of Nutritional Physiology "Oskar Kellner," Leibniz Institute for Farm Animal Biology (FBN), 18196 Dummerstorf, Germany
| | - Helga Pfannkuche
- Institute of Veterinary-Physiology, Leipzig University, 04103 Leipzig, Germany
| | - Monika Hudakova
- School of Economics and Management in Public Administration, 85104 Bratislava, Slovakia
| | - Cornelia C Metges
- Institute of Nutritional Physiology "Oskar Kellner," Leibniz Institute for Farm Animal Biology (FBN), 18196 Dummerstorf, Germany
| | - Harald M Hammon
- Institute of Nutritional Physiology "Oskar Kellner," Leibniz Institute for Farm Animal Biology (FBN), 18196 Dummerstorf, Germany.
| |
Collapse
|
224
|
Entamoeba histolytica adaptation to glucose starvation: a matter of life and death. Curr Opin Microbiol 2014; 20:139-45. [DOI: 10.1016/j.mib.2014.06.005] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2014] [Revised: 06/11/2014] [Accepted: 06/13/2014] [Indexed: 12/25/2022]
|
225
|
Pais R, Zietek T, Hauner H, Daniel H, Skurk T. RANTES (CCL5) reduces glucose-dependent secretion of glucagon-like peptides 1 and 2 and impairs glucose-induced insulin secretion in mice. Am J Physiol Gastrointest Liver Physiol 2014; 307:G330-7. [PMID: 24875103 DOI: 10.1152/ajpgi.00329.2013] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Type 2 diabetes is associated with elevated circulating levels of the chemokine RANTES and with decreased plasma levels of the incretin hormone glucagon-like peptide 1 (GLP-1). GLP-1 is a peptide secreted from intestinal L-cells upon nutrient ingestion. It enhances insulin secretion from pancreatic β-cells and protects from β-cell loss but also promotes satiety and weight loss. In search of chemokines that may reduce GLP-1 secretion we identified RANTES and show that it reduces glucose-stimulated GLP-1 secretion in the human enteroendocrine cell line NCI-H716, blocked by the antagonist Met-RANTES, and in vivo in mice. RANTES exposure to mouse intestinal tissues lowers transport function of the intestinal glucose transporter SGLT1, and administration in mice reduces plasma GLP-1 and GLP-2 levels after an oral glucose load and thereby impairs insulin secretion. These data show that RANTES is involved in altered secretion of glucagon-like peptide hormones most probably acting through SGLT1, and our study identifies the RANTES-receptor CCR1 as a potential target in diabetes therapy.
Collapse
Affiliation(s)
- Ramona Pais
- ZIEL Research Center of Nutrition and Food Sciences, Nutritional Medicine, Technische Universität München, Freising, Germany; ZIEL Research Center of Nutrition and Food Sciences, Abteilung Biochemie, Technische Universität München, Freising, Germany; and
| | - Tamara Zietek
- ZIEL Research Center of Nutrition and Food Sciences, Abteilung Biochemie, Technische Universität München, Freising, Germany; and
| | - Hans Hauner
- ZIEL Research Center of Nutrition and Food Sciences, Nutritional Medicine, Technische Universität München, Freising, Germany; Klinikum rechts der Isar, Technische Universität München, Munich, Germany
| | - Hannelore Daniel
- ZIEL Research Center of Nutrition and Food Sciences, Abteilung Biochemie, Technische Universität München, Freising, Germany; and
| | - Thomas Skurk
- ZIEL Research Center of Nutrition and Food Sciences, Nutritional Medicine, Technische Universität München, Freising, Germany; Klinikum rechts der Isar, Technische Universität München, Munich, Germany
| |
Collapse
|
226
|
Schulze C, Bangert A, Kottra G, Geillinger KE, Schwanck B, Vollert H, Blaschek W, Daniel H. Inhibition of the intestinal sodium-coupled glucose transporter 1 (SGLT1) by extracts and polyphenols from apple reduces postprandial blood glucose levels in mice and humans. Mol Nutr Food Res 2014; 58:1795-808. [DOI: 10.1002/mnfr.201400016] [Citation(s) in RCA: 87] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2014] [Revised: 04/13/2014] [Accepted: 05/07/2014] [Indexed: 11/07/2022]
Affiliation(s)
- Christine Schulze
- Molecular Nutrition Unit; ZIEL Research Center of Nutrition and Food Sciences; Technical University of Munich; Freising-Weihenstephan Germany
| | - Adina Bangert
- Molecular Nutrition Unit; ZIEL Research Center of Nutrition and Food Sciences; Technical University of Munich; Freising-Weihenstephan Germany
| | - Gabor Kottra
- Molecular Nutrition Unit; ZIEL Research Center of Nutrition and Food Sciences; Technical University of Munich; Freising-Weihenstephan Germany
| | - Kerstin Elisabeth Geillinger
- Molecular Nutrition Unit; ZIEL Research Center of Nutrition and Food Sciences; Technical University of Munich; Freising-Weihenstephan Germany
| | - Bettina Schwanck
- Department of Pharmaceutical Biology; Pharmaceutical Institute, Christian-Albrechts-University of Kiel; Gutenbergstrasse Kiel Germany
| | | | - Wolfgang Blaschek
- Department of Pharmaceutical Biology; Pharmaceutical Institute, Christian-Albrechts-University of Kiel; Gutenbergstrasse Kiel Germany
| | - Hannelore Daniel
- Molecular Nutrition Unit; ZIEL Research Center of Nutrition and Food Sciences; Technical University of Munich; Freising-Weihenstephan Germany
| |
Collapse
|
227
|
Ritze Y, Bárdos G, D’Haese JG, Ernst B, Thurnheer M, Schultes B, Bischoff SC. Effect of high sugar intake on glucose transporter and weight regulating hormones in mice and humans. PLoS One 2014; 9:e101702. [PMID: 25010715 PMCID: PMC4092057 DOI: 10.1371/journal.pone.0101702] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2014] [Accepted: 06/10/2014] [Indexed: 01/30/2023] Open
Abstract
Objective Sugar consumption has increased dramatically over the last decades in Western societies. Especially the intake of sugar-sweetened beverages seems to be a major risk for the development of obesity. Thus, we compared liquid versus solid high-sugar diets with regard to dietary intake, intestinal uptake and metabolic parameters in mice and partly in humans. Methods Five iso-caloric diets, enriched with liquid (in water 30% vol/vol) or solid (in diet 65% g/g) fructose or sucrose or a control diet were fed for eight weeks to C57bl/6 mice. Sugar, liquid and caloric intake, small intestinal sugar transporters (GLUT2/5) and weight regulating hormone mRNA expression, as well as hepatic fat accumulation were measured. In obese versus lean humans that underwent either bariatric surgery or small bowel resection, we analyzed small intestinal GLUT2, GLUT5, and cholecystokinin expression. Results In mice, the liquid high-sucrose diet caused an enhancement of total caloric intake compared to the solid high-sucrose diet and the control diet. In addition, the liquid high-sucrose diet increased expression of GLUT2, GLUT5, and cholecystokinin expression in the ileum (P<0.001). Enhanced liver triglyceride accumulation was observed in mice being fed the liquid high-sucrose or -fructose, and the solid high-sucrose diet compared to controls. In obese, GLUT2 and GLUT5 mRNA expression was enhanced in comparison to lean individuals. Conclusions We show that the form of sugar intake (liquid versus solid) is presumably more important than the type of sugar, with regard to feeding behavior, intestinal sugar uptake and liver fat accumulation in mice. Interestingly, in obese individuals, an intestinal sugar transporter modulation also occurred when compared to lean individuals.
