201
|
PERK pathway are involved in NO-induced apoptosis in endothelial cells cocultured with RPE under high glucose conditions. Nitric Oxide 2014; 40:10-6. [DOI: 10.1016/j.niox.2014.05.001] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2013] [Revised: 04/14/2014] [Accepted: 05/01/2014] [Indexed: 01/26/2023]
|
202
|
Granados-Principal S, El-azem N, Pamplona R, Ramirez-Tortosa C, Pulido-Moran M, Vera-Ramirez L, Quiles JL, Sanchez-Rovira P, Naudí A, Portero-Otin M, Perez-Lopez P, Ramirez-Tortosa MC. Hydroxytyrosol ameliorates oxidative stress and mitochondrial dysfunction in doxorubicin-induced cardiotoxicity in rats with breast cancer. Biochem Pharmacol 2014; 90:25-33. [DOI: 10.1016/j.bcp.2014.04.001] [Citation(s) in RCA: 100] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2014] [Revised: 04/03/2014] [Accepted: 04/03/2014] [Indexed: 01/22/2023]
|
203
|
Soriani A, Iannitto ML, Ricci B, Fionda C, Malgarini G, Morrone S, Peruzzi G, Ricciardi MR, Petrucci MT, Cippitelli M, Santoni A. Reactive oxygen species- and DNA damage response-dependent NK cell activating ligand upregulation occurs at transcriptional levels and requires the transcriptional factor E2F1. THE JOURNAL OF IMMUNOLOGY 2014; 193:950-60. [PMID: 24913980 DOI: 10.4049/jimmunol.1400271] [Citation(s) in RCA: 79] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Increasing evidence indicates that cancer cell stress induced by chemotherapeutic agents promote antitumor immune responses and contribute to their full clinical efficacy. In this article, we identify the signaling events underlying chemotherapy-induced NKG2D and DNAM-1 ligand expression on multiple myeloma (MM) cells. Our findings indicate that sublethal doses of doxorubicin and melphalan initiate a DNA damage response (DDR) controlling ligand upregulation on MM cell lines and patient-derived malignant plasma cells in Chk1/2-dependent and p53-independent manner. Drug-induced MICA and PVR gene expression are transcriptionally regulated and involve DDR-dependent E2F1 transcription factor activity. We also describe the involvement of changes in the redox state in the control of DDR-dependent upregulation of ligand surface expression and gene transcriptional activity by using the antioxidant agent N-acetyl-L-cysteine. Finally, in accordance with much evidence indicating that DDR and oxidative stress are major determinants of cellular senescence, we found that redox-dependent DDR activation upon chemotherapeutic treatment is critical for MM cell entry in premature senescence and is required for the preferential ligand upregulation on senescent cells, which are preferentially killed by NK cells and trigger potent IFN-γ production. We propose immunogenic senescence as a mechanism that promotes the clearance of drug-treated tumor cells by innate effector lymphocytes, including NK cells.
Collapse
Affiliation(s)
- Alessandra Soriani
- Department of Molecular Medicine, Pasteur Institute-Cenci Bolognetti Foundation, Sapienza University of Rome, 00161 Rome, Italy;
| | - Maria Luisa Iannitto
- Department of Molecular Medicine, Pasteur Institute-Cenci Bolognetti Foundation, Sapienza University of Rome, 00161 Rome, Italy
| | - Biancamaria Ricci
- Department of Molecular Medicine, Pasteur Institute-Cenci Bolognetti Foundation, Sapienza University of Rome, 00161 Rome, Italy
| | - Cinzia Fionda
- Department of Molecular Medicine, Pasteur Institute-Cenci Bolognetti Foundation, Sapienza University of Rome, 00161 Rome, Italy
| | - Giulia Malgarini
- Department of Molecular Medicine, Pasteur Institute-Cenci Bolognetti Foundation, Sapienza University of Rome, 00161 Rome, Italy
| | - Stefania Morrone
- Department of Experimental Medicine, Sapienza University of Rome, 00161 Rome, Italy
| | - Giovanna Peruzzi
- Center for Life Nano Science-Italian Institute of Technology Sapienza, 00161 Rome, Italy; and
| | - Maria Rosaria Ricciardi
- Division of Hematology, Department of Cellular Biotechnologies and Hematology, Sapienza University of Rome, 00161 Rome, Italy
| | - Maria Teresa Petrucci
- Division of Hematology, Department of Cellular Biotechnologies and Hematology, Sapienza University of Rome, 00161 Rome, Italy
| | - Marco Cippitelli
- Department of Molecular Medicine, Pasteur Institute-Cenci Bolognetti Foundation, Sapienza University of Rome, 00161 Rome, Italy
| | - Angela Santoni
- Department of Molecular Medicine, Pasteur Institute-Cenci Bolognetti Foundation, Sapienza University of Rome, 00161 Rome, Italy;
| |
Collapse
|
204
|
MENG XIANYING, ZHANG QIANG, ZHENG GUIBIN, PANG RENZHU, HUA TEBO, YANG SHUAI, LI JIE. Doxorubicin combined with celecoxib inhibits tumor growth of medullary thyroid carcinoma in xenografted mice. Oncol Lett 2014; 7:2053-2058. [PMID: 24932288 PMCID: PMC4049724 DOI: 10.3892/ol.2014.2050] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2013] [Accepted: 02/26/2014] [Indexed: 12/31/2022] Open
Abstract
The aim of the present study was to investigate the antitumor effect of celecoxib (CXB) combined with doxorubicin (DOX) on the subcutaneous xenograft tumor of medullary thyroid carcinoma in nude mice, and to analyze the possible mechanism of action. Nude mice with xenografted medullary thyroid carcinoma (MTC) were randomly divided into the control, CXB, DOX and DOX plus CXB groups, and the drug treatment was administered for three weeks. It was found that the tumor inhibition rates and the apoptosis index in the treatment groups were higher than in the control group (P<0.01), and that these values were higher in the combination group compared with the single-drug group (P<0.01). DOX alone upregulated the cyclooxygenase-2 and multidrug-resistance 1 expression levels, and the combination of CXB and DOX or CXB alone notably decreased the expression level of the two proteins compared with no treatment. The results of the present study provide evidence that a combination of DOX and CXB is a potential drug candidate for the treatment of MTC.
Collapse
Affiliation(s)
- XIANYING MENG
- Department of Thyroid Surgery, First Hospital, Jilin University, Changchun, Jilin 130021, P.R. China
| | - QIANG ZHANG
- Department of Thyroid Surgery, First Hospital, Jilin University, Changchun, Jilin 130021, P.R. China
| | - GUIBIN ZHENG
- Department of Thyroid Surgery, First Hospital, Jilin University, Changchun, Jilin 130021, P.R. China
| | - RENZHU PANG
- Department of Thyroid Surgery, First Hospital, Jilin University, Changchun, Jilin 130021, P.R. China
| | - TEBO HUA
- Department of Thyroid Surgery, First Hospital, Jilin University, Changchun, Jilin 130021, P.R. China
| | - SHUAI YANG
- Department of Thyroid Surgery, First Hospital, Jilin University, Changchun, Jilin 130021, P.R. China
| | - JIE LI
- Department of Geratology, First Hospital, Jilin University, Changchun, Jilin 130021, P.R. China
| |
Collapse
|
205
|
Yin X, Zhou S, Zheng Y, Tan Y, Kong M, Wang B, Feng W, Epstein PN, Cai J, Cai L. Metallothionein as a compensatory component prevents intermittent hypoxia-induced cardiomyopathy in mice. Toxicol Appl Pharmacol 2014; 277:58-66. [PMID: 24657099 DOI: 10.1016/j.taap.2014.03.007] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2013] [Revised: 03/03/2014] [Accepted: 03/04/2014] [Indexed: 12/26/2022]
Abstract
Obstructive sleep apnea (OSA) causes chronic intermittent hypoxia (IH) to induce cardiovascular disease, which may be related to oxidative damage. Metallothionein (MT) has been extensively proved to be an endogenous and highly inducible antioxidant protein expressed in the heart. Therefore, we tested the hypotheses that oxidative stress plays a critical role in OSA induced cardiac damage and MT protects the heart from OSA-induced cardiomyopathy. To mimic hypoxia/reoxygenation events that occur in adult OSA patients, mice were exposed to IH for 3 days to 8 weeks. The IH paradigm consisted of alternating cycles of 20.9% O₂/8% O₂ F(I)O₂ (30 episodes per hour) with 20s at the nadir F(I)O₂ for 12 h a day during daylight. IH significantly increased the ratio of heart weight to tibia length at 4 weeks with a decrease in cardiac function from 4 to 8 weeks. Cardiac oxidative damage and fibrosis were observed after 4 and 8 weeks of IH exposures. Endogenous MT expression was up-regulated in response to 3-day IH, but significantly decreased at 4 and 8 weeks of IH. In support of MT as a major compensatory component, mice with cardiac overexpression of MT gene and mice with global MT gene deletion were completely resistant, and highly sensitive, respectively, to chronic IH induced cardiac effects. These findings suggest that chronic IH induces cardiomyopathy characterized by oxidative stress-mediated cardiac damage and the antioxidant MT protects the heart from such pathological and functional changes.
Collapse
Affiliation(s)
- Xia Yin
- The First Hospital of Jilin University, Changchun, 130021, China; KCHRI at the Department of Pediatrics, School of Medicine, University of Louisville, Louisville, 40202, USA
| | - Shanshan Zhou
- The First Hospital of Jilin University, Changchun, 130021, China; KCHRI at the Department of Pediatrics, School of Medicine, University of Louisville, Louisville, 40202, USA
| | - Yang Zheng
- The First Hospital of Jilin University, Changchun, 130021, China.
| | - Yi Tan
- KCHRI at the Department of Pediatrics, School of Medicine, University of Louisville, Louisville, 40202, USA; Chinese-American Research Institute for Diabetic Complications, Wenzhou Medical College School of Pharmacy, Wenzhou, 325035, China
| | - Maiying Kong
- Department of Bioinformatics and Biostatistics, School of Public Health and Information Sciences, University of Louisville, Louisville, KY 40202, USA
| | - Bo Wang
- KCHRI at the Department of Pediatrics, School of Medicine, University of Louisville, Louisville, 40202, USA; Department of Pathology, Inner Mongolia Forestry General Hospital, Yakeshi, 022150, China
| | - Wenke Feng
- Department of Medicine, School of Medicine, University of Louisville, Louisville, 40202, USA
| | - Paul N Epstein
- KCHRI at the Department of Pediatrics, School of Medicine, University of Louisville, Louisville, 40202, USA
| | - Jun Cai
- KCHRI at the Department of Pediatrics, School of Medicine, University of Louisville, Louisville, 40202, USA.
| | - Lu Cai
- KCHRI at the Department of Pediatrics, School of Medicine, University of Louisville, Louisville, 40202, USA; Chinese-American Research Institute for Diabetic Complications, Wenzhou Medical College School of Pharmacy, Wenzhou, 325035, China; Department of Medicine, School of Medicine, University of Louisville, Louisville, 40202, USA
| |
Collapse
|
206
|
LONG LING, WANG WEIWEI, CAI XIADONG, CHENG DU, SHUAI XINTAO, PENG YING. PinX1-siRNA/mPEG-PEI-SPION combined with doxorubicin enhances the inhibition of glioma growth. Exp Ther Med 2014; 7:1170-1176. [PMID: 24940406 PMCID: PMC3991531 DOI: 10.3892/etm.2014.1586] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2013] [Accepted: 02/19/2014] [Indexed: 01/08/2023] Open
Abstract
Resistance to chemotherapy and the side effects of anticancer drugs are the major obstacles for glioma treatment. The aim of the present study was to develop a novel approach for the treatment of gliomas that improved the therapeutic effect; the anticancer drug, doxorubicin (DOX), was combined with short interfering (si)RNA and monomethoxy polyethylene glycol polyethylenimine superparamagnetic iron oxide nanoparticle (mPEG-PEI-SPION), a magnetic resonance imaging (MRI)-visible nanoparticle. Specific siRNA molecules, delivered by mPEG-PEI-SPION, were employed to knockdown the PIN2-interacting protein 1 (PinX1) gene in C6 glioma cells. PinX1 is a nucleolar protein associated with telomere and telomerase. C6 cells were treated with DOX and/or PinX1-siRNA. The results of the transfection experiments revealed that siRNA/mPEG-PEI-SPION was transfected into C6 cells with high efficiency. PinX1-siRNA was unable to inhibit C6 cells, while in the PinX1-siRNA + DOX group, the same dose of DOX caused an increased loss of cell viability. Therefore, mPEG-PEI-SPION was shown to be viable for siRNA delivery into C6 cells and coadministration of DOX with PinX1-siRNA may be a potential therapeutic method for inhibiting gliomas.
Collapse
Affiliation(s)
- LING LONG
- Department of Neurology, The Third Affiliated Hospital, Sun Yat-Sen University, Guangzhou, Guangdong 510630, P.R. China
- Department of Neurology, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, Guangdong 510120, P.R. China
| | - WEIWEI WANG
- Center of Biomedical Engineering, School of Chemistry and Chemical Engineering, Sun Yat-Sen University, Guangzhou, Guangdong 510275, P.R. China
| | - XIA-DONG CAI
- Department of Neurology, The Sixth Affiliated Hospital (Guangdong Gastrointestinal and Anal Hospital), Sun Yat-Sen University, Guangzhou, Guangdong 510655, P.R. China
| | - DU CHENG
- Center of Biomedical Engineering, School of Chemistry and Chemical Engineering, Sun Yat-Sen University, Guangzhou, Guangdong 510275, P.R. China
| | - XINTAO SHUAI
- Center of Biomedical Engineering, School of Chemistry and Chemical Engineering, Sun Yat-Sen University, Guangzhou, Guangdong 510275, P.R. China
| | - YING PENG
- Department of Neurology, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, Guangdong 510120, P.R. China
| |
Collapse
|
207
|
Park S, Yoon J, Bae S, Park M, Kang C, Ke Q, Lee D, Kang PM. Therapeutic use of H2O2-responsive anti-oxidant polymer nanoparticles for doxorubicin-induced cardiomyopathy. Biomaterials 2014; 35:5944-53. [PMID: 24767791 DOI: 10.1016/j.biomaterials.2014.03.084] [Citation(s) in RCA: 63] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2014] [Accepted: 03/28/2014] [Indexed: 11/15/2022]
Abstract
Doxorubicin (DOX) is a commonly used anti-neoplastic agent but its clinical use is limited due to serious hepatic and cardiac side effects. DOX-induced toxicity is mainly associated with overproduction of reactive species oxygen (ROS) such as hydrogen peroxide (H2O2). We have recently developed H2O2-responsive anti-oxidant polymer, polyoxalate containing vanillyl alcohol (PVAX), which is designed to rapidly scavenge H2O2 and release vanillyl alcohol with anti-oxidant, anti-inflammatory and anti-apoptotic properties. In this study, we report that PVAX nanoparticles are novel therapeutic agents for treating DOX-induced cardiac and hepatic toxicity. Intraperitoneal injection of PVAX nanoparticles (4 mg/kg/day) resulted in significant inhibition in apoptosis in liver and heart of DOX-treated mice by suppressing the activation of poly (ADP ribose) polymerase 1 (PARP-1) and caspase-3. PVAX treatment also prevented DOX-induced cardiac dysfunction. Furthermore, survival rate (vehicle = 35% vs. PVAX = 75%; p < 0.05) was significantly improved in a PVAX nanoparticles-treated group compared with vehicle treated groups. Taken together, we anticipate that PVAX nanoparticles could be a highly specific and potent treatment modality in DOX-induced cardiac and hepatic toxicity.
Collapse
Affiliation(s)
- Seunggyu Park
- Department of BIN Fusion Technology, Chonbuk National University, Dukjin 664-14, Jeonju, Chonbuk 561-756, South Korea
| | - Jooheung Yoon
- Cardiovascular Institute, Beth Israel Deaconess Medical Center and Harvard Medical School, 3 Blackfan Circle, Boston, MA 02215, USA
| | - Soochan Bae
- Cardiovascular Institute, Beth Israel Deaconess Medical Center and Harvard Medical School, 3 Blackfan Circle, Boston, MA 02215, USA
| | - Minhyung Park
- Department of BIN Fusion Technology, Chonbuk National University, Dukjin 664-14, Jeonju, Chonbuk 561-756, South Korea
| | - Changsun Kang
- Department of BIN Fusion Technology, Chonbuk National University, Dukjin 664-14, Jeonju, Chonbuk 561-756, South Korea
| | - Qingen Ke
- Cardiovascular Institute, Beth Israel Deaconess Medical Center and Harvard Medical School, 3 Blackfan Circle, Boston, MA 02215, USA
| | - Dongwon Lee
- Department of BIN Fusion Technology, Chonbuk National University, Dukjin 664-14, Jeonju, Chonbuk 561-756, South Korea; Polymer Fusion Research Center, Department of Polymer⋅Nano Science and Technology, Chonbuk National University, Dukjin 664-14, Jeonju, Chonbuk 561-756, South Korea.
| | - Peter M Kang
- Department of BIN Fusion Technology, Chonbuk National University, Dukjin 664-14, Jeonju, Chonbuk 561-756, South Korea; Cardiovascular Institute, Beth Israel Deaconess Medical Center and Harvard Medical School, 3 Blackfan Circle, Boston, MA 02215, USA.
| |
Collapse
|
208
|
Lu JH, Shi ZF, Xu H. The mitochondrial cyclophilin D/p53 complexation mediates doxorubicin-induced non-apoptotic death of A549 lung cancer cells. Mol Cell Biochem 2014; 389:17-24. [PMID: 24343341 DOI: 10.1007/s11010-013-1922-1] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2013] [Accepted: 12/06/2013] [Indexed: 01/05/2023]
Abstract
Doxorubicin has displayed significant cytotoxic effects against the lung cancer cells; however, the underlying mechanisms remain inconclusive. In the current study, we provided evidence to show that mitochondrial p53 and cyclophilin D (Cyp-D) complexation is required for doxorubicin-induced death of lung cancer A549 cells. Doxorubicin induced both apoptotic and non-apoptotic death of A549 cells. Cyclosporine A (CsA), the Cyp-D inhibitor, and Cyp-D silencing were prevented doxorubicin-induced non-apoptotic death of A549 cells, while cells overexpressing Cyp-D were hyper-sensitive to doxorubicin. In A549 cells, doxorubicin-activated p53, the latter translocated to mitochondria and physically interacted with Cyp-D. The p53/Cyp-D mitochondrial complexation was prevented by CsA or Cyp-D silencing, or by p53 inhibitor pifithrin-α. Significantly, doxorubicin-induced anti-tumor ability in vivo was also compromised by CsA, or when Cyp-D was silenced. Together, these data suggested that Dox-induced non-apoptotic death of A549 cells requires mitochondrial Cyp-D-p53 complexation.
Collapse
Affiliation(s)
- Jia-Huan Lu
- Department of Internal Medicine, Shanghai Changning Center Hospital, No. 1111, Xianxia Road, Changning District, Shanghai, 200336, China
| | | | | |
Collapse
|
209
|
Lee KK, Boelsterli UA. Bypassing the compromised mitochondrial electron transport with methylene blue alleviates efavirenz/isoniazid-induced oxidant stress and mitochondria-mediated cell death in mouse hepatocytes. Redox Biol 2014; 2:599-609. [PMID: 25460728 PMCID: PMC4297936 DOI: 10.1016/j.redox.2014.03.003] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2014] [Accepted: 03/11/2014] [Indexed: 11/03/2022] Open
Abstract
Efavirenz (EFV) is an anti-retroviral drug frequently combined with isoniazid (INH) to treat HIV-1/tuberculosis co-infected patients. Both drugs have been associated with idiosyncratic liver injury (DILI), but combined anti-retroviral and anti-tubercular therapy can increase the risk for DILI as compared to either drug class alone. Because both EFV and INH have been implicated in targeting mitochondria, we aimed at exploring whether the two drugs might cause synergistic effects on the electron transport chain. We found that EFV inhibited complex I activity in isolated mouse liver mitochondria (IC50 ˜30 μM), whereas hydrazine, a major metabolite of INH generated by acylamidase-mediated hydrolytic cleavage, inhibited complex II activity (IC50 ˜30 μM). Neither INH alone (≤1000 μM) nor EFV alone (≤30 μM) was able to induce cell injury in cultured mouse hepatocytes. However, combined EFV/INH exposure resulted in increased superoxide formation and peroxynitrite stress, leading to the opening of the cyclosporine A-insensitive mode of the mitochondrial permeability transition (mPT), and necrotic cell death. The peroxynitrite scavengers, CBA or Fe-TMPyP, protected against mPT induction and alleviated cell injury. The acylamidase inhibitor bis-p-nitrophenyl phosphate prevented cell injury, suggesting that hydrazine greatly contributed to the toxicity. Methylene blue, a redox-active alternative electron acceptor/donor that bypasses complex I/II, effectively protected against EFV/INH-induced toxicity. These data demonstrate that, in murine hepatocytes, the mitochondrial electron transport chain is a critical target of combined EFV/INH exposure, and that this drug combination can lead to peroxynitrite stress-induced mPT and hepatocellular necrosis. These results are compatible with the concept that underlying silent mitochondrial dysfunction may be a key susceptibility factor contributing to idiosyncratic drug-induced liver injury.
Collapse
Affiliation(s)
- Kang Kwang Lee
- Department of Pharmaceutical Sciences, University of Connecticut, Storrs, CT 06269, United States of America
| | - Urs A Boelsterli
- Department of Pharmaceutical Sciences, University of Connecticut, Storrs, CT 06269, United States of America.
| |
Collapse
|
210
|
Cole MP, Tangpong J, Oberley TD, Chaiswing L, Kiningham KK, St. Clair DK. Nuclear interaction between ADR-induced p65 and p53 mediates cardiac injury in iNOS (-/-) mice. PLoS One 2014; 9:e89251. [PMID: 24586632 PMCID: PMC3934890 DOI: 10.1371/journal.pone.0089251] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2013] [Accepted: 01/17/2014] [Indexed: 11/20/2022] Open
Abstract
Adriamycin (ADR) treatment causes an imbalance in the levels of nitric oxide (•NO) and superoxide (O2•−) production leading to cardiac injury. Previously we demonstrated that mice lacking inducible nitric oxide synthase (iNOS) have increased oxidative stress and mitochondrial injury. The molecular events leading to increased mitochondrial injury in iNOS deficient mice is unknown. ADR in the absence of iNOS preferentially activates a proapoptotic pathway without a concurrent increase in prosurvival pathways. Treatment with ADR leads to an increase in DNA binding activity of nuclear factor kappa B (NFκB) and p53 in wildtype mice. Following ADR treatment, p53, but not NFκB DNA binding activity, as well as the level of Bax, a p53 target gene, was increased in iNOS (−/−) mice. This apoptotic signaling effect in iNOS (−/−) is alleviated by overexpression of manganese superoxide dismutase (MnSOD). Increases in NFκB and p53 in ADR-treated wildtype mice did not lead to increases in target genes such as MnSOD, bcl-xL, or Bax. Moreover, co-immunoprecipitation analysis revealed that p65, a prominent member of the NFκB family, interacts with p53 in the nucleus. These results suggest that NFκB and p53 may counter act one another's actions in ADR-treated wildtype (WT) mice. Further, these results identify a novel mechanism by which oxidative stress may regulate transcription of proapoptotic genes.
Collapse
Affiliation(s)
- Marsha P. Cole
- Biochemistry and Molecular Biology, University of Louisville, Louisville, Kentucky, United States of America
- * E-mail:
| | - Jitbanjong Tangpong
- School of Allied Health Sciences and Public Health, Walailak University, Nakhon Si Thammarat, Thailand
| | - Terry D. Oberley
- Department of Pathology, VA Hospital, University of Wisconsin, Madison, Wisconsin, United States of America
| | - Luksana Chaiswing
- Department of Pathology, VA Hospital, University of Wisconsin, Madison, Wisconsin, United States of America
| | - Kinsley K. Kiningham
- Pharmaceutical, Social and Administrative Sciences, Belmont College of Pharmacy, Nashville, Tennessee, United States of America
| | - Daret K. St. Clair
- Graduate Centers for Toxicology and Nutritional Sciences, University of Kentucky, Lexington, Kentucky, United States of America
| |
Collapse
|
211
|
Pan H, Shen K, Wang X, Meng H, Wang C, Jin B. Protective effect of metalloporphyrins against cisplatin-induced kidney injury in mice. PLoS One 2014; 9:e86057. [PMID: 24454954 PMCID: PMC3891880 DOI: 10.1371/journal.pone.0086057] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2013] [Accepted: 12/05/2013] [Indexed: 12/22/2022] Open
Abstract
Oxidative and nitrative stress is a well-known phenomenon in cisplatin-induced nephrotoxicity. The purpose of this work is to study the role of two metalloporphyrins (FeTMPyP and MnTBAP), water soluble complexes, in cisplatin-induced renal damage and their ability to scavenge peroxynitrite. In cisplatin-induced nephropathy study in mice, renal nitrative stress was evident by the increase in protein nitration. Cisplatin-induced nephrotoxicity was also evident by the histological damage from the loss of the proximal tubular brush border, blebbing of apical membranes, tubular epithelial cell detachment from the basement membrane, or intra-luminal aggregation of cells and proteins and by the increase in blood urea nitrogen and serum creatinine. Cisplatin-induced apoptosis and cell death as shown by Caspase 3 assessments, TUNEL staining and DNA fragmentation Cisplatin-induced nitrative stress, apoptosis and nephrotoxicity were attenuated by both metalloporphyrins. Heme oxygenase (HO-1) also plays a critical role in metalloporphyrin-mediated protection of cisplatin-induced nephrotoxicity. It is evident that nitrative stress plays a critical role in cisplatin-induced nephrotoxicity in mice. Our data suggest that peroxynitrite is involved, at least in part, in cisplatin-induced nephrotoxicity and protein nitration and cisplatin-induced nephrotoxicity can be prevented with the use of metalloporphyrins.
Collapse
Affiliation(s)
- Hao Pan
- Department of Urology, the First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
| | - Kezhen Shen
- Key Laboratory of Combined Multi-Organ Transplantation, Ministry of Public Health, Hangzhou, Zhejiang, China
| | - Xueping Wang
- Department of Urology, the First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
| | - Hongzhou Meng
- Department of Urology, the First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
| | - Chaojun Wang
- Department of Urology, the First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
| | - Baiye Jin
- Department of Urology, the First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
- * E-mail:
| |
Collapse
|
212
|
Curtin N, Szabo C. Therapeutic applications of PARP inhibitors: anticancer therapy and beyond. Mol Aspects Med 2013; 34:1217-56. [PMID: 23370117 PMCID: PMC3657315 DOI: 10.1016/j.mam.2013.01.006] [Citation(s) in RCA: 287] [Impact Index Per Article: 23.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2012] [Revised: 01/12/2013] [Accepted: 01/18/2013] [Indexed: 12/21/2022]
Abstract
The aim of this article is to describe the current and potential clinical translation of pharmacological inhibitors of poly(ADP-ribose) polymerase (PARP) for the therapy of various diseases. The first section of the present review summarizes the available preclinical and clinical data with PARP inhibitors in various forms of cancer. In this context, the role of PARP in single-strand DNA break repair is relevant, leading to replication-associated lesions that cannot be repaired if homologous recombination repair (HRR) is defective, and the synthetic lethality of PARP inhibitors in HRR-defective cancer. HRR defects are classically associated with BRCA1 and 2 mutations associated with familial breast and ovarian cancer, but there may be many other causes of HRR defects. Thus, PARP inhibitors may be the drugs of choice for BRCA mutant breast and ovarian cancers, and extend beyond these tumors if appropriate biomarkers can be developed to identify HRR defects. Multiple lines of preclinical data demonstrate that PARP inhibition increases cytotoxicity and tumor growth delay in combination with temozolomide, topoisomerase inhibitors and ionizing radiation. Both single agent and combination clinical trials are underway. The final part of the first section of the present review summarizes the current status of the various PARP inhibitors that are in various stages of clinical development. The second section of the present review summarizes the role of PARP in selected non-oncologic indications. In a number of severe, acute diseases (such as stroke, neurotrauma, circulatory shock and acute myocardial infarction) the clinical translatability of PARP inhibition is supported by multiple lines of preclinical data, as well as observational data demonstrating PARP activation in human tissue samples. In these disease indications, PARP overactivation due to oxidative and nitrative stress drives cell necrosis and pro-inflammatory gene expression, which contributes to disease pathology. Accordingly, multiple lines of preclinical data indicate the efficacy of PARP inhibitors to preserve viable tissue and to down-regulate inflammatory responses. As the clinical trials with PARP inhibitors in various forms of cancer progress, it is hoped that a second line of clinical investigations, aimed at testing of PARP inhibitors for various non-oncologic indications, will be initiated, as well.
Collapse
Affiliation(s)
- Nicola Curtin
- Department of Experimental Cancer Therapy, Northern Institute for Cancer Research, Newcastle University, University of Newcastle Upon Tyne, UK
| | - Csaba Szabo
- Department of Anesthesiology, The University of Texas Medical Branch, Galveston, TX, USA
| |
Collapse
|
213
|
Hua W, Chen Q, Gong F, Xie C, Zhou S, Gao L. Cardioprotection of H2S by downregulating iNOS and upregulating HO-1 expression in mice with CVB3-induced myocarditis. Life Sci 2013; 93:949-54. [PMID: 24140888 DOI: 10.1016/j.lfs.2013.10.007] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2013] [Revised: 09/18/2013] [Accepted: 10/07/2013] [Indexed: 11/26/2022]
Abstract
AIMS To explore the effects and potential mechanisms of hydrogen sulfide (H2S) in CVB3-induced mice with myocarditis. MAIN METHODS A total of 75 six-week-old inbred male Balb/c mice were divided randomly into four groups (N, C, P and S). Group N was the negative control. The others were inoculated intraperitoneally (i.p.) with CVB3. Subsequently, groups P and S were injected i.p. once a day with DL-Proparglygylcine (PAG) and NaHS respectively. Group C was the positive control. Inducible nitric oxide synthase (iNOS) and heme oxygenase-1(HO-1) expression on cardiac tissues were evaluated by histopathological examination, immunohistochemistry, RT-PCR and Western blot. KEY FINDINGS The heart-weight to body-weight (HW/BW) ratio, the histologic scores and the iNOS mRNA and protein expression levels were higher, and the HO-1 mRNA and protein expression levels were lower in mice treated with PAG than those mice solely inoculated with CVB3. Mice in group S had a significant decreased in the HW/BW ratio, the histologic scores and the iNOS mRNA and protein expression levels, and had a significant increased in the HO-1 mRNA and protein expression levels compared to the mice in group C. H2S can attenuate inflammatory cell infiltration, alleviate cardiac edema, and limit myocardial lesions. SIGNIFICANCE Our data support that H2S can inhibit iNOS overexpression and induce HO-1 expression, both of which contribute to the cardioprotection of H2S in CVB3-induced mice myocarditis.
Collapse
Affiliation(s)
- Wang Hua
- Department of Cardiology, Children's Hospital, Zhejiang University School of Medicine, PR China; The Key Laboratory of Reproductive Genetics (Zhejiang University), Ministry of Education, PR China
| | | | | | | | | | | |
Collapse
|
214
|
Borović ML, Ičević I, Kanački Z, Žikić D, Seke M, Injac R, Djordjević A. Effects of Fullerenol C60(OH)24Nanoparticles on a Single-dose Doxorubicin-induced Cardiotoxicity in Pigs: An Ultrastructural Study. Ultrastruct Pathol 2013; 38:150-63. [DOI: 10.3109/01913123.2013.822045] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
|
215
|
Kar S, Kavdia M. Endothelial NO and O₂·⁻ production rates differentially regulate oxidative, nitroxidative, and nitrosative stress in the microcirculation. Free Radic Biol Med 2013; 63:161-74. [PMID: 23639567 PMCID: PMC4051226 DOI: 10.1016/j.freeradbiomed.2013.04.024] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/14/2012] [Revised: 04/04/2013] [Accepted: 04/13/2013] [Indexed: 02/07/2023]
Abstract
Endothelial dysfunction causes an imbalance in endothelial NO and O₂·⁻ production rates and increased peroxynitrite formation. Peroxynitrite and its decomposition products cause multiple deleterious effects including tyrosine nitration of proteins, superoxide dismutase (SOD) inactivation, and tissue damage. Studies have shown that peroxynitrite formation during endothelial dysfunction is strongly dependent on the NO and O₂·⁻ production rates. Previous experimental and modeling studies examining the role of NO and O₂·⁻ production imbalance on peroxynitrite formation showed different results in biological and synthetic systems. However, there is a lack of quantitative information about the formation and biological relevance of peroxynitrite under oxidative, nitroxidative, and nitrosative stress conditions in the microcirculation. We developed a computational biotransport model to examine the role of endothelial NO and O₂·⁻ production on the complex biochemical NO and O₂·⁻ interactions in the microcirculation. We also modeled the effect of variability in SOD expression and activity during oxidative stress. The results showed that peroxynitrite concentration increased with increase in either O₂·⁻ to NO or NO to O₂·⁻ production rate ratio (QO₂·⁻/QNO or QNO/QO₂·⁻, respectively). The peroxynitrite concentrations were similar for both production rate ratios, indicating that peroxynitrite-related nitroxidative and nitrosative stresses may be similar in endothelial dysfunction or inducible NO synthase (iNOS)-induced NO production. The endothelial peroxynitrite concentration increased with increase in both QO₂·⁻/QNO and QNO/QO₂·⁻ ratios at SOD concentrations of 0.1-100 μM. The absence of SOD may not mitigate the extent of peroxynitrite-mediated toxicity, as we predicted an insignificant increase in peroxynitrite levels beyond QO₂·⁻/QNO and QNO/QO₂·⁻ ratios of 1. The results support the experimental observations of biological systems and show that peroxynitrite formation increases with increase in either NO or O₂·⁻ production, and excess NO production from iNOS or from NO donors during oxidative stress conditions does not reduce the extent of peroxynitrite mediated toxicity.
Collapse
Affiliation(s)
- Saptarshi Kar
- Department of Biomedical Engineering, Wayne State University, Detroit, MI 48202, USA.
| | | |
Collapse
|
216
|
Martínez-Alfaro M, Ramírez-García G, Gutiérrez-Granados S, Alcaraz-Contreras Y, Gallegos-Corona MA, de Larrea GZL, Cárabez-Trejo A. Melatonin attenuates the effects of sub-acute administration of lead on kidneys in rats without altering the lead-induced reduction in nitric oxide. J Trace Elem Med Biol 2013; 27:364-9. [PMID: 23992869 DOI: 10.1016/j.jtemb.2013.05.003] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/17/2013] [Revised: 05/05/2013] [Accepted: 05/15/2013] [Indexed: 11/19/2022]
Abstract
Exposure to lead induces oxidative stress and renal damage. Although most forms of oxidative stress are characterized by simultaneous elevation of nitrogen and oxidative species, lead-induced oxidative stress is unusual in that it is associated with a reduction in nitric oxide (NO) levels in the kidney. The role of NO in kidney injury is controversial; some studies suggest that it is associated with renal injury, whereas others show that it exerts protective effects. Concentration-dependent effects have also been proposed, linking low levels with vasodilatation and high levels with toxicity. The aim of this study was to evaluate the effects of melatonin co-exposure on the lead-induced reduction in renal NO levels. We found that sub-acute intraperitoneal administration of 10 mg/kg/day of lead for 15 days induced toxic levels of lead in the blood and caused renal toxicity (pathological and functional). Under our experimental conditions, lead induced an increase in lipid peroxidation and a decrease in NO. Melatonin co-treatment decreased lead-induced oxidative stress (peroxidation level) and toxic effects on kidneys without altering the lead-induced reduction in renal NO. These results suggest that, in our experimental model, the reduction in renal NO levels by lead exposure is not the only responsible factor for lead-induced kidney damage.
Collapse
|
217
|
Theodossiou TA, Sideratou Z, Katsarou ME, Tsiourvas D. Mitochondrial Delivery of Doxorubicin by Triphenylphosphonium-Functionalized Hyperbranched Nanocarriers Results in Rapid and Severe Cytotoxicity. Pharm Res 2013; 30:2832-42. [DOI: 10.1007/s11095-013-1111-7] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2013] [Accepted: 06/04/2013] [Indexed: 10/26/2022]
|
218
|
Nayak PG, Paul P, Bansal P, Kutty NG, Pai KSR. Sesamol prevents doxorubicin-induced oxidative damage and toxicity on H9c2 cardiomyoblasts. J Pharm Pharmacol 2013; 65:1083-1093. [PMID: 23738736 DOI: 10.1111/jphp.12073] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2012] [Accepted: 03/18/2013] [Indexed: 12/14/2022]
Abstract
OBJECTIVES Exposure to toxicants like doxorubicin (Dox) damages cellular components by generating reactive oxygen species (ROS). This can be attenuated using free radical scavengers and/or antioxidants. METHODS Dox-exposed cardiac myoblasts (H9c2 cells) were treated with sesamol (12.5, 25 and 50 μm), a natural phenolic compound. Intracellular ROS inhibition, cell viability and analysis of antioxidant and biochemical markers such as superoxide dismutase, catalase, glutathione-S-transferase, glutathione peroxidase, reduced/oxidized glutathione, lipid peroxidation and protein carbonyl content were performed. The effect of sesamol treatment on the cytotoxic and genotoxic parameters was studied by monitoring the signalling proteins involved in the apoptotic pathway. KEY FINDINGS Dox triggered cellular and genetic damage by increasing levels of intracellular ROS, thereby decreasing cell viability and increasing apoptosis. Sesamol reversed the cytotoxic and genotoxic effects of Dox. In addition, sesamol attenuated the pro-apoptotic proteins and improved the anti-apoptotic status. Sesamol pre-treatment also alleviated the disturbed antioxidant milieu by preventing ROS production and improving endogenous enzyme levels. CONCLUSIONS Among the different doses tested, 50 μm of sesamol showed maximum protection against Dox-induced oxidative damage. This reflects the significance of sesamol in ameliorating the deleterious effects associated with cancer chemotherapy.
