201
|
Edwards SC, Hoevenaar WHM, Coffelt SB. Emerging immunotherapies for metastasis. Br J Cancer 2020; 124:37-48. [PMID: 33262520 PMCID: PMC7782509 DOI: 10.1038/s41416-020-01160-5] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2020] [Revised: 10/07/2020] [Accepted: 10/27/2020] [Indexed: 12/11/2022] Open
Abstract
Major advances in cancer immunotherapy have dramatically expanded the potential to manipulate immune cells in cancer patients with metastatic disease to counteract cancer spread and extend patient lifespan. One of the most successful types of immunotherapy is the immune checkpoint inhibitors, such as anti-CTLA-4 and anti-PD-1, that keep anti-tumour T cells active. However, not every patient with metastatic disease benefits from this class of drugs and patients often develop resistance to these therapies over time. Tremendous research effort is now underway to uncover new immunotherapeutic targets that can be used in patients who are refractory to anti-CTLA-4 or anti-PD-1 treatment. Here, we discuss results from experimental model systems demonstrating that modulating the immune response can negatively affect metastasis formation. We focus on molecules that boost anti-tumour immune cells and opportunities to block immunosuppression, as well as cell-based therapies with enhanced tumour recognition properties for solid tumours. We also present a list of challenges in treating metastatic disease with immunotherapy that must be considered in order to move laboratory observations into clinical practice and maximise patient benefit. ![]()
Collapse
Affiliation(s)
- Sarah C Edwards
- Cancer Research UK Beatson Institute, Glasgow, UK.,Institute of Cancer Sciences, University of Glasgow, Glasgow, UK
| | - Wilma H M Hoevenaar
- Cancer Research UK Beatson Institute, Glasgow, UK.,Institute of Cancer Sciences, University of Glasgow, Glasgow, UK
| | - Seth B Coffelt
- Cancer Research UK Beatson Institute, Glasgow, UK. .,Institute of Cancer Sciences, University of Glasgow, Glasgow, UK.
| |
Collapse
|
202
|
Ceci C, Atzori MG, Lacal PM, Graziani G. Targeting Tumor-Associated Macrophages to Increase the Efficacy of Immune Checkpoint Inhibitors: A Glimpse into Novel Therapeutic Approaches for Metastatic Melanoma. Cancers (Basel) 2020; 12:cancers12113401. [PMID: 33212945 PMCID: PMC7698460 DOI: 10.3390/cancers12113401] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2020] [Revised: 11/03/2020] [Accepted: 11/13/2020] [Indexed: 12/17/2022] Open
Abstract
Immune checkpoint inhibitors (ICIs) represent a promising therapeutic intervention for a variety of advanced/metastatic solid tumors, including melanoma, but in a large number of cases, patients fail to establish a sustained anti-tumor immunity and to achieve a long-lasting clinical benefit. Cells of the tumor micro-environment such as tumor-associated M2 macrophages (M2-TAMs) have been reported to limit the efficacy of immunotherapy, promoting tumor immune evasion and progression. Thus, strategies targeting M2-TAMs have been suggested to synergize with immune checkpoint blockade. This review recapitulates the molecular mechanisms by which M2-TAMs promote cancer immune evasion, with focus on the potential cross-talk between pharmacological interventions targeting M2-TAMs and ICIs for melanoma treatment.
Collapse
Affiliation(s)
- Claudia Ceci
- Department of Systems Medicine, University of Rome Tor Vergata, Via Montpellier 1, 00133 Rome, Italy; (C.C.); (M.G.A.)
| | - Maria Grazia Atzori
- Department of Systems Medicine, University of Rome Tor Vergata, Via Montpellier 1, 00133 Rome, Italy; (C.C.); (M.G.A.)
| | | | - Grazia Graziani
- Department of Systems Medicine, University of Rome Tor Vergata, Via Montpellier 1, 00133 Rome, Italy; (C.C.); (M.G.A.)
- Correspondence: ; Tel.: +39-06-7259-6338
| |
Collapse
|
203
|
Immune Checkpoints and CAR-T Cells: The Pioneers in Future Cancer Therapies? Int J Mol Sci 2020; 21:ijms21218305. [PMID: 33167514 PMCID: PMC7663909 DOI: 10.3390/ijms21218305] [Citation(s) in RCA: 74] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2020] [Revised: 10/28/2020] [Accepted: 11/03/2020] [Indexed: 12/18/2022] Open
Abstract
Although the ever-increasing number of cancer patients pose substantial challenges worldwide, finding a treatment with the highest response rate and the lowest number of side effects is still undergoing research. Compared to chemotherapy, the relatively low side effects of cancer immunotherapy have provided ample opportunity for immunotherapy to become a promising approach for patients with malignancy. However, the clinical translation of immune-based therapies requires robust anti-tumoral immune responses. Immune checkpoints have substantial roles in the induction of an immunosuppressive tumor microenvironment and tolerance against tumor antigens. Identifying and targeting these inhibitory axes, which can be established between tumor cells and tumor-infiltrating lymphocytes, can facilitate the development of anti-tumoral immune responses. Bispecific T-cell engagers, which can attract lymphocytes to the tumor microenvironment, have also paved the road for immunological-based tumor elimination. The development of CAR-T cells and their gene editing have brought ample opportunity to recognize tumor antigens, independent from immune checkpoints and the major histocompatibility complex (MHC). Indeed, there have been remarkable advances in developing various CAR-T cells to target tumoral cells. Knockout of immune checkpoints via gene editing in CAR-T cells might be designated for a breakthrough for patients with malignancy. In the midst of this fast progress in cancer immunotherapies, there is a need to provide up-to-date information regarding immune checkpoints, bispecific T-cell engagers, and CAR-T cells. Therefore, this review aims to provide recent findings of immune checkpoints, bispecific T-cell engagers, and CAR-T cells in cancer immunotherapy and discuss the pertained clinical trials.
Collapse
|
204
|
Abstract
PURPOSE OF REVIEW Immunotherapy has shown an unprecedented response in treatment of tumors. However, challenges such as lack of cytotoxic lymphocytes to mount an immune response or development of resistance to therapy can limit efficacy. Here, we discuss alternative checkpoints that can be targeted to improve cytotoxic lymphocyte function while harnessing other components of the immune system. RECENT FINDINGS Blockade of alternative checkpoints has improved anti-tumor immunity in mouse models and is being tested clinically with encouraging findings. In addition to modulating T cell function directly, alternative checkpoints can also regulate activity of myeloid cells and regulatory T cells to affect anti-tumor response. Combination of immune checkpoint inhibitors can improve treatment of tumors by activating multiple arms of the immune system.
Collapse
Affiliation(s)
- Ayush Pant
- Department of Neurosurgery, Neurosurgery Oncology, Radiation Oncology, Otolaryngology, and Institute of NanoBiotechnology, Brain Tumor Immunotherapy Program, Metastatic Brain Tumor Center, The Johns Hopkins University School of Medicine, 600 N. Wolfe Street, Phipps 123, Baltimore, MD, 21287, USA
| | - Ravi Medikonda
- Department of Neurosurgery, Neurosurgery Oncology, Radiation Oncology, Otolaryngology, and Institute of NanoBiotechnology, Brain Tumor Immunotherapy Program, Metastatic Brain Tumor Center, The Johns Hopkins University School of Medicine, 600 N. Wolfe Street, Phipps 123, Baltimore, MD, 21287, USA
| | - Michael Lim
- Department of Neurosurgery, Neurosurgery Oncology, Radiation Oncology, Otolaryngology, and Institute of NanoBiotechnology, Brain Tumor Immunotherapy Program, Metastatic Brain Tumor Center, The Johns Hopkins University School of Medicine, 600 N. Wolfe Street, Phipps 123, Baltimore, MD, 21287, USA.
| |
Collapse
|
205
|
Xie X, Zhang J, Shi Z, Liu W, Hu X, Qie C, Chen W, Wang Y, Wang L, Jiang J, Liu J. The Expression Pattern and Clinical Significance of the Immune Checkpoint Regulator VISTA in Human Breast Cancer. Front Immunol 2020; 11:563044. [PMID: 33250890 PMCID: PMC7673447 DOI: 10.3389/fimmu.2020.563044] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2020] [Accepted: 10/07/2020] [Indexed: 11/30/2022] Open
Abstract
Background Immunotherapies targeting CTLA-4 and PD-1 have elicited promising responses in a variety of cancers. However, the relatively low response rates warrant the identification of additional immunosuppressive pathways. V domain immunoglobulin suppressor of T cell activation (VISTA) plays a critical role in antitumor immunity and is a valuable target in cancer immunotherapy. Methods Here, we used single-cell RNA-seq to analyze the gene expression levels of 14897 cells from a breast cancer sample and its paired 7,320 normal cells. Then, we validated the protein expression of immune checkpoint molecules (VISTA, PD-1, PD-L1, TIGIT, TIM3, and LAG3) in 324 human breast cancer samples by immunohistochemistry and quantitative immunofluorescence (QIF) approaches. Results Single cell RNA-seq results show a higher level of immune checkpoint VISTA expression in breast cancer tissue compared to adjacent normal tissue. We also found that VISTA expressed highest in breast cancer tissue than other immune-checkpoints. Immunohistochemical results showed that VISTA was detected with a membranous/cytoplasmic staining pattern in intratumoral immune cells and breast cancer cells. Additionally, VISTA was positively correlated with pathological grade, lymph node status and the levels of PD-1 according to the chi-square test or Fisher’s test. Furthermore, VISTA expression was higher in CD68+ tumor-associated macrophages (TAMs) than in CD4+ T cells, CD8+ cytotoxic T cells or CD20+ B cells. Conclusions These findings therefore support the immunoregulatory role of VISTA in breast cancer and indicate that targeting VISTA may benefit breast cancer immunotherapy.
Collapse
Affiliation(s)
- Xiaoxue Xie
- Jiangsu Key Lab of Drug Screening, China Pharmaceutical University, Nanjing, China
| | - Junying Zhang
- Clinical Cancer Research Center, Jiangsu Cancer Hospital and Jiangsu Institute of Cancer Research and The Affiliated Cancer Hospital of Nanjing Medical University, Nanjing, China
| | - Zhongyuan Shi
- Department of Pathology, Jiangsu Province Hospital on Integration of Chinese and Western Medicine, Nanjing, China
| | - Wanmei Liu
- Jiangsu Key Lab of Drug Screening, China Pharmaceutical University, Nanjing, China
| | - Xinlei Hu
- Jiangsu Key Lab of Drug Screening, China Pharmaceutical University, Nanjing, China
| | - Chenxin Qie
- Jiangsu Key Lab of Drug Screening, China Pharmaceutical University, Nanjing, China
| | - Wenting Chen
- Jiangsu Key Lab of Drug Screening, China Pharmaceutical University, Nanjing, China
| | - Yan Wang
- Department of Pathology, The Second Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Li Wang
- Department of Translational Hematology and Oncology Research (THOR), Cleveland Clinic Foundation, Cleveland, OH, United States
| | - Jingwei Jiang
- Jiangsu Key Lab of Drug Screening, China Pharmaceutical University, Nanjing, China
| | - Jun Liu
- Jiangsu Key Lab of Drug Screening, China Pharmaceutical University, Nanjing, China
| |
Collapse
|
206
|
Pilones KA, Hensler M, Daviaud C, Kraynak J, Fucikova J, Galluzzi L, Demaria S, Formenti SC. Converging focal radiation and immunotherapy in a preclinical model of triple negative breast cancer: contribution of VISTA blockade. Oncoimmunology 2020; 9:1830524. [PMID: 33150045 PMCID: PMC7583495 DOI: 10.1080/2162402x.2020.1830524] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Antibodies targeting the co-inhibitory receptor programmed cell death 1 (PDCD1, best known as PD-1) or its main ligand CD274 (best known as PD-L1) have shown some activity in patients with metastatic triple-negative breast cancer (TNBC), especially in a recent Phase III clinical trial combining PD-L1 blockade with taxane-based chemotherapy. Despite these encouraging findings, however, most patients with TNBC fail to derive significant benefits from PD-L1 blockade, calling for the identification of novel therapeutic approaches. Here, we used the 4T1 murine mammary cancer model of metastatic and immune-resistant TNBC to test whether focal radiation therapy (RT), a powerful inducer of immunogenic cell death, in combination with various immunotherapeutic strategies can overcome resistance to immune checkpoint blockade. Our results suggest that focal RT enhances the therapeutic effects of PD-1 blockade against primary 4T1 tumors and their metastases. Similarly, the efficacy of an antibody specific for V-set immunoregulatory receptor (VSIR, another co-inhibitory receptor best known as VISTA) was enhanced by focal RT. Administration of cyclophosphamide plus RT and dual PD-1/VISTA blockade had superior therapeutic effects, which were associated with activation of tumor-infiltrating CD8+ T cells and depletion of intratumoral granulocytic myeloid-derived suppressor cells (MDSCs). Overall, these results demonstrate that RT can sensitize immunorefractory tumors to VISTA or PD-1 blockade, that this effect is enhanced by the addition of cyclophosphamide and suggest that a multipronged immunotherapeutic approach may also be required to increase the incidence of durable responses in patients with TNBC.
Collapse
Affiliation(s)
- Karsten A Pilones
- Department of Radiation Oncology, Weill Cornell Medical College, New York, NY, USA
| | | | - Camille Daviaud
- Department of Radiation Oncology, Weill Cornell Medical College, New York, NY, USA
| | - Jeffrey Kraynak
- Department of Radiation Oncology, Weill Cornell Medical College, New York, NY, USA
| | - Jitka Fucikova
- Sotio, Prague, Czech Republic.,Department of Immunology, Charles University, 2nd Faculty of Medicine and University Hospital Motol, Prague, Czech Republic
| | - Lorenzo Galluzzi
- Department of Radiation Oncology, Weill Cornell Medical College, New York, NY, USA.,Sandra and Edward Meyer Cancer Center, New York, NY, USA.,Caryl and Isreal Englander Institute for Precision Medicine, Weill Cornell Medical College, New York, NY, USA
| | - Sandra Demaria
- Department of Radiation Oncology, Weill Cornell Medical College, New York, NY, USA.,Sandra and Edward Meyer Cancer Center, New York, NY, USA.,Department of Pathology and Laboratory Medicine, Weill Cornell Medical College, New York, NY, USA
| | - Silvia C Formenti
- Department of Radiation Oncology, Weill Cornell Medical College, New York, NY, USA.,Sandra and Edward Meyer Cancer Center, New York, NY, USA
| |
Collapse
|
207
|
High VISTA Expression Correlates With a Favorable Prognosis in Patients With Colorectal Cancer. J Immunother 2020; 44:22-28. [PMID: 33086339 DOI: 10.1097/cji.0000000000000343] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Colorectal cancer (CRC) is the third most common malignancy worldwide. The novel immune checkpoint V-domain Ig suppressor of T-cell activation (VISTA) has emerged as a promising target for cancer treatment; however, the prognostic significance of its expression in CRC remains unknown. In this study, immunohistochemical staining was used to investigate VISTA expression in tissue microarrays from 1434 patients with stage I-III CRC (816 in the exploratory cohort and 618 in the validation cohort). VISTA protein was evaluated separately in tumor cells and tumor-infiltrating immune cells (ICs). The associations between VISTA expression, mismatch repair (MMR) status, and clinicopathologic parameters were analyzed, as was the effect of VISTA on survival. High VISTA expression on ICs (ie, ≥5% staining) was more frequent in patients with N0 stage, T1-2 stage, low tumor grade, high CD8 density, and MMR-deficient tumors, and was positively associated with prolonged survival in patients with CRC. High VISTA expression was a significant predictor of prolonged survival independent of clinicopathologic parameters and MMR status. Overall, our results indicate that high VISTA expression on tumor-infiltrating ICs correlates with early tumor stage, MMR deficiency, and a favorable prognosis in patients with CRC. This ought to be considered in future trials of VISTA-modulating immunotherapy for patients with CRC.