Collapse
Affiliation(s)
- Yvonne Ritze
- Department of Nutritional Medicine, University of Hohenheim, Stuttgart, Germany
- * E-mail:
| | - Gyöngyi Bárdos
- Department of Nutritional Medicine, University of Hohenheim, Stuttgart, Germany
| | - Jan G. D’Haese
- Department of Surgery, Klinikum Rechts der Isar, Technische Universität München, Munich, Germany
| | - Barbara Ernst
- Interdisciplinary Obesity Center, Rorschach, Switzerland
| | | | - Bernd Schultes
- Interdisciplinary Obesity Center, Rorschach, Switzerland
| | - Stephan C. Bischoff
- Department of Nutritional Medicine, University of Hohenheim, Stuttgart, Germany
| |
Collapse
|
228
|
Cohen M, Kitsberg D, Tsytkin S, Shulman M, Aroeti B, Nahmias Y. Live imaging of GLUT2 glucose-dependent trafficking and its inhibition in polarized epithelial cysts. Open Biol 2014; 4:140091. [PMID: 25056286 PMCID: PMC4118605 DOI: 10.1098/rsob.140091] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2014] [Accepted: 07/02/2014] [Indexed: 01/20/2023] Open
Abstract
GLUT2 is a facilitative glucose transporter, expressed in polarized epithelial cells of the liver, intestine, kidney and pancreas, where it plays a critical role in glucose homeostasis. Together with SGLT1/2, it mediates glucose absorption in metabolic epithelial tissues, where it can be translocated apically upon high glucose exposure. To track the subcellular localization and dynamics of GLUT2, we created an mCherry-hGLUT2 fusion protein and expressed it in multicellular kidney cysts, a major site of glucose reabsorption. Live imaging of GLUT2 enabled us to avoid the artefactual localization of GLUT2 in fixed cells and to confirm the apical GLUT2 model. Live cell imaging showed a rapid 15 ± 3 min PKC-dependent basal-to-apical translocation of GLUT2 in response to glucose stimulation and a fourfold slower basolateral translocation under starvation. These results mark the physiological importance of responding quickly to rising glucose levels. Importantly, we show that phloretin, an apple polyphenol, inhibits GLUT2 translocation in both directions, suggesting that it exerts its effect by PKC inhibition. Subcellular localization studies demonstrated that GLUT2 is endocytosed through a caveolae-dependent mechanism, and that it is at least partly recovered in Rab11A-positive recycling endosome. Our work illuminates GLUT2 dynamics, providing a platform for drug development for diabetes and hyperglycaemia.
Collapse
Affiliation(s)
- Merav Cohen
- Department of Cell and Developmental Biology, Silberman Institute of Life Sciences, Hebrew University of Jerusalem, Jerusalem, Israel Alexander Grass Center for Bioengineering, Benin School of Computer Science and Engineering, Hebrew University of Jerusalem, Jerusalem, Israel
| | - Daniel Kitsberg
- Department of Cell and Developmental Biology, Silberman Institute of Life Sciences, Hebrew University of Jerusalem, Jerusalem, Israel Alexander Grass Center for Bioengineering, Benin School of Computer Science and Engineering, Hebrew University of Jerusalem, Jerusalem, Israel
| | - Sabina Tsytkin
- Department of Cell and Developmental Biology, Silberman Institute of Life Sciences, Hebrew University of Jerusalem, Jerusalem, Israel
| | - Maria Shulman
- Department of Cell and Developmental Biology, Silberman Institute of Life Sciences, Hebrew University of Jerusalem, Jerusalem, Israel Alexander Grass Center for Bioengineering, Benin School of Computer Science and Engineering, Hebrew University of Jerusalem, Jerusalem, Israel
| | - Benjamin Aroeti
- Department of Cell and Developmental Biology, Silberman Institute of Life Sciences, Hebrew University of Jerusalem, Jerusalem, Israel
| | - Yaakov Nahmias
- Department of Cell and Developmental Biology, Silberman Institute of Life Sciences, Hebrew University of Jerusalem, Jerusalem, Israel Alexander Grass Center for Bioengineering, Benin School of Computer Science and Engineering, Hebrew University of Jerusalem, Jerusalem, Israel
| |
Collapse
|
229
|
Lee CY. Chronic restraint stress induces intestinal inflammation and alters the expression of hexose and lipid transporters. Clin Exp Pharmacol Physiol 2014; 40:385-91. [PMID: 23586523 DOI: 10.1111/1440-1681.12096] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2013] [Revised: 03/28/2013] [Accepted: 04/10/2013] [Indexed: 11/26/2022]
Abstract
Psychosocial stress is reported to be one of the main causes of obesity. Based on observations in studies that relate stress and gut inflammation to obesity, the present study hypothesized that chronic stress, via inflammation, alters the expression of nutrient transporters and contributes to the development of metabolic syndrome. Rats were exposed to restraint stress for 4 h/day for 5 days/week for eight consecutive weeks. Different segments of rat intestine were then collected and analysed for signs of pathophysiological changes and the expression of Niemann-Pick C1-like-1 (NPC1L1), sodium-dependent glucose transporter-1 (SLC5A1, previously known as SGLT1) and facilitative glucose transporter-2 (SLC2A2, previously known as GLUT2). In a separate experiment, the total anti-oxidant activity (TAA)-time profile of control isolated intestinal segments was measured. Stress decreased the expression of NPC1L1 in the ileum and upregulated SLC5A1 in both the jejunum and ileum and SLC2A2 in the duodenum. Inflammation and morphological changes were observed in the proximal region of the intestine of stressed animals. Compared with jejunal and ileal segments, the rate of increase in TAA was higher in the duodenum, indicating that the segment contained less anti-oxidants; anti-oxidants may function to protect the tissues. In conclusion, stress alters the expression of hexose and lipid transporters in the gut. The site-specific increase in the expression of SLC5A1 and SLC2A2 may be correlated with pathological changes in the intestine. The ileum may be protected, in part, by gut anti-oxidants. Collectively, the data suggest that apart from causing inflammation, chronic stress may promote sugar uptake and contribute to hyperglycaemia.
Collapse
Affiliation(s)
- Chooi Yeng Lee
- Discipline of Pharmacy, Monash University Sunway Campus, Selangor, Malaysia.
| |
Collapse
|
230
|
Concomitant intake of quercetin with a grain-based diet acutely lowers postprandial plasma glucose and lipid concentrations in pigs. BIOMED RESEARCH INTERNATIONAL 2014; 2014:748742. [PMID: 24847478 PMCID: PMC4009213 DOI: 10.1155/2014/748742] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/05/2014] [Accepted: 03/31/2014] [Indexed: 12/27/2022]
Abstract
Treatment goals of diabetes mellitus type 2 (DMT2) include glycemic control and reduction of nonglycemic risk factors, for example, dyslipidemia. Quercetin, a plant-derived polyphenol, often discussed for possible antidiabetic effects, was investigated for acute postprandial glucose- and lipid-lowering effects in healthy growing pigs. Male pigs (n = 16, body weight = BW 25–30 kg) were fed flavonoid-poor grain-based meals without (GBM) or with quercetin (GBMQ). In a first experiment, postprandial plasma concentrations of glucose, nonesterified fatty acids (NEFA), and triacylglycerols were analyzed in 8 pigs receiving 500 g of either GBM or GBMQ (10 mg/kg BW) in a cross-over design. Blood samples were collected before, and up to 5 h every 30 min, as well as 6 and 8 h after the feeding. In the second experiment, 2 h after ingestions of 1000 g of either GBM or GBMQ (50 mg/kg BW) animals were sacrificed; gastric content was collected and analyzed for dry matter content. Quercetin ingestion reduced postprandial glucose, NEFA, and TG concentration, but two hours after ingestion of the meal no effect on gastric emptying was observed. Our results point to inhibitory effects of quercetin on nutrient absorption, which appear not to be attributable to delayed gastric emptying.
Collapse
|
231
|
Choi PM, Sun RC, Sommovilla J, Diaz-Miron J, Khil J, Erwin CR, Guo J, Warner BW. The role of enteral fat as a modulator of body composition after small bowel resection. Surgery 2014; 156:412-8. [PMID: 24713095 DOI: 10.1016/j.surg.2014.03.013] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2013] [Accepted: 03/09/2014] [Indexed: 12/12/2022]
Abstract
BACKGROUND After massive small bowel resection (SBR), a postoperative diet high in fat is associated with enhanced villus growth. The purpose of this study was to further elucidate the quantity and composition of enteral fat in structural and metabolic changes after SBR. METHODS C57/Bl6 mice underwent a 50% proximal SBR. Mice were then randomized to receive a low-fat diet (12% kcal fat), medium-fat diet (44% kcal fat), or high-fat diet (HFD; 71% kcal fat) ad libitum. In a separate experiment, mice underwent 50% proximal SBR and then were randomized to liquid diets of 42% kcal of fat in which the fat was composed of menhaden oil, milk fat, or olive oil. After 2 weeks, mice underwent body composition analysis and the small intestine was harvested. RESULTS Mice that ingested the greatest amount of enteral fat (HFD) had the greatest percent lean mass. When the effects of the different kinds of enteral fat were analyzed, mice that consumed menhaden oil had the greatest percent lean mass with the greatest overall retention of preoperative weight. CONCLUSION These findings suggest that enteral fat enriched in omega-3 fatty acids may offer clinically relevant metabolic advantages for patients with short gut syndrome.
Collapse
Affiliation(s)
- Pamela M Choi
- Division of Pediatric Surgery, Department of Surgery, St. Louis Children's Hospital, Washington University School of Medicine, St. Louis, MO
| | - Raphael C Sun
- Division of Pediatric Surgery, Department of Surgery, St. Louis Children's Hospital, Washington University School of Medicine, St. Louis, MO
| | - Joshua Sommovilla
- Division of Pediatric Surgery, Department of Surgery, St. Louis Children's Hospital, Washington University School of Medicine, St. Louis, MO
| | - Jose Diaz-Miron
- Division of Pediatric Surgery, Department of Surgery, St. Louis Children's Hospital, Washington University School of Medicine, St. Louis, MO
| | - Jaclyn Khil
- Division of Pediatric Surgery, Department of Surgery, St. Louis Children's Hospital, Washington University School of Medicine, St. Louis, MO
| | - Christopher R Erwin
- Division of Pediatric Surgery, Department of Surgery, St. Louis Children's Hospital, Washington University School of Medicine, St. Louis, MO
| | - Jun Guo
- Division of Pediatric Surgery, Department of Surgery, St. Louis Children's Hospital, Washington University School of Medicine, St. Louis, MO
| | - Brad W Warner
- Division of Pediatric Surgery, Department of Surgery, St. Louis Children's Hospital, Washington University School of Medicine, St. Louis, MO.
| |
Collapse
|
232
|
Zhao FQ. Biology of glucose transport in the mammary gland. J Mammary Gland Biol Neoplasia 2014; 19:3-17. [PMID: 24221747 DOI: 10.1007/s10911-013-9310-8] [Citation(s) in RCA: 105] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/19/2013] [Accepted: 10/29/2013] [Indexed: 01/10/2023] Open
Abstract
Glucose is the major precursor of lactose, which is synthesized in Golgi vesicles of mammary secretory alveolar epithelial cells during lactation. Glucose is taken up by mammary epithelial cells through a passive, facilitative process, which is driven by the downward glucose concentration gradient across the plasma membrane. This process is mediated by facilitative glucose transporters (GLUTs), of which there are 14 known isoforms. Mammary glands mainly express GLUT1 and GLUT8, and GLUT1 is the predominant isoform with a Km of ~10 mM and transport activity for mannose and galactose in addition to glucose. Mammary glucose transport activity increases dramatically from the virgin state to the lactation state, with a concomitant increase in GLUT expression. The increased GLUT expression during lactogenesis is not stimulated by the accepted lactogenic hormones. New evidence indicates that a possible low oxygen tension resulting from increased metabolic rate and oxygen consumption may play a major role in stimulating glucose uptake and GLUT1 expression in mammary epithelial cells during lactogenesis. In addition to its primary presence on the plasma membrane, GLUT1 is also expressed on the Golgi membrane of mammary epithelial cells and is likely involved in facilitating the uptake of glucose and galactose to the site of lactose synthesis. Because lactose synthesis dictates milk volume, regulation of GLUT expression and trafficking represents potentially fruitful areas for further research in dairy production. In addition, this research will have pathological implications for the treatment of breast cancer because glucose uptake and GLUT expression are up-regulated in breast cancer cells to accommodate the increased glucose need.