Collapse
Affiliation(s)
- Pawan G Nayak
- Department of Pharmacology, Manipal College of Pharmaceutical Sciences, Manipal University, Manipal, Karnataka, India
| | | | | | | | | |
Collapse
|
219
|
Dexrazoxane Prevents the Development of the Impaired Cardiac Phenotype in Caveolin-1-disrupted Mice. J Cardiovasc Pharmacol 2013; 61:545-52. [DOI: 10.1097/fjc.0b013e31828de47c] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
220
|
Mukhopadhyay P, Das S, Ahsan MK, Otani H, Das DK. Modulation of microRNA 20b with resveratrol and longevinex is linked with their potent anti-angiogenic action in the ischaemic myocardium and synergestic effects of resveratrol and γ-tocotrienol. J Cell Mol Med 2013; 16:2504-17. [PMID: 22050707 PMCID: PMC3823443 DOI: 10.1111/j.1582-4934.2011.01480.x] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Resveratrol, a constituent of red wine, and γ-tocotrienol, a constituent of palm oil are important for cardioprotection. Although microRNAs are known regulators for genes involved in cardiac remodelling, the regulatory pathway involving microRNA has not been studied so far. We explored the cardioprotection by resveratrol, longevinex and γ−tocotrienol in ischaemia/reperfusion(I/R) model of rat and determined miRNA profile from isolated RNA. Systemic analyses of miRNA array and theirs targets were determined using a number of computational approaches. Resveratrol and γ-tocotrienol, either alone or in combination, modulated the expression pattern of miRNAs close to the control level based on PCA analyses. Differential expression was observed in over 75 miRNAs, some of them, such as miR-21 and miR-20b (anti-angiogenic) were previously implicated in cardiac remodelling. The target genes for the highest differentially expressed miRNA include genes of various molecular functions such as TGFβ1–Smad3 signalling pathway, inflammation and their transcription factors, which may play key role in reducing I/R injury. Administration of antagomiR-20 attenuated I/R induced vascular endothelial growth factor and HIF1α level. All the interventions treated for 3 weeks lead to significant cardioprotection against ischaemia/reperfusion injury. A unique signature of miRNA profile is observed in control heart pretreated with resveratrol or γ-tocotrienol. We have determined specific group of miRNA in heart that have altered during IR injuries. Most of those altered microRNA expressions modulated close to their basal level in resveratrol or longevinex treated I/R rat. Interestingly, resveratrol and γ-tocotrienol resulted in synergestic action.
Collapse
Affiliation(s)
- Partha Mukhopadhyay
- Laboratory of Physiologic Studies, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Bethesda, MD, USA
| | | | | | | | | |
Collapse
|
221
|
Shin SR, Jung SM, Zalabany M, Kim K, Zorlutuna P, Kim SB, Nikkhah M, Khabiry M, Azize M, Kong J, Wan KT, Palacios T, Dokmeci MR, Bae H, Tang XS, Khademhosseini A. Carbon-nanotube-embedded hydrogel sheets for engineering cardiac constructs and bioactuators. ACS NANO 2013; 7:2369-80. [PMID: 23363247 PMCID: PMC3609875 DOI: 10.1021/nn305559j] [Citation(s) in RCA: 605] [Impact Index Per Article: 50.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
We engineered functional cardiac patches by seeding neonatal rat cardiomyocytes onto carbon nanotube (CNT)-incorporated photo-cross-linkable gelatin methacrylate (GelMA) hydrogels. The resulting cardiac constructs showed excellent mechanical integrity and advanced electrophysiological functions. Specifically, myocardial tissues cultured on 50 μm thick CNT-GelMA showed 3 times higher spontaneous synchronous beating rates and 85% lower excitation threshold, compared to those cultured on pristine GelMA hydrogels. Our results indicate that the electrically conductive and nanofibrous networks formed by CNTs within a porous gelatin framework are the key characteristics of CNT-GelMA leading to improved cardiac cell adhesion, organization, and cell-cell coupling. Centimeter-scale patches were released from glass substrates to form 3D biohybrid actuators, which showed controllable linear cyclic contraction/extension, pumping, and swimming actuations. In addition, we demonstrate for the first time that cardiac tissues cultured on CNT-GelMA resist damage by a model cardiac inhibitor as well as a cytotoxic compound. Therefore, incorporation of CNTs into gelatin, and potentially other biomaterials, could be useful in creating multifunctional cardiac scaffolds for both therapeutic purposes and in vitro studies. These hybrid materials could also be used for neuron and other muscle cells to create tissue constructs with improved organization, electroactivity, and mechanical integrity.
Collapse
Affiliation(s)
- Su Ryon Shin
- Center for Biomedical Engineering, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, 65 Landsdowne Street, Cambridge, Massachusetts 02139, United States
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
222
|
Carvalho FS, Burgeiro A, Garcia R, Moreno AJ, Carvalho RA, Oliveira PJ. Doxorubicin-Induced Cardiotoxicity: From Bioenergetic Failure and Cell Death to Cardiomyopathy. Med Res Rev 2013; 34:106-35. [DOI: 10.1002/med.21280] [Citation(s) in RCA: 349] [Impact Index Per Article: 29.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- Filipa S. Carvalho
- CNC-Center for Neuroscience and Cell Biology; University of Coimbra; 3004-517 Coimbra Portugal
- Department of Life Sciences; University of Coimbra; 3004-517 Coimbra Portugal
| | - Ana Burgeiro
- CNC-Center for Neuroscience and Cell Biology; University of Coimbra; 3004-517 Coimbra Portugal
- IMAR-Institute of Marine Research; University of Coimbra; Portugal
| | - Rita Garcia
- IMAR-Institute of Marine Research; University of Coimbra; Portugal
| | - António J. Moreno
- Department of Life Sciences; University of Coimbra; 3004-517 Coimbra Portugal
- IMAR-Institute of Marine Research; University of Coimbra; Portugal
| | - Rui A. Carvalho
- CNC-Center for Neuroscience and Cell Biology; University of Coimbra; 3004-517 Coimbra Portugal
- Department of Life Sciences; University of Coimbra; 3004-517 Coimbra Portugal
| | - Paulo J. Oliveira
- CNC-Center for Neuroscience and Cell Biology; University of Coimbra; 3004-517 Coimbra Portugal
| |
Collapse
|
223
|
Štěrba M, Popelová O, Vávrová A, Jirkovský E, Kovaříková P, Geršl V, Šimůnek T. Oxidative stress, redox signaling, and metal chelation in anthracycline cardiotoxicity and pharmacological cardioprotection. Antioxid Redox Signal 2013; 18:899-929. [PMID: 22794198 PMCID: PMC3557437 DOI: 10.1089/ars.2012.4795] [Citation(s) in RCA: 252] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/04/2012] [Accepted: 07/15/2012] [Indexed: 12/22/2022]
Abstract
SIGNIFICANCE Anthracyclines (doxorubicin, daunorubicin, or epirubicin) rank among the most effective anticancer drugs, but their clinical usefulness is hampered by the risk of cardiotoxicity. The most feared are the chronic forms of cardiotoxicity, characterized by irreversible cardiac damage and congestive heart failure. Although the pathogenesis of anthracycline cardiotoxicity seems to be complex, the pivotal role has been traditionally attributed to the iron-mediated formation of reactive oxygen species (ROS). In clinics, the bisdioxopiperazine agent dexrazoxane (ICRF-187) reduces the risk of anthracycline cardiotoxicity without a significant effect on response to chemotherapy. The prevailing concept describes dexrazoxane as a prodrug undergoing bioactivation to an iron-chelating agent ADR-925, which may inhibit anthracycline-induced ROS formation and oxidative damage to cardiomyocytes. RECENT ADVANCES A considerable body of evidence points to mitochondria as the key targets for anthracycline cardiotoxicity, and therefore it could be also crucial for effective cardioprotection. Numerous antioxidants and several iron chelators have been tested in vitro and in vivo with variable outcomes. None of these compounds have matched or even surpassed the effectiveness of dexrazoxane in chronic anthracycline cardiotoxicity settings, despite being stronger chelators and/or antioxidants. CRITICAL ISSUES The interpretation of many findings is complicated by the heterogeneity of experimental models and frequent employment of acute high-dose treatments with limited translatability to clinical practice. FUTURE DIRECTIONS Dexrazoxane may be the key to the enigma of anthracycline cardiotoxicity, and therefore it warrants further investigation, including the search for alternative/complementary modes of cardioprotective action beyond simple iron chelation.
Collapse
Affiliation(s)
- Martin Štěrba
- Department of Pharmacology, Faculty of Medicine in Hradec Králové, Charles University in Prague, Hradec Králové, Czech Republic
| | - Olga Popelová
- Department of Pharmacology, Faculty of Medicine in Hradec Králové, Charles University in Prague, Hradec Králové, Czech Republic
| | - Anna Vávrová
- Department of Biochemical Sciences, Charles University in Prague, Hradec Králové, Czech Republic
| | - Eduard Jirkovský
- Department of Pharmacology, Faculty of Medicine in Hradec Králové, Charles University in Prague, Hradec Králové, Czech Republic
| | - Petra Kovaříková
- Department of Pharmaceutical Chemistry and Drug Control, Faculty of Pharmacy in Hradec Králové, Charles University in Prague, Hradec Králové, Czech Republic
| | - Vladimír Geršl
- Department of Pharmacology, Faculty of Medicine in Hradec Králové, Charles University in Prague, Hradec Králové, Czech Republic
| | - Tomáš Šimůnek
- Department of Biochemical Sciences, Charles University in Prague, Hradec Králové, Czech Republic
| |
Collapse
|
224
|
Yang J, Maity B, Huang J, Gao Z, Stewart A, Weiss RM, Anderson ME, Fisher RA. G-protein inactivator RGS6 mediates myocardial cell apoptosis and cardiomyopathy caused by doxorubicin. Cancer Res 2013; 73:1662-7. [PMID: 23338613 DOI: 10.1158/0008-5472.can-12-3453] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Clinical use of the widely used chemotherapeutic agent doxorubicin is limited by life-threatening cardiotoxicity. The mechanisms underlying doxorubicin-induced cardiomyopathy and heart failure remain unclear but are thought to involve p53-mediated myocardial cell apoptosis. The tripartite G-protein inactivating protein RGS6 has been implicated in reactive oxygen species (ROS) generation, ATM/p53 activation, and apoptosis in doxorubicin-treated cells. Thus, we hypothesized that RGS6, the expression of which is enriched in cardiac tissue, might also be responsible for the pathologic effects of doxorubicin treatment in heart. In this study, we show that RGS6 expression is induced strongly by doxorubicin in the ventricles of mice and isolated ventricular myocytes via a posttranscriptional mechanism. While doxorubicin-treated wild-type (WT) mice manifested severe left ventricular dysfunction, loss of heart and body mass, along with decreased survival 5 days after doxorubicin administration, mice lacking RGS6 were completely protected against these pathogenic responses. Activation of ATM/p53 apoptosis signaling by doxorubicin in ventricles of WT mice was also absent in their RGS6(-/-) counterparts. Doxorubicin-induced ROS generation was dramatically impaired in both the ventricles and ventricular myocytes isolated from RGS6(-/-) mice, and the apoptotic response to doxorubicin in ventricular myocytes required RGS6-dependent ROS production. These results identify RGS6 as an essential mediator of the pathogenic responses to doxorubicin in heart, and they argue that RGS6 inhibition offers a rational means to circumvent doxorubicin cardiotoxicity in human patients with cancer.
Collapse
Affiliation(s)
- Jianqi Yang
- Department of Pharmacology, Roy J. and Lucille A. Carver College of Medicine, The University of Iowa, Iowa City, Iowa 52242, USA
| | | | | | | | | | | | | | | |
Collapse
|
225
|
Li L, Yue Z, Wan X, Zhang G, Song S, Bai X, Jiao Y, Ju Y, Li J. Alteration of discoidin domain receptor-2 expression: possible role in peroxynitrite-induced apoptosis in human cerebral vascular smooth muscle cells. Mol Cell Toxicol 2013. [DOI: 10.1007/s13273-012-0049-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
226
|
Quercetin potentiates doxorubicin mediated antitumor effects against liver cancer through p53/Bcl-xl. PLoS One 2012; 7:e51764. [PMID: 23240061 PMCID: PMC3519886 DOI: 10.1371/journal.pone.0051764] [Citation(s) in RCA: 84] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2012] [Accepted: 11/07/2012] [Indexed: 02/05/2023] Open
Abstract
BACKGROUND The dose-dependent toxicities of doxorubicin (DOX) limit its clinical applications, particularly in drug-resistant cancers, such as liver cancer. In this study, we investigated the role of quercetin on the antitumor effects of DOX on liver cancer cells and its ability to provide protection against DOX-mediated liver damage in mice. METHODOLOGY AND RESULTS The MTT and Annexin V/PI staining assay demonstrated that quercetin selectively sensitized DOX-induced cytotoxicity against liver cancer cells while protecting normal liver cells. The increase in DOX-mediated apoptosis in hepatoma cells by quercetin was p53-dependent and occurred by downregulating Bcl-xl expression. Z-VAD-fmk (caspase inhibitor), pifithrin-α (p53 inhibitor), or overexpressed Bcl-xl decreased the effects of quercetin on DOX-mediated apoptosis. The combined treatment of quercetin and DOX significantly reduced the growth of liver cancer xenografts in mice. Moreover, quercetin decreased the serum levels of alanine aminotransferase and aspartate aminotransferase that were increased in DOX-treated mice. Quercetin also reversed the DOX-induced pathological changes in mice livers. CONCLUSION AND SIGNIFICANCE These results indicate that quercetin potentiated the antitumor effects of DOX on liver cancer cells while protecting normal liver cells. Therefore, the development of quercetin may be beneficial in a combined treatment with DOX for increased therapeutic efficacy against liver cancer.
