201
|
Ohkubo H, Ito Y, Minamino T, Mishima T, Hirata M, Hosono K, Shibuya M, Yokomizo T, Shimizu T, Watanabe M, Majima M. Leukotriene B4 type-1 receptor signaling promotes liver repair after hepatic ischemia/reperfusion injury through the enhancement of macrophage recruitment. FASEB J 2013; 27:3132-43. [PMID: 23629862 DOI: 10.1096/fj.13-227421] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Recruited macrophages play a critical role in liver repair after acute liver injury. Leukotriene B4 (LTB4) is a potent chemoattractant for macrophages. In this study, we investigated the role of LTB4 receptor type 1 (BLT1) in liver repair during hepatic ischemia/reperfusion (I/R) injury. BLT1-knockout mice (BLT1(-/-)) or their wild-type counterparts (WT) were subjected to partial hepatic I/R. Compared with WT, BLT1(-/-) exhibited delayed liver repair and hepatocyte proliferation accompanied by a 70% reduction in the recruitment of macrophages and a 70-80% attenuation in hepatic expression of epidermal growth factor (EGF), vascular endothelial growth factor (VEGF), and VEGF receptor 1 (VEGFR1). Disruption of BLT1 signaling also reduced the expression of EGF by 67% on recruited macrophages expressing VEGFR1 in the injured liver. Treatment of WT mice with an EGF-neutralizing antibody delayed liver repair and reduced macrophage recruitment, compared with control immunoglobulin G (IgG). BLT1 signaling enhanced the expression of VEGF, VEGFR1, and EGF in isolated peritoneal macrophages in vitro. These results indicate that BLT1 signaling plays a role in liver repair after hepatic I/R through enhanced expression of EGF in recruited macrophages and that the development of a specific agonist for BLT1 could be useful for liver recovery from acute liver injury.
Collapse
Affiliation(s)
- Hirotoki Ohkubo
- Department of Pharmacology, Kitasato University School of Medicine, 1-15-1 Kitasato, Minami, Sagamihara Kanagawa, 252-0374, Japan
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
202
|
Caruso RA, Fedele F, Rigoli L, Branca G, Bonanno A, Quattrocchi E, Finocchiaro G, Venuti A. Apoptotic-like tumor cells and apoptotic neutrophils in mitochondrion-rich gastric adenocarcinomas: a comparative study with light and electron microscopy between these two forms of cell death. Rare Tumors 2013; 5:68-71. [PMID: 23888218 PMCID: PMC3719113 DOI: 10.4081/rt.2013.e18] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2012] [Revised: 02/23/2013] [Accepted: 03/12/2013] [Indexed: 11/23/2022] Open
Abstract
Mitochondrion-rich adenocarcinomas represent a rare variant of gastric adenocarcinomas composed predominantly of columnar adenocarcinoma cells with eosinophilic cytoplasm, a strong supranuclear immunoreactivity for antimitochondrial antibody, and a marked neutrophil infiltration associated to tumor cell death. The purpose of this work is to investigate, using correlated light and electron microscopy, mitochondrion-rich gastric adenocarcinomas focusing on the nature of the death in neoplastic cells and in infiltrating neutrophils. Adenocarcinoma cells, single or in small clusters, showed convoluted nuclei, irregularly condensed chromatin, loss of microvilli, and nuclear envelope dilatation. No nuclear fragmentation was observed in these dying cells and the plasma membrane did not show signs of disruption. These ultrastructural findings represent intermediate aspects between apoptosis and necrosis and are compatible with apoptosis-like programmed cell death. By contrast, some infiltrating neutrophils showed ultrastructural signs of classic apoptosis such as chromatin condensation into compact geometric (globular, crescentshaped) figures, tightly packed cytoplasmic granules and intact cell membrane. Our study provides ultrastructural evidence of apoptosislike tumour cell death in mitochondrion-rich gastric carcinomas and confirms that stereotyped outcome either as apoptosis or necrosis of tumor cells cannot always be expected in human neoplasms.
Collapse
Affiliation(s)
- Rosario A. Caruso
- Department of Human Pathology and Department of Pediatrics, School of Medicine, University of Messina, Messina, Italy
| | | | | | | | | | | | | | | |
Collapse
|
203
|
Time dependency and topography of hepatic nuclear factor κB activation after hemorrhagic shock and resuscitation in mice. Shock 2013; 38:486-92. [PMID: 22814290 DOI: 10.1097/shk.0b013e3182699072] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
The leading causes of death in people aged 1 to 44 years are unintentional injuries with associated hemorrhagic shock. Hemorrhagic shock followed by resuscitation (H/R) activates the nuclear factor κB (NF-κB) pathway. To further address the association between liver damage and NF-κB activation, we analyzed the H/R-induced activation of NF-κB using cis-NF-κB reporter gene mice. In these mice, the expression of green fluorescent protein (GFP) is linked to the activation of NF-κB, and therefore tracing of GFP colocalizes NF-κB activation. Mice were hemorrhaged to a mean arterial blood pressure of 30mmHg for 90 min, followed by resuscitation. Six, 14, or 24 h after resuscitation, mice were killed. Compared with sham-operated mice, H/R led to a profound hepatic and cellular damage as measured by aspartate aminotransferase, creatine kinase, and lactate dehydrogenase levels, which was accompanied by an elevation in interleukin 6 levels and hepatic leukocyte infiltration. Interleukin 10 levels in plasma were elevated 6 h after H/R. Using serial liver sections, we found an association between necrotic areas, oxidative stress, and enhanced GFP-positive cells. Furthermore, enhanced GFP-positive cells surrounded areas of necrotic liver tissue, predominantly in a penumbra-like-shape pericentrally. These results elucidate spatial relationship between oxidative stress, liver necrosis, and NF-κB activation, using an in vivo approach and therefore might help to further analyze mechanisms of NF-κB activation after resuscitated blood loss.
Collapse
|
204
|
Aristatile B, Al-Assaf AH, Pugalendi KV. Carvacrol suppresses the expression of inflammatory marker genes in D-galactosamine-hepatotoxic rats. ASIAN PAC J TROP MED 2013; 6:205-11. [DOI: 10.1016/s1995-7645(13)60024-3] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2012] [Revised: 12/27/2012] [Accepted: 01/28/2013] [Indexed: 11/16/2022] Open
|
205
|
Taylor NJ, Nishtala A, Manakkat Vijay GK, Abeles RD, Auzinger G, Bernal W, Ma Y, Wendon JA, Shawcross DL. Circulating neutrophil dysfunction in acute liver failure. Hepatology 2013; 57:1142-52. [PMID: 23079896 DOI: 10.1002/hep.26102] [Citation(s) in RCA: 75] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/22/2012] [Accepted: 10/03/2012] [Indexed: 12/20/2022]
Abstract
UNLABELLED Systemic inflammation and susceptibility to developing sepsis is common in acute liver failure (ALF) resulting in tissue damage and organ failure. This study characterized the function of circulating neutrophils in 25 patients with ALF and subacute liver failure (SALF). ALF (n=15)/SALF (n=10) patients were prospectively studied and compared with 11 healthy (HC) and 6 septic controls (SC). Neutrophils were isolated on admission to intensive care and every 3-4 days until death / liver transplantation / recovery. Neutrophil phenotype was determined using fluorochrome-labeled antibodies to CD16 and CD11b and assessed by flow cytometry. Neutrophil phagocytic activity (NPA) was determined using fluorescein isothiocyanate-labeled opsonized Escherichia coli and oxidative burst (OB) was determined by the percentage of neutrophils producing reactive oxygen species (ROS) at rest and after stimulation with opsonized E. coli. Physiological variables, biochemistry, arterial ammonia, microbiology, and outcomes were collected. Plasma pro- and antiinflammatory cytokine profiles were performed by enzyme-linked immunosorbent assay. Neutrophil expression of CD16 which recognizes the FcγRIII region of immunoglobulin G was significantly reduced in the ALF cohort (P<0.001) on day 1 compared to HC. NPA was significantly impaired in the SALF cohort compared to HC (P<0.01). Impaired NPA in the ALF and SALF cohorts on admission predicted nonsurvival without liver transplantation (P=0.01). Spontaneous neutrophil production of ROS was not significantly increased in any of the cohorts. E. coli-stimulated OB was preserved in ALF/SALF cohorts but was significantly impaired in the SC group (P<0.05). CONCLUSION Circulating neutrophils in ALF/SALF have impaired bacteriocidal function similar to that seen in severe sepsis. Neutrophil function indices are important biomarkers in ALF and may be implicated in the development of organ dysfunction and the increased susceptibility to developing sepsis.
Collapse
Affiliation(s)
- Nicholas J Taylor
- Liver Intensive Care Unit and Transplantation, King's College London School of Medicine at King's College Hospital, London, UK; Institute of Liver Studies and Transplantation, King's College London School of Medicine at King's College Hospital, London, UK
| | | | | | | | | | | | | | | | | |
Collapse
|
206
|
Van Sweringen HL, Sakai N, Quillin RC, Bailey J, Schuster R, Blanchard J, Goetzman H, Caldwell CC, Edwards MJ, Lentsch AB. Roles of hepatocyte and myeloid CXC chemokine receptor-2 in liver recovery and regeneration after ischemia/reperfusion in mice. Hepatology 2013; 57:331-8. [PMID: 22961770 PMCID: PMC3540195 DOI: 10.1002/hep.26049] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/30/2012] [Accepted: 08/09/2012] [Indexed: 12/07/2022]
Abstract
UNLABELLED Previous studies have demonstrated the significance of signaling through the CXC chemokine receptor-2 (CXCR2) receptor in the process of recovery and regeneration of functional liver mass after hepatic ischemia/reperfusion (I/R). CXCR2 is constitutively expressed on both neutrophils and hepatocytes; however, the cell-specific roles of this receptor are unknown. In the present study, chimeric mice were created through bone marrow transplantation (BMT) using wild-type and CXCR2-knockout mice, yielding selective expression of CXCR2 on hepatocytes (Hep) and/or myeloid cells (My) in the following combinations: Hep+/My+; Hep-/My+; Hep+/My-; and Hep-/My-. These tools allowed us to assess the contributions of myeloid and hepatocyte CXCR2 in the recovery of the liver after I/R injury. Flow cytometry confirmed the adoption of the donor phenotype in neutrophils. Interestingly, Kupffer cells from all chimeras lacked CXCR2 expression. Recovery/regeneration of hepatic parenchyma was assessed by histologic assessment and measurement of hepatocyte proliferation. CXCR2(Hep+/My+) mice showed the least amount of liver recovery and hepatocyte proliferation, whereas CXCR2(Hep-/My-) mice had the greatest liver recovery and hepatocyte proliferation. CXCR2(Hep+/My-) mice had enhanced liver recovery, with hepatocyte proliferation similar to CXCR2(Hep-/My-) mice. Myeloid expression of CXCR2 directly regulated CXC chemokine expression levels after hepatic I/R, such that mice lacking myeloid CXCR2 had markedly increased chemokine expression, compared with mice expressing CXCR2 on myeloid cells. CONCLUSION The data suggest that CXCR2 on myeloid cells is the predominant regulator of liver recovery and regeneration after I/R injury, whereas hepatocyte CXCR2 plays a minor, secondary role. These findings suggest that myeloid cell-directed therapy may significantly affect liver regeneration after liver resection or transplantation.
Collapse
|
207
|
DÍAZ-GARCÍA CÉSAR, AKHI SHAMIMAN, MARTÍNEZ-VAREA ALICIA, BRÄNNSTRÖM MATS. The effect of warm ischemia at uterus transplantation in a rat model. Acta Obstet Gynecol Scand 2012; 92:152-9. [DOI: 10.1111/aogs.12027] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
208
|
Triiodothyronine attenuates hepatic ischemia/reperfusion injury in a partial hepatectomy model through inhibition of proinflammatory cytokines, transcription factors, and adhesion molecules. J Surg Res 2012; 178:646-56. [DOI: 10.1016/j.jss.2012.05.069] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2012] [Revised: 04/25/2012] [Accepted: 05/23/2012] [Indexed: 02/04/2023]
|
209
|
Hsu JT, Kuo CJ, Chen TH, Wang F, Lin CJ, Yeh TS, Hwang TL, Jan YY. Melatonin prevents hemorrhagic shock-induced liver injury in rats through an Akt-dependent HO-1 pathway. J Pineal Res 2012; 53:410-416. [PMID: 22686283 DOI: 10.1111/j.1600-079x.2012.01011.x] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Although melatonin treatment following trauma-hemorrhage or ischemic reperfusion prevents organs from dysfunction and injury, the precise mechanism remains unknown. This study tested whether melatonin prevents liver injury following trauma-hemorrhage involved the protein kinase B (Akt)-dependent heme oxygenase (HO)-1 pathway. After a 5-cm midline laparotomy, male rats underwent hemorrhagic shock (mean blood pressure approximately 40 mmHg for 90 min) followed by fluid resuscitation. At the onset of resuscitation, rats were treated with vehicle, melatonin (2 mg/kg), or melatonin plus phosphoinositide 3-kinase (PI3K) inhibitor wortmannin (1 mg/kg). At 2 hr after trauma-hemorrhage, the liver tissue myeloperoxidase activity, malondialdehyde, adenosine triphosphate, serum alanine aminotransferase, and aspartate aminotransferase levels were significantly increased compared with sham-operated control. Trauma-hemorrhage resulted in a significant decrease in the Akt activation in comparison with the shams (relative density, 0.526 ± 0.031 versus 1.012 ± 0.066). Administration of melatonin following trauma-hemorrhage normalized liver Akt phosphorylation (0.993 ± 0.061), further increased mammalian target of rapamycin (mTOR) activation (5.263 ± 0.338 versus 2.556 ± 0.225) and HO-1 expression (5.285 ± 0.325 versus 2.546 ± 0.262), and reduced cleaved caspase-3 levels (2.155 ± 0.297 versus 5.166 ± 0.309). Coadministration of wortmannin abolished the melatonin-mediated attenuation of the shock-induced liver injury markers. Our results collectively suggest that melatonin prevents hemorrhagic shock-induced liver injury in rats through an Akt-dependent HO-1 pathway.
Collapse
Affiliation(s)
- Jun-Te Hsu
- Department of Surgery, Chang Gung Memorial Hospital at Linkou, Chang Gung University College of Medicine, Taoyuan, Taiwan.
| | | | | | | | | | | | | | | |
Collapse
|
210
|
Aktas C, Kanter M, Erboga M, Mete R, Oran M. Melatonin attenuates oxidative stress, liver damage and hepatocyte apoptosis after bile-duct ligation in rats. Toxicol Ind Health 2012; 30:835-44. [PMID: 23095487 DOI: 10.1177/0748233712464811] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
The goal of this study was to evaluate the possible protective effects of melatonin against cholestatic oxidative stress, liver damage and hepatocyte apoptosis in the common rats with bile duct ligation (BDL). A total of 24 male Wistar albino rats were divided into three groups: control, BDL and BDL + received melatonin; each group contains eight animals. Melatonin-treated BDL rats received daily melatonin 100 mg/kg/day via intraperitoneal injection. The application of BDL clearly increased the malondialdehyde (MDA) levels and decreased the superoxide dismutase (SOD) and glutathione (GSH) activities. Melatonin treatment significantly decreased the elevated tissue MDA levels and increased the reduced SOD and GSH enzyme levels in the tissues. The changes demonstrate that the bile duct proliferation and fibrosis in expanded portal tracts include the extension of proliferated bile ducts into lobules, mononuclear cells and neutrophil infiltration into the widened portal areas as observed in the BDL group. The data indicate that melatonin attenuates BDL-induced cholestatic liver injury, bile duct proliferation and fibrosis. The α-smooth muscle actin (α-SMA) and terminal deoxynucleotidyl transferase dUTP nick end labeling (TUNEL)-positive cells in the BDL were observed to be reduced with the melatonin treatment. These results suggest that administration of melatonin is a potentially beneficial agent to reduce liver damage in BDL by decreasing oxidative stress.
Collapse
Affiliation(s)
- Cevat Aktas
- Department of Histology and Embryology, Faculty of Medicine, Namik Kemal University, Tekirdag, Turkey
| | - Mehmet Kanter
- Department of Histology and Embryology, Faculty of Medicine, Medeniyet University, Istanbul, Turkey
| | - Mustafa Erboga
- Department of Histology and Embryology, Faculty of Medicine, University of Trakya, Edirne, Turkey
| | - Rafet Mete
- Department of Gastroenterology, Faculty of Medicine, Namik Kemal University, Tekirdag, Turkey
| | - Mustafa Oran
- Department of Internal Diseases, Faculty of Medicine, Namik Kemal University, Tekirdag, Turkey
| |
Collapse
|
211
|
Kloek JJ, Maréchal X, Roelofsen J, Houtkooper RH, van Kuilenburg ABP, Kulik W, Bezemer R, Nevière R, van Gulik TM, Heger M. Cholestasis is associated with hepatic microvascular dysfunction and aberrant energy metabolism before and during ischemia-reperfusion. Antioxid Redox Signal 2012; 17:1109-23. [PMID: 22482833 DOI: 10.1089/ars.2011.4291] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
AIMS The aim was to investigate the impact of ischemia-reperfusion (I/R) on intrahepatic oxidative stress, oxidative phosphorylation, and nucleotide metabolism in relation to liver damage and inflammation in cholestatic rats to elucidate the molecular mechanisms responsible for post-I/R pathogenesis during cholestasis. RESULTS Pre-I/R cholestatic livers exhibited mild hepatopathology in the form of oxidative/nitrosative stress, perfusion defects, necrosis and apoptosis, inflammation, and fibrosis. Plasma bilirubin concentration in cholestatic livers was 190 μM. I/R in cholestatic livers exacerbated hepatocellular damage and leukocyte infiltration. However, myeloperoxidase activity in neutrophils at 6 h reperfusion was not elevated in cholestatic livers compared to pre-I/R levels and to control (Ctrl) livers. At 6 h reperfusion, cholestatic livers exhibited severe histological damage, which was absent in Ctrl livers. Despite a lower antioxidative capacity after I/R, no cardiolipin peroxidation and equivalent reduced glutathione/oxidized glutathione ratios and Hsp70 levels were found in cholestatic livers versus Ctrls. Bilirubin acted as a potent and protective antioxidant. Postischemic resumption of oxidative phosphorylation in Ctrl livers proceeded rapidly and encompassed reactive hyperemia, which was significantly impaired in cholestatic livers owing to extensive vasoconstriction and perfusion defects. Normalization of intrahepatic energy status and nucleotide-based metabolic cofactors was delayed in cholestatic livers during reperfusion. Innovation and CONCLUSIONS Cholestatic livers possess sufficient antioxidative capacity to ameliorate radical-mediated damage during I/R. I/R-induced damage in cholestatic livers is predominantly caused by microvascular perfusion defects rather than exuberant oxidative/nitrosative stress. The forestalled rate of oxidative phophorylation and recovery of bioenergetic and possibly metabolic parameters during the early reperfusion phase are responsible for extensive liver damage.
Collapse
Affiliation(s)
- Jaap J Kloek
- Department of Experimental Surgery, Academic Medical Center, Amsterdam, The Netherlands
| | | | | | | | | | | | | | | | | | | |
Collapse
|
212
|
Sakai N, Van Sweringen HL, Belizaire RM, Quillin RC, Schuster R, Blanchard J, Burns JM, Tevar AD, Edwards MJ, Lentsch AB. Interleukin-37 reduces liver inflammatory injury via effects on hepatocytes and non-parenchymal cells. J Gastroenterol Hepatol 2012; 27:1609-16. [PMID: 22646996 PMCID: PMC3448792 DOI: 10.1111/j.1440-1746.2012.07187.x] [Citation(s) in RCA: 108] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
BACKGROUND AND AIM The purpose of the present study was to determine the effects of interleukin-37 (IL-37) on liver cells and on liver inflammation induced by hepatic ischemia/reperfusion (I/R). METHODS Mice were subjected to I/R. Some mice received recombinant IL-37 (IL-37) at the time of reperfusion. Serum levels of alanine aminotransferase, and liver myeloperoxidase content were assessed. Serum and liver tumor necrosis factor-α (TNF-α), macrophage inflammatory protein-2 (MIP-2) and keratinocyte chemokine (KC) were also assessed. Hepatic reactive oxygen species (ROS) levels were assessed. For in vitro experiments, isolated hepatocytes and Kupffer cells were treated with IL-37 and inflammatory stimulants. Cytokine and chemokine production by these cells were assessed. Primary hepatocytes underwent induced cell injury and were treated with IL-37 concurrently. Hepatocyte cytotoxicity and Bcl-2 expression were determined. Isolated neutrophils were treated with TNF-α and IL-37 and neutrophil activation and respiratory burst were assessed. RESULTS IL-37 reduced hepatocyte injury and neutrophil accumulation in the liver after I/R. These effects were accompanied by reduced serum levels of TNF-α and MIP-2 and hepatic ROS levels. IL-37 significantly reduced MIP-2 and KC productions from lipopolysaccharide-stimulated hepatocytes and Kupffer cells. IL-37 significantly reduced cell death and increased Bcl-2 expression in hepatocytes. IL-37 significantly suppressed TNF-α-induced neutrophil activation. CONCLUSIONS IL-37 is protective against hepatic I/R injury. These effects are related to the ability of IL-37 to reduce proinflammatory cytokine and chemokine production by hepatocytes and Kupffer cells as well as having a direct protective effect on hepatocytes. In addition, IL-37 contributes to reduce liver injury through suppression of neutrophil activity.
Collapse
Affiliation(s)
- Nozomu Sakai
- Department of Surgery, University of Cincinnati, Cincinnati, Ohio, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
213
|
Sakai N, Van Sweringen HL, Quillin RC, Schuster R, Blanchard J, Burns JM, Tevar AD, Edwards MJ, Lentsch AB. Interleukin-33 is hepatoprotective during liver ischemia/reperfusion in mice. Hepatology 2012; 56:1468-78. [PMID: 22782692 PMCID: PMC3465516 DOI: 10.1002/hep.25768] [Citation(s) in RCA: 91] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
UNLABELLED Interleukin (IL)-33 is a recently identified member of the IL-1 family that binds to the receptor, ST2L. In the current study, we sought to determine whether IL-33 is an important regulator in the hepatic response to ischemia/reperfusion (I/R). Male C57BL/6 mice were subjected to 90 minutes of partial hepatic ischemia, followed by up to 8 hours of reperfusion. Some mice received recombinant IL-33 (IL-33) intraperitoneally (IP) before surgery or anti-ST2 antibody IP at the time of reperfusion. Primary hepatocytes and Kupffer cells were isolated and treated with IL-33 to assess the effects of IL-33 on inflammatory cytokine production. Primary hepatocytes were treated with IL-33 to assess the effects of IL-33 on mediators of cell survival in hepatocytes. IL-33 protein expression increased within 4 hours after reperfusion and remained elevated for up to 8 hours. ST2L protein expression was detected in healthy liver and was up-regulated within 1 hour and peaked at 4 hours after I/R. ST2L was primarily expressed by hepatocytes, with little to no expression by Kupffer cells. IL-33 significantly reduced hepatocellular injury and liver neutrophil accumulation at 1 and 8 hours after reperfusion. In addition, IL-33 treatment increased liver activation of nuclear factor kappa light-chain enhancer of activated B cells (NF-κB), p38 mitogen-activated protein kinase (MAPK), cyclin D1, and B-cell lymphoma 2 (Bcl-2), but reduced serum levels of CXC chemokines. In vitro experiments demonstrated that IL-33 significantly reduced hepatocyte cell death as a result of increased NF-κB activation and Bcl-2 expression in hepatocytes. CONCLUSION The data suggest that IL-33 is an important endogenous regulator of hepatic I/R injury. It appears that IL-33 has direct protective effects on hepatocytes, associated with the activation of NF-κB, p38 MAPK, cyclin D1, and Bcl-2 that limits liver injury and reduces the stimulus for inflammation.
Collapse
Affiliation(s)
- Nozomu Sakai
- Department of Surgery, University of Cincinnati, Cincinnati, OH 45267-0558, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
214
|
Woolbright BL, Jaeschke H. Novel insight into mechanisms of cholestatic liver injury. World J Gastroenterol 2012; 18:4985-93. [PMID: 23049206 PMCID: PMC3460324 DOI: 10.3748/wjg.v18.i36.4985] [Citation(s) in RCA: 153] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/29/2012] [Revised: 04/12/2012] [Accepted: 04/20/2012] [Indexed: 02/06/2023] Open
Abstract
Cholestasis results in a buildup of bile acids in serum and in hepatocytes. Early studies into the mechanisms of cholestatic liver injury strongly implicated bile acid-induced apoptosis as the major cause of hepatocellular injury. Recent work has focused both on the role of bile acids in cell signaling as well as the role of sterile inflammation in the pathophysiology. Advances in modern analytical methodology have allowed for more accurate measuring of bile acid concentrations in serum, liver, and bile to very low levels of detection. Interestingly, toxic bile acid levels are seemingly far lower than previously hypothesized. The initial hypothesis has been based largely upon the exposure of μmol/L concentrations of toxic bile acids and bile salts to primary hepatocytes in cell culture, the possibility that in vivo bile acid concentrations may be far lower than the observed in vitro toxicity has far reaching implications in the mechanism of injury. This review will focus on both how different bile acids and different bile acid concentrations can affect hepatocytes during cholestasis, and additionally provide insight into how these data support recent hypotheses that cholestatic liver injury may not occur through direct bile acid-induced apoptosis, but may involve largely inflammatory cell-mediated liver cell necrosis.
Collapse
|
215
|
Chang WJ, Toledo-Pereyra LH. Toll-like receptor signaling in liver ischemia and reperfusion. J INVEST SURG 2012; 25:271-7. [PMID: 22853814 DOI: 10.3109/08941939.2012.687802] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Liver ischemia-reperfusion (I/R) injuries are significant clinical challenges implicated in various hepatic surgical procedures and transplantations. Associated with varying degrees of insult, the hallmark of I/R is the excessive inflammatory response potentiated by the host immune system. Toll-like receptors (TLRs), known to play an important role in pathogen-derived inflammation, are now thought to participate in I/R injury-derived inflammation signaling pathways. Endogenous particles (proteins, cytokines, nucleic acids) that are released from damaged host cells bind to TLR2, TLR4, and TLR9, resulting in even further injury by subsequent inflammatory reactions and activation of the innate immune system. This review aims to systematically examine the current literature about TLR signaling mechanisms, allowing for a greater understanding of the precise role of TLRs in hepatic I/R injuries.
Collapse
Affiliation(s)
- Wilson J Chang
- Department of Research and Surgery, Kalamazoo Center for Medical Studies, Michigan State University, Kalamazoo, Michigan, USA
| | | |
Collapse
|
216
|
Kulkarni RM, Kutcher LW, Stuart WD, Carson DJ, Leonis MA, Waltz SE. Ron receptor-dependent gene regulation in a mouse model of endotoxin-induced acute liver failure. Hepatobiliary Pancreat Dis Int 2012; 11:383-92. [PMID: 22893465 PMCID: PMC4102423 DOI: 10.1016/s1499-3872(12)60196-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
BACKGROUND Prior experimentation has shown that loss of the tyrosine kinase (TK) signaling domain of the Ron receptor leads to marked hepatocyte protection in a model of lipopolysaccharide-induced acute liver failure (ALF) in D-galactosamine (GalN)-sensitized mice. The aim of this study was to identify the role of Ron in the regulation of hepatic gene expression. METHODS Microarray analyses were performed on liver RNA isolated sequentially from wild-type (WT) and TK-/- mice during the progression of ALF. Gene array data were validated using Western and immunohistochemistry analyses as well as with ex vivo culture systems. RESULTS At baseline, 101 genes were differentially expressed between WT and TK-/- livers, which regulate processes involved in hypoxia, proliferation, apoptosis and metabolism. One hour after ALF induction, WT livers exhibited increased cytokine expression compared to TK-/- livers, and after 4 hours, an induction of suppressor of cytokine signaling (SOCS) genes as well as JAK-STAT pathway activation were prominent in TK-/- livers compared to controls. CONCLUSION Our studies suggest a novel hepato-protective mechanism in Ron TK-/- mice wherein increased and sustained SOCS production and JAK-STAT activation in the hepatocyte may inhibit the destructive proinflammatory milieu and promote survival factors which blunt hepatic death and the ensuing development of ALF.
Collapse
Affiliation(s)
- Rishikesh M. Kulkarni
- Department of Cancer and Cell Biology, University of Cincinnati, Cincinnati, OH 45267-0521
| | - Louis W. Kutcher
- Department of Biology, University of Cincinnati, Cincinnati, OH 45267-0521
| | - William D. Stuart
- Department of Cancer and Cell Biology, University of Cincinnati, Cincinnati, OH 45267-0521
| | - Daniel J. Carson
- Department of Biology, University of Cincinnati, Cincinnati, OH 45267-0521
| | - Mike A. Leonis
- Division of Gastroenterology, Hepatology and Nutrition, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH 45229
| | - Susan E. Waltz
- Department of Cancer and Cell Biology, University of Cincinnati, Cincinnati, OH 45267-0521,Departments of Research, Shriner’s Hospital for Children, Cincinnati, OH 45267-0521,Cincinnati Veterans Affairs Medical Center, Cincinnati, OH 45267-0521,Corresponding Author: Susan E. Waltz, Ph.D., Department of Cancer and Cell Biology, 3125 Eden Ave., University of Cincinnati College of Medicine, Cincinnati, OH 45267-0521, Telephone: (513) 558-8675,
| |
Collapse
|
217
|
Knudsen AR, Kannerup AS, Dich R, Funch-Jensen P, Grønbaek H, Kruhøffer M, Mortensen FV. Ischemic pre- and postconditioning has pronounced effects on gene expression profiles in the rat liver after ischemia/reperfusion. Am J Physiol Gastrointest Liver Physiol 2012; 303:G482-9. [PMID: 22679003 DOI: 10.1152/ajpgi.00337.2011] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Ischemic pre (IPC)- and postconditioning (IPO) protect the liver against ischemia/reperfusion injuries (IRI). Conditioning involves several different trigger factors, mediators, and effectors, many of which are affected during the early phase of reperfusion, ultimately resulting in decreased liver injuries. The aim of the present study was to investigate the genomic response induced by IPC and IPO in ischemia/reperfusion-damaged rat liver biopsies. Forty-eight male Wistar rats were divided into five groups: sham (n = 8), IRI (n = 10), IPC (n = 10), IPO (n = 10), and IPC + IPO (n = 10). The rat livers were subjected to 30 min of ischemia. Liver biopsies and blood samples were taken after 30 min of reperfusion. The biopsies were analyzed using cDNA microarrays with validation by quantitative RT-PCR. The significance analysis of microarray was used to identify genes with changed expression levels. A comparison analysis of the intervention groups showed a highly increased number of genes, with significantly different expression in the conditioned groups compared with the IRI group. A total of 172 genes were identified as the most highly affected, and these genes showed similar patterns with regard to the up- and downregulated expression levels within the conditioned groups. Pathway analysis of the 172 genes identified four networks that were involved in increased gene expression, cellular growth, and proliferation. In conclusion, the present study demonstrated that IPC, IPO, and IPC + IPO had pronounced effects on the expression levels of a large number of genes during early reperfusion. IPC, IPO, and IPC + IPO seem to mediate their protective effects by regulating the same genes and genetic networks. These identified networks are known to be involved in maintaining cellular homeostasis.
Collapse
|
218
|
Jaeschke H, Woolbright BL. Current strategies to minimize hepatic ischemia-reperfusion injury by targeting reactive oxygen species. Transplant Rev (Orlando) 2012; 26:103-14. [PMID: 22459037 DOI: 10.1016/j.trre.2011.10.006] [Citation(s) in RCA: 222] [Impact Index Per Article: 17.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2011] [Accepted: 10/17/2011] [Indexed: 12/15/2022]
Abstract
Ischemia-reperfusion is a major component of injury in vascular occlusion both during liver surgery and during liver transplantation. The pathophysiology of hepatic ischemia-reperfusion includes a number of mechanisms including oxidant stress that contribute to various degrees to the overall organ damage. A large volume of recent research has focused on the use of antioxidants to ameliorate this injury, although results in experimental models have not translated well to the clinic. This review focuses on critical sources and mediators of oxidative stress during hepatic ischemia-reperfusion, the status of current antioxidant interventions, and emerging mechanisms of protection by preconditioning. While recent advances in regulation of antioxidant systems by Nrf2 provide interesting new potential therapeutic targets, an increased focus must be placed on more in-depth mechanistic investigations in hepatic ischemia-reperfusion injury and translational research in order to refine current strategies in disease management.
Collapse
Affiliation(s)
- Hartmut Jaeschke
- Department of Pharmacology, Toxicology and Therapeutics, University of Kansas Medical Center, Kansas City, KS 66160, USA.
| | | |
Collapse
|
219
|
Recommendations for safety testing with the in vivo comet assay. MUTATION RESEARCH-GENETIC TOXICOLOGY AND ENVIRONMENTAL MUTAGENESIS 2012; 747:142-156. [DOI: 10.1016/j.mrgentox.2012.05.002] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/05/2012] [Revised: 05/03/2012] [Accepted: 05/08/2012] [Indexed: 01/08/2023]
|
220
|
Un K, Kawakami S, Yoshida M, Higuchi Y, Suzuki R, Maruyama K, Yamashita F, Hashida M. Efficient suppression of murine intracellular adhesion molecule-1 using ultrasound-responsive and mannose-modified lipoplexes inhibits acute hepatic inflammation. Hepatology 2012; 56:259-69. [PMID: 22271390 DOI: 10.1002/hep.25607] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/25/2011] [Accepted: 01/16/2012] [Indexed: 01/05/2023]
Abstract
UNLABELLED Hepatitis is often associated with the overexpression of various adhesion molecules. In particular, intracellular adhesion molecule-1 (ICAM-1), which is expressed on hepatic endothelial cells (HECs) in the early stage of inflammation, is involved in serious illnesses. Therefore, ICAM-1 suppression in HECs enables the suppression of inflammatory responses. Here, we developed an ICAM-1 small interfering RNA (siRNA) transfer method using ultrasound (US)-responsive and mannose-modified liposome/ICAM-1 siRNA complexes (Man-PEG(2000) bubble lipoplexes [Man-PEG(2000) BLs]), and achieved efficient HEC-selective ICAM-1 siRNA delivery in combination with US exposure. Moreover, the sufficient ICAM-1 suppression effects were obtained via this ICAM-1 siRNA transfer in vitro and in vivo, and potent anti-inflammatory effects were observed in various types of inflammation, such as lipopolysaccharide, dimethylnitrosamine, carbon tetrachloride, and ischemia/reperfusion-induced inflammatory mouse models. CONCLUSION HEC-selective and efficient ICAM-1 siRNA delivery using Man-PEG(2000) BLs and US exposure enables suppression of various types of acute hepatic inflammation. This novel siRNA delivery method may offer a valuable system for medical treatment where the targeted cells are HECs.
Collapse
Affiliation(s)
- Keita Un
- Department of Drug Delivery Research, Graduate School of Pharmaceutical Sciences, Kyoto University, Kyoto, Japan
| | | | | | | | | | | | | | | |
Collapse
|
221
|
Nickkholgh A, Li Z, Yi X, Mohr E, Liang R, Mikalauskas S, Gross ML, Zorn M, Benzing S, Schneider H, Büchler MW, Schemmer P. Effects of a preconditioning oral nutritional supplement on pig livers after warm ischemia. HPB SURGERY : A WORLD JOURNAL OF HEPATIC, PANCREATIC AND BILIARY SURGERY 2012; 2012:783479. [PMID: 22791934 PMCID: PMC3389686 DOI: 10.1155/2012/783479] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/25/2012] [Accepted: 05/03/2012] [Indexed: 01/22/2023]
Abstract
Background. Several approaches have been proposed to pharmacologically ameliorate hepatic ischemia/reperfusion injury (IRI). This study was designed to evaluate the effects of a preconditioning oral nutritional supplement (pONS) containing glutamine, antioxidants, and green tea extract on hepatic warm IRI in pigs. Methods. pONS (70 g per serving, Fresenius Kabi, Germany) was dissolved in 250 mL tap water and given to pigs 24, 12, and 2 hrs before warm ischemia of the liver. A fourth dose was given 3 hrs after reperfusion. Controls were given the same amount of cellulose with the same volume of water. Two hours after the third dose of pONS, both the portal vein and the hepatic artery were clamped for 40 min. 0.5, 3, 6, and 8 hrs after reperfusion, heart rate (HR), mean arterial pressure (MAP), central venous pressure (CVP), portal venous flow (PVF), hepatic arterial flow (HAF), bile flow, and transaminases were measured. Liver tissue was taken 8 hrs after reperfusion for histology and immunohistochemistry. Results. HR, MAP, CVP, HAF, and PVF were comparable between the two groups. pONS significantly increased bile flow 8 hrs after reperfusion. ALT and AST were significantly lower after pONS. Histology showed significantly more severe necrosis and neutrophil infiltration in controls. pONS significantly decreased the index of immunohistochemical expression for TNF-α, MPO, and cleaved caspase-3 (P < 0.001). Conclusion. Administration of pONS before and after tissue damage protects the liver from warm IRI via mechanisms including decreasing oxidative stress, lipid peroxidation, apoptosis, and necrosis.
Collapse
Affiliation(s)
- Arash Nickkholgh
- Department of General and Transplant Surgery, Ruprecht-Karls University, 69120 Heidelberg, Germany
| | - Zhanqing Li
- Department of General and Transplant Surgery, Ruprecht-Karls University, 69120 Heidelberg, Germany
| | - Xue Yi
- Department of General and Transplant Surgery, Ruprecht-Karls University, 69120 Heidelberg, Germany
| | - Elvira Mohr
- Department of General and Transplant Surgery, Ruprecht-Karls University, 69120 Heidelberg, Germany
| | - Rui Liang
- Department of General and Transplant Surgery, Ruprecht-Karls University, 69120 Heidelberg, Germany
| | - Saulius Mikalauskas
- Department of General and Transplant Surgery, Ruprecht-Karls University, 69120 Heidelberg, Germany
| | - Marie-Luise Gross
- Institute of Pathology, Ruprecht-Karls University, 69120 Heidelberg, Germany
| | - Markus Zorn
- Central Laboratory, Ruprecht-Karls University, 69120 Heidelberg, Germany
| | | | | | - Markus W. Büchler
- Department of General and Transplant Surgery, Ruprecht-Karls University, 69120 Heidelberg, Germany
| | - Peter Schemmer
- Department of General and Transplant Surgery, Ruprecht-Karls University, 69120 Heidelberg, Germany
| |
Collapse
|
222
|
Dey S, Bindu S, Goyal M, Pal C, Alam A, Iqbal MS, Kumar R, Sarkar S, Bandyopadhyay U. Impact of intravascular hemolysis in malaria on liver dysfunction: involvement of hepatic free heme overload, NF-κB activation, and neutrophil infiltration. J Biol Chem 2012; 287:26630-46. [PMID: 22696214 DOI: 10.1074/jbc.m112.341255] [Citation(s) in RCA: 58] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
We have investigated the impact of persistent intravascular hemolysis on liver dysfunction using the mouse malaria model. Intravascular hemolysis showed a positive correlation with liver damage along with the increased accumulation of free heme and reactive oxidants in liver. Hepatocytes overinduced heme oxygenase-1 (HO-1) to catabolize free heme in building up defense against this pro-oxidant milieu. However, in a condition of persistent free heme overload in malaria, the overactivity of HO-1 resulted in continuous transient generation of free iron to favor production of reactive oxidants as evident from 2',7'-dichlorofluorescein fluorescence studies. Electrophoretic mobility shift assay documented the activation of NF-κB, which in turn up-regulated intercellular adhesion molecule 1 as evident from chromatin immunoprecipitation studies. NF-κB activation also induced vascular cell adhesion molecule 1, keratinocyte chemoattractant, and macrophage inflammatory protein 2, which favored neutrophil extravasation and adhesion in liver. The infiltration of neutrophils correlated positively with the severity of hemolysis, and neutrophil depletion significantly prevented liver damage. The data further documented the elevation of serum TNFα in infected mice, and the treatment of anti-TNFα antibodies also significantly prevented neutrophil infiltration and liver injury. Deferoxamine, which chelates iron, interacts with free heme and bears antioxidant properties that prevented oxidative stress, NF-κB activation, neutrophil infiltration, hepatocyte apoptosis, and liver damage. Furthermore, the administration of N-acetylcysteine also prevented NF-κB activation, neutrophil infiltration, hepatocyte apoptosis, and liver damage. Thus, hepatic free heme accumulation, TNFα release, oxidative stress, and NF-κB activation established a link to favor neutrophil infiltration in inducing liver damage during hemolytic conditions in malaria.
Collapse
Affiliation(s)
- Sumanta Dey
- Division of Infectious Diseases and Immunology, Council of Scientific and Industrial Research-Indian Institute of Chemical Biology, 4, Raja S. C. Mullick Road, Kolkata 700032, West Bengal, India
| | | | | | | | | | | | | | | | | |
Collapse
|
223
|
Reed C, Steele KE, Honko A, Shamblin J, Hensley LE, Smith DR. Ultrastructural study of Rift Valley fever virus in the mouse model. Virology 2012; 431:58-70. [PMID: 22687428 DOI: 10.1016/j.virol.2012.05.012] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2012] [Revised: 04/23/2012] [Accepted: 05/20/2012] [Indexed: 11/26/2022]
Abstract
Detailed ultrastructural studies of Rift Valley fever virus (RVFV) in the mouse model are needed to develop and characterize a small animal model of RVF for the evaluation of potential vaccines and therapeutics. In this study, the ultrastructural features of RVFV infection in the mouse model were analyzed. The main changes in the liver included the presence of viral particles in hepatocytes and hepatic stem cells accompanied by hepatocyte apoptosis. However, viral particles were observed rarely in the liver; in contrast, particles were extremely abundant in the CNS. Despite extensive lymphocytolysis, direct evidence of viral replication was not observed in the lymphoid tissue. These results correlate with the acute-onset hepatitis and delayed-onset encephalitis that are dominant features of severe human RVF, but suggest that host immune-mediated mechanisms contribute significantly to pathology. The results of this study expand our knowledge of RVFV-host interactions and further characterize the mouse model of RVF.
Collapse
Affiliation(s)
- Christopher Reed
- United States Army Medical Research Institute of Infectious Diseases-USAMRIID, Fort Detrick, MD, USA
| | | | | | | | | | | |
Collapse
|
224
|
Weigand K, Brost S, Steinebrunner N, Büchler M, Schemmer P, Müller M. Ischemia/Reperfusion injury in liver surgery and transplantation: pathophysiology. HPB SURGERY : A WORLD JOURNAL OF HEPATIC, PANCREATIC AND BILIARY SURGERY 2012; 2012:176723. [PMID: 22693364 PMCID: PMC3369424 DOI: 10.1155/2012/176723] [Citation(s) in RCA: 104] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/18/2012] [Accepted: 04/05/2012] [Indexed: 01/09/2023]
Abstract
Liver ischemia/reperfusion (IR) injury is caused by a heavily toothed network of interactions of cells of the immune system, cytokine production, and reduced microcirculatory blood flow in the liver. These complex networks are further elaborated by multiple intracellular pathways activated by cytokines, chemokines, and danger-associated molecular patterns. Furthermore, intracellular ionic disturbances and especially mitochondrial disorders play an important role leading to apoptosis and necrosis of hepatocytes in IR injury. Overall, enhanced production of reactive oxygen species, found very early in IR injury, plays an important role in liver tissue damage at several points within these complex networks. Many contributors to IR injury are only incompletely understood so far. This paper tempts to give an overview of the different mechanisms involved in the formation of IR injury. Only by further elucidation of these complex mechanisms IR injury can be understood and possible therapeutic strategies can be improved or be developed.
Collapse
Affiliation(s)
- Kilian Weigand
- Department of Gastroenterology, Endocrinology, Rheumatology and Infectious Diseases, University Hospital Regensburg, D-93053 Regensburg, Germany
| | - Sylvia Brost
- Department of Gastroenterology, Endocrinology, Rheumatology and Infectious Diseases, University Hospital Regensburg, D-93053 Regensburg, Germany
| | - Niels Steinebrunner
- Department of Gastroenterology, University Hospital Heidelberg, D-69120 Heidelberg, Germany
| | - Markus Büchler
- Department of General and Transplant Surgery, University Hospital Heidelberg, D-69120 Heidelberg, Germany
| | - Peter Schemmer
- Department of General and Transplant Surgery, University Hospital Heidelberg, D-69120 Heidelberg, Germany
| | - Martina Müller
- Department of Gastroenterology, Endocrinology, Rheumatology and Infectious Diseases, University Hospital Regensburg, D-93053 Regensburg, Germany
| |
Collapse
|
225
|
Xanthohumol suppresses inflammatory response to warm ischemia-reperfusion induced liver injury. Exp Mol Pathol 2012; 94:10-6. [PMID: 22634733 DOI: 10.1016/j.yexmp.2012.05.003] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2012] [Revised: 05/08/2012] [Accepted: 05/09/2012] [Indexed: 12/19/2022]
Abstract
Liver ischemia/reperfusion (I/R) leads to formation of reactive oxygen species (ROS), which cause hepatic injury and initiate an inflammatory response, which is a critical problem after liver surgery and transplantation. Xanthohumol, the major prenylated chalcone found in hops, has been discussed for its anti-inflammatory and ROS-scavenging properties, and thus, we aimed to investigate the effect of xanthohumol in a model of warm I/R liver injury. Xanthohumol was applied to BALB/c mice orally at a dose of 1 mg/g body weight for 5 days before I/R-injury was induced by clamping the vascular blood supply to the median and left lateral liver lobe for 1 h followed by a 6 h period of reperfusion. At this time, HPLC analysis revealed hepatic xanthohumol levels of approximately 2 μM, a concentration which has been shown to inhibit inflammatory effects in vitro. Assessment of hepatic HMOX1 expression, hepatic glutathione content and immunohistochemical analysis for proteins conjugated with the reactive aldehyde 4-hydroxynonenal indicated that I/R-induced oxidative stress was significantly inhibited in xanthohumol-fed compared to control mice. Histological analysis, TUNEL staining and determination of transaminase serum levels revealed no significant effects of xanthohumol on acute hepatocellular injury. However, at the same time point, pretreatment with xanthohumol almost completely blunted the I/R-induced AKT and NFκB activation and the expression of the proinflammatory genes IL-1alpha, IL-6, MCP-1 and ICAM-1, which are known to play a crucial role in the subacute phase of I/R-induced liver damage. In conclusion, these data indicate the potential of xanthohumol application to prevent adverse inflammatory responses to I/R-induced liver damage such as after surgical liver resection or transplantation.
Collapse
|
226
|
van Golen RF, van Gulik TM, Heger M. The sterile immune response during hepatic ischemia/reperfusion. Cytokine Growth Factor Rev 2012; 23:69-84. [PMID: 22609105 DOI: 10.1016/j.cytogfr.2012.04.006] [Citation(s) in RCA: 123] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2012] [Accepted: 04/16/2012] [Indexed: 12/14/2022]
Abstract
Hepatic ischemia and reperfusion elicits an immune response that lacks a microbial constituent yet poses a potentially lethal threat to the host. In this sterile setting, the immune system is alarmed by endogenous danger signals that are release by stressed and dying liver cells. The detection of these immunogenic messengers by sentinel leukocyte populations constitutes the proximal trigger for a self-perpetuating cycle of inflammation, in which consecutive waves of cytokines and chemokines orchestrate the influx of various leukocyte subsets that ultimately confer tissue destruction. This review focuses on the temporal organization of sterile hepatic inflammation, using surgery-induced trauma as a template disease state.
Collapse
Affiliation(s)
- Rowan F van Golen
- Department of Experimental Surgery, Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands.
| | | | | |
Collapse
|
227
|
van Golen RF, van Gulik TM, Heger M. Mechanistic overview of reactive species-induced degradation of the endothelial glycocalyx during hepatic ischemia/reperfusion injury. Free Radic Biol Med 2012; 52:1382-402. [PMID: 22326617 DOI: 10.1016/j.freeradbiomed.2012.01.013] [Citation(s) in RCA: 173] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/22/2011] [Revised: 01/20/2012] [Accepted: 01/20/2012] [Indexed: 02/06/2023]
Abstract
Endothelial cells are covered by a delicate meshwork of glycoproteins known as the glycocalyx. Under normophysiological conditions the glycocalyx plays an active role in maintaining vascular homeostasis by deterring primary and secondary hemostasis and leukocyte adhesion and by regulating vascular permeability and tone. During (micro)vascular oxidative and nitrosative stress, which prevails in numerous metabolic (diabetes), vascular (atherosclerosis, hypertension), and surgical (ischemia/reperfusion injury, trauma) disease states, the glycocalyx is oxidatively and nitrosatively modified and degraded, which culminates in an exacerbation of the underlying pathology. Consequently, glycocalyx degradation due to oxidative/nitrosative stress has far-reaching clinical implications. In this review the molecular mechanisms of reactive oxygen and nitrogen species-induced destruction of the endothelial glycocalyx are addressed in the context of hepatic ischemia/reperfusion injury as a model disease state. Specifically, the review focuses on (i) the mechanisms of glycocalyx degradation during hepatic ischemia/reperfusion, (ii) the molecular and cellular players involved in the degradation process, and (iii) its implications for hepatic pathophysiology. These topics are projected against a background of liver anatomy, glycocalyx function and structure, and the biology/biochemistry and the sources/targets of reactive oxygen and nitrogen species. The majority of the glycocalyx-related mechanisms elucidated for hepatic ischemia/reperfusion are extrapolatable to the other aforementioned disease states.
Collapse
Affiliation(s)
- Rowan F van Golen
- Department of Experimental Surgery, Academic Medical Center, University of Amsterdam, 1105 AZ Amsterdam, The Netherlands
| | | | | |
Collapse
|
228
|
Ferulic acid attenuates ischemia/reperfusion-induced hepatocyte apoptosis via inhibition of JNK activation. Eur J Pharm Sci 2012; 45:708-15. [DOI: 10.1016/j.ejps.2012.01.010] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2011] [Revised: 12/27/2011] [Accepted: 01/24/2012] [Indexed: 11/22/2022]
|
229
|
Bátkai S, Mukhopadhyay P, Horváth B, Rajesh M, Gao RY, Mahadevan A, Amere M, Battista N, Lichtman AH, Gauson LA, Maccarrone M, Pertwee RG, Pacher P. Δ8-Tetrahydrocannabivarin prevents hepatic ischaemia/reperfusion injury by decreasing oxidative stress and inflammatory responses through cannabinoid CB2 receptors. Br J Pharmacol 2012; 165:2450-61. [PMID: 21470208 PMCID: PMC3423240 DOI: 10.1111/j.1476-5381.2011.01410.x] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2010] [Revised: 02/14/2011] [Accepted: 03/10/2011] [Indexed: 11/28/2022] Open
Abstract
BACKGROUND AND PURPOSE Activation of cannabinoid CB(2) receptors protects against various forms of ischaemia-reperfusion (I/R) injury. Δ(8) -Tetrahydrocannabivarin (Δ(8) -THCV) is a synthetic analogue of the plant cannabinoid Δ(9) -tetrahydrocannabivarin, which exhibits anti-inflammatory effects in rodents involving activation of CB(2) receptors. Here, we assessed effects of Δ(8) -THCV and its metabolite 11-OH-Δ(8) -THCV on CB(2) receptors and against hepatic I/R injury. EXPERIMENTAL APPROACH Effects in vitro were measured with human CB(2) receptors expressed in CHO cells. Hepatic I/R injury was assessed in mice with 1h ischaemia and 2, 6 or 24h reperfusion in vivo. KEY RESULTS Displacement of [(3) H]CP55940 by Δ(8) -THCV or 11-OH-Δ(8) -THCV from specific binding sites in CHO cell membranes transfected with human CB(2) receptors (hCB(2) ) yielded K(i) values of 68.4 and 59.95 nM respectively. Δ(8) -THCV or 11-OH-Δ(8) -THCV inhibited forskolin-stimulated cAMP production by hCB(2) CHO cells (EC(50) = 12.95 and 14.3 nM respectively). Δ(8) -THCV, given before induction of I/R, attenuated hepatic injury (measured by serum alanine aminotransferase and aspartate aminotransferase levels), decreased tissue protein carbonyl adducts, 4-hydroxy-2-nonenal, the chemokines CCL3 and CXCL2,TNF-α, intercellular adhesion molecule 1 (CD54) mRNA levels, tissue neutrophil infiltration, caspase 3/7 activity and DNA fragmentation. Protective effects of Δ(8) -THCV against liver damage were still present when the compound was given at the beginning of reperfusion. Pretreatment with a CB(2) receptor antagonist attenuated the protective effects of Δ(8) -THCV, while a CB(1) antagonist tended to enhance it. CONCLUSIONS AND IMPLICATIONS Δ(8) -THCV activated CB(2) receptors in vitro, and decreased tissue injury and inflammation in vivo, associated with I/R partly via CB(2) receptor activation. LINKED ARTICLES This article is part of a themed section on Cannabinoids in Biology and Medicine. To view the other articles in this section visit http://dx.doi.org/10.1111/bph.2012.165.issue-8. To view Part I of Cannabinoids in Biology and Medicine visit http://dx.doi.org/10.1111/bph.2011.163.issue-7.
Collapse
Affiliation(s)
- Sándor Bátkai
- Laboratory of Physiologic Studies, National Institute on Alcohol Abuse and Alcoholism, National Institutes of HealthBethesda, MD, USA
| | - Partha Mukhopadhyay
- Laboratory of Physiologic Studies, National Institute on Alcohol Abuse and Alcoholism, National Institutes of HealthBethesda, MD, USA
| | - Bėla Horváth
- Laboratory of Physiologic Studies, National Institute on Alcohol Abuse and Alcoholism, National Institutes of HealthBethesda, MD, USA
- Institute of Human Physiology and Clinical Experimental Research, Semmelweis UniversityBudapest, Hungary
| | - Mohanraj Rajesh
- Laboratory of Physiologic Studies, National Institute on Alcohol Abuse and Alcoholism, National Institutes of HealthBethesda, MD, USA
| | - Rachel Y Gao
- Laboratory of Physiologic Studies, National Institute on Alcohol Abuse and Alcoholism, National Institutes of HealthBethesda, MD, USA
| | | | | | - Natalia Battista
- Department of Biomedical Sciences, University of TeramoTeramo, Italy & European Center for Brain Research (CERC)/Santa Lucia FoundationRome, Italy
| | - Aron H Lichtman
- The Department of Pharmacology and Toxicology, Virginia Commonwealth UniversityRichmond, VA, USA
| | - Lisa A Gauson
- School of Medical Sciences, Institute of Medical Sciences, University of AberdeenAberdeen, UK
| | - Mauro Maccarrone
- Department of Biomedical Sciences, University of TeramoTeramo, Italy & European Center for Brain Research (CERC)/Santa Lucia FoundationRome, Italy
| | - Roger G Pertwee
- School of Medical Sciences, Institute of Medical Sciences, University of AberdeenAberdeen, UK
| | - Pál Pacher
- Laboratory of Physiologic Studies, National Institute on Alcohol Abuse and Alcoholism, National Institutes of HealthBethesda, MD, USA
| |
Collapse
|
230
|
Land WG. Emerging role of innate immunity in organ transplantation. Transplant Rev (Orlando) 2012; 26:60-72. [DOI: 10.1016/j.trre.2011.05.001] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2011] [Revised: 03/25/2011] [Accepted: 05/17/2011] [Indexed: 02/08/2023]
|
231
|
Horváth B, Magid L, Mukhopadhyay P, Bátkai S, Rajesh M, Park O, Tanchian G, Gao RY, Goodfellow CE, Glass M, Mechoulam R, Pacher P. A new cannabinoid CB2 receptor agonist HU-910 attenuates oxidative stress, inflammation and cell death associated with hepatic ischaemia/reperfusion injury. Br J Pharmacol 2012; 165:2462-78. [PMID: 21449982 PMCID: PMC3423243 DOI: 10.1111/j.1476-5381.2011.01381.x] [Citation(s) in RCA: 88] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2010] [Revised: 02/27/2011] [Accepted: 03/15/2011] [Indexed: 12/01/2022] Open
Abstract
BACKGROUND AND PURPOSE Cannabinoid CB(2) receptor activation has been reported to attenuate myocardial, cerebral and hepatic ischaemia-reperfusion (I/R) injury. EXPERIMENTAL APPROACH We have investigated the effects of a novel CB(2) receptor agonist ((1S,4R)-2-(2,6-dimethoxy-4-(2-methyloctan-2-yl)phenyl)-7,7-dimethylbicyclo[2.2.1]hept-2-en-1-yl)methanol (HU-910) on liver injury induced by 1 h of ischaemia followed by 2, 6 or 24 h of reperfusion, using a well-established mouse model of segmental hepatic I/R. KEY RESULTS Displacement of [(3) H]CP55940 by HU-910 from specific binding sites in CHO cell membranes transfected with human CB(2) or CB(1) receptors (hCB(1/2) ) yielded K(i) values of 6 nM and 1.4 µM respectively. HU-910 inhibited forskolin-stimulated cyclic AMP production by hCB(2) CHO cells (EC(50) = 162 nM) and yielded EC(50) of 26.4 nM in [(35) S]GTPγS binding assays using hCB(2) expressing CHO membranes. HU-910 given before ischaemia significantly attenuated levels of I/R-induced hepatic pro-inflammatory chemokines (CCL3 and CXCL2), TNF-α, inter-cellular adhesion molecule-1, neutrophil infiltration, oxidative stress and cell death. Some of the beneficial effect of HU-910 also persisted when given at the beginning of the reperfusion or 1 h after the ischaemic episode. Furthermore, HU-910 attenuated the bacterial endotoxin-triggered TNF-α production in isolated Kupffer cells and expression of adhesion molecules in primary human liver sinusoidal endothelial cells stimulated with TNF-α. Pretreatment with a CB(2) receptor antagonist attenuated the protective effects of HU-910, while pretreatment with a CB(1) antagonist tended to enhance them. CONCLUSION AND IMPLICATIONS HU-910 is a potent CB(2) receptor agonist which may exert protective effects in various diseases associated with inflammation and tissue injury. LINKED ARTICLES This article is part of a themed section on Cannabinoids in Biology and Medicine. To view the other articles in this section visit http://dx.doi.org/10.1111/bph.2012.165.issue-8. To view Part I of Cannabinoids in Biology and Medicine visit http://dx.doi.org/10.1111/bph.2011.163.issue-7.
Collapse
Affiliation(s)
- Bėla Horváth
- Laboratory of Physiologic StudiesBethesda, Maryland, USA
- Institute of Human Physiology and Clinical Experimental Research, Semmelweis UniversityBudapest, Hungary
| | - Lital Magid
- Institute of Drug Research, Faculty of Medicine, Hebrew University of Jerusalem, Ein KeremJerusalem, Israel
| | | | - Sándor Bátkai
- Laboratory of Physiologic StudiesBethesda, Maryland, USA
| | | | - Ogyi Park
- Liver Disease, National Institute on Alcohol Abuse and Alcoholism, National Institutes of HealthBethesda, Maryland, USA
| | - Galin Tanchian
- Laboratory of Physiologic StudiesBethesda, Maryland, USA
| | - Rachel Y Gao
- Laboratory of Physiologic StudiesBethesda, Maryland, USA
| | - Catherine E Goodfellow
- Department of Pharmacology and Clinical Pharmacology, Faculty of Medical and Health Sciences, University of AucklandAuckland, New Zealand
| | - Michelle Glass
- Department of Pharmacology and Clinical Pharmacology, Faculty of Medical and Health Sciences, University of AucklandAuckland, New Zealand
| | - Raphael Mechoulam
- Liver Disease, National Institute on Alcohol Abuse and Alcoholism, National Institutes of HealthBethesda, Maryland, USA
| | - Pál Pacher
- Laboratory of Physiologic StudiesBethesda, Maryland, USA
| |
Collapse
|
232
|
Wang CF, Wang ZY, Tao SF, Ding J, Sun LJ, Li JY, Quan ZW. Preconditioning donor liver with Nodosin perfusion lessens rat ischemia reperfusion injury via heme oxygenase-1 upregulation. J Gastroenterol Hepatol 2012; 27:832-40. [PMID: 22098251 DOI: 10.1111/j.1440-1746.2011.06966.x] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
BACKGROUND AND AIM Ischemia reperfusion injury (IRI) remains a major cause of graft injury, dysfunction and even failure post-transplantation. Heme oxygenase 1 (HO-1) has been found to be an attractive target for anti-inflammatory therapies and a potential candidate responsible for cell injury. The objective of this study was to investigate whether preconditioning the donor liver with Nodosin perfusion upregulates HO-1 and then lessens IRI in rat models. METHODS Wistar rats were divided into four groups: experimental group, control group, positive control group and negative control group in which the donor liver was preconditioned with Nodosin, lactated ringer's solution, cobalt protoporphyrin and zinc protoporphyrin perfusion, respectively. We measured HO-1 expression and enzyme activity in rat livers of each group ex vivo at 0, 1 and 2 h after perfusion. At 1 h after perfusion, donor livers of Wistar rats were transplanted into Sprague-Dawley rats orthotopically. Serum transaminase levels, degree of cell apoptosis and Suzuki's score were used to assess ischemia/reperfusion injury in recipients at 24 h after transplantation. RESULTS Ex vivo, donor liver preconditioning with Nodosin perfusion induced HO-1 expression and enzyme activity significantly, compared with the control group (P < 0.05). In vivo, serum transaminase levels, cell apoptosis degree and Suzuki's score of representative recipients in the Nodosin group were lower than that in the control group (P < 0.05). Preconditioning with Nodosin perfusion induced HO-1 protein mainly in Kupffer cells. CONCLUSIONS This study suggests that preconditioning with Nodosin perfusion provides a potential protective effect through inducing HO-1 expression to attenuate ischemia/reperfusion injury in liver transplantation.
Collapse
Affiliation(s)
- Chun-Feng Wang
- Department of General Surgery, Xinhua Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | | | | | | | | | | | | |
Collapse
|
233
|
Sparkenbaugh EM, Ganey PE, Roth RA. Hypoxia sensitization of hepatocytes to neutrophil elastase-mediated cell death depends on MAPKs and HIF-1α. Am J Physiol Gastrointest Liver Physiol 2012; 302:G748-57. [PMID: 22223132 PMCID: PMC3330781 DOI: 10.1152/ajpgi.00409.2011] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/06/2011] [Accepted: 01/02/2012] [Indexed: 01/31/2023]
Abstract
The liver is sensitive to pathological conditions associated with tissue hypoxia (Hx) and the presence of activated neutrophils that secrete the serine protease elastase (EL). We demonstrated previously that cotreatment of rat hepatocytes with nontoxic levels of Hx and EL caused synergistic cell death. Hx is sensed by hypoxia-inducible factor (HIF)-1α, a transcription factor that heterodimerizes with HIF-1β/aryl hydrocarbon receptor nuclear translocator and directs expression of many genes, including the pro-cell death gene Bcl-2/adenovirus E1B-interacting protein 3 (BNIP3). Since cell death from EL or Hx also requires MAPK activation, we tested the hypothesis that the cytotoxic interaction of Hx and EL depends on MAPK and HIF-1α signaling. Treatment of Hepa1c1c7 cells with EL in the presence of Hx (2% O(2)) resulted in synergistic cell death. EL reduced phosphorylated ERK in O(2)-replete and Hx-exposed cells, and ERK inhibition enhanced the cytotoxicity of EL alone. Hx-EL cotreatment caused an additive increase in phosphorylated p38, and p38 inhibition attenuated cell death caused by this cotreatment. EL enhanced Hx-induced HIF-1α accumulation and transcription of the HIF-1α-mediated cell death gene BNIP3, and p38 inhibition attenuated BNIP3 expression and production. Cytotoxicity and BNIP3 expression from EL-Hx cotreatment were reduced in HIF-1β-deficient HepaC4 cells compared with Hepa1c1c7 cells. These results suggest that p38 signaling contributes to Hx-EL cotreatment-induced cell death via modulation of HIF-1α-mediated gene transcription. Finally, lipid peroxidation was enhanced in Hx-EL-cotreated cells compared with cells treated with EL or Hx alone. Vitamin E treatment attenuated lipid peroxidation and protected cells from the cytotoxicity of Hx and EL, suggesting that lipid peroxidation plays a role.
Collapse
|
234
|
Raczynski AR, Muthupalani S, Schlieper K, Fox JG, Tannenbaum SR, Schauer DB. Enteric infection with Citrobacter rodentium induces coagulative liver necrosis and hepatic inflammation prior to peak infection and colonic disease. PLoS One 2012; 7:e33099. [PMID: 22427959 PMCID: PMC3302869 DOI: 10.1371/journal.pone.0033099] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2012] [Accepted: 02/09/2012] [Indexed: 01/07/2023] Open
Abstract
Acute and chronic forms of inflammation are known to affect liver responses and susceptibility to disease and injury. Furthermore, intestinal microbiota has been shown critical in mediating inflammatory host responses in various animal models. Using C. rodentium, a known enteric bacterial pathogen, we examined liver responses to gastrointestinal infection at various stages of disease pathogenesis. For the first time, to our knowledge, we show distinct liver pathology associated with enteric infection with C. rodentium in C57BL/6 mice, characterized by increased inflammation and hepatitis index scores as well as prominent periportal hepatocellular coagulative necrosis indicative of thrombotic ischemic injury in a subset of animals during the early course of C. rodentium pathogenesis. Histologic changes in the liver correlated with serum elevation of liver transaminases, systemic and liver resident cytokines, as well as signal transduction changes prior to peak bacterial colonization and colonic disease. C. rodentium infection in C57BL/6 mice provides a potentially useful model to study acute liver injury and inflammatory stress under conditions of gastrointestinal infection analogous to enteropathogenic E. coli infection in humans.
Collapse
Affiliation(s)
- Arkadiusz R Raczynski
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts, United States of America.
| | | | | | | | | | | |
Collapse
|
235
|
Douzinas EE, Livaditi O, Tasoulis MK, Prigouris P, Bakos D, Goutas N, Vlachodimitropoulos D, Andrianakis I, Betrosian A, Tsoukalas GD. Nitrosative and oxidative stresses contribute to post-ischemic liver injury following severe hemorrhagic shock: the role of hypoxemic resuscitation. PLoS One 2012; 7:e32968. [PMID: 22403729 PMCID: PMC3293918 DOI: 10.1371/journal.pone.0032968] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2011] [Accepted: 02/07/2012] [Indexed: 01/06/2023] Open
Abstract
PURPOSE Hemorrhagic shock and resuscitation is frequently associated with liver ischemia-reperfusion injury. The aim of the study was to investigate whether hypoxemic resuscitation attenuates liver injury. METHODS Anesthetized, mechanically ventilated New Zealand white rabbits were exsanguinated to a mean arterial pressure of 30 mmHg for 60 minutes. Resuscitation under normoxemia (Normox-Res group, n = 16, PaO(2) = 95-105 mmHg) or hypoxemia (Hypox-Res group, n = 15, PaO(2) = 35-40 mmHg) followed, modifying the FiO(2). Animals not subjected to shock constituted the sham group (n = 11, PaO(2) = 95-105 mmHg). Indices of the inflammatory, oxidative and nitrosative response were measured and histopathological and immunohistochemical studies of the liver were performed. RESULTS Normox-Res group animals exhibited increased serum alanine aminotransferase, tumor necrosis factor--alpha, interleukin (IL) -1β and IL-6 levels compared with Hypox-Res and sham groups. Reactive oxygen species generation, malondialdehyde formation and myeloperoxidase activity were all elevated in Normox-Res rabbits compared with Hypox-Res and sham groups. Similarly, endothelial NO synthase and inducible NO synthase mRNA expression was up-regulated and nitrotyrosine immunostaining increased in animals resuscitated normoxemically, indicating a more intense nitrosative stress. Hypox-Res animals demonstrated a less prominent histopathologic injury which was similar to sham animals. CONCLUSIONS Hypoxemic resuscitation prevents liver reperfusion injury through attenuation of the inflammatory response and oxidative and nitrosative stresses.
Collapse
Affiliation(s)
- Emmanuel E Douzinas
- 3rd Department of Critical Care Medicine, University of Athens Medical School, Athens, Greece.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
236
|
Sakai N, Van Sweringen HL, Schuster R, Blanchard J, Burns JM, Tevar AD, Edwards MJ, Lentsch AB. Receptor activator of nuclear factor-κB ligand (RANKL) protects against hepatic ischemia/reperfusion injury in mice. Hepatology 2012; 55:888-97. [PMID: 22031462 PMCID: PMC3276725 DOI: 10.1002/hep.24756] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/09/2011] [Accepted: 10/04/2011] [Indexed: 12/16/2022]
Abstract
UNLABELLED The transcription factor nuclear factor kappaB (NF-κB) plays diverse roles in the acute injury response to hepatic ischemia/reperfusion (I/R). Activation of NF-κB in Kupffer cells promotes inflammation through cytokine expression, whereas activation in hepatocytes may be cell protective. The interaction of receptor activator of NF-κB (RANK) and its ligand (RANKL) promotes NF-κB activation; however, this ligand-receptor system has not been studied in acute liver injury. In the current study, we sought to determine if RANK and RANKL were important in the hepatic response to I/R. Mice were subjected to partial hepatic ischemia followed by reperfusion. In some experiments, mice received recombinant RANKL or neutralizing antibodies to RANKL 1 hour prior to surgery or at reperfusion to assess the role of RANK/RANKL signaling during I/R injury. RANK was constitutively expressed in the liver and was not altered by I/R. RANK was strongly expressed in hepatocytes and very weakly expressed in Kupffer cells. Serum RANKL concentrations increased after I/R and peaked 4 hours after reperfusion. Serum levels of osteoprotegerin (OPG), a decoy receptor for RANKL, steadily increased over the 8-hour period of reperfusion. Treatment with RANKL, before ischemia or at reperfusion, increased hepatocyte NF-κB activation and significantly reduced liver injury. These beneficial effects occurred without any effect on cytokine expression or liver inflammation. Treatment with anti-RANKL antibodies had no effect on liver I/R injury. CONCLUSION During the course of injury, endogenous OPG appears to suppress the effects of RANKL. However, exogenous administration of RANKL, given either prophylactically or postinjury, reduces liver injury in a manner associated with increased hepatocyte NF-κB activation. The data suggest that RANK/RANKL may be a viable therapeutic target in acute liver injury.
Collapse
|
237
|
Periasamy S, Hsu DZ, Chen SY, Yang SS, Chandrasekaran VRM, Liu MY. Therapeutic sesamol attenuates monocrotaline-induced sinusoidal obstruction syndrome in rats by inhibiting matrix metalloproteinase-9. Cell Biochem Biophys 2012; 61:327-36. [PMID: 21681587 DOI: 10.1007/s12013-011-9215-3] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
We investigated the therapeutic effect of sesamol against monocrotaline-induced sinusoidal obstruction syndrome (SOS) in rats. Male Sprague-Dawley rats were gavaged with a single dose of monocrotaline (90 mg/kg) to induce SOS. Sesamol (5, 10, 20, and 40 mg/kg) was subcutaneously injected 24 h after monocrotaline treatment. Control rats were given saline only. Aspartate transaminase, alanine transaminase, mast cells, CD 68(+) Kupffer cells, neutrophils, myeloperoxidase, matrix metalloproteinase-9 (MMP-9), tissue inhibitor of matrix metalloproteinase-1 (TIMP-1), laminin, and collagen were assessed 48 h after monocrotaline treatment. All tested parameters, except for TIMP-1, laminin, and collagen, were significantly higher in monocrotaline-treated rats than in control rats, and, except for TIMP-1, laminin, and collagen, significantly lower in sesamol-treated rats than in monocrotaline-treated rats. In addition, liver pathology revealed that sesamol offered significant protection against SOS. We conclude that a single dose of sesamol therapeutically attenuated SOS by decreasing the recruitment of inflammatory cells, downregulating MMP-9, and upregulating TIMP-1 expression.
Collapse
Affiliation(s)
- Srinivasan Periasamy
- Department of Environmental and Occupational Health, National Cheng Kung University Medical College, Tainan, Taiwan
| | | | | | | | | | | |
Collapse
|
238
|
Schmidt EP, Lee WL, Zemans RL, Yamashita C, Downey GP. On, around, and through: neutrophil-endothelial interactions in innate immunity. Physiology (Bethesda) 2012; 26:334-47. [PMID: 22013192 DOI: 10.1152/physiol.00011.2011] [Citation(s) in RCA: 74] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
This manuscript will review our current understanding of neutrophilic polymorphonuclear leukocyte (neutrophil) interactions with the endothelium during immune and inflammatory responses, focusing on the molecular mechanisms regulating neutrophil adhesion to and migration through the endothelium in response to infection or tissue injury. This is a complex and dynamic area of research and one that has been the topic of several recent comprehensive reviews to which the interested reader is referred (64, 118, 131). By design, this review will begin with a brief review of some basic aspects of neutrophil biology and endothelial adhesion to provide a foundation. The remainder of the review will focus on selected areas of this complex field, specifically the role of the endothelial glycocalyx in regulating neutrophil adhesion and the mechanisms and consequences of migration of neutrophils between (paracellular) and through (transcellular) endothelial cells during egress from the vasculature.
Collapse
Affiliation(s)
- Eric P Schmidt
- Department of Medicine, Division of Pulmonary Sciences and Critical Care Medicine, University of Colorado Denver, Aurora, Colorado, USA
| | | | | | | | | |
Collapse
|
239
|
Inhibition of TNF-α protects against hepatic ischemia-reperfusion injury in rats via NF-κB dependent pathway. Naunyn Schmiedebergs Arch Pharmacol 2012; 385:465-71. [PMID: 22311349 DOI: 10.1007/s00210-012-0729-z] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2011] [Accepted: 01/18/2012] [Indexed: 12/20/2022]
Abstract
Hepatic ischemia-reperfusion injury (I/R) is a serious health problem associated with liver transplantation, resection surgery, and various types of shock especially hemorrhagic shock. In the present investigation, the effect of inhibition of tumor necrosis factor-alpha (TNF-α) using pentoxifylline or infliximab against hepatic I/R injury induced in rats by 45-min ischemia and 1-h reperfusion was studied. It was observed that both pentoxifylline and infliximab-treated groups showed a significantly lower extent and severity of liver injury. This is attributed to (1) a decrease in oxidative stress markers, (2) reduction of the expression of TNF-α, TNF-α type-1 receptors, and nuclear factor kappa B (NF-κB). Thus TNF-α inhibition may be one of the therapeutic interventions to overcome the deleterious effects of I/R on liver via reduction of oxidative stress and inhibition of inflammatory cascade.
Collapse
|
240
|
Jaeschke H, McGill MR, Ramachandran A. Oxidant stress, mitochondria, and cell death mechanisms in drug-induced liver injury: lessons learned from acetaminophen hepatotoxicity. Drug Metab Rev 2012; 44:88-106. [PMID: 22229890 DOI: 10.3109/03602532.2011.602688] [Citation(s) in RCA: 675] [Impact Index Per Article: 51.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Hepatotoxicity is a serious problem during drug development and for the use of many established drugs. For example, acetaminophen overdose is currently the most frequent cause of acute liver failure in the United States and Great Britain. Evaluation of the mechanisms of drug-induced liver injury indicates that mitochondria are critical targets for drug toxicity, either directly or indirectly through the formation of reactive metabolites. The consequence of these modifications is generally a mitochondrial oxidant stress and peroxynitrite formation, which leads to structural alterations of proteins and mitochondrial DNA and, eventually, to the opening of mitochondrial membrane permeability transition (MPT) pores. MPT pore formation results in a collapse of mitochondrial membrane potential and cessation of adenosine triphosphate synthesis. In addition, the release of intermembrane proteins, such as apoptosis-inducing factor and endonuclease G, and their translocation to the nucleus, leads to nuclear DNA fragmentation. Together, these events trigger necrotic cell death. Alternatively, the release of cytochrome c and other proapoptotic factors from mitochondria can promote caspase activation and apoptotic cell death. Drug toxicity can also induce an inflammatory response with the formation of reactive oxygen species by Kupffer cells and neutrophils. If not properly detoxified, these extracellularly generated oxidants can diffuse into hepatocytes and trigger mitochondrial dysfunction and oxidant stress, which then induces MPT and necrotic cell death. This review addresses the formation of oxidants and the defense mechanisms available for cells and applies this knowledge to better understand mechanisms of drug hepatotoxicity, especially acetaminophen-induced liver injury.
Collapse
Affiliation(s)
- Hartmut Jaeschke
- Department of Pharmacology, Toxicology, and Therapeutics, University of Kansas Medical Center, Kansas City, 66160, USA.
| | | | | |
Collapse
|
241
|
Jaeschke H, Williams CD, Ramachandran A, Bajt ML. Acetaminophen hepatotoxicity and repair: the role of sterile inflammation and innate immunity. Liver Int 2012; 32:8-20. [PMID: 21745276 PMCID: PMC3586825 DOI: 10.1111/j.1478-3231.2011.02501.x] [Citation(s) in RCA: 358] [Impact Index Per Article: 27.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Acetaminophen (APAP) hepatotoxicity because of overdose is the most frequent cause of acute liver failure in the western world. Metabolic activation of APAP and protein adduct formation, mitochondrial dysfunction, oxidant stress, peroxynitrite formation and nuclear DNA fragmentation are critical intracellular events in hepatocytes. However, the early cell necrosis causes the release of a number of mediators such as high-mobility group box 1 protein, DNA fragments, heat shock proteins (HSPs) and others (collectively named damage-associated molecular patterns), which can be recognized by toll-like receptors on macrophages, and leads to their activation with cytokine and chemokine formation. Although pro-inflammatory mediators recruit inflammatory cells (neutrophils, monocytes) into the liver, neither the infiltrating cells nor the activated resident macrophages cause any direct cytotoxicity. In contrast, pro- and anti-inflammatory cytokines and chemokines can directly promote intracellular injury mechanisms by inducing nitric oxide synthase or inhibit cell death mechanisms by the expression of acute-phase proteins (HSPs, heme oxygenase-1) and promote hepatocyte proliferation. In addition, the newly recruited macrophages (M2) and potentially neutrophils are involved in the removal of necrotic cell debris in preparation for tissue repair and resolution of the inflammatory response. Thus, as discussed in detail in this review, the preponderance of experimental evidence suggests that the extensive sterile inflammatory response during APAP hepatotoxicity is predominantly beneficial by limiting the formation and the impact of pro-inflammatory mediators and by promoting tissue repair.
Collapse
Affiliation(s)
- Hartmut Jaeschke
- Department of Pharmacology, Toxicology and Therapeutics, University of Kansas Medical Center, Kansas City, KS 66160, USA.
| | | | | | | |
Collapse
|
242
|
Williams CD, Jaeschke H. Role of innate and adaptive immunity during drug-induced liver injury. Toxicol Res (Camb) 2012; 1:161. [DOI: 10.1039/c2tx20032e] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/30/2023] Open
|
243
|
Ekor M, Odewabi AO, Kale OE, Adesanoye OA, Bamidele TO. Celecoxib, a selective cyclooxygenase-2 inhibitor, lowers plasma cholesterol and attenuates hepatic lipid peroxidation during carbon-tetrachloride-associated hepatotoxicity in rats. Drug Chem Toxicol 2011; 36:1-8. [PMID: 22168377 DOI: 10.3109/01480545.2011.642380] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Cyclooxygenase-2 (COX-2) expression and prostaglandin production are suggested to play important, complex roles in the pathogenesis of various liver diseases. Studies on the effects of COX-2 inhibitors on the progression of liver fibrosis present controversial results, and the proposed therapeutic potential of these agents in chronic liver disease is predicated largely on their effectiveness in modulating hepatic stellate cell activation in vitro. This study investigated the modulatory effect of celecoxib, a selective COX-2 inhibitor, in CCl(4)-mediated hepatotoxicity in rats. Thirty Wistar albino rats, weighing 120-180 g, were assigned into five groups of 6 rats/group. Groups 1 and 2 received saline (10 mL/kg) and CCl(4) (80 mg/kg), respectively. Group 3 was given celecoxib (5.7 mg/kg), whereas groups 4 and 5 were pretreated with 2.9 and 5.7 mg/kg/day of celecoxib, respectively, 1 hour before CCl(4) treatment. Plasma aspartate aminotransferase, alanine aminotransferase, and alkaline phosphatase activities increased significantly by 118.5, 150.0, and 51.3%, respectively, with an accompanying decrease (P < 0.05) in total protein and albumin after CCl(4) treatment. Hepatotoxicity was associated with a significant increase in plasma cholesterol, hepatic lipid peroxidation (LPO), and severe hepatic necrosis with marked fatty and cellular (i.e., mononuclear cells) infiltration. Although celecoxib neither reduced CCl(4)-induced increases in marker enzymes of hepatotoxicity nor significantly attenuated hepatic necrosis, it, however, was effective in reducing elevated cholesterol by 16.5 and 20.8% and LPO by 12.9 and 35.5% at 2.9 and 5.7 mg/kg, respectively. Data suggest that COX-2 inhibitors may be effective in controlling hypercholesterolemia and peroxidative changes associated with liver injury.
Collapse
Affiliation(s)
- Martins Ekor
- Department of Chemical Sciences, Redeemer's University, Redemption City, Nigeria.
| | | | | | | | | |
Collapse
|
244
|
Clarke C, Sakai N, Tevar AD, Schuster R, Edwards MJ, Lentsch AB. STAT3 does not regulate acute liver injury after ischemia/reperfusion. J Surg Res 2011; 171:814-8. [PMID: 20599212 PMCID: PMC2965827 DOI: 10.1016/j.jss.2010.04.006] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2009] [Revised: 03/30/2010] [Accepted: 04/08/2010] [Indexed: 11/23/2022]
Abstract
BACKGROUND Hepatic ischemia/reperfusion (I/R) injury is a serious complication of liver surgery and transplantation. Regulation of this injury response occurs at the cellular and molecular levels. Previous studies have shown that interleukin-6 (IL-6) is a negative regulator of the acute inflammatory injury occurring as a result of hepatic I/R. The signal transducer and activator of transcription-3 (STAT3) is a key target of receptor signaling for IL-6. Both IL-6 and STAT3 have been implicated in the protective effects of ischemic preconditioning of the liver. However, there have been no studies that have directly addressed the potential role of STAT3 in regulating acute inflammatory liver injury induced by I/R. In the current study, we investigated whether blockade of STAT3 phosphorylation altered the injury response to hepatic I/R injury. METHODS Male Balb/c mice were subjected to 90 min of partial hepatic ischemia followed by reperfusion with or without treatment with specific inhibitors of STAT3 activation, AG490 (selective JAK2 inhibitor), or STATTIC (direct inhibitor of STAT3 phosphorylation). Mice were sacrificed at 8 and 24 h after reperfusion. RESULTS STAT3 activation was induced by I/R. This activation was partially inhibited by administration of AG490 and almost completely abrogated by treatment with STATTIC. Despite the blockade of STAT3, neither AG490 nor STATTIC had any effect on acute liver injury induced by I/R. Treatment with STATTIC did reduce hepatic neutrophil accumulation. CONCLUSION The data suggest that STAT3 is not a central regulator of acute liver injury induced by I/R.
Collapse
Affiliation(s)
- Callisia Clarke
- The Laboratory of Trauma, Sepsis & Inflammation Research, Department of Surgery, University of Cincinnati, Cincinnati, Ohio 45267-0558, USA
| | | | | | | | | | | |
Collapse
|
245
|
Henry SD, Guarrera JV. Protective effects of hypothermic ex vivo perfusion on ischemia/reperfusion injury and transplant outcomes. Transplant Rev (Orlando) 2011; 26:163-75. [PMID: 22074785 DOI: 10.1016/j.trre.2011.09.001] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2011] [Revised: 07/08/2011] [Accepted: 09/02/2011] [Indexed: 12/14/2022]
Abstract
Hypothermic machine preservation (HMP) has been used in renal transplantation since the late 1960s with recent robust prospective, multicenter data showing lower rates of delayed graft function and improved graft survival. Although now clearly beneficial for renal transplantation, extrarenal machine perfusion has remained predominantly in preclinical investigations. Pancreatic HMP has drawn little clinical interest because HMP has been suggested to cause graft edema and congestion, which is associated with early venous thrombosis and graft failure. Early investigation showed no benefit of HMP in whole-organ pancreas transplant. One report did show that HMP increases islet cell yield after isolation. Preclinical work in liver HMP has been promising. Short- and long-term HMP has been shown to improve graft viability and reduce preservation injury, even in animal models of steatotic and donation after cardiac death. The first clinical study of liver HMP using a centrifugal dual perfusion technique showed excellent results with lower hepatocellular injury markers and no adverse perfusion-related outcomes. In addition, a dramatic attenuation of proinflammatory cytokine expression was observed. Further studies of liver HMP are planned with focus on developing a reproducible and standard protocol that will allow the widespread availability of this technology. Future research and clinical trials of novel organ preservation techniques, solutions, and interventions are likely to bring about developments that will allow further reduction of preservation-related ischemia/reperfusion injury and improved outcomes and allow safer utilization of the precious and limited resource of donor organs.
Collapse
Affiliation(s)
- Scot D Henry
- Division of Abdominal Organ Transplantation and Molecular Therapies and Organ Preservation Research Laboratory, Department of Surgery Columbia University Medical Center, New York, NY 10032-3784, USA
| | | |
Collapse
|
246
|
Catré D, Lopes MF, Bento C, Cabrita AS. Protective perioperative strategy using a third generation hydroxyethyl starch during surgery in a murine model of liver reperfusion injury. Acta Cir Bras 2011; 26:456-62. [PMID: 22042108 DOI: 10.1590/s0102-86502011000600009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2011] [Accepted: 08/11/2011] [Indexed: 11/21/2022] Open
Abstract
PURPOSE To investigate whether a third generation colloid, hydroxyethyl starch (HES 130/0.4), used for perioperative fluid therapy, protects the rat liver against the late-phase response of ischemia/reperfusion injury (IRI) and if inhibition of neutrophil hepatic infiltration plays a part in this mechanism. METHODS Wistar rats were used (8 in each group). Three groups had IRI induced by lobar vascular occlusion (60 minutes) and reperfusion (24 hours) and received HES (13 mL/kg iv), 7.5% saline (HS) (13 mL/kg iv) or no fluid. Three other groups were sham-operated and received the same fluid as the test groups. After 24 hours of reperfusion, blood was drawn for alanine aminotransferase (ALT) quantification and ischemic liver samples were taken for histological study (hematoxylin and eosin and chloroacetate staining of neutrophils). RESULTS HES treatment attenuated the elevation in serum ALT (P=0.001) and reduced the extent of hepatocellular necrosis (P<0.01) compared with the IRI controls. HES-mediated cytoprotection was associated with a decrease of infiltration of neutrophils in the necrotic areas (P<0.05) compared with the untreated IRI rats, but not with the volume control IRI rats (P>0.05). CONCLUSION Hydroxyethyl starch suppresses inflammatory response and ameliorates the late-phase response of hepatic ischemia/reperfusion injury.
Collapse
Affiliation(s)
- Dora Catré
- Anesthesiology Department, Sao Teotonio's Hospital, EPE, Viseu, Portugal
| | | | | | | |
Collapse
|
247
|
Kim MS, Lee KH, Lee WM, Jun JH, Kim DH. CD44 disruption attenuates murine hepatic ischemia/reperfusion injury. J Korean Med Sci 2011; 26:919-26. [PMID: 21738346 PMCID: PMC3124723 DOI: 10.3346/jkms.2011.26.7.919] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/28/2011] [Accepted: 04/19/2011] [Indexed: 11/20/2022] Open
Abstract
Neutrophil adhesion and migration are critical in hepatic ischemia/reperfusion (I/R) injury. Despite very strong preclinical data, recent clinical trials failed to show a protective effect of anti-adhesion therapy in reperfusion injury. Therefore, the aim of this study was to assess the role of CD44 in neutrophil infiltration and liver injury from hepatic I/R. In this study, using a partial hepatic ischemic model in vivo, we determined the potential role of CD44 in neutrophil infiltration and liver injury from I/R. Reperfusion caused significant hepatocellular injury as it was determined by plasma ALT levels and liver histopathology. The injury was associated with a marked neutrophil recruitment and CD44 expression into the ischemic livers. Administration of anti-CD44 antibody to mice reduced the infiltration of neutrophil into the ischemic tissue, associated with liver function preservation. These results support crucial roles of CD44 in neutrophil recruitment and infiltration leading to liver damage in hepatic I/R injury. Moreover, they provide the rationale for targeting to CD44 as a potential therapeutic approach in liver I/R injury.
Collapse
Affiliation(s)
- Min Sung Kim
- Department of Surgery, Eulji University School of Medicine, Seoul, Korea
| | - Ki Ho Lee
- Department of Biochemistry and Molecular Biology, Eulji University School of Medicine, Seoul, Korea
| | - Won Mee Lee
- Department of Pathology, Eulji University School of Medicine, Seoul, Korea
| | - Jin Hyun Jun
- Department of Medical-Laboratory Science, Eulji University School of Medicine, Seoul, Korea
| | - Dong Hee Kim
- Department of Surgery, Eulji University School of Medicine, Seoul, Korea
| |
Collapse
|
248
|
Sakai N, Shin T, Schuster R, Blanchard J, Lentsch AB, Johnson WT, Schuschke DA. Marginal copper deficiency increases liver neutrophil accumulation after ischemia/reperfusion in rats. Biol Trace Elem Res 2011; 142:47-54. [PMID: 20544302 PMCID: PMC3035736 DOI: 10.1007/s12011-010-8743-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/17/2010] [Accepted: 05/31/2010] [Indexed: 11/30/2022]
Abstract
Copper deficiency can cause a host of major cardiovascular complications including an augmented inflammatory response through effects on both neutrophils and the microvascular endothelium. In the present study, we evaluated the effect of marginal copper deficiency on the neutrophilic response to hepatic ischemia/reperfusion injury, a condition that induces an inflammatory response. Male weanling Sprague-Dawley rats were fed purified diets which were either copper-adequate (6.3 mg/kg) or copper-marginal (1.62 mg/kg) for 4 weeks prior to undergoing 90 min of partial hepatic ischemia followed by 8 h of reperfusion. Liver injury was assessed by serum levels of alanine aminotransferase and by liver histology. Liver neutrophil accumulation was determined by tissue myeloperoxidase content. There was no significant difference in liver injury between copper-adequate and copper-marginal rats. However, liver neutrophil accumulation was significantly increased in copper-marginal rats. These findings were confirmed histologically. Liver expression of the adhesion molecule, intercellular adhesion molecule-1 (ICAM-1), was increased in copper-marginal rats compared to copper-adequate rats. The results suggest that neutrophil accumulation is increased through enhanced ICAM-1 expression in liver of copper-marginal rats after ischemia/reperfusion, but that this does not result in increased liver injury.
Collapse
Affiliation(s)
- Nozomu Sakai
- The Department of Surgery, University of Cincinnati, Cincinnati, OH 45267, USA
| | - Thomas Shin
- The Department of Surgery, University of Cincinnati, Cincinnati, OH 45267, USA
| | - Rebecca Schuster
- The Department of Surgery, University of Cincinnati, Cincinnati, OH 45267, USA
| | - John Blanchard
- The Department of Surgery, University of Cincinnati, Cincinnati, OH 45267, USA
| | - Alex B. Lentsch
- The Department of Surgery, University of Cincinnati, Cincinnati, OH 45267, USA
| | | | - Dale A. Schuschke
- Department of Physiology and Biophysics, Health Sciences Center A1111, University of Louisville, Louisville, KY 40292, USA,
| |
Collapse
|
249
|
Jaeschke H, Ramachandran A. Reactive oxygen species in the normal and acutely injured liver. J Hepatol 2011; 55:227-8. [PMID: 21238521 PMCID: PMC3117914 DOI: 10.1016/j.jhep.2011.01.006] [Citation(s) in RCA: 60] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/10/2010] [Revised: 12/23/2010] [Accepted: 01/06/2011] [Indexed: 12/30/2022]
Affiliation(s)
- Hartmut Jaeschke
- Department of Pharmacology, Toxicology & Therapeutics, University of Kansas Medical Center, KS 66221, USA.
| | | |
Collapse
|
250
|
Yang SJ, Chen HM, Hsieh CH, Hsu JT, Yeh CN, Yeh TS, Hwang TL, Jan YY, Chen MF. Akt pathway is required for oestrogen-mediated attenuation of lung injury in a rodent model of cerulein-induced acute pancreatitis. Injury 2011; 42:638-642. [PMID: 20709317 DOI: 10.1016/j.injury.2010.07.242] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/10/2010] [Revised: 07/01/2010] [Accepted: 07/12/2010] [Indexed: 02/08/2023]
Abstract
BACKGROUND The phosphoinositide 3-kinase (PI3K)/protein kinase B (Akt) is known to be an endogenous negative feedback or compensatory mechanism that serves to limit pro-inflammatory and chemotactic events in response to injury. The aim of this study is to elucidate whether Akt plays any role in 17β-estradiol (E2)-mediated attenuation of lung injury after acute pancreatitis (AP). MATERIALS AND METHODS Male Sprague-Dawley rats underwent cerulein-induced AP. Rats were treated with vehicle (cyclodextrin), E2 (1 mg/kg body weight [BW]), or E2 plus PI3K/Akt inhibitor Wortmannin (100 μg/kg BW) 1h after the onset of AP. At 8 h after sham operation or AP, various parameters were measured. RESULTS AP led to a significant decrease in lung Akt phosphorylation, which was associated with increased lung tissue myeloperoxidase (MPO) activity, wet-to-dry weight ratios, interleukin (IL)-6, tumor necrosis factor (TNF)-α, cytokine-induced neutrophil chemoattractant (CINC)-1, and CINC-3 levels. Administration of E2 after AP restored the AP-induced decrease in Akt phosphorylation and attenuated the increase in lung injury markers (MPO activity and wet-to dry weight ratios) and pro-inflammatory mediator production. The effects of E2 on the lung were abolished by co-administration of Wortmannin. CONCLUSIONS These results collectively suggest evidences that the Akt pathway seems to be required for E2-mediated protection of lung injury after AP.
Collapse
Affiliation(s)
- Shang-Ju Yang
- Department of Surgery, Chang Gung Memorial Hospital at Linkou, Chang Gung University College of Medicine, 5, Fushing Street, Kweishan Shiang, Taoyuan 333, Taiwan
| | | | | | | | | | | | | | | | | |
Collapse
|