Collapse
Affiliation(s)
- Feng-Qi Zhao
- Laboratory of Lactation and Metabolic Physiology, Department of Animal Science, University of Vermont, 211 Terrill Building, 570 Main Street, Burlington, VT, 05405, USA,
| |
Collapse
|
233
|
Thazhath SS, Wu T, Young RL, Horowitz M, Rayner CK. Glucose absorption in small intestinal diseases. Expert Rev Gastroenterol Hepatol 2014; 8:301-312. [PMID: 24502537 DOI: 10.1586/17474124.2014.887439] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Recent developments in the field of diabetes and obesity management have established the central role of the gut in glucose homeostasis; not only is the gut the primary absorptive site, but it also triggers neurohumoral feedback responses that regulate the pre- and post-absorptive phases of glucose metabolism. Structural and/or functional disorders of the intestine have the capacity to enhance (e.g.: diabetes) or inhibit (e.g.: short-gut syndrome, critical illness) glucose absorption, with potentially detrimental outcomes. In this review, we first describe the normal physiology of glucose absorption and outline the methods by which it can be quantified. Then we focus on the structural and functional changes in the small intestine associated with obesity, critical illness, short gut syndrome and other malabsorptive states, and particularly Type 2 diabetes, which can impact upon carbohydrate absorption and overall glucose homeostasis.
Collapse
Affiliation(s)
- Sony S Thazhath
- Discipline of Medicine, The University of Adelaide, Royal Adelaide Hospital, Adelaide, SA, Australia
| | | | | | | | | |
Collapse
|
234
|
Wu KLH, Hung CY, Chan JYH, Wu CW. An increase in adenosine-5'-triphosphate (ATP) content in rostral ventrolateral medulla is engaged in the high fructose diet-induced hypertension. J Biomed Sci 2014; 21:8. [PMID: 24467657 PMCID: PMC3913325 DOI: 10.1186/1423-0127-21-8] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2013] [Accepted: 01/20/2014] [Indexed: 12/21/2022] Open
Abstract
Background The increase in fructose ingestion has been linked to overdrive of sympathetic activity and hypertension associated with the metabolic syndrome. The premotor neurons for generation of sympathetic vasomotor activity reside in the rostral ventrolateral medulla (RVLM). Activation of RVLM results in sympathoexcitation and hypertension. Neurons in the central nervous system are able to utilize fructose as a carbon source of ATP production. We examined in this study whether fructose affects ATP content in RVLM and its significance in the increase in central sympathetic outflow and hypertension induced by the high fructose diet (HFD). Results In normotensive rats fed with high fructose diet (HFD) for 12 weeks, there was a significant increase in tissue ATP content in RVLM, accompanied by the increases in the sympathetic vasomotor activity and blood pressure. These changes were blunted by intracisternal infusion of an ATP synthase inhibitor, oligomycin, to the HFD-fed animals. In the catecholaminergic-containing N2a cells, fructose dose-dependently upregulated the expressions of glucose transporter 2 and 5 (GluT2, 5) and the rate-limiting enzyme of fructolysis, ketohexokinase (KHK), leading to the increases in pyruvate and ATP production, as well as the release of the neurotransmitter, dopamine. These cellular events were significantly prevented after the gene knocking down by lentiviral transfection of small hairpin RNA against KHK. Conclusion These results suggest that increases in ATP content in RVLM may be engaged in the augmented sympathetic vasomotor activity and hypertension associated with the metabolic syndrome induced by the HFD. At cellular level, the increase in pyruvate levels via fructolysis is involved in the fructose-induced ATP production and the release of neurotransmitter.
Collapse
Affiliation(s)
- Kay L H Wu
- Center for Translational Research in Biomedical Sciences, Chang Gung Memorial Hospital-Kaohsiung Medical Center, Kaohsiung 83301, Taiwan.
| | | | | | | |
Collapse
|
235
|
Notari L, Riera DC, Sun R, Bohl JA, McLean LP, Madden KB, van Rooijen N, Vanuytsel T, Urban JF, Zhao A, Shea-Donohue T. Role of macrophages in the altered epithelial function during a type 2 immune response induced by enteric nematode infection. PLoS One 2014; 9:e84763. [PMID: 24465430 PMCID: PMC3900397 DOI: 10.1371/journal.pone.0084763] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2013] [Accepted: 11/18/2013] [Indexed: 01/10/2023] Open
Abstract
Parasitic enteric nematodes induce a type 2 immune response characterized by increased production of Th2 cytokines, IL-4 and IL-13, and recruitment of alternatively activated macrophages (M2) to the site of infection. Nematode infection is associated with changes in epithelial permeability and inhibition of sodium-linked glucose absorption, but the role of M2 in these effects is unknown. Clodronate-containing liposomes were administered prior to and during nematode infection to deplete macrophages and prevent the development of M2 in response to infection with Nippostrongylus brasiliensis. The inhibition of epithelial glucose absorption that is associated with nematode infection involved a macrophage-dependent reduction in SGLT1 activity, with no change in receptor expression, and a macrophage-independent down-regulation of GLUT2 expression. The reduced transport of glucose into the enterocyte is compensated partially by an up-regulation of the constitutive GLUT1 transporter consistent with stress-induced activation of HIF-1α. Thus, nematode infection results in a “lean” epithelial phenotype that features decreased SGLT1 activity, decreased expression of GLUT2 and an emergent dependence on GLUT1 for glucose uptake into the enterocyte. Macrophages do not play a role in enteric nematode infection-induced changes in epithelial barrier function. There is a greater contribution, however, of paracellular absorption of glucose to supply the energy demands of host resistance. These data provide further evidence of the ability of macrophages to alter glucose metabolism of neighboring cells.