Collapse
|
227
|
Khouri MG, Douglas PS, Mackey JR, Martin M, Scott JM, Scherrer-Crosbie M, Jones LW. Cancer therapy-induced cardiac toxicity in early breast cancer: addressing the unresolved issues. Circulation 2012; 126:2749-63. [PMID: 23212997 PMCID: PMC3667651 DOI: 10.1161/circulationaha.112.100560] [Citation(s) in RCA: 166] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Affiliation(s)
| | | | | | - Miguel Martin
- Hospital General Universitario Gregorio Maranon, Universidad Complutense, Madrid, Spain
| | | | | | | |
Collapse
|
228
|
Kumagai K, Imai S, Toyoda F, Okumura N, Isoya E, Matsuura H, Matsusue Y. 17β-Oestradiol inhibits doxorubicin-induced apoptosis via block of the volume-sensitive Cl(-) current in rabbit articular chondrocytes. Br J Pharmacol 2012; 166:702-20. [PMID: 22142024 DOI: 10.1111/j.1476-5381.2011.01802.x] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Abstract
BACKGROUND AND PURPOSE Chondrocyte apoptosis contributes to disruption of cartilage integrity in osteoarthritis. Recent evidence suggested that the volume-sensitive organic osmolyte/anion channel [volume-sensitive (outwardly rectifying) Cl(-) current (I(Cl,vol) )] plays a functional role in the development of cell shrinkage associated with apoptosis (apoptotic volume decrease) in several cell types. In this study, we investigated the cellular effects of 17β-oestradiol on doxorubicin-induced apoptotic responses in rabbit articular chondrocytes. EXPERIMENTAL APPROACH Whole-cell membrane currents and cross-sectional area were measured from chondrocytes using a patch-clamp method and microscopic cell imaging, respectively. Caspase-3/7 activity was assayed as an index of apoptosis. KEY RESULTS Addition of doxorubicin (1 µM) to isosmotic bath solution rapidly activated the Cl(-) current with properties similar to those of I(Cl,vol) in chondrocytes. Doxorubicin also gradually decreased the cross-sectional area of chondrocytes, followed by enhanced caspase-3/7 activity; both of these responses were totally abolished by the I(Cl,vol) blocker DCPIB (20 µM). Pretreatment of chondrocytes with 17β-oestradiol (1 nM) for short (approximately 10 min) and long (24 h) periods almost completely prevented the doxorubicin-induced activation of I(Cl,vol) and subsequent elevation of caspase-3/7 activity. These effects of 17β-oestradiol were significantly attenuated by the oestrogen receptor blocker ICI 182780 (10 µM), as well as the phosphatidyl inositol-3-kinase (PI3K) inhibitors wortmannin (100 nM) and LY294002 (20 µM). Testosterone (10 nM) had no effect on the doxorubicin-induced Cl(-) current. CONCLUSIONS AND IMPLICATIONS 17β-Oestradiol prevents the doxorubicin-induced cell shrinkage mediated through activation of I(Cl,vol) and subsequent induction of apoptosis signals, through a membrane receptor-dependent PI3K pathway in rabbit articular chondrocytes.
Collapse
Affiliation(s)
- Kousuke Kumagai
- Department of Orthopaedic Surgery, Shiga University of Medical Science, Otsu, Shiga, Japan
| | | | | | | | | | | | | |
Collapse
|
229
|
Mukhopadhyay P, Horváth B, Zsengellėr Z, Bátkai S, Cao Z, Kechrid M, Holovac E, Erdėlyi K, Tanchian G, Liaudet L, Stillman IE, Joseph J, Kalyanaraman B, Pacher P. Mitochondrial reactive oxygen species generation triggers inflammatory response and tissue injury associated with hepatic ischemia-reperfusion: therapeutic potential of mitochondrially targeted antioxidants. Free Radic Biol Med 2012; 53:1123-1138. [PMID: 22683818 PMCID: PMC3432152 DOI: 10.1016/j.freeradbiomed.2012.05.036] [Citation(s) in RCA: 109] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/19/2012] [Revised: 05/18/2012] [Accepted: 05/24/2012] [Indexed: 12/16/2022]
Abstract
Mitochondrial reactive oxygen species generation has been implicated in the pathophysiology of ischemia-reperfusion (I/R) injury; however, its exact role and its spatial-temporal relationship with inflammation are elusive. Herein we explore the spatial-temporal relationship of oxidative/nitrative stress and inflammatory response during the course of hepatic I/R and the possible therapeutic potential of mitochondrial-targeted antioxidants, using a mouse model of segmental hepatic ischemia-reperfusion injury. Hepatic I/R was characterized by early (at 2 h of reperfusion) mitochondrial injury, decreased complex I activity, increased oxidant generation in the liver or liver mitochondria, and profound hepatocellular injury/dysfunction with acute proinflammatory response (TNF-α, MIP-1α/CCL3, MIP-2/CXCL2) without inflammatory cell infiltration, followed by marked neutrophil infiltration and a more pronounced secondary wave of oxidative/nitrative stress in the liver (starting from 6 h of reperfusion and peaking at 24 h). Mitochondrially targeted antioxidants, MitoQ or Mito-CP, dose-dependently attenuated I/R-induced liver dysfunction, the early and delayed oxidative and nitrative stress response (HNE/carbonyl adducts, malondialdehyde, 8-OHdG, and 3-nitrotyrosine formation), and mitochondrial and histopathological injury/dysfunction, as well as delayed inflammatory cell infiltration and cell death. Mitochondrially generated oxidants play a central role in triggering the deleterious cascade of events associated with hepatic I/R, which may be targeted by novel antioxidants for therapeutic advantage.
Collapse
Affiliation(s)
- Partha Mukhopadhyay
- Laboratory of Physiologic Studies, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Bethesda, Maryland, USA
| | - Bėla Horváth
- Laboratory of Physiologic Studies, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Bethesda, Maryland, USA
| | - Zsuzsanna Zsengellėr
- Department of Pathology, Beth Israel Deaconess Medical Center, and Harvard Medical School, Boston, Massachusetts 02215, USA
| | - Sándor Bátkai
- Laboratory of Physiologic Studies, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Bethesda, Maryland, USA
| | - Zongxian Cao
- Laboratory of Physiologic Studies, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Bethesda, Maryland, USA
| | - Malek Kechrid
- Laboratory of Physiologic Studies, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Bethesda, Maryland, USA
| | - Eileen Holovac
- Laboratory of Physiologic Studies, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Bethesda, Maryland, USA
| | - Katalin Erdėlyi
- Laboratory of Physiologic Studies, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Bethesda, Maryland, USA
| | - Galin Tanchian
- Laboratory of Physiologic Studies, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Bethesda, Maryland, USA
| | - Lucas Liaudet
- Department of Intensive Care Medicine, University Hospital Center and Faculty of Biology and Medicine, 1011 Lausanne, Switzerland
| | - Isaac E. Stillman
- Department of Pathology, Beth Israel Deaconess Medical Center, and Harvard Medical School, Boston, Massachusetts 02215, USA
| | - Joy Joseph
- Free Radical Research Center, Medical College of Wisconsin, Milwaukee, Wisconsin 53226
| | | | - Pál Pacher
- Laboratory of Physiologic Studies, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Bethesda, Maryland, USA
| |
Collapse
|
230
|
Vasti C, Witt H, Said M, Sorroche P, García-Rivello H, Ruiz-Noppinger P, Hertig CM. Doxorubicin and NRG-1/erbB4-Deficiency Affect Gene Expression Profile: Involving Protein Homeostasis in Mouse. ISRN CARDIOLOGY 2012; 2012:745185. [PMID: 22970387 PMCID: PMC3437290 DOI: 10.5402/2012/745185] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/16/2012] [Accepted: 07/01/2012] [Indexed: 12/17/2022]
Abstract
The accumulating evidence demonstrates the essential role of neuregulin-1 signaling in the adult heart, and, moreover, indicates that an impaired neuregulin signaling exacerbates the doxorubicin-mediated cardiac toxicity. Despite this strong data, the specific cardiomyocyte targets of the active erbB2/erbB4 heterodimer remain unknown. In this paper, we examined pathways involved in cardiomyocyte damage as a result of the cardiac sensitization to anthracycline toxicity in the ventricular muscle-specific erbB4 knockout mouse. We performed morphological analyses to evaluate the ventricular remodeling and employed a cDNA microarray to assess the characteristic gene expression profile, verified data by real-time RT-PCR, and then grouped into functional categories and pathways. We confirm the upregulation of genes related to the classical signature of a hypertrophic response, implicating an erbB2-dependent mechanism in doxorubicin-treated erbB4-KO hearts. Our results indicate the remarkable downregulation of IGF-I/PI-3′ kinase pathway and extends our current knowledge by uncovering an altered ubiquitin-proteasome system leading to cardiomyocyte autophagic vacuolization.
Collapse
Affiliation(s)
- Cecilia Vasti
- Instituto de Investigaciones en Ingeniería Genética y Biología Molecular-(INGEBI), Vuelta de Obligado 2490, Buenos Aires 1428, Argentina
| | | | | | | | | | | | | |
Collapse
|
231
|
Intensification of doxorubicin-related oxidative stress in the heart by hypothyroidism is not related to the expression of cytochrome P450 NADPH-reductase and inducible nitric oxide synthase, as well as activity of xanthine oxidase. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2012; 2012:139327. [PMID: 22966413 PMCID: PMC3432562 DOI: 10.1155/2012/139327] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/21/2012] [Accepted: 07/05/2012] [Indexed: 11/17/2022]
Abstract
Cytochrome P450 NADPH-reductase (P450R), inducible synthase (iNOS) and xanthine oxidase play an important role in the antracycline-related cardiotoxicity. The expression of P450R and iNOS is regulated by triiodothyronine. The aim of this study was to evaluate the effect of methimazole-induced hypothyreosis on oxidative stress secondary to doxorubicin administration. 48 hours after methimazole giving cessation, rats were exposed to doxorubicin (2.0, 5.0 and 15 mg/kg). Blood and heart were collected 4, 48 and 96 h after the drug administration. Animals exposed exclusively to doxorubicin or untreated ones were also assessed. The hypothyreosis (0.025% of methimazole) significantly increased the doxorubicin effect on the cardiac carbonyl group and they may increase the glutathione level. An insignificant effect of methimazole was noticed in case of the cardiac lipid peroxidation product, the amount of DNA oxidative damages, iNOS and xanthine oxidase-enzymes responsible for red-ox activation of doxorubicin. However, the concentration of P450R was affected by a lower dose of methimazole in rats administered with doxorubicin. Since in rats receiving doxorubicin changes in oxidative stress caused by methimazole were not accompanied by elevation of bioreductive enzymes, it may be concluded that these changes in the oxidative stress were not related to the tested enzymes.
Collapse
|
232
|
Wang JS, Chang YL, Yu YH, Chen CY, Kao MC, Li TK, Lin WW. Cell type-specific effects of Adenosine 5'-triphosphate and pyrophosphate on the antitumor activity of doxorubicin. Cancer Sci 2012; 103:1811-9. [PMID: 22747580 DOI: 10.1111/j.1349-7006.2012.02376.x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2012] [Revised: 06/04/2012] [Accepted: 07/02/2012] [Indexed: 12/21/2022] Open
Abstract
Extracellular ATP is an important signaling molecule mediating quite divergent specific biological effects. Even though recent studies suggest a potential role of ATP in cancer progress, its real impact in chemotherapeutic efficacy remains unclear. In the present study, we investigated the effect of ATP on the cytotoxicity of doxorubicin in various cancer cell types and found that ATP had no effect on doxorubicin cytotoxicity in colon, prostate, breast, and cervical cancers or in osteosarcoma. In contrast, ATP has divergent effects on lung cancer cells: it can protect against doxorubicin-induced cell death in non-metastatic lung cancer CL1.0 cells, but not in highly metastatic CL1.5 cells. Both apoptotic (characterized by sub-G(1) peak, caspase 3 activation, poly(ADP-ribose) polymerase-1 cleavage) and necrotic (characterized by propidium iodide uptake and ROS production) features induced by doxorubicin in CL1.0 cells were reduced by ATP. In addition, ATP attenuated p53 accumulation, DNA damage (assessed by poly(ADP-ribose) formation and the comet assay) and topoisomerase II inhibition after doxorubicin treatment, and doxorubicin cytotoxicity was diminished by the p53 inhibitor pifithrin-α. Moreover, UTP, UDP, ADP, and pyrophosphate sodium pyrophosphate tetrabasic decahydrate diminished the antitumor effect of doxorubicin in CL1.0 cells, whereas purinergic P2 receptors antagonists did not abrogate the action of ATP. In summary, ATP fails to alter the antitumor efficacy of doxorubicin in most cancer cell types, except in CL1.0 cells, in which pyrophosphate mediates the cell protection afforded by ATP via attenuation of reactive oxygen species production, DNA damage, p53 accumulation, and caspase activation.
