201
|
Recio C, Lucy D, Iveson P, Iqbal AJ, Valaris S, Wynne G, Russell AJ, Choudhury RP, O'Callaghan C, Monaco C, Greaves DR. The Role of Metabolite-Sensing G Protein-Coupled Receptors in Inflammation and Metabolic Disease. Antioxid Redox Signal 2018; 29:237-256. [PMID: 29117706 DOI: 10.1089/ars.2017.7168] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
SIGNIFICANCE Great attention has been placed on the link between metabolism and immune function giving rise to the term "immunometabolism." It is widely accepted that inflammation and oxidative stress are key processes that underlie metabolic complications during obesity, diabetes, and atherosclerosis. Therefore, identifying the mechanisms and mediators that are involved in the regulation of both inflammation and metabolic homeostasis is of high scientific and therapeutic interest. Recent Advances: G protein-coupled receptors (GPCRs) that signal in response to metabolites have emerged as attractive therapeutic targets in inflammatory disease. Critical Issues and Future Directions: In this review, we discuss recent findings about the physiological role of the main metabolite-sensing GPCRs, their implication in immunometabolic disorders, their principal endogenous and synthetic ligands, and their potential as drug targets in inflammation and metabolic disease. Antioxid. Redox Signal. 29, 237-256.
Collapse
Affiliation(s)
- Carlota Recio
- 1 Sir William Dunn School of Pathology, University of Oxford , Oxford, Great Britain
| | - Daniel Lucy
- 2 Department of Chemistry, University of Oxford , Oxford, Great Britain
| | - Poppy Iveson
- 1 Sir William Dunn School of Pathology, University of Oxford , Oxford, Great Britain
| | - Asif J Iqbal
- 1 Sir William Dunn School of Pathology, University of Oxford , Oxford, Great Britain
| | - Sophia Valaris
- 1 Sir William Dunn School of Pathology, University of Oxford , Oxford, Great Britain
| | - Graham Wynne
- 2 Department of Chemistry, University of Oxford , Oxford, Great Britain
| | - Angela J Russell
- 2 Department of Chemistry, University of Oxford , Oxford, Great Britain
| | - Robin P Choudhury
- 3 Radcliffe Department of Medicine, University of Oxford , Oxford, Great Britain
| | - Chris O'Callaghan
- 4 Nuffield Department of Medicine, University of Oxford , Oxford, Great Britain
| | - Claudia Monaco
- 5 Kennedy Institute for Rheumatology, University of Oxford , Oxford, Great Britain
| | - David R Greaves
- 1 Sir William Dunn School of Pathology, University of Oxford , Oxford, Great Britain
| |
Collapse
|
202
|
Fang Y, Wang X, Li W, Han J, Jin J, Su F, Zhang J, Huang W, Xiao F, Pan Q, Zou L. Screening of circular RNAs and validation of circANKRD36 associated with inflammation in patients with type 2 diabetes mellitus. Int J Mol Med 2018; 42:1865-1874. [PMID: 30066828 PMCID: PMC6108858 DOI: 10.3892/ijmm.2018.3783] [Citation(s) in RCA: 76] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2018] [Accepted: 07/06/2018] [Indexed: 12/31/2022] Open
Abstract
Circular RNAs (circRNAs) are an abundant class of endogenous non-coding RNAs and are associated with numerous diseases, including cancer, cardiovascular diseases, and type 2 diabetes mellitus (T2DM). However, the association between circRNAs and inflammation or inflammatory cytokines in patients with T2DM remains to be fully elucidated. The purpose of the present study was to investigate the expression profiles of circRNAs in peripheral leucocytes of patients with T2DM and their association with inflammatory cytokines. Peripheral blood from patients with T2DM (n=43) and healthy individuals (n=45) were collected for RNA sequencing and later verification. Reverse transcription-polymerase chain reaction (RT-PCR) and reverse transcription-quantitative polymerase chain reaction (RT-qPCR) analyses were used to detect the expression levels of circRNAs. The expression of inflammatory factors, including interleukin (IL)-1, (IL)-6, and tumor necrosis factor (TNF)-α were measured via enzyme-linked immunosorbent assay. Furthermore, the mRNA expression level of ankyrin repeat domain 36 (ANKRD36), a protein located at 2q11.2 that interacts with the GAPDH gene, was measured using RT-qPCR analysis. The circRNA/microRNA (miRNA) interaction was predicted using RegRNA and mirPath software. In total, 220 circRNAs were found to be differentially expressed between patients with T2DM and healthy individuals, of which 107 were upregulated and 113 were downregulated. Among the nine selected circRNAs, circANKRD36 was significantly upregulated in patients with T2DM compared with control subjects (P=0.02). The expression level of circANKRD36 was positively correlated with glucose and glycosylated hemoglobin (r=0.3250, P=0.0047 and r=0.3171, P=0.0056, respectively). The expression level of IL-6 was significantly different between the T2DM group and control group (P=0.028) and was positively correlated with circANKRD36. The difference of circANKRD36 host gene expression between patients with T2DM and healthy controls was significant (P=0.04). Taken together, circANKRD36 may be involved in T2DM and inflammation-associated pathways via interaction with miRNAs, including hsa-miR-3614-3p, hsa-miR-498, and hsa-miR-501-5p. The expression of circANKRD36 was up regulated in peripheral blood leucocytes and was correlated with chronic inflammation in T2DM. Therefore, circANKRD36 can be used as a potential biomarker for screening chronic inflammation in patients with T2DM.
Collapse
Affiliation(s)
- Yuan Fang
- The MOH Key Laboratory of Geriatrics, Beijing Hospital, National Center of Gerontology, Beijing 100730, P.R. China
| | - Xiaoxia Wang
- Department of Endocrinology, Beijing Hospital, National Center of Gerontology, Beijing 100730, P.R. China
| | - Wenqing Li
- The MOH Key Laboratory of Geriatrics, Beijing Hospital, National Center of Gerontology, Beijing 100730, P.R. China
| | - Jingli Han
- The MOH Key Laboratory of Geriatrics, Beijing Hospital, National Center of Gerontology, Beijing 100730, P.R. China
| | - Junhua Jin
- The MOH Key Laboratory of Geriatrics, Beijing Hospital, National Center of Gerontology, Beijing 100730, P.R. China
| | - Fei Su
- Department of Pathology, Beijing Hospital, National Center of Gerontology, Beijing 100730, P.R. China
| | - Junhua Zhang
- The MOH Key Laboratory of Geriatrics, Beijing Hospital, National Center of Gerontology, Beijing 100730, P.R. China
| | - Wei Huang
- The MOH Key Laboratory of Geriatrics, Beijing Hospital, National Center of Gerontology, Beijing 100730, P.R. China
| | - Fei Xiao
- The MOH Key Laboratory of Geriatrics, Beijing Hospital, National Center of Gerontology, Beijing 100730, P.R. China
| | - Qi Pan
- Department of Endocrinology, Beijing Hospital, National Center of Gerontology, Beijing 100730, P.R. China
| | - Lihui Zou
- The MOH Key Laboratory of Geriatrics, Beijing Hospital, National Center of Gerontology, Beijing 100730, P.R. China
| |
Collapse
|
203
|
Machado FVC, Pitta F, Hernandes NA, Bertolini GL. Physiopathological relationship between chronic obstructive pulmonary disease and insulin resistance. Endocrine 2018; 61:17-22. [PMID: 29512058 DOI: 10.1007/s12020-018-1554-z] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/23/2017] [Accepted: 01/31/2018] [Indexed: 12/16/2022]
Abstract
PURPOSE Chronic obstructive pulmonary disease (COPD) is characterized by persistent and progressive airflow obstruction that is associated with an abnormal chronic inflammatory response in the airways and lungs to noxious particles. COPD often leads to physical inactivity and deconditioning that added to inappropriate/excessive inflammatory responses leads to systemic consequences. Studies have shown that metabolic syndrome and manifested diabetes are more frequent in COPD than in healthy subjects; a possible explanation is that different pathophysiological aspects of COPD can lead to insulin resistance. Thus, this mini-review aims to present the main studies suggesting a pathophysiological relationship between COPD and insulin resistance. METHODS A review of literature was conducted using PubMed and Web of Science databases with the aim of searching for studies supporting a relationship between COPD and insulin resistance. RESULTS A physiopathological relationship between COPD and insulin resistance was found, supported in part due to common risk factors presented by these two conditions, such as smoking and physical inactivity. Also, systemic effects (worsening of physical inactivity and sedentary behavior, inflammation and oxidative stress, body composition abnormalities) and the corticosteroid treatment of patients with COPD may play a role. CONCLUSION Patients with COPD should be screened for abnormalities in insulin sensitivity in order to reduce morbidity and improve health status in this population.
Collapse
Affiliation(s)
- Felipe Vilaça Cavallari Machado
- Department of Physiotherapy, Laboratory of Research in Respiratory Physiotherapy (LFIP), State University of Londrina (UEL), Londrina, Paraná, Brazil
| | - Fabio Pitta
- Department of Physiotherapy, Laboratory of Research in Respiratory Physiotherapy (LFIP), State University of Londrina (UEL), Londrina, Paraná, Brazil
| | - Nidia Aparecida Hernandes
- Department of Physiotherapy, Laboratory of Research in Respiratory Physiotherapy (LFIP), State University of Londrina (UEL), Londrina, Paraná, Brazil
| | - Gisele Lopes Bertolini
- Department of Physiological Sciences, State University of Londrina (UEL), Londrina, Paraná, Brazil.
| |
Collapse
|
204
|
Chen M, Zhou H, Xu Y, Qiu L, Hu Z, Qin X, Chen S, Zhang Y, Cao Q, Abu-Amer Y, Ying Z. From the Cover: Lung-Specific Overexpression of Constitutively Active IKK2 Induces Pulmonary and Systemic Inflammations but Not Hypothalamic Inflammation and Glucose Intolerance. Toxicol Sci 2018; 160:4-14. [PMID: 29036520 DOI: 10.1093/toxsci/kfx154] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
The lung is constantly exposed to ambient pollutants such as ambient fine particulate matter (PM2.5), making it one of the most frequent locations of inflammation in the body. Given the establishment of crucial role of inflammation in the pathogenesis of cardiometabolic diseases, pulmonary inflammation is thus widely believed to be an important risk factor for cardiometabolic diseases. However, the causality between them has not yet been well established. To determine if pulmonary inflammation is sufficient to cause adverse cardiometabolic effects, SFTPC-rtTA+/-tetO-cre+/-pROSA-inhibitor κB kinase 2(IKK2)ca+/- (LungIKK2ca) and littermate SFTPC-rtTA+/-tetO-cre-/-pROSA-IKK2ca+/- wildtype (WT) mice were fed with doxycycline diet to induce constitutively active Ikk2 (Ikk2ca) overexpression in the lung and their pulmonary, systemic, adipose, and hypothalamic inflammations, vascular function, and glucose homeostasis were assessed. Feeding with doxycycline diet resulted in IKK2ca overexpression in the lungs of LungIKK2ca but not WT mice. This induction of IKK2ca was accompanied by marked pulmonary inflammation as evidenced by significant increases in bronchoalveolar lavage fluid leukocytes, pulmonary macrophage infiltration, and pulmonary mRNA expression of tumor necrosis factor α (Tnfα) and interleukin-6 (Il-6). This pulmonary inflammation due to lung-specific overexpression of IKK2ca was sufficient to increase circulating TNFα and IL-6 levels, adipose expression of Tnfα and Il-6 mRNA, aortic endothelial dysfunction, and systemic insulin resistance. Unexpectedly, no significant alteration in hypothalamic expression of Tnfα and Il-6 mRNA and glucose intolerance were observed in these mice. Pulmonary inflammation is sufficient to induce systemic inflammation, endothelial dysfunction, and insulin resistance, but not hypothalamic inflammation and glucose intolerance.
Collapse
Affiliation(s)
- Minjie Chen
- Cardiology Division, Department of Medicine, University of Maryland School of Medicine, Baltimore, Maryland 21201.,Department of Environmental Health, School of Public Health, Fudan University, Shanghai 200032, China
| | - Huifen Zhou
- Cardiology Division, Department of Medicine, University of Maryland School of Medicine, Baltimore, Maryland 21201.,Department of Pathology, Hubei University of Science and Technology, Xianning, Hubei 437100, China
| | - Yanyi Xu
- Department of Environmental Health, School of Public Health, Fudan University, Shanghai 200032, China
| | - Lianglin Qiu
- Cardiology Division, Department of Medicine, University of Maryland School of Medicine, Baltimore, Maryland 21201.,Department of Occupational and Environmental Health, School of Public Health, Nantong University, Nantong 226019, China
| | - Ziying Hu
- Cardiology Division, Department of Medicine, University of Maryland School of Medicine, Baltimore, Maryland 21201.,Department of Endocrinology, The People's Hospital of Zhengzhou University (Henan Provincial People's Hospital), Zhengzhou, Henan 450003, China
| | - Xiaobo Qin
- Cardiology Division, Department of Medicine, University of Maryland School of Medicine, Baltimore, Maryland 21201
| | - Sufang Chen
- Cardiology Division, Department of Medicine, University of Maryland School of Medicine, Baltimore, Maryland 21201
| | - Yuhao Zhang
- Department of Neurology, Zhongshan Hospital, Fudan University, Shanghai 200032, China
| | - Qi Cao
- Department of Diagnostic Radiology and Nuclear Medicine, University of Maryland School of Medicine, Baltimore, Maryland 21201
| | - Yousef Abu-Amer
- Orthopedics and Cell Biology & Physiology, Washington University School of Medicine, St Louis, Missouri63110
| | - Zhekang Ying
- Cardiology Division, Department of Medicine, University of Maryland School of Medicine, Baltimore, Maryland 21201.,Department of Environmental Health, School of Public Health, Fudan University, Shanghai 200032, China
| |
Collapse
|
205
|
Kulanuwat S, Jungtrakoon P, Tangjittipokin W, Yenchitsomanus PT, Plengvidhya N. Fanconi anemia complementation group C protection against oxidative stress‑induced β‑cell apoptosis. Mol Med Rep 2018; 18:2485-2491. [PMID: 29901137 DOI: 10.3892/mmr.2018.9163] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2017] [Accepted: 04/25/2018] [Indexed: 11/05/2022] Open
Abstract
Diabetes mellitus (DM) and other glucose metabolism abnormalities are commonly observed in individuals with Fanconi anemia (FA). FA causes an impaired response to DNA damage due to genetic defects in a cluster of genes encoded proteins involved in DNA repair. However, the mechanism by which FA is associated with DM has not been clearly elucidated. Fanconi anemia complementation group C (FANCC) is a component of FA nuclear clusters. Evidence suggests that cytoplasmic FANCC has a role in protection against oxidative stress‑induced apoptosis. As oxidative stress‑mediated β‑cell dysfunction is one of the contributors to DM pathogenesis, the present study aimed to investigate the role of FANCC in pancreatic β‑cell response to oxidative stress. Small interfering RNA‑mediated FANCC suppression caused a loss of protection against oxidative stress‑induced apoptosis, and that overexpression of FANCC reduced this effect in the human 1.1B4 β‑cell line. These findings were confirmed by Annexin V‑FITC/PI staining, caspase 3/7 activity assay, and expression levels of anti‑apoptotic and pro‑apoptotic genes. Insulin and glucokinase mRNA expression were also decreased in FANCC‑depleted 1.1B4 cells. The present study demonstrated the role of FANCC in protection against oxidative stress‑induced β‑cell apoptosis and established another mechanism that associates FANCC deficiency with β‑cell dysfunction. The finding that FANCC overexpression reduced β‑cell apoptosis advances the potential for an alternative approach to the treatment of DM caused by FANCC defects.
Collapse
Affiliation(s)
- Sirikul Kulanuwat
- Siriraj Center of Research Excellence for Diabetes and Obesity, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok 10700, Thailand
| | - Prapaporn Jungtrakoon
- Siriraj Center of Research Excellence for Diabetes and Obesity, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok 10700, Thailand
| | - Watip Tangjittipokin
- Siriraj Center of Research Excellence for Diabetes and Obesity, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok 10700, Thailand
| | - Pa-Thai Yenchitsomanus
- Siriraj Center of Research Excellence for Diabetes and Obesity, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok 10700, Thailand
| | - Nattachet Plengvidhya
- Siriraj Center of Research Excellence for Diabetes and Obesity, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok 10700, Thailand
| |
Collapse
|
206
|
Do inositol supplements enhance phosphatidylinositol supply and thus support endoplasmic reticulum function? Br J Nutr 2018; 120:301-316. [PMID: 29859544 DOI: 10.1017/s0007114518000946] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
This review attempts to explain why consuming extra myoinositol (Ins), an essential component of membrane phospholipids, is often beneficial for patients with conditions characterised by insulin resistance, non-alcoholic fatty liver disease and endoplasmic reticulum (ER) stress. For decades we assumed that most human diets provide an adequate Ins supply, but newer evidence suggests that increasing Ins intake ameliorates several disorders, including polycystic ovary syndrome, gestational diabetes, metabolic syndrome, poor sperm development and retinopathy of prematurity. Proposed explanations often suggest functional enhancement of minor facets of Ins Biology such as insulin signalling through putative inositol-containing 'mediators', but offer no explanation for this selectivity. It is more likely that eating extra Ins corrects a deficiency of an abundant Ins-containing cell constituent, probably phosphatidylinositol (PtdIns). Much of a cell's PtdIns is in ER membranes, and an increase in ER membrane synthesis, enhancing the ER's functional capacity, is often an important part of cell responses to ER stress. This review: (a) reinterprets historical information on Ins deficiency as describing a set of events involving a failure of cells adequately to adapt to ER stress; (b) proposes that in the conditions that respond to dietary Ins there is an overstretching of Ins reserves that limits the stressed ER's ability to make the 'extra' PtdIns needed for ER membrane expansion; and (c) suggests that eating Ins supplements increases the Ins supply to Ins-deficient and ER-stressed cells, allowing them to make more PtdIns and to expand the ER membrane system and sustain ER functions.
Collapse
|
207
|
Mei Y, Yang JP, Lang YH, Peng LX, Yang MM, Liu Q, Meng DF, Zheng LS, Qiang YY, Xu L, Li CZ, Wei WW, Niu T, Peng XS, Yang Q, Lin F, Hu H, Xu HF, Huang BJ, Wang LJ, Qian CN. Global expression profiling and pathway analysis of mouse mammary tumor reveals strain and stage specific dysregulated pathways in breast cancer progression. Cell Cycle 2018; 17:963-973. [PMID: 29712537 DOI: 10.1080/15384101.2018.1442629] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
It is believed that the alteration of tissue microenvironment would affect cancer initiation and progression. However, little is known in terms of the underlying molecular mechanisms that would affect the initiation and progression of breast cancer. In the present study, we use two murine mammary tumor models with different speeds of tumor initiation and progression for whole genome expression profiling to reveal the involved genes and signaling pathways. The pathways regulating PI3K-Akt signaling and Ras signaling were activated in Fvb mice and promoted tumor progression. Contrastingly, the pathways regulating apoptosis and cellular senescence were activated in Fvb.B6 mice and suppressed tumor progression. We identified distinct patterns of oncogenic pathways activation at different stages of breast cancer, and uncovered five oncogenic pathways that were activated in both human and mouse breast cancers. The genes and pathways discovered in our study would be useful information for other researchers and drug development.
Collapse
Affiliation(s)
- Yan Mei
- a Department of Experimental Research, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine , Sun Yat-Sen University Cancer Center , Guangzhou 510060 , China
| | - Jun-Ping Yang
- a Department of Experimental Research, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine , Sun Yat-Sen University Cancer Center , Guangzhou 510060 , China
| | - Yan-Hong Lang
- a Department of Experimental Research, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine , Sun Yat-Sen University Cancer Center , Guangzhou 510060 , China
| | - Li-Xia Peng
- a Department of Experimental Research, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine , Sun Yat-Sen University Cancer Center , Guangzhou 510060 , China
| | - Ming-Ming Yang
- b Vascular Biology Research Institute, School of Basic Course, Guangdong Pharmaceutical University , Guangzhou 510006 , China
| | - Qing Liu
- b Vascular Biology Research Institute, School of Basic Course, Guangdong Pharmaceutical University , Guangzhou 510006 , China
| | - Dong-Fang Meng
- a Department of Experimental Research, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine , Sun Yat-Sen University Cancer Center , Guangzhou 510060 , China
| | - Li-Sheng Zheng
- a Department of Experimental Research, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine , Sun Yat-Sen University Cancer Center , Guangzhou 510060 , China
| | - Yuan-Yuan Qiang
- a Department of Experimental Research, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine , Sun Yat-Sen University Cancer Center , Guangzhou 510060 , China
| | - Liang Xu
- a Department of Experimental Research, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine , Sun Yat-Sen University Cancer Center , Guangzhou 510060 , China
| | - Chang-Zhi Li
- a Department of Experimental Research, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine , Sun Yat-Sen University Cancer Center , Guangzhou 510060 , China
| | - Wen-Wen Wei
- a Department of Experimental Research, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine , Sun Yat-Sen University Cancer Center , Guangzhou 510060 , China
| | - Ting Niu
- b Vascular Biology Research Institute, School of Basic Course, Guangdong Pharmaceutical University , Guangzhou 510006 , China
| | - Xing-Si Peng
- a Department of Experimental Research, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine , Sun Yat-Sen University Cancer Center , Guangzhou 510060 , China
| | - Qin Yang
- a Department of Experimental Research, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine , Sun Yat-Sen University Cancer Center , Guangzhou 510060 , China
| | - Fen Lin
- a Department of Experimental Research, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine , Sun Yat-Sen University Cancer Center , Guangzhou 510060 , China
| | - Hao Hu
- d Department of Traditional Chinese Medicine , First Affiliated Hospital, Sun Yat-Sen University , Guangzhou , China
| | - Hong-Fa Xu
- e Department of Hematology , The First Affiliated Hospital of Guangzhou Medical University , Guangzhou 510230 , China
| | - Bi-Jun Huang
- a Department of Experimental Research, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine , Sun Yat-Sen University Cancer Center , Guangzhou 510060 , China
| | - Li-Jing Wang
- b Vascular Biology Research Institute, School of Basic Course, Guangdong Pharmaceutical University , Guangzhou 510006 , China
| | - Chao-Nan Qian
- a Department of Experimental Research, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine , Sun Yat-Sen University Cancer Center , Guangzhou 510060 , China.,c Department of Nasopharyngeal Carcinoma , Sun Yat-Sen University Cancer Center , Guangzhou 510060 , China
| |
Collapse
|
208
|
He W, Yuan T, Choezom D, Hunkler H, Annamalai K, Lupse B, Maedler K. Ageing potentiates diet-induced glucose intolerance, β-cell failure and tissue inflammation through TLR4. Sci Rep 2018; 8:2767. [PMID: 29426925 PMCID: PMC5807311 DOI: 10.1038/s41598-018-20909-w] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2017] [Accepted: 01/25/2018] [Indexed: 12/25/2022] Open
Abstract
Ageing and obesity are two major risk factors for the development of type 2 diabetes (T2D). A chronic, low-grade, sterile inflammation contributes to insulin resistance and β-cell failure. Toll-like receptor-4 (TLR4) is a major pro-inflammatory pathway; its ligands as well as downstream signals are increased systemically in patients with T2D and at-risk individuals. In the present study we investigated the combined effects of high fat/high sucrose diet (HFD) feeding, ageing and TLR4-deficiency on tissue inflammation, insulin resistance and β-cell failure. In young mice, a short-term HFD resulted in a mildly impaired glucose tolerance and reduced insulin secretion, together with a β-cell mass compensation. In older mice, HFD further deteriorated insulin secretion and induced a significantly impaired glucose tolerance and augmented tissue inflammation in adipose, liver and pancreatic islets, all of which was attenuated by TLR4 deficiency. Our results show that ageing exacerbates HFD-induced impairment of glucose homeostasis and pancreatic β-cell function and survival, and deteriorates HFD-induced induction of mRNA expression of inflammatory cytokines and pro-inflammatory macrophage markers. TLR4-deficiency protects against these combined deleterious effects of a high fat diet and ageing through a reduced expression of inflammatory products in both insulin sensitive tissues and pancreatic islets.
Collapse
Affiliation(s)
- Wei He
- Centre for Biomolecular Interactions, University of Bremen, Bremen, Germany.
| | - Ting Yuan
- Centre for Biomolecular Interactions, University of Bremen, Bremen, Germany
| | - Dolma Choezom
- Centre for Biomolecular Interactions, University of Bremen, Bremen, Germany
| | - Hannah Hunkler
- Centre for Biomolecular Interactions, University of Bremen, Bremen, Germany
| | - Karthika Annamalai
- Centre for Biomolecular Interactions, University of Bremen, Bremen, Germany
| | - Blaz Lupse
- Centre for Biomolecular Interactions, University of Bremen, Bremen, Germany
| | - Kathrin Maedler
- Centre for Biomolecular Interactions, University of Bremen, Bremen, Germany.
| |
Collapse
|
209
|
Bosco G, Rizzato A, Quartesan S, Camporesi E, Mangar D, Paganini M, Cenci L, Malacrida S, Mrakic-Sposta S, Moretti S, Paoli A. Effects of the Ketogenic diet in overweight divers breathing Enriched Air Nitrox. Sci Rep 2018; 8:2655. [PMID: 29422679 PMCID: PMC5805750 DOI: 10.1038/s41598-018-20933-w] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2017] [Accepted: 01/25/2018] [Indexed: 02/07/2023] Open
Abstract
Central Nervous System Oxygen Toxicity (CNS-OT) is one of the most harmful effects of Enriched Air Nitrox (EAN) diving. Protective factors of the Ketogenic Diet (KD) are antioxidant activity, the prevention of mitochondrial damage and anti-inflammatory mechanisms. We aimed to investigate if a short-term KD may reduce oxidative stress and inflammation during an hyperoxic dive. Samples from six overweight divers (mean ± SD, age: 55.2 ± 4.96 years; BMI: 26.7 ± 0.86 kg/m2) were obtained a) before and after a dive breathing Enriched Air Nitrox and performing 20-minute mild underwater exercise, b) after a dive (same conditions) performed after 7 days of KD. We measured urinary 8-isoprostane and 8-OH-2-deoxyguanosine and plasmatic IL-1β, IL-6 and TNF-α levels. The KD was successful in causing weight loss (3.20 ± 1.31 Kgs, p < 0.01) and in limiting lipid peroxidation (3.63 ± 1.16 vs. 1.11 ± 0.22; p < 0.01) and inflammatory response (IL-1β = 105.7 ± 25.52 vs. 57.03 ± 16.32, p < 0.05; IL-6 = 28.91 ± 4.351 vs. 14.08 ± 1.74, p < 0.001; TNF-α = 78.01 ± 7.69 vs. 64.68 ± 14.56, p < 0.05). A short-term KD seems to be effective in weight loss, in decreasing inflammation and protective towards lipid peroxidation during hyperoxic diving.
Collapse
Affiliation(s)
- Gerardo Bosco
- Environmental physiology & medicine Lab, Department of Biomedical Sciences, University of Padova, Padova, Italy
| | - Alex Rizzato
- Environmental physiology & medicine Lab, Department of Biomedical Sciences, University of Padova, Padova, Italy.
| | - Silvia Quartesan
- Environmental physiology & medicine Lab, Department of Biomedical Sciences, University of Padova, Padova, Italy
| | | | | | - Matteo Paganini
- Emergency Medicine Residency Program, University of Padova, Padova, Italy
| | - Lorenzo Cenci
- Environmental physiology & medicine Lab, Department of Biomedical Sciences, University of Padova, Padova, Italy
| | - Sandro Malacrida
- Environmental physiology & medicine Lab, Department of Biomedical Sciences, University of Padova, Padova, Italy
| | | | - Sara Moretti
- CNR Institute of Bioimaging and Molecular Physiology, Segrate (Milano), Italy
| | - Antonio Paoli
- Environmental physiology & medicine Lab, Department of Biomedical Sciences, University of Padova, Padova, Italy
| |
Collapse
|
210
|
Miragem AA, Homem de Bittencourt PI. Nitric oxide-heat shock protein axis in menopausal hot flushes: neglected metabolic issues of chronic inflammatory diseases associated with deranged heat shock response. Hum Reprod Update 2018; 23:600-628. [PMID: 28903474 DOI: 10.1093/humupd/dmx020] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2016] [Accepted: 06/28/2017] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND Although some unequivocal underlying mechanisms of menopausal hot flushes have been demonstrated in animal models, the paucity of similar approaches in humans impedes further mechanistic outcomes. Human studies might show some as yet unexpected physiological mechanisms of metabolic adaptation that permeate the phase of decreased oestrogen levels in both symptomatic and asymptomatic women. This is particularly relevant because both the severity and time span of hot flushes are associated with increased risk of chronic inflammatory disease. On the other hand, oestrogen induces the expression of heat shock proteins of the 70 kDa family (HSP70), which are anti-inflammatory and cytoprotective protein chaperones, whose expression is modulated by different types of physiologically stressful situations, including heat stress and exercise. Therefore, lower HSP70 expression secondary to oestrogen deficiency increases cardiovascular risk and predisposes the patient to senescence-associated secretory phenotype (SASP) that culminates in chronic inflammatory diseases, such as obesities, type 2 diabetes, neuromuscular and neurodegenerative diseases. OBJECTIVE AND RATIONALE This review focuses on HSP70 and its accompanying heat shock response (HSR), which is an anti-inflammatory and antisenescent pathway whose intracellular triggering is also oestrogen-dependent via nitric oxide (NO) production. The main goal of the manuscript was to show that the vasomotor symptoms that accompany hot flushes may be a disguised clue for important neuroendocrine alterations linking oestrogen deficiency to the anti-inflammatory HSR. SEARCH METHODS Results from our own group and recent evidence on hypothalamic control of central temperature guided a search on PubMed and Google Scholar websites. OUTCOMES Oestrogen elicits rapid production of the vasodilatory gas NO, a powerful activator of HSP70 expression. Whence, part of the protective effects of oestrogen over cardiovascular and neuroendocrine systems is tied to its capacity of inducing the NO-elicited HSR. The hypothalamic areas involved in thermoregulation (infundibular nucleus in humans and arcuate nucleus in other mammals) and whose neurons are known to have their function altered after long-term oestrogen ablation, particularly kisspeptin-neurokinin B-dynorphin neurons, (KNDy) are the same that drive neuroprotective expression of HSP70 and, in many cases, this response is via NO even in the absence of oestrogen. From thence, it is not illogical that hot flushes might be related to an evolutionary adaptation to re-equip the NO-HSP70 axis during the downfall of circulating oestrogen. WIDER IMPLICATIONS Understanding of HSR could shed light on yet uncovered mechanisms of menopause-associated diseases as well as on possible manipulation of HSR in menopausal women through physiological, pharmacological, nutraceutical and prebiotic interventions. Moreover, decreased HSR indices (that can be clinically determined with ease) in perimenopause could be of prognostic value in predicting the moment and appropriateness of starting a HRT.