Collapse
|
208
|
Jafari S, Molavi O, Kahroba H, Hejazi MS, Maleki-Dizaji N, Barghi S, Kiaie SH, Jadidi-Niaragh F. Clinical application of immune checkpoints in targeted immunotherapy of prostate cancer. Cell Mol Life Sci 2020; 77:3693-3710. [PMID: 32006051 PMCID: PMC11104895 DOI: 10.1007/s00018-020-03459-1] [Citation(s) in RCA: 47] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2019] [Revised: 12/27/2019] [Accepted: 01/10/2020] [Indexed: 12/14/2022]
Abstract
Immunotherapy is considered as an effective method for cancer treatment owing to the induction of specific and long-lasting anti-cancer effects. Immunotherapeutic strategies have shown significant success in human malignancies, particularly in prostate cancer (PCa), a major global health issue regarding its high metastatic rates. In fact, the first cancer vaccine approved by FDA was Provenge, which has been successfully used for treatment of PCa. Despite the remarkable success of cancer immunotherapy in PCa, many of the developed immunotherapy methods show poor therapeutic outcomes. Immunosuppression in tumor microenvironment (TME) induced by non-functional T cells (CD4+ and CD8+), tolerogenic dendritic cells (DCs), and regulatory T cells, has been reported to be the main obstacle to the effectiveness of anti-tumor immune responses induced by an immunotherapy method. The present review particularly focuses on the latest findings of the immune checkpoints (ICPs), including CTLA-4, PD-1, PD-L1, LAG-3, OX40, B7-H3, 4-1BB, VISTA, TIM-3, and ICOS; these checkpoints are able to have immune modulatory effects on the TME of PCa. This paper further discusses different approaches in ICPs targeting therapy and summarizes the latest advances in the clinical application of ICP-targeted therapy as monotherapy or in combination with other cancer therapy modalities in PCa.
Collapse
Affiliation(s)
- Sevda Jafari
- Biotechnology Research Center, Tabriz University of Medical Science, Tabriz, Iran
- Department of Pharmaceutical Biotechnology, Faculty of Pharmacy, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Ommoleila Molavi
- Biotechnology Research Center, Tabriz University of Medical Science, Tabriz, Iran.
- Department of Pharmaceutical Biotechnology, Faculty of Pharmacy, Tabriz University of Medical Sciences, Tabriz, Iran.
- Molecular Medicine Research Center, Biomedicine Institute, Tabriz University of Medical Science, Tabriz, Iran.
| | - Houman Kahroba
- Molecular Medicine Research Center, Biomedicine Institute, Tabriz University of Medical Science, Tabriz, Iran
- Department of Molecular Medicine, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mohammad Saied Hejazi
- Department of Pharmaceutical Biotechnology, Faculty of Pharmacy, Tabriz University of Medical Sciences, Tabriz, Iran
- Molecular Medicine Research Center, Biomedicine Institute, Tabriz University of Medical Science, Tabriz, Iran
| | - Nasrin Maleki-Dizaji
- Department of Pharmacology, Faculty of Pharmacy, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Siamak Barghi
- Department of Medical Laboratory Sciences, Faculty of Paramedical Sciences, Shahid Beheshti University of Medical Science, Tehran, Iran
| | - Seyed Hossein Kiaie
- Department of Pharmaceutics, Faculty of Pharmacy, Tabriz University of Medical Sciences, Tabriz, Iran
- Nano Drug Delivery Research Center, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Farhad Jadidi-Niaragh
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
- Department of Immunology, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|
209
|
Yang HZ, Zhou XH. Mechanism for hypoxia inducible factor-1α to promote immune escape and therapeutic tolerance in hepatocellular carcinoma under hypoxic microenvironment. Shijie Huaren Xiaohua Zazhi 2020; 28:904-913. [DOI: 10.11569/wcjd.v28.i18.904] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
The liver is the largest immune organ in the body, and immunologic tolerance and escape mechanisms play an important role in hepatocellular carcinoma (HCC) development. HCC has a complex tumor microenvironment (TME), and it is necessary to study the mechanism that causes HCC cells to escape the body immune surveillance and produce therapeutic resistance in HCC clinical treatment. Hypoxia inducible factor-1α (HIF-1α) is a transcription factor that contains α subunits regulated by hypoxia. Tumor cells highly express HIF-1α in a hypoxic environment, which participates in the processes of tumor cell proliferation and metastasis, microvascular production, immune escape, and therapeutic tolerance, ultimately promoting tumorigenesis and development. In this paper, we will elaborate on the mechanisms by which HCC cells activate HIF-1α expression to promote hypoxic adaptation in cancer cells and regulate immune escape and treatment tolerance in hypoxic TME.
Collapse
Affiliation(s)
- Huan-Zhen Yang
- Graduate School of Youjiang Medical College for Nationalities, Baise 533000, Guangxi Zhuang Autonomous Region, China
| | - Xi-Han Zhou
- Department of Gastroenterology, Affiliated Hospital of Youjiang Medical College Nationalities, Baise 533000, Guangxi Zhuang Autonomous Region, China
| |
Collapse
|
210
|
Mehta N, Maddineni S, Kelly RL, Lee RB, Hunter SA, Silberstein JL, Parra Sperberg RA, Miller CL, Rabe A, Labanieh L, Cochran JR. An engineered antibody binds a distinct epitope and is a potent inhibitor of murine and human VISTA. Sci Rep 2020; 10:15171. [PMID: 32938950 PMCID: PMC7494997 DOI: 10.1038/s41598-020-71519-4] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2020] [Accepted: 08/12/2020] [Indexed: 12/27/2022] Open
Abstract
V-domain immunoglobulin (Ig) suppressor of T cell activation (VISTA) is an immune checkpoint that maintains peripheral T cell quiescence and inhibits anti-tumor immune responses. VISTA functions by dampening the interaction between myeloid cells and T cells, orthogonal to PD-1 and other checkpoints of the tumor-T cell signaling axis. Here, we report the use of yeast surface display to engineer an anti-VISTA antibody that binds with high affinity to mouse, human, and cynomolgus monkey VISTA. Our anti-VISTA antibody (SG7) inhibits VISTA function and blocks purported interactions with both PSGL-1 and VSIG3 proteins. SG7 binds a unique epitope on the surface of VISTA, which partially overlaps with other clinically relevant antibodies. As a monotherapy, and to a greater extent as a combination with anti-PD1, SG7 slows tumor growth in multiple syngeneic mouse models. SG7 is a promising clinical candidate that can be tested in fully immunocompetent mouse models and its binding epitope can be used for future campaigns to develop species cross-reactive inhibitors of VISTA.
Collapse
Affiliation(s)
- Nishant Mehta
- Department of Bioengineering, Stanford University, Stanford, CA, 94305, USA
| | | | | | - Robert B Lee
- Department of Chemical Engineering, Stanford University, Stanford, CA, 94305, USA
| | - Sean A Hunter
- Department of Bioengineering, Stanford University, Stanford, CA, 94305, USA.,Cancer Biology Program, Stanford University School of Medicine, Stanford, CA, 94305, USA
| | - John L Silberstein
- Department of Bioengineering, Stanford University, Stanford, CA, 94305, USA.,Immunology Program, Stanford University School of Medicine, Stanford, CA, 94305, USA
| | | | - Caitlyn L Miller
- Department of Bioengineering, Stanford University, Stanford, CA, 94305, USA
| | - Amanda Rabe
- Department of Bioengineering, Stanford University, Stanford, CA, 94305, USA.,Cancer Biology Program, Stanford University School of Medicine, Stanford, CA, 94305, USA
| | - Louai Labanieh
- Department of Bioengineering, Stanford University, Stanford, CA, 94305, USA
| | - Jennifer R Cochran
- Department of Bioengineering, Stanford University, Stanford, CA, 94305, USA. .,xCella Biosciences, Menlo Park, CA, 94025, USA. .,Department of Chemical Engineering, Stanford University, Stanford, CA, 94305, USA. .,Cancer Biology Program, Stanford University School of Medicine, Stanford, CA, 94305, USA. .,Immunology Program, Stanford University School of Medicine, Stanford, CA, 94305, USA.
| |
Collapse
|
211
|
Targeting Myeloid-Derived Suppressor Cells in Cancer Immunotherapy. Cancers (Basel) 2020; 12:cancers12092626. [PMID: 32942545 PMCID: PMC7564060 DOI: 10.3390/cancers12092626] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2020] [Revised: 09/10/2020] [Accepted: 09/10/2020] [Indexed: 12/14/2022] Open
Abstract
Simple Summary Myeloid-Derived Suppressor Cells (MDSCs) have been regarded as the main promoters of cancer development in recent years. They can protect tumor cells from being eliminated by neutralizing the anti-tumor response mediated by T cells, macrophages and dendritic cells (DCs). Therefore, different treatment methods targeting MDSCs, including chemotherapy, radiotherapy and immunotherapy, have been developed and proven to effectively inhibit tumor expansion. Herein, we summarize the immunosuppressive role of MDSCs in the tumor microenvironment and some effective treatments targeting MDSCs, and discuss the differences between different therapies. Abstract Myeloid-derived suppressor cells (MDSCs), which are activated under pathological conditions, are a group of heterogeneous immature myeloid cells. MDSCs have potent capacities to support tumor growth via inhibition of the antitumoral immune response and/or the induction of immunosuppressive cells. In addition, multiple studies have demonstrated that MDSCs provide potential therapeutic targets for the elimination of immunosuppressive functions and the inhibition of tumor growth. The combination of targeting MDSCs and other therapeutic approaches has also demonstrated powerful antitumor effects. In this review, we summarize the characteristics of MDSCs in the tumor microenvironment (TME) and current strategies of cancer treatment by targeting MDSCs.
Collapse
|
212
|
Mehta N, Maddineni S, Mathews II, Andres Parra Sperberg R, Huang PS, Cochran JR. Structure and Functional Binding Epitope of V-domain Ig Suppressor of T Cell Activation. Cell Rep 2020; 28:2509-2516.e5. [PMID: 31484064 DOI: 10.1016/j.celrep.2019.07.073] [Citation(s) in RCA: 74] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2019] [Revised: 06/13/2019] [Accepted: 07/19/2019] [Indexed: 12/20/2022] Open
Abstract
V-domain immunoglobulin (Ig) suppressor of T cell activation (VISTA) is an immune checkpoint protein that inhibits the T cell response against cancer. Similar to PD-1 and CTLA-4, a blockade of VISTA promotes tumor clearance by the immune system. Here, we report a 1.85 Å crystal structure of the elusive human VISTA extracellular domain, whose lack of homology necessitated a combinatorial MR-Rosetta approach for structure determination. We highlight features that make the VISTA immunoglobulin variable (IgV)-like fold unique among B7 family members, including two additional disulfide bonds and an extended loop region with an attached helix that we show forms a contiguous binding epitope for a clinically relevant anti-VISTA antibody. We propose an overlap of this antibody-binding region with the binding epitope for V-set and Ig domain containing 3 (VSIG3), a purported functional binding partner of VISTA. The structure and functional epitope presented here will help guide future drug development efforts against this important checkpoint target.
Collapse
Affiliation(s)
- Nishant Mehta
- Department of Bioengineering, Stanford University, Stanford, CA 94305, USA
| | | | - Irimpan I Mathews
- Stanford Synchrotron Radiation Laboratory, 2575 Sand Hill Road, Menlo Park, CA 94025, USA
| | | | - Po-Ssu Huang
- Department of Bioengineering, Stanford University, Stanford, CA 94305, USA.
| | - Jennifer R Cochran
- Department of Bioengineering, Stanford University, Stanford, CA 94305, USA; Department of Chemical Engineering, Stanford University, Stanford, CA 94305, USA.
| |
Collapse
|
213
|
Han X, Vesely MD, Yang W, Sanmamed MF, Badri T, Alawa J, López-Giráldez F, Gaule P, Lee SW, Zhang JP, Nie X, Nassar A, Boto A, Flies DB, Zheng L, Kim TK, Moeckel GW, McNiff JM, Chen L. PD-1H (VISTA)-mediated suppression of autoimmunity in systemic and cutaneous lupus erythematosus. Sci Transl Med 2020; 11:11/522/eaax1159. [PMID: 31826980 DOI: 10.1126/scitranslmed.aax1159] [Citation(s) in RCA: 81] [Impact Index Per Article: 16.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2019] [Revised: 08/21/2019] [Accepted: 11/15/2019] [Indexed: 12/13/2022]
Abstract
Systemic lupus erythematosus (SLE) and discoid lupus erythematosus (DLE) of the skin are autoimmune diseases characterized by inappropriate immune responses against self-proteins; the key elements that determine disease pathogenesis and progression are largely unknown. Here, we show that mice lacking immune inhibitory receptor VISTA or programmed death-1 homolog (PD-1H KO) on a BALB/c background spontaneously develop cutaneous and systemic autoimmune diseases resembling human lupus. Cutaneous lupus lesions of PD-1H KO mice have clustering of plasmacytoid dendritic cells (pDCs) similar to human DLE. Using mass cytometry, we identified proinflammatory neutrophils as critical early immune infiltrating cells within cutaneous lupus lesions of PD-1H KO mice. We also found that PD-1H is highly expressed on immune cells in human SLE, DLE lesions, and cutaneous lesions of MRL/lpr mice. A PD-1H agonistic monoclonal antibody in MRL/lpr mice reduces cutaneous disease, autoantibodies, inflammatory cytokines, chemokines, and immune cell expansion. Furthermore, PD-1H on both T cells and myeloid cells including neutrophils and pDCs could transmit inhibitory signals, resulting in reduced activation and function, establishing PD-1H as an inhibitory receptor on T cells and myeloid cells. On the basis of these findings, we propose that PD-1H is a critical element in the pathogenesis and progression of lupus, and PD-1H activation could be effective for treatment of systemic and cutaneous lupus.
Collapse
Affiliation(s)
- Xue Han
- Department of Immunobiology, Yale University, New Haven, CT 06520, USA
| | - Matthew D Vesely
- Department of Immunobiology, Yale University, New Haven, CT 06520, USA.,Department of Dermatology, Yale University, New Haven, CT 06520, USA
| | - Wendy Yang
- Department of Immunobiology, Yale University, New Haven, CT 06520, USA
| | - Miguel F Sanmamed
- Department of Immunobiology, Yale University, New Haven, CT 06520, USA
| | - Ti Badri
- Department of Immunobiology, Yale University, New Haven, CT 06520, USA
| | - Jude Alawa
- Department of Immunobiology, Yale University, New Haven, CT 06520, USA
| | - Francesc López-Giráldez
- Department of Genetics, Yale University, New Haven, CT 06520, USA.,Yale Center for Genome Analysis, Yale University, New Haven, CT 06477, USA
| | - Patricia Gaule
- Department of Pathology, Yale University, New Haven, CT 06520, USA
| | - Sang Won Lee
- Department of Immunobiology, Yale University, New Haven, CT 06520, USA
| | - Jian-Ping Zhang
- Department of Immunobiology, Yale University, New Haven, CT 06520, USA
| | - Xinxin Nie
- Department of Immunobiology, Yale University, New Haven, CT 06520, USA
| | - Ala Nassar
- Department of Immunobiology, Yale University, New Haven, CT 06520, USA
| | - Agedi Boto
- Department of Immunobiology, Yale University, New Haven, CT 06520, USA.,Department of Pathology, Yale University, New Haven, CT 06520, USA
| | - Dallas B Flies
- Department of Immunobiology, Yale University, New Haven, CT 06520, USA
| | - Linghua Zheng
- Department of Immunobiology, Yale University, New Haven, CT 06520, USA
| | - Tae Kon Kim
- Department of Immunobiology, Yale University, New Haven, CT 06520, USA.,Department of Medicine, Yale University, New Haven, CT 06520, USA
| | | | - Jennifer M McNiff
- Department of Dermatology, Yale University, New Haven, CT 06520, USA.,Department of Pathology, Yale University, New Haven, CT 06520, USA
| | - Lieping Chen
- Department of Immunobiology, Yale University, New Haven, CT 06520, USA. .,Department of Dermatology, Yale University, New Haven, CT 06520, USA.,Department of Medicine, Yale University, New Haven, CT 06520, USA
| |
Collapse
|
214
|
Gabr MT, Gambhir SS. Discovery and Optimization of Small-Molecule Ligands for V-Domain Ig Suppressor of T-Cell Activation (VISTA). J Am Chem Soc 2020; 142:16194-16198. [PMID: 32894020 DOI: 10.1021/jacs.0c07276] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
V-domain Ig suppressor of T-cell activation (VISTA) is an immune checkpoint that affects the ability of T-cells to attack tumors. A FRET-based high throughput screening identified NSC622608 as the first small-molecule ligand for VISTA. Investigation of the interaction of NSC622608 with VISTA using STD NMR and molecular modeling enabled the identification of a potential binding site in VISTA for NSC622608. Screening NSC622608 against a library of single-point VISTA mutants revealed the key residues in VISTA interacting with NSC622608. Further structural optimization resulted in a lead with submicromolar VISTA binding affinity. The lead compound blocked VISTA signaling in vitro, enhanced T-cell proliferation, and restored T-cell activation in the presence of VISTA-expressing cancer cell lines. This work would enable future development of small molecules targeting VISTA as immunomodulators and imaging probes.
Collapse
Affiliation(s)
- Moustafa T Gabr
- Bio-X Program and Molecular Imaging Program at Stanford (MIPS), Stanford University, Stanford, California 94305, United States.,Department of Radiology, Stanford University, Stanford, California 94305, United States
| | - Sanjiv S Gambhir
- Bio-X Program and Molecular Imaging Program at Stanford (MIPS), Stanford University, Stanford, California 94305, United States.,Department of Radiology, Stanford University, Stanford, California 94305, United States.,Department of Bioengineering, Department of Materials Science & Engineering, Stanford University, Stanford, California 94305, United States
| |
Collapse
|
215
|
Geng Q, Rohondia SO, Khan HJ, Jiao P, Dou QP. Small molecules as antagonists of co-inhibitory pathways for cancer immunotherapy: a patent review (2018-2019). Expert Opin Ther Pat 2020; 30:677-694. [PMID: 32715813 DOI: 10.1080/13543776.2020.1801640] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
INTRODUCTION Therapeutic antibodies blocking co-inhibitory pathways do not attack tumor cells directly, but instead bind to their targeted proteins and mobilize the immune system to eradicate tumors. However, only a small fraction of patients with certain cancer types can benefit from the antibodies. Additionally, antibodies have shown serious immune-related adverse events in certain patients. Small-molecule antagonists may be a complementary and potentially synergistic approach to antibodies for patients with various cancers. AREAS COVERED The authors review the small molecules as antagonists of co-inhibitory pathway proteins, summarize their preliminary SARs, discuss biochemistry assays used in patents for the development of small molecules as novel antagonists. EXPERT OPINION The disclosed pharmacophores of small molecules as co-inhibitory pathway antagonists are represented by biphenyl derivatives, biaryl derivatives, teraryl derivatives, quateraryl derivatives, and oxadiazole/thiadiazole derivatives. However, these antagonists are still inferior to therapeutic antibodies in their inhibitory activities due to relatively flat of human co-inhibitory pathways proteins. Allosteric modulators may be an alternative approach. The more safety and efficacy evaluation trials of small-molecule antagonists targeting co-inhibitory pathways should be performed to demonstrate the proof-of-principle that small-molecule antagonists can result in sustained safety and antitumor response in the near future.
Collapse
Affiliation(s)
- Qiaohong Geng
- Department of Chemistry, Qilu Normal University , Jinan, China
| | - Sagar O Rohondia
- Barbara Ann Karmanos Cancer Institute, and Departments of Oncology, Pharmacology and Pathology, School of Medicine, Wayne State University , Detroit, MI, USA
| | - Harras J Khan
- Barbara Ann Karmanos Cancer Institute, and Departments of Oncology, Pharmacology and Pathology, School of Medicine, Wayne State University , Detroit, MI, USA
| | - Peifu Jiao
- Department of Chemistry, Qilu Normal University , Jinan, China
| | - Q Ping Dou
- Barbara Ann Karmanos Cancer Institute, and Departments of Oncology, Pharmacology and Pathology, School of Medicine, Wayne State University , Detroit, MI, USA
| |
Collapse
|
216
|
Watson GA, Doi J, Hansen AR, Spreafico A. Novel strategies in immune checkpoint inhibitor drug development: How far are we from the paradigm shift? Br J Clin Pharmacol 2020; 86:1753-1768. [PMID: 32394468 PMCID: PMC7444803 DOI: 10.1111/bcp.14355] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2019] [Revised: 04/20/2020] [Accepted: 04/26/2020] [Indexed: 12/11/2022] Open
Abstract
The development of immune checkpoint inhibitors (ICI) represents a major milestone in immune-oncology. Over the years these agents have demonstrated efficacy in an increasing array of malignancies. Despite this success however, significant challenges remain. Novel approaches to both drug development and trial design are required to incorporate the unique pharmacokinetic and pharmacodynamic properties of ICIs. Further, it has also been established that the benefit of ICIs is limited to only a subset of patients. The molecular interactions between native immune cells and tumorigenesis and progression represent an active area of biomarker research, and elucidating the mechanisms of response and resistance is crucial to develop rational trial designs for the next wave of immune-oncology (IO) clinical trials, particularly in patients with primary and/or acquired resistance. Efforts are now being made to integrate both biological and clinical information using novel multi-omic approaches which are now being developed to further elucidate the molecular signatures associated with IO treatment response and resistance and enable rational drug development and trial design processes. As such, precision IO and the ability to deliver patient-specific choices for ICI monotherapies or combination therapies has become an increasingly tangible goal. We herein describe the current landscape in ICI drug development and discuss the challenges and future directions in this exciting and evolving era in immune-oncology.
Collapse
Affiliation(s)
- Geoffrey Alan Watson
- Bras Drug Development Program, Division of Medical Oncology and Hematology, Princess Margaret Cancer CenterUniversity Health NetworkTorontoONCanada
| | - Jeffrey Doi
- Bras Drug Development Program, Division of Medical Oncology and Hematology, Princess Margaret Cancer CenterUniversity Health NetworkTorontoONCanada
| | - Aaron Richard Hansen
- Bras Drug Development Program, Division of Medical Oncology and Hematology, Princess Margaret Cancer CenterUniversity Health NetworkTorontoONCanada
| | - Anna Spreafico
- Bras Drug Development Program, Division of Medical Oncology and Hematology, Princess Margaret Cancer CenterUniversity Health NetworkTorontoONCanada
| |
Collapse
|
217
|
Choi JW, Kim YJ, Yun KA, Won CH, Lee MW, Choi JH, Chang SE, Lee WJ. The prognostic significance of VISTA and CD33-positive myeloid cells in cutaneous melanoma and their relationship with PD-1 expression. Sci Rep 2020; 10:14372. [PMID: 32873829 PMCID: PMC7462859 DOI: 10.1038/s41598-020-71216-2] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2020] [Accepted: 08/10/2020] [Indexed: 12/20/2022] Open
Abstract
V-domain Ig suppressor of T-cell activation (VISTA), which mediates immune evasion in cancer, is mainly expressed on hematopoietic cells and myeloid cells in the tumor. We evaluated correlations among the expression of VISTA, the myeloid-derived suppressor cell marker CD33, and programmed death-1 (PD-1), and determined their relationships with clinicopathological characteristics and disease outcomes in melanoma. Diagnostic tissue from 136 cases of melanoma was evaluated by immunohistochemistry for CD33, VISTA, and PD-1 expression. Dual immunofluorescence using CD33 and VISTA antibodies was performed. VISTA expression positively correlated with CD33 expression in melanoma tissue. Dual immunofluorescence staining revealed that VISTA was expressed by CD33-positive myeloid cells. PD-1 expression correlated with CD33 and VISTA expression. CD33 and VISTA expression were significantly associated with negative prognostic factors, including a deeper Breslow thickness and an advanced stage of disease. High expression of either CD33 or VISTA was associated with worse survival. Positivity for both VISTA and PD-1 predicted worse survival. Multivariate analysis showed that both CD33 and VISTA expression were independent prognostic factors in cutaneous melanoma. VISTA and CD33 expression are independent unfavourable prognostic factors in melanoma, which suggests their potential as therapeutic targets.
Collapse
Affiliation(s)
- Jae Won Choi
- Department of Dermatology, Asan Medical Center, University of Ulsan College of Medicine, 88, Olympic-ro 43-gil, Songpa-gu, Seoul, 05505, Korea
| | - Young Jae Kim
- Department of Dermatology, Asan Medical Center, University of Ulsan College of Medicine, 88, Olympic-ro 43-gil, Songpa-gu, Seoul, 05505, Korea
| | - Kyung A Yun
- Department of Dermatology, Asan Medical Center, University of Ulsan College of Medicine, 88, Olympic-ro 43-gil, Songpa-gu, Seoul, 05505, Korea
| | - Chong Hyun Won
- Department of Dermatology, Asan Medical Center, University of Ulsan College of Medicine, 88, Olympic-ro 43-gil, Songpa-gu, Seoul, 05505, Korea
| | - Mi Woo Lee
- Department of Dermatology, Asan Medical Center, University of Ulsan College of Medicine, 88, Olympic-ro 43-gil, Songpa-gu, Seoul, 05505, Korea
| | - Jee Ho Choi
- Department of Dermatology, Asan Medical Center, University of Ulsan College of Medicine, 88, Olympic-ro 43-gil, Songpa-gu, Seoul, 05505, Korea
| | - Sung Eun Chang
- Department of Dermatology, Asan Medical Center, University of Ulsan College of Medicine, 88, Olympic-ro 43-gil, Songpa-gu, Seoul, 05505, Korea.
| | - Woo Jin Lee
- Department of Dermatology, Asan Medical Center, University of Ulsan College of Medicine, 88, Olympic-ro 43-gil, Songpa-gu, Seoul, 05505, Korea.
| |
Collapse
|
218
|
Jia Y, Liu L, Shan B. Future of immune checkpoint inhibitors: focus on tumor immune microenvironment. ANNALS OF TRANSLATIONAL MEDICINE 2020; 8:1095. [PMID: 33145314 PMCID: PMC7575936 DOI: 10.21037/atm-20-3735] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Immunotherapy has become a powerful clinical strategy in cancer treatment. Immune checkpoint inhibitors (ICIs) have opened a new era for cancer immunotherapy. Nowadays, the number of immunotherapy drug approvals has increased, with numerous treatment options in clinical and preclinical development. However, there remain some obstacles to improve the efficacy of ICIs further. The tumor immune microenvironment (TIME) consists of cancer cell, immune cells and cytokines, et cetera. The dynamics of TIME determine the efficacies of ICIs. Although the ICIs showed manageable toxicity, immune-related adverse effects (irAEs) are still unignorable for clinicians. Since some primary resistance mechanisms exist in TIME, ICIs can only show effects in individual cancer patients. Even for the patients who responded, acquired resistance will occur to neutralize the effect of ICIs. Understanding how to increase the response rates and overcome the resistance to various classes of ICIs is the key to improving clinical efficacy. Besides the novel ICIs in development, there are some approaches to establish combination therapies are underway to improve further the efficacies of ICIs in treating cancer patients. Here, we describe the complicated TIME and state quo of ICIs to prospect the future of ICIs in cancer treatment.