Collapse
Affiliation(s)
- Jang-Shiun Wang
- Department of Pharmacology, College of Medicine, National Taiwan University, Taipei, Taiwan
| | | | | | | | | | | | | |
Collapse
|
233
|
Wu GS, Jiang M, Liu YH, Nagaoka Y, Rao NA. Phenotype of transgenic mice overexpressed with inducible nitric oxide synthase in the retina. PLoS One 2012; 7:e43089. [PMID: 22905206 PMCID: PMC3414486 DOI: 10.1371/journal.pone.0043089] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2012] [Accepted: 07/16/2012] [Indexed: 12/30/2022] Open
Abstract
BACKGROUND Unlike its constitutive isoforms, including neuronal and endothelial nitric oxide synthase, inducible nitric oxide synthase (iNOS) along with a series of cytokines are generated in inflammatory pathologic conditions in retinal photoreceptors. In this study, we constructed transgenic mice overexpressing iNOS in the retina to evaluate the effect of sustained, intense iNOS generation in the photoreceptor damage. METHODS For construction of opsin/iNOS transgene in the CMVSport 6 expression vector, the 4.4 kb Acc65I/Xhol mouse rod opsin promoter was ligated upstream to a 4.1 kb fragment encoding the complete mouse cDNA of iNOS. From the four founders identified, two heterozygote lines and one homozygote line were established. The presence of iNOS in the retina was confirmed and the pathologic role of iNOS was assessed by detecting nitrotyrosine products and apoptosis. Commercial TUNEL kit was used to detect DNA strand breaks, a later step in a sequence of morphologic changes of apoptosis process. RESULTS The insertion and translation of iNOS gene were demonstrated by an intense single 130 kDa band in Western blot and specific immunolocalization at the photoreceptors of the retina. Cellular toxicity in the retinas of transgenic animals was detected by a post-translational modification product, tyrosine-nitrated protein, the most significant one of which was nitrated cytochrome c. Following the accumulation of nitrated mitochondrial proteins and cytochrome c release, marked apoptosis was detected in the photoreceptor cell nuclei of the retina. CONCLUSIONS We have generated a pathologic phenotype with sustained iNOS overexpression and, therefore, high output of nitric oxide. Under basal conditions, such overexpression of iNOS causes marked mitochondrial cytochrome c nitration and release and subsequent photoreceptor apoptosis in the retina. Therefore, the modulation of pathways leading to iNOS generation or its effective neutralization can be of significant therapeutic benefit in the oxidative stress-mediated retinal degeneration, a leading cause of blindness.
Collapse
Affiliation(s)
- Guey Shuang Wu
- Department of Ophthalmology, Doheny Eye Institute, Keck School of Medicine, University of Southern California, Los Angeles, California
| | - Meisheng Jiang
- Department of Molecular and Medical Pharmacology, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, California
| | - Yi-Hsin Liu
- Department of Ophthalmology, Doheny Eye Institute, Keck School of Medicine, University of Southern California, Los Angeles, California
| | - Yoshiko Nagaoka
- Department of Molecular and Medical Pharmacology, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, California
| | - Narsing A. Rao
- Department of Ophthalmology, Doheny Eye Institute, Keck School of Medicine, University of Southern California, Los Angeles, California
- * E-mail:
| |
Collapse
|
234
|
Park J, Park E, Ahn BH, Kim HJ, Park JH, Koo SY, Kwak HS, Park HS, Kim DW, Song M, Yim HJ, Seo DO, Kim SH. NecroX-7 prevents oxidative stress-induced cardiomyopathy by inhibition of NADPH oxidase activity in rats. Toxicol Appl Pharmacol 2012; 263:1-6. [DOI: 10.1016/j.taap.2012.05.014] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2011] [Revised: 05/15/2012] [Accepted: 05/23/2012] [Indexed: 10/28/2022]
|
235
|
Regulation of kinase cascade activation and heat shock protein expression by poly(ADP-ribose) polymerase inhibition in doxorubicin-induced heart failure. J Cardiovasc Pharmacol 2012; 58:380-91. [PMID: 21697725 DOI: 10.1097/fjc.0b013e318225c21e] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Cardiomyopathy is one of the most severe side effects of the chemotherapeutic agent doxorubicin (DOX). The formation of reactive oxygen species plays a critical role in the development of cardiomyopathies, and the pathophysiological cascade activates nuclear enzyme poly(ADP-ribose) polymerase (PARP), and kinase pathways. We characterized the effects of the PARP-inhibitor and kinase-modulator compound L-2286 in DOX-induced cardiac injury models. We studied the effect of the established superoxide dismutase-mimic Tempol and compared the effects of this agent with those of the PARP inhibitor. In the rat H9C2 cardiomyocytes, in which DOX-induced poly(ADP-ribosyl)ation, L-2286 protected them from the DOX-induced injury in a concentration-dependent manner. In the in vivo studies, mice were pretreated (for 1 week) with L-2286 or Tempol before the DOX treatment. Both the agents improved the activation of cytoprotective kinases, Akt, phospho-specific protein kinase C ϵ, ζ/λ and suppressed the activity of cell death promoting kinases glycogen synthase kinase-3β, JNK, and p38 mitogen-activated protein kinase, but the effect of PARP inhibitor was more pronounced and improved the survival as well. L-2286 activated the phosphorylation of proapoptotic transcription factor FKHR1 and promoted the expression of Hsp72 and Hsp90. These data suggest that the mode of the cytoprotective action of the PARP inhibitor may include the modulation of kinase pathways and heat shock protein expression.
Collapse
|
236
|
Tiberio P, Cavadini E, Callari M, Daidone MG, Appierto V. AF1q: a novel mediator of basal and 4-HPR-induced apoptosis in ovarian cancer cells. PLoS One 2012; 7:e39968. [PMID: 22761939 PMCID: PMC3383705 DOI: 10.1371/journal.pone.0039968] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2012] [Accepted: 06/05/2012] [Indexed: 12/12/2022] Open
Abstract
Background Fenretinide (4-HPR) is a synthetic retinoid that exhibits potent antitumor and chemopreventive activities against different malignancies, including ovarian tumors. We previously showed that in ovarian cancer cells, 4-HPR induces apoptosis through a signaling cascade starting from reactive oxygen species (ROS) generation and involving endoplasmic reticulum (ER) stress response, Jun N-terminal Kinase (JNK) activation, and induction of the proapoptotic PLAcental Bone morphogenetic protein (PLAB). Since recent studies have shown that the oncogene ALL1-fused from chromosome 1q (AF1q), a retinoic acid target gene, is implicated in apoptosis induction by several therapeutic agents, we investigated its possible involvement in the apoptosis induced by 4-HPR in ovarian cancer cells. Methodology/Principal Findings Protein expression analysis, performed in ovarian cancer cells and extended to other histotypes (breast, neuroblastoma, and cervical), revealed that 4-HPR enhanced AF1q expression in cancer cells sensitive to the retinoid but not in resistant cells. Through gene silencing, AF1q was found functionally involved in 4-HPR-induced apoptosis in A2780, an ovarian cancer cell line highly sensitive to retinoid growth inhibitory and apoptotic effects. Inhibition of the signaling intermediates of the 4-HPR apoptotic cascade showed that AF1q upregulation was depended on prior generation of ROS, induction of ER stress response, JNK activation, and PLAB upmodulation. Finally, we found that direct overexpression of AF1q, in the absence of external stimuli, increased apoptosis in ovarian cancer cell lines. Conclusions/Significance The study expands the knowledge of the 4-HPR mechanism of action, which has not yet been completely elucidated, identifying AF1q as a novel mediator of retinoid anticancer activity. In addition, we demonstrate, for the first time, that AF1q plays a role in the onset of basal apoptosis in ovarian cancer cells, thus providing new information about the activity of this protein whose biologic functions are mostly unknown.
Collapse
Affiliation(s)
- Paola Tiberio
- Department of Experimental Oncology and Molecular Medicine, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy.
| | | | | | | | | |
Collapse
|
237
|
Zielonka J, Sikora A, Hardy M, Joseph J, Dranka BP, Kalyanaraman B. Boronate probes as diagnostic tools for real time monitoring of peroxynitrite and hydroperoxides. Chem Res Toxicol 2012; 25:1793-9. [PMID: 22731669 DOI: 10.1021/tx300164j] [Citation(s) in RCA: 175] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Boronates, a group of organic compounds, are emerging as one of the most effective probes for detecting and quantifying peroxynitrite, hypochlorous acid, and hydrogen peroxide. Boronates react with peroxynitrite nearly a million times faster than with hydrogen peroxide. Boronate-containing fluorogenic compounds have been used to monitor real time generation of peroxynitrite in cells and for imaging hydrogen peroxide in living animals. This perspective highlights potential applications of boronates and other fluorescent probes to high-throughput analyses of peroxynitrite and hydroperoxides in toxicological studies.
Collapse
Affiliation(s)
- Jacek Zielonka
- Department of Biophysics, Free Radical Research Center, Medical College of Wisconsin, Milwaukee, WI 53226, USA
| | | | | | | | | | | |
Collapse
|
238
|
Chen Z, Li Q, Sun Q, Chen H, Wang X, Li N, Yin M, Xie Y, Li H, Tang B. Simultaneous Determination of Reactive Oxygen and Nitrogen Species in Mitochondrial Compartments of Apoptotic HepG2 Cells and PC12 Cells Based On Microchip Electrophoresis–Laser-Induced Fluorescence. Anal Chem 2012; 84:4687-94. [DOI: 10.1021/ac300255n] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
239
|
Octavia Y, Tocchetti CG, Gabrielson KL, Janssens S, Crijns HJ, Moens AL. Doxorubicin-induced cardiomyopathy: From molecular mechanisms to therapeutic strategies. J Mol Cell Cardiol 2012; 52:1213-25. [DOI: 10.1016/j.yjmcc.2012.03.006] [Citation(s) in RCA: 779] [Impact Index Per Article: 59.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/12/2011] [Revised: 02/15/2012] [Accepted: 03/13/2012] [Indexed: 10/28/2022]
|
240
|
Almeida MR, Darin JDC, Hernandes LC, Aissa AF, Chisté RC, Mercadante AZ, Antunes LMG, Bianchi MLP. Antigenotoxic effects of piquiá (Caryocar villosum) in multiple rat organs. PLANT FOODS FOR HUMAN NUTRITION (DORDRECHT, NETHERLANDS) 2012; 67:171-177. [PMID: 22562095 DOI: 10.1007/s11130-012-0291-3] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
Abstract
This study investigated the in vivo genotoxicity of piquiá pulp (Caryocar villosum) and its potential antigenotoxicity on doxorubicin (DXR)-induced DNA damage by comet assay and micronucleus test. In addition, the phytochemicals present in piquiá pulp were determined. Piquiá fruit pulp (75, 150 or 300 mg/kg b.w.) was administered by gavage to Wistar rats for 14 days, and the animals received an injection of saline or DXR (15 mg/kg b.w., i.p.) 24 h before they were euthanized. The phytochemical analysis revealed the presence of carotenoids; phenolic compounds, including flavonoids; tannins and α-tocopherol in piquiá pulp. No statistically significant differences were observed in the evaluated parameters, demonstrating the absence of cytotoxic and genotoxic effects of piquiá pulp at all tested doses. In liver, kidney, cardiac and bone marrow cells, piquiá significantly reduced the DNA damage induced by DXR. Our results showed that the lowest piquiá dose caused the largest decrease in DNA damage and the highest dose caused the smallest decrease, demonstrating an inverse dose-response of piquiá pulp. Furthermore, we observed a difference in the potential antigenotoxic effects in several tissues. In conclusion, our results demonstrated that piquiá pulp was not genotoxic and inhibited the genotoxicity induced by DXR, but some of the protective effects that were observed depended on the doses and experimental conditions. Therefore, further investigations are needed to clarify how piquiá pulp positively affects human health.