Collapse
Affiliation(s)
- Antônio Azambuja Miragem
- Laboratory of Cellular Physiology, Department of Physiology, Federal University of Rio Grande do Sul, Rua Sarmento Leite 500, ICBS, 2nd Floor, Suite 350, Porto Alegre, RS 90050-170, Brazil.,Federal Institute of Education, Science and Technology 'Farroupilha', Rua Uruguai 1675, Santa Rosa, RS 98900-000, Brazil
| | - Paulo Ivo Homem de Bittencourt
- Laboratory of Cellular Physiology, Department of Physiology, Federal University of Rio Grande do Sul, Rua Sarmento Leite 500, ICBS, 2nd Floor, Suite 350, Porto Alegre, RS 90050-170, Brazil
| |
Collapse
|
211
|
Nox4 genetic inhibition in experimental hypertension and metabolic syndrome. Arch Cardiovasc Dis 2018; 111:41-52. [DOI: 10.1016/j.acvd.2017.03.011] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/13/2016] [Revised: 12/28/2016] [Accepted: 03/22/2017] [Indexed: 02/07/2023]
|
212
|
Huang H, Chi H, Liao D, Zou Y. Effects of coenzyme Q 10 on cardiovascular and metabolic biomarkers in overweight and obese patients with type 2 diabetes mellitus: a pooled analysis. Diabetes Metab Syndr Obes 2018; 11:875-886. [PMID: 30568475 PMCID: PMC6276825 DOI: 10.2147/dmso.s184301] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Abstract
BACKGROUND The potential effects of coenzyme Q10 (CoQ10) supplementation in overweight/obese patients with type 2 diabetes mellitus are not fully established. In this article, we aimed to perform a pooled analysis to investigate the effects of CoQ10 intervention on cardiovascular disease (CVD) risk factors in overweight/obese patients with type 2 diabetes mellitus (T2DM). METHODS MEDLINE, Embase, and Cochrane databases were searched for randomized controlled trials that evaluated the changes in CVD risk factors among overweight and obese patients with T2DM following CoQ10 supplementation. Two investigators independently assessed articles for inclusion, extracted data, and assessed risk of bias. Major endpoints were synthesized as weighted mean differences (WMDs) with 95% CIs. Subgroup analyses were performed to check the consistency of effect sizes across groups. Publication bias and sensitivity analysis were also performed. RESULTS Fourteen eligible trials with 693 overweight/obese diabetic subjects were included for pooling. CoQ10 interventions significantly reduced fasting blood glucose (FBG; -0.59 mmol/L; 95% CI, -1.05 to -0.12; P=0.01), hemoglobin A1c (HbA1c; -0.28%; 95% CI-0.53 to -0.03; P=0.03), and triglyceride (TG) levels (0.17 mmol/L; 95% CI, -0.32 to -0.03; P=0.02). Subgroup analysis also showed that low-dose consumption of CoQ10 (<200 mg/d) effectively reduces the values of FBG, HbA1c, fasting blood insulin, homeostatic model assessment of insulin resistance, and TG. CoQ10 treatment was well tolerated, and no drug-related adverse reactions were reported. CONCLUSION Our findings provide substantial evidence that daily CoQ10 supplementation has beneficial effects on glucose control and lipid management in overweight and obese patients with T2DM.
Collapse
Affiliation(s)
- Haohai Huang
- Department of Clinical Pharmacy, Dongguan Third People's Hospital, Affiliated Dongguan Shilong People's Hospital of Southern Medical University, Dongguan, Guangdong, China
| | - Honggang Chi
- Department of Traditional Chinese Medicine, Scientific Research Platform, The Second Clinical Medical College, Guangdong Medical University, Dongguan, China,
| | - Dan Liao
- Department of Gynaecology & Obstetrics, Dongguan Third People's Hospital, Affiliated Dongguan Shilong People's Hospital of Southern Medical University, Dongguan, Guangdong, China,
| | - Ying Zou
- Department of Traditional Chinese Medicine, Scientific Research Platform, The Second Clinical Medical College, Guangdong Medical University, Dongguan, China,
- Key Laboratory for Medical Molecular Diagnostics of Guangdong Province, Guangdong Medical University, Dongguan, Guangdong, China,
| |
Collapse
|
213
|
Amelioration of streptozotocin‑induced pancreatic β cell damage by morin: Involvement of the AMPK‑FOXO3‑catalase signaling pathway. Int J Mol Med 2017; 41:1409-1418. [PMID: 29286118 PMCID: PMC5819920 DOI: 10.3892/ijmm.2017.3357] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2016] [Accepted: 12/13/2017] [Indexed: 01/24/2023] Open
Abstract
Pancreatic β cells are sensitive to oxidative stress, which is one of the predominant causes of cell damage and the emergence of diabetes. The identification of effective therapeutic strategies to protect pancreatic cells from oxidative stress has increased interest in the screening of antioxidants from natural products. The present study aimed to investigate the protective effects of morin against streptozotocin (STZ)‑induced cell damage in a rat insulinoma cell line (RINm5F pancreatic β cells) and to identify the underlying mechanisms. The results indicated that morin inhibited the increase in intracellular reactive oxygen species, attenuated the activity of poly (ADP‑ribose) polymerase, restored intracellular nicotinamide adenine dinucleotide levels and reduced the apoptotic cell death of STZ‑treated pancreatic β cells. Treatment with morin significantly upregulated catalase in pancreatic β cells, and ameliorated the STZ‑induced loss of catalase at the genetic, protein and enzymatic level. In further experiments, morin induced the phosphorylation of 5' adenosine monophosphate‑activated protein kinase (AMPK), which subsequently promoted the translocation of forkhead box O3 (FOXO3) to the nucleus. Specific small interfering RNAs (siRNAs) against AMPK and FOXO3 suppressed morin‑induced catalase expression. Furthermore, catalase‑specific siRNA abolished the protective effects of morin against STZ‑stimulated cell death. Taken together, these results indicated that morin protected RINm5F cells from STZ‑induced cell damage by triggering the phosphorylation of AMPK, thus resulting in subsequent activation of FOXO3 and induction of catalase.
Collapse
|
214
|
Kim GS, Kim SG, Kim HS, Hwang EY, Lee JH, Yoon H. The relationship between chronic kidney function and homeostasis model assessment of insulin resistance and beta cell function in Korean adults with or without type 2 diabetes mellitus. Endocr J 2017; 64:1181-1190. [PMID: 28890482 DOI: 10.1507/endocrj.ej17-0274] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
The present study was conducted to assess the relationship between chronic kidney disease (CKD) and the homeostasis model assessment of insulin resistance (HOMA-IR) and beta cell function (HOMA-B) in Korean adults with or without type 2 diabetes mellitus (T2DM). This study included 5,188 adults aged 20 or older using the 2015 Korea National Health and Nutrition Examination Survey (KNHANES) data, which represents national data in Korea. A covariance test adjusted for covariates was performed for HOMA-IR and HOMA-B in relation to CKD. The present study has several key findings. First, in T2DM, HOMA-IR (p = 0.035) was higher in the CKD group than in the non-CKD group after adjusting for the related variables but HOMA-B (p = 0.141) was not significant. Second, in non-T2DM, HOMA-IR (p = 0.163) and HOMA-B (p = 0.658) were not associated with CKD after adjusting for the related variables (except age). However, when further adjusted for age, HOMA-IR (p = 0.020) and HOMA-B (p = 0.006) were higher in the CKD group than in the non-CKD group. In conclusion, insulin resistance was positively associated CKD with in Korean adults with or without T2DM. Beta cell function was positively associated CKD with in Korean adults without T2DM but not in Korean adults with T2DM.
Collapse
Affiliation(s)
- Gwang Seok Kim
- Department of Emergency Medical Technology, Chungbuk Health and Science University, Cheongju-si 28150, South Korea
| | - Sung Gil Kim
- Department of Radiological Science, Hanlyo University, Gwangyang-si, 57764, South Korea
| | - Han Soo Kim
- Department of Health Science Graduate School, Chosun University, Gwangju 61457, South Korea
| | - Eun Young Hwang
- Department of Nursing Graduate School, Chosun University, Gwangju 61457, South Korea
| | - Jun Ho Lee
- Department of Biomedical Laboratory Science, Wonkwang Health Science University, Iksan-si, 54538, South Korea
| | - Hyun Yoon
- Department of Biomedical Laboratory Science, Hanlyo University, Gwangyang-si 57764, South Korea
| |
Collapse
|
215
|
Frago LM, Canelles S, Freire-Regatillo A, Argente-Arizón P, Barrios V, Argente J, Garcia-Segura LM, Chowen JA. Estradiol Uses Different Mechanisms in Astrocytes from the Hippocampus of Male and Female Rats to Protect against Damage Induced by Palmitic Acid. Front Mol Neurosci 2017; 10:330. [PMID: 29114202 PMCID: PMC5660686 DOI: 10.3389/fnmol.2017.00330] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2017] [Accepted: 09/29/2017] [Indexed: 01/22/2023] Open
Abstract
An excess of saturated fatty acids can be toxic for tissues, including the brain, and this has been associated with the progression of neurodegenerative diseases. Since palmitic acid (PA) is a free fatty acid that is abundant in the diet and circulation and can be harmful, we have investigated the effects of this fatty acid on lipotoxicity in hippocampal astrocytes and the mechanism involved. Moreover, as males and females have different susceptibilities to some neurodegenerative diseases, we accessed the responses of astrocytes from both sexes, as well as the possible involvement of estrogens in the protection against fatty acid toxicity. PA increased endoplasmic reticulum stress leading to cell death in astrocytes from both males and females. Estradiol (E2) increased the levels of protective factors, such as Hsp70 and the anti-inflammatory cytokine interleukin-10, in astrocytes from both sexes. In male astrocytes, E2 decreased pJNK, TNFα, and caspase-3 activation. In contrast, in female astrocytes E2 did not affect the activation of JNK or TNFα levels, but decreased apoptotic cell death. Hence, although E2 exerted protective effects against the detrimental effects of PA, the mechanisms involved appear to be different between male and female astrocytes. This sexually dimorphic difference in the protective mechanisms induced by E2 could be involved in the different susceptibilities of males and females to some neurodegenerative processes.
Collapse
Affiliation(s)
- Laura M Frago
- Departamento de Pediatría, Universidad Autónoma de Madrid, Madrid, Spain.,Departamento de Endocrinología, Hospital Infantil Universitario Niño Jesús, Madrid, Spain.,Instituto de Investigación Sanitaria Princesa, Madrid, Spain.,Centro de Investigación Biomédica en Red de Fisiopatología de la Obesidad y Nutrición, Instituto de Salud Carlos III, Madrid, Spain
| | - Sandra Canelles
- Departamento de Endocrinología, Hospital Infantil Universitario Niño Jesús, Madrid, Spain.,Instituto de Investigación Sanitaria Princesa, Madrid, Spain.,Centro de Investigación Biomédica en Red de Fisiopatología de la Obesidad y Nutrición, Instituto de Salud Carlos III, Madrid, Spain
| | - Alejandra Freire-Regatillo
- Departamento de Pediatría, Universidad Autónoma de Madrid, Madrid, Spain.,Departamento de Endocrinología, Hospital Infantil Universitario Niño Jesús, Madrid, Spain.,Instituto de Investigación Sanitaria Princesa, Madrid, Spain.,Centro de Investigación Biomédica en Red de Fisiopatología de la Obesidad y Nutrición, Instituto de Salud Carlos III, Madrid, Spain
| | - Pilar Argente-Arizón
- Departamento de Pediatría, Universidad Autónoma de Madrid, Madrid, Spain.,Departamento de Endocrinología, Hospital Infantil Universitario Niño Jesús, Madrid, Spain.,Instituto de Investigación Sanitaria Princesa, Madrid, Spain.,Centro de Investigación Biomédica en Red de Fisiopatología de la Obesidad y Nutrición, Instituto de Salud Carlos III, Madrid, Spain
| | - Vicente Barrios
- Departamento de Endocrinología, Hospital Infantil Universitario Niño Jesús, Madrid, Spain.,Instituto de Investigación Sanitaria Princesa, Madrid, Spain.,Centro de Investigación Biomédica en Red de Fisiopatología de la Obesidad y Nutrición, Instituto de Salud Carlos III, Madrid, Spain
| | - Jesús Argente
- Departamento de Pediatría, Universidad Autónoma de Madrid, Madrid, Spain.,Departamento de Endocrinología, Hospital Infantil Universitario Niño Jesús, Madrid, Spain.,Instituto de Investigación Sanitaria Princesa, Madrid, Spain.,Centro de Investigación Biomédica en Red de Fisiopatología de la Obesidad y Nutrición, Instituto de Salud Carlos III, Madrid, Spain.,IMDEA Food Institute, Universidad Autónoma de Madrid, Consejo Superior de Investigaciones Científicas (CSIC), Madrid, Spain
| | - Luis M Garcia-Segura
- Instituto Cajal, Consejo Superior de Investigaciones Científicas (CSIC), Madrid, Spain.,CIBER de Investigación Biomédica en Red de Fragilidad y Envejecimiento Saludable (CIBERFES), Instituto de Salud Carlos III, Madrid, Spain
| | - Julie A Chowen
- Departamento de Endocrinología, Hospital Infantil Universitario Niño Jesús, Madrid, Spain.,Instituto de Investigación Sanitaria Princesa, Madrid, Spain.,Centro de Investigación Biomédica en Red de Fisiopatología de la Obesidad y Nutrición, Instituto de Salud Carlos III, Madrid, Spain
| |
Collapse
|
216
|
Morten KJ, Potter M, Badder L, Sivathondan P, Dragovic R, Neumann A, Gavin J, Shrestha R, Reilly S, Phadwal K, Lodge TA, Borzychowski A, Cookson S, Mitchell C, Morovat A, Simon AK, Uusimaa J, Hynes J, Poulton J. Insights into pancreatic β cell energy metabolism using rodent β cell models. Wellcome Open Res 2017; 2:14. [DOI: 10.12688/wellcomeopenres.10535.2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/14/2019] [Indexed: 11/20/2022] Open
Abstract
Background: Mitochondrial diabetes is primarily caused by β-cell failure, a cell type whose unique properties are important in pathogenesis. Methods: By reducing glucose, we induced energetic stress in two rodent β-cell models to assess effects on cellular function. Results: Culturing rat insulin-secreting INS-1 cells in low glucose conditions caused a rapid reduction in whole cell respiration, associated with elevated mitochondrial reactive oxygen species production, and an altered glucose-stimulated insulin secretion profile. Prolonged exposure to reduced glucose directly impaired mitochondrial function and reduced autophagy. Conclusions: Insulinoma cell lines have a very different bioenergetic profile to many other cell lines and provide a useful model of mechanisms affecting β-cell mitochondrial function.
Collapse
|
217
|
Miele EM, Headley SAE. The Effects of Chronic Aerobic Exercise on Cardiovascular Risk Factors in Persons with Diabetes Mellitus. Curr Diab Rep 2017; 17:97. [PMID: 28900818 DOI: 10.1007/s11892-017-0927-7] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
PURPOSE OF REVIEW Aerobic exercise training is a component of diabetes mellitus (DM) care guidelines due to its favorable effects on glycemic control and cardiovascular disease (CVD) risk factors. The purpose of this review is to outline the recent evidence regarding the clinical effects of chronic aerobic exercise on CVD risk factors in persons with DM and to compare the effects of varying intensities and types of exercise. RECENT FINDINGS Among individuals with DM, all types of aerobic exercise training can impact positively on some traditional and non-traditional risk factors for CVD. Training programs with a higher volume or intensity induce greater improvements in vascular function, cardiorespiratory fitness (CRF), and lipid profiles. The beneficial outcomes of aerobic training include improvements in glycemic control, endothelial function, oxidative stress, dyslipidemia, myocardial function, adiposity, and CRF. Findings regarding markers of inflammation are discrepant and further research should focus on the role of exercise to impact upon the chronic inflammation associated with DM.
Collapse
Affiliation(s)
- Emily M Miele
- Exercise Science and Sport Studies, Springfield College, 263 Alden St, Springfield, MA, 01119, USA
| | - Samuel A E Headley
- Exercise Science and Sport Studies, Springfield College, 263 Alden St, Springfield, MA, 01119, USA.
| |
Collapse
|
218
|
Hypoxia in 3T3-L1 adipocytes suppresses adiponectin expression via the PERK and IRE1 unfolded protein response. Biochem Biophys Res Commun 2017; 493:346-351. [PMID: 28888981 DOI: 10.1016/j.bbrc.2017.09.020] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2017] [Accepted: 09/06/2017] [Indexed: 01/17/2023]
Abstract
Adiponectin, an adipocytokine produced by adipocytes, functions as an anti-inflammatory and anti-apoptotic substance, while also enhancing insulin sensitivity. Patients or model animals with obesity or diabetes typically present attenuated expression of adiponectin. Moreover, obesity and diabetes are often accompanied with hypoxia in adipose tissue, which may result in endoplasmic reticulum (ER) stress as well as low expression of adiponectin. The purpose of this study was to investigate the specific role of the unfolded protein response (UPR) involved in the low expression of adiponectin induced by hypoxia. Subjecting 3T3-L1 adipocytes to hypoxia significantly reduced adiponectin expression and activated the PERK and IRE1 signaling pathways in a time-dependent manner. The ATF6 signaling pathway showed no obvious changes with hypoxia treatment under a similar time course. Moreover, the down-regulated expression of adiponectin induced by hypoxia was relieved once the PERK and IRE1 signaling pathways were suppressed by the inhibitors GSK2656157 and 4μ8C, respectively. Overall, these data demonstrate that hypoxia can suppress adiponectin expression and activate the PERK and IRE1 signaling pathways in differentiated adipocytes, and this two pathways are involved in the suppression of adiponectin expression induced by hypoxia.
Collapse
|
219
|
Schwartz SS, Epstein S, Corkey BE, Grant SFA, Gavin Iii JR, Aguilar RB, Herman ME. A Unified Pathophysiological Construct of Diabetes and its Complications. Trends Endocrinol Metab 2017. [PMID: 28629897 DOI: 10.1016/j.tem.2017.05.005] [Citation(s) in RCA: 52] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
Advances in understanding diabetes mellitus (DM) through basic and clinical research have helped clarify and reunify a disease state fragmented into numerous etiologies and subtypes. It is now understood that a common pathophysiology drives the diabetic state throughout its natural history and across its varied clinical presentations, a pathophysiology involving metabolic insults, oxidative damage, and vicious cycles that aggravate and intensify organ dysfunction and damage. This new understanding of the disease requires that we revisit existing diagnostics and treatment approaches, which were built upon outmoded assumptions. 'The Common Pathophysiologic Origins of Diabetes Mellitus and its Complications Construct' is presented as a more accurate, foundational, and translatable construct of DM that helps make sense of the hitherto ambiguous findings of long-term outcome studies.
Collapse
Affiliation(s)
- Stanley S Schwartz
- Main Line Health System, Wynnewood, PA, USA; University of Pennsylvania, Philadelphia, PA, USA.
| | - Solomon Epstein
- Medicine, Endocrinology, Diabetes and Bone Disease, Mount Sinai Hospital, New York, NY, USA
| | - Barbara E Corkey
- Department of Medicine, Boston University School of Medicine, Boston, MA, USA
| | - Struan F A Grant
- Division of Human Genetics and Center for Applied Genomics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA; Divisions of Human Genetics and Endocrinology, The Children's Hospital of Philadelphia, Philadelphia, PA, USA; Department of Pediatrics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | | | | | - Mary E Herman
- Montclair State University, Upper Montclair, NJ, USA; Social Alchemy Ltd., Building Global Research Competency, Lynchburg, VA, USA
| |
Collapse
|
220
|
Insulin resistance is associated with reductions in specific cognitive domains and increases in CSF tau in cognitively normal adults. Sci Rep 2017; 7:9766. [PMID: 28852028 PMCID: PMC5575049 DOI: 10.1038/s41598-017-09577-4] [Citation(s) in RCA: 53] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2017] [Accepted: 07/21/2017] [Indexed: 01/06/2023] Open
Abstract
Growing evidence supports the hypothesis that type 2 diabetes (T2D) increases the risk of developing dementia. Experimental evidence from mouse models demonstrates that the induction of T2D/insulin resistance (IR) can promote the accumulation of Alzheimer's disease (AD) pathological features. However, the association of T2D with pathological and clinical phenotypes in humans is unclear. Here we investigate the relationship of indices of IR (HOMA-IR) and pancreatic β-cell function (HOMA-B) with cognitive performance across several domains (Verbal/Visual Episodic Memory, Executive Function, Language and a measure of Global cognition) and AD biomarkers (CSF Aβ42, T-tau/P-tau, hippocampal volume and neocortical Aβ-amyloid burden). We reveal that HOMA-IR (p < 0.001) incrementally increases across diagnostic groups, becoming significantly elevated in the AD group compared with cognitively normal (CN) adults. In CN adults, higher HOMA-IR was associated with poorer performance on measures of verbal episodic memory (p = 0.010), executive function (p = 0.046) and global cognition (p = 0.007), as well as with higher CSF T-tau (p = 0.008) and P-tau (p = 0.014) levels. No association was observed with CSF Aβ or imaging modalities. Together our data suggest that IR may contribute to reduced cognitive performance and the accumulation of CSF tau biomarkers in cognitively normal adults.
Collapse
|
221
|
Mega C, Teixeira-de-Lemos E, Fernandes R, Reis F. Renoprotective Effects of the Dipeptidyl Peptidase-4 Inhibitor Sitagliptin: A Review in Type 2 Diabetes. J Diabetes Res 2017; 2017:5164292. [PMID: 29098166 PMCID: PMC5643039 DOI: 10.1155/2017/5164292] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/21/2017] [Accepted: 07/12/2017] [Indexed: 12/13/2022] Open
Abstract
Diabetic nephropathy (DN) is now the single commonest cause of end-stage renal disease (ESRD) worldwide and one of the main causes of death in diabetic patients. It is also acknowledged as an independent risk factor for cardiovascular disease (CVD). Since sitagliptin was approved, many studies have been carried out revealing its ability to not only improve metabolic control but also ameliorate dysfunction in various diabetes-targeted organs, especially the kidney, due to putative underlying cytoprotective properties, namely, its antiapoptotic, antioxidant, anti-inflammatory, and antifibrotic properties. Despite overall recommendations, many patients spend a long time well outside the recommended glycaemic range and, therefore, have an increased risk for developing micro- and macrovascular complications. Currently, it is becoming clearer that type 2 diabetes mellitus (T2DM) management must envision not only the improvement in glycaemic control but also, and particularly, the prevention of pancreatic deterioration and the evolution of complications, such as DN. This review aims to provide an overview of the current knowledge in the field of renoprotective actions of sitagliptin, namely, improvement in diabetic dysmetabolism, hemodynamic factors, renal function, diabetic kidney lesions, and cytoprotective properties.
Collapse
Affiliation(s)
- Cristina Mega
- Agrarian School of Viseu (ESAV), Polytechnic Institute of Viseu (IPV), 3500-606 Viseu, Portugal
- Centre for the Study of Education, Technologies and Health (CI&DETS), Polytechnic Institute of Viseu (IPV), 3500-606 Viseu, Portugal
- Institute of Pharmacology and Experimental Therapeutics and Institute for Biomedical Imaging and Life Sciences (IBILI), Faculty of Medicine, University of Coimbra, 3000-548 Coimbra, Portugal
| | - Edite Teixeira-de-Lemos
- Agrarian School of Viseu (ESAV), Polytechnic Institute of Viseu (IPV), 3500-606 Viseu, Portugal
- Centre for the Study of Education, Technologies and Health (CI&DETS), Polytechnic Institute of Viseu (IPV), 3500-606 Viseu, Portugal
| | - Rosa Fernandes
- Institute of Pharmacology and Experimental Therapeutics and Institute for Biomedical Imaging and Life Sciences (IBILI), Faculty of Medicine, University of Coimbra, 3000-548 Coimbra, Portugal
- CNC.IBILI Research Consortium, University of Coimbra, 3004-504 Coimbra, Portugal
| | - Flávio Reis
- Institute of Pharmacology and Experimental Therapeutics and Institute for Biomedical Imaging and Life Sciences (IBILI), Faculty of Medicine, University of Coimbra, 3000-548 Coimbra, Portugal
- CNC.IBILI Research Consortium, University of Coimbra, 3004-504 Coimbra, Portugal
| |
Collapse
|
222
|
Ishida E, Kim-Muller JY, Accili D. Pair Feeding, but Not Insulin, Phloridzin, or Rosiglitazone Treatment, Curtails Markers of β-Cell Dedifferentiation in db/db Mice. Diabetes 2017; 66:2092-2101. [PMID: 28506962 PMCID: PMC5521857 DOI: 10.2337/db16-1213] [Citation(s) in RCA: 58] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/05/2016] [Accepted: 05/02/2017] [Indexed: 12/31/2022]
Abstract
β-Cell failure is a hallmark of type 2 diabetes. Among several cellular biological mechanisms of cellular dysfunction, we and others have recently proposed that dedifferentiation of β-cells can explain the slowly progressive onset and partial reversibility of β-cell failure. Accordingly, we provided evidence of such processes in humans and experimental animal models of insulin-resistant diabetes. In this study, we asked whether β-cell dedifferentiation can be prevented with diet or pharmacological treatment of diabetes. db/db mice, a widely used model of insulin-resistant diabetes and obesity, were either pair fed or treated with the Sglt inhibitor phloridzin, the insulin-sensitizer rosiglitazone, or insulin. All treatments were equally efficacious in reducing plasma glucose levels. Pair feeding and phloridzin also resulted in significant weight loss. However, pair feeding among the four treatments resulted in a reduction of β-cell dedifferentiation, as assessed by Foxo1 and Aldh1a3 immunohistochemistry. The effect of diet to partly restore β-cell function is consistent with data in human diabetes and provides another potential mechanism by which lifestyle changes act as an effective intervention against diabetes progression.
Collapse
Affiliation(s)
- Emi Ishida
- Department of Medicine and Naomi Berrie Diabetes Center, Columbia University, New York, New York
| | - Ja Young Kim-Muller
- Department of Medicine and Naomi Berrie Diabetes Center, Columbia University, New York, New York
| | - Domenico Accili
- Department of Medicine and Naomi Berrie Diabetes Center, Columbia University, New York, New York
| |
Collapse
|
223
|
de Melo LGP, Nunes SOV, Anderson G, Vargas HO, Barbosa DS, Galecki P, Carvalho AF, Maes M. Shared metabolic and immune-inflammatory, oxidative and nitrosative stress pathways in the metabolic syndrome and mood disorders. Prog Neuropsychopharmacol Biol Psychiatry 2017; 78:34-50. [PMID: 28438472 DOI: 10.1016/j.pnpbp.2017.04.027] [Citation(s) in RCA: 119] [Impact Index Per Article: 14.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/27/2017] [Revised: 03/27/2017] [Accepted: 04/08/2017] [Indexed: 02/08/2023]
Abstract
This review examines the shared immune-inflammatory, oxidative and nitrosative stress (IO&NS) and metabolic pathways underpinning metabolic syndrome (MetS), bipolar disorder (BD) and major depressive disorder (MDD). Shared pathways in both MetS and mood disorders are low grade inflammation, including increased levels of pro-inflammatory cytokines and acute phase proteins, increased lipid peroxidation with formation of malondialdehyde and oxidized low density lipoprotein cholesterol (LDL-c), hypernitrosylation, lowered levels of antioxidants, most importantly zinc and paraoxonase (PON1), increased bacterial translocation (leaky gut), increased atherogenic index of plasma and Castelli risk indices; and reduced levels of high-density lipoprotein (HDL-c) cholesterol. Insulin resistance is probably not a major factor associated with mood disorders. Given the high levels of IO&NS and metabolic dysregulation in BD and MDD and the high comorbidity with the atherogenic components of the MetS, mood disorders should be viewed as systemic neuro-IO&NS-metabolic disorders. The IO&NS-metabolic biomarkers may have prognostic value and may contribute to the development of novel treatments targeting neuro-immune, neuro-oxidative and neuro-nitrosative pathways.
Collapse
Affiliation(s)
- Luiz Gustavo Piccoli de Melo
- Department of Clinical Medicine, Londrina State University (UEL), Health Sciences Centre, Londrina, Paraná, Brazil; Center of Approach and Treatment for Smokers, University Hospital, Londrina State University, University Campus, Londrina, Paraná, Brazil; Health Sciences Graduation Program, Health Sciences Center, State University of Londrina, Londrina, Paraná, Brazil
| | - Sandra Odebrecht Vargas Nunes
- Department of Clinical Medicine, Londrina State University (UEL), Health Sciences Centre, Londrina, Paraná, Brazil; Center of Approach and Treatment for Smokers, University Hospital, Londrina State University, University Campus, Londrina, Paraná, Brazil; Health Sciences Graduation Program, Health Sciences Center, State University of Londrina, Londrina, Paraná, Brazil
| | | | - Heber Odebrecht Vargas
- Department of Clinical Medicine, Londrina State University (UEL), Health Sciences Centre, Londrina, Paraná, Brazil; Center of Approach and Treatment for Smokers, University Hospital, Londrina State University, University Campus, Londrina, Paraná, Brazil; Health Sciences Graduation Program, Health Sciences Center, State University of Londrina, Londrina, Paraná, Brazil
| | - Décio Sabbattini Barbosa
- Health Sciences Graduation Program, Health Sciences Center, State University of Londrina, Londrina, Paraná, Brazil; Department of Clinical and Toxicological Analysis, State University of Londrina, Londrina, Paraná, Brazil
| | - Piotr Galecki
- Department of Adult Psychiatry, University of Lodz, Lodz, Poland
| | - André F Carvalho
- Department of Clinical Medicine and Translational Psychiatry Research Group, Faculty of Medicine, Federal University of Ceará, Fortaleza, CE, Brazil
| | - Michael Maes
- Health Sciences Graduation Program, Health Sciences Center, State University of Londrina, Londrina, Paraná, Brazil; Department of Psychiatry, Chulalongkorn University, Bangkok, Thailand; Department of Psychiatry, Plovdiv University, Plovdiv, Bulgaria; Revitalis, Waalre, The Netherlands; Impact Strategic Research Center, Deakin University, Geelong, Australia.
| |
Collapse
|
224
|
Gaballah HH, Zakaria SS, Mwafy SE, Tahoon NM, Ebeid AM. Mechanistic insights into the effects of quercetin and/or GLP-1 analogue liraglutide on high-fat diet/streptozotocin-induced type 2 diabetes in rats. Biomed Pharmacother 2017; 92:331-339. [DOI: 10.1016/j.biopha.2017.05.086] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2017] [Revised: 05/17/2017] [Accepted: 05/17/2017] [Indexed: 12/19/2022] Open
|
225
|
El-Benna J, Hurtado-Nedelec M, Marzaioli V, Marie JC, Gougerot-Pocidalo MA, Dang PMC. Priming of the neutrophil respiratory burst: role in host defense and inflammation. Immunol Rev 2017; 273:180-93. [PMID: 27558335 DOI: 10.1111/imr.12447] [Citation(s) in RCA: 333] [Impact Index Per Article: 41.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Neutrophils are the major circulating white blood cells in humans. They play an essential role in host defense against pathogens. In healthy individuals, circulating neutrophils are in a dormant state with very low efficiency of capture and arrest on the quiescent endothelium. Upon infection and subsequent release of pro-inflammatory mediators, the vascular endothelium signals to circulating neutrophils to roll, adhere, and cross the endothelial barrier. Neutrophils migrate toward the infection site along a gradient of chemo-attractants, then recognize and engulf the pathogen. To kill this pathogen entrapped inside the vacuole, neutrophils produce and release high quantities of antibacterial peptides, proteases, and reactive oxygen species (ROS). The robust ROS production is also called 'the respiratory burst', and the NADPH oxidase or NOX2 is the enzyme responsible for the production of superoxide anion, leading to other ROS. In vitro, several soluble and particulate agonists induce neutrophil ROS production. This process can be enhanced by prior neutrophil treatment with 'priming' agents, which alone do not induce a respiratory burst. In this review, we will describe the priming process and discuss the beneficial role of controlled neutrophil priming in host defense and the detrimental effect of excessive neutrophil priming in inflammatory diseases.
Collapse
Affiliation(s)
- Jamel El-Benna
- INSERM-U1149, CNRS-ERL8252, Centre de Recherche sur l'Inflammation, Paris, France.,Sorbonne Paris Cité, Laboratoire d'Excellence Inflamex, DHU FIRE, Faculté de Médecine, Site Xavier Bichat, Université Paris Diderot, Paris, France
| | - Margarita Hurtado-Nedelec
- INSERM-U1149, CNRS-ERL8252, Centre de Recherche sur l'Inflammation, Paris, France.,Sorbonne Paris Cité, Laboratoire d'Excellence Inflamex, DHU FIRE, Faculté de Médecine, Site Xavier Bichat, Université Paris Diderot, Paris, France.,Département d'Immunologie et d'Hématologie, UF Dysfonctionnements Immunitaires, HUPNVS, Hôpital Bichat, Paris, France
| | - Viviana Marzaioli
- INSERM-U1149, CNRS-ERL8252, Centre de Recherche sur l'Inflammation, Paris, France.,Sorbonne Paris Cité, Laboratoire d'Excellence Inflamex, DHU FIRE, Faculté de Médecine, Site Xavier Bichat, Université Paris Diderot, Paris, France
| | - Jean-Claude Marie
- INSERM-U1149, CNRS-ERL8252, Centre de Recherche sur l'Inflammation, Paris, France.,Sorbonne Paris Cité, Laboratoire d'Excellence Inflamex, DHU FIRE, Faculté de Médecine, Site Xavier Bichat, Université Paris Diderot, Paris, France.,Département d'Immunologie et d'Hématologie, UF Dysfonctionnements Immunitaires, HUPNVS, Hôpital Bichat, Paris, France
| | - Marie-Anne Gougerot-Pocidalo
- INSERM-U1149, CNRS-ERL8252, Centre de Recherche sur l'Inflammation, Paris, France.,Sorbonne Paris Cité, Laboratoire d'Excellence Inflamex, DHU FIRE, Faculté de Médecine, Site Xavier Bichat, Université Paris Diderot, Paris, France.,Département d'Immunologie et d'Hématologie, UF Dysfonctionnements Immunitaires, HUPNVS, Hôpital Bichat, Paris, France
| | - Pham My-Chan Dang
- INSERM-U1149, CNRS-ERL8252, Centre de Recherche sur l'Inflammation, Paris, France.,Sorbonne Paris Cité, Laboratoire d'Excellence Inflamex, DHU FIRE, Faculté de Médecine, Site Xavier Bichat, Université Paris Diderot, Paris, France
| |
Collapse
|
226
|
Ramírez NM, Toledo RCL, Moreira MEC, Martino HSD, Benjamin LDA, de Queiroz JH, Ribeiro AQ, Ribeiro SMR. Anti-obesity effects of tea from Mangifera indica L. leaves of the Ubá variety in high-fat diet-induced obese rats. Biomed Pharmacother 2017; 91:938-945. [DOI: 10.1016/j.biopha.2017.05.015] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2017] [Revised: 04/25/2017] [Accepted: 05/04/2017] [Indexed: 12/11/2022] Open
|
227
|
Chronic high fat feeding restricts islet mRNA translation initiation independently of ER stress via DNA damage and p53 activation. Sci Rep 2017. [PMID: 28630491 PMCID: PMC5476640 DOI: 10.1038/s41598-017-03869-5] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
Under conditions of high fat diet (HFD) consumption, glucose dyshomeostasis develops when β-cells are unable to adapt to peripheral insulin demands. Few studies have interrogated the molecular mechanisms of β-cell dysfunction at the level of mRNA translation under such conditions. We sought to address this issue through polyribosome profile analysis of islets from mice fed 16-weeks of 42% HFD. HFD-islet analysis revealed clear trends toward global reductions in mRNA translation with a significant reduction in the polyribosome/monoribosome ratio for Pdx1 mRNA. Transcriptional and translational analyses revealed endoplasmic reticulum stress was not the etiology of our findings. HFD-islets demonstrated evidence of oxidative stress and DNA damage, as well as activation of p53. Experiments in MIN-6 β-cells revealed that treatment with doxorubicin to directly induce DNA damage mimicked our observed effects in islets. Islets from animals treated with pioglitazone concurrently with HFD demonstrated a reversal of effects observed from HFD alone. Finally, HFD-islets demonstrated reduced expression of multiple ribosome biogenesis genes and the key translation initiation factor eIF4E. We propose a heretofore unappreciated effect of chronic HFD on β-cells, wherein continued DNA damage owing to persistent oxidative stress results in p53 activation and a resultant inhibition of mRNA translation.
Collapse
|
228
|
Molecular mechanisms of ROS production and oxidative stress in diabetes. Biochem J 2017; 473:4527-4550. [PMID: 27941030 DOI: 10.1042/bcj20160503c] [Citation(s) in RCA: 570] [Impact Index Per Article: 71.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2016] [Revised: 10/07/2016] [Accepted: 10/10/2016] [Indexed: 12/18/2022]
Abstract
Oxidative stress and chronic inflammation are known to be associated with the development of metabolic diseases, including diabetes. Oxidative stress, an imbalance between oxidative and antioxidative systems of cells and tissues, is a result of over production of oxidative-free radicals and associated reactive oxygen species (ROS). One outcome of excessive levels of ROS is the modification of the structure and function of cellular proteins and lipids, leading to cellular dysfunction including impaired energy metabolism, altered cell signalling and cell cycle control, impaired cell transport mechanisms and overall dysfunctional biological activity, immune activation and inflammation. Nutritional stress, such as that caused by excess high-fat and/or carbohydrate diets, promotes oxidative stress as evident by increased lipid peroxidation products, protein carbonylation and decreased antioxidant status. In obesity, chronic oxidative stress and associated inflammation are the underlying factors that lead to the development of pathologies such as insulin resistance, dysregulated pathways of metabolism, diabetes and cardiovascular disease through impaired signalling and metabolism resulting in dysfunction to insulin secretion, insulin action and immune responses. However, exercise may counter excessive levels of oxidative stress and thus improve metabolic and inflammatory outcomes. In the present article, we review the cellular and molecular origins and significance of ROS production, the molecular targets and responses describing how oxidative stress affects cell function including mechanisms of insulin secretion and action, from the point of view of possible application of novel diabetic therapies based on redox regulation.
Collapse
|
229
|
Pannu PK, Piers LS, Soares MJ, Zhao Y, Ansari Z. Vitamin D status is inversely associated with markers of risk for type 2 diabetes: A population based study in Victoria, Australia. PLoS One 2017; 12:e0178825. [PMID: 28575036 PMCID: PMC5456387 DOI: 10.1371/journal.pone.0178825] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2016] [Accepted: 05/21/2017] [Indexed: 12/24/2022] Open
Abstract
A growing body of evidence suggests a protective role of vitamin D on the risk of type 2 diabetes mellitus (T2DM). We investigated this relationship in a population sample from one Australian state. The data of 3,393 Australian adults aged 18-75 years who participated in the 2009-2010 Victorian Health Monitor survey was analyzed. Socio-demographic information, biomedical variables, and dietary intakes were collected and fasting blood samples were analyzed for 25, hydroxycholecalciferol (25OHD), HbA1c, fasting plasma glucose (FPG), and lipid profiles. Logistic regression analyses were used to evaluate the association between tertiles of serum 25OHD and categories of FPG (<5.6 mmol/L vs. 5.6-6.9 mmol/L), and HbA1c (<5.7% vs. 5.7-6.4%). After adjusting for social, dietary, biomedical and metabolic syndrome (MetS) components (waist circumference, HDL cholesterol, triglycerides, and blood pressure), every 10 nmol/L increment in serum 25OHD significantly reduced the adjusted odds ratio (AOR) of a higher FPG [AOR 0.91, (0.86, 0.97); p = 0.002] and a higher HbA1c [AOR 0.94, (0.90, 0.98); p = 0.009]. Analysis by tertiles of 25OHD indicated that after adjustment for socio-demographic and dietary variables, those with high 25OHD (65-204 nmol/L) had reduced odds of a higher FPG [AOR 0.60, (0.43, 0.83); p = 0.008] as well as higher HbA1c [AOR 0.67, (0.53, 0.85); p = 0.005] compared to the lowest 25OHD (10-44 nmol/L) tertile. On final adjustment for other components of MetS, those in the highest tertile of 25OHD had significantly reduced odds of higher FPG [AOR 0.61, (0.44, 0.84); p = 0.011] and of higher HbA1c [AOR 0.74, (0.58, 0.93); p = 0.041] vs. low 25OHD tertile. Overall, the data support a direct, protective effect of higher 25OHD on FPG and HbA1c; two criteria for assessment of risk of T2DM.
Collapse
Affiliation(s)
- Poonam K. Pannu
- Food, Nutrition & Health, School of Public Health, Curtin Health Innovation Research Institute, Curtin University, Perth, Western Australia, Australia
| | - Leonard S. Piers
- Health Intelligence Unit, System Intelligence and Analytics Branch, Health Strategy, Productivity and Analytics Division, Department of Health, Melbourne, Victoria, Australia
| | - Mario J. Soares
- Food, Nutrition & Health, School of Public Health, Curtin Health Innovation Research Institute, Curtin University, Perth, Western Australia, Australia
| | - Yun Zhao
- Occupation and the Environment, School of Public Health, Faculty of Health Sciences, Curtin University, Perth, Western Australia, Australia
| | - Zahid Ansari
- Health Intelligence Unit, System Intelligence and Analytics Branch, Health Strategy, Productivity and Analytics Division, Department of Health, Melbourne, Victoria, Australia
| |
Collapse
|
230
|
Liu P, Shi L, Cang X, Huang J, Wu X, Yan J, Chen L, Cui S, Ye X. CtBP2 ameliorates palmitate-induced insulin resistance in HepG2 cells through ROS mediated JNK pathway. Gen Comp Endocrinol 2017; 247:66-73. [PMID: 28111233 DOI: 10.1016/j.ygcen.2017.01.018] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/13/2016] [Revised: 01/10/2017] [Accepted: 01/17/2017] [Indexed: 11/16/2022]
Abstract
Oxidative stress plays a significant role in the development of hepatic insulin resistance, but the underlying molecular mechanisms remain poorly understood. In this study, we discovered that C-terminal-binding protein 2 (CtBP2) level was decreased in insulin resistance. Taking into account the relationship between CtBP family protein (ANGUSTIFOLIA) and reactive oxygen species (ROS) accumulation, we conjectured CtBP2 was involved in insulin resistance through ROS induced stress. In order to verify this hypothesis, we over-expressed CtBP2 in palmitate (PA) treated HepG2 cells. Here, we found that over-expression of CtBP2 ameliorated insulin sensitivity by increasing phosphorylation of glycogen synthase kinase 3β (GSK3β) and protein kinase B (AKT). These data suggest that CtBP2 plays a critical role in the development of insulin resistance. Moreover, CtBP2 reversed the effects of PA on ROS level, lipid accumulation, hepatic glucose uptake and gluconeogenesis. We also found that over-expression of CtBP2 could suppress PA induced c-jun NH2 terminal kinase (JNK) activation. Furthermore, JNK inhibitor SP600125 was shown to promote the effect of CtBP2 on insulin signaling. Thus, we demonstrated that CtBP2 ameliorated PA-induced insulin resistance via ROS-dependent JNK pathway.
Collapse
Affiliation(s)
- Pingli Liu
- Jiangsu Province Key Laboratory for Inflammation and Molecular Drug Target, Nantong University, 19 Qixiu Road, Nantong 226001, Jiangsu Province, People's Republic of China
| | - Li Shi
- Department of Endocrinology, the Second People's Hospital of Changzhou City, 29 Xinglong Lane, Changzhou 213000, Jiangsu Province, People's Republic of China
| | - Xiaomin Cang
- Jiangsu Province Key Laboratory for Inflammation and Molecular Drug Target, Nantong University, 19 Qixiu Road, Nantong 226001, Jiangsu Province, People's Republic of China
| | - Jieru Huang
- Jiangsu Province Key Laboratory for Inflammation and Molecular Drug Target, Nantong University, 19 Qixiu Road, Nantong 226001, Jiangsu Province, People's Republic of China
| | - Xue Wu
- Jiangsu Province Key Laboratory for Inflammation and Molecular Drug Target, Nantong University, 19 Qixiu Road, Nantong 226001, Jiangsu Province, People's Republic of China
| | - Jin Yan
- Jiangsu Province Key Laboratory for Inflammation and Molecular Drug Target, Nantong University, 19 Qixiu Road, Nantong 226001, Jiangsu Province, People's Republic of China
| | - Ling Chen
- Jiangsu Province Key Laboratory for Inflammation and Molecular Drug Target, Nantong University, 19 Qixiu Road, Nantong 226001, Jiangsu Province, People's Republic of China
| | - Shiwei Cui
- Department of Endocrinology, Affiliated Hospital of Nantong University, 20 Xisi Road, Nantong 226001, Jiangsu Province, People's Republic of China.
| | - Xinhua Ye
- Department of Endocrinology, the Second People's Hospital of Changzhou City, 29 Xinglong Lane, Changzhou 213000, Jiangsu Province, People's Republic of China.
| |
Collapse
|
231
|
Deng W, Xie Q, Wang H, Ma Z, Wu B, Zhang X. Selenium nanoparticles as versatile carriers for oral delivery of insulin: Insight into the synergic antidiabetic effect and mechanism. NANOMEDICINE-NANOTECHNOLOGY BIOLOGY AND MEDICINE 2017; 13:1965-1974. [PMID: 28539272 DOI: 10.1016/j.nano.2017.05.002] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/20/2017] [Revised: 04/20/2017] [Accepted: 05/02/2017] [Indexed: 10/19/2022]
Abstract
Oral insulin delivery has been plagued by limited bioavailability. This work reports selenium nanoparticles (SeNPs) for oral insulin delivery to overcome the absorption barrier. Insulin-loaded SeNPs (INS-SeNPs) were fabricated by ionic cross-linking/in situ reduction and characterized by particle size and drug entrapment. The resultant INS-SeNPs were 120nm around in particle size with high drug loading. INS-SeNPs exhibited controllable insulin release and outstanding stability in the digestive fluids. INS-SeNPs caused a significant hypoglycemic effect in both normal and diabetic rats. The pharmacological bioavailability was up to 9.15% relative to subcutaneous insulin. Likewise, the blood insulin evidently increased in terms of INS-SeNPs. Ex vivo intestinal imaging and cell experiments showed the excellent performance of INS-SeNPs in intestinal permeability. INS-SeNPs could alleviate oxidative stress, improve pancreatic islet function, and promote glucose utilization. Our study provides proof of concept for using SeNPs to orally deliver insulin, jointly potentiating the antidiabetic effect.
Collapse
Affiliation(s)
- Wenji Deng
- Division of Pharmaceutics, College of Pharmacy, Jinan University, Guangzhou, PR China
| | - Qian Xie
- Division of Pharmaceutics, College of Pharmacy, Jinan University, Guangzhou, PR China
| | - Huan Wang
- Division of Pharmaceutics, College of Pharmacy, Jinan University, Guangzhou, PR China
| | - Zhiguo Ma
- Division of Pharmaceutics, College of Pharmacy, Jinan University, Guangzhou, PR China
| | - Baojian Wu
- Division of Pharmaceutics, College of Pharmacy, Jinan University, Guangzhou, PR China.
| | - Xingwang Zhang
- Division of Pharmaceutics, College of Pharmacy, Jinan University, Guangzhou, PR China.
| |
Collapse
|
232
|
Cheng DD, He C, Ai HH, Huang Y, Lu NH. The Possible Role of Helicobacter pylori Infection in Non-alcoholic Fatty Liver Disease. Front Microbiol 2017; 8:743. [PMID: 28539915 PMCID: PMC5423951 DOI: 10.3389/fmicb.2017.00743] [Citation(s) in RCA: 50] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2016] [Accepted: 04/10/2017] [Indexed: 12/16/2022] Open
Abstract
Helicobacter pylori (H. pylori) which colonizes the stomach can cause a wide array of gastric disorders, including chronic gastritis, peptic ulcer, and gastric cancer. Recently, accumulating evidence has implicated H. pylori infection in extragastrointestinal diseases such as cardiovascular diseases, neurological disorders, and metabolic diseases. At the same time, many scholars have noted the relationship between H. pylori infection and non-alcoholic fatty liver disease (NAFLD). Despite the positive association between H. pylori and NAFLD reported in some researches, there are opposite perspectives denying their relationship. Due to high prevalence, unclear etiology and difficult treatment of NAFLD, confirming the pathogenicity of H. pylori infection in NAFLD will undoubtedly provide insights for novel treatment strategies for NAFLD. This paper will review the relationship between H. pylori infection and NAFLD and the possible pathogenic mechanisms.
Collapse
Affiliation(s)
- Dan-Dan Cheng
- Department of Gastroenterology, The First Affiliated Hospital of Nanchang UniversityNanchang, China
| | - Cong He
- Department of Gastroenterology, The First Affiliated Hospital of Nanchang UniversityNanchang, China
| | - Hong-Hui Ai
- Department of Orthopaedics, The Yugan County People's HospitalYugan, China
| | - Ying Huang
- Department of Gastroenterology, The First Affiliated Hospital of Nanchang UniversityNanchang, China
| | - Nong-Hua Lu
- Department of Gastroenterology, The First Affiliated Hospital of Nanchang UniversityNanchang, China
| |
Collapse
|
233
|
Glial cell-line derived neurotrophic factor protects human islets from nutrient deprivation and endoplasmic reticulum stress induced apoptosis. Sci Rep 2017; 7:1575. [PMID: 28484241 PMCID: PMC5431546 DOI: 10.1038/s41598-017-01805-1] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2016] [Accepted: 04/10/2017] [Indexed: 12/19/2022] Open
Abstract
One of the key limitations to successful human islet transplantation is loss of islets due to stress responses pre- and post-transplantation. Nutrient deprivation and ER stress have been identified as important mechanisms leading to apoptosis. Glial Cell-line Derived Neurotrophic Factor (GDNF) has recently been found to promote islet survival after isolation. However, whether GDNF could rescue human islets from nutrient deprivation and ER stress-mediated apoptosis is unknown. Herein, by mimicking those conditions in vitro, we have shown that GDNF significantly improved glucose stimulated insulin secretion, reduced apoptosis and proinsulin:insulin ratio in nutrient deprived human islets. Furthermore, GDNF alleviated thapsigargin-induced ER stress evidenced by reduced expressions of IRE1α and BiP and consequently apoptosis. Importantly, this was associated with an increase in phosphorylation of PI3K/AKT and GSK3B signaling pathway. Transplantation of ER stressed human islets pre-treated with GDNF under kidney capsule of diabetic mice resulted in reduced expressions of IRE1α and BiP in human islet grafts with improved grafts function shown by higher levels of human C-peptide post-transplantation. We suggest that GDNF has protective and anti-apoptotic effects on nutrient deprived and ER stress activated human islets and could play a significant role in rescuing human islets from stress responses.
Collapse
|
234
|
Carlessi R, Keane KN, Mamotte C, Newsholme P. Nutrient regulation of β-cell function: what do islet cell/animal studies tell us? Eur J Clin Nutr 2017; 71:890-895. [DOI: 10.1038/ejcn.2017.49] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2017] [Accepted: 03/15/2017] [Indexed: 12/18/2022]
|
235
|
Keane KN, Calton EK, Carlessi R, Hart PH, Newsholme P. The bioenergetics of inflammation: insights into obesity and type 2 diabetes. Eur J Clin Nutr 2017; 71:904-912. [PMID: 28402325 DOI: 10.1038/ejcn.2017.45] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2017] [Revised: 02/22/2017] [Accepted: 02/28/2017] [Indexed: 02/06/2023]
Abstract
Diabetes mellitus is one of the most common chronic metabolic disorders worldwide, and its incidence in Asian countries is alarmingly high. Type 2 diabetes (T2DM) is closely associated with obesity, and the staggering rise in obesity is one of the primary factors related to the increased frequency of T2DM. Low-grade chronic inflammation is also accepted as an integral metabolic adaption in obesity and T2DM, and is believed to be a major player in the onset of insulin resistance. However, the exact mechanism(s) that cause a persistent chronic low-grade infiltration of leukocytes into insulin-target tissues such as adipose, skeletal muscle and liver are not entirely known. Recent developments in the understanding of leukocyte metabolism have revealed that the inflammatory polarization of immune cells, and consequently their immunological function, are strongly connected to their metabolic profile. Therefore, it is hypothesized that dysfunctional immune cell metabolism is a central cellular mechanism that prevents the resolution of inflammation in chronic metabolic conditions such as that observed in obesity and T2DM. The purpose of this review is to explore the metabolic demands of different immune cell types, and identify the molecular switches that control immune cell metabolism and ultimately function. Understanding of these concepts may allow the development of interventions that can correct immune function and may possibly decrease chronic low-grade inflammation in humans suffering from obesity and T2DM. We also review the latest clinical techniques used to measure metabolic flux in primary leukocytes isolated from obese and T2DM patients.
Collapse
Affiliation(s)
- K N Keane
- Faculty of Health Sciences, School of Biomedical Sciences, Curtin Health Innovation Research Institute, Curtin University, Perth, Western Australia, Australia
| | - E K Calton
- Health Promotion and Disease Prevention, School of Public Health, Curtin Health Innovation Research Institute, Curtin University, Bentley, Perth, Western Australia, Australia
| | - R Carlessi
- Faculty of Health Sciences, School of Biomedical Sciences, Curtin Health Innovation Research Institute, Curtin University, Perth, Western Australia, Australia
| | - P H Hart
- Telethon Kids Institute, University of Western Australia, Perth, Western Australia, Australia
| | - P Newsholme
- Faculty of Health Sciences, School of Biomedical Sciences, Curtin Health Innovation Research Institute, Curtin University, Perth, Western Australia, Australia
| |
Collapse
|
236
|
Gerber PA, Rutter GA. The Role of Oxidative Stress and Hypoxia in Pancreatic Beta-Cell Dysfunction in Diabetes Mellitus. Antioxid Redox Signal 2017; 26:501-518. [PMID: 27225690 PMCID: PMC5372767 DOI: 10.1089/ars.2016.6755] [Citation(s) in RCA: 428] [Impact Index Per Article: 53.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/16/2016] [Accepted: 05/25/2016] [Indexed: 12/16/2022]
Abstract
SIGNIFICANCE Metabolic syndrome is a frequent precursor of type 2 diabetes mellitus (T2D), a disease that currently affects ∼8% of the adult population worldwide. Pancreatic beta-cell dysfunction and loss are central to the disease process, although understanding of the underlying molecular mechanisms is still fragmentary. Recent Advances: Oversupply of nutrients, including glucose and fatty acids, and the subsequent overstimulation of beta cells, are believed to be an important contributor to insulin secretory failure in T2D. Hypoxia has also recently been implicated in beta-cell damage. Accumulating evidence points to a role for oxidative stress in both processes. Although the production of reactive oxygen species (ROS) results from enhanced mitochondrial respiration during stimulation with glucose and other fuels, the expression of antioxidant defense genes is unusually low (or disallowed) in beta cells. CRITICAL ISSUES Not all subjects with metabolic syndrome and hyperglycemia go on to develop full-blown diabetes, implying an important role in disease risk for gene-environment interactions. Possession of common risk alleles at the SLC30A8 locus, encoding the beta-cell granule zinc transporter ZnT8, may affect cytosolic Zn2+ concentrations and thus susceptibility to hypoxia and oxidative stress. FUTURE DIRECTIONS Loss of normal beta-cell function, rather than total mass, is increasingly considered to be the major driver for impaired insulin secretion in diabetes. Better understanding of the role of oxidative changes, its modulation by genes involved in disease risk, and effects on beta-cell identity may facilitate the development of new therapeutic strategies to this disease. Antioxid. Redox Signal. 26, 501-518.
Collapse
Affiliation(s)
- Philipp A. Gerber
- Department of Endocrinology, Diabetes and Clinical Nutrition, University Hospital Zurich, Zurich, Switzerland
| | - Guy A. Rutter
- Section of Cell Biology and Functional Genomics, Department of Medicine, Imperial College London, London, United Kingdom
| |
Collapse
|
237
|
Physical Exercise on Inflammatory Markers in Type 2 Diabetes Patients: A Systematic Review of Randomized Controlled Trials. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2017; 2017:8523728. [PMID: 28400914 PMCID: PMC5376457 DOI: 10.1155/2017/8523728] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/15/2016] [Revised: 12/07/2016] [Accepted: 02/23/2017] [Indexed: 01/26/2023]
Abstract
Background. Type 2 diabetes mellitus (T2DM) is a serious disease associated with high morbidity and mortality. Scientific findings showed that physical exercise is an option for treatment of these patients. This study's objective is to investigate the effects of supervised aerobic and/or resistance physical training on inflammatory markers in subjects with T2DM. Methods. A systematic review was conducted on four databases, MEDLINE, CENTRAL, LILACS, and Scopus, and manual search from 21 to 30 November 2016. Randomized clinical trials involving individuals diagnosed with T2DM, who have undergone supervised training protocols, were selected in this study. Results. Eleven studies were included. Studies that evaluated control group versus aerobic exercise reported controversial results about the effectiveness of physical training in modifying C-reactive protein (CRP) and cytokine levels. The only variable analyzed by the six studies in comparison to the control group versus resistance exercise was CRP. This protein showed no significant difference between groups. Between the two modes of exercise (aerobic and resistance), only one study demonstrated that aerobic exercise was more effective in reducing CRP. Conclusion. The evidence was insufficient to prove that aerobic or resistance exercise improves systemic levels of inflammatory markers in patients with T2DM.
Collapse
|
238
|
Abstract
Chronic inflammatory state in obesity causes dysregulation of the endocrine and paracrine actions of adipocyte-derived factors, which disrupt vascular homeostasis and contribute to endothelial vasodilator dysfunction and subsequent hypertension. While normal healthy perivascular adipose tissue (PVAT) ensures the dilation of blood vessels, obesity-associated PVAT leads to a change in profile of the released adipo-cytokines, resulting in a decreased vasorelaxing effect. Adipose tissue inflammation, nitric oxide (NO)-bioavailability, insulin resistance and oxidized low-density lipoprotein (oxLDL) are main participating factors in endothelial dysfunction of obesity. In this chapter, disruption of inter-endothelial junctions between endothelial cells, significant increase in the production of reactive oxygen species (ROS), inflammation mediators, which are originated from inflamed endothelial cells, the balance between NO synthesis and ROS , insulin signaling and NO production, and decrease in L-arginine/endogenous asymmetric dimethyl-L-arginine (ADMA) ratio are discussed in connection with endothelial dysfunction in obesity.
Collapse
Affiliation(s)
- Atilla Engin
- Faculty of Medicine, Department of General Surgery, Gazi University, Besevler, Ankara, Turkey.
- , Mustafa Kemal Mah. 2137. Sok. 8/14, 06520, Cankaya, Ankara, Turkey.
| |
Collapse
|
239
|
Gorelenkova Miller O, Behring JB, Siedlak SL, Jiang S, Matsui R, Bachschmid MM, Zhu X, Mieyal JJ. Upregulation of Glutaredoxin-1 Activates Microglia and Promotes Neurodegeneration: Implications for Parkinson's Disease. Antioxid Redox Signal 2016; 25:967-982. [PMID: 27224303 PMCID: PMC5175443 DOI: 10.1089/ars.2015.6598] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
AIMS Neuroinflammation and redox dysfunction are recognized factors in Parkinson's disease (PD) pathogenesis, and diabetes is implicated as a potentially predisposing condition. Remarkably, upregulation of glutaredoxin-1 (Grx1) is implicated in regulation of inflammatory responses in various disease contexts, including diabetes. In this study, we investigated the potential impact of Grx1 upregulation in the central nervous system on dopaminergic (DA) viability. RESULTS Increased GLRX copy number in PD patients was associated with earlier PD onset, and Grx1 levels correlated with levels of proinflammatory tumor necrosis factor-alpha (TNF-α) in mouse and human brain samples, prompting mechanistic in vitro studies. Grx1 content/activity in microglia was upregulated by lipopolysaccharide (LPS), or TNF-α, treatment. Adenoviral overexpression of Grx1, matching the extent of induction by LPS, increased microglial activation; Grx1 silencing diminished activation. Selective inhibitors/probes of nuclear factor κB (NF-κB) activation revealed glrx1 induction to be mediated by the Nurr1/NF-κB axis. Upregulation of Grx1 in microglia corresponded to increased death of neuronal cells in coculture. With a mouse diabetes model of diet-induced insulin resistance, we found upregulation of Grx1 in brain was associated with DA loss (decreased tyrosine hydroxylase [TH]; diminished TH-positive striatal axonal terminals); these effects were not seen with Grx1-knockout mice. INNOVATION Our results indicate that Grx1 upregulation promotes neuroinflammation and consequent neuronal cell death in vitro, and synergizes with proinflammatory insults to promote DA loss in vivo. Our findings also suggest a genetic link between elevated Grx1 and PD development. CONCLUSION In vitro and in vivo data suggest Grx1 upregulation promotes neurotoxic neuroinflammation, potentially contributing to PD. Antioxid. Redox Signal. 25, 967-982.
Collapse
Affiliation(s)
- Olga Gorelenkova Miller
- Department of Pharmacology, School of Medicine, Case Western Reserve University, Cleveland, Ohio
| | - Jessica Belle Behring
- Vascular Biology Section, Whitaker Cardiovascular Institute, Boston University School of Medicine, Boston, Massachusetts
| | - Sandra L. Siedlak
- Department of Pathology, School of Medicine, Case Western Reserve University, Cleveland, Ohio
| | - Sirui Jiang
- Department of Pathology, School of Medicine, Case Western Reserve University, Cleveland, Ohio
| | - Reiko Matsui
- Vascular Biology Section, Whitaker Cardiovascular Institute, Boston University School of Medicine, Boston, Massachusetts
| | - Markus M. Bachschmid
- Vascular Biology Section, Whitaker Cardiovascular Institute, Boston University School of Medicine, Boston, Massachusetts
| | - Xiongwei Zhu
- Department of Pathology, School of Medicine, Case Western Reserve University, Cleveland, Ohio
| | - John J. Mieyal
- Department of Pharmacology, School of Medicine, Case Western Reserve University, Cleveland, Ohio
- Louis Stokes Cleveland Veterans Administration Medical Research Center, Cleveland, Ohio
| |
Collapse
|
240
|
Zanotto TM, Quaresma PGF, Guadagnini D, Weissmann L, Santos AC, Vecina JF, Calisto K, Santos A, Prada PO, Saad MJA. Blocking iNOS and endoplasmic reticulum stress synergistically improves insulin resistance in mice. Mol Metab 2016; 6:206-218. [PMID: 28180062 PMCID: PMC5279911 DOI: 10.1016/j.molmet.2016.12.005] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/07/2016] [Revised: 12/02/2016] [Accepted: 12/12/2016] [Indexed: 12/12/2022] Open
Abstract
OBJECTIVE Recent data show that iNOS has an essential role in ER stress in obesity. However, whether iNOS is sufficient to account for obesity-induced ER stress and Unfolded Protein Response (UPR) has not yet been investigated. In the present study, we used iNOS knockout mice to investigate whether high-fat diet (HFD) can still induce residual ER stress-associated insulin resistance. METHODS For this purpose, we used the intraperitoneal glucose tolerance test (GTT), euglycemic-hyperinsulinemic clamp, western blotting and qPCR in liver, muscle, and adipose tissue of iNOS KO and control mice on HFD. RESULTS The results of the present study demonstrated that, in HFD fed mice, iNOS-induced alteration in insulin signaling is an essential mechanism of insulin resistance in muscle, suggesting that iNOS may represent an important target that could be blocked in order to improve insulin sensitivity in this tissue. However, in liver and adipose tissue, the insulin resistance induced by HFD was only partially dependent on iNOS, and, even in the presence of genetic or pharmacological blockade of iNOS, a clear ER stress associated with altered insulin signaling remained evident in these tissues. When this ER stress was blocked pharmacologically, insulin signaling was improved, and a complete recovery of glucose tolerance was achieved. CONCLUSIONS Taken together, these results reinforce the tissue-specific regulation of insulin signaling in obesity, with iNOS being sufficient to account for insulin resistance in muscle, but in liver and adipose tissue ER stress and insulin resistance can be induced by both iNOS-dependent and iNOS-independent mechanisms.
Collapse
Key Words
- AKT, Protein kinase B
- ATF6, activating transcription factor 6
- Blocking
- ER, endoplasmic reticulum
- Endoplasmic reticulum stress
- GAPDH, glyceraldehyde 3-phosphate dehydrogenase
- GTT, glucose tolerance test
- HFD, high-fat diet
- IKK, kappa α/β kinase
- IRE1, inositol requiring enzyme 1
- ITT, insulin tolerance test
- Improving
- Insulin resistance
- JNK, c-JunN-terminal kinase
- NO, nitric oxide
- PERK, protein kinase RNA-like ER kinase
- UPR, unfolded protein response
- iNOS
- iNOS, inducible nitric oxide synthase
- qPCR, real time PCR
Collapse
Affiliation(s)
- Tamires M Zanotto
- Department of Internal Medicine, State University of Campinas (UNICAMP), Campinas, SP, Brazil; Department of Medical Clinics, Obesity and Comorbidities Research Center (O.C.R.C.), State University of Campinas (UNICAMP), Campinas, SP, Brazil
| | - Paula G F Quaresma
- Department of Internal Medicine, State University of Campinas (UNICAMP), Campinas, SP, Brazil; Department of Medical Clinics, Obesity and Comorbidities Research Center (O.C.R.C.), State University of Campinas (UNICAMP), Campinas, SP, Brazil
| | - Dioze Guadagnini
- Department of Internal Medicine, State University of Campinas (UNICAMP), Campinas, SP, Brazil
| | - Lais Weissmann
- Department of Internal Medicine, State University of Campinas (UNICAMP), Campinas, SP, Brazil
| | - Andressa C Santos
- Department of Internal Medicine, State University of Campinas (UNICAMP), Campinas, SP, Brazil
| | - Juliana F Vecina
- Department of Internal Medicine, State University of Campinas (UNICAMP), Campinas, SP, Brazil; Department of Medical Clinics, Obesity and Comorbidities Research Center (O.C.R.C.), State University of Campinas (UNICAMP), Campinas, SP, Brazil
| | - Kelly Calisto
- Department of Internal Medicine, State University of Campinas (UNICAMP), Campinas, SP, Brazil; Department of Medical Clinics, Obesity and Comorbidities Research Center (O.C.R.C.), State University of Campinas (UNICAMP), Campinas, SP, Brazil
| | - Andrey Santos
- Department of Internal Medicine, State University of Campinas (UNICAMP), Campinas, SP, Brazil
| | - Patrícia O Prada
- Department of Internal Medicine, State University of Campinas (UNICAMP), Campinas, SP, Brazil; School of Applied Sciences, State University of Campinas (UNICAMP), Limeira, SP, Brazil; Department of Medical Clinics, Obesity and Comorbidities Research Center (O.C.R.C.), State University of Campinas (UNICAMP), Campinas, SP, Brazil
| | - Mario J A Saad
- Department of Internal Medicine, State University of Campinas (UNICAMP), Campinas, SP, Brazil; Department of Medical Clinics, Obesity and Comorbidities Research Center (O.C.R.C.), State University of Campinas (UNICAMP), Campinas, SP, Brazil.
| |
Collapse
|
241
|
Petta S, Gastaldelli A, Rebelos E, Bugianesi E, Messa P, Miele L, Svegliati-Baroni G, Valenti L, Bonino F. Pathophysiology of Non Alcoholic Fatty Liver Disease. Int J Mol Sci 2016; 17:2082. [PMID: 27973438 PMCID: PMC5187882 DOI: 10.3390/ijms17122082] [Citation(s) in RCA: 111] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2016] [Revised: 11/30/2016] [Accepted: 12/01/2016] [Indexed: 12/18/2022] Open
Abstract
The physiopathology of fatty liver and metabolic syndrome are influenced by diet, life style and inflammation, which have a major impact on the severity of the clinicopathologic outcome of non-alcoholic fatty liver disease. A short comprehensive review is provided on current knowledge of the pathophysiological interplay among major circulating effectors/mediators of fatty liver, such as circulating lipids, mediators released by adipose, muscle and liver tissues and pancreatic and gut hormones in relation to diet, exercise and inflammation.
Collapse
Affiliation(s)
- Salvatore Petta
- Gastroenterology, Di.Bi.M.I.S Policlinic Paolo Giaccone Hospital, University of Palermo, PC 90127, Palermo, Italy.
| | - Amalia Gastaldelli
- Cardiometabolic Risk Unit-Institute of Clinical Physiology, CNR, PC 56124, Pisa, Italy.
| | - Eleni Rebelos
- Department of Clinical and Experimental Medicine, University of Pisa, PC 56122, Pisa, Italy.
| | - Elisabetta Bugianesi
- Gastroenterology and Hepatology, Department of Medical Sciences, Città della, Salute e della Scienza di Torino Hospital, University of Turin, PC 10122, Turin, Italy.
| | - Piergiorgio Messa
- Department of Nephrology, Urology and Renal Transplant-Fondazione IRCCS Ca', Granda, PC 20122 Milano, Italy.
| | - Luca Miele
- Institute of Internal Medicine, Gastroenterology and Liver Diseases Unit, Fondazione Policlinico Gemelli, Catholic University of Rome, PC 00168, Rome, Italy.
| | - Gianluca Svegliati-Baroni
- Department of Gastroenterology 1 and Obesity 2, Polytechnic University of Marche, PC 60121, Ancona, Italy.
| | - Luca Valenti
- Metabolic Liver Diseases-Università degli Studi Milano-Fondazione IRCCS Ca', Granda via F Sforza 35, PC 20122 Milano, Italy.
| | - Ferruccio Bonino
- Department of Clinical and Experimental Medicine, University of Pisa, PC 56122, Pisa, Italy.
- Institute for Health, PC 53042, Chianciano Terme, Italy.
| |
Collapse
|
242
|
Figueira I, Fernandes A, Mladenovic Djordjevic A, Lopez-Contreras A, Henriques CM, Selman C, Ferreiro E, Gonos ES, Trejo JL, Misra J, Rasmussen LJ, Xapelli S, Ellam T, Bellantuono I. Interventions for age-related diseases: Shifting the paradigm. Mech Ageing Dev 2016; 160:69-92. [DOI: 10.1016/j.mad.2016.09.009] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2016] [Revised: 09/18/2016] [Accepted: 09/28/2016] [Indexed: 12/14/2022]
|
243
|
Camargo ACL, Dos Santos SAA, Rinaldi JC, Constantino FB, Colombelli KT, Scarano WR, Felisbino SL, Justulin LA. Streptozotocin-Induced Maternal Hyperglycemia Increases the Expression of Antioxidant Enzymes and Mast Cell Number in Offspring Rat Ventral Prostate. Anat Rec (Hoboken) 2016; 300:291-299. [PMID: 27788294 DOI: 10.1002/ar.23510] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2016] [Revised: 06/16/2016] [Accepted: 07/28/2016] [Indexed: 01/24/2023]
Abstract
Gestational diabetes mellitus (GDM) has increased in recent years. Although the cellular and molecular mechanisms involved in GDM-increased risk factors to offspring remained poorly understood, some studies suggested an association between an increase in oxidative stress induced by maternal hyperglycemia and complications for both mothers and newborns. Here, we investigated the impact of maternal hyperglycemia followed by maternal insulin replacement during lactation on the expression of antioxidant enzymes and mast cell number in offspring ventral prostate (VP) at puberty. Pregnant rats were divided into three groups: control (CT); streptozotocin-induced maternal hyperglycemia (MH); and MH plus maternal insulin replacement during lactation (MHI). Male offspring were euthanized at postnatal day (PND) 60 and the VP was removed and processed for histology and Western blotting analyses. Maternal hyperglycemia delayed prostate maturation, and increased mast cell number catalase (CAT), superoxide dismutase (SOD), glutatione-s-transferase (GST-pi), and cyclooxygenase-2 (Cox-2) expression in the offspring of hyperglycemic dams. Maternal insulin replacement restored VP structure, mast cell number and antioxidant protein expression, except for Cox-2, which remained higher in the MHI group. Thus, an increase in oxidative stress induced by intrauterine hyperglycemia impacts prostate development and maturation, which persists until puberty. The overall improvement of maternal metabolism after insulin administration contributes to the restoration of prostate antioxidant enzymes and secretory function. Taken together, our results highlighted that imbalanced physiological maternal-fetal interaction contributes to the impairment of reproductive performance of the offspring from diabetic mothers. Anat Rec, 300:291-299, 2017. © 2016 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Ana C L Camargo
- Department of Morphology, Institute of Biosciences, Sao Paulo State University, Botucatu, SP, Brazil
| | - Sérgio A A Dos Santos
- Department of Morphology, Institute of Biosciences, Sao Paulo State University, Botucatu, SP, Brazil
| | - Jaqueline C Rinaldi
- Department of Morphology, Institute of Biosciences, Sao Paulo State University, Botucatu, SP, Brazil
| | - Flavia B Constantino
- Department of Morphology, Institute of Biosciences, Sao Paulo State University, Botucatu, SP, Brazil
| | - Ketlin T Colombelli
- Department of Morphology, Institute of Biosciences, Sao Paulo State University, Botucatu, SP, Brazil
| | - Wellerson R Scarano
- Department of Morphology, Institute of Biosciences, Sao Paulo State University, Botucatu, SP, Brazil
| | - Sérgio L Felisbino
- Department of Morphology, Institute of Biosciences, Sao Paulo State University, Botucatu, SP, Brazil
| | - Luis A Justulin
- Department of Morphology, Institute of Biosciences, Sao Paulo State University, Botucatu, SP, Brazil
| |
Collapse
|
244
|
Peng YF, Xiang Y, Wei YS. The significance of routine biochemical markers in patients with major depressive disorder. Sci Rep 2016; 6:34402. [PMID: 27683078 PMCID: PMC5041142 DOI: 10.1038/srep34402] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2016] [Accepted: 09/07/2016] [Indexed: 12/11/2022] Open
Abstract
The aim of our study is to examine the levels of routine biochemical markers in patients with major depressive disorder (MDD), and combine multiple biochemical parameters to assess the discriminative power for patients with MDD. We used the Hamilton Depression (HAMD) score to evaluate the severity of depressive symptoms in 228 patients with MDD. The phase of depression severity was between moderate and severe in MDD patients. There were significant differences between MDD patients and healthy controls in alanine transaminase (ALT), urea nitrogen (UN), lactate dehydrogenase (LDH), uric acid (UA), total protein (TP), total bile acid (TBA), creatinine (Cr), total bilirubin (Tbil), direct bilirubin (Dbil) and indirect bilirubin (Ibil), high density lipoprotein-cholesterol (HDL-C), fasting blood-glucose (FBG) and fructosamine (SF). Multivariate analysis showed that UN, FBG, HDL-C, SF, TP, Cr and Tbil remained independently association with MDD. Further, a logit equation was established to identify patients with MDD. The composite markers exhibited an area under the curve of 0.810 with cut-off values of 0.410. Our results suggest the associations between UN, FBG, HDL-C, TP, Cr, Tbil, SF and MDD, use of these routine biochemical markers in combination may contribute to improve the complete management for patients with MDD.
Collapse
Affiliation(s)
- You-Fan Peng
- Department of Laboratory Medicine, Affiliated Hospital of Youjiang Medical University for Nationalities, No. 18 Zhongshan Er Road, Baise, Guangxi 533000, China
| | - Yang Xiang
- Department of Laboratory Medicine, Affiliated Hospital of Youjiang Medical University for Nationalities, No. 18 Zhongshan Er Road, Baise, Guangxi 533000, China
| | - Ye-Sheng Wei
- Department of Laboratory Medicine, Affiliated Hospital of Youjiang Medical University for Nationalities, No. 18 Zhongshan Er Road, Baise, Guangxi 533000, China
| |
Collapse
|
245
|
Li Y, Luo T, Wang L, Wu J, Guo S. MicroRNA-19a-3p enhances the proliferation and insulin secretion, while it inhibits the apoptosis of pancreatic β cells via the inhibition of SOCS3. Int J Mol Med 2016; 38:1515-1524. [DOI: 10.3892/ijmm.2016.2748] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2015] [Accepted: 08/22/2016] [Indexed: 11/06/2022] Open
|
246
|
Miles MP, Horrigan LC, Jay SE, Brown KM, Porter JW, Steward AN. Concentric and eccentric exercise, glycemic responses to a postexercise meal, and inflammation in women with high versus low waist circumference. Appl Physiol Nutr Metab 2016; 41:1262-1270. [PMID: 27841026 DOI: 10.1139/apnm-2016-0281] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Carbohydrate ingestion and level of concentric versus eccentric muscle activity may alter exercise-induced health benefits for individuals who have high waist circumference as a metabolic risk factor. The purpose of this study was to determine whether metabolic and inflammation responses to an exercise recovery meal differ between women with lower (Lo-WC, <80 cm) compared with higher (Hi-WC) waist circumference when the exercise is primarily concentric (uphill walking; UPHILL) versus primarily eccentric (downhill walking; DOWNHILL). Recreationally active women (age, 18-39 years; body mass index, 19-35.4 m·kg-2; Lo-WC, n = 13; Hi-WC, n = 10) completed UPHILL, DOWNHILL, and resting (CONTROL) conditions followed 30 min later by a mixed meal tolerance test (MMTT) with carbohydrates to protein ratio of 4:1, and blood glucose, insulin, and inflammation markers were compared across conditions. Compared with Lo-WC, the Hi-WC group had higher (p < 0.05) (i) insulin during the MMTT in CONTROL (mean ± SE; 48.5 ± 8.2 vs 22.9 ± 2.8 pmol·L-1), (ii) baseline (0.7 ± 0.4 vs 2.0 ± 1.7 pg·mL-1) interleukin-6 (IL-6), and (iii) IL-6 responses 8 h after UPHILL and CONTROL. Both groups had (i) increases in IL-6 at 0 h after UPHILL and at 8 h after DOWNHILL, and (ii) lower glycemic responses in UPHILL. Women with Hi-WC had higher IL-6 at rest and delayed increases in IL-6 after a high-carbohydrate meal in all conditions. This is consistent with an inflammation response to the meal and or uphill walking exercise. However, both concentrically and eccentrically biased exercises offered benefits to insulin responses to a high carbohydrate meal for Hi-WC.
Collapse
Affiliation(s)
- Mary P Miles
- Montana State University, Dept. of Health and Human Development, Bozeman, MT 59171, USA.,Montana State University, Dept. of Health and Human Development, Bozeman, MT 59171, USA
| | - Laura C Horrigan
- Montana State University, Dept. of Health and Human Development, Bozeman, MT 59171, USA.,Montana State University, Dept. of Health and Human Development, Bozeman, MT 59171, USA
| | - Sara E Jay
- Montana State University, Dept. of Health and Human Development, Bozeman, MT 59171, USA.,Montana State University, Dept. of Health and Human Development, Bozeman, MT 59171, USA
| | - Karen M Brown
- Montana State University, Dept. of Health and Human Development, Bozeman, MT 59171, USA.,Montana State University, Dept. of Health and Human Development, Bozeman, MT 59171, USA
| | - Jay W Porter
- Montana State University, Dept. of Health and Human Development, Bozeman, MT 59171, USA.,Montana State University, Dept. of Health and Human Development, Bozeman, MT 59171, USA
| | - Andrea N Steward
- Montana State University, Dept. of Health and Human Development, Bozeman, MT 59171, USA.,Montana State University, Dept. of Health and Human Development, Bozeman, MT 59171, USA
| |
Collapse
|
247
|
Abstract
Heart failure is associated with generalized insulin resistance. Moreover, insulin-resistant states such as type 2 diabetes mellitus and obesity increases the risk of heart failure even after adjusting for traditional risk factors. Insulin resistance or type 2 diabetes mellitus alters the systemic and neurohumoral milieu, leading to changes in metabolism and signaling pathways in the heart that may contribute to myocardial dysfunction. In addition, changes in insulin signaling within cardiomyocytes develop in the failing heart. The changes range from activation of proximal insulin signaling pathways that may contribute to adverse left ventricular remodeling and mitochondrial dysfunction to repression of distal elements of insulin signaling pathways such as forkhead box O transcriptional signaling or glucose transport, which may also impair cardiac metabolism, structure, and function. This article will review the complexities of insulin signaling within the myocardium and ways in which these pathways are altered in heart failure or in conditions associated with generalized insulin resistance. The implications of these changes for therapeutic approaches to treating or preventing heart failure will be discussed.
Collapse
Affiliation(s)
- Christian Riehle
- From the Division of Endocrinology and Metabolism, Fraternal Order of Eagles Diabetes Research Center, Roy J. and Lucille A. Carver College of Medicine, University of Iowa, Iowa City
| | - E Dale Abel
- From the Division of Endocrinology and Metabolism, Fraternal Order of Eagles Diabetes Research Center, Roy J. and Lucille A. Carver College of Medicine, University of Iowa, Iowa City.
| |
Collapse
|
248
|
Bjørklund G, Chirumbolo S. Role of oxidative stress and antioxidants in daily nutrition and human health. Nutrition 2016; 33:311-321. [PMID: 27746034 DOI: 10.1016/j.nut.2016.07.018] [Citation(s) in RCA: 137] [Impact Index Per Article: 15.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2016] [Revised: 07/14/2016] [Accepted: 07/24/2016] [Indexed: 12/20/2022]
Abstract
Diet may be defined as a complex process that should involve a deeper comprehension of metabolism, energy balance, and the molecular pathways involved in cellular stress response and survival, gut microflora genetics, enzymatic polymorphism within the human population, and the role of plant-derived polyphenols in this context. Metabolic syndrome, encompassing pathologies with a relatively high morbidity, such as type 2 diabetes, obesity, and cardiovascular disease, is a bullet point of the big concern about how daily dietary habits should promote health and prevent metabolic impairments to prevent hospitalization and the need for health care. From a clinical point of view, very few papers deal with this concern, whereas most of the evidence reported focuses on in vitro and animal models, which study the activity of phytochemicals contained in the daily diet. A fundamental issue addressed by dietitians deals with the role exerted by redox-derived reactive species. Most plant polyphenols act as antioxidants, but recent evidence supports the idea that these compounds primarily activate a mild oxidative stress to elicit a positive, beneficial response from cells. How these compounds may act upon the detoxifying system exerting a scavenging role from reactive oxygen or nitrogen species is still a matter of debate; however, it can be argued that their role is even more complex than expected, acting as signaling molecules in the cross-talk mitochondria-endoplasmic reticulum and in enzymatic pathways involved in the energetic balance. In this relationship, a fundamental role is played by the brain-adipose tissue-gut axis. The aim of this review was to elucidate this topic and the state of art about the role of reactive species in cell signaling and the function of metabolism and survival to reappraise the role of plant-derived chemicals.
Collapse
Affiliation(s)
- Geir Bjørklund
- Council for Nutritional and Environmental Medicine (CONEM), Mo i Rana, Norway
| | - Salvatore Chirumbolo
- Department of Neurological and Movement Sciences, University of Verona, Verona, Italy.
| |
Collapse
|
249
|
Zhang HH, Ma XJ, Wu LN, Zhao YY, Zhang PY, Zhang YH, Shao MW, Liu F, Li F, Qin GJ. Sirtuin-3 (SIRT3) protects pancreatic β-cells from endoplasmic reticulum (ER) stress-induced apoptosis and dysfunction. Mol Cell Biochem 2016; 420:95-106. [PMID: 27449933 DOI: 10.1007/s11010-016-2771-5] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2016] [Accepted: 07/09/2016] [Indexed: 01/07/2023]
Abstract
Insufficient insulin produced by pancreatic β-cells in the control of blood sugar is a central feature of the etiology of diabetes. Reports have shown that endoplasmic reticulum (ER) stress is fundamentally involved in β-cell dysfunction. In this study, we hypothesized that NAD-dependent deacetylase sirtuin-3 (SIRT3), an important regulator of cell metabolism, protects pancreatic β-cells from ER stress-mediated apoptosis. To validate our hypothesis, a rat diabetic model was established by a high-fat diet (HFD). We found that SIRT3 expression was markedly decreased in NIT1 and INS1 cells incubated with palmitate. Palmitate treatment significantly decreased β-cell viability and insulin secretion, and promoted malondialdehyde (MDA) formation. However, SIRT3 overexpression in NIT1 and INS1 cells reversed these effects, resulting in higher insulin secretion, decreased β-cell apoptosis, and downregulation of the expression of ER stress-associated genes. Moreover, SIRT3 overexpression also inhibited calcium influx and the hyperacetylation of glucose-regulated protein of 78 kDa (GRP78). SIRT3 knockdown effectively enhanced the upregulation of phospho-extracellular regulated protein kinases (pERK), inositol-requiring enzyme-1 (IRE1), activating transcription factor 6 (ATF6), and C/EBP homologous protein (CHOP) induced by palmitate, and promoted palmitate-induced β-cell apoptosis and dysfunction. Taken together, our results suggest that SIRT3 is an integral regulator of ER function and that its depletion might result in the hyperacetylation of critical ER proteins that protect against islet lipotoxicity under conditions of nutrient excess.
Collapse
Affiliation(s)
- Hao-Hao Zhang
- Division of Endocrinology, Department of Internal Medicine, The First Affiliated Hospital of Zhengzhou University, 40 Daxue Road, Zhengzhou, 450052, China
| | - Xiao-Jun Ma
- Division of Endocrinology, Department of Internal Medicine, The First Affiliated Hospital of Zhengzhou University, 40 Daxue Road, Zhengzhou, 450052, China
| | - Li-Na Wu
- Division of Endocrinology, Department of Internal Medicine, The First Affiliated Hospital of Zhengzhou University, 40 Daxue Road, Zhengzhou, 450052, China
| | - Yan-Yan Zhao
- Division of Endocrinology, Department of Internal Medicine, The First Affiliated Hospital of Zhengzhou University, 40 Daxue Road, Zhengzhou, 450052, China
| | - Peng-Yu Zhang
- Division of Endocrinology, Department of Internal Medicine, The First Affiliated Hospital of Zhengzhou University, 40 Daxue Road, Zhengzhou, 450052, China
| | - Ying-Hui Zhang
- Division of Endocrinology, Department of Internal Medicine, The First Affiliated Hospital of Zhengzhou University, 40 Daxue Road, Zhengzhou, 450052, China
| | - Ming-Wei Shao
- Division of Endocrinology, Department of Internal Medicine, The First Affiliated Hospital of Zhengzhou University, 40 Daxue Road, Zhengzhou, 450052, China
| | - Fei Liu
- Division of Endocrinology, Department of Internal Medicine, The First Affiliated Hospital of Zhengzhou University, 40 Daxue Road, Zhengzhou, 450052, China
| | - Fei Li
- Division of Vasculitis, Guancheng Traditional Chinese Medical Hospital, Shangdu Road, Zhengzhou, 450016, China
| | - Gui-Jun Qin
- Division of Endocrinology, Department of Internal Medicine, The First Affiliated Hospital of Zhengzhou University, 40 Daxue Road, Zhengzhou, 450052, China.
| |
Collapse
|
250
|
Feroe AG, Attanasio R, Scinicariello F. Acrolein metabolites, diabetes and insulin resistance. ENVIRONMENTAL RESEARCH 2016; 148:1-6. [PMID: 26991531 PMCID: PMC5700808 DOI: 10.1016/j.envres.2016.03.015] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/05/2016] [Revised: 03/02/2016] [Accepted: 03/09/2016] [Indexed: 05/03/2023]
Abstract
Acrolein is a dietary and environmental pollutant that has been associated in vitro to dysregulate glucose transport. We investigated the association of urinary acrolein metabolites N-acetyl-S-(3-hydroxypropyl)-l-cysteine (3-HPMA) and N-acetyl-S-(carboxyethyl)-l-cysteine (CEMA) and their molar sum (∑acrolein) with diabetes using data from investigated 2027 adults who participated in the 2005-2006 National Health and Nutrition Examination Survey (NHANES). After excluding participants taking insulin or other diabetes medication we, further, investigated the association of the compounds with insulin resistance (n=850), as a categorical outcome expressed by the homeostatic model assessment (HOMA-IR>2.6). As secondary analyses, we investigated the association of the compounds with HOMA-IR, HOMA-β, fasting insulin and fasting plasma glucose. The analyses were performed using urinary creatinine as independent variable in the models, and, as sensitivity analyses, the compounds were used as creatinine corrected variables. Diabetes as well as insulin resistance (defined as HOMA-IR>2.6) were positively associated with the 3-HPMA, CEMA and ∑Acrolein with evidence of a dose-response relationship (p<0.05). The highest 3rd and 4th quartiles of CEMA compared to the lowest quartile were significantly associated with higher HOMA-IR, HOMA-β and fasting insulin with a dose-response relationship. The highest 3rd quartile of 3-HPMA and ∑Acrolein were positively and significantly associated with HOMA-IR, HOMA-β and fasting insulin. These results suggest a need of further studies to fully understand the implications of acrolein with type 2 diabetes and insulin.
Collapse
Affiliation(s)
- Aliya G Feroe
- Department of Biology, Bowdoin College, Brunswick, ME, USA
| | | | - Franco Scinicariello
- Division of Toxicology and Human Health Sciences, Agency for Toxic Substances and Disease Registry (ATSDR), Atlanta, GA, USA.
| |
Collapse
|