Collapse
Affiliation(s)
- Yunlong Jia
- Department of Tumor Immunotherapy, Fourth Hospital of Hebei Medical University, Shijiazhuang, China.,Hebei Cancer Institute, Fourth Hospital of Hebei Medical University, Shijiazhuang, China
| | - Lihua Liu
- Department of Tumor Immunotherapy, Fourth Hospital of Hebei Medical University, Shijiazhuang, China.,Hebei Cancer Institute, Fourth Hospital of Hebei Medical University, Shijiazhuang, China
| | - Baoen Shan
- Hebei Cancer Institute, Fourth Hospital of Hebei Medical University, Shijiazhuang, China.,Research Center, Fourth Hospital of Hebei Medical University, Shijiazhuang, China
| |
Collapse
|
219
|
Tham EL, Freeley SJ, Bearder S, Barros FF, Cragg MS, Mócsai A, Robson MG. VISTA deficiency protects from immune complex-mediated glomerulonephritis by inhibiting neutrophil activation. J Autoimmun 2020; 113:102501. [PMID: 32586651 DOI: 10.1016/j.jaut.2020.102501] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2020] [Revised: 05/19/2020] [Accepted: 05/31/2020] [Indexed: 11/23/2022]
Abstract
V-type immunoglobulin domain-containing suppressor of T-cell activation (VISTA) is a negative checkpoint regulator of T cells. We assessed VISTA deficient mice in the murine nephrotoxic nephritis models of acute and chronic immune-complex mediated glomerulonephritis. We show that VISTA deficiency protects from crescentic glomerulonephritis, with no effect on the nephritogenic adaptive immune response. The early neutrophil influx was unaffected but proteinuria was reduced suggesting a reduction in neutrophil activation. In vivo, there was reduced neutrophil degranulation in VISTA deficienct mice and, in vitro, VISTA-deficient neutrophils had an impaired response to immune complexes but not to fMLP or PMA. Mice with a genetic deficiency of neutrophils due to myeloid-specific deletion of myeloid cell leukemia 1 (Mcl-1) were also protected from crescentic glomerulonephritis, indicating an essential role for neutrophils. Therefore, VISTA deficiency inhibits neutrophil activation by immune complexes and neutrophil-dependent crescentic glomerulonephritis. This suggests that VISTA is a therapeutic target for inflammatory disease. However, this would need to be balanced against a potential enhancing effect on autoimmunity.
Collapse
Affiliation(s)
- El Li Tham
- Department of Inflammation Biology, School of Immunology and Microbial Sciences, King's College London, United Kingdom
| | - Simon J Freeley
- Department of Inflammation Biology, School of Immunology and Microbial Sciences, King's College London, United Kingdom
| | - Siobhan Bearder
- Department of Inflammation Biology, School of Immunology and Microbial Sciences, King's College London, United Kingdom
| | - Fernanda Florez Barros
- Department of Inflammation Biology, School of Immunology and Microbial Sciences, King's College London, United Kingdom
| | - Mark S Cragg
- Antibody and Vaccine Group, Cancer Sciences Unit, Faculty of Medicine, University of Southampton, United Kingdom
| | - Attila Mócsai
- Department of Physiology, Semmelweis University, School of Medicine, Budapest, Hungary
| | - Michael G Robson
- Department of Inflammation Biology, School of Immunology and Microbial Sciences, King's College London, United Kingdom.
| |
Collapse
|
220
|
Abdou Y, Pandey M, Sarma M, Shah S, Baron J, Ernstoff MS. Mechanism-based treatment of cancer with immune checkpoint inhibitor therapies. Br J Clin Pharmacol 2020; 86:1690-1702. [PMID: 32323342 PMCID: PMC8176998 DOI: 10.1111/bcp.14316] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2019] [Revised: 03/25/2020] [Accepted: 04/05/2020] [Indexed: 12/12/2022] Open
Abstract
Immune checkpoints are cell surface molecules that initiate regulatory pathways which have powerful control of CD8+ cytolytic T cell activity. Antagonistic and agonistic antibodies engaging these molecules have demonstrated profound impact on immune activation and have entered clinical use for the treatment of a variety of diseases. Over the past decade, antagonistic antibodies known as immune checkpoint inhibitors have become a new pillar of cancer treatment and have reshaped the therapeutic landscape in oncology. These agents differ in their mechanism of action and toxicity profiles compared to more traditional systemic cancer treatments such as chemo- and targeted therapies. This article reviews the pharmacology of this new class of agents.
Collapse
Affiliation(s)
- Yara Abdou
- Department of MedicineRoswell Park Comprehensive Cancer CenterBuffaloNew York
| | - Manu Pandey
- Department of MedicineRoswell Park Comprehensive Cancer CenterBuffaloNew York
| | - Maithreyi Sarma
- Department of MedicineRoswell Park Comprehensive Cancer CenterBuffaloNew York
| | - Shrunjal Shah
- Department of MedicineRoswell Park Comprehensive Cancer CenterBuffaloNew York
| | - Jeffrey Baron
- Department of PharmacyRoswell Park Comprehensive Cancer CenterBuffaloNew York
| | - Marc S. Ernstoff
- Department of MedicineRoswell Park Comprehensive Cancer CenterBuffaloNew York
| |
Collapse
|
221
|
Zeng D, Long H, Zhu B. Antitumor effects of targeting myeloid-derived suppressive cells. Transl Cancer Res 2020; 9:5787-5797. [PMID: 35117939 PMCID: PMC8798346 DOI: 10.21037/tcr.2020.01.52] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2019] [Accepted: 01/02/2020] [Indexed: 01/13/2023]
Abstract
Myeloid-derived suppressor cells (MDSCs) are a heterogeneous population of immature myeloid cells with major regulatory functions, which are expanded in pathological conditions, including cancers, infections and autoimmune diseases. Evidence has identified MDSCs as critical cells driving immune suppression in tumor microenvironments. Treatments targeting MDSCs have shown promising results in preclinical studies and some clinical trials. In this review, we discuss therapeutic approaches targeting MDSCs, which may benefit future study.
Collapse
Affiliation(s)
- Dong Zeng
- Institute of Cancer, Xinqiao Hospital, Army Medical University, Chongqing, China
| | - Haixia Long
- Institute of Cancer, Xinqiao Hospital, Army Medical University, Chongqing, China
| | - Bo Zhu
- Institute of Cancer, Xinqiao Hospital, Army Medical University, Chongqing, China
| |
Collapse
|
222
|
Exploring the VISTA of microglia: immune checkpoints in CNS inflammation. J Mol Med (Berl) 2020; 98:1415-1430. [PMID: 32856125 PMCID: PMC7525281 DOI: 10.1007/s00109-020-01968-x] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2020] [Revised: 08/13/2020] [Accepted: 08/17/2020] [Indexed: 12/21/2022]
Abstract
Negative checkpoint regulators (NCR) are intensely pursued as targets to modulate the immune response in cancer and autoimmunity. A large variety of NCR is expressed by central nervous system (CNS)-resident cell types and is associated with CNS homeostasis, interactions with peripheral immunity and CNS inflammation and disease. Immunotherapy blocking NCR affects the CNS as patients can develop neurological issues including encephalitis and multiple sclerosis (MS). How these treatments affect the CNS is incompletely understood, since expression and function of NCR in the CNS are only beginning to be unravelled. V-type immunoglobulin-like suppressor of T cell activation (VISTA) is an NCR that is expressed primarily in the haematopoietic system by myeloid and T cells. VISTA regulates T cell quiescence and activation and has a variety of functions in myeloid cells including efferocytosis, cytokine response and chemotaxis. In the CNS, VISTA is predominantly expressed by microglia and macrophages of the CNS. In this review, we summarize the role of NCR in the CNS during health and disease. We highlight expression of VISTA across cell types and CNS diseases and discuss the function of VISTA in microglia and during CNS ageing, inflammation and neurodegeneration. Understanding the role of VISTA and other NCR in the CNS is important considering the adverse effects of immunotherapy on the CNS, and in view of their therapeutic potential in CNS disease.
Collapse
|
223
|
Haibe Y, El Husseini Z, El Sayed R, Shamseddine A. Resisting Resistance to Immune Checkpoint Therapy: A Systematic Review. Int J Mol Sci 2020; 21:E6176. [PMID: 32867025 PMCID: PMC7504220 DOI: 10.3390/ijms21176176] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2020] [Revised: 07/11/2020] [Accepted: 07/12/2020] [Indexed: 12/14/2022] Open
Abstract
The treatment landscape in oncology has witnessed a major revolution with the introduction of checkpoint inhibitors: anti-PD1, anti-PDL1 and anti-CTLA-4. These agents enhance the immune response towards cancer cells instead of targeting the tumor itself, contrary to standard chemotherapy. Although long-lasting durable responses have been observed with immune checkpoints inhibitors, the response rate remains relatively low in many cases. Some patients respond in the beginning but then eventually develop acquired resistance to treatment and progress. Other patients having primary resistance never respond. Multiple studies have been conducted to further elucidate these variations in response in different tumor types and different individuals. This paper provides an overview of the mechanisms of resistance to immune checkpoint inhibitors and highlights the possible therapeutic approaches under investigation aiming to overcome such resistance in order to improve the clinical outcomes of cancer patients.
Collapse
Affiliation(s)
| | | | | | - Ali Shamseddine
- Division of Hematology/Oncology, Department of Internal Medicine, American University of Beirut-Medical Center, Beirut 11-0236, Lebanon; (Y.H.); (Z.E.H.); (R.E.S.)
| |
Collapse
|
224
|
Chen W, Yuan Y, Jiang X. Antibody and antibody fragments for cancer immunotherapy. J Control Release 2020; 328:395-406. [PMID: 32853733 DOI: 10.1016/j.jconrel.2020.08.021] [Citation(s) in RCA: 57] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2020] [Revised: 08/13/2020] [Accepted: 08/14/2020] [Indexed: 02/07/2023]
Abstract
Antibody has become the most rapidly expanding class of pharmaceuticals for treating a wide variety of human diseases including cancers. Especially, with the fast development of cancer immunotherapy, antibody drugs have become the most promising therapeutic for curing cancers. Immune-mediated cell killing by antibodies including antibody-dependent cellular cytotoxicity (ADCC), antibody-dependent cell phagocytosis (ADCP) and complement-dependent cytotoxicity (CDC) as well as regulation of T cell function through immune checkpoint blockade. Due to the absence of Fc fragment, antibody fragments including single-chain variable fragments (scFvs) and single-domain antibodies (sdAds) are mainly applied in chimeric antigen receptors (CAR) T cell therapy for redirecting T cells to tumors and T cell activation by immune checkpoint blockade. In this review, the cancer immunity is first discussed. Then the principal mechanisms of antibody-based immunotherapy will be reviewed. Next, the antibody and antibody fragments applied for cancer immunotherapy will be summarized. Bispecific and multispecific antibodies and a combination of cancer immunotherapy with other tumor treatments will also be mentioned. Finally, an outlook and perspective of antibody-based cancer immunotherapy will be given. This review would provide a comprehensive guidance for the researchers who are interested in and intended to involve in the antibodies- or antibody fragments-based tumor immunity.
Collapse
Affiliation(s)
- Weizhi Chen
- MOE Key Laboratory of High Performance Polymer Materials and Technology, Department of Polymer Science & Engineering, College of Chemistry & Chemical Engineering, Jiangsu Key Laboratory for Nanotechnology, Nanjing University, Nanjing 210093, PR China
| | - Yang Yuan
- MOE Key Laboratory of High Performance Polymer Materials and Technology, Department of Polymer Science & Engineering, College of Chemistry & Chemical Engineering, Jiangsu Key Laboratory for Nanotechnology, Nanjing University, Nanjing 210093, PR China
| | - Xiqun Jiang
- MOE Key Laboratory of High Performance Polymer Materials and Technology, Department of Polymer Science & Engineering, College of Chemistry & Chemical Engineering, Jiangsu Key Laboratory for Nanotechnology, Nanjing University, Nanjing 210093, PR China.
| |
Collapse
|
225
|
Mazloom A, Ghalehsari N, Gazivoda V, Nimkar N, Paul S, Gregos P, Rateshwar J, Khan U. Role of Immune Checkpoint Inhibitors in Gastrointestinal Malignancies. J Clin Med 2020; 9:E2533. [PMID: 32781500 PMCID: PMC7463795 DOI: 10.3390/jcm9082533] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Revised: 07/28/2020] [Accepted: 07/31/2020] [Indexed: 12/24/2022] Open
Abstract
Immune checkpoint inhibitors (ICIs) have revolutionized the treatment of several solid and hematological malignancies. ICIs are not only able to produce long and durable responses, but also very well tolerated by patients. There are several approved indications of use of ICIs in treatment of metastatic gastrointestinal malignancies including gastric, esophageal, colorectal and hepatocellular carcinoma. In addition, ICIs can be used in microsatellite instability-high (MSI-H) and high tumor mutational burden (TMB) tumors in chemotherapy-resistant setting. Despite having good efficacy and superior safety profile, ICIs are clinically active in small subset of patients, therefore, there is a huge unmet need to enhance their efficacy and discover new predictive biomarkers. There are several ongoing clinical trials that are exploring the role of ICIs in various gastrointestinal cancers either as single agent or in combination with chemotherapy, radiation therapy, targeted agents or other immunotherapeutic agents. In this review, we discuss the published and ongoing trials for ICIs in gastrointestinal malignancies, including esophageal, gastric cancer, pancreatic, hepatocellular, biliary tract, colorectal and anal cancers. Specifically, we focus on the use of ICIs in each line of therapy and discuss the future directions of these agents in each type of gastrointestinal cancer.
Collapse
Affiliation(s)
- Anita Mazloom
- Department of Medicine, NewYork-Presbyterian Brooklyn Methodist Hospital—Weill Cornell Medicine, Brooklyn, NY 11215, USA; (A.M.); (N.G.); (N.N.); (S.P.); (P.G.); (J.R.)
| | - Nima Ghalehsari
- Department of Medicine, NewYork-Presbyterian Brooklyn Methodist Hospital—Weill Cornell Medicine, Brooklyn, NY 11215, USA; (A.M.); (N.G.); (N.N.); (S.P.); (P.G.); (J.R.)
| | - Victor Gazivoda
- Department of Surgery, Maimonides Medical Center, Brooklyn, NY 11219, USA;
| | - Neil Nimkar
- Department of Medicine, NewYork-Presbyterian Brooklyn Methodist Hospital—Weill Cornell Medicine, Brooklyn, NY 11215, USA; (A.M.); (N.G.); (N.N.); (S.P.); (P.G.); (J.R.)
| | - Sonal Paul
- Department of Medicine, NewYork-Presbyterian Brooklyn Methodist Hospital—Weill Cornell Medicine, Brooklyn, NY 11215, USA; (A.M.); (N.G.); (N.N.); (S.P.); (P.G.); (J.R.)
| | - Peter Gregos
- Department of Medicine, NewYork-Presbyterian Brooklyn Methodist Hospital—Weill Cornell Medicine, Brooklyn, NY 11215, USA; (A.M.); (N.G.); (N.N.); (S.P.); (P.G.); (J.R.)
| | - Janice Rateshwar
- Department of Medicine, NewYork-Presbyterian Brooklyn Methodist Hospital—Weill Cornell Medicine, Brooklyn, NY 11215, USA; (A.M.); (N.G.); (N.N.); (S.P.); (P.G.); (J.R.)
| | - Uqba Khan
- Department of Medicine, NewYork-Presbyterian Brooklyn Methodist Hospital—Weill Cornell Medicine, Brooklyn, NY 11215, USA; (A.M.); (N.G.); (N.N.); (S.P.); (P.G.); (J.R.)
| |
Collapse
|
226
|
D'Arrigo P, Tufano M, Rea A, Vigorito V, Novizio N, Russo S, Romano MF, Romano S. Manipulation of the Immune System for Cancer Defeat: A Focus on the T Cell Inhibitory Checkpoint Molecules. Curr Med Chem 2020; 27:2402-2448. [PMID: 30398102 DOI: 10.2174/0929867325666181106114421] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2018] [Revised: 10/15/2018] [Accepted: 10/24/2018] [Indexed: 12/19/2022]
Abstract
The immune system actively counteracts the tumorigenesis process; a breakout of the immune system function, or its ability to recognize transformed cells, can favor cancer development. Cancer becomes able to escape from immune system control by using multiple mechanisms, which are only in part known at a cellular and molecular level. Among these mechanisms, in the last decade, the role played by the so-called "inhibitory immune checkpoints" is emerging as pivotal in preventing the tumor attack by the immune system. Physiologically, the inhibitory immune checkpoints work to maintain the self-tolerance and attenuate the tissue injury caused by pathogenic infections. Cancer cell exploits such immune-inhibitory molecules to contrast the immune intervention and induce tumor tolerance. Molecular agents that target these checkpoints represent the new frontier for cancer treatment. Despite the heterogeneity and multiplicity of molecular alterations among the tumors, the immune checkpoint targeted therapy has been shown to be helpful in selected and even histologically different types of cancer, and are currently being adopted against an increasing variety of tumors. The most frequently used is the moAb-based immunotherapy that targets the Programmed Cell Death 1 protein (PD-1), the PD-1 Ligand (PD-L1) or the cytotoxic T lymphocyte antigen-4 (CTLA4). However, new therapeutic approaches are currently in development, along with the discovery of new immune checkpoints exploited by the cancer cell. This article aims to review the inhibitory checkpoints, which are known up to now, along with the mechanisms of cancer immunoediting. An outline of the immune checkpoint targeting approaches, also including combined immunotherapies and the existing trials, is also provided. Notwithstanding the great efforts devoted by researchers in the field of biomarkers of response, to date, no validated FDA-approved immunological biomarkers exist for cancer patients. We highlight relevant studies on predictive biomarkers and attempt to discuss the challenges in this field, due to the complex and largely unknown dynamic mechanisms that drive the tumor immune tolerance.
Collapse
Affiliation(s)
- Paolo D'Arrigo
- Department of Molecular Medicine and Medical Biotechnology, University of Naples Federico II, Naples, Italy
| | - Martina Tufano
- Department of Molecular Medicine and Medical Biotechnology, University of Naples Federico II, Naples, Italy
| | - Anna Rea
- Department of Molecular Medicine and Medical Biotechnology, University of Naples Federico II, Naples, Italy
| | - Vincenza Vigorito
- Department of Molecular Medicine and Medical Biotechnology, University of Naples Federico II, Naples, Italy
| | - Nunzia Novizio
- Department of Molecular Medicine and Medical Biotechnology, University of Naples Federico II, Naples, Italy
| | - Salvatore Russo
- Department of Molecular Medicine and Medical Biotechnology, University of Naples Federico II, Naples, Italy
| | - Maria Fiammetta Romano
- Department of Molecular Medicine and Medical Biotechnology, University of Naples Federico II, Naples, Italy
| | - Simona Romano
- Department of Molecular Medicine and Medical Biotechnology, University of Naples Federico II, Naples, Italy
| |
Collapse
|
227
|
Nsingwane Z, Candy G, Devar J, Omoshoro-Jones J, Smith M, Nweke E. Immunotherapeutic strategies in pancreatic ductal adenocarcinoma (PDAC): current perspectives and future prospects. Mol Biol Rep 2020; 47:6269-6280. [PMID: 32661873 DOI: 10.1007/s11033-020-05648-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2020] [Accepted: 07/08/2020] [Indexed: 01/08/2023]
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is among the deadliest human malignancies with a dismal prognosis. During PDAC progression, the immune response is affected as cancer cells evade detection and elimination. Recently, there have been advances in the treatment of PDAC using immunotherapy, although a lot more work is yet to be done. In this review, we discuss these advances, challenges and potentials. We focus on existing and potential immune targets for PDAC, drugs used to target them, and some clinical trials conducted so far with them. Finally, novel targets in the tumour microenvironment such as stromal cells and other potential future areas to explore including bacterial therapy and the use of neoantigens in immunotherapy are highlighted.
Collapse
Affiliation(s)
- Zanele Nsingwane
- Department of Surgery, Faculty of Health Sciences, University of Witwatersrand, 7 York Road, Parktown, Johannesburg, 2193, South Africa.
| | - Geoffrey Candy
- Department of Surgery, Faculty of Health Sciences, University of Witwatersrand, 7 York Road, Parktown, Johannesburg, 2193, South Africa
| | - John Devar
- Department of Surgery, Faculty of Health Sciences, University of Witwatersrand, 7 York Road, Parktown, Johannesburg, 2193, South Africa
| | - Jones Omoshoro-Jones
- Department of Surgery, Faculty of Health Sciences, University of Witwatersrand, 7 York Road, Parktown, Johannesburg, 2193, South Africa
| | - Martin Smith
- Department of Surgery, Faculty of Health Sciences, University of Witwatersrand, 7 York Road, Parktown, Johannesburg, 2193, South Africa
| | - Ekene Nweke
- Department of Surgery, Faculty of Health Sciences, University of Witwatersrand, 7 York Road, Parktown, Johannesburg, 2193, South Africa
| |
Collapse
|
228
|
FoxP3 + T regulatory cells in cancer: Prognostic biomarkers and therapeutic targets. Cancer Lett 2020; 490:174-185. [PMID: 32721551 DOI: 10.1016/j.canlet.2020.07.022] [Citation(s) in RCA: 207] [Impact Index Per Article: 41.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2020] [Revised: 06/28/2020] [Accepted: 07/16/2020] [Indexed: 12/19/2022]
Abstract
T Regulatory cells (Tregs) can have both protective and pathological roles. They maintain immune homeostasis and inhibit immune responses in various diseases, including cancer. Proportions of Tregs in the peripheral blood of some cancer patients increase by approximately two-fold, compared to those in healthy individuals. Tregs contribute to cancer development and progression by suppressing T effector cell functions, thereby compromising tumor killing and promoting tumor growth. Highly immunosuppressive Tregs express upregulated levels of the transcription factor, Forkhead box protein P3 (FoxP3). Elevated levels of FoxP3+ Tregs within the tumor microenvironment (TME) showed a positive correlation with poor prognosis in various cancer patients. Despite the success of immunotherapy, including the use of immune checkpoint inhibitors, a significant proportion of patients show low response rates as a result of primary or acquired resistance against therapy. Some of the mechanisms which underlie the development of therapy resistance are associated with Treg suppressive function. In this review, we describe Treg contribution to cancer development/progression, and the mechanisms of Treg-mediated immunosuppression. We discuss the prognostic significance of FoxP3+ Tregs in different cancers and their potential use as prognostic biomarkers. We also describe potential therapeutic strategies to target Tregs in combination with other types of immunotherapies aiming to overcome tumor resistance and improve clinical outcomes in cancer patients. Overall, understanding the prognostic significance of FoxP3+ Tregs in various cancers and their contribution to therapy resistance could help in the development of more effective targeted therapeutic strategies to enhance the clinical outcomes in cancer patients.
Collapse
|
229
|
Rocco D, Gregorc V, Della Gravara L, Lazzari C, Palazzolo G, Gridelli C. New immunotherapeutic drugs in advanced non-small cell lung cancer (NSCLC): from preclinical to phase I clinical trials. Expert Opin Investig Drugs 2020; 29:1005-1023. [PMID: 32643447 DOI: 10.1080/13543784.2020.1793956] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
INTRODUCTION The development of immune checkpoint inhibitors (ICI) has represented a revolution in the treatment of non-small cell lung cancer (NSCLC) and has established a new standard of care for different settings. However, through adaptive changes, cancer cells can develop resistance mechanisms to these drugs, hence the necessity for novel immunotherapeutic agents. AREAS COVERED This paper explores the immunotherapeutics currently under investigation in phase I clinical trials for the treatment of NSCLC as monotherapies and combination therapies. It provides two comprehensive tables of phase I agents which are listed according to target, drug, drug class, mechanism of action, setting, trial identifier, and trial status. A comprehensive literature search was carried out to identify eligible studies from MEDLINE/PubMed and ClinicalTrials.gov. EXPERT OPINION A key hurdle to success in this field is our limited understanding of the synergic interactions of the immune targets in the context of the TME. While we can recognize the links between inhibitors and some particularly promising new targets such as TIM-3 and LAG3, we continue to develop approaches to exploit their interactions to enhance the immune response of the patient to tumor cells.
Collapse
Affiliation(s)
- Danilo Rocco
- Department of Pulmonary Oncology, AORN Dei Colli Monaldi , Naples, Italy
| | - Vanesa Gregorc
- Department of Oncology, Division of Experimental Medicine, IRCCS San Raffaele , Milan, Italy
| | - Luigi Della Gravara
- Department of Experimental Medicine, Università Degli Studi Della Campania "Luigi Vanvitelli" , Caserta, Italy
| | - Chiara Lazzari
- Department of Oncology, Division of Experimental Medicine, IRCCS San Raffaele , Milan, Italy
| | | | - Cesare Gridelli
- Division of Medical Oncology, "S.G. Moscati" Hospital , Avellino, Italy
| |
Collapse
|
230
|
Barbari C, Fontaine T, Parajuli P, Lamichhane N, Jakubski S, Lamichhane P, Deshmukh RR. Immunotherapies and Combination Strategies for Immuno-Oncology. Int J Mol Sci 2020; 21:E5009. [PMID: 32679922 PMCID: PMC7404041 DOI: 10.3390/ijms21145009] [Citation(s) in RCA: 55] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2020] [Revised: 07/10/2020] [Accepted: 07/13/2020] [Indexed: 12/15/2022] Open
Abstract
The advent of novel immunotherapies in the treatment of cancers has dramatically changed the landscape of the oncology field. Recent developments in checkpoint inhibition therapies, tumor-infiltrating lymphocyte therapies, chimeric antigen receptor T cell therapies, and cancer vaccines have shown immense promise for significant advancements in cancer treatments. Immunotherapies act on distinct steps of immune response to augment the body's natural ability to recognize, target, and destroy cancerous cells. Combination treatments with immunotherapies and other modalities intend to activate immune response, decrease immunosuppression, and target signaling and resistance pathways to offer a more durable, long-lasting treatment compared to traditional therapies and immunotherapies as monotherapies for cancers. This review aims to briefly describe the rationale, mechanisms of action, and clinical efficacy of common immunotherapies and highlight promising combination strategies currently approved or under clinical development. Additionally, we will discuss the benefits and limitations of these immunotherapy approaches as monotherapies as well as in combination with other treatments.
Collapse
Affiliation(s)
- Cody Barbari
- OMS Students, School of Osteopathic Medicine, Lake Erie College of Osteopathic Medicine (LECOM), 5000 Lakewood Ranch Blvd, Bradenton, FL 34211, USA; (C.B.); (T.F.)
| | - Tyler Fontaine
- OMS Students, School of Osteopathic Medicine, Lake Erie College of Osteopathic Medicine (LECOM), 5000 Lakewood Ranch Blvd, Bradenton, FL 34211, USA; (C.B.); (T.F.)
| | - Priyanka Parajuli
- Department of Internal Medicine, Southern Illinois University, Springfield, IL 62702, USA;
| | - Narottam Lamichhane
- Department of Radiation Oncology, University of Maryland, School of Medicine, Baltimore, MD 21201, USA;
| | - Silvia Jakubski
- Department of Biostatistics, University of Florida, Gainesville, FL 32611, USA;
| | - Purushottam Lamichhane
- School of Dental Medicine, Lake Erie College of Osteopathic Medicine (LECOM), 4800 Lakewood Ranch Blvd, Bradenton, FL 34211, USA
| | - Rahul R. Deshmukh
- School of Pharmacy, Lake Erie College of Osteopathic Medicine (LECOM), 5000 Lakewood Ranch Blvd, Bradenton, FL 34211, USA
| |
Collapse
|
231
|
Harnessing the Complete Repertoire of Conventional Dendritic Cell Functions for Cancer Immunotherapy. Pharmaceutics 2020; 12:pharmaceutics12070663. [PMID: 32674488 PMCID: PMC7408110 DOI: 10.3390/pharmaceutics12070663] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2020] [Revised: 06/29/2020] [Accepted: 07/04/2020] [Indexed: 02/07/2023] Open
Abstract
The onset of checkpoint inhibition revolutionized the treatment of cancer. However, studies from the last decade suggested that the sole enhancement of T cell functionality might not suffice to fight malignancies in all individuals. Dendritic cells (DCs) are not only part of the innate immune system, but also generals of adaptive immunity and they orchestrate the de novo induction of tolerogenic and immunogenic T cell responses. Thus, combinatorial approaches addressing DCs and T cells in parallel represent an attractive strategy to achieve higher response rates across patients. However, this requires profound knowledge about the dynamic interplay of DCs, T cells, other immune and tumor cells. Here, we summarize the DC subsets present in mice and men and highlight conserved and divergent characteristics between different subsets and species. Thereby, we supply a resource of the molecular players involved in key functional features of DCs ranging from their sentinel function, the translation of the sensed environment at the DC:T cell interface to the resulting specialized T cell effector modules, as well as the influence of the tumor microenvironment on the DC function. As of today, mostly monocyte derived dendritic cells (moDCs) are used in autologous cell therapies after tumor antigen loading. While showing encouraging results in a fraction of patients, the overall clinical response rate is still not optimal. By disentangling the general aspects of DC biology, we provide rationales for the design of next generation DC vaccines enabling to exploit and manipulate the described pathways for the purpose of cancer immunotherapy in vivo. Finally, we discuss how DC-based vaccines might synergize with checkpoint inhibition in the treatment of malignant diseases.
Collapse
|
232
|
Vigano S, Bobisse S, Coukos G, Perreau M, Harari A. Cancer and HIV-1 Infection: Patterns of Chronic Antigen Exposure. Front Immunol 2020; 11:1350. [PMID: 32714330 PMCID: PMC7344140 DOI: 10.3389/fimmu.2020.01350] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2020] [Accepted: 05/27/2020] [Indexed: 12/14/2022] Open
Abstract
The main role of the human immune system is to eliminate cells presenting foreign antigens and abnormal patterns, while maintaining self-tolerance. However, when facing highly variable pathogens or antigens very similar to self-antigens, this system can fail in completely eliminating the anomalies, leading to the establishment of chronic pathologies. Prototypical examples of immune system defeat are cancer and Human Immunodeficiency Virus-1 (HIV-1) infection. In both conditions, the immune system is persistently exposed to antigens leading to systemic inflammation, lack of generation of long-term memory and exhaustion of effector cells. This triggers a negative feedback loop where effector cells are unable to resolve the pathology and cannot be replaced due to the lack of a pool of undifferentiated, self-renewing memory T cells. In addition, in an attempt to reduce tissue damage due to chronic inflammation, antigen presenting cells and myeloid components of the immune system activate systemic regulatory and tolerogenic programs. Beside these homologies shared between cancer and HIV-1 infection, the immune system can be shaped differently depending on the type and distribution of the eliciting antigens with ultimate consequences at the phenotypic and functional level of immune exhaustion. T cell differentiation, functionality, cytotoxic potential and proliferation reserve, immune-cell polarization, upregulation of negative regulators (immune checkpoint molecules) are indeed directly linked to the quantitative and qualitative differences in priming and recalling conditions. Better understanding of distinct mechanisms and functional consequences underlying disease-specific immune cell dysfunction will contribute to further improve and personalize immunotherapy. In the present review, we describe relevant players of immune cell exhaustion in cancer and HIV-1 infection, and enumerate the best-defined hallmarks of T cell dysfunction. Moreover, we highlight shared and divergent aspects of T cell exhaustion and T cell activation to the best of current knowledge.
Collapse
Affiliation(s)
- Selena Vigano
- Ludwig Institute for Cancer Research, University of Lausanne and Department of Oncology, University Hospital of Lausanne, Lausanne, Switzerland
| | - Sara Bobisse
- Ludwig Institute for Cancer Research, University of Lausanne and Department of Oncology, University Hospital of Lausanne, Lausanne, Switzerland
| | - George Coukos
- Ludwig Institute for Cancer Research, University of Lausanne and Department of Oncology, University Hospital of Lausanne, Lausanne, Switzerland
| | - Matthieu Perreau
- Service of Immunology and Allergy, University Hospital of Lausanne, Lausanne, Switzerland
| | - Alexandre Harari
- Ludwig Institute for Cancer Research, University of Lausanne and Department of Oncology, University Hospital of Lausanne, Lausanne, Switzerland
| |
Collapse
|
233
|
Huang X, Zhang X, Li E, Zhang G, Wang X, Tang T, Bai X, Liang T. VISTA: an immune regulatory protein checking tumor and immune cells in cancer immunotherapy. J Hematol Oncol 2020; 13:83. [PMID: 32600443 PMCID: PMC7325042 DOI: 10.1186/s13045-020-00917-y] [Citation(s) in RCA: 150] [Impact Index Per Article: 30.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2020] [Accepted: 06/16/2020] [Indexed: 12/14/2022] Open
Abstract
VISTA (V-domain immunoglobulin suppressor of T cell activation) is a well-established immune regulatory receptor. However, pre-clinical investigations indicated more complicated influences of VISTA on cancer immunity than previously recognized. Here, we review the current knowledge on the therapeutic phenotypes and molecular mechanisms that underlie the contradictory roles of VISTA in checking anti-cancer immune responses. Furthermore, we highlight the potential indeterminacy of VISTA-targeted strategies in cancer immunotherapy, with in silico analyses. In fact, VISTA functions like a homeostatic regulator that actively normalizes immune responses. Thus, the regulatory role of VISTA in anti-cancer immunity remains to be fully elucidated.
Collapse
Affiliation(s)
- Xing Huang
- Zhejiang Provincial Key Laboratory of Pancreatic Disease, the First Affiliated Hospital, School of Medicine, Zhejiang University, 79 Qingchun Road, Hangzhou, 310003, Zhejiang, China.
- Department of Hepatobiliary and Pancreatic Surgery, the First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, 310003, Zhejiang, China.
- Innovation Center for the Study of Pancreatic Diseases of Zhejiang Province, Hangzhou, 310003, Zhejiang, China.
| | - Xiaozhen Zhang
- Zhejiang Provincial Key Laboratory of Pancreatic Disease, the First Affiliated Hospital, School of Medicine, Zhejiang University, 79 Qingchun Road, Hangzhou, 310003, Zhejiang, China
- Department of Hepatobiliary and Pancreatic Surgery, the First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, 310003, Zhejiang, China
- Innovation Center for the Study of Pancreatic Diseases of Zhejiang Province, Hangzhou, 310003, Zhejiang, China
| | - Enliang Li
- Zhejiang Provincial Key Laboratory of Pancreatic Disease, the First Affiliated Hospital, School of Medicine, Zhejiang University, 79 Qingchun Road, Hangzhou, 310003, Zhejiang, China
- Department of Hepatobiliary and Pancreatic Surgery, the First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, 310003, Zhejiang, China
- Innovation Center for the Study of Pancreatic Diseases of Zhejiang Province, Hangzhou, 310003, Zhejiang, China
| | - Gang Zhang
- Zhejiang Provincial Key Laboratory of Pancreatic Disease, the First Affiliated Hospital, School of Medicine, Zhejiang University, 79 Qingchun Road, Hangzhou, 310003, Zhejiang, China
- Department of Hepatobiliary and Pancreatic Surgery, the First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, 310003, Zhejiang, China
- Innovation Center for the Study of Pancreatic Diseases of Zhejiang Province, Hangzhou, 310003, Zhejiang, China
| | - Xun Wang
- Zhejiang Provincial Key Laboratory of Pancreatic Disease, the First Affiliated Hospital, School of Medicine, Zhejiang University, 79 Qingchun Road, Hangzhou, 310003, Zhejiang, China
- Department of Hepatobiliary and Pancreatic Surgery, the First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, 310003, Zhejiang, China
- Innovation Center for the Study of Pancreatic Diseases of Zhejiang Province, Hangzhou, 310003, Zhejiang, China
| | - Tianyu Tang
- Zhejiang Provincial Key Laboratory of Pancreatic Disease, the First Affiliated Hospital, School of Medicine, Zhejiang University, 79 Qingchun Road, Hangzhou, 310003, Zhejiang, China
- Department of Hepatobiliary and Pancreatic Surgery, the First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, 310003, Zhejiang, China
- Innovation Center for the Study of Pancreatic Diseases of Zhejiang Province, Hangzhou, 310003, Zhejiang, China
| | - Xueli Bai
- Zhejiang Provincial Key Laboratory of Pancreatic Disease, the First Affiliated Hospital, School of Medicine, Zhejiang University, 79 Qingchun Road, Hangzhou, 310003, Zhejiang, China.
- Department of Hepatobiliary and Pancreatic Surgery, the First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, 310003, Zhejiang, China.
- Innovation Center for the Study of Pancreatic Diseases of Zhejiang Province, Hangzhou, 310003, Zhejiang, China.
| | - Tingbo Liang
- Zhejiang Provincial Key Laboratory of Pancreatic Disease, the First Affiliated Hospital, School of Medicine, Zhejiang University, 79 Qingchun Road, Hangzhou, 310003, Zhejiang, China.
- Department of Hepatobiliary and Pancreatic Surgery, the First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, 310003, Zhejiang, China.
- Innovation Center for the Study of Pancreatic Diseases of Zhejiang Province, Hangzhou, 310003, Zhejiang, China.
| |
Collapse
|
234
|
Khosravi N, Mokhtarzadeh A, Baghbanzadeh A, Hajiasgharzadeh K, Shahgoli VK, Hemmat N, Safarzadeh E, Baradaran B. Immune checkpoints in tumor microenvironment and their relevance to the development of cancer stem cells. Life Sci 2020; 256:118005. [PMID: 32593711 DOI: 10.1016/j.lfs.2020.118005] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2020] [Revised: 06/14/2020] [Accepted: 06/22/2020] [Indexed: 02/06/2023]
Abstract
Cancer is the second cause of mortality in the world after cardiovascular disease. Various studies attribute the emergence of therapeutic resistance in tumors to the presence of cancer stem cells or cancer-initiating cells (CSC/CIC). These relatively rare cells because of their typical stemness features, are responsible for tumor cell progression and recurrence. Moreover, CSCs have immunomodulatory capabilities and through orchestrating, some immunological profiles can stay safe from host anticancer immunity, and provide immunotherapy resistance in cancer patients. Many studies have shown that CSCs by producing immune system inhibitory factors and interacting with immune checkpoint molecules like CD47, PDL-1, CTLA4, Tim3, and LAG3, are able to communicate with tumor microenvironment (TME) components and protect cancer cells from immune clearance. In this review, we summarize the CSCs immunological mechanisms and comprehensively discuss interactions between these cells and factors that are present in the TME to repress immune system responses and enhance tumor survival. Therefore, it seems that further studies on this topic will open new doors to improve the therapeutic approaches of malignant cancers.
Collapse
Affiliation(s)
- Neda Khosravi
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Ahad Mokhtarzadeh
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Amir Baghbanzadeh
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | | | - Vahid Khaze Shahgoli
- Department of Cancer and Inflammation Research, Institute for Molecular Medicine, University of Southern Denmark, Odense, Denmark
| | - Nima Hemmat
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Elham Safarzadeh
- Department of Microbiology & Immunology, Faculty of Medicine, Ardabil University of Medical Sciences, Ardabil, Iran.
| | - Behzad Baradaran
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran; Department of Immunology, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran.
| |
Collapse
|
235
|
Chew HY, Dolcetti R, Simpson F. Scientifically based combination therapies with immuno-oncology checkpoint inhibitors. Br J Clin Pharmacol 2020; 86:1711-1725. [PMID: 32372470 DOI: 10.1111/bcp.14338] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2019] [Revised: 04/14/2020] [Accepted: 04/27/2020] [Indexed: 12/20/2022] Open
Abstract
The discovery of immune checkpoints and their role in modulating immune response have revolutionised cancer treatment in recent years. The immune checkpoints, cytotoxic T-lymphocyte-associated protein 4, programmed cell death protein 1 and its ligand, programmed cell death-ligand 1, have been extensively studied. Currently 7 monoclonal antibodies targeting these immune checkpoints are approved for treatment of various cancers. Inhibiting immune checkpoints has shown some success in clinic, however, a proportion of patients do not benefit from this treatment. Several other inhibitory molecules, in addition to lymphocyte-associated protein 4 and programmed cell death protein 1, are known to be involved in regulating immune response. To further improve patient outcomes, studies have examined targeting these inhibitory molecules through combination therapies. This review discusses the current landscape of combination therapies of checkpoint inhibitors.
Collapse
Affiliation(s)
- Hui Yi Chew
- The University of Queensland Diamantina Institute, Brisbane, Queensland, Australia
| | - Riccardo Dolcetti
- The University of Queensland Diamantina Institute, Brisbane, Queensland, Australia
| | - Fiona Simpson
- The University of Queensland Diamantina Institute, Brisbane, Queensland, Australia
| |
Collapse
|
236
|
Mei Z, Huang J, Qiao B, Lam AKY. Immune checkpoint pathways in immunotherapy for head and neck squamous cell carcinoma. Int J Oral Sci 2020; 12:16. [PMID: 32461587 PMCID: PMC7253444 DOI: 10.1038/s41368-020-0084-8] [Citation(s) in RCA: 149] [Impact Index Per Article: 29.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2020] [Revised: 04/17/2020] [Accepted: 04/29/2020] [Indexed: 12/27/2022] Open
Abstract
With the understanding of the complex interaction between the tumour microenvironment and immunotherapy, there is increasing interest in the role of immune regulators in the treatment of head and neck squamous cell carcinoma (HNSCC). Activation of T cells and immune checkpoint molecules is important for the immune response to cancers. Immune checkpoint molecules include cytotoxic T lymphocyte antigen 4 (CTLA-4), programmed death 1 (PD-1), T-cell immunoglobulin mucin protein 3 (TIM-3), lymphocyte activation gene 3 (LAG-3), T cell immunoglobin and immunoreceptor tyrosine-based inhibitory motif (TIGIT), glucocorticoid-induced tumour necrosis factor receptor (GITR) and V-domain Ig suppressor of T cell activation (VISTA). Many clinical trials using checkpoint inhibitors, as both monotherapies and combination therapies, have been initiated targeting these immune checkpoint molecules. This review summarizes the functional mechanism and use of various immune checkpoint molecules in HNSCC, including monotherapies and combination therapies, and provides better treatment options for patients with HNSCC.
Collapse
Affiliation(s)
- Zi Mei
- Department of Oral and Maxillofacial Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Junwen Huang
- Department of Oral and Maxillofacial Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Bin Qiao
- Department of Oral and Maxillofacial Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China.
| | - Alfred King-Yin Lam
- Department of Oral and Maxillofacial Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China.
- Cancer Molecular Pathology and Griffith Medical School, Griffith University, Gold Coast, Queensland, Australia.
| |
Collapse
|
237
|
Puccini A, Battaglin F, Iaia ML, Lenz HJ, Salem ME. Overcoming resistance to anti-PD1 and anti-PD-L1 treatment in gastrointestinal malignancies. J Immunother Cancer 2020; 8:e000404. [PMID: 32393474 PMCID: PMC7223273 DOI: 10.1136/jitc-2019-000404] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/13/2020] [Indexed: 12/14/2022] Open
Abstract
In the last few years, the unprecedented results of immune checkpoint inhibitors have led to a paradigm shift in clinical practice for the treatment of several cancer types. However, the vast majority of patients with gastrointestinal cancer do not benefit from immunotherapy. To date, microsatellite instability high and DNA mismatch repair deficiency are the only robust predictive biomarkers of response to immune checkpoint inhibitors. Unfortunately, these patients comprise only 5%-10% of all gastrointestinal cancers. Several mechanisms of both innate and adaptive resistance to immunotherapy have been recognized that may be at least in part responsible for the failure of immune checkpoint inhibitors in this population of patients. In the first part of this review article, we provide an overview of the main clinical trials with immune checkpoint inhibitors in patients with gastrointestinal cancer and the role of predictive biomarkers. In the second part, we discuss the actual body of knowledge in terms of mechanisms of resistance to immunotherapy and the most promising approach that are currently under investigation in order to expand the population of patients with gastrointestinal cancer who could benefit from immune checkpoint inhibitors.
Collapse
Affiliation(s)
- Alberto Puccini
- University of Genoa, Medical Oncology Unit 1, Ospedale Policlinico San Martino IRCCS, Genova, Italy
- Division of Medical Oncology, Norris Comprehensive Cancer Center, Keck School of Medicine, University of Southern California, Los Angeles, California, USA
| | - Francesca Battaglin
- Division of Medical Oncology, Norris Comprehensive Cancer Center, Keck School of Medicine, University of Southern California, Los Angeles, California, USA
| | - Maria Laura Iaia
- University of Genoa, Medical Oncology Unit 1, Ospedale Policlinico San Martino IRCCS, Genova, Italy
| | - Heinz-Josef Lenz
- Division of Medical Oncology, Norris Comprehensive Cancer Center, Keck School of Medicine, University of Southern California, Los Angeles, California, USA
| | - Mohamed E Salem
- Department of Medical Oncology, Levine Cancer Institute, Atrium Health, Charlotte, North Carolina, USA
| |
Collapse
|
238
|
Han Y, Zhu L, Wu W, Zhang H, Hu W, Dai L, Yang Y. Small Molecular Immune Modulators as Anticancer Agents. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2020; 1248:547-618. [PMID: 32185725 DOI: 10.1007/978-981-15-3266-5_22] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
After decades of intense effort, immune checkpoint inhibitors have been conclusively demonstrated to be effective in cancer treatments and thus are revolutionizing the concepts in the treatment of cancers. Immuno-oncology has arrived and will play a key role in cancer treatment in the foreseeable future. However, efforts to find novel methods to improve the immune response to cancer have not ceased. Small-molecule approaches offer inherent advantages over biologic immunotherapies since they can cross cell membranes, penetrate into tumor tissue and tumor microenvironment more easily, and are amenable to be finely controlled than biological agents, which may help reduce immune-related adverse events seen with biologic therapies and provide more flexibility for the combination use with other therapies and superior clinical benefit. On the one hand, small-molecule therapies can modulate the immune response to cancer by restoring the antitumor immunity, promoting more effective cytotoxic lymphocyte responses, and regulating tumor microenvironment, either directly or epigenetically. On the other hand, the combination of different mechanisms of small molecules with antibodies and other biologics demonstrated admirable synergistic effect in clinical settings for cancer treatment and may expand antibodies' usefulness for broader clinical applications. This chapter provides an overview of small-molecule immunotherapeutic approaches either as monotherapy or in combination for the treatment of cancer.
Collapse
Affiliation(s)
- Yongxin Han
- Lapam Capital LLC., 17C1, Tower 2, Xizhimenwai Street, Xicheng District, Beijing, 100044, China.
| | - Li Zhu
- PrimeGene (Beijing) Co., Ltd., Fengtai District, Beijing, 100070, China
| | - Wei Wu
- PrimeGene (Beijing) Co., Ltd., Fengtai District, Beijing, 100070, China
| | - Hui Zhang
- PrimeGene (Beijing) Co., Ltd., Fengtai District, Beijing, 100070, China
| | - Wei Hu
- PrimeGene (Beijing) Co., Ltd., Fengtai District, Beijing, 100070, China
| | - Liguang Dai
- PrimeGene (Beijing) Co., Ltd., Fengtai District, Beijing, 100070, China
| | - Yanqing Yang
- PrimeGene (Beijing) Co., Ltd., Fengtai District, Beijing, 100070, China
| |
Collapse
|
239
|
Therapeutic Development of Immune Checkpoint Inhibitors. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2020; 1248:619-649. [PMID: 32185726 DOI: 10.1007/978-981-15-3266-5_23] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Immune checkpoint blockade (ICB) has been proven to be an effective strategy for enhancing the effector activity of anti-tumor T cells, and checkpoint blockers targeting CTLA-4, PD-1, and PD-L1 have displayed strong and durable clinical responses in certain cancer patients. The new hope brought by ICB therapy has led to the boost in therapeutic development of ICBs in recent years. Nonetheless, the therapeutic efficacy of ICBs varies substantially among cancer types and patients, and only a proportion of cancer patients could benefit from ICBs. The emerging targets and molecules for enhancing anticancer immunity may bring additional therapeutic opportunities for cancer patients. The current challenges in the ICB therapy have been discussed, aimed to provide further strategies for maximizing the efficacy of ICB therapy.
Collapse
|
240
|
Discovery of New Immune Checkpoints: Family Grows Up. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2020; 1248:61-82. [PMID: 32185707 DOI: 10.1007/978-981-15-3266-5_4] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
The first generation of immune checkpoint inhibitors (ICIs) including anti-CTLA-4 and anti-PD-1/anti-PD-L1 has achieved profound and great success. Till 2019 Q1, there are nine ICIs landing the oncology market: Ipilimumab (anti-CTLA-4, Bristol-Myers Squibb), Nivolumab (anti-PD-1, Bristol-Myers Squibb), Pembrolizumab (anti-PD-1, Merck), Atezolizumab (anti-PD-L1, Roche/Genentech), Durvalumab (anti-PD-L1, Astra Zeneca), Tremelimumab (anti-CTLA-4, Astra Zeneca), Cemiplimab (anti-PD-1, Sanofi/Regeneron), Toripalimab (anti-PD-1, Junshi), and Sintilimab (anti-PD-1, Innovent), which have covered the majority of hematologic and solid malignancies' indication. Beyond the considerable benefits for the patients, frustrated boundary still exists: limited response rate in monotherapy in late-stage population, poor effectiveness in neoplasms with immune desert and immune excluded types, and immune-related toxicities, some are life-threatened and with higher incidence in I-O combination regiment. Moreover, clinicians observed some cases switching to progression after achieving partial or complete response, indicating treatment failure or drug resistance. So people begin looking for the next generation of immune checkpoint members.
Collapse
|
241
|
ElTanbouly MA, Croteau W, Noelle RJ, Lines JL. VISTA: a novel immunotherapy target for normalizing innate and adaptive immunity. Semin Immunol 2020; 42:101308. [PMID: 31604531 DOI: 10.1016/j.smim.2019.101308] [Citation(s) in RCA: 92] [Impact Index Per Article: 18.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/29/2019] [Indexed: 12/22/2022]
Abstract
V-domain Ig suppressor of T cell activation (VISTA) is a novel checkpoint regulator with limited homology to other B7 family members. The constitutive expression of VISTA on both the myeloid and T lymphocyte lineages coupled to its important role in regulating innate and adaptive immune responses, qualifies VISTA to be a promising target for immunotherapeutic intervention. Studies have shown differential impact of agonistic and antagonistic targeting of VISTA, providing a unique landscape for influencing the outcome of cancer and inflammatory diseases.
Collapse
Affiliation(s)
- Mohamed A ElTanbouly
- Department of Microbiology and Immunology, Norris Cotton Cancer Center, Geisel School of Medicine at Dartmouth, Lebanon, NH, 03756, United States
| | - Walburga Croteau
- Department of Microbiology and Immunology, Norris Cotton Cancer Center, Geisel School of Medicine at Dartmouth, Lebanon, NH, 03756, United States
| | - Randolph J Noelle
- Department of Microbiology and Immunology, Norris Cotton Cancer Center, Geisel School of Medicine at Dartmouth, Lebanon, NH, 03756, United States; Immunext Corp., Lebanon, NH, United States.
| | - J Louise Lines
- Department of Microbiology and Immunology, Norris Cotton Cancer Center, Geisel School of Medicine at Dartmouth, Lebanon, NH, 03756, United States.
| |
Collapse
|
242
|
|
243
|
Deleuze A, Saout J, Dugay F, Peyronnet B, Mathieu R, Verhoest G, Bensalah K, Crouzet L, Laguerre B, Belaud-Rotureau MA, Rioux-Leclercq N, Kammerer-Jacquet SF. Immunotherapy in Renal Cell Carcinoma: The Future Is Now. Int J Mol Sci 2020; 21:ijms21072532. [PMID: 32260578 PMCID: PMC7177761 DOI: 10.3390/ijms21072532] [Citation(s) in RCA: 149] [Impact Index Per Article: 29.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2020] [Revised: 03/30/2020] [Accepted: 04/02/2020] [Indexed: 12/11/2022] Open
Abstract
Renal cell carcinoma is the third type of urologic cancer and has a poor prognosis with 30% of metastatic patients at diagnosis. The antiangiogenics and targeted immunotherapies led to treatment remodeling emphasizing the role of the tumour microenvironment. However, long-term responses are rare with a high rate of resistance. New strategies are emerging to improve the efficacy and the emerging drugs are under evaluation in ongoing trials. With the different treatment options, there is an urgent need to identify biomarkers in order to predict the efficacy of drugs and to better stratify patients. Owing to the limitations of programmed death-ligand 1 (PD-L1), the most studied immunohistochemistry biomarkers, and of the tumor mutational burden, the identification of more reliable markers is an unmet need. New technologies could help in this purpose.
Collapse
Affiliation(s)
- Antoine Deleuze
- Université Rennes, Inserm, EHESP (Ecole des Hautes Etudes en Santé Publique), IRSET (Institut de recherche en santé, environnement et travail), UMR 1085, 35000 Rennes, France; (A.D.); (J.S.); (F.D.); (R.M.); (M.-A.B.-R.); (N.R.-L.)
- Department of Medical Oncology, Centre Eugene Marquis, 35000 Rennes, France; (L.C.); (B.L.)
| | - Judikaël Saout
- Université Rennes, Inserm, EHESP (Ecole des Hautes Etudes en Santé Publique), IRSET (Institut de recherche en santé, environnement et travail), UMR 1085, 35000 Rennes, France; (A.D.); (J.S.); (F.D.); (R.M.); (M.-A.B.-R.); (N.R.-L.)
| | - Frédéric Dugay
- Université Rennes, Inserm, EHESP (Ecole des Hautes Etudes en Santé Publique), IRSET (Institut de recherche en santé, environnement et travail), UMR 1085, 35000 Rennes, France; (A.D.); (J.S.); (F.D.); (R.M.); (M.-A.B.-R.); (N.R.-L.)
- Department of Cytogenetics, University Hospital, 35000 Rennes, France
| | - Benoit Peyronnet
- Department of Urology, University Hospital, 35000 Rennes, France; (B.P.); (G.V.); (K.B.)
| | - Romain Mathieu
- Université Rennes, Inserm, EHESP (Ecole des Hautes Etudes en Santé Publique), IRSET (Institut de recherche en santé, environnement et travail), UMR 1085, 35000 Rennes, France; (A.D.); (J.S.); (F.D.); (R.M.); (M.-A.B.-R.); (N.R.-L.)
- Department of Urology, University Hospital, 35000 Rennes, France; (B.P.); (G.V.); (K.B.)
| | - Gregory Verhoest
- Department of Urology, University Hospital, 35000 Rennes, France; (B.P.); (G.V.); (K.B.)
| | - Karim Bensalah
- Department of Urology, University Hospital, 35000 Rennes, France; (B.P.); (G.V.); (K.B.)
| | - Laurence Crouzet
- Department of Medical Oncology, Centre Eugene Marquis, 35000 Rennes, France; (L.C.); (B.L.)
| | - Brigitte Laguerre
- Department of Medical Oncology, Centre Eugene Marquis, 35000 Rennes, France; (L.C.); (B.L.)
| | - Marc-Antoine Belaud-Rotureau
- Université Rennes, Inserm, EHESP (Ecole des Hautes Etudes en Santé Publique), IRSET (Institut de recherche en santé, environnement et travail), UMR 1085, 35000 Rennes, France; (A.D.); (J.S.); (F.D.); (R.M.); (M.-A.B.-R.); (N.R.-L.)
- Department of Cytogenetics, University Hospital, 35000 Rennes, France
| | - Nathalie Rioux-Leclercq
- Université Rennes, Inserm, EHESP (Ecole des Hautes Etudes en Santé Publique), IRSET (Institut de recherche en santé, environnement et travail), UMR 1085, 35000 Rennes, France; (A.D.); (J.S.); (F.D.); (R.M.); (M.-A.B.-R.); (N.R.-L.)
- Department of Pathology, University Hospital, 35000 Rennes, France
| | - Solène-Florence Kammerer-Jacquet
- Université Rennes, Inserm, EHESP (Ecole des Hautes Etudes en Santé Publique), IRSET (Institut de recherche en santé, environnement et travail), UMR 1085, 35000 Rennes, France; (A.D.); (J.S.); (F.D.); (R.M.); (M.-A.B.-R.); (N.R.-L.)
- Department of Pathology, University Hospital, 35000 Rennes, France
- Correspondence: ; Tel.: +33-2-99-28-42-79; Fax: +33-2-99-28-42-84
| |
Collapse
|
244
|
Zarifa A, Salih M, Lopez-Mattei J, Lee HJ, Iliescu C, Hassan S, Palaskas N, Durand JB, Mouhayar E, Kim J, Kim P. Cardiotoxicity of FDA-approved immune checkpoint inhibitors: A rare but serious adverse event. ACTA ACUST UNITED AC 2020. [DOI: 10.4103/jipo.jipo_15_18] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Abstract
Abstract
Refractory cancer represents a challenge for oncologists in providing treatment options without excessive toxicity and has led to the investigation of immune mechanisms. Immune checkpoint inhibitors (ICIs) directly interfere with the tumor cells' ability to evade the innate and adaptive immune system by targeting specific proteins such as cytotoxic T-lymphocyte-associated antigen-4 (CTLA-4), programmed cell death protein-1 (PD-1), and programmed cell death protein-ligand 1 (PD-L1), which are involved as negative regulators of T-cell function. Their growing success has led to the investigation for frontline treatment in several types of cancers. Even though these ICIs have demonstrated efficacy in the treatment of a variety of cancers, their use has been associated with the development of rare but severe adverse events. These events are the result of targeting specific checkpoint proteins on normal cells of the body as well as secondary downstream off-target effects on normal tissue. Similar to combined conventional cancer treatment, treating with combined ICIs are also associated with a higher risk of adverse events. Although cardiotoxicities related to immunotherapy are reportedly rare, they can be severe and associated with life-threatening conditions such as fulminant heart failure, hemodynamic instability, and cardiac arrest. Oncologists must carefully weigh the risk versus the therapeutic benefit of these agents in determining the best option for improving overall survival and minimizing morbidity and mortality of their patients. Our review focuses on the approved ICIs, their mechanism of action, their oncologic efficacy, and the associated potential for cardiovascular toxicity.
Collapse
Affiliation(s)
- Abdulrazzak Zarifa
- Department of Cardiology, Division of Internal Medicine, The University of Texas MD Anderson Cancer Center, Houston
| | - Mohammed Salih
- Department of Cardiology, Division of Internal Medicine, The University of Texas MD Anderson Cancer Center, Houston
| | - Juan Lopez-Mattei
- Department of Cardiology, Division of Internal Medicine, The University of Texas MD Anderson Cancer Center, Houston
| | - Hun Ju Lee
- Department of Cardiology, Division of Internal Medicine, The University of Texas MD Anderson Cancer Center, Houston
- Department of Lymphoma and Myeloma, Division of Cancer Medicine, The University of Texas MD Anderson Cancer Center, Houston
| | - Cezar Iliescu
- Department of Cardiology, Division of Internal Medicine, The University of Texas MD Anderson Cancer Center, Houston
| | - Saamir Hassan
- Department of Cardiology, Division of Internal Medicine, The University of Texas MD Anderson Cancer Center, Houston
| | - Nicolas Palaskas
- Department of Cardiology, Division of Internal Medicine, The University of Texas MD Anderson Cancer Center, Houston
| | - Jean-Bernard Durand
- Department of Cardiology, Division of Internal Medicine, The University of Texas MD Anderson Cancer Center, Houston
| | - Elie Mouhayar
- Department of Cardiology, Division of Internal Medicine, The University of Texas MD Anderson Cancer Center, Houston
| | - Joseph Kim
- Department of Cardiology, Division of Internal Medicine, The University of Texas MD Anderson Cancer Center, Houston
- Department of Biology, The University of Texas at Austin, Austin, Texas, USA
| | - Peter Kim
- Department of Cardiology, Division of Internal Medicine, The University of Texas MD Anderson Cancer Center, Houston
| |
Collapse
|
245
|
Wang G, Tai R, Wu Y, Yang S, Wang J, Yu X, Lei L, Shan Z, Li N. The expression and immunoregulation of immune checkpoint molecule VISTA in autoimmune diseases and cancers. Cytokine Growth Factor Rev 2020; 52:1-14. [DOI: 10.1016/j.cytogfr.2020.02.002] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2019] [Revised: 02/02/2020] [Accepted: 02/03/2020] [Indexed: 12/24/2022]
|
246
|
Macromolecules and Antibody-Based Drugs. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2020. [PMID: 32185723 DOI: 10.1007/978-981-15-3266-5_20] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/27/2023]
Abstract
Macromolecule drugs particularly antibody drugs are very powerful therapies developing rapidly in the recent 20 years, providing hopes for many patients diagnosed with "incurable" diseases in the past. They also provide more effective and less side effects for many afflicting diseases, and greatly improve the survival rate and life quality of patients. In the last two decades, the proportion of US Food and Drug Administration (FDA) approved macromolecules and antibody drugs are increasing quickly, especially after the discovery of immune checkpoints. To crown all, the 2017 Nobel prize in physiology or medicine was given to immunotherapy. In this chapter, we would like to summarize the current situation of macromolecule and antibody drugs, and what effort scientists and pharmaceutical industry have made to discover and manufacture better antibody drugs.
Collapse
|
247
|
Wang L, Qin W, Huo YJ, Li X, Shi Q, Rasko JEJ, Janin A, Zhao WL. Advances in targeted therapy for malignant lymphoma. Signal Transduct Target Ther 2020; 5:15. [PMID: 32296035 PMCID: PMC7058622 DOI: 10.1038/s41392-020-0113-2] [Citation(s) in RCA: 75] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2019] [Revised: 12/10/2019] [Accepted: 12/17/2019] [Indexed: 12/24/2022] Open
Abstract
The incidence of lymphoma has gradually increased over previous decades, and it ranks among the ten most prevalent cancers worldwide. With the development of targeted therapeutic strategies, though a subset of lymphoma patients has become curable, the treatment of refractory and relapsed diseases remains challenging. Many efforts have been made to explore new targets and to develop corresponding therapies. In addition to novel antibodies targeting surface antigens and small molecular inhibitors targeting oncogenic signaling pathways and tumor suppressors, immune checkpoint inhibitors and chimeric antigen receptor T-cells have been rapidly developed to target the tumor microenvironment. Although these targeted agents have shown great success in treating lymphoma patients, adverse events should be noted. The selection of the most suitable candidates, optimal dosage, and effective combinations warrant further investigation. In this review, we systematically outlined the advances in targeted therapy for malignant lymphoma, providing a clinical rationale for mechanism-based lymphoma treatment in the era of precision medicine.
Collapse
Affiliation(s)
- Li Wang
- State Key Laboratory of Medical Genomics, Shanghai Institute of Hematology, Shanghai Rui Jin Hospital, Shanghai Jiao Tong University School of Medicine, 197 Rui Jin Er Road, Shanghai, China
- Pôle de Recherches Sino-Français en Science du Vivant et Génomique, Laboratory of Molecular Pathology, Shanghai, China
| | - Wei Qin
- State Key Laboratory of Medical Genomics, Shanghai Institute of Hematology, Shanghai Rui Jin Hospital, Shanghai Jiao Tong University School of Medicine, 197 Rui Jin Er Road, Shanghai, China
| | - Yu-Jia Huo
- State Key Laboratory of Medical Genomics, Shanghai Institute of Hematology, Shanghai Rui Jin Hospital, Shanghai Jiao Tong University School of Medicine, 197 Rui Jin Er Road, Shanghai, China
| | - Xiao Li
- State Key Laboratory of Medical Genomics, Shanghai Institute of Hematology, Shanghai Rui Jin Hospital, Shanghai Jiao Tong University School of Medicine, 197 Rui Jin Er Road, Shanghai, China
| | - Qing Shi
- State Key Laboratory of Medical Genomics, Shanghai Institute of Hematology, Shanghai Rui Jin Hospital, Shanghai Jiao Tong University School of Medicine, 197 Rui Jin Er Road, Shanghai, China
| | - John E J Rasko
- Gene & Stem Cell Therapy Program Centenary Institute, Sydney Medical School, University of Sydney, Camperdown, Australia
- Cell and Molecular Therapies, Royal Prince Alfred Hospital, Camperdown, Australia
| | - Anne Janin
- Pôle de Recherches Sino-Français en Science du Vivant et Génomique, Laboratory of Molecular Pathology, Shanghai, China
- U1165 Inserm/Université Paris 7, Hôpital Saint Louis, Paris, France
| | - Wei-Li Zhao
- State Key Laboratory of Medical Genomics, Shanghai Institute of Hematology, Shanghai Rui Jin Hospital, Shanghai Jiao Tong University School of Medicine, 197 Rui Jin Er Road, Shanghai, China.
- Pôle de Recherches Sino-Français en Science du Vivant et Génomique, Laboratory of Molecular Pathology, Shanghai, China.
| |
Collapse
|
248
|
Kunishige T, Taniguchi H, Ohno T, Azuma M, Hori J. VISTA Is Crucial for Corneal Allograft Survival and Maintenance of Immune Privilege. Invest Ophthalmol Vis Sci 2020; 60:4958-4965. [PMID: 31790558 DOI: 10.1167/iovs.19-27322] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Purpose V-domain immunoglobulin suppressor of T cell activation (VISTA) is a novel immune checkpoint receptor and ligand for regulating T cell proliferation and cytokine production. The purpose of the present study was to determine the role of VISTA in the immune privilege of corneal allografts. Methods Expression of VISTA mRNA in mouse eyes was assessed with reverse-transcription PCR. Corneas of C57BL/6 mice were orthotopically transplanted into the eyes of BALB/c wild-type recipients treated with anti-VISTA mAb, and graft survival was assessed. A separate set of BALB/c mice treated with anti-VISTA mAb or rat IgG received injection of C57BL/6 splenocytes into the anterior chamber, and induction of allospecific anterior chamber-associated immune deviation (ACAID) was assessed. CD4+ and CD8+ T cells in the spleen were assessed with flow cytometry. Results VISTA mRNA was constitutively expressed in the cornea, and the expression of VISTA was localized to CD11b+ cells on the corneal stroma. Survival of allografts treated with anti-VISTA mAb was less than that of the control. ACAID was induced less efficiently in BALB/c mice treated with VISTA mAb. The proportions of CD8+ T cells and CD8+ CD103+ T cells (CD8+ T regulatory cells) in the spleen of BALB/c mice treated with anti-VISTA mAb were significantly lower than those of the control. Conclusions VISTA may play an essential role in the acceptance of corneal allografts via involvement with allospecific ACAID, which suppresses T cell infiltration into the cornea.
Collapse
Affiliation(s)
| | - Hiroko Taniguchi
- Department of Ophthalmology, Nippon Medical School, Tokyo, Japan
| | - Tatsukuni Ohno
- Department of Molecular Immunology, Tokyo Medical and Dental University, Tokyo, Japan
| | - Miyuki Azuma
- Department of Molecular Immunology, Tokyo Medical and Dental University, Tokyo, Japan
| | - Junko Hori
- Department of Ophthalmology, Nippon Medical School, Tokyo, Japan.,Department of Ophthalmology, Nippon Medical School Tama Nagayama Hospital, Tokyo, Japan
| |
Collapse
|
249
|
He XL, Zhou Y, Lu HZ, Li QX, Wang Z. Prognostic value of VISTA in solid tumours: a systematic review and meta-analysis. Sci Rep 2020; 10:2662. [PMID: 32060343 PMCID: PMC7021832 DOI: 10.1038/s41598-020-59608-w] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2019] [Accepted: 01/06/2020] [Indexed: 01/06/2023] Open
Abstract
In the last few years, V-domain Ig-containing suppressor of T cell activation(VISTA) has been reported as a prognostic biomarker in articles including various solid tumours. However, their conclusions have been controversial. For this reason, we performed this meta-analysis to further verify the prognostic value of VISTA in solid tumours. All relevant literature was identified from PubMed, Embase, the Cochrane Library and Web of Science. Ten studies, including 2, 440 patients, were eligible for the analysis. The pooled results showed that high expression of VISTA was associated with favourable overall survival (OS) than that seen with low expression of VISTA (7 studies, hazard ratio (HR) = 0.75, 95% confidence interval (CI): 0.66–0.86, P < 0.001). In addition, high expression of VISTA significantly correlated with high numbers of CD8 (+) tumour infiltrating lymphocytes (TILs) (3 studies, risk ratio (RR) = 1.80, 95% CI: 1.41–2.31, P < 0.001). In conclusion, these results indicate that VISTA is a potential prognostic biomarker in solid tumours.
Collapse
Affiliation(s)
- Xin-Lin He
- Guanghua School of Stomatology, Guangdong Provincial Key Laboratory of Stomatology, Stomatological Hospital, Sun Yat-Sen University, Guangzhou, 510055, People's Republic of China
| | - Ying Zhou
- Guanghua School of Stomatology, Guangdong Provincial Key Laboratory of Stomatology, Stomatological Hospital, Sun Yat-Sen University, Guangzhou, 510055, People's Republic of China
| | - Huan-Zi Lu
- Guanghua School of Stomatology, Guangdong Provincial Key Laboratory of Stomatology, Stomatological Hospital, Sun Yat-Sen University, Guangzhou, 510055, People's Republic of China
| | - Qun-Xing Li
- Guanghua School of Stomatology, Guangdong Provincial Key Laboratory of Stomatology, Stomatological Hospital, Sun Yat-Sen University, Guangzhou, 510055, People's Republic of China
| | - Zhi Wang
- Guanghua School of Stomatology, Guangdong Provincial Key Laboratory of Stomatology, Stomatological Hospital, Sun Yat-Sen University, Guangzhou, 510055, People's Republic of China.
| |
Collapse
|
250
|
ElTanbouly MA, Schaafsma E, Noelle RJ, Lines JL. VISTA: Coming of age as a multi-lineage immune checkpoint. Clin Exp Immunol 2020; 200:120-130. [PMID: 31930484 DOI: 10.1111/cei.13415] [Citation(s) in RCA: 86] [Impact Index Per Article: 17.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/06/2020] [Indexed: 12/12/2022] Open
Abstract
The immune response is governed by a highly complex set of interactions among cells and mediators. T cells may be rendered dysfunctional by the presence of high levels of antigen in the absence of co-stimulation while myeloid cells may be programmed towards an immunosuppressive state that promotes cancer growth and metastasis while deterring tumor immunity. In addition, inhibitory programs driven by immune checkpoint regulators dampen anti-tumor immunity. The ideal cancer immunotherapy treatment will improve both cross-priming in the tumor microenvironment and relieve suppression by the inhibitory checkpoints. Recently, blockade of programmed cell death 1 (PD-1) and cytotoxic T lymphocyte antigen 4 (CTLA-4) has elicited impressive results, but not in all patients, so additional targets are under investigation. V-set immunoglobulin domain suppressor of T cell activation (VISTA) is a novel immunoregulatory receptor that is broadly expressed on cells of the myeloid and lymphoid lineages, and is frequently implicated as a poor prognostic indicator in multiple cancers. Importantly, antibody targeting of VISTA uniquely engages both innate and adaptive immunity. This, combined with the expression of VISTA and its non-redundant activities compared to other immune checkpoint regulators, qualifies VISTA to be a promising target for improving cancer immunotherapy.
Collapse
Affiliation(s)
- M A ElTanbouly
- Department of Microbiology and Immunology, Norris Cotton Cancer Center, Geisel School of Medicine at Dartmouth, Lebanon, NH, USA
| | - E Schaafsma
- Department of Microbiology and Immunology, Norris Cotton Cancer Center, Geisel School of Medicine at Dartmouth, Lebanon, NH, USA.,Department of Biomedical Data Science, Geisel School of Medicine at Dartmouth, Hanover, NH, USA
| | - R J Noelle
- Department of Microbiology and Immunology, Norris Cotton Cancer Center, Geisel School of Medicine at Dartmouth, Lebanon, NH, USA
| | - J L Lines
- Department of Microbiology and Immunology, Norris Cotton Cancer Center, Geisel School of Medicine at Dartmouth, Lebanon, NH, USA
| |
Collapse
|