Collapse
Affiliation(s)
- Luigi Notari
- Department of Medicine and Mucosal Biology Research Center, University of Maryland School of Medicine, Baltimore, Maryland, United States of America
| | - Diana C. Riera
- Department of Pediatrics, Walter Reed Army Medical Center, Washington, DC, United States of America
- Department of Pediatrics, Uniformed Services University of the Health Sciences, Bethesda, Maryland, United States of America
| | - Rex Sun
- Department of Medicine and Mucosal Biology Research Center, University of Maryland School of Medicine, Baltimore, Maryland, United States of America
| | - Jennifer A. Bohl
- Department of Medicine and Mucosal Biology Research Center, University of Maryland School of Medicine, Baltimore, Maryland, United States of America
| | - Leon P. McLean
- Department of Medicine and Mucosal Biology Research Center, University of Maryland School of Medicine, Baltimore, Maryland, United States of America
| | - Kathleen B. Madden
- Department of Pediatrics, Uniformed Services University of the Health Sciences, Bethesda, Maryland, United States of America
| | - Nico van Rooijen
- Vrije Universiteit, VUMC, Department of Molecular Cell Biology, Amsterdam, The Netherlands
| | - Tim Vanuytsel
- Translational Research Center for Gastrointestinal Disorders, University Hospital Gasthuisberg, University of Leuven, Leuven, Belgium
| | - Joseph F. Urban
- United States Department of Agriculture, Agricultural Research Service, Beltsville Human Nutrition Research Center, Diet, Genomics, & Immunology Laboratory, Beltsville, Maryland, United States of America
| | - Aiping Zhao
- Department of Medicine and Mucosal Biology Research Center, University of Maryland School of Medicine, Baltimore, Maryland, United States of America
| | - Terez Shea-Donohue
- Department of Medicine and Mucosal Biology Research Center, University of Maryland School of Medicine, Baltimore, Maryland, United States of America
- * E-mail:
| |
Collapse
|
236
|
The role of the gastrointestinal tract in phosphate homeostasis in health and chronic kidney disease. Curr Opin Nephrol Hypertens 2014; 22:481-7. [PMID: 23666413 PMCID: PMC4196778 DOI: 10.1097/mnh.0b013e3283621310] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Purpose of review For a number of years, there has been increasing interest in the concept of directly targeting intestinal phosphate transport to control hyperphosphatemia in chronic kidney disease. However, progress has been slow due to the paucity of information on the mechanisms involved in intestinal phosphate absorption. This editorial highlights the most recent developments in our understanding of this process and the role of the intestine in the maintenance of phosphate balance. Recent findings Recent studies in NaPi-IIb knockout mice have confirmed that this transport protein plays a significant role in intestinal phosphate absorption and is critical in the proposed feed-forward mechanism between the small intestine and kidney, which helps to maintain normal phosphate balance and steady-state plasma phosphate concentrations. In addition, renal failure-induced hyperphosphatemia is attenuated in NaPi-IIb knockout mice, confirming that NaPi-IIb is a suitable target in the prevention and treatment of hyperphosphatemia. Summary Recent findings suggest that consumption of processed foods containing phosphate preservatives may lead to excessive phosphate exposure (if not overload), toxicity, and cardiovascular disease in the general population, as well as in patients with declining renal function. Therefore, establishing more effective ways of targeting the intestine to limit dietary phosphate absorption could have wide-reaching health benefits.
Collapse
|
237
|
Tharabenjasin P, Douard V, Patel C, Krishnamra N, Johnson RJ, Zuo J, Ferraris RP. Acute interactions between intestinal sugar and calcium transport in vitro. Am J Physiol Gastrointest Liver Physiol 2014; 306:G1-12. [PMID: 24177030 DOI: 10.1152/ajpgi.00263.2013] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Fructose consumption by Americans has increased markedly, whereas Ca(2+) intake has decreased below recommended levels. Because fructose metabolism decreases enterocyte ATP concentrations, we tested the hypothesis that luminal fructose acutely reduces active, diet-inducible Ca(2+) transport in the small intestine. We confirmed that the decrease in ATP concentrations was indeed greater in fructose- compared with glucose-incubated mucosal homogenates from wild-type and was prevented in fructose-incubated homogenates from ketohexokinase (KHK)(-/-) mice. We then induced active Ca(2+) transport by chronically feeding wild-type, fructose transporter glucose transporter 5 (GLUT5)(-/-), as well as KHK(-/-) mice a low Ca(2+) diet and measured transepithelial Ca(2+) transport in everted duodenal sacs incubated in solutions containing glucose, fructose, or their nonmetabolizable analogs. The diet-induced increase in active Ca(2+) transport was proportional to dramatic increases in expression of the Ca(2+)-selective channel transient receptor potential vanilloid family calcium channel 6 as well as of the Ca(2+)-binding protein 9k (CaBP9k) but not that of the voltage-dependent L-type channel Ca(v)1.3. Crypt-villus distribution of CaBP9k seems heterogeneous, but low Ca(2+) diets induce expression in more cells. In contrast, KHK distribution is homogeneous, suggesting that fructose metabolism can occur in all enterocytes. Diet-induced Ca(2+) transport was not enhanced by addition of the enterocyte fuel glutamine and was always greater in sacs of wild-type, GLUT5(-/-), and KHK(-/-) mice incubated with fructose or nonmetabolizable sugars than those incubated with glucose. Thus duodenal Ca(2+) transport is not affected by fructose and enterocyte ATP concentrations but instead may decrease with glucose metabolism, as Ca(2+) transport remains high with 3-O-methylglucose that is also transported by sodium-glucose cotransporter 1 but cannot be metabolized.
Collapse
Affiliation(s)
- Phuntila Tharabenjasin
- Dept. of Pharmacology & Physiology, Rutgers Biomedical and Health Sciences, New Jersey Medical School (NJMS 185 South Orange Ave., Newark, NJ 07103.
| | | | | | | | | | | | | |
Collapse
|
238
|
Wenzel U. Flavonoids as drugs at the small intestinal level. Curr Opin Pharmacol 2013; 13:864-8. [DOI: 10.1016/j.coph.2013.08.015] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2013] [Revised: 08/30/2013] [Accepted: 08/30/2013] [Indexed: 11/29/2022]
|
239
|
Abstract
In vertebrates and invertebrates, morphological and functional features of gastrointestinal (GI) tracts generally reflect food chemistry, such as content of carbohydrates, proteins, fats, and material(s) refractory to rapid digestion (e.g., cellulose). The expression of digestive enzymes and nutrient transporters approximately matches the dietary load of their respective substrates, with relatively modest excess capacity. Mechanisms explaining differences in hydrolase activity between populations and species include gene copy number variations and single-nucleotide polymorphisms. Transcriptional and posttranscriptional adjustments mediate phenotypic changes in the expression of hydrolases and transporters in response to dietary signals. Many species respond to higher food intake by flexibly increasing digestive compartment size. Fermentative processes by symbiotic microorganisms are important for cellulose degradation but are relatively slow, so animals that rely on those processes typically possess special enlarged compartment(s) to maintain a microbiota and other GI structures that slow digesta flow. The taxon richness of the gut microbiota, usually identified by 16S rRNA gene sequencing, is typically an order of magnitude greater in vertebrates than invertebrates, and the interspecific variation in microbial composition is strongly influenced by diet. Many of the nutrient transporters are orthologous across different animal phyla, though functional details may vary (e.g., glucose and amino acid transport with K+ rather than Na+ as a counter ion). Paracellular absorption is important in many birds. Natural toxins are ubiquitous in foods and may influence key features such as digesta transit, enzymatic breakdown, microbial fermentation, and absorption.
Collapse
Affiliation(s)
- William H Karasov
- Forest and Wildlife Ecology, University of Wisconsin-Madison, Madison, Wisconsin, USA.
| | | |
Collapse
|
240
|
Regulation of glucose transporter expression in human intestinal Caco-2 cells following exposure to an anthocyanin-rich berry extract. PLoS One 2013; 8:e78932. [PMID: 24236070 PMCID: PMC3827299 DOI: 10.1371/journal.pone.0078932] [Citation(s) in RCA: 101] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2013] [Accepted: 09/25/2013] [Indexed: 02/06/2023] Open
Abstract
Polyphenols contained within plant tissues are consumed in significant amounts in the human diet and are known to influence a number of biological processes. This study investigated the effects of an anthocyanin-rich berry-extract on glucose uptake by human intestinal Caco-2 cells. Acute exposure (15 min) to berry extract (0.125%, w/v) significantly decreased both sodium-dependent (Total uptake) and sodium-independent (facilitated uptake) ³H-D-glucose uptake. In longer-term studies, SGLT1 mRNA and GLUT2 mRNA expression were reduced significantly. Polyphenols are known to interact directly with glucose transporters to regulate the rate of glucose absorption. Our in vitro data support this mechanism and also suggest that berry flavonoids may modulate post-prandial glycaemia by decreasing glucose transporter expression. Further studies are warranted to investigate the longer term effects of berry flavonoids on the management of glycaemia in human volunteers.
Collapse
|
241
|
Cura AJ, Carruthers A. Role of monosaccharide transport proteins in carbohydrate assimilation, distribution, metabolism, and homeostasis. Compr Physiol 2013; 2:863-914. [PMID: 22943001 DOI: 10.1002/cphy.c110024] [Citation(s) in RCA: 105] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
The facilitated diffusion of glucose, galactose, fructose, urate, myoinositol, and dehydroascorbicacid in mammals is catalyzed by a family of 14 monosaccharide transport proteins called GLUTs. These transporters may be divided into three classes according to sequence similarity and function/substrate specificity. GLUT1 appears to be highly expressed in glycolytically active cells and has been coopted in vitamin C auxotrophs to maintain the redox state of the blood through transport of dehydroascorbate. Several GLUTs are definitive glucose/galactose transporters, GLUT2 and GLUT5 are physiologically important fructose transporters, GLUT9 appears to be a urate transporter while GLUT13 is a proton/myoinositol cotransporter. The physiologic substrates of some GLUTs remain to be established. The GLUTs are expressed in a tissue specific manner where affinity, specificity, and capacity for substrate transport are paramount for tissue function. Although great strides have been made in characterizing GLUT-catalyzed monosaccharide transport and mapping GLUT membrane topography and determinants of substrate specificity, a unifying model for GLUT structure and function remains elusive. The GLUTs play a major role in carbohydrate homeostasis and the redistribution of sugar-derived carbons among the various organ systems. This is accomplished through a multiplicity of GLUT-dependent glucose sensing and effector mechanisms that regulate monosaccharide ingestion, absorption,distribution, cellular transport and metabolism, and recovery/retention. Glucose transport and metabolism have coevolved in mammals to support cerebral glucose utilization.
Collapse
Affiliation(s)
- Anthony J Cura
- Department of Biochemistry & Molecular Pharmacology, University of Massachusetts Medical School, Worcester, Massachusetts, USA
| | | |
Collapse
|
242
|
Chaturvedi LS, Basson MD. Glucagonlike peptide 2 analogue teduglutide: stimulation of proliferation but reduction of differentiation in human Caco-2 intestinal epithelial cells. JAMA Surg 2013; 148:1037-1042. [PMID: 24068167 PMCID: PMC4574866 DOI: 10.1001/jamasurg.2013.3731] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
IMPORTANCE Short bowel syndrome occurs when a shortened intestine cannot absorb sufficient nutrients or fluids. Teduglutide is a recombinant analogue of human glucagonlike peptide 2 that reduces dependence on parenteral nutrition in patients with short bowel syndrome by promoting enterocytic proliferation, increasing the absorptive surface area. However, enterocyte function depends not only on the number of cells that are present but also on differentiated features that facilitate nutrient absorption and digestion. OBJECTIVE To test the hypothesis that teduglutide impairs human intestinal epithelial differentiation. DESIGN AND SETTING We investigated the effects of teduglutide in the modulation of proliferation and differentiation in human Caco-2 intestinal epithelial cells at a basic science laboratory. This was an in vitro study using Caco-2 cells, a human-derived intestinal epithelial cell line commonly used to model enterocytic biology. EXPOSURE Cells were exposed to teduglutide or vehicle control. MAIN OUTCOMES AND MEASURES We analyzed the cell cycle by bromodeoxyuridine incorporation or propidium iodide staining and flow cytometry and measured cell proliferation by 3-(4,5-dimethylthiazol-2-yl)-5-(3-carboxymethoxyphenyl)-2-(4-sulfophenyl)-2H-tetrazolium (MTS) assay. We used quantitative reverse transcription-polymerase chain reaction to assay the expression of the enterocytic differentiation markers villin, sucrase-isomaltase, glucose transporter 2 (GLUT2), and dipeptidyl peptidase 4 (DPP-4), as well as that of the putative differentiation signals schlafen 12 (SLFN12) and caudal-related homeobox intestine-specific transcription factor (Cdx2). Villin promoter activity was measured by a luciferase-based assay. RESULTS The MTS assay demonstrated that teduglutide increased cell numbers by a mean (SD) of 10% (2%) over untreated controls at a maximal 500 nM (n = 6, P < .05). Teduglutide increased bromodeoxyuridine-positive cells vs untreated controls by a mean (SD) of 19.4% (2.3%) vs 12.0% (0.8%) (n = 6, P < .05) and increased the S-phase fraction by flow cytometric analysis. Teduglutide reduced the mean (SD) expression of villin by 29% (6%), Cdx2 by 31% (10%), DPP-4 by 15% (6%), GLUT2 by 40% (11%), SLFN12 by 61% (14%), and sucrase-isomaltase by 28% (8%) (n = 6, P < .05 for all). CONCLUSIONS AND RELEVANCE Teduglutide increased Caco-2 proliferation but tended to inhibit intestinal epithelial differentiation. The effects of mitogenic stimulation with teduglutide in patients with short bowel syndrome might be greater if the more numerous teduglutide-treated cells could be stimulated toward a more fully differentiated phenotype.
Collapse
Affiliation(s)
- Lakshmi S Chaturvedi
- Department of Surgery, College of Human Medicine, Michigan State University, East Lansing2Research Service, John D. Dingell Veterans Affairs Medical Center, Detroit, Michigan3Department of Anesthesiology, Wayne State University, Detroit, Michigan
| | | |
Collapse
|
243
|
Kovalenko PL, Basson MD. The correlation between the expression of differentiation markers in rat small intestinal mucosa and the transcript levels of schlafen 3. JAMA Surg 2013; 148:1013-1019. [PMID: 24005468 PMCID: PMC4590985 DOI: 10.1001/jamasurg.2013.3572] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
IMPORTANCE The normal absorptive function and structural maintenance of the intestinal mucosa depend on a constant process of proliferation of enterocytic stem cells followed by progressive differentiation toward a mature phenotype. The mechanisms that govern enterocytic differentiation in the mucosa of the small intestine are poorly understood. OBJECTIVE To determine whether schlafen 3 (but not other schlafen proteins) act in vivo and whether its effects are limited to the small intestine. We have previously demonstrated in nonmalignant rat intestinal IEC-6 cells that schlafen 3 levels correlate with the expression of various differentiation markers in vitro in response to differentiation stimuli. DESIGN Randomized controlled experiment. SETTING Animal science laboratory. PARTICIPANTS Male Sprague-Dawley rats 8 to 13 weeks old. MAIN OUTCOMES AND MEASURES Messenger RNA (mRNA) from jejunal and colonic mucosa was isolated, and transcript levels of schlafen proteins 1, 2, 3, 4, 5, 13, and 14; sucrase isomaltase (SI); dipeptidyl peptidase 4 (Dpp4); glucose transporter type 2 (Glut2); and villin were measured by quantitative reverse transcriptase-polymerase chain reaction. We tested parallel variations in protein levels by Western blotting and Dpp4 enzyme activity. RESULTS The transcript level of schlafen 3 (Slfn3) correlated with the levels of the differentiation markers SI, Dpp4, Glut2, and villin. However, the expression of schlafen proteins 1, 2, 4, 5, 13, and 14 did not correlate with the expression of the differentiation markers. The mucosal mRNA levels of Slfn3, SI, Glut2, and Dpp4 were all substantially higher in the rat jejunum than in colonic mucosa by a mean (SE) factor of 51.0 (13.2) for 6 rats (P < .05), 599 (99) for 8 rats (P < .01), 12.5 (5.5) for 8 rats (P < .01), and 14.0 (3.9) for 8 rats (P < .01), respectively. In IEC-6 cells, infection with adenovirus-expressing GFP-tagged Slfn3 significantly increased Slfn3 expression and Dpp4-specific activity compared with GFP-expressing virus (in 6 rats; P < .05). CONCLUSIONS AND RELEVANCE Taken together with our previous in vitro observations, the results suggest that small intestinal enterocytic epithelial differentiation in rats may be regulated by Slfn3 in vivo, as in vitro, and that these effects may be specific to the small intestinal enterocytic phenotype as opposed to that of the mature colonocyte. Slfn3 human orthologs may be targeted to stimulate intestinal differentiation in patients with short bowel syndrome.
Collapse
|
244
|
Zukerman S, Ackroff K, Sclafani A. Post-oral appetite stimulation by sugars and nonmetabolizable sugar analogs. Am J Physiol Regul Integr Comp Physiol 2013; 305:R840-53. [PMID: 23926132 PMCID: PMC3798804 DOI: 10.1152/ajpregu.00297.2013] [Citation(s) in RCA: 69] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2013] [Accepted: 08/03/2013] [Indexed: 01/06/2023]
Abstract
Post-oral sugar actions enhance the intake of and preference for sugar-rich foods, a process referred to as appetition. Here, we investigated the role of intestinal sodium glucose cotransporters (SGLTs) in sugar appetition in C57BL/6J mice using sugars and nonmetabolizable sugar analogs that differ in their affinity for SGLT1 and SGLT3. In experiments 1 and 2, food-restricted mice were trained (1 h/day) to consume a flavored saccharin solution [conditioned stimulus (CS-)] paired with intragastric (IG) self-infusions of water and a different flavored solution (CS+) paired with infusions of 8 or 12% sugars (glucose, fructose, and galactose) or sugar analogs (α-methyl-D-glucopyranoside, MDG; 3-O-methyl-D-glucopyranoside, OMG). Subsequent two-bottle CS+ vs. CS- choice tests were conducted without coinfusions. Infusions of the SGLT1 ligands glucose, galactose, MDG, and OMG stimulated CS+ licking above CS- levels. However, only glucose, MDG, and galactose conditioned significant CS+ preferences, with the SGLT3 ligands (glucose, MDG) producing the strongest preferences. Fructose, which is not a ligand for SGLTs, failed to stimulate CS+ intake or preference. Experiment 3 revealed that IG infusion of MDG+phloridzin (an SGLT1/3 antagonist) blocked MDG appetition, whereas phloridzin had minimal effects on glucose-induced appetition. However, adding phloretin (a GLUT2 antagonist) to the glucose+phloridzin infusion blocked glucose appetition. Taken together, these findings suggest that humoral signals generated by intestinal SGLT1 and SGLT3, and to a lesser degree, GLUT2, mediate post-oral sugar appetition in mice. The MDG results indicate that sugar metabolism is not essential for the post-oral intake-stimulating and preference-conditioning actions of sugars in mice.
Collapse
Affiliation(s)
- Steven Zukerman
- Department of Psychology, Brooklyn College, City University of New York, Brooklyn, New York; and Cognition, Brain, and Behavior Doctoral Subprogram, Graduate School, City University of New York, New York, New York
| | | | | |
Collapse
|
245
|
Mueckler M, Thorens B. The SLC2 (GLUT) family of membrane transporters. Mol Aspects Med 2013. [PMID: 23506862 DOI: 10.1016/j.mam.2012.07.001,] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/30/2022]
Abstract
GLUT proteins are encoded by the SLC2 genes and are members of the major facilitator superfamily of membrane transporters. Fourteen GLUT proteins are expressed in the human and they are categorized into three classes based on sequence similarity. All GLUTs appear to transport hexoses or polyols when expressed ectopically, but the primary physiological substrates for several of the GLUTs remain uncertain. GLUTs 1-5 are the most thoroughly studied and all have well established roles as glucose and/or fructose transporters in various tissues and cell types. The GLUT proteins are comprised of ∼500 amino acid residues, possess a single N-linked oligosaccharide, and have 12 membrane-spanning domains. In this review we briefly describe the major characteristics of the 14 GLUT family members.
Collapse
Affiliation(s)
- Mike Mueckler
- Department of Cell Biology, Washington University School of Medicine, St. Louis, MO 63110, USA.
| | | |
Collapse
|
246
|
Mueckler M, Thorens B. The SLC2 (GLUT) family of membrane transporters. Mol Aspects Med 2013; 34:121-38. [PMID: 23506862 DOI: 10.1016/j.mam.2012.07.001] [Citation(s) in RCA: 900] [Impact Index Per Article: 75.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2012] [Accepted: 07/03/2012] [Indexed: 12/11/2022]
Abstract
GLUT proteins are encoded by the SLC2 genes and are members of the major facilitator superfamily of membrane transporters. Fourteen GLUT proteins are expressed in the human and they are categorized into three classes based on sequence similarity. All GLUTs appear to transport hexoses or polyols when expressed ectopically, but the primary physiological substrates for several of the GLUTs remain uncertain. GLUTs 1-5 are the most thoroughly studied and all have well established roles as glucose and/or fructose transporters in various tissues and cell types. The GLUT proteins are comprised of ∼500 amino acid residues, possess a single N-linked oligosaccharide, and have 12 membrane-spanning domains. In this review we briefly describe the major characteristics of the 14 GLUT family members.
Collapse
Affiliation(s)
- Mike Mueckler
- Department of Cell Biology, Washington University School of Medicine, St. Louis, MO 63110, USA.
| | | |
Collapse
|
247
|
The SLC2 (GLUT) family of membrane transporters. Mol Aspects Med 2013. [PMID: 23506862 DOI: 10.1016/j.mam.2012.07.001;] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
GLUT proteins are encoded by the SLC2 genes and are members of the major facilitator superfamily of membrane transporters. Fourteen GLUT proteins are expressed in the human and they are categorized into three classes based on sequence similarity. All GLUTs appear to transport hexoses or polyols when expressed ectopically, but the primary physiological substrates for several of the GLUTs remain uncertain. GLUTs 1-5 are the most thoroughly studied and all have well established roles as glucose and/or fructose transporters in various tissues and cell types. The GLUT proteins are comprised of ∼500 amino acid residues, possess a single N-linked oligosaccharide, and have 12 membrane-spanning domains. In this review we briefly describe the major characteristics of the 14 GLUT family members.
Collapse
|
248
|
Barrenetxe J, Sánchez O, Barber A, Gascón S, Rodríguez-Yoldi MJ, Lostao MP. TNFα regulates sugar transporters in the human intestinal epithelial cell line Caco-2. Cytokine 2013; 64:181-7. [PMID: 23910014 DOI: 10.1016/j.cyto.2013.07.004] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2012] [Revised: 06/10/2013] [Accepted: 07/02/2013] [Indexed: 01/25/2023]
Abstract
PURPOSE During intestinal inflammation TNFα levels are increased and as a consequence malabsorption of nutrients may occur. We have previously demonstrated that TNFα inhibits galactose, fructose and leucine intestinal absorption in animal models. In continuation with our work, the purpose of the present study was to investigate in the human intestinal epithelial cell line Caco-2, the effect of TNFα on sugar transport and to identify the intracellular mechanisms involved. METHODS Caco-2 cells were grown on culture plates and pre-incubated during different periods with various TNFα concentrations before measuring the apical uptake of galactose, α-methyl-glucoside (MG) or fructose for 15 min. To elucidate the signaling pathway implicated, cells were pre-incubated for 30min with the PKA inhibitor H-89 or the PKC inhibitor chelerythrine, before measuring the sugar uptake. The expression in the apical membrane of the transporters implicated in the sugars uptake process (SGLT1 and GLUT5) was determined by Western blot. RESULTS TNFα inhibited 0.1mM MG uptake after pre-incubation of the cells for 6-48h with the cytokine and in the absence of cytokine pre-incubation. In contrast, 5mM fructose uptake was stimulated by TNFα only after long pre-incubation times (24 and 48 h). These effects were mediated by the binding of the cytokine to its specific receptor TNFR1, present in the apical membrane of the Caco-2 cells. Analysis of the expression of the MG and fructose transporters at the brush border membrane of the cells, after 24h pre-incubation with the cytokine, revealed decrease on the amount of SGLT1 and increase on the amount of GLUT5 proteins. Short-term inhibition of MG transport by TNFα was not modified by H-89 but was blocked by chelerythrine. CONCLUSIONS SGLT1 and GLUT5 expression in the plasma membrane is regulated by TNFα in the human epithelial cell line Caco-2 cells, leading to alteration on sugars transport, suggesting that TNFα could be considered as a physiological local regulator of nutrients absorption in response to an intestinal inflammatory status.
Collapse
Affiliation(s)
- Jaione Barrenetxe
- Department of Nutrition, Food Science and Physiology, University of Navarra, Pamplona 31008, Spain.
| | | | | | | | | | | |
Collapse
|
249
|
Evidence of sugar sensitive genes in the gut of a carnivorous fish species. Comp Biochem Physiol B Biochem Mol Biol 2013; 166:58-64. [PMID: 23850750 DOI: 10.1016/j.cbpb.2013.07.003] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2013] [Revised: 07/01/2013] [Accepted: 07/04/2013] [Indexed: 12/17/2022]
Abstract
The ability of intestine to sense glucose in carnivorous animals (consuming minimal carbohydrate) has been partially evaluated to date only in cats. We have evaluated the expression of markers involved in the detection of simple sugars in the intestine of the strict carnivorous fish species rainbow trout (Oncorhynchus mykiss) in response to an oral glucose load and to glucose, galactose and mannose stimulation in vitro. These markers include metabolic (GLUT2 and glucokinase (hexokinase IV, GK)) and electrogenic (SGLT1) sensors, the nuclear receptor nr1h3 and the components of the G-protein-coupled taste receptors (tas1r2-like, tas1r3-like and gnat3-like). For the first time, we show that the gut of rainbow trout can detect simple sugars including glucose, galactose and mannose and respond by changing the expression levels of glucose-sensing proteins. The glucosensing response based on the metabolic and nuclear receptor systems had not been evidenced before in any carnivorous vertebrate species, whereas the responses of markers of the electrogenic mechanism and the taste receptor mechanism were different than those already described in cats. When the responses observed in rainbow trout were compared with those of omnivorous mammals, similar responses were obtained for nr1h3 whereas several differences arise in the responses of the other markers. Intestinal glucose sensing in the rainbow trout appears to be distinct from that reported for other carnivores such as cats and omnivores, revealing a novel glucose sensing mechanism not related entirely to diet in vertebrates and supports the idea that this species constitute a robust model for nutrient sensing study. Since only mRNA abundance is presented, depth studies are needed to fully understand the importance of the present findings.
Collapse
|
250
|
Duodenal-Jejunal Bypass Improves Glycemia and Decreases SGLT1-Mediated Glucose Absorption in Rats With Streptozotocin-Induced Type 2 Diabetes. Ann Surg 2013; 258:89-97. [DOI: 10.1097/sla.0b013e3182890311] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
|