Collapse
Affiliation(s)
- Mara Ribeiro Almeida
- Departamento de Análises Clínicas, Toxicológicas e Bromatológicas, Faculdade de Ciências Farmacêuticas de Ribeirão Preto, Avenida do Café, s/n Campus Universitário da USP, CEP, 14040-903, Ribeirão Preto, SP, Brazil.
| | | | | | | | | | | | | | | |
Collapse
|
241
|
Guerrero-Beltrán CE, Mukhopadhyay P, Horváth B, Rajesh M, Tapia E, García-Torres I, Pedraza-Chaverri J, Pacher P. Sulforaphane, a natural constituent of broccoli, prevents cell death and inflammation in nephropathy. J Nutr Biochem 2012; 23:494-500. [PMID: 21684138 PMCID: PMC3179776 DOI: 10.1016/j.jnutbio.2011.02.004] [Citation(s) in RCA: 81] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2010] [Revised: 01/10/2011] [Accepted: 02/03/2011] [Indexed: 01/03/2023]
Abstract
Cisplatin (cis-diamminedichloroplatinum II, CIS) is a potent and widely used chemotherapeutic agent to treat various malignancies, but its therapeutic use is limited because of dose-dependent nephrotoxicity. Cell death and inflammation play a key role in the development and progression of CIS-induced nephropathy. Sulforaphane (SFN), a natural constituent of cruciferous vegetables such as broccoli, Brussels sprouts, etc., has been shown to exert various protective effects in models of tissue injury and cancer. In this study, we have investigated the role of prosurvival, cell death and inflammatory signaling pathways using a rodent model of CIS-induced nephropathy, and explored the effects of SFN on these processes. Cisplatin triggered marked activation of stress signaling pathways [p53, Jun N-terminal kinase (JNK), and p38-α mitogen-activated protein kinase (MAPK)] and promoted cell death in the kidneys (increased DNA fragmentation, caspases-3/7 activity, terminal deoxynucleotidyl transferase-mediated uridine triphosphate nick-end labeling), associated with attenuation of various prosurvival signaling pathways [e.g., extracellular signal-regulated kinase (ERK) and p38-β MAPK]. Cisplatin also markedly enhanced inflammation in the kidneys [promoted NF-κB activation, increased expression of adhesion molecules ICAM and VCAM, enhanced tumor necrosis factor-α (TNF-α) levels and inflammatory cell infiltration]. These effects were significantly attenuated by pretreatment of rodents with SFN. Thus, the cisplatin-induced nephropathy is associated with activation of various cell death and proinflammatory pathways (p53, JNK, p38-α, TNF-α and NF-κB) and impairments of key prosurvival signaling mechanisms (ERK and p38-β). SFN is able to prevent the CIS-induced renal injury by modulating these pathways, providing a novel approach for preventing this devastating complication of chemotherapy.
Collapse
Affiliation(s)
- Carlos Enrique Guerrero-Beltrán
- Section on Oxidative Stress Tissue Injury, Laboratory of Physiological Studies, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Bethesda, Maryland
- Departamento de Biología, Facultad de Química, Universidad Nacional Autónoma de México, México, D.F., México
| | - Partha Mukhopadhyay
- Section on Oxidative Stress Tissue Injury, Laboratory of Physiological Studies, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Bethesda, Maryland
| | - Béla Horváth
- Section on Oxidative Stress Tissue Injury, Laboratory of Physiological Studies, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Bethesda, Maryland
- Institute of Human Physiology and Clinical Experimental Research, Semmelweis University, Budapest, Hungary
| | - Mohanraj Rajesh
- Section on Oxidative Stress Tissue Injury, Laboratory of Physiological Studies, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Bethesda, Maryland
| | - Edilia Tapia
- Departamento de Nefrología, Instituto Nacional de Cardiología, “Ignacio Chávez”, México, D.F., México
| | - Itzhel García-Torres
- Laboratorio de Bioquímica Genética, Instituto Nacional de Pediatría, México, D.F, México
| | - José Pedraza-Chaverri
- Departamento de Biología, Facultad de Química, Universidad Nacional Autónoma de México, México, D.F., México
| | - Pál Pacher
- Section on Oxidative Stress Tissue Injury, Laboratory of Physiological Studies, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Bethesda, Maryland
| |
Collapse
|
242
|
Role of HMGB1 in doxorubicin-induced myocardial apoptosis and its regulation pathway. Basic Res Cardiol 2012; 107:267. [DOI: 10.1007/s00395-012-0267-3] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/29/2011] [Revised: 01/24/2012] [Accepted: 03/20/2012] [Indexed: 12/20/2022]
|
243
|
Chiusa M, Timolati F, Perriard J, Suter T, Zuppinger C. Sodium nitroprusside induces cell death and cytoskeleton degradation in adult rat cardiomyocytes in vitro: implications for anthracycline-induced cardiotoxicity. Eur J Histochem 2012; 56:e15. [PMID: 22688296 PMCID: PMC3428964 DOI: 10.4081/ejh.2012.e15] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
Sodium nitroprusside (SNP) is used clinically as a rapid-acting vasodilator and in experimental models as donor of nitric oxide (NO). High concentrations of NO have been reported to induce cardiotoxic effects including apoptosis by the formation of reactive oxygen species. We have therefore investigated effects of SNP on the myofibrillar cytoskeleton, contractility and cell death in long-term cultured adult rat cardiomyocytes at different time points after treatment. Our results show, that SNP treatment at first results in a gradual increase of cytoskeleton degradation marked by the loss of actin labeling and fragmentation of sarcomeric structure, followed by the appearance of TUNEL-positive nuclei. Already lower doses of SNP decreased contractility of cardiomyocytes paced at 2 Hz without changes of intracellular calcium concentration. Ultrastructural analysis of the cultured cells demonstrated mitochondrial changes and disintegration of sarcomeric alignment. These adverse effects of SNP in cardiomyocytes were reminiscent of anthracycline-induced cardiotoxicity, which also involves a dysregulation of NO with the consequence of myofibrillar degradation and ultimately cell death. An inhibition of the pathways leading to the generation of reactive NO products, or their neutralization, may be of significant therapeutic benefit for both SNP and anthracycline-induced cardiotoxicity.
Collapse
Affiliation(s)
- M. Chiusa
- Cardiology Department, Bern University Hospital
| | - F. Timolati
- Cardiology Department, Bern University Hospital
| | - J.C. Perriard
- Institute of Cell Biology, Swiss Federal Institute of Technology, ETH Zurich, Switzerland
| | - T.M. Suter
- Cardiology Department, Bern University Hospital
| | | |
Collapse
|
244
|
Moe KT, Yin NO, Naylynn TM, Khairunnisa K, Wutyi MA, Gu Y, Atan MSM, Wong MC, Koh TH, Wong P. Nox2 and Nox4 mediate tumour necrosis factor-α-induced ventricular remodelling in mice. J Cell Mol Med 2012; 15:2601-13. [PMID: 21251215 PMCID: PMC4373429 DOI: 10.1111/j.1582-4934.2011.01261.x] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
Reactive oxygen species (ROS) and pro-inflammatory cytokines are crucial in ventricular remodelling, such as inflammation-associated myocarditis. We previously reported that tumour necrosis factor-α (TNF-α)-induced ROS in human aortic smooth muscle cells is mediated by NADPH oxidase subunit Nox4. In this study, we investigated whether TNF-α-induced ventricular remodelling was mediated by Nox2 and/or Nox4. An intravenous injection of murine TNF-α was administered to a group of mice and saline injection was administered to controls. Echocardiography was performed on days 1, 7 and 28 post-injection. Ventricular tissue was used to determine gene and protein expression of Nox2, Nox4, ANP, interleukin (IL)-1β, IL-2, IL-6, TNF-α and to measure ROS. Nox2 and Nox4 siRNA were used to determine whether or not Nox2 and Nox4 mediated TNF-α-induced ROS and upregulation of IL-1β and IL-6 in adult human cardiomyocytes. Echocardiography showed a significant increase in left ventricular end-diastolic and left ventricular end-systolic diameters, and a significant decrease in the ejection fraction and fractional shortening in mice 7 and 28 days after TNF-α injection. These two groups of mice showed a significant increase in ventricular ROS, ANP, IL-1β, IL-2, IL-6 and TNF-α proteins. Nox2 and Nox4 mRNA and protein levels were also sequentially increased. ROS was significantly decreased by inhibitors of NADPH oxidase, but not by inhibitors of other ROS production systems. Nox2 and Nox4 siRNA significantly attenuated TNF-α-induced ROS and upregulation of IL-1β and IL-6 in cardiomyocytes. Our study highlights a novel TNF-α-induced chronic ventricular remodelling mechanism mediated by sequential regulation of Nox2 and Nox4 subunits.
Collapse
Affiliation(s)
- K T Moe
- Research and Development Unit, National Heart Centre Singapore, Singapore.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
245
|
Bátkai S, Mukhopadhyay P, Horváth B, Rajesh M, Gao RY, Mahadevan A, Amere M, Battista N, Lichtman AH, Gauson LA, Maccarrone M, Pertwee RG, Pacher P. Δ8-Tetrahydrocannabivarin prevents hepatic ischaemia/reperfusion injury by decreasing oxidative stress and inflammatory responses through cannabinoid CB2 receptors. Br J Pharmacol 2012; 165:2450-2461. [PMID: 21470208 PMCID: PMC3423240 DOI: 10.1111/j.1476-5381.2011.01410.x] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2010] [Revised: 02/14/2011] [Accepted: 03/10/2011] [Indexed: 11/28/2022] Open
Abstract
BACKGROUND AND PURPOSE Activation of cannabinoid CB(2) receptors protects against various forms of ischaemia-reperfusion (I/R) injury. Δ(8) -Tetrahydrocannabivarin (Δ(8) -THCV) is a synthetic analogue of the plant cannabinoid Δ(9) -tetrahydrocannabivarin, which exhibits anti-inflammatory effects in rodents involving activation of CB(2) receptors. Here, we assessed effects of Δ(8) -THCV and its metabolite 11-OH-Δ(8) -THCV on CB(2) receptors and against hepatic I/R injury. EXPERIMENTAL APPROACH Effects in vitro were measured with human CB(2) receptors expressed in CHO cells. Hepatic I/R injury was assessed in mice with 1h ischaemia and 2, 6 or 24h reperfusion in vivo. KEY RESULTS Displacement of [(3) H]CP55940 by Δ(8) -THCV or 11-OH-Δ(8) -THCV from specific binding sites in CHO cell membranes transfected with human CB(2) receptors (hCB(2) ) yielded K(i) values of 68.4 and 59.95 nM respectively. Δ(8) -THCV or 11-OH-Δ(8) -THCV inhibited forskolin-stimulated cAMP production by hCB(2) CHO cells (EC(50) = 12.95 and 14.3 nM respectively). Δ(8) -THCV, given before induction of I/R, attenuated hepatic injury (measured by serum alanine aminotransferase and aspartate aminotransferase levels), decreased tissue protein carbonyl adducts, 4-hydroxy-2-nonenal, the chemokines CCL3 and CXCL2,TNF-α, intercellular adhesion molecule 1 (CD54) mRNA levels, tissue neutrophil infiltration, caspase 3/7 activity and DNA fragmentation. Protective effects of Δ(8) -THCV against liver damage were still present when the compound was given at the beginning of reperfusion. Pretreatment with a CB(2) receptor antagonist attenuated the protective effects of Δ(8) -THCV, while a CB(1) antagonist tended to enhance it. CONCLUSIONS AND IMPLICATIONS Δ(8) -THCV activated CB(2) receptors in vitro, and decreased tissue injury and inflammation in vivo, associated with I/R partly via CB(2) receptor activation. LINKED ARTICLES This article is part of a themed section on Cannabinoids in Biology and Medicine. To view the other articles in this section visit http://dx.doi.org/10.1111/bph.2012.165.issue-8. To view Part I of Cannabinoids in Biology and Medicine visit http://dx.doi.org/10.1111/bph.2011.163.issue-7.
Collapse
Affiliation(s)
- Sándor Bátkai
- Laboratory of Physiologic Studies, National Institute on Alcohol Abuse and Alcoholism, National Institutes of HealthBethesda, MD, USA
| | - Partha Mukhopadhyay
- Laboratory of Physiologic Studies, National Institute on Alcohol Abuse and Alcoholism, National Institutes of HealthBethesda, MD, USA
| | - Bėla Horváth
- Laboratory of Physiologic Studies, National Institute on Alcohol Abuse and Alcoholism, National Institutes of HealthBethesda, MD, USA
- Institute of Human Physiology and Clinical Experimental Research, Semmelweis UniversityBudapest, Hungary
| | - Mohanraj Rajesh
- Laboratory of Physiologic Studies, National Institute on Alcohol Abuse and Alcoholism, National Institutes of HealthBethesda, MD, USA
| | - Rachel Y Gao
- Laboratory of Physiologic Studies, National Institute on Alcohol Abuse and Alcoholism, National Institutes of HealthBethesda, MD, USA
| | | | | | - Natalia Battista
- Department of Biomedical Sciences, University of TeramoTeramo, Italy & European Center for Brain Research (CERC)/Santa Lucia FoundationRome, Italy
| | - Aron H Lichtman
- The Department of Pharmacology and Toxicology, Virginia Commonwealth UniversityRichmond, VA, USA
| | - Lisa A Gauson
- School of Medical Sciences, Institute of Medical Sciences, University of AberdeenAberdeen, UK
| | - Mauro Maccarrone
- Department of Biomedical Sciences, University of TeramoTeramo, Italy & European Center for Brain Research (CERC)/Santa Lucia FoundationRome, Italy
| | - Roger G Pertwee
- School of Medical Sciences, Institute of Medical Sciences, University of AberdeenAberdeen, UK
| | - Pál Pacher
- Laboratory of Physiologic Studies, National Institute on Alcohol Abuse and Alcoholism, National Institutes of HealthBethesda, MD, USA
| |
Collapse
|
246
|
Horváth B, Magid L, Mukhopadhyay P, Bátkai S, Rajesh M, Park O, Tanchian G, Gao RY, Goodfellow CE, Glass M, Mechoulam R, Pacher P. A new cannabinoid CB2 receptor agonist HU-910 attenuates oxidative stress, inflammation and cell death associated with hepatic ischaemia/reperfusion injury. Br J Pharmacol 2012; 165:2462-2478. [PMID: 21449982 PMCID: PMC3423243 DOI: 10.1111/j.1476-5381.2011.01381.x] [Citation(s) in RCA: 88] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2010] [Revised: 02/27/2011] [Accepted: 03/15/2011] [Indexed: 12/01/2022] Open
Abstract
BACKGROUND AND PURPOSE Cannabinoid CB(2) receptor activation has been reported to attenuate myocardial, cerebral and hepatic ischaemia-reperfusion (I/R) injury. EXPERIMENTAL APPROACH We have investigated the effects of a novel CB(2) receptor agonist ((1S,4R)-2-(2,6-dimethoxy-4-(2-methyloctan-2-yl)phenyl)-7,7-dimethylbicyclo[2.2.1]hept-2-en-1-yl)methanol (HU-910) on liver injury induced by 1 h of ischaemia followed by 2, 6 or 24 h of reperfusion, using a well-established mouse model of segmental hepatic I/R. KEY RESULTS Displacement of [(3) H]CP55940 by HU-910 from specific binding sites in CHO cell membranes transfected with human CB(2) or CB(1) receptors (hCB(1/2) ) yielded K(i) values of 6 nM and 1.4 µM respectively. HU-910 inhibited forskolin-stimulated cyclic AMP production by hCB(2) CHO cells (EC(50) = 162 nM) and yielded EC(50) of 26.4 nM in [(35) S]GTPγS binding assays using hCB(2) expressing CHO membranes. HU-910 given before ischaemia significantly attenuated levels of I/R-induced hepatic pro-inflammatory chemokines (CCL3 and CXCL2), TNF-α, inter-cellular adhesion molecule-1, neutrophil infiltration, oxidative stress and cell death. Some of the beneficial effect of HU-910 also persisted when given at the beginning of the reperfusion or 1 h after the ischaemic episode. Furthermore, HU-910 attenuated the bacterial endotoxin-triggered TNF-α production in isolated Kupffer cells and expression of adhesion molecules in primary human liver sinusoidal endothelial cells stimulated with TNF-α. Pretreatment with a CB(2) receptor antagonist attenuated the protective effects of HU-910, while pretreatment with a CB(1) antagonist tended to enhance them. CONCLUSION AND IMPLICATIONS HU-910 is a potent CB(2) receptor agonist which may exert protective effects in various diseases associated with inflammation and tissue injury. LINKED ARTICLES This article is part of a themed section on Cannabinoids in Biology and Medicine. To view the other articles in this section visit http://dx.doi.org/10.1111/bph.2012.165.issue-8. To view Part I of Cannabinoids in Biology and Medicine visit http://dx.doi.org/10.1111/bph.2011.163.issue-7.
Collapse
Affiliation(s)
- Bėla Horváth
- Laboratory of Physiologic StudiesBethesda, Maryland, USA
- Institute of Human Physiology and Clinical Experimental Research, Semmelweis UniversityBudapest, Hungary
| | - Lital Magid
- Institute of Drug Research, Faculty of Medicine, Hebrew University of Jerusalem, Ein KeremJerusalem, Israel
| | | | - Sándor Bátkai
- Laboratory of Physiologic StudiesBethesda, Maryland, USA
| | | | - Ogyi Park
- Liver Disease, National Institute on Alcohol Abuse and Alcoholism, National Institutes of HealthBethesda, Maryland, USA
| | - Galin Tanchian
- Laboratory of Physiologic StudiesBethesda, Maryland, USA
| | - Rachel Y Gao
- Laboratory of Physiologic StudiesBethesda, Maryland, USA
| | - Catherine E Goodfellow
- Department of Pharmacology and Clinical Pharmacology, Faculty of Medical and Health Sciences, University of AucklandAuckland, New Zealand
| | - Michelle Glass
- Department of Pharmacology and Clinical Pharmacology, Faculty of Medical and Health Sciences, University of AucklandAuckland, New Zealand
| | - Raphael Mechoulam
- Liver Disease, National Institute on Alcohol Abuse and Alcoholism, National Institutes of HealthBethesda, Maryland, USA
| | - Pál Pacher
- Laboratory of Physiologic StudiesBethesda, Maryland, USA
| |
Collapse
|
247
|
Chronic cardiotoxicity of doxorubicin involves activation of myocardial and circulating matrix metalloproteinases in rats. Acta Pharmacol Sin 2012; 33:459-69. [PMID: 22447222 DOI: 10.1038/aps.2011.194] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
AIM To investigate the role of matrix metalloproteinases (MMPs) in the responses of rats to a prolonged doxorubicin (DOX) treatment. METHODS Male Wistar rats were used. DOX was administered by intraperitoneal injections of seven doses (cumulative dose was 15 mg/kg). Control animals were treated with saline. Tissue or plasma samples were collected at four and eight weeks after the application of the last dose. Protein levels were determined by immunoblot assay, and MMP activities were measured by gelatin zymography. Superoxide content was analyzed using a lucigenin chemiluminescence assay and superoxide dismutase (SOD) activities with a SOD assay kit. Qualitative structural alterations of the heart were characterized by transmission electron microscopy. RESULTS Systolic blood pressure was higher in DOX-treated rats as compared with the control rats at 8 weeks after treatment. In contrast, there were no differences in the heart rate between the control and DOX-treated rats. DOX treatment caused marked heterogeneous subcellular alterations of cardiomyocytes and structural disorganizations of the cardiac extracellular space. The effects of DOX were linked to a stimulation of plasma MMP-2 and MMP-9 activities that had already increased by 4 weeks after the end of the treatment. In the left ventricle, however, DOX only led to increased MMP-2 activation at 8 weeks after the end of treatment. These changes in tissue MMP-2 were connected with stimulation of Akt kinase activation, inhibition of SOD, an increase in superoxide levels, induction of iNOS protein expression and caspase-3 activation. CONCLUSION Our results show that MMPs are involved in the chronic cardiotoxicity of DOX in rats. The data also suggest that reactive oxygen species (superoxide), NO production (iNOS) and the Akt kinase pathway can modulate MMP-2 activities in rat hearts influenced by DOX.
Collapse
|
248
|
Cigarette smoke affects keratinocytes SRB1 expression and localization via H2O2 production and HNE protein adducts formation. PLoS One 2012; 7:e33592. [PMID: 22442701 PMCID: PMC3307738 DOI: 10.1371/journal.pone.0033592] [Citation(s) in RCA: 71] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2011] [Accepted: 02/11/2012] [Indexed: 11/19/2022] Open
Abstract
Scavenger Receptor B1 (SR-B1), also known as HDL receptor, is involved in cellular cholesterol uptake. Stratum corneum (SC), the outermost layer of the skin, is composed of more than 25% cholesterol. Several reports support the view that alteration of SC lipid composition may be the cause of impaired barrier function which gives rise to several skin diseases. For this reason the regulation of the genes involved in cholesterol uptake is of extreme significance for skin health. Being the first shield against external insults, the skin is exposed to several noxious substances and among these is cigarette smoke (CS), which has been recently associated with various skin pathologies. In this study we first have shown the presence of SR-B1 in murine and human skin tissue and then by using immunoblotting, immunoprecipitation, RT-PCR, and confocal microscopy we have demonstrated the translocation and the subsequent lost of SR-B1 in human keratinocytes (cell culture model) after CS exposure is driven by hydrogen peroxide (H2O2) that derives not only from the CS gas phase but mainly from the activation of cellular NADPH oxidase (NOX). This effect was reversed when the cells were pretreated with NOX inhibitors or catalase. Furthermore, CS caused the formation of SR-B1-aldheydes adducts (acrolein and 4-hydroxy-2-nonenal) and the increase of its ubiquitination, which could be one of the causes of SR-B1 loss. In conclusion, exposure to CS, through the production of H2O2, induced post-translational modifications of SR-B1 with the consequence lost of the receptor and this may contribute to the skin physiology alteration as a consequence of the variation of cholesterol uptake.
Collapse
|
249
|
Chronic hypoxia increases peroxynitrite, MMP9 expression, and collagen accumulation in fetal guinea pig hearts. Pediatr Res 2012; 71:25-31. [PMID: 22289847 DOI: 10.1038/pr.2011.10] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
INTRODUCTION Chronic hypoxia increases the expression of inducible nitric oxide synthase (iNOS) mRNA and protein levels in fetal guinea pig heart ventricles. Excessive generation of nitric oxide (NO) can induce nitrosative stress leading to the formation of peroxynitrite, which can upregulate the expression of matrix metalloproteinases (MMPs). This study tested the hypothesis that maternal hypoxia increases fetal cardiac MMP9 and collagen through peroxynitrite generation in fetal hearts. RESULTS In heart ventricles, levels of malondialdehyde, 3-nitrotyrosine (3-NT), MMP9, and collagen were increased in hypoxic (HPX) vs. normoxic (NMX) fetal guinea pigs. DISCUSSION Thus, maternal hypoxia induces oxidative-nitrosative stress and alters protein expression of the extracellular matrix (ECM) through upregulation of the iNOS pathway in fetal heart ventricles. This identifies iNOS-derived NO as an important stimulus for initiating the adverse effects of peroxynitrite in HPX fetal hearts. METHODS Pregnant guinea pigs were exposed to normoxia (room air) or hypoxia (10.5% O(2), 14 d) before term (term ≈ 65 d) and administered water, L-N6-(1-iminoethyl)-lysine (LNIL), an iNOS inhibitor, or N-acetylcysteine (NAC), an antioxidant.
Collapse
|
250
|
Croteau E, Gascon S, Bentourkia M, Langlois R, Rousseau JA, Lecomte R, Bénard F. [11C]Acetate rest-stress protocol to assess myocardial perfusion and oxygen consumption reserve in a model of congestive heart failure in rats. Nucl Med Biol 2011; 39:287-94. [PMID: 22079038 DOI: 10.1016/j.nucmedbio.2011.07.010] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2011] [Revised: 07/23/2011] [Accepted: 07/26/2011] [Indexed: 10/15/2022]
Abstract
UNLABELLED This study describes an [(11)C]acetate rest-stress method to obtain an indirect estimate of myocardial blood flow (MBF) and myocardial oxygen consumption (MVO(2)) in rats. Doxorubicin cardiotoxicity was used to test the usefulness of this approach for the assessment of congestive heart failure. METHODS [(11)C]Acetate rest-stress studies have been used in clinical research to assess the capacity of the coronary arteries to respond to stress. In this article, we used this approach to assess the cardiotoxicity of doxorubicin in a rat model. The method was first validated in a group of healthy rats and then used to follow the effect of doxorubicin chemotherapy on cardiac function. The effect of doxorubicin on myocardial perfusion and oxygen consumption reserve was measured at rest and under dobutamine stimulation. RESULTS Validation of the protocol showed a good correlation between the MBF and MVO(2) (r(2)=.68). The doxorubicin-treated group showed a significant (P=.04) decrease in cardiovascular perfusion reserve at 1.3±0.2 compared with the control animals at 1.6±0.2. Similar results were obtained for the MVO(2) reserve (treated 1.8±0.4 vs. controls 2.3±0.3; P=.02). CONCLUSIONS We describe an [(11)C]acetate PET rest-stress protocol for the assessment of congestive heart failure in rats and its application to the follow-up of cardiotoxicity under doxorubicin chemotherapy. This is a rapid and reliable approach to the measurement of cardiac perfusion and oxygen consumption reserve that could be applied to the development of new strategies to reduce the cardiotoxicity of anthracycline.
Collapse
Affiliation(s)
- Etienne Croteau
- Department of Nuclear Medicine and Radiobiology, Université de Sherbrooke and Sherbrooke Molecular Imaging Center, Étienne-LeBel Clinical Research Center, CHUS, Sherbrooke, QC, Canada.
| | | | | | | | | | | | | |
Collapse
|