201
|
Guo S, Yuan J, Meng X, Feng X, Ma D, Han Y, Li K. Cancer-associated fibroblasts: Just on the opposite side of antitumour immunity? Int Immunopharmacol 2023; 122:110601. [PMID: 37418988 DOI: 10.1016/j.intimp.2023.110601] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Revised: 06/18/2023] [Accepted: 07/01/2023] [Indexed: 07/09/2023]
Abstract
The tumour microenvironment (TME) is critical for the initiation, progression, and metastasis of tumours, and cancer-associated fibroblasts (CAFs) are the most dominant cells and have attracted interest as targets for cancer therapy among the stromal components within the TME. Currently, most of the identified CAF subpopulations are believed to exhibit suppressive effects on antitumour immunity. However, accumulating evidence indicates the presence of immunostimulatory CAF subpopulations, which play an important role in the maintenance and amplification of antitumour immunity, in the TME. Undoubtedly, these findings provide novel insights into CAF heterogeneity. Herein, we focus on summarizing CAF subpopulations that promote antitumour immunity, the surface markers of these populations, and possible immunostimulatory mechanisms in the context of recent advances in research on CAF subpopulations. In addition, we discuss the possibility of new therapies targeting CAF subpopulations and conclude with a brief description of some prospective avenues for CAF research.
Collapse
Affiliation(s)
- Shuaiqingying Guo
- Department of Gynecology and Obstetrics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Jing Yuan
- Department of Gynecology and Obstetrics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Xiaolin Meng
- Department of Gynecology and Obstetrics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Xue Feng
- Department of Gynecology and Obstetrics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Ding Ma
- Department of Gynecology and Obstetrics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Yingyan Han
- Department of Gynecology and Obstetrics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China.
| | - Kezhen Li
- Department of Gynecology and Obstetrics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China.
| |
Collapse
|
202
|
Geng Z, Pan X, Xu J, Jia X. Friend and foe: the regulation network of ascites components in ovarian cancer progression. J Cell Commun Signal 2023; 17:391-407. [PMID: 36227507 PMCID: PMC10409702 DOI: 10.1007/s12079-022-00698-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2022] [Accepted: 09/11/2022] [Indexed: 10/17/2022] Open
Abstract
The tumor microenvironment (TME) and its complex role in cancer progression have been hotspots of cancer research in recent years. Ascites, which occurs frequently in patients with ovarian cancer especially in advanced stages, represents a unique TME. Malignant ascites contains abundant cellular and acellular components that play important roles in tumorigenesis, growth, metastasis, and chemoresistance of ovarian cancer through complex molecular mechanisms and signaling pathways. As a valuable liquid biopsy sample, ascites fluid is also of great significance for the prognostic analysis of ovarian cancer. The components of ovarian cancer ascites are generally considered to comprise tumor-promoting factors; however, in recent years studies have found that ascites also contains tumor-suppressing factors, raising new perspectives on interactions between ascites and tumors. Malignant ascites directly constitutes the ovarian cancer microenvironment, therefore, the study of its components will aid in the development of new therapeutic strategies. This article reviews the current research on tumor-promoting and tumor-suppressing factors and molecular mechanisms of their actions in ovarian cancer-derived ascites and therapeutic strategies targeting ascites, which may provide references for the development of novel therapeutic targets for ovarian cancer in the future.
Collapse
Affiliation(s)
- Zhe Geng
- Department of Gynecology, Women's Hospital of Nanjing Medical University, Nanjing Maternity and Child Health Care Hospital, 123 Mochou Rd, Nanjing, 210004, China
| | - Xinxing Pan
- Department of Gynecology, Women's Hospital of Nanjing Medical University, Nanjing Maternity and Child Health Care Hospital, 123 Mochou Rd, Nanjing, 210004, China
| | - Juan Xu
- Department of Gynecology, Women's Hospital of Nanjing Medical University, Nanjing Maternity and Child Health Care Hospital, 123 Mochou Rd, Nanjing, 210004, China.
| | - Xuemei Jia
- Department of Gynecology, Women's Hospital of Nanjing Medical University, Nanjing Maternity and Child Health Care Hospital, 123 Mochou Rd, Nanjing, 210004, China.
| |
Collapse
|
203
|
Tarín-Nieto A, Solano-Iturri JD, Arrieta-Aguirre I, Valdivia A, Etxezarraga MC, Loizate A, López JI, Larrinaga G. Fibroblast Activation Protein-α (FAP) Identifies Stromal Invasion in Colorectal Neoplasia. Am J Surg Pathol 2023; 47:1027-1033. [PMID: 37366169 DOI: 10.1097/pas.0000000000002075] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/28/2023]
Abstract
The increasing detection of colorectal adenomas and early adenocarcinomas (ADCs) in the context of nationwide screening programs has led to a significant increase in the incidence of inconclusive diagnoses in which histopathologic analysis of endoscopic biopsies does not allow pathologists to provide a reliable diagnosis of stromal invasion. The objective of this study was to analyze the discriminative capacity of the immunohistochemical expression of fibroblast activation protein-α (FAP) in distinguishing colorectal adenomas with low-grade dysplasia (LGD) and high-grade dysplasia (HGD) from invasive intestinal-type ADCs. The study analyzed the first endoscopic biopsies from a series of patients classified as inconclusive or conclusive for stromal invasion based on the pathologic report. In total, 30 ADCs, 52 HGDs, and 15 LGDs were included in the study. FAP expression was detected in 23/30 ADCs and was negative in all adenomas with either LGD or HGD features (100% specificity and 76.7% sensitivity, area under the curve=0.883, CI=0.79-0.98). Considering these findings, we conclude that FAP is a potentially useful tool for helping pathologists identify invasive lesions in colorectal endoscopic biopsies, avoiding unnecessary biopsy repetitions.
Collapse
Affiliation(s)
| | - Jon D Solano-Iturri
- Department of Anatomic Pathology, Cruces University Hospital, Cruces (Barakaldo)
- Biocruces-Bizkaia Health Research Institute, Barakaldo
| | | | | | | | - Alberto Loizate
- Department of Surgery, Basurto University Hospital, University of the Basque Country (UPV/EHU), Bilbao
| | - José I López
- Biocruces-Bizkaia Health Research Institute, Barakaldo
| | - Gorka Larrinaga
- Biocruces-Bizkaia Health Research Institute, Barakaldo
- Departments of Nursing
- Physiology, Faculty of Medicine and Nursing, University of the Basque Country (UPV/EHU), Leioa, Bizkaia Province, Spain
| |
Collapse
|
204
|
Sekiguchi S, Yorozu A, Okazaki F, Niinuma T, Takasawa A, Yamamoto E, Kitajima H, Kubo T, Hatanaka Y, Nishiyama K, Ogi K, Dehari H, Kondo A, Kurose M, Obata K, Kakiuchi A, Kai M, Hirohashi Y, Torigoe T, Kojima T, Osanai M, Takano K, Miyazaki A, Suzuki H. ACLP Activates Cancer-Associated Fibroblasts and Inhibits CD8+ T-Cell Infiltration in Oral Squamous Cell Carcinoma. Cancers (Basel) 2023; 15:4303. [PMID: 37686580 PMCID: PMC10486706 DOI: 10.3390/cancers15174303] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Revised: 08/18/2023] [Accepted: 08/25/2023] [Indexed: 09/10/2023] Open
Abstract
We previously showed that upregulation of adipocyte enhancer-binding protein 1 (AEBP1) in vascular endothelial cells promotes tumor angiogenesis. In the present study, we aimed to clarify the role of stromal AEBP1/ACLP expression in oral squamous cell carcinoma (OSCC). Immunohistochemical analysis showed that ACLP is abundantly expressed in cancer-associated fibroblasts (CAFs) in primary OSCC tissues and that upregulated expression of ACLP is associated with disease progression. Analysis using CAFs obtained from surgically resected OSCCs showed that the expression of AEBP1/ACLP in CAFs is upregulated by co-culture with OSCC cells or treatment with TGF-β1, suggesting cancer-cell-derived TGF-β1 induces AEBP1/ACLP in CAFs. Collagen gel contraction assays showed that ACLP contributes to the activation of CAFs. In addition, CAF-derived ACLP promotes migration, invasion, and in vivo tumor formation by OSCC cells. Notably, tumor stromal ACLP expression correlated positively with collagen expression and correlated inversely with CD8+ T cell infiltration into primary OSCC tumors. Boyden chamber assays suggested that ACLP in CAFs may attenuate CD8+ T cell migration. Our results suggest that stromal ACLP contributes to the development of OSCCs, and that ACLP is a potential therapeutic target.
Collapse
Affiliation(s)
- Shohei Sekiguchi
- Department of Molecular Biology, Sapporo Medical University School of Medicine, Sapporo 060-8556, Japan (T.K.); (M.K.)
- Department of Oral Surgery, Sapporo Medical University School of Medicine, Sapporo 060-8543, Japan
| | - Akira Yorozu
- Department of Molecular Biology, Sapporo Medical University School of Medicine, Sapporo 060-8556, Japan (T.K.); (M.K.)
- Department of Otolaryngology-Head and Neck Surgery, Sapporo Medical University School of Medicine, Sapporo 060-8543, Japan
| | - Fumika Okazaki
- Department of Molecular Biology, Sapporo Medical University School of Medicine, Sapporo 060-8556, Japan (T.K.); (M.K.)
- Department of Oral Surgery, Sapporo Medical University School of Medicine, Sapporo 060-8543, Japan
| | - Takeshi Niinuma
- Department of Molecular Biology, Sapporo Medical University School of Medicine, Sapporo 060-8556, Japan (T.K.); (M.K.)
| | - Akira Takasawa
- Department of Pathology, Sapporo Medical University School of Medicine, Sapporo 060-8556, Japan (T.T.)
| | - Eiichiro Yamamoto
- Department of Molecular Biology, Sapporo Medical University School of Medicine, Sapporo 060-8556, Japan (T.K.); (M.K.)
| | - Hiroshi Kitajima
- Department of Molecular Biology, Sapporo Medical University School of Medicine, Sapporo 060-8556, Japan (T.K.); (M.K.)
| | - Toshiyuki Kubo
- Department of Molecular Biology, Sapporo Medical University School of Medicine, Sapporo 060-8556, Japan (T.K.); (M.K.)
| | - Yui Hatanaka
- Department of Oral Surgery, Sapporo Medical University School of Medicine, Sapporo 060-8543, Japan
| | - Koyo Nishiyama
- Department of Oral Surgery, Sapporo Medical University School of Medicine, Sapporo 060-8543, Japan
| | - Kazuhiro Ogi
- Department of Oral Surgery, Sapporo Medical University School of Medicine, Sapporo 060-8543, Japan
| | - Hironari Dehari
- Department of Oral Surgery, Sapporo Medical University School of Medicine, Sapporo 060-8543, Japan
| | - Atsushi Kondo
- Department of Head and Neck Oncology, Sapporo Teishinkai Hospital, Sapporo 065-0033, Japan
| | - Makoto Kurose
- Department of Otolaryngology-Head and Neck Surgery, Sapporo Medical University School of Medicine, Sapporo 060-8543, Japan
| | - Kazufumi Obata
- Department of Otolaryngology-Head and Neck Surgery, Sapporo Medical University School of Medicine, Sapporo 060-8543, Japan
| | - Akito Kakiuchi
- Department of Otolaryngology-Head and Neck Surgery, Sapporo Medical University School of Medicine, Sapporo 060-8543, Japan
| | - Masahiro Kai
- Department of Molecular Biology, Sapporo Medical University School of Medicine, Sapporo 060-8556, Japan (T.K.); (M.K.)
| | - Yoshihiko Hirohashi
- Department of Pathology, Sapporo Medical University School of Medicine, Sapporo 060-8556, Japan (T.T.)
| | - Toshihiko Torigoe
- Department of Pathology, Sapporo Medical University School of Medicine, Sapporo 060-8556, Japan (T.T.)
| | - Takashi Kojima
- Department of Cell Science, Research Institute of Frontier Medicine, Sapporo Medical University School of Medicine, Sapporo 060-8556, Japan;
| | - Makoto Osanai
- Department of Pathology, Sapporo Medical University School of Medicine, Sapporo 060-8556, Japan (T.T.)
| | - Kenichi Takano
- Department of Otolaryngology-Head and Neck Surgery, Sapporo Medical University School of Medicine, Sapporo 060-8543, Japan
| | - Akihiro Miyazaki
- Department of Oral Surgery, Sapporo Medical University School of Medicine, Sapporo 060-8543, Japan
| | - Hiromu Suzuki
- Department of Molecular Biology, Sapporo Medical University School of Medicine, Sapporo 060-8556, Japan (T.K.); (M.K.)
| |
Collapse
|
205
|
Zhang Y, Lv N, Li M, Liu M, Wu C. Cancer-associated fibroblasts: tumor defenders in radiation therapy. Cell Death Dis 2023; 14:541. [PMID: 37607935 PMCID: PMC10444767 DOI: 10.1038/s41419-023-06060-z] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2023] [Revised: 05/24/2023] [Accepted: 07/10/2023] [Indexed: 08/24/2023]
Abstract
Cancer-associated fibroblasts (CAFs) are an important component of the tumor microenvironment that are involved in multiple aspects of cancer progression and considered contributors to tumor immune escape. CAFs exhibit a unique radiation resistance phenotype, and can survive clinical radiation doses; however, ionizing radiation can induce changes in their secretions and influence tumor progression by acting on tumor and immune cells. In this review, we describe current knowledge of the effects of radiation therapies on CAFs, as well as summarizing understanding of crosstalk among CAFs, tumor cells, and immune cells. We highlight the important role of CAFs in radiotherapy resistance, and discuss current and future radiotherapy strategies for targeting CAFs.
Collapse
Affiliation(s)
- Yalin Zhang
- Department of Radiation Oncology, Fourth Affiliated Hospital of China Medical University, Liaoning, China
| | - Na Lv
- Department of Radiation Oncology, Fourth Affiliated Hospital of China Medical University, Liaoning, China
| | - Manshi Li
- Department of Radiation Oncology, Fourth Affiliated Hospital of China Medical University, Liaoning, China
| | - Ming Liu
- Department of Clinical Epidemiology, Fourth Affiliated Hospital of China Medical University, Liaoning, China.
| | - Chunli Wu
- Department of Radiation Oncology, Fourth Affiliated Hospital of China Medical University, Liaoning, China.
| |
Collapse
|
206
|
Liao P, Huang Q, Zhang J, Su Y, Xiao R, Luo S, Wu Z, Zhu L, Li J, Hu Q. How single-cell techniques help us look into lung cancer heterogeneity and immunotherapy. Front Immunol 2023; 14:1238454. [PMID: 37671151 PMCID: PMC10475738 DOI: 10.3389/fimmu.2023.1238454] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2023] [Accepted: 08/03/2023] [Indexed: 09/07/2023] Open
Abstract
Lung cancer patients tend to have strong intratumoral and intertumoral heterogeneity and complex tumor microenvironment, which are major contributors to the efficacy of and drug resistance to immunotherapy. From a new perspective, single-cell techniques offer an innovative way to look at the intricate cellular interactions between tumors and the immune system and help us gain insights into lung cancer and its response to immunotherapy. This article reviews the application of single-cell techniques in lung cancer, with focuses directed on the heterogeneity of lung cancer and the efficacy of immunotherapy. This review provides both theoretical and experimental information for the future development of immunotherapy and personalized treatment for the management of lung cancer.
Collapse
Affiliation(s)
- Pu Liao
- Department of Pathology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
- Key Laboratory of Pulmonary Diseases of Ministry of Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Qi Huang
- Department of Respiratory and Critical Care Medicine, Hubei Province Clinical Research Center for Major Respiratory Diseases, National Health Commission (NHC) Key Laboratory of Pulmonary Diseases, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Jiwei Zhang
- Department of Pathology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
- Key Laboratory of Pulmonary Diseases of Ministry of Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yuan Su
- Key Laboratory of Pulmonary Diseases of Ministry of Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Department of Respiratory and Critical Care Medicine, Hubei Province Clinical Research Center for Major Respiratory Diseases, National Health Commission (NHC) Key Laboratory of Pulmonary Diseases, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Rui Xiao
- Key Laboratory of Pulmonary Diseases of Ministry of Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Department of Pathophysiology, School of Basic Medicine; Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Shengquan Luo
- Key Laboratory of Pulmonary Diseases of Ministry of Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Department of Pathophysiology, School of Basic Medicine; Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Zengbao Wu
- Department of Neurosurgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Liping Zhu
- Key Laboratory of Pulmonary Diseases of Ministry of Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Department of Pathophysiology, School of Basic Medicine; Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Jiansha Li
- Key Laboratory of Pulmonary Diseases of Ministry of Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Institute of Pathology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Qinghua Hu
- Key Laboratory of Pulmonary Diseases of Ministry of Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Department of Pathophysiology, School of Basic Medicine; Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
207
|
Arora R, Cao C, Kumar M, Sinha S, Chanda A, McNeil R, Samuel D, Arora RK, Matthews TW, Chandarana S, Hart R, Dort JC, Biernaskie J, Neri P, Hyrcza MD, Bose P. Spatial transcriptomics reveals distinct and conserved tumor core and edge architectures that predict survival and targeted therapy response. Nat Commun 2023; 14:5029. [PMID: 37596273 PMCID: PMC10439131 DOI: 10.1038/s41467-023-40271-4] [Citation(s) in RCA: 58] [Impact Index Per Article: 29.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Accepted: 07/19/2023] [Indexed: 08/20/2023] Open
Abstract
The spatial organization of the tumor microenvironment has a profound impact on biology and therapy response. Here, we perform an integrative single-cell and spatial transcriptomic analysis on HPV-negative oral squamous cell carcinoma (OSCC) to comprehensively characterize malignant cells in tumor core (TC) and leading edge (LE) transcriptional architectures. We show that the TC and LE are characterized by unique transcriptional profiles, neighboring cellular compositions, and ligand-receptor interactions. We demonstrate that the gene expression profile associated with the LE is conserved across different cancers while the TC is tissue specific, highlighting common mechanisms underlying tumor progression and invasion. Additionally, we find our LE gene signature is associated with worse clinical outcomes while TC gene signature is associated with improved prognosis across multiple cancer types. Finally, using an in silico modeling approach, we describe spatially-regulated patterns of cell development in OSCC that are predictably associated with drug response. Our work provides pan-cancer insights into TC and LE biology and interactive spatial atlases ( http://www.pboselab.ca/spatial_OSCC/ ; http://www.pboselab.ca/dynamo_OSCC/ ) that can be foundational for developing novel targeted therapies.
Collapse
Affiliation(s)
- Rohit Arora
- Department of Biochemistry & Molecular Biology, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
| | - Christian Cao
- Department of Biochemistry & Molecular Biology, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
- Temerty Faculty of Medicine, University of Toronto, Toronto, ON, Canada
| | - Mehul Kumar
- Department of Biochemistry & Molecular Biology, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
- Arnie Charbonneau Cancer Institute, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
| | - Sarthak Sinha
- Department of Comparative Biology and Experimental Medicine, Faculty of Veterinary Medicine, University of Calgary, Calgary, AB, Canada
| | - Ayan Chanda
- Department of Biochemistry & Molecular Biology, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
- Arnie Charbonneau Cancer Institute, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
| | - Reid McNeil
- Department of Biochemistry & Molecular Biology, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
- Arnie Charbonneau Cancer Institute, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
| | - Divya Samuel
- Department of Biochemistry & Molecular Biology, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
- Arnie Charbonneau Cancer Institute, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
| | - Rahul K Arora
- Center for Health Informatics, University of Calgary, Calgary, AB, Canada
- Institute of Biomedical Engineering, University of Oxford, Oxford, United Kingdom
| | - T Wayne Matthews
- Ohlson Research Initiative, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
- Section of Otolaryngology Head & Neck Surgery, Department of Surgery, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
| | - Shamir Chandarana
- Ohlson Research Initiative, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
- Section of Otolaryngology Head & Neck Surgery, Department of Surgery, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
| | - Robert Hart
- Ohlson Research Initiative, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
- Section of Otolaryngology Head & Neck Surgery, Department of Surgery, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
| | - Joseph C Dort
- Arnie Charbonneau Cancer Institute, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
- Ohlson Research Initiative, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
- Section of Otolaryngology Head & Neck Surgery, Department of Surgery, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
- Department of Community Health Sciences, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
| | - Jeff Biernaskie
- Department of Comparative Biology and Experimental Medicine, Faculty of Veterinary Medicine, University of Calgary, Calgary, AB, Canada
- Alberta Children's Hospital Research Institute, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
- Hotchkiss Brain Institute, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
- Department of Surgery, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
| | - Paola Neri
- Arnie Charbonneau Cancer Institute, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
- Division of Hematology, Department of Oncology, University of Calgary, Calgary, AB, Canada
| | - Martin D Hyrcza
- Arnie Charbonneau Cancer Institute, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
- Department of Pathology and Laboratory Medicine, University of Calgary, Calgary, AB, Canada
| | - Pinaki Bose
- Department of Biochemistry & Molecular Biology, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada.
- Arnie Charbonneau Cancer Institute, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada.
- Institute of Biomedical Engineering, University of Oxford, Oxford, United Kingdom.
- Department of Oncology, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada.
| |
Collapse
|
208
|
Wang R, Song S, Qin J, Yoshimura K, Peng F, Chu Y, Li Y, Fan Y, Jin J, Dang M, Dai E, Pei G, Han G, Hao D, Li Y, Chatterjee D, Harada K, Pizzi MP, Scott AW, Tatlonghari G, Yan X, Xu Z, Hu C, Mo S, Shanbhag N, Lu Y, Sewastjanow-Silva M, Fouad Abdelhakeem AA, Peng G, Hanash SM, Calin GA, Yee C, Mazur P, Marsden AN, Futreal A, Wang Z, Cheng X, Ajani JA, Wang L. Evolution of immune and stromal cell states and ecotypes during gastric adenocarcinoma progression. Cancer Cell 2023; 41:1407-1426.e9. [PMID: 37419119 PMCID: PMC10528152 DOI: 10.1016/j.ccell.2023.06.005] [Citation(s) in RCA: 58] [Impact Index Per Article: 29.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/13/2022] [Revised: 04/10/2023] [Accepted: 06/12/2023] [Indexed: 07/09/2023]
Abstract
Understanding tumor microenvironment (TME) reprogramming in gastric adenocarcinoma (GAC) progression may uncover novel therapeutic targets. Here, we performed single-cell profiling of precancerous lesions, localized and metastatic GACs, identifying alterations in TME cell states and compositions as GAC progresses. Abundant IgA+ plasma cells exist in the premalignant microenvironment, whereas immunosuppressive myeloid and stromal subsets dominate late-stage GACs. We identified six TME ecotypes (EC1-6). EC1 is exclusive to blood, while EC4, EC5, and EC2 are highly enriched in uninvolved tissues, premalignant lesions, and metastases, respectively. EC3 and EC6, two distinct ecotypes in primary GACs, associate with histopathological and genomic characteristics, and survival outcomes. Extensive stromal remodeling occurs in GAC progression. High SDC2 expression in cancer-associated fibroblasts (CAFs) is linked to aggressive phenotypes and poor survival, and SDC2 overexpression in CAFs contributes to tumor growth. Our study provides a high-resolution GAC TME atlas and underscores potential targets for further investigation.
Collapse
Affiliation(s)
- Ruiping Wang
- Department of Genomic Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Shumei Song
- Department of Gastrointestinal Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Jiangjiang Qin
- Department of Gastric Surgery, Zhejiang Cancer Hospital, Hangzhou, Zhejiang 310022, China; Institute of Basic Medicine and Cancer, Chinese Academy of Sciences, Hangzhou, Zhejiang 310018, China
| | - Katsuhiro Yoshimura
- Department of Gastrointestinal Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Fuduan Peng
- Department of Genomic Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Yanshuo Chu
- Department of Genomic Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Yuan Li
- Department of Surgical Oncology and General Surgery, First Hospital of China Medical University, Shenyang 110001, China
| | - Yibo Fan
- Department of Gastrointestinal Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Jiankang Jin
- Department of Gastrointestinal Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Minghao Dang
- Department of Genomic Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Enyu Dai
- Department of Genomic Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Guangsheng Pei
- Department of Genomic Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Guangchun Han
- Department of Genomic Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Dapeng Hao
- Department of Genomic Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Yating Li
- Department of Genomic Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA; Department of Melanoma Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Deyali Chatterjee
- Department of Pathology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Kazuto Harada
- Department of Gastrointestinal Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Melissa Pool Pizzi
- Department of Gastrointestinal Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Ailing W Scott
- Department of Gastrointestinal Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Ghia Tatlonghari
- Department of Gastrointestinal Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Xinmiao Yan
- Department of Genomic Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Zhiyuan Xu
- Department of Gastric Surgery, Zhejiang Cancer Hospital, Hangzhou, Zhejiang 310022, China
| | - Can Hu
- Department of Gastric Surgery, Zhejiang Cancer Hospital, Hangzhou, Zhejiang 310022, China
| | - Shaowei Mo
- Department of Gastric Surgery, Zhejiang Cancer Hospital, Hangzhou, Zhejiang 310022, China
| | - Namita Shanbhag
- Department of Gastrointestinal Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Yang Lu
- Department of Nuclear Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Matheus Sewastjanow-Silva
- Department of Gastrointestinal Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Ahmed Adel Fouad Abdelhakeem
- Department of Gastrointestinal Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Guang Peng
- Department of Clinical Cancer Prevention, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Samir M Hanash
- Department of Clinical Cancer Prevention, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - George A Calin
- Department of Translational Molecular Pathology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Cassian Yee
- Department of Melanoma Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Pawel Mazur
- Department of Experimental Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Autumn N Marsden
- Department of Genomic Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Andrew Futreal
- Department of Genomic Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Zhenning Wang
- Department of Surgical Oncology and General Surgery, First Hospital of China Medical University, Shenyang 110001, China
| | - Xiangdong Cheng
- Department of Gastric Surgery, Zhejiang Cancer Hospital, Hangzhou, Zhejiang 310022, China; Institute of Basic Medicine and Cancer, Chinese Academy of Sciences, Hangzhou, Zhejiang 310018, China
| | - Jaffer A Ajani
- Department of Gastrointestinal Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA.
| | - Linghua Wang
- Department of Genomic Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA; The University of Texas MD Anderson Cancer Center UTHealth Houston Graduate School of Biomedical Sciences (GSBS), Houston, TX 77030, USA.
| |
Collapse
|
209
|
Closset L, Gultekin O, Salehi S, Sarhan D, Lehti K, Gonzalez-Molina J. The extracellular matrix - immune microenvironment crosstalk in cancer therapy: Challenges and opportunities. Matrix Biol 2023; 121:217-228. [PMID: 37524251 DOI: 10.1016/j.matbio.2023.07.003] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Revised: 07/28/2023] [Accepted: 07/28/2023] [Indexed: 08/02/2023]
Abstract
Targeting the tumour immune microenvironment (TIME) by cancer immunotherapy has led to improved patient outcomes. However, response to these treatments is heterogeneous and cancer-type dependant. The therapeutic activity of classical cancer therapies such as chemotherapy, radiotherapy, and surgical oncology is modulated by alterations of the TIME. A major regulator of immune cell function and resistance to both immune and classical therapies is the extracellular matrix (ECM). Concurrently, cancer therapies reshape the TIME as well as the ECM, causing both pro- and anti-tumour responses. Accordingly, the TIME-ECM crosstalk presents attractive opportunities to improve therapy outcomes. Here, we review the molecular crosstalk between the TIME and the ECM in cancer and its implications in cancer progression and clinical intervention. Additionally, we discuss examples and future directions of ECM and TIME co-targeting in combination with oncological therapies including surgery, chemotherapy, and radiotherapy.
Collapse
Affiliation(s)
- Lara Closset
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, Solnavägen 9, Stockholm 171 65, Sweden; Saint-Antoine Research center (CRSA), UMR_S 938, INSERM, Sorbonne Université, Paris F-75012, France
| | - Okan Gultekin
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, Solnavägen 9, Stockholm 171 65, Sweden
| | - Sahar Salehi
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, Solnavägen 9, Stockholm 171 65, Sweden; Department of Women's and Children's Health, Division of Obstetrics and Gynecology, Karolinska Institutet, Stockholm, Sweden; Department of Pelvic Cancer, Theme Cancer, Karolinska University Hospital, Stockholm, Sweden
| | - Dhifaf Sarhan
- Department of Laboratory Medicine, Division of Pathology, Karolinska Institutet, Stockholm, Sweden
| | - Kaisa Lehti
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, Solnavägen 9, Stockholm 171 65, Sweden; Department of Biomedical Laboratory Science, Norwegian University of Science and Technology, Trondheim, Norway
| | - Jordi Gonzalez-Molina
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, Solnavägen 9, Stockholm 171 65, Sweden.
| |
Collapse
|
210
|
Gao K, Lian W, Zhao R, Huang W, Xiong J. The joint role of methylation and immune-related lncRNAs in ovarian cancer: Defining molecular subtypes and developing prognostic signature. Transl Oncol 2023; 34:101704. [PMID: 37257331 PMCID: PMC10245114 DOI: 10.1016/j.tranon.2023.101704] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2023] [Revised: 05/12/2023] [Accepted: 05/24/2023] [Indexed: 06/02/2023] Open
Abstract
INTRODUCTION Complex outcome of ovarian cancer (OC) stems from the tumor immune microenvironment (TIME) influenced by genetic and epigenetic factors. This study aimed to comprehensively explored the subclasses of OC through lncRNAs related to both N6-methyladenosine (m6A)/N1-methyladenosine (m1A)/N7-methylguanosine (m7G)/5-methylcytosine (m5C) in terms of epigenetic variability and immune molecules and develop a new set of risk predictive systems. MATERIAL AND METHODS The lncRNA data of OC were collected from TCGA. Spearman correlation analysis on lncRNA data of OC with immune-related gene expression and with m6A/m5C/m1A/m7G were respectively conducted. The m6A/m5C/m1A/m7G-related m6A/m5C/m1A/m7G related immune lncRNA subtypes were identified on the basis of the prognostic lncRNAs. Heterogeneity among subtypes was evaluated by tumor mutation analysis, tumor microenvironment (TME) component analysis, response to immune checkpoint blocked (ICB) and chemotherapeutic drugs. A risk predictive system was developed based on the results of Cox regression analysis and random survival forest analysis of the differences between each specific cluster and other clusters. RESULTS Three m6A/m5C/m1A/m7G-related immune lncRNA subtypes of OC showing distinct differences in prognosis, mutation pattern, TIME components, immunotherapy and chemotherapy response were identified. A set of risk predictive system consisting of 10 lncRNA for OC was developed, according to which the risk score of samples in each OC dataset was calculated and risk type was defined. CONCLUSIONS This study classified three m6A/m5C/m1A/m7G-related immune lncRNA subtypes with distinct heterogeneous mutation patterns, TME components, ICB therapy and immune response, and provided a set of risk predictive system consisted of 10 lncRNA for OC.
Collapse
Affiliation(s)
- Kefei Gao
- Department of Obstetrics and Gynaecology, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou 510623, China
| | - Wenqin Lian
- Department of Burns and Plastic & Wound Repair Surgery, Xiang'an Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen 361100, China
| | - Rui Zhao
- Department of Obstetrics and Gynaecology, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou 510623, China
| | - Weiming Huang
- Department of Obstetrics and Gynaecology, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou 510623, China.
| | - Jian Xiong
- Department of Obstetrics and Gynaecology, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou 510623, China.
| |
Collapse
|
211
|
Thakur S, Haider S, Natrajan R. Implications of tumour heterogeneity on cancer evolution and therapy resistance: lessons from breast cancer. J Pathol 2023; 260:621-636. [PMID: 37587096 DOI: 10.1002/path.6158] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Revised: 06/11/2023] [Accepted: 06/14/2023] [Indexed: 08/18/2023]
Abstract
Tumour heterogeneity is pervasive amongst many cancers and leads to disease progression, and therapy resistance. In this review, using breast cancer as an exemplar, we focus on the recent advances in understanding the interplay between tumour cells and their microenvironment using single cell sequencing and digital spatial profiling technologies. Further, we discuss the utility of lineage tracing methodologies in pre-clinical models of breast cancer, and how these are being used to unravel new therapeutic vulnerabilities and reveal biomarkers of breast cancer progression. © 2023 The Pathological Society of Great Britain and Ireland.
Collapse
Affiliation(s)
- Shefali Thakur
- The Breast Cancer Now Toby Robins Research Centre, The Institute of Cancer Research, London, UK
| | - Syed Haider
- The Breast Cancer Now Toby Robins Research Centre, The Institute of Cancer Research, London, UK
| | - Rachael Natrajan
- The Breast Cancer Now Toby Robins Research Centre, The Institute of Cancer Research, London, UK
| |
Collapse
|
212
|
Nasiraee MR, Shahrivari S, Sayad S, Mahdavi H, Saraygord‐Afshari N, Bagheri Z. An agarose-alginate microfluidic device for the study of spheroid invasion, ATRA inhibits CAFs-mediated matrix remodeling. Cytotechnology 2023; 75:309-323. [PMID: 37389131 PMCID: PMC10299977 DOI: 10.1007/s10616-023-00578-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2022] [Accepted: 03/31/2023] [Indexed: 07/01/2023] Open
Abstract
UNLABELLED Growing evidence demonstrates that cancer-associated fibroblasts (CAF) are responsible for tumor genesis, growth, metastasis, and treatment response. Therefore, targeting these cells may contribute to tumor control. It has been proposed that targeting key molecules and pathways of proliferative functions can be more effective than killing CAFs. In this regard, multicellular aggregates, like spheroids, can be used as human tumor models. Spheroids closely resemble human tumors and mimic many of their features. Microfluidic systems are ideal for cultivation and study of spheroids. These systems can be designed with different biological and synthetic matrices in order to have a more realistic simulation of the tumor microenvironment (TME). In this study, we investigated the effect of all-trans retinoic acid (ATRA) on 3D spheroid invasion of MDA-MB cells exposed to hydrogel matrix derived from CAFs. The number of invasive cells significantly decreased in CAF-ECM hydrogel treated with ATRA (p < 0.05), which indicates that ATRA could be effective for CAFs normalization. This experiment was done using an agarose-alginate microfluidic chip. As compared with common methods, such hydrogel casting is an easier method for chip fabrication and can even reduce costs. SUPPLEMENTARY INFORMATION The online version contains supplementary material available at 10.1007/s10616-023-00578-y.
Collapse
Affiliation(s)
- Mohammad Reza Nasiraee
- Department of Medical Biotechnology, Faculty of Allied Medical Sciences, Iran University of Medical Sciences, Tehran 1449614535, Iran
| | - Shabnam Shahrivari
- Department of Medical Biotechnology, Faculty of Allied Medical Sciences, Iran University of Medical Sciences, Tehran 1449614535, Iran
| | - Soheila Sayad
- Department of Surgery, Firoozgar Clinical Research Development Center (FCRDC), Iran University of Medical Sciences, Tehran, Iran
| | - Hoda Mahdavi
- Department of Radiation Oncology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Neda Saraygord‐Afshari
- Department of Medical Biotechnology, Faculty of Allied Medical Sciences, Iran University of Medical Sciences, Tehran 1449614535, Iran
| | - Zeinab Bagheri
- Faculty of Life Sciences and Biotechnology, Shahid Beheshti University G.C, Tehran, 19839-69411 Iran
| |
Collapse
|
213
|
Jiang F, Jia K, Chen Y, Ji C, Chong X, Li Z, Zhao F, Bai Y, Ge S, Gao J, Zhang X, Li J, Shen L, Zhang C. ANO1-Mediated Inhibition of Cancer Ferroptosis Confers Immunotherapeutic Resistance through Recruiting Cancer-Associated Fibroblasts. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023; 10:e2300881. [PMID: 37341301 PMCID: PMC10460848 DOI: 10.1002/advs.202300881] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Revised: 04/01/2023] [Indexed: 06/22/2023]
Abstract
The application of immunotherapy in gastrointestinal (GI) cancers remains challenging because of the limited response rate and emerging therapeutic resistance. Combining clinical cohorts, multi-omics study, and functional/molecular experiments, it is found that ANO1 amplification or high-expression predicts poor outcomes and resistance to immunotherapy for GI cancer patients. Knocking-down or inhibiting ANO1 suppresses the growth/metastasis/invasion of multiple GI cancer cell lines, cell-derived xenograft, and patient-derived xenograft models. ANO1 contributes to an immune-suppressive tumor microenvironment and induces acquired resistance to anti-PD-1 immunotherapy, while ANO1 knockdown or inhibition enhances immunotherapeutic effectiveness and overcomes resistance to immunotherapy. Mechanistically, through inhibiting cancer ferroptosis in a PI3K-Akt signaling-dependent manner, ANO1 enhances tumor progression and facilitates cancer-associated fibroblast recruitment by promoting TGF-β release, thus crippling CD8+ T cell-mediated anti-tumor immunity and generating resistance to immunotherapy. This work highlights ANO1's role in mediating tumor immune microenvironment remodeling and immunotherapeutic resistance, and introduces ANO1 as a promising target for GI cancers' precision treatment.
Collapse
Affiliation(s)
- Fangli Jiang
- Department of Gastrointestinal OncologyKey Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing)Peking University Cancer Hospital & InstituteBeijing100142P. R. China
| | - Keren Jia
- Department of Gastrointestinal OncologyKey Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing)Peking University Cancer Hospital & InstituteBeijing100142P. R. China
| | - Yang Chen
- Department of Gastrointestinal OncologyKey Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing)Peking University Cancer Hospital & InstituteBeijing100142P. R. China
| | - Congcong Ji
- Department of Gastrointestinal OncologyKey Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing)Peking University Cancer Hospital & InstituteBeijing100142P. R. China
| | - Xiaoyi Chong
- Department of Gastrointestinal OncologyKey Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing)Peking University Cancer Hospital & InstituteBeijing100142P. R. China
| | - Zhongwu Li
- Department of PathologyKey Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing)Peking University Cancer Hospital & InstituteBeijing100142P. R. China
| | - Feilong Zhao
- Department of Medical Affairs3D Medicines, Inc.Shanghai201199P. R. China
| | - Yuezong Bai
- Department of Gastrointestinal OncologyKey Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing)Peking University Cancer Hospital & InstituteBeijing100142P. R. China
| | - Sai Ge
- Department of Gastrointestinal OncologyKey Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing)Peking University Cancer Hospital & InstituteBeijing100142P. R. China
| | - Jing Gao
- Department of OncologyShenzhen Key Laboratory of Gastrointestinal Cancer Translational ResearchCancer InstitutePeking University Shenzhen HospitalShenzhen‐Peking University‐Hong Kong University of Science and Technology Medical CenterShenzhen518000P. R. China
| | - Xiaotian Zhang
- Department of Gastrointestinal OncologyKey Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing)Peking University Cancer Hospital & InstituteBeijing100142P. R. China
| | - Jian Li
- Department of Gastrointestinal OncologyKey Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing)Peking University Cancer Hospital & InstituteBeijing100142P. R. China
| | - Lin Shen
- Department of Gastrointestinal OncologyKey Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing)Peking University Cancer Hospital & InstituteBeijing100142P. R. China
| | - Cheng Zhang
- Department of Gastrointestinal OncologyKey Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing)Peking University Cancer Hospital & InstituteBeijing100142P. R. China
| |
Collapse
|
214
|
Wang Q, Sun K, Liu R, Song Y, Lv Y, Bi P, Yang F, Li S, Zhao J, Li X, Chen D, Mei J, Yang R, Chen K, Liu D, Tang S. Single-cell transcriptome sequencing of B-cell heterogeneity and tertiary lymphoid structure predicts breast cancer prognosis and neoadjuvant therapy efficacy. Clin Transl Med 2023; 13:e1346. [PMID: 37525587 PMCID: PMC10390819 DOI: 10.1002/ctm2.1346] [Citation(s) in RCA: 35] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2022] [Revised: 07/15/2023] [Accepted: 07/19/2023] [Indexed: 08/02/2023] Open
Abstract
BACKGROUND Breast cancer (BC) is a highly heterogeneous disease, and although immunotherapy has recently increased patient survival in a number of solid and hematologic malignancies, most BC subtypes respond poorly to immune checkpoint blockade therapy (ICB). B cells, particularly those that congregate in tertiary lymphoid structures (TLS), play a significant role in antitumour immunity. However, B-cell heterogeneity at single-cell resolution and its clinical significance with TLS in BC need to be explored further. METHODS Primary tumour lesions and surrounding normal tissues were taken from 14 BC patients, totaling 124,587 cells, for single-cell transcriptome sequencing and bioinformatics analysis. RESULTS Based on the usual markers, the single-cell transcriptome profiles were classified into various clusters. A thorough single-cell study was conducted with a focus on tumour-infiltrating B cells (TIL-B) and tumour-associated neutrophils (TAN). TIL-B was divided into five clusters, and unusual cell types, such as follicular B cells, which are strongly related to immunotherapy efficacy, were identified. In BC, TAN and TIL-B infiltration are positively correlated, and at the same time, compared with TLS-high, TAN and TIL-B in TLS-low group are significantly positively correlated. CONCLUSIONS In conclusion, our study highlights the heterogeneity of B cells in BC, explains how B cells and TLS contribute significantly to antitumour immunity at both the single-cell and clinical level, and offers a straightforward marker for TLS called CD23. These results will offer more pertinent information on the applicability and effectiveness of tumour immunotherapy for BC.
Collapse
Affiliation(s)
- Qing Wang
- Department of Breast SurgeryCaner Hospital of Yunnan ProvinceThe Third Affiliated Hospital of Kunming Medical UniversityKunmingChina
| | - Ke Sun
- State Key Laboratory of Primate Biomedical ResearchInstitute of Primate Translational MedicineKunming University of Science and TechnologyKunmingChina
- Yunnan Key Laboratory of Primate Biomedical ResearchKunmingChina
| | - Rui Liu
- Department of Breast SurgeryCaner Hospital of Yunnan ProvinceThe Third Affiliated Hospital of Kunming Medical UniversityKunmingChina
| | - Ying Song
- Department of Breast SurgeryCaner Hospital of Yunnan ProvinceThe Third Affiliated Hospital of Kunming Medical UniversityKunmingChina
| | - Yafeng Lv
- Department of Breast SurgeryCaner Hospital of Yunnan ProvinceThe Third Affiliated Hospital of Kunming Medical UniversityKunmingChina
| | - Pingping Bi
- Department of Breast SurgeryCaner Hospital of Yunnan ProvinceThe Third Affiliated Hospital of Kunming Medical UniversityKunmingChina
| | - Fuying Yang
- Department of Breast SurgeryCaner Hospital of Yunnan ProvinceThe Third Affiliated Hospital of Kunming Medical UniversityKunmingChina
| | - Sijia Li
- Department of Breast SurgeryCaner Hospital of Yunnan ProvinceThe Third Affiliated Hospital of Kunming Medical UniversityKunmingChina
| | - Jiawen Zhao
- Department of Breast SurgeryCaner Hospital of Yunnan ProvinceThe Third Affiliated Hospital of Kunming Medical UniversityKunmingChina
| | - Xiuqin Li
- Department of Breast SurgeryCaner Hospital of Yunnan ProvinceThe Third Affiliated Hospital of Kunming Medical UniversityKunmingChina
| | - Dong Chen
- Department of UltrasoundCaner Hospital of Yunnan ProvinceThe Third Affiliated Hospital of Kunming Medical UniversityKunmingChina
| | - Jialin Mei
- Department of Cardiothoracic SurgeryBaoshan People's HospitalBaoshanChina
| | - Rirong Yang
- Center for Genomic and Personalized MedicineGuangxi Medical UniversityNanningChina
- Department of ImmunologySchool of Basic Medical SciencesGuangxi Medical UniversityNanningChina
| | - Kai Chen
- State Key Laboratory of Primate Biomedical ResearchInstitute of Primate Translational MedicineKunming University of Science and TechnologyKunmingChina
- Yunnan Key Laboratory of Primate Biomedical ResearchKunmingChina
| | - Dequan Liu
- Department of Breast SurgeryCaner Hospital of Yunnan ProvinceThe Third Affiliated Hospital of Kunming Medical UniversityKunmingChina
| | - Shichong Tang
- Department of Breast SurgeryCaner Hospital of Yunnan ProvinceThe Third Affiliated Hospital of Kunming Medical UniversityKunmingChina
| |
Collapse
|
215
|
Abstract
Tumour cells migrate very early from primary sites to distant sites, and yet metastases often take years to manifest themselves clinically or never even surface within a patient's lifetime. This pause in cancer progression emphasizes the existence of barriers that constrain the growth of disseminated tumour cells (DTCs) at distant sites. Although the nature of these barriers to metastasis might include DTC-intrinsic traits, recent studies have established that the local microenvironment also controls the formation of metastases. In this Perspective, I discuss how site-specific differences of the immune system might be a major selective growth restraint on DTCs, and argue that harnessing tissue immunity will be essential for the next stage in immunotherapy development that reliably prevents the establishment of metastases.
Collapse
|
216
|
Barb AC, Fenesan MP, Pirtea M, Margan MM, Tomescu L, Ceban E, Cimpean AM, Melnic E. Reassessing Breast Cancer-Associated Fibroblasts (CAFs) Interactions with Other Stromal Components and Clinico-Pathologic Parameters by Using Immunohistochemistry and Digital Image Analysis (DIA). Cancers (Basel) 2023; 15:3823. [PMID: 37568639 PMCID: PMC10417678 DOI: 10.3390/cancers15153823] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2023] [Revised: 07/18/2023] [Accepted: 07/25/2023] [Indexed: 08/13/2023] Open
Abstract
BACKGROUND Breast cancer (BC) stroma has CD34- and αSMA-positive cancer-associated fibroblasts (CAFs) differently distributed. During malignant transformation, CD34-positive fibroblasts decrease while αSMA-positive CAFs increase. The prevalence of αSMA-positive CAFs in BC stroma makes microscopic examination difficult without digital image analysis processing (DIA). DIA was used to compare CD34- and αSMA-positive CAFs among breast cancer molecular subgroups. DIA-derived data were linked to age, survival, tumor stroma vessels, tertiary lymphoid structures (TLS), invasion, and recurrence. METHODS Double immunostaining for CD34 and αSMA showed different CAF distribution patterns in normal and BC tissues. Single CD34 immunohistochemistry on supplemental slides quantified tumor stroma CD34_CAFs. Digital image analysis (DIA) data on CAF density, intensity, stromal score, and H-score were correlated with clinico-pathologic factors. RESULTS CD34/αSMA CAF proportion was significantly related to age in Luminal A (LA), Luminal B (LB), and HER2 subtypes. CD34_CAF influence on survival, invasion, and recurrence of LA, LB-HER2, and TNBC subtypes was found to be significant. The CD34/αSMA-expressing CAFs exhibited a heterogeneous impact on stromal vasculature and TLS. CONCLUSION BC stromal CD34_CAFs/αSMA_CAFs have an impact on survival, invasion, and recurrence differently between BC molecular subtypes. The tumor stroma DIA assessment may have predictive potential to prognosis and long-term follow-up of patients with breast cancer.
Collapse
Affiliation(s)
- Alina Cristina Barb
- Department of Microscopic Morphology/Histology, Victor Babes University of Medicine and Pharmacy, 300041 Timisoara, Romania; (A.C.B.); (M.P.F.); (M.P.)
- Doctoral School in Medicine, Victor Babes University of Medicine and Pharmacy, 300041 Timisoara, Romania;
- Department of Clinical Oncology, OncoHelp Hospital, 300239 Timisoara, Romania
| | - Mihaela Pasca Fenesan
- Department of Microscopic Morphology/Histology, Victor Babes University of Medicine and Pharmacy, 300041 Timisoara, Romania; (A.C.B.); (M.P.F.); (M.P.)
- Doctoral School in Medicine, Victor Babes University of Medicine and Pharmacy, 300041 Timisoara, Romania;
- Department of Clinical Oncology, OncoHelp Hospital, 300239 Timisoara, Romania
| | - Marilena Pirtea
- Department of Microscopic Morphology/Histology, Victor Babes University of Medicine and Pharmacy, 300041 Timisoara, Romania; (A.C.B.); (M.P.F.); (M.P.)
| | - Mădălin-Marius Margan
- Department of Functional Sciences/Discipline of Public Health, Victor Babes University of Medicine and Pharmacy, 300041 Timisoara, Romania;
| | - Larisa Tomescu
- Doctoral School in Medicine, Victor Babes University of Medicine and Pharmacy, 300041 Timisoara, Romania;
- Department of Obstetrics and Gynecology, “Victor Babes” University of Medicine and Pharmacy Timisoara, 300041 Timisoara, Romania
| | - Emil Ceban
- Department of Urology and Surgical Nephrology, Nicolae Testemitanu State University of Medicine and Pharmacy, 2004 Chisinau, Moldova;
- Laboratory of Andrology, Functional Urology and Sexual Medicine, Nicolae Testemitanu State University of Medicine and Pharmacy, 2004 Chisinau, Moldova
| | - Anca Maria Cimpean
- Department of Microscopic Morphology/Histology, Victor Babes University of Medicine and Pharmacy, 300041 Timisoara, Romania; (A.C.B.); (M.P.F.); (M.P.)
- Center of Expertise for Rare Vascular Disease in Children, Emergency Hospital for Children Louis Turcanu, 300011 Timisoara, Romania
| | - Eugen Melnic
- Department of Pathology, Nicolae Testemitanu State University of Medicine and Pharmacy, 2004 Chisinau, Moldova;
| |
Collapse
|
217
|
Cords L, Tietscher S, Anzeneder T, Langwieder C, Rees M, de Souza N, Bodenmiller B. Cancer-associated fibroblast classification in single-cell and spatial proteomics data. Nat Commun 2023; 14:4294. [PMID: 37463917 DOI: 10.1038/s41467-023-39762-1] [Citation(s) in RCA: 98] [Impact Index Per Article: 49.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2023] [Accepted: 06/26/2023] [Indexed: 07/20/2023] Open
Abstract
Cancer-associated fibroblasts (CAFs) are a diverse cell population within the tumour microenvironment, where they have critical effects on tumour evolution and patient prognosis. To define CAF phenotypes, we analyse a single-cell RNA sequencing (scRNA-seq) dataset of over 16,000 stromal cells from tumours of 14 breast cancer patients, based on which we define and functionally annotate nine CAF phenotypes and one class of pericytes. We validate this classification system in four additional cancer types and use highly multiplexed imaging mass cytometry on matched breast cancer samples to confirm our defined CAF phenotypes at the protein level and to analyse their spatial distribution within tumours. This general CAF classification scheme will allow comparison of CAF phenotypes across studies, facilitate analysis of their functional roles, and potentially guide development of new treatment strategies in the future.
Collapse
Affiliation(s)
- Lena Cords
- Department of Quantitative Biomedicine, University of Zurich, CH-8057, Zurich, Switzerland
- Institute of Molecular Health Sciences, ETH Zurich, CH-8093, Zurich, Switzerland
- Life Science Zurich Graduate School, ETH Zurich and University of Zurich, CH-8057, Zurich, Switzerland
| | - Sandra Tietscher
- Department of Quantitative Biomedicine, University of Zurich, CH-8057, Zurich, Switzerland
- Institute of Molecular Health Sciences, ETH Zurich, CH-8093, Zurich, Switzerland
- Life Science Zurich Graduate School, ETH Zurich and University of Zurich, CH-8057, Zurich, Switzerland
| | | | | | - Martin Rees
- Pathology at Josefshaus, D-44137, Dortmund, Germany
| | - Natalie de Souza
- Department of Quantitative Biomedicine, University of Zurich, CH-8057, Zurich, Switzerland
- Institute of Molecular Health Sciences, ETH Zurich, CH-8093, Zurich, Switzerland
| | - Bernd Bodenmiller
- Department of Quantitative Biomedicine, University of Zurich, CH-8057, Zurich, Switzerland.
- Institute of Molecular Health Sciences, ETH Zurich, CH-8093, Zurich, Switzerland.
| |
Collapse
|
218
|
Koncina E, Nurmik M, Pozdeev VI, Gilson C, Tsenkova M, Begaj R, Stang S, Gaigneaux A, Weindorfer C, Rodriguez F, Schmoetten M, Klein E, Karta J, Atanasova VS, Grzyb K, Ullmann P, Halder R, Hengstschläger M, Graas J, Augendre V, Karapetyan YE, Kerger L, Zuegel N, Skupin A, Haan S, Meiser J, Dolznig H, Letellier E. IL1R1 + cancer-associated fibroblasts drive tumor development and immunosuppression in colorectal cancer. Nat Commun 2023; 14:4251. [PMID: 37460545 DOI: 10.1038/s41467-023-39953-w] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Accepted: 07/05/2023] [Indexed: 07/20/2023] Open
Abstract
Fibroblasts have a considerable functional and molecular heterogeneity and can play various roles in the tumor microenvironment. Here we identify a pro-tumorigenic IL1R1+, IL-1-high-signaling subtype of fibroblasts, using multiple colorectal cancer (CRC) patient single cell sequencing datasets. This subtype of fibroblasts is linked to T cell and macrophage suppression and leads to increased cancer cell growth in 3D co-culture assays. Furthermore, both a fibroblast-specific IL1R1 knockout and IL-1 receptor antagonist Anakinra administration reduce tumor growth in vivo. This is accompanied by reduced intratumoral Th17 cell infiltration. Accordingly, CRC patients who present with IL1R1-expressing cancer-associated-fibroblasts (CAFs), also display elevated levels of immune exhaustion markers, as well as an increased Th17 score and an overall worse survival. Altogether, this study underlines the therapeutic value of targeting IL1R1-expressing CAFs in the context of CRC.
Collapse
Affiliation(s)
- E Koncina
- Molecular Disease Mechanisms Group, Department of Life Sciences and Medicine, University of Luxembourg, Belval, Luxembourg
| | - M Nurmik
- Molecular Disease Mechanisms Group, Department of Life Sciences and Medicine, University of Luxembourg, Belval, Luxembourg
| | - V I Pozdeev
- Molecular Disease Mechanisms Group, Department of Life Sciences and Medicine, University of Luxembourg, Belval, Luxembourg
| | - C Gilson
- Molecular Disease Mechanisms Group, Department of Life Sciences and Medicine, University of Luxembourg, Belval, Luxembourg
| | - M Tsenkova
- Molecular Disease Mechanisms Group, Department of Life Sciences and Medicine, University of Luxembourg, Belval, Luxembourg
| | - R Begaj
- Molecular Disease Mechanisms Group, Department of Life Sciences and Medicine, University of Luxembourg, Belval, Luxembourg
| | - S Stang
- Center for Pathobiochemistry and Genetics, Institute of Medical Genetics, Medical University of Vienna, Vienna, Austria
| | - A Gaigneaux
- Molecular Disease Mechanisms Group, Department of Life Sciences and Medicine, University of Luxembourg, Belval, Luxembourg
| | - C Weindorfer
- Center for Pathobiochemistry and Genetics, Institute of Medical Genetics, Medical University of Vienna, Vienna, Austria
| | - F Rodriguez
- Molecular Disease Mechanisms Group, Department of Life Sciences and Medicine, University of Luxembourg, Belval, Luxembourg
| | - M Schmoetten
- Molecular Disease Mechanisms Group, Department of Life Sciences and Medicine, University of Luxembourg, Belval, Luxembourg
| | - E Klein
- Molecular Disease Mechanisms Group, Department of Life Sciences and Medicine, University of Luxembourg, Belval, Luxembourg
| | - J Karta
- Molecular Disease Mechanisms Group, Department of Life Sciences and Medicine, University of Luxembourg, Belval, Luxembourg
| | - V S Atanasova
- Center for Pathobiochemistry and Genetics, Institute of Medical Genetics, Medical University of Vienna, Vienna, Austria
| | - K Grzyb
- Luxembourg Centre for Systems Biomedicine, University of Luxembourg, Belval, Luxembourg
| | - P Ullmann
- Molecular Disease Mechanisms Group, Department of Life Sciences and Medicine, University of Luxembourg, Belval, Luxembourg
| | - R Halder
- Luxembourg Centre for Systems Biomedicine, University of Luxembourg, Belval, Luxembourg
| | - M Hengstschläger
- Center for Pathobiochemistry and Genetics, Institute of Medical Genetics, Medical University of Vienna, Vienna, Austria
| | - J Graas
- Clinical and Epidemiological Investigation Center, Department of Population Health, Luxembourg Institute of Health, Luxembourg, Luxembourg
| | - V Augendre
- National Center of Pathology, Laboratoire National de Santé, Dudelange, Luxembourg
| | | | - L Kerger
- Department of Surgery, Centre Hospitalier Emile Mayrisch, Esch-sur-Alzette, Luxembourg
| | - N Zuegel
- Department of Surgery, Centre Hospitalier Emile Mayrisch, Esch-sur-Alzette, Luxembourg
| | - A Skupin
- Luxembourg Centre for Systems Biomedicine, University of Luxembourg, Belval, Luxembourg
| | - S Haan
- Molecular Disease Mechanisms Group, Department of Life Sciences and Medicine, University of Luxembourg, Belval, Luxembourg
| | - J Meiser
- Cancer Metabolism Group, Department of Cancer Research, Luxembourg Institute of Health, Luxembourg, Luxembourg
| | - H Dolznig
- Center for Pathobiochemistry and Genetics, Institute of Medical Genetics, Medical University of Vienna, Vienna, Austria.
| | - E Letellier
- Molecular Disease Mechanisms Group, Department of Life Sciences and Medicine, University of Luxembourg, Belval, Luxembourg.
| |
Collapse
|
219
|
Inoue C, Miki Y, Suzuki T. New Perspectives on Sex Steroid Hormones Signaling in Cancer-Associated Fibroblasts of Non-Small Cell Lung Cancer. Cancers (Basel) 2023; 15:3620. [PMID: 37509283 PMCID: PMC10377312 DOI: 10.3390/cancers15143620] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2023] [Revised: 06/30/2023] [Accepted: 07/10/2023] [Indexed: 07/30/2023] Open
Abstract
The importance of sex hormones, especially estrogen, in the pathogenesis of non-small-cell lung cancer (NSCLC) has attracted attention due to its high incidence among young adults and nonsmokers, especially those who are female. Cancer-associated fibroblasts (CAFs) reside in the cancer stroma and influence cancer growth, invasion, metastasis, and acquisition of drug resistance through interactions with cancer cells and other microenvironmental components. Hormone-mediated cell-cell interactions are classic cell-cell interactions and well-known phenomena in breast cancer and prostate cancer CAFs. In cancers of other organs, including NSCLC, the effects of CAFs on hormone-receptor expression and hormone production in cancer tissues have been reported; however, there are few such studies. Many more studies have been performed on breast and prostate cancers. Recent advances in technology, particularly single-cell analysis techniques, have led to significant advances in the classification and function of CAFs. However, the importance of sex hormones in cell-cell interactions of CAFs in NSCLC remains unclear. This review summarizes reports on CAFs in NSCLC and sex hormones in cancer and immune cells surrounding CAFs. Furthermore, we discuss the prospects of sex-hormone research involving CAFs in NSCLC.
Collapse
Affiliation(s)
- Chihiro Inoue
- Department of Anatomic Pathology, Tohoku University Graduate School of Medicine, Sendai 980-8575, Japan
| | - Yasuhiro Miki
- Department of Anatomic Pathology, Tohoku University Graduate School of Medicine, Sendai 980-8575, Japan
| | - Takashi Suzuki
- Department of Anatomic Pathology, Tohoku University Graduate School of Medicine, Sendai 980-8575, Japan
| |
Collapse
|
220
|
O’Connor RA, Martinez BR, Koppensteiner L, Mathieson L, Akram AR. Cancer-associated fibroblasts drive CXCL13 production in activated T cells via TGF-beta. Front Immunol 2023; 14:1221532. [PMID: 37520560 PMCID: PMC10373066 DOI: 10.3389/fimmu.2023.1221532] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Accepted: 06/27/2023] [Indexed: 08/01/2023] Open
Abstract
Introduction Tumour-reactive T cells producing the B-cell attractant chemokine CXCL13, in solid tumours, promote development of tertiary lymphoid structures (TLS) and are associated with improved prognosis and responsiveness to checkpoint immunotherapy. Cancer associated fibroblasts are the dominant stromal cell type in non-small cell lung cancer (NSCLC) where they co-localise with T cells and can influence T cell activation and exhaustion. We questioned whether CAF directly promote CXCL13-production during T cell activation. Methods We characterised surface markers, cytokine production and transcription factor expression in CXCL13-producing T cells in NSCLC tumours and paired non-cancerous lung samples using flow cytometry. We then assessed the influence of human NSCLC-derived primary CAF lines on T cells from healthy donors and NSCLC patients during activation in vitro measuring CXCL13 production and expression of cell-surface markers and transcription factors by flow cytometry. Results CAFs significantly increased the production of CXCL13 by both CD4+ and CD8+ T cells. CAF-induced CXCL13-producing cells lacked expression of CXCR5 and BCL6 and displayed a T peripheral helper cell phenotype. Furthermore, we demonstrate CXCL13 production by T cells is induced by TGF-β and limited by IL-2. CAF provide TGF-β during T cell activation and reduce availability of IL-2 both directly (by reducing the capacity for IL-2 production) and indirectly, by expanding a population of activated Treg. Inhibition of TGF-β signalling prevented both CAF-driven upregulation of CXCL13 and Treg expansion. Discussion Promoting CXCL13 production represents a newly described immune-regulatory function of CAF with the potential to shape the immune infiltrate of the tumour microenvironment both by altering the effector-function of tumour infiltrating T-cells and their capacity to attract B cells and promote TLS formation.
Collapse
Affiliation(s)
- Richard A. O’Connor
- Centre for Inflammation Research, Institute of Regeneration and Repair, University of Edinburgh, Edinburgh, United Kingdom
| | - Begoña Roman Martinez
- Centre for Inflammation Research, Institute of Regeneration and Repair, University of Edinburgh, Edinburgh, United Kingdom
| | - Lilian Koppensteiner
- Centre for Inflammation Research, Institute of Regeneration and Repair, University of Edinburgh, Edinburgh, United Kingdom
| | - Layla Mathieson
- Centre for Inflammation Research, Institute of Regeneration and Repair, University of Edinburgh, Edinburgh, United Kingdom
| | - Ahsan R. Akram
- Centre for Inflammation Research, Institute of Regeneration and Repair, University of Edinburgh, Edinburgh, United Kingdom
- Cancer Research UK Scotland Centre, Institute of Genetics and Cancer, The University of Edinburgh, Edinburgh, United Kingdom
| |
Collapse
|
221
|
Li Y, Wang C, Huang T, Yu X, Tian B. The role of cancer-associated fibroblasts in breast cancer metastasis. Front Oncol 2023; 13:1194835. [PMID: 37496657 PMCID: PMC10367093 DOI: 10.3389/fonc.2023.1194835] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Accepted: 06/26/2023] [Indexed: 07/28/2023] Open
Abstract
Breast cancer deaths are primarily caused by metastasis. There are several treatment options that can be used to treat breast cancer. There are, however, a limited number of treatments that can either prevent or inhibit the spread of breast tumor metastases. Thus, novel therapeutic strategies are needed. Studies have increasingly focused on the importance of the tumor microenvironment (TME) in metastasis of breast cancer. As the most abundant cells in the TME, cancer-associated fibroblasts (CAFs) play important roles in cancer pathogenesis. They can remodel the structure of the extracellular matrix (ECM) and engage in crosstalk with cancer cells or other stroma cells by secreting growth factors, cytokines, and chemokines, as well as components of the ECM, which assist the tumor cells to invade through the TME and cause distant metastasis. Clinically, CAFs not only foster the initiation, growth, angiogenesis, invasion, and metastasis of breast cancer but also serve as biomarkers for diagnosis, therapy, and prediction of prognosis. In this review, we summarize the biological characteristics and subtypes of CAFs and their functions in breast cancer metastasis, focusing on their important roles in the diagnosis, prognosis, and treatment of breast cancer. Recent studies suggest that CAFs are vital partners of breast cancer cells that assist metastasis and may represent ideal targets for prevention and treatment of breast cancer metastasis.
Collapse
Affiliation(s)
- Yi Li
- Department of Breast Surgery, Sichuan Provincial People’s Hospital, University of Electronic Science and Technology of China, Chengdu, China
| | - Changyuan Wang
- Department of Pancreatic Surgery, West China Hospital, Sichuan University, Chengdu, China
- Hepatobiliary Surgery Department II, Guizhou Provincial People’s Hospital, Guiyang, China
| | - Ting Huang
- Department of Breast Surgery, Sichuan Provincial People’s Hospital, University of Electronic Science and Technology of China, Chengdu, China
| | - Xijie Yu
- Department of Endocrinology and Metabolism, Laboratory of Endocrinology and Metabolism, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, China
| | - Bole Tian
- Department of Pancreatic Surgery, West China Hospital, Sichuan University, Chengdu, China
| |
Collapse
|
222
|
Zboralski D, Osterkamp F, Christensen E, Bredenbeck A, Schumann A, Hoehne A, Schneider E, Paschke M, Ungewiss J, Haase C, Robillard L, Simmons AD, Harding TC, Nguyen M. Fibroblast activation protein targeted radiotherapy induces an immunogenic tumor microenvironment and enhances the efficacy of PD-1 immune checkpoint inhibition. Eur J Nucl Med Mol Imaging 2023; 50:2621-2635. [PMID: 37086273 PMCID: PMC10317891 DOI: 10.1007/s00259-023-06211-6] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Accepted: 03/18/2023] [Indexed: 04/23/2023]
Abstract
PURPOSE FAP is a membrane-bound protease under investigation as a pan-cancer target, given its high levels in tumors but limited expression in normal tissues. FAP-2286 is a radiopharmaceutical in clinical development for solid tumors that consists of two functional elements: a FAP-targeting peptide and a chelator used to attach radioisotopes. Preclinically, we evaluated the immune modulation and anti-tumor efficacy of FAP-2287, a murine surrogate for FAP-2286, conjugated to the radionuclide lutetium-177 (177Lu) as a monotherapy and in combination with a PD-1 targeting antibody. METHODS C57BL/6 mice bearing MCA205 mouse FAP-expressing tumors (MCA205-mFAP) were treated with 177Lu-FAP-2287, anti-PD-1, or both. Tumor uptake of 177Lu- FAP-2287 was assessed by SPECT/CT scanning, while therapeutic efficacy was measured by tumor volume and survival. Immune profiling of tumor infiltrates was evaluated through flow cytometry, RNA expression, and immunohistochemistry analyses. RESULTS 177Lu-FAP-2287 rapidly accumulated in MCA205-mFAP tumors leading to significant tumor growth inhibition (TGI) and longer survival time. Significant TGI was also observed from anti-PD-1 and the combination. In flow cytometry analysis of tumors, 177Lu-FAP-2287 increased CD8+ T cell infiltration which was maintained in the combination with anti-PD-1. The increase in CD8+ T cells was accompanied by an induction of STING-mediated type I interferon response and higher levels of co-stimulatory molecules such as CD86. CONCLUSION In a preclinical model, FAP-targeted radiotherapy enhanced anti-PD-1-mediated TGI by modulating the TME and increasing the recruitment of tumor-infiltrating CD8+ T cells. These findings provide a rationale for clinical studies of combined 177Lu-FAP-2286 radiotherapy and immune checkpoint inhibition in FAP-positive tumors.
Collapse
Affiliation(s)
- Dirk Zboralski
- 3B Pharmaceuticals GmbH, Magnusstraße 11, D-12489, Berlin, Germany.
| | - Frank Osterkamp
- 3B Pharmaceuticals GmbH, Magnusstraße 11, D-12489, Berlin, Germany
| | | | - Anne Bredenbeck
- 3B Pharmaceuticals GmbH, Magnusstraße 11, D-12489, Berlin, Germany
| | - Anne Schumann
- 3B Pharmaceuticals GmbH, Magnusstraße 11, D-12489, Berlin, Germany
| | - Aileen Hoehne
- 3B Pharmaceuticals GmbH, Magnusstraße 11, D-12489, Berlin, Germany
| | | | - Matthias Paschke
- 3B Pharmaceuticals GmbH, Magnusstraße 11, D-12489, Berlin, Germany
| | - Jan Ungewiss
- 3B Pharmaceuticals GmbH, Magnusstraße 11, D-12489, Berlin, Germany
| | - Christian Haase
- 3B Pharmaceuticals GmbH, Magnusstraße 11, D-12489, Berlin, Germany
| | | | | | | | | |
Collapse
|
223
|
Li T, Jiao J, Ke H, Ouyang W, Wang L, Pan J, Li X. Role of exosomes in the development of the immune microenvironment in hepatocellular carcinoma. Front Immunol 2023; 14:1200201. [PMID: 37457718 PMCID: PMC10339802 DOI: 10.3389/fimmu.2023.1200201] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Accepted: 06/12/2023] [Indexed: 07/18/2023] Open
Abstract
Despite numerous improved treatment methods used in recent years, hepatocellular carcinoma (HCC) is still a disease with a high mortality rate. Many recent studies have shown that immunotherapy has great potential for cancer treatment. Exosomes play a significant role in negatively regulating the immune system in HCC. Understanding how these exosomes play a role in innate and adaptive immunity in HCC can significantly improve the immunotherapeutic effects on HCC. Further, engineered exosomes can deliver different drugs and RNA molecules to regulate the immune microenvironment of HCC by regulating the aforementioned immune pathway, thereby significantly improving the mortality rate of HCC. This study aimed to declare the role of exosomes in the development of the immune microenvironment in HCC and list engineered exosomes that could be used for clinical transformation therapy. These findings might be beneficial for clinical patients.
Collapse
Affiliation(s)
- Tanghua Li
- The Second School of Clinical Medicine, Southern Medical University, Guangzhou, China
| | - Jiapeng Jiao
- The Second School of Clinical Medicine, Southern Medical University, Guangzhou, China
| | - Haoteng Ke
- The Second School of Clinical Medicine, Southern Medical University, Guangzhou, China
| | - Wenshan Ouyang
- The Second School of Clinical Medicine, Southern Medical University, Guangzhou, China
| | - Luobin Wang
- The Second School of Clinical Medicine, Southern Medical University, Guangzhou, China
| | - Jin Pan
- The Department of Electronic Engineering, The Chinese University of Hong Kong, Hongkong, Hongkong SAR, China
| | - Xin Li
- Zhujiang Hospital, Southern Medical University, Guangzhou, China
| |
Collapse
|
224
|
Wang H, Li N, Liu Q, Guo J, Pan Q, Cheng B, Xu J, Dong B, Yang G, Yang B, Wang X, Gu Y, Zhang G, Lian Y, Zhang W, Zhang M, Li T, Zang Y, Tan M, Li Q, Wang X, Yu Z, Jiang J, Huang H, Qin J. Antiandrogen treatment induces stromal cell reprogramming to promote castration resistance in prostate cancer. Cancer Cell 2023:S1535-6108(23)00183-6. [PMID: 37352863 DOI: 10.1016/j.ccell.2023.05.016] [Citation(s) in RCA: 55] [Impact Index Per Article: 27.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/22/2022] [Revised: 03/15/2023] [Accepted: 05/26/2023] [Indexed: 06/25/2023]
Abstract
Lineage plasticity causes therapeutic resistance; however, it remains unclear how the fate conversion and phenotype switching of cancer-associated fibroblasts (CAFs) are implicated in disease relapse. Here, we show that androgen deprivation therapy (ADT)-induced SPP1+ myofibroblastic CAFs (myCAFs) are critical stromal constituents that drive the development of castration-resistant prostate cancer (CRPC). Our results reveal that SPP1+ myCAFs arise from the inflammatory CAFs in hormone-sensitive PCa; therefore, they represent two functional states of an otherwise ontogenically identical cell type. Antiandrogen treatment unleashes TGF-β signaling, resulting in SOX4-SWI/SNF-dependent CAF phenotype switching. SPP1+ myCAFs in turn render PCa refractory to ADT via an SPP1-ERK paracrine mechanism. Importantly, these sub-myCAFs are associated with inferior therapeutic outcomes, providing the rationale for inhibiting polarization or paracrine mechanisms to circumvent castration resistance. Collectively, our results highlight that therapy-induced phenotypic switching of CAFs is coupled with disease progression and that targeting this stromal component may restrain CRPC.
Collapse
Affiliation(s)
- Hanling Wang
- CAS Key Laboratory of Tissue Microenvironment and Tumor, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Nutrition and Health, Shanghai Jiao Tong University School of Medicine (SJTUSM) & Chinese Academy of Sciences, 320 Yueyang Road, Shanghai 200031, China
| | - Ni Li
- CAS Key Laboratory of Tissue Microenvironment and Tumor, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Nutrition and Health, Shanghai Jiao Tong University School of Medicine (SJTUSM) & Chinese Academy of Sciences, 320 Yueyang Road, Shanghai 200031, China
| | - Qiuli Liu
- Department of Urology, Institute of Surgery Research, Daping Hospital, Army Medical University, Chongqing 400042, China
| | - Jiacheng Guo
- CAS Key Laboratory of Tissue Microenvironment and Tumor, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Nutrition and Health, Shanghai Jiao Tong University School of Medicine (SJTUSM) & Chinese Academy of Sciences, 320 Yueyang Road, Shanghai 200031, China
| | - Qiang Pan
- CAS Key Laboratory of Tissue Microenvironment and Tumor, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Nutrition and Health, Shanghai Jiao Tong University School of Medicine (SJTUSM) & Chinese Academy of Sciences, 320 Yueyang Road, Shanghai 200031, China
| | - Bisheng Cheng
- Department of Urology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou 510120, China
| | - Junyu Xu
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Baijun Dong
- Department of Urology, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, China
| | - Guanjie Yang
- Department of Urology, Shanghai Tenth People's Hospital, Tongji University School of Medicine, 301 Yanchang Road, Shanghai 200072, China
| | - Bin Yang
- Department of Urology, Shanghai Tenth People's Hospital, Tongji University School of Medicine, 301 Yanchang Road, Shanghai 200072, China
| | - Xuege Wang
- CAS Key Laboratory of Tissue Microenvironment and Tumor, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Nutrition and Health, Shanghai Jiao Tong University School of Medicine (SJTUSM) & Chinese Academy of Sciences, 320 Yueyang Road, Shanghai 200031, China
| | - Yongqiang Gu
- CAS Key Laboratory of Tissue Microenvironment and Tumor, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Nutrition and Health, Shanghai Jiao Tong University School of Medicine (SJTUSM) & Chinese Academy of Sciences, 320 Yueyang Road, Shanghai 200031, China
| | - Guoying Zhang
- CAS Key Laboratory of Tissue Microenvironment and Tumor, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Nutrition and Health, Shanghai Jiao Tong University School of Medicine (SJTUSM) & Chinese Academy of Sciences, 320 Yueyang Road, Shanghai 200031, China
| | - Yannan Lian
- CAS Key Laboratory of Tissue Microenvironment and Tumor, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Nutrition and Health, Shanghai Jiao Tong University School of Medicine (SJTUSM) & Chinese Academy of Sciences, 320 Yueyang Road, Shanghai 200031, China
| | - Wei Zhang
- CAS Key Laboratory of Tissue Microenvironment and Tumor, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Nutrition and Health, Shanghai Jiao Tong University School of Medicine (SJTUSM) & Chinese Academy of Sciences, 320 Yueyang Road, Shanghai 200031, China
| | - Mingyu Zhang
- CAS Key Laboratory of Tissue Microenvironment and Tumor, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Nutrition and Health, Shanghai Jiao Tong University School of Medicine (SJTUSM) & Chinese Academy of Sciences, 320 Yueyang Road, Shanghai 200031, China
| | - Tianyi Li
- CAS Key Laboratory of Tissue Microenvironment and Tumor, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Nutrition and Health, Shanghai Jiao Tong University School of Medicine (SJTUSM) & Chinese Academy of Sciences, 320 Yueyang Road, Shanghai 200031, China
| | - Yi Zang
- CAS Key Laboratory of Tissue Microenvironment and Tumor, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Nutrition and Health, Shanghai Jiao Tong University School of Medicine (SJTUSM) & Chinese Academy of Sciences, 320 Yueyang Road, Shanghai 200031, China
| | - Minjia Tan
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Qintong Li
- Department of Obstetrics, Gynecology and Pediatrics, West China Second University Hospital, Sichuan University, 20 Renmin South Road, Chengdu 610041, China
| | - Xiaoming Wang
- Collaborative Innovation Center for Cancer Personalized Medicine, Nanjing Medical University, 101 Longmian Avenue, Nanjing, Jiangsu 211166, China
| | - Zhengquan Yu
- State Key Laboratories for Agrobiotechnology, College of Biological Sciences, China Agricultural University, Beijing 100193, China
| | - Jun Jiang
- Department of Urology, Institute of Surgery Research, Daping Hospital, Army Medical University, Chongqing 400042, China.
| | - Hai Huang
- Department of Urology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou 510120, China.
| | - Jun Qin
- CAS Key Laboratory of Tissue Microenvironment and Tumor, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Nutrition and Health, Shanghai Jiao Tong University School of Medicine (SJTUSM) & Chinese Academy of Sciences, 320 Yueyang Road, Shanghai 200031, China; Department of Urology, Institute of Surgery Research, Daping Hospital, Army Medical University, Chongqing 400042, China.
| |
Collapse
|
225
|
Timperi E, Romano E. Stromal circuits involving tumor-associated macrophages and cancer-associated fibroblasts. Front Immunol 2023; 14:1194642. [PMID: 37342322 PMCID: PMC10277481 DOI: 10.3389/fimmu.2023.1194642] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Accepted: 05/19/2023] [Indexed: 06/22/2023] Open
Abstract
The tumor associated macrophages (TAM) represent one of most abundant subpopulations across several solid cancers and their number/frequency is associated with a poor clinical outcome. It has been clearly demonstrated that stromal cells, such as the cancer associated fibroblasts (CAFs), may orchestrate TAM recruitment, survival and reprogramming. Today, single cell-RNA sequencing (sc-RNA seq) technologies allowed a more granular knowledge about TAMs and CAFs phenotypical and functional programs. In this mini-review we discuss the recent discoveries in the sc-RNA seq field focusing on TAM and CAF identity and their crosstalk in the tumor microenvironment (TME) of solid cancers.
Collapse
Affiliation(s)
- Eleonora Timperi
- Department of Immunology, INSERM U932, Université Paris Sciences et Lettres (PSL) Research University, Institut Curie, Paris, France
| | - Emanuela Romano
- Department of Immunology, INSERM U932, Université Paris Sciences et Lettres (PSL) Research University, Institut Curie, Paris, France
- Department of Medical Oncology, Center for Cancer Immunotherapy, Institut Curie, Paris, France
| |
Collapse
|
226
|
Combes AJ, Samad B, Krummel MF. Defining and using immune archetypes to classify and treat cancer. Nat Rev Cancer 2023:10.1038/s41568-023-00578-2. [PMID: 37277485 DOI: 10.1038/s41568-023-00578-2] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 04/19/2023] [Indexed: 06/07/2023]
Abstract
Tumours are surrounded by a host immune system that can suppress or promote tumour growth. The tumour microenvironment (TME) has often been framed as a singular entity, suggesting a single type of immune state that is defective and in need of therapeutic intervention. By contrast, the past few years have highlighted a plurality of immune states that can surround tumours. In this Perspective, we suggest that different TMEs have 'archetypal' qualities across all cancers - characteristic and repeating collections of cells and gene-expression profiles at the level of the bulk tumour. We discuss many studies that together support a view that tumours typically draw from a finite number (around 12) of 'dominant' immune archetypes. In considering the likely evolutionary origin and roles of these archetypes, their associated TMEs can be predicted to have specific vulnerabilities that can be leveraged as targets for cancer treatment with expected and addressable adverse effects for patients.
Collapse
Affiliation(s)
- Alexis J Combes
- Department of Pathology, University of California San Francisco, San Francisco, CA, USA.
- Bakar ImmunoX Initiative, University of California San Francisco, San Francisco, CA, USA.
- UCSF Immunoprofiler Initiative, University of California San Francisco, San Francisco, CA, USA.
- UCSF CoLabs, University of California San Francisco, San Francisco, CA, USA.
- Department of Medicine, University of California San Francisco, San Francisco, CA, USA.
| | - Bushra Samad
- Department of Pathology, University of California San Francisco, San Francisco, CA, USA
- Bakar ImmunoX Initiative, University of California San Francisco, San Francisco, CA, USA
- UCSF Immunoprofiler Initiative, University of California San Francisco, San Francisco, CA, USA
- UCSF CoLabs, University of California San Francisco, San Francisco, CA, USA
| | - Matthew F Krummel
- Department of Pathology, University of California San Francisco, San Francisco, CA, USA.
- Bakar ImmunoX Initiative, University of California San Francisco, San Francisco, CA, USA.
- UCSF Immunoprofiler Initiative, University of California San Francisco, San Francisco, CA, USA.
| |
Collapse
|
227
|
Peeney D, Fan Y, Gurung S, Lazaroff C, Ratnayake S, Warner A, Karim B, Meerzaman D, Stetler-Stevenson WG. Whole organism profiling of the Timp gene family. Matrix Biol Plus 2023; 18:100132. [PMID: 37095886 PMCID: PMC10121480 DOI: 10.1016/j.mbplus.2023.100132] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2023] [Revised: 03/28/2023] [Accepted: 03/31/2023] [Indexed: 04/04/2023] Open
Abstract
Tissue inhibitor of metalloproteinases (TIMPs/Timps) are an endogenous family of widely expressed matrisome-associated proteins that were initially identified as inhibitors of matrix metalloproteinase activity (Metzincin family proteases). Consequently, TIMPs are often considered simply as protease inhibitors by many investigators. However, an evolving list of new metalloproteinase-independent functions for TIMP family members suggests that this concept is outdated. These novel TIMP functions include direct agonism/antagonism of multiple transmembrane receptors, as well as functional interactions with matrisome targets. While the family was fully identified over two decades ago, there has yet to be an in-depth study describing the expression of TIMPs in normal tissues of adult mammals. An understanding of the tissues and cell-types that express TIMPs 1 through 4, in both normal and disease states are important to contextualize the growing functional capabilities of TIMP proteins, which are often dismissed as non-canonical. Using publicly available single cell RNA sequencing data from the Tabula Muris Consortium, we analyzed approximately 100,000 murine cells across eighteen tissues from non-diseased organs, representing seventy-three annotated cell types, to define the diversity in Timp gene expression across healthy tissues. We describe the unique expression profiles across tissues and organ-specific cell types that all four Timp genes display. Within annotated cell-types, we identify clear and discrete cluster-specific patterns of Timp expression, particularly in cells of stromal and endothelial origins. RNA in-situ hybridization across four organs expands on the scRNA sequencing analysis, revealing novel compartments associated with individual Timp expression. These analyses emphasize a need for specific studies investigating the functional significance of Timp expression in the identified tissues and cell sub-types. This understanding of the tissues, specific cell types and microenvironment conditions in which Timp genes are expressed adds important physiological context to the growing array of novel functions for TIMP proteins.
Collapse
Affiliation(s)
- David Peeney
- Extracellular Matrix Pathology Section, Laboratory of Pathology, National Cancer Institute, National Institute of Health, Bethesda, MD, USA
| | - Yu Fan
- Computational Genomics and Bioinformatics Branch, Center for Biomedical Informatics & Information Technology, National Cancer Institute, National Institute of Health, Rockville, MD, USA
| | - Sadeechya Gurung
- Extracellular Matrix Pathology Section, Laboratory of Pathology, National Cancer Institute, National Institute of Health, Bethesda, MD, USA
| | - Carolyn Lazaroff
- Extracellular Matrix Pathology Section, Laboratory of Pathology, National Cancer Institute, National Institute of Health, Bethesda, MD, USA
| | - Shashikala Ratnayake
- Computational Genomics and Bioinformatics Branch, Center for Biomedical Informatics & Information Technology, National Cancer Institute, National Institute of Health, Rockville, MD, USA
| | - Andrew Warner
- Molecular Histopathology Laboratory, Frederick National Laboratory, National Cancer Institute, Frederick, MD, USA
| | - Baktiar Karim
- Molecular Histopathology Laboratory, Frederick National Laboratory, National Cancer Institute, Frederick, MD, USA
| | - Daoud Meerzaman
- Computational Genomics and Bioinformatics Branch, Center for Biomedical Informatics & Information Technology, National Cancer Institute, National Institute of Health, Rockville, MD, USA
| | - William G. Stetler-Stevenson
- Extracellular Matrix Pathology Section, Laboratory of Pathology, National Cancer Institute, National Institute of Health, Bethesda, MD, USA
| |
Collapse
|
228
|
Nabhan M, Egan D, Kreileder M, Zhernovkov V, Timosenko E, Slidel T, Dovedi S, Glennon K, Brennan D, Kolch W. Deciphering the tumour immune microenvironment cell by cell. IMMUNO-ONCOLOGY TECHNOLOGY 2023; 18:100383. [PMID: 37234284 PMCID: PMC10206805 DOI: 10.1016/j.iotech.2023.100383] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
Immune checkpoint inhibitors (ICIs) have rejuvenated therapeutic approaches in oncology. Although responses tend to be durable, response rates vary in many cancer types. Thus, the identification and validation of predictive biomarkers is a key clinical priority, the answer to which is likely to lie in the tumour microenvironment (TME). A wealth of data demonstrates the huge impact of the TME on ICI response and resistance. However, these data also reveal the complexity of the TME composition including the spatiotemporal interactions between different cell types and their dynamic changes in response to ICIs. Here, we briefly review some of the modalities that sculpt the TME, in particular the metabolic milieu, hypoxia and the role of cancer-associated fibroblasts. We then discuss recent approaches to dissect the TME with a focus on single-cell RNA sequencing, spatial transcriptomics and spatial proteomics. We also discuss some of the clinically relevant findings these multi-modal analyses have yielded.
Collapse
Affiliation(s)
- M. Nabhan
- Systems Biology Ireland, School of Medicine, University College Dublin, Belfield, Ireland
| | - D. Egan
- Systems Biology Ireland, School of Medicine, University College Dublin, Belfield, Ireland
| | - M. Kreileder
- Systems Biology Ireland, School of Medicine, University College Dublin, Belfield, Ireland
| | - V. Zhernovkov
- Systems Biology Ireland, School of Medicine, University College Dublin, Belfield, Ireland
| | - E. Timosenko
- ICC, Research and Early Development, Oncology R&D, AstraZeneca, Cambridge, , UK
| | - T. Slidel
- Oncology Data Science, Research and Early Development, Oncology R&D, AstraZeneca, Cambridge, UK
| | - S. Dovedi
- ICC, Research and Early Development, Oncology R&D, AstraZeneca, Cambridge, , UK
| | - K. Glennon
- UCD Gynaecological Oncology Group, UCD School of Medicine Mater Misericordiae University Hospital, Dublin, Ireland
| | - D. Brennan
- Systems Biology Ireland, School of Medicine, University College Dublin, Belfield, Ireland
- UCD Gynaecological Oncology Group, UCD School of Medicine Mater Misericordiae University Hospital, Dublin, Ireland
| | - W. Kolch
- Systems Biology Ireland, School of Medicine, University College Dublin, Belfield, Ireland
- Conway Institute of Biomolecular & Biomedical Research, University College Dublin, Belfield, Ireland
| |
Collapse
|
229
|
Van de Sande B, Lee JS, Mutasa-Gottgens E, Naughton B, Bacon W, Manning J, Wang Y, Pollard J, Mendez M, Hill J, Kumar N, Cao X, Chen X, Khaladkar M, Wen J, Leach A, Ferran E. Applications of single-cell RNA sequencing in drug discovery and development. Nat Rev Drug Discov 2023; 22:496-520. [PMID: 37117846 PMCID: PMC10141847 DOI: 10.1038/s41573-023-00688-4] [Citation(s) in RCA: 138] [Impact Index Per Article: 69.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/10/2023] [Indexed: 04/30/2023]
Abstract
Single-cell technologies, particularly single-cell RNA sequencing (scRNA-seq) methods, together with associated computational tools and the growing availability of public data resources, are transforming drug discovery and development. New opportunities are emerging in target identification owing to improved disease understanding through cell subtyping, and highly multiplexed functional genomics screens incorporating scRNA-seq are enhancing target credentialling and prioritization. ScRNA-seq is also aiding the selection of relevant preclinical disease models and providing new insights into drug mechanisms of action. In clinical development, scRNA-seq can inform decision-making via improved biomarker identification for patient stratification and more precise monitoring of drug response and disease progression. Here, we illustrate how scRNA-seq methods are being applied in key steps in drug discovery and development, and discuss ongoing challenges for their implementation in the pharmaceutical industry.
Collapse
Affiliation(s)
| | | | | | - Bart Naughton
- Computational Neurobiology, Eisai, Cambridge, MA, USA
| | - Wendi Bacon
- EMBL-EBI, Wellcome Genome Campus, Hinxton, UK
- The Open University, Milton Keynes, UK
| | | | - Yong Wang
- Precision Bioinformatics, Prometheus Biosciences, San Diego, CA, USA
| | | | - Melissa Mendez
- Genomic Sciences, GlaxoSmithKline, Collegeville, PA, USA
| | - Jon Hill
- Global Computational Biology and Digital Sciences, Boehringer Ingelheim Pharmaceuticals Inc., Ridgefield, CT, USA
| | - Namit Kumar
- Informatics & Predictive Sciences, Bristol Myers Squibb, San Diego, CA, USA
| | - Xiaohong Cao
- Genomic Research Center, AbbVie Inc., Cambridge, MA, USA
| | - Xiao Chen
- Magnet Biomedicine, Cambridge, MA, USA
| | - Mugdha Khaladkar
- Human Genetics and Computational Biology, GlaxoSmithKline, Collegeville, PA, USA
| | - Ji Wen
- Oncology Research and Development Unit, Pfizer, La Jolla, CA, USA
| | | | | |
Collapse
|
230
|
Shi F, Huang X, Hong Z, Lu N, Huang X, Liu L, Liang T, Bai X. Improvement strategy for immune checkpoint blockade: A focus on the combination with immunogenic cell death inducers. Cancer Lett 2023; 562:216167. [PMID: 37031916 DOI: 10.1016/j.canlet.2023.216167] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2023] [Revised: 03/19/2023] [Accepted: 04/03/2023] [Indexed: 04/11/2023]
Abstract
Cancer immunotherapies have yielded promising outcomes in various malignant tumors by blocking specific immune checkpoint molecules, such as programmed cell death 1 and cytotoxic T lymphocyte antigen 4. However, only a few patients respond to immune checkpoint blockade therapy because of the poor immunogenicity of tumor cells and immune-suppressive tumor microenvironment. Accumulating evidence suggests that chemotherapeutic agents, including oxaliplatin and doxorubicin, not only mediate direct cytotoxicity in tumor cells but also induce immunogenic cancer cell death to stimulate a powerful anti-cancer immune response in the tumor microenvironment. In this review, we summarize the recent advances in cancer combination therapy based on immune checkpoint inhibitors plus immunogenic cell death inducers. Despite some clinical failures and challenges, immunogenic cell death inducers have displayed great potential when combined with immune checkpoint inhibitors for anti-cancer treatment in both preclinical studies and clinical trials.
Collapse
Affiliation(s)
- Fukang Shi
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310003, Zhejiang, China; Zhejiang Provincial Key Laboratory of Pancreatic Disease, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310009, Zhejiang, China
| | - Xing Huang
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310003, Zhejiang, China; Zhejiang Provincial Key Laboratory of Pancreatic Disease, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310009, Zhejiang, China; Cancer Center, Zhejiang University, Hangzhou, 310058, Zhejiang, China.
| | - Zhengtao Hong
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310003, Zhejiang, China; Zhejiang Provincial Key Laboratory of Pancreatic Disease, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310009, Zhejiang, China
| | - Na Lu
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310003, Zhejiang, China; Zhejiang Provincial Key Laboratory of Pancreatic Disease, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310009, Zhejiang, China
| | - Xin Huang
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310003, Zhejiang, China; Zhejiang Provincial Key Laboratory of Pancreatic Disease, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310009, Zhejiang, China
| | - Lingyue Liu
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310003, Zhejiang, China; Zhejiang Provincial Key Laboratory of Pancreatic Disease, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310009, Zhejiang, China
| | - Tingbo Liang
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310003, Zhejiang, China; Zhejiang Provincial Key Laboratory of Pancreatic Disease, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310009, Zhejiang, China; Cancer Center, Zhejiang University, Hangzhou, 310058, Zhejiang, China.
| | - Xueli Bai
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310003, Zhejiang, China; Zhejiang Provincial Key Laboratory of Pancreatic Disease, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310009, Zhejiang, China; Cancer Center, Zhejiang University, Hangzhou, 310058, Zhejiang, China.
| |
Collapse
|
231
|
Peng Z, Tong Z, Ren Z, Ye M, Hu K. Cancer-associated fibroblasts and its derived exosomes: a new perspective for reshaping the tumor microenvironment. Mol Med 2023; 29:66. [PMID: 37217855 DOI: 10.1186/s10020-023-00665-y] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2023] [Accepted: 05/14/2023] [Indexed: 05/24/2023] Open
Abstract
Cancer-associated fibroblasts (CAFs) are the most abundant stromal cells within the tumor microenvironment (TME). They extensively communicate with the other cells. Exosome-packed bioactive molecules derived from CAFs can reshape the TME by interacting with other cells and the extracellular matrix, which adds a new perspective for their clinical application in tumor targeted therapy. An in-depth understanding of the biological characteristics of CAF-derived exosomes (CDEs) is critical for depicting the detailed landscape of the TME and developing tailored therapeutic strategies for cancer treatment. In this review, we have summarized the functional roles of CAFs in the TME, particularly focusing on the extensive communication mediated by CDEs that contain biological molecules such as miRNAs, proteins, metabolites, and other components. In addition, we have also highlighted the prospects for diagnostic and therapeutic applications based on CDEs, which could guide the future development of exosome-targeted anti-tumor drugs.
Collapse
Affiliation(s)
- Zhiwei Peng
- Department of General Surgery, First Affiliated Hospital of Anhui Medical University, Anhui, Hefei, 230022, China
| | - Zhiwei Tong
- Department of General Surgery, First Affiliated Hospital of Anhui Medical University, Anhui, Hefei, 230022, China
| | - Zihao Ren
- Department of General Surgery, First Affiliated Hospital of Anhui Medical University, Anhui, Hefei, 230022, China
| | - Manping Ye
- Anhui Province Key Laboratory of Major Autoimmune Diseases, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Anhui, Hefei, 230032, China
| | - Kongwang Hu
- Department of General Surgery, First Affiliated Hospital of Anhui Medical University, Anhui, Hefei, 230022, China.
- Department of General Surgery, Fuyang Affiliated Hospital of Anhui Medical University, Anhui, Fuyang, 236000, China.
| |
Collapse
|
232
|
Strating E, Verhagen MP, Wensink E, Dünnebach E, Wijler L, Aranguren I, De la Cruz AS, Peters NA, Hageman JH, van der Net MMC, van Schelven S, Laoukili J, Fodde R, Roodhart J, Nierkens S, Snippert H, Gloerich M, Rinkes IB, Elias SG, Kranenburg O. Co-cultures of colon cancer cells and cancer-associated fibroblasts recapitulate the aggressive features of mesenchymal-like colon cancer. Front Immunol 2023; 14:1053920. [PMID: 37261365 PMCID: PMC10228738 DOI: 10.3389/fimmu.2023.1053920] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Accepted: 05/03/2023] [Indexed: 06/02/2023] Open
Abstract
Background Poor prognosis in colon cancer is associated with a high content of cancer-associated fibroblasts (CAFs) and an immunosuppressive tumor microenvironment. The relationship between these two features is incompletely understood. Here, we aimed to generate a model system for studying the interaction between cancer cells and CAFs and their effect on immune-related cytokines and T cell proliferation. Methods CAFs were isolated from colon cancer liver metastases and were immortalized to prolong lifespan and improve robustness and reproducibility. Established medium and matrix compositions that support the growth of patient-derived organoids were adapted to also support CAF growth. Changes in growth pattern and cellular re-organization were assessed by confocal microscopy, live cell imaging, and immunofluorescence. Single cell RNA sequencing was used to study CAF/organoid co-culture-induced phenotypic changes in both cell types. Conditioned media were used to quantify the production of immunosuppressive factors and to assess their effect on T cell proliferation. Results We developed a co-culture system in which colon cancer organoids and CAFs spontaneously organize into superstructures with a high capacity to contract and stiffen the extracellular matrix (ECM). CAF-produced collagen IV provided a basement membrane supporting cancer cell organization into glandular structures, reminiscent of human cancer histology. Single cell RNA sequencing analysis showed that CAFs induced a partial epithelial-to-mesenchymal-transition in a subpopulation of cancer cells, similar to what is observed in the mesenchymal-like consensus molecular subtype 4 (CMS4) colon cancer. CAFs in co-culture were characterized by high expression of ECM components, ECM-remodeling enzymes, glycolysis, hypoxia, and genes involved in immunosuppression. An expression signature derived from CAFs in co-culture identified a subpopulation of glycolytic myofibroblasts specifically residing in CMS1 and CMS4 colon cancer. Medium conditioned by co-cultures contained high levels of the immunosuppressive factors TGFβ1, VEGFA and lactate, and potently inhibited T cell proliferation. Conclusion Co-cultures of organoids and immortalized CAFs recapitulate the histological, biophysical, and immunosuppressive features of aggressive mesenchymal-like human CRC. The model can be used to study the mechanisms of immunosuppression and to test therapeutic strategies targeting the cross-talk between CAFs and cancer cells. It can be further modified to represent distinct colon cancer subtypes and (organ-specific) microenvironments.
Collapse
Affiliation(s)
- Esther Strating
- Laboratory Translational Oncology, Division of Imaging and Cancer, University Medical Center Utrecht, Utrecht, Netherlands
| | | | - Emerens Wensink
- Department of Medical Oncology, Division of Imaging and Cancer, University Medical Center Utrecht, Utrecht, Netherlands
| | - Ester Dünnebach
- Center for Translational Immunology, University Medical Center Utrecht, Utrecht University, Utrecht, Netherlands
- Princess Máxima Center for Pediatric Oncology, Utrecht, Netherlands
| | - Liza Wijler
- Laboratory Translational Oncology, Division of Imaging and Cancer, University Medical Center Utrecht, Utrecht, Netherlands
| | - Itziar Aranguren
- Laboratory Translational Oncology, Division of Imaging and Cancer, University Medical Center Utrecht, Utrecht, Netherlands
| | - Alberto Sanchez De la Cruz
- Laboratory Translational Oncology, Division of Imaging and Cancer, University Medical Center Utrecht, Utrecht, Netherlands
| | - Niek A. Peters
- Laboratory Translational Oncology, Division of Imaging and Cancer, University Medical Center Utrecht, Utrecht, Netherlands
| | - Joris H. Hageman
- Center for Molecular Medicine, Division LAB, University Medical Center Utrecht, Utrecht, Netherlands
| | - Mirjam M. C. van der Net
- Center for Molecular Medicine, Division LAB, University Medical Center Utrecht, Utrecht, Netherlands
| | - Susanne van Schelven
- Laboratory Translational Oncology, Division of Imaging and Cancer, University Medical Center Utrecht, Utrecht, Netherlands
| | - Jamila Laoukili
- Laboratory Translational Oncology, Division of Imaging and Cancer, University Medical Center Utrecht, Utrecht, Netherlands
| | - Riccardo Fodde
- Department of Pathology, Erasmus Medical Center, Rotterdam, Netherlands
| | - Jeanine Roodhart
- Department of Medical Oncology, Division of Imaging and Cancer, University Medical Center Utrecht, Utrecht, Netherlands
| | - Stefan Nierkens
- Center for Translational Immunology, University Medical Center Utrecht, Utrecht University, Utrecht, Netherlands
- Princess Máxima Center for Pediatric Oncology, Utrecht, Netherlands
| | - Hugo Snippert
- Center for Molecular Medicine, Division LAB, University Medical Center Utrecht, Utrecht, Netherlands
| | - Martijn Gloerich
- Center for Molecular Medicine, Division LAB, University Medical Center Utrecht, Utrecht, Netherlands
| | - Inne Borel Rinkes
- Laboratory Translational Oncology, Division of Imaging and Cancer, University Medical Center Utrecht, Utrecht, Netherlands
| | - Sjoerd G. Elias
- Department of Epidemiology, Julius Center for Health Sciences and Primary Care, University Medical Center Utrecht, Utrecht, Netherlands
| | - Onno Kranenburg
- Laboratory Translational Oncology, Division of Imaging and Cancer, University Medical Center Utrecht, Utrecht, Netherlands
- Utrecht Platform for Organoid Technology, Utrecht University, Utrecht, Netherlands
| |
Collapse
|
233
|
Wu SY, Zhang SW, Ma D, Xiao Y, Liu Y, Chen L, Song XQ, Ma XY, Xu Y, Chai WJ, Jin X, Shao ZM, Jiang YZ. CCL19 + dendritic cells potentiate clinical benefit of anti-PD-(L)1 immunotherapy in triple-negative breast cancer. MED 2023:S2666-6340(23)00140-X. [PMID: 37201522 DOI: 10.1016/j.medj.2023.04.008] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Revised: 03/23/2023] [Accepted: 04/25/2023] [Indexed: 05/20/2023]
Abstract
BACKGROUND The extensive involvement of dendritic cells (DCs) in immune contexture indicates their potent value in cancer immunotherapy. Understanding DC diversity in patient cohorts may strengthen the clinical benefit of immune checkpoint inhibitors (ICIs). METHODS Single-cell profiling of breast tumors from two clinical trials was performed to investigate DC heterogeneity. Multiomics, tissue characterization, and pre-clinical experiments were used to evaluate the role of the identified DCs in the tumor microenvironment. Four independent clinical trials were leveraged to explore biomarkers to predict ICI and chemotherapy outcomes. FINDINGS We identified a distinct CCL19-expressing functional state of DCs associated with favorable responses to anti-programmed death (ligand)-1 (PD-(L)1), which displayed migratory and immunomodulatory phenotypes. These cells were correlated with antitumor T cell immunity and the presence of tertiary lymphoid structures and lymphoid aggregates, defining immunogenic microenvironments in triple-negative breast cancer. In vivo, CCL19+ DC deletion by Ccl19 gene ablation dampened CCR7+CD8+ T cells and tumor elimination in response to anti-PD-1. Notably, high circulating and intratumoral CCL19 levels were associated with superior response and survival in patients receiving anti-PD-1 but not chemotherapy. CONCLUSIONS We uncovered a critical role of DC subsets in immunotherapy, which has implications for designing novel therapies and patient stratification strategies. FUNDING This study was funded by the National Key Research and Development Project of China, the National Natural Science Foundation of China, the Program of Shanghai Academic/Technology Research Leader, the Natural Science Foundation of Shanghai, the Shanghai Key Laboratory of Breast Cancer, the Shanghai Hospital Development Center (SHDC), and the Shanghai Health Commission.
Collapse
Affiliation(s)
- Song-Yang Wu
- Key Laboratory of Breast Cancer in Shanghai, Department of Breast Surgery, Fudan University Shanghai Cancer Center, Shanghai 200032, China; Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, China
| | - Si-Wei Zhang
- Key Laboratory of Breast Cancer in Shanghai, Department of Breast Surgery, Fudan University Shanghai Cancer Center, Shanghai 200032, China; Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, China
| | - Ding Ma
- Key Laboratory of Breast Cancer in Shanghai, Department of Breast Surgery, Fudan University Shanghai Cancer Center, Shanghai 200032, China; Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, China
| | - Yi Xiao
- Key Laboratory of Breast Cancer in Shanghai, Department of Breast Surgery, Fudan University Shanghai Cancer Center, Shanghai 200032, China; Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, China
| | - Yin Liu
- Key Laboratory of Breast Cancer in Shanghai, Department of Breast Surgery, Fudan University Shanghai Cancer Center, Shanghai 200032, China; Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, China
| | - Li Chen
- Key Laboratory of Breast Cancer in Shanghai, Department of Breast Surgery, Fudan University Shanghai Cancer Center, Shanghai 200032, China; Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, China
| | - Xiao-Qing Song
- Key Laboratory of Breast Cancer in Shanghai, Department of Breast Surgery, Fudan University Shanghai Cancer Center, Shanghai 200032, China; Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, China
| | - Xiao-Yan Ma
- Key Laboratory of Breast Cancer in Shanghai, Department of Breast Surgery, Fudan University Shanghai Cancer Center, Shanghai 200032, China; Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, China
| | - Ying Xu
- Key Laboratory of Breast Cancer in Shanghai, Department of Breast Surgery, Fudan University Shanghai Cancer Center, Shanghai 200032, China; Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, China
| | - Wen-Jun Chai
- Laboratory Animal Center, Fudan University Shanghai Cancer Center, Shanghai 200032, China
| | - Xi Jin
- Key Laboratory of Breast Cancer in Shanghai, Department of Breast Surgery, Fudan University Shanghai Cancer Center, Shanghai 200032, China; Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, China.
| | - Zhi-Ming Shao
- Key Laboratory of Breast Cancer in Shanghai, Department of Breast Surgery, Fudan University Shanghai Cancer Center, Shanghai 200032, China; Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, China; Precision Cancer Medical Center, Fudan University Shanghai Cancer Center, Shanghai 201315, China.
| | - Yi-Zhou Jiang
- Key Laboratory of Breast Cancer in Shanghai, Department of Breast Surgery, Fudan University Shanghai Cancer Center, Shanghai 200032, China; Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, China; Precision Cancer Medical Center, Fudan University Shanghai Cancer Center, Shanghai 201315, China.
| |
Collapse
|
234
|
Shen S, Zhang Z, Huang H, Yang J, Tao X, Meng Z, Ren H, Li X. Copper-induced injectable hydrogel with nitric oxide for enhanced immunotherapy by amplifying immunogenic cell death and regulating cancer associated fibroblasts. Biomater Res 2023; 27:44. [PMID: 37165428 PMCID: PMC10170699 DOI: 10.1186/s40824-023-00389-4] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2023] [Accepted: 05/04/2023] [Indexed: 05/12/2023] Open
Abstract
BACKGROUND Immunogenic cell death (ICD) induced by different cancer treatments has been widely evaluated to recruit immune cells and trigger the specific antitumor immunity. However, cancer associated fibroblasts (CAFs) can hinder the invasion of immune cells and polarize the recruited monocytes to M2-type macrophages, which greatly restrict the efficacy of immunotherapy (IT). METHODS In this study, an injectable hydrogel induced by copper (Cu) has been designed to contain antibody of PD-L1 and nitric oxide (NO) donor. The therapeutic efficacy of hydrogel was studied in 4T1 cells and CAFs in vitro and 4T1 tumor-bearing mice in vivo. The immune effects on cytotoxic T lymphocytes, dendritic cells (DCs) and macrophages were analyzed by flow cytometry. Enzyme-linked immunosorbent assay, immunofluorescence and transcriptome analyses were also performed to evaluate the underlying mechanism. RESULTS Due to the absorbance of Cu with the near-infrared laser irradiation, the injectable hydrogel exhibits persistent photothermal effect to kill cancer cells. In addition, the Cu of hydrogel shows the Fenton-like reaction to produce reactive oxygen species as chemodynamic therapy, thereby enhancing cancer treatment and amplifying ICD. More interestingly, we have found that the released NO can significantly increase depletion of CAFs and reduce the proportion of M2-type macrophages in vitro. Furthermore, due to the amplify of ICD, injectable hydrogel can effectively increase the infiltration of immune cells and reverse the immunosuppressive tumor microenvironment (TME) by regulating CAFs to enhance the therapeutic efficacy of anti-PD-L1 in vivo. CONCLUSIONS The ion induced self-assembled hydrogel with NO could enhance immunotherapy via amplifying ICD and regulating CAFs. It provides a novel strategy to provoke a robust antitumor immune response for clinical cancer immunotherapy.
Collapse
Affiliation(s)
- Shuilin Shen
- School of Pharmaceutical Science, Nanjing Tech University, Nanjing, 211816, Jiangsu, China
| | - Zimeng Zhang
- School of Pharmaceutical Science, Nanjing Tech University, Nanjing, 211816, Jiangsu, China
| | - Haixiao Huang
- School of Pharmaceutical Science, Nanjing Tech University, Nanjing, 211816, Jiangsu, China
| | - Jing Yang
- School of Pharmaceutical Science, Nanjing Tech University, Nanjing, 211816, Jiangsu, China
| | - Xinyue Tao
- School of Pharmaceutical Science, Nanjing Tech University, Nanjing, 211816, Jiangsu, China
| | - Zhengjie Meng
- School of Pharmaceutical Science, Nanjing Tech University, Nanjing, 211816, Jiangsu, China
| | - Hao Ren
- School of Pharmaceutical Science, Nanjing Tech University, Nanjing, 211816, Jiangsu, China.
| | - Xueming Li
- School of Pharmaceutical Science, Nanjing Tech University, Nanjing, 211816, Jiangsu, China.
| |
Collapse
|
235
|
Li J, Wu C, Hu H, Qin G, Wu X, Bai F, Zhang J, Cai Y, Huang Y, Wang C, Yang J, Luan Y, Jiang Z, Ling J, Wu Z, Chen Y, Xie Z, Deng Y. Remodeling of the immune and stromal cell compartment by PD-1 blockade in mismatch repair-deficient colorectal cancer. Cancer Cell 2023:S1535-6108(23)00137-X. [PMID: 37172580 DOI: 10.1016/j.ccell.2023.04.011] [Citation(s) in RCA: 105] [Impact Index Per Article: 52.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/08/2022] [Revised: 01/06/2023] [Accepted: 04/18/2023] [Indexed: 05/15/2023]
Abstract
Immune checkpoint inhibitor (ICI) therapy can induce complete responses in mismatch repair-deficient and microsatellite instability-high (d-MMR/MSI-H) colorectal cancers (CRCs). However, the underlying mechanism for pathological complete response (pCR) to immunotherapy has not been completely understood. We utilize single-cell RNA sequencing (scRNA-seq) to investigate the dynamics of immune and stromal cells in 19 patients with d-MMR/MSI-H CRC who received neoadjuvant PD-1 blockade. We found that in tumors with pCR, there is a concerted decrease in CD8+ Trm-mitotic, CD4+ Tregs, proinflammatory IL1B+ Mono and CCL2+ Fibroblast following treatment, while the proportions of CD8+ Tem, CD4+ Th, CD20+ B, and HLA-DRA+ Endothelial cells increase. Proinflammatory features in the tumor microenvironment mediate the persistence of residual tumors by modulating CD8+ T cells and other response-associated immune cell populations. Our study provides valuable resources and biological insights into the mechanism of successful ICI therapy and potential targets for improving treatment efficacy.
Collapse
Affiliation(s)
- Jianxia Li
- Department of Medical Oncology, Department of General Surgery, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou 510655, China; Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Disease, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou 510655, China
| | - Cheng Wu
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou 510627, China
| | - Huabin Hu
- Department of Medical Oncology, Department of General Surgery, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou 510655, China; Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Disease, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou 510655, China
| | - Ge Qin
- Department of Medical Oncology, Department of General Surgery, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou 510655, China; Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Disease, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou 510655, China
| | - Xueqian Wu
- Department of Medical Oncology, Department of General Surgery, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou 510655, China; Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Disease, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou 510655, China
| | - Fan Bai
- Department of Medical Oncology, Department of General Surgery, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou 510655, China; Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Disease, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou 510655, China
| | - Jianwei Zhang
- Department of Medical Oncology, Department of General Surgery, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou 510655, China; Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Disease, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou 510655, China
| | - Yue Cai
- Department of Medical Oncology, Department of General Surgery, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou 510655, China; Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Disease, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou 510655, China
| | - Yan Huang
- Department of Pathology, Department of General Surgery, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou 510655, China; Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Disease, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou 510655, China
| | - Chao Wang
- Department of Pathology, Department of General Surgery, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou 510655, China; Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Disease, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou 510655, China
| | - Jiaqi Yang
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou 510627, China
| | - Yizhao Luan
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou 510627, China
| | - Zehang Jiang
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou 510627, China
| | - Jiayu Ling
- Department of Medical Oncology, Department of General Surgery, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou 510655, China; Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Disease, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou 510655, China
| | - Zehua Wu
- Department of Medical Oncology, Department of General Surgery, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou 510655, China; Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Disease, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou 510655, China
| | - Yaoxu Chen
- Medical Affairs, 3D Medicines Inc., Shanghai 201114, China
| | - Zhi Xie
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou 510627, China
| | - Yanhong Deng
- Department of Medical Oncology, Department of General Surgery, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou 510655, China; Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Disease, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou 510655, China.
| |
Collapse
|
236
|
Mai W, Liu Q, Li J, Zheng M, Yan F, Liu H, Lei Y, Xu J, Xu J. Comprehensive analysis of the oncogenic and immunological role of FAP and identification of the ceRNA network in human cancers. Aging (Albany NY) 2023; 15:3738-3758. [PMID: 37166418 PMCID: PMC10449273 DOI: 10.18632/aging.204707] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Accepted: 04/22/2023] [Indexed: 05/12/2023]
Abstract
Fibroblast activation protein-alpha (FAP) is a transmembrane serine protease involving in tissue remodeling. Previous studies report that FAP is highly expressed in certain tumors and participated in oncogenesis. However, there is still lack of systematic and in-depth analysis of FAP based on clinical big data. Here, we comprehensively map the FAP expression profile, prognostic outcome, genetic alteration, immune infiltration across over 30 types of human cancers through multiple datasets including TCGA, CPTAC, and cBioPortal. We find that FAP is up-regulated in most cancer types, and increased FAP expression is associated with advanced pathological stages or poor prognosis in several cancers. Furthermore, FAP is significantly correlated with the infiltration of cancer-associated fibroblasts, macrophages, myeloid dendritic cells, as well as endothelia cells. Immunosuppressive checkpoint proteins or cytokines expression, microsatellite instability and tumor mutational burden analysis also indicate the regulation role of FAP in tumor progression. Gene enrichment analysis demonstrates that ECM-receptor interaction as well as extracellular matrix and structure process are linked to the potential mechanism of FAP in tumor pathogenesis. The ceRNA network is also constructed and identified the involvement of LINC00707/hsa-miR-30e-5p/FAP, LINC02535/hsa-miR-30e-5p/FAP, LINC02535/hsa-miR-30d-5p/FAP, as well as AC026356.1/hsa-miR-30d-5p/FAP axis in tumor progression. In conclusion, our study offers new insights into the oncogenic and immunological role of FAP from a pan-cancer perspective, providing new clues for developing novel targeted anti-tumor strategies.
Collapse
Affiliation(s)
- Weiqian Mai
- School of Medicine, School of Life Science and Engineering, Foshan University, Foshan 528000, China
| | - Qingyou Liu
- School of Medicine, School of Life Science and Engineering, Foshan University, Foshan 528000, China
| | - Jiasheng Li
- School of Medicine, School of Life Science and Engineering, Foshan University, Foshan 528000, China
| | - Mincheng Zheng
- Integrative Medicine Research Center, School of Basic Medical Sciences, Guangzhou University of Chinese Medicine, University Town, Guangzhou 510006, China
| | - Fuman Yan
- Department of Physiology, School of Basic Medical Sciences, Guangzhou University of Chinese Medicine, University Town, Guangzhou 510006, China
| | - Hui Liu
- School of Medicine, School of Life Science and Engineering, Foshan University, Foshan 528000, China
| | - Yuhe Lei
- Department of Pharmacy, Shenzhen Hospital of Guangzhou University of Chinese Medicine, Shenzhen 518034, China
| | - Jinwen Xu
- Integrative Medicine Research Center, School of Basic Medical Sciences, Guangzhou University of Chinese Medicine, University Town, Guangzhou 510006, China
- Department of Physiology, School of Basic Medical Sciences, Guangzhou University of Chinese Medicine, University Town, Guangzhou 510006, China
| | - Jiean Xu
- Integrative Medicine Research Center, School of Basic Medical Sciences, Guangzhou University of Chinese Medicine, University Town, Guangzhou 510006, China
- Department of Physiology, School of Basic Medical Sciences, Guangzhou University of Chinese Medicine, University Town, Guangzhou 510006, China
| |
Collapse
|
237
|
Sulaiman R, De P, Aske JC, Lin X, Dale A, Gaster K, Espaillat LR, Starks D, Dey N. A CAF-Based Two-Cell Hybrid Co-Culture Model to Test Drug Resistance in Endometrial Cancers. Biomedicines 2023; 11:biomedicines11051326. [PMID: 37238998 DOI: 10.3390/biomedicines11051326] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2023] [Revised: 04/26/2023] [Accepted: 04/28/2023] [Indexed: 05/28/2023] Open
Abstract
The management of advanced or recurrent endometrial cancers presents a challenge due to the development of resistance to treatments. The knowledge regarding the role of the tumor microenvironment (TME) in determining the disease's progression and treatment outcome has evolved in recent years. As a TME component, cancer-associated fibroblasts (CAFs) are essential in developing drug-induced resistance in various solid tumors, including endometrial cancers. Hence, an unmet need exists to test the role of endometrial CAF in overcoming the roadblock of resistance in endometrial cancers. We present a novel tumor-TME two-cell ex vivo model to test CAF's role in resisting the anti-tumor drug, paclitaxel. Endometrial CAFs, both NCAFs (tumor-adjacent normal-tissue-derived CAFs) and TCAFs (tumor-tissue-derived CAFs) were validated by their expression markers. Both TCAFs and NCAFs expressed positive markers of CAF, including SMA, FAP, and S100A4, in varying degrees depending on the patients, while they consistently lacked the negative marker of CAF, EpCAM, as tested via flow cytometry and ICC. CAFs expressed TE-7 and immune marker, PD-L1, via ICC. CAFs better resisted the growth inhibitory effect of paclitaxel on endometrial tumor cells in 2D and 3D formats compared to the resistance of the tumoricidal effect of paclitaxel in the absence of CAFs. TCAF resisted the growth inhibitory effect of paclitaxel on endometrial AN3CA and RL-95-2 cells in an HyCC 3D format. Since NCAF similarly resisted the growth inhibitor action of paclitaxel, we tested NCAF and TCAF from the same patient to demonstrate the protective action of NCAF and TCAF in resisting the tumoricidal effect of paclitaxel in AN3CA in both 2D and 3D matrigel formats. Using this hybrid co-culture CAF and tumor cells, we established a patient-specific, laboratory-friendly, cost-effective, and time-sensitive model system to test drug resistance. The model will help test the role of CAFs in developing drug resistance and contribute to understanding tumor cell-CAF dialogue in gynecological cancers and beyond.
Collapse
Affiliation(s)
- Raed Sulaiman
- Department of Pathology, Avera Research Institute, Sioux Falls, SD 57105, USA
| | - Pradip De
- Translational Oncology Laboratory, Avera Research Institute, Sioux Falls, SD 57105, USA
- Department of Internal Medicine, University of South Dakota SSOM, USD, Sioux Falls, SD 57105, USA
- Viecure, Greenwood Village, CO 80111, USA
| | - Jennifer C Aske
- Translational Oncology Laboratory, Avera Research Institute, Sioux Falls, SD 57105, USA
| | - Xiaoqian Lin
- Translational Oncology Laboratory, Avera Research Institute, Sioux Falls, SD 57105, USA
| | - Adam Dale
- Translational Oncology Laboratory, Avera Research Institute, Sioux Falls, SD 57105, USA
| | - Kris Gaster
- Assistant VP Outpatient Cancer Clinics, Avera Cancer Institute, Sioux Falls, SD 57105, USA
| | - Luis Rojas Espaillat
- Department of Gynecologic Oncology, Avera Research Institute, Sioux Falls, SD 57105, USA
| | - David Starks
- Department of Gynecologic Oncology, Avera Research Institute, Sioux Falls, SD 57105, USA
| | - Nandini Dey
- Translational Oncology Laboratory, Avera Research Institute, Sioux Falls, SD 57105, USA
- Department of Internal Medicine, University of South Dakota SSOM, USD, Sioux Falls, SD 57105, USA
| |
Collapse
|
238
|
Proietto M, Crippa M, Damiani C, Pasquale V, Sacco E, Vanoni M, Gilardi M. Tumor heterogeneity: preclinical models, emerging technologies, and future applications. Front Oncol 2023; 13:1164535. [PMID: 37188201 PMCID: PMC10175698 DOI: 10.3389/fonc.2023.1164535] [Citation(s) in RCA: 35] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Accepted: 04/11/2023] [Indexed: 05/17/2023] Open
Abstract
Heterogeneity describes the differences among cancer cells within and between tumors. It refers to cancer cells describing variations in morphology, transcriptional profiles, metabolism, and metastatic potential. More recently, the field has included the characterization of the tumor immune microenvironment and the depiction of the dynamics underlying the cellular interactions promoting the tumor ecosystem evolution. Heterogeneity has been found in most tumors representing one of the most challenging behaviors in cancer ecosystems. As one of the critical factors impairing the long-term efficacy of solid tumor therapy, heterogeneity leads to tumor resistance, more aggressive metastasizing, and recurrence. We review the role of the main models and the emerging single-cell and spatial genomic technologies in our understanding of tumor heterogeneity, its contribution to lethal cancer outcomes, and the physiological challenges to consider in designing cancer therapies. We highlight how tumor cells dynamically evolve because of the interactions within the tumor immune microenvironment and how to leverage this to unleash immune recognition through immunotherapy. A multidisciplinary approach grounded in novel bioinformatic and computational tools will allow reaching the integrated, multilayered knowledge of tumor heterogeneity required to implement personalized, more efficient therapies urgently required for cancer patients.
Collapse
Affiliation(s)
- Marco Proietto
- Next Generation Sequencing Core, The Salk Institute for Biological Studies, La Jolla, CA, United States
- Gene Expression Laboratory, The Salk Institute for Biological Studies, La Jolla, CA, United States
- NOMIS Center for Immunobiology and Microbial Pathogenesis, The Salk Institute for Biological Studies, La Jolla, CA, United States
| | - Martina Crippa
- Vita-Salute San Raffaele University, Milan, Italy
- Experimental Imaging Center, Istituti di Ricovero e Cura a Carattere Scientifico (IRCCS) Ospedale San Raffaele, Milan, Italy
| | - Chiara Damiani
- Infrastructure Systems Biology Europe /Centre of Systems Biology (ISBE/SYSBIO) Centre of Systems Biology, Milan, Italy
- Department of Biotechnology and Biosciences, School of Sciences, University of Milano-Bicocca, Milan, Italy
| | - Valentina Pasquale
- Infrastructure Systems Biology Europe /Centre of Systems Biology (ISBE/SYSBIO) Centre of Systems Biology, Milan, Italy
- Department of Biotechnology and Biosciences, School of Sciences, University of Milano-Bicocca, Milan, Italy
| | - Elena Sacco
- Infrastructure Systems Biology Europe /Centre of Systems Biology (ISBE/SYSBIO) Centre of Systems Biology, Milan, Italy
- Department of Biotechnology and Biosciences, School of Sciences, University of Milano-Bicocca, Milan, Italy
| | - Marco Vanoni
- Infrastructure Systems Biology Europe /Centre of Systems Biology (ISBE/SYSBIO) Centre of Systems Biology, Milan, Italy
- Department of Biotechnology and Biosciences, School of Sciences, University of Milano-Bicocca, Milan, Italy
| | - Mara Gilardi
- NOMIS Center for Immunobiology and Microbial Pathogenesis, The Salk Institute for Biological Studies, La Jolla, CA, United States
- Salk Cancer Center, The Salk Institute for Biological Studies, La Jolla, CA, United States
| |
Collapse
|
239
|
Ursino C, Mouric C, Gros L, Bonnefoy N, Faget J. Intrinsic features of the cancer cell as drivers of immune checkpoint blockade response and refractoriness. Front Immunol 2023; 14:1170321. [PMID: 37180110 PMCID: PMC10169604 DOI: 10.3389/fimmu.2023.1170321] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2023] [Accepted: 04/11/2023] [Indexed: 05/15/2023] Open
Abstract
Immune checkpoint blockade represents the latest revolution in cancer treatment by substantially increasing patients' lifetime and quality of life in multiple neoplastic pathologies. However, this new avenue of cancer management appeared extremely beneficial in a minority of cancer types and the sub-population of patients that would benefit from such therapies remain difficult to predict. In this review of the literature, we have summarized important knowledge linking cancer cell characteristics with the response to immunotherapy. Mostly focused on lung cancer, our objective was to illustrate how cancer cell diversity inside a well-defined pathology might explain sensitivity and refractoriness to immunotherapies. We first discuss how genomic instability, epigenetics and innate immune signaling could explain differences in the response to immune checkpoint blockers. Then, in a second part we detailed important notions suggesting that altered cancer cell metabolism, specific oncogenic signaling, tumor suppressor loss as well as tight control of the cGAS/STING pathway in the cancer cells can be associated with resistance to immune checkpoint blockade. At the end, we discussed recent evidences that could suggest that immune checkpoint blockade as first line therapy might shape the cancer cell clones diversity and give rise to the appearance of novel resistance mechanisms.
Collapse
Affiliation(s)
| | | | | | | | - Julien Faget
- Institut de Recherche en Cancérologie de Montpellier (IRCM), Inserm U1194, Univ Montpellier, Institut du Cancer de Montpellier (ICM), Montpellier, France
| |
Collapse
|
240
|
Minini M, Fouassier L. Cancer-Associated Fibroblasts and Extracellular Matrix: Therapeutical Strategies for Modulating the Cholangiocarcinoma Microenvironment. Curr Oncol 2023; 30:4185-4196. [PMID: 37185432 PMCID: PMC10137461 DOI: 10.3390/curroncol30040319] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2023] [Revised: 04/04/2023] [Accepted: 04/07/2023] [Indexed: 05/17/2023] Open
Abstract
During the last decade, immunotherapy has radically changed perspectives on anti-tumor treatments. However, solid tumor treatment by immunotherapy has not met expectations. Indeed, poor clinical response to treatment has highlighted the need to understand and avoid immunotherapy resistance. Cholangiocarcinoma (CCA) is the second cause of hepatic cancer-related deaths because of drug inefficacy and chemo-resistance in a majority of patients. Thus, intense research is ongoing to better understand the mechanisms involved in the chemo-resistance processes. The tumor microenvironment (TME) may be involved in tumor therapy resistance by limiting drug access. Indeed, cells such as cancer-associated fibroblasts (CAFs) alter TME by producing in excess an aberrant extracellular matrix (ECM). Interestingly, CAFs are the dominant stromal component in CCA that secrete large amounts of stiff ECM. Stiff ECM could contribute to immune exclusion by limiting anti-tumor T-cells drop-in. Herein, we summarize features, functions, and interactions among CAFs, tumor-associated ECM, and immune cells in TME. Moreover, we discuss the strategies targeting CAFs and the remodeling of the ECM to improve immunotherapy and drug therapies.
Collapse
Affiliation(s)
- Mirko Minini
- Centre de Recherche Saint-Antoine, CRSA, Sorbonne Université, INSERM, 75012 Paris, France
| | - Laura Fouassier
- Centre de Recherche Saint-Antoine, CRSA, Sorbonne Université, INSERM, 75012 Paris, France
- Association Pour L'étude des Cancers et Affections des Voies Biliaires (ACABi), 75012 Paris, France
| |
Collapse
|
241
|
Chen W, Xu D, Liu Q, Wu Y, Wang Y, Yang J. Unraveling the heterogeneity of cholangiocarcinoma and identifying biomarkers and therapeutic strategies with single-cell sequencing technology. Biomed Pharmacother 2023; 162:114697. [PMID: 37060660 DOI: 10.1016/j.biopha.2023.114697] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Revised: 04/06/2023] [Accepted: 04/10/2023] [Indexed: 04/17/2023] Open
Abstract
Cholangiocarcinoma (CCA) is a common malignant tumor of the biliary tract that carries a high burden of morbidity and a poor prognosis. Due to the lack of precise diagnostic methods, many patients are often diagnosed at advanced stages of the disease. The current treatment options available are of varying efficacy, underscoring the urgency for the discovery of more effective biomarkers for early diagnosis and improved treatment. Recently, single-cell sequencing (SCS) technology has gained popularity in cancer research. This technology has the ability to analyze tumor tissues at the single-cell level, thus providing insights into the genomics and epigenetics of tumor cells. It also serves as a practical approach to study the mechanisms of cancer progression and to explore therapeutic strategies. In this review, we aim to assess the heterogeneity of CCA using single-cell sequencing technology, with the ultimate goal of identifying possible biomarkers and potential treatment targets.
Collapse
Affiliation(s)
- Wangyang Chen
- Affiliated Hangzhou First People's Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang Province 310003, China; Department of Gastroenterology, Affiliated Hangzhou First People's Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang Province 310003, China; Key Laboratory of Integrated Traditional Chinese and Western Medicine for Biliary and Pancreatic Diseases of Zhejiang Province, Hangzhou, Zhejiang Province 310003, China; Hangzhou Institute of Digestive Diseases, Hangzhou, Zhejiang Province 310003, China
| | - Dongchao Xu
- Affiliated Hangzhou First People's Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang Province 310003, China; Department of Gastroenterology, Affiliated Hangzhou First People's Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang Province 310003, China; Key Laboratory of Integrated Traditional Chinese and Western Medicine for Biliary and Pancreatic Diseases of Zhejiang Province, Hangzhou, Zhejiang Province 310003, China; Hangzhou Institute of Digestive Diseases, Hangzhou, Zhejiang Province 310003, China
| | - Qiang Liu
- Affiliated Hangzhou First People's Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang Province 310003, China; Department of Gastroenterology, Affiliated Hangzhou First People's Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang Province 310003, China; Key Laboratory of Integrated Traditional Chinese and Western Medicine for Biliary and Pancreatic Diseases of Zhejiang Province, Hangzhou, Zhejiang Province 310003, China; Hangzhou Institute of Digestive Diseases, Hangzhou, Zhejiang Province 310003, China
| | - Yirong Wu
- Affiliated Hangzhou First People's Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang Province 310003, China
| | - Yu Wang
- Affiliated Hangzhou First People's Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang Province 310003, China; Department of Gastroenterology, Affiliated Hangzhou First People's Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang Province 310003, China; Key Laboratory of Integrated Traditional Chinese and Western Medicine for Biliary and Pancreatic Diseases of Zhejiang Province, Hangzhou, Zhejiang Province 310003, China; Hangzhou Institute of Digestive Diseases, Hangzhou, Zhejiang Province 310003, China.
| | - Jianfeng Yang
- Affiliated Hangzhou First People's Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang Province 310003, China; Department of Gastroenterology, Affiliated Hangzhou First People's Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang Province 310003, China; Key Laboratory of Integrated Traditional Chinese and Western Medicine for Biliary and Pancreatic Diseases of Zhejiang Province, Hangzhou, Zhejiang Province 310003, China; Hangzhou Institute of Digestive Diseases, Hangzhou, Zhejiang Province 310003, China; Key Laboratory of Integrated Oncology and Intelligent Medicine of Zhejiang Province, Hangzhou, Zhejiang Province 310003, China; Zhejiang Provincial Key Laboratory of Clinical Cancer Pharmacology and Toxicology Research, Hangzhou, Zhejiang Province 310003, China.
| |
Collapse
|
242
|
Chhabra Y, Weeraratna AT. Fibroblasts in cancer: Unity in heterogeneity. Cell 2023; 186:1580-1609. [PMID: 37059066 PMCID: PMC11422789 DOI: 10.1016/j.cell.2023.03.016] [Citation(s) in RCA: 163] [Impact Index Per Article: 81.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Revised: 03/13/2023] [Accepted: 03/15/2023] [Indexed: 04/16/2023]
Abstract
Tumor cells do not exist in isolation in vivo, and carcinogenesis depends on the surrounding tumor microenvironment (TME), composed of a myriad of cell types and biophysical and biochemical components. Fibroblasts are integral in maintaining tissue homeostasis. However, even before a tumor develops, pro-tumorigenic fibroblasts in close proximity can provide the fertile 'soil' to the cancer 'seed' and are known as cancer-associated fibroblasts (CAFs). In response to intrinsic and extrinsic stressors, CAFs reorganize the TME enabling metastasis, therapeutic resistance, dormancy and reactivation by secreting cellular and acellular factors. In this review, we summarize the recent discoveries on CAF-mediated cancer progression with a particular focus on fibroblast heterogeneity and plasticity.
Collapse
Affiliation(s)
- Yash Chhabra
- Department of Biochemistry and Molecular Biology, Bloomberg School of Public Health, Department of Oncology, Sidney Kimmel Cancer Center, School of Medicine, Johns Hopkins University, Baltimore, MD 21205, USA.
| | - Ashani T Weeraratna
- Department of Biochemistry and Molecular Biology, Bloomberg School of Public Health, Department of Oncology, Sidney Kimmel Cancer Center, School of Medicine, Johns Hopkins University, Baltimore, MD 21205, USA.
| |
Collapse
|
243
|
Tamaddon M, Azimzadeh M, Gifani P, Tavangar SM. Single-cell transcriptome analysis for cancer and biology of the pancreas: A review on recent progress. Front Genet 2023; 14:1029758. [PMID: 37091793 PMCID: PMC10115972 DOI: 10.3389/fgene.2023.1029758] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2022] [Accepted: 03/10/2023] [Indexed: 04/08/2023] Open
Abstract
Single-cell sequencing has become one of the most used techniques across the wide field of biology. It has enabled researchers to investigate the whole transcriptome at the cellular level across tissues, which unlocks numerous potentials for basic and applied studies in future diagnosis and therapy. Here, we review the impact of single-cell RNA sequencing, as the prominent single-cell technique, in pancreatic biology and cancer. We discuss the most recent findings about pancreatic physiology and pathophysiology owing to this technological advancement in the past few years. Using single-cell RNA sequencing, researchers have been able to discover cellular heterogeneity across healthy cell types, as well as cancer tissues of the pancreas. We will discuss the new immunological targets and new molecular mechanisms of progression in the microenvironment of pancreatic cancer studied using single-cell RNA sequencing. The scope is not limited to cancer tissues, and we cover novel developmental, evolutionary, physiological, and heterogenic insights that have also been achieved recently for pancreatic tissues. We cover all biological insights derived from the single-cell RNA sequencing data, discuss the corresponding pros and cons, and finally, conclude how future research can move better by utilizing single-cell analysis for pancreatic biology.
Collapse
Affiliation(s)
- Mona Tamaddon
- Chronic Diseases Research Center, Endocrinology and Metabolism Population Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Mostafa Azimzadeh
- Department of Medical Biotechnology, School of Medicine, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
- Medical Nanotechnology and Tissue Engineering Research Center, Yazd Reproductive Sciences Institute, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
- Stem Cell Biology Research Center, Yazd Reproductive Sciences Institute, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
| | - Peyman Gifani
- AI VIVO Ltd., Bioinnovation Centre, Cambridge, United Kingdom
- Genetic Department, Institute of Systems Biology, University of Cambridge, Cambridge, United Kingdom
| | - Seyed Mohammad Tavangar
- Chronic Diseases Research Center, Endocrinology and Metabolism Population Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
- Department of Pathology, Shariati Hospital, Tehran University of Medical Sciences, Tehran, Iran
- *Correspondence: Seyed Mohammad Tavangar,
| |
Collapse
|
244
|
Said SS, Ibrahim WN. Cancer Resistance to Immunotherapy: Comprehensive Insights with Future Perspectives. Pharmaceutics 2023; 15:pharmaceutics15041143. [PMID: 37111629 PMCID: PMC10141036 DOI: 10.3390/pharmaceutics15041143] [Citation(s) in RCA: 26] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2023] [Revised: 03/24/2023] [Accepted: 03/31/2023] [Indexed: 04/08/2023] Open
Abstract
Cancer immunotherapy is a type of treatment that harnesses the power of the immune systems of patients to target cancer cells with better precision compared to traditional chemotherapy. Several lines of treatment have been approved by the US Food and Drug Administration (FDA) and have led to remarkable success in the treatment of solid tumors, such as melanoma and small-cell lung cancer. These immunotherapies include checkpoint inhibitors, cytokines, and vaccines, while the chimeric antigen receptor (CAR) T-cell treatment has shown better responses in hematological malignancies. Despite these breakthrough achievements, the response to treatment has been variable among patients, and only a small percentage of cancer patients gained from this treatment, depending on the histological type of tumor and other host factors. Cancer cells develop mechanisms to avoid interacting with immune cells in these circumstances, which has an adverse effect on how effectively they react to therapy. These mechanisms arise either due to intrinsic factors within cancer cells or due other cells within the tumor microenvironment (TME). When this scenario is used in a therapeutic setting, the term “resistance to immunotherapy” is applied; “primary resistance” denotes a failure to respond to treatment from the start, and “secondary resistance” denotes a relapse following the initial response to immunotherapy. Here, we provide a thorough summary of the internal and external mechanisms underlying tumor resistance to immunotherapy. Furthermore, a variety of immunotherapies are briefly discussed, along with recent developments that have been employed to prevent relapses following treatment, with a focus on upcoming initiatives to improve the efficacy of immunotherapy for cancer patients.
Collapse
Affiliation(s)
- Sawsan Sudqi Said
- Department of Biomedical Sciences, College of Health Sciences, QU Health, Qatar University, Doha P.O. Box 2713, Qatar
| | - Wisam Nabeel Ibrahim
- Department of Biomedical Sciences, College of Health Sciences, QU Health, Qatar University, Doha P.O. Box 2713, Qatar
| |
Collapse
|
245
|
Nee K, Ma D, Nguyen QH, Pein M, Pervolarakis N, Insua-Rodríguez J, Gong Y, Hernandez G, Alshetaiwi H, Williams J, Rauf M, Dave KR, Boyapati K, Hasnain A, Calderon C, Markaryan A, Edwards R, Lin E, Parajuli R, Zhou P, Nie Q, Shalabi S, LaBarge MA, Kessenbrock K. Preneoplastic stromal cells promote BRCA1-mediated breast tumorigenesis. Nat Genet 2023; 55:595-606. [PMID: 36914836 PMCID: PMC10655552 DOI: 10.1038/s41588-023-01298-x] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2022] [Accepted: 12/28/2022] [Indexed: 03/16/2023]
Abstract
Women with germline BRCA1 mutations (BRCA1+/mut) have increased risk for hereditary breast cancer. Cancer initiation in BRCA1+/mut is associated with premalignant changes in breast epithelium; however, the role of the epithelium-associated stromal niche during BRCA1-driven tumor initiation remains unclear. Here we show that the premalignant stromal niche promotes epithelial proliferation and mutant BRCA1-driven tumorigenesis in trans. Using single-cell RNA sequencing analysis of human preneoplastic BRCA1+/mut and noncarrier breast tissues, we show distinct changes in epithelial homeostasis including increased proliferation and expansion of basal-luminal intermediate progenitor cells. Additionally, BRCA1+/mut stromal cells show increased expression of pro-proliferative paracrine signals. In particular, we identify pre-cancer-associated fibroblasts (pre-CAFs) that produce protumorigenic factors including matrix metalloproteinase 3 (MMP3), which promotes BRCA1-driven tumorigenesis in vivo. Together, our findings demonstrate that precancerous stroma in BRCA1+/mut may elevate breast cancer risk through the promotion of epithelial proliferation and an accumulation of luminal progenitor cells with altered differentiation.
Collapse
Affiliation(s)
- Kevin Nee
- Department of Biological Chemistry, University of California, Irvine, CA, USA
| | - Dennis Ma
- Department of Biological Chemistry, University of California, Irvine, CA, USA
| | - Quy H Nguyen
- Department of Biological Chemistry, University of California, Irvine, CA, USA
| | - Maren Pein
- Department of Biological Chemistry, University of California, Irvine, CA, USA
| | - Nicholas Pervolarakis
- Department of Biological Chemistry, University of California, Irvine, CA, USA
- Center for Complex Biological Systems, University of California, Irvine, CA, USA
| | | | - Yanwen Gong
- Department of Biological Chemistry, University of California, Irvine, CA, USA
- Center for Complex Biological Systems, University of California, Irvine, CA, USA
| | - Grace Hernandez
- Department of Biological Chemistry, University of California, Irvine, CA, USA
| | - Hamad Alshetaiwi
- Department of Biological Chemistry, University of California, Irvine, CA, USA
- Department of Pathology, University of Hail, Hail, Saudi Arabia
| | - Justice Williams
- Department of Biological Chemistry, University of California, Irvine, CA, USA
| | - Maha Rauf
- Department of Biological Chemistry, University of California, Irvine, CA, USA
| | - Kushal Rajiv Dave
- Department of Biological Chemistry, University of California, Irvine, CA, USA
| | - Keerti Boyapati
- Department of Biological Chemistry, University of California, Irvine, CA, USA
| | - Aliza Hasnain
- Department of Biological Chemistry, University of California, Irvine, CA, USA
| | - Christian Calderon
- Department of Biological Chemistry, University of California, Irvine, CA, USA
| | - Anush Markaryan
- Department of Biological Chemistry, University of California, Irvine, CA, USA
| | - Robert Edwards
- Department of Pathology and Laboratory Medicine, University of California Irvine Medical Center, Orange, CA, USA
| | - Erin Lin
- Department of Surgery, University of California Irvine Medical Center, Orange, CA, USA
| | - Ritesh Parajuli
- Department of Surgery, University of California Irvine Medical Center, Orange, CA, USA
| | - Peijie Zhou
- Department of Mathematics, University of California, Irvine, CA, USA
- The NSF-Simons Center for Multiscale Cell Fate Research, University of California, Irvine, CA, USA
| | - Qing Nie
- Department of Mathematics, University of California, Irvine, CA, USA
- The NSF-Simons Center for Multiscale Cell Fate Research, University of California, Irvine, CA, USA
| | - Sundus Shalabi
- Beckman Research Institute at City of Hope, Duarte, CA, USA
| | - Mark A LaBarge
- Beckman Research Institute at City of Hope, Duarte, CA, USA
| | - Kai Kessenbrock
- Department of Biological Chemistry, University of California, Irvine, CA, USA.
| |
Collapse
|
246
|
Strating E, van de Loo A, Elias S, Lam M, Kranenburg O. Fibroblast Activation Protein Inhibitor-PET Imaging in Colorectal Cancer. PET Clin 2023:S1556-8598(23)00016-0. [PMID: 37030984 DOI: 10.1016/j.cpet.2023.02.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/09/2023]
Abstract
Fibroblast activation protein inhibitor (FAPI)-PET imaging holds great promise for improving the clinical management of colorectal cancer. High fibroblast activation protein expression is particularly observed in lymph node metastases, in the aggressive Consensus Molecular Subtype 4, in peritoneal metastases, and in tumors that respond poorly to immunotherapy. We have defined six clinical dilemmas in the diagnosis and treatment of colorectal cancer, which FAPI-PET may help solve. Future clinical trials should include patients undergoing tumor resection, allowing correlation of FAPI-PET signals with in-depth histopathological, cellular, and molecular tissue analyses.
Collapse
Affiliation(s)
- Esther Strating
- Division of Imaging and Cancer, Laboratory Translational Oncology, University Medical Center Utrecht, Utrecht University, Heidelberglaan 100, 3584 CX, G.04.2.28, Utrecht, the Netherlands
| | - Anne van de Loo
- Division of Imaging and Cancer, Laboratory Translational Oncology, University Medical Center Utrecht, Utrecht University, Heidelberglaan 100, 3584 CX, G.04.2.28, Utrecht, the Netherlands
| | - Sjoerd Elias
- Department of Epidemiology, Julius Center for Health Sciences and Primary Care, University Medical Center Utrecht, Utrecht University, Heidelberglaan 100, 3584 CX, STR.6.131, Utrecht, the Netherlands
| | - Marnix Lam
- Department of Radiology and Nuclear Medicine, University Medical Center Utrecht, Utrecht University, Heidelberglaan 100, 3584 CX, E.01.1.32, Utrecht, the Netherlands.
| | - Onno Kranenburg
- Division of Imaging and Cancer, Laboratory Translational Oncology, University Medical Center Utrecht, Utrecht University, Heidelberglaan 100, 3584 CX, G.04.2.28, Utrecht, the Netherlands.
| |
Collapse
|
247
|
Zhang D, Wang Y, Zhao F, Yang Q. Integrated multiomics analyses unveil the implication of a costimulatory molecule score on tumor aggressiveness and immune evasion in breast cancer: A large-scale study through over 8,000 patients. Comput Biol Med 2023; 159:106866. [PMID: 37068318 DOI: 10.1016/j.compbiomed.2023.106866] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2022] [Revised: 02/05/2023] [Accepted: 03/30/2023] [Indexed: 04/08/2023]
Abstract
BACKGROUND Although immunotherapy has revolutionised cancer management, reliable genomic biomarkers for identifying eligible patient subpopulations are lacking. Costimulatory molecules play a crucial role in mounting anti-tumour responses, and clinical trials targeting these novel biomarkers are underway. However, whether these molecules can determine tumour aggressiveness and the risk of tumour evasion in breast cancer (BC) remains largely unknown. METHODS The whole-tissue transcriptomic data of 8236 patients with BC from 15 independent cohorts were extracted. An integrated scoring system named 'costimulatory molecule score' (CMS) was constructed and sufficient validated using least absolute shrinkage and selection operator regression (1000 iterations) and the random survival forest algorithm (1000 trees). The correlation among CMSs, cancer genotypes and clinicopathological characteristics was examined. Extensive multiomics and immunogenomic analyses were performed to investigate and verify the association among CMSs, enriched pathways, potential intrinsic and extrinsic immune escape mechanisms, immunotherapy response and therapeutic options. RESULTS The predictive role of CMS model that relies on expression pattern of merely 5 costimulatory genes for prognosis is almost universally applicable to BC patients in a platform-independent manner. Through internal and external in silico validation, high CMS was characterized by favorable genotypes but decreased tumor immunogenicity, activation of stroma, immune-suppressive states and potential immunotherapeutic resistance. Similar results were observed in a real-world immunotherapy cohort and Pan-Cancer analysis. CONCLUSION This comprehensive characterization indicates CMS model may be complemented for predicting tumor aggressiveness and immune evasion in BC patients, underlining the future clinical potential for further exploration of resistance mechanisms and optimization of immunotherapeutic strategies.
Collapse
Affiliation(s)
- Dong Zhang
- Department of Breast Surgery, General Surgery, Qilu Hospital of Shandong University, Jinan, 250012, China; Department of Clinical Medicine, The First Clinical College, Shandong University, Jinan, 250012, China
| | - Yingnan Wang
- Department of Breast Surgery, General Surgery, Qilu Hospital of Shandong University, Jinan, 250012, China; Department of Clinical Medicine, The First Clinical College, Shandong University, Jinan, 250012, China
| | - Faming Zhao
- Key Laboratory of Environmental Health, Ministry of Education & Ministry of Environmental Protection, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Qifeng Yang
- Department of Breast Surgery, General Surgery, Qilu Hospital of Shandong University, Jinan, 250012, China; Pathology Tissue Bank, Qilu Hospital of Shandong University, Jinan, Shandong, 250012, China; Research Institute of Breast Cancer, Shandong University, Jinan, 250102, China.
| |
Collapse
|
248
|
Moghal N, Li Q, Stewart EL, Navab R, Mikubo M, D'Arcangelo E, Martins-Filho SN, Raghavan V, Pham NA, Li M, Shepherd FA, Liu G, Tsao MS. Single-Cell Analysis Reveals Transcriptomic Features of Drug-Tolerant Persisters and Stromal Adaptation in a Patient-Derived EGFR-Mutated Lung Adenocarcinoma Xenograft Model. J Thorac Oncol 2023; 18:499-515. [PMID: 36535627 DOI: 10.1016/j.jtho.2022.12.003] [Citation(s) in RCA: 26] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2022] [Revised: 11/11/2022] [Accepted: 12/08/2022] [Indexed: 12/23/2022]
Abstract
INTRODUCTION Targeted therapies require life-long treatment, as drug discontinuation invariably leads to tumor recurrence. Recurrence is mainly driven by minor subpopulations of drug-tolerant persister (DTP) cells that survive the cytotoxic drug effect. In lung cancer, DTP studies have mainly been conducted with cell line models. METHODS We conducted an in vivo DTP study using a lung adenocarcinoma patient-derived xenograft tumor driven by an EGFR mutation. Daily treatment of tumor-bearing mice for 5 to 6 weeks with the EGFR inhibitor erlotinib markedly shrunk tumors and generated DTPs, which were analyzed by whole exome, bulk population transcriptome, and single-cell RNA sequencing. RESULTS The DTP tumors maintained the genomic clonal architecture of untreated baseline (BL) tumors but had reduced proliferation. Single-cell RNA sequencing identified a rare (approximately 4%) subpopulation of BL cells (DTP-like) with transcriptomic similarity to DTP cells and intermediate activity of pathways that are up-regulated in DTPs. Furthermore, the predominant transforming growth factor-β activated cancer-associated fibroblast (CAF) population in BL tumors was replaced by a CAF population enriched for IL6 production. In vitro experiments indicate that these populations interconvert depending on the levels of transforming growth factor-β versus NF-κB signaling, which is modulated by tyrosine kinase inhibitor presence. The DTPs had signs of increased NF-κB and STAT3 signaling, which may promote their survival. CONCLUSIONS The DTPs may arise from a specific preexisting subpopulation of cancer cells with partial activation of specific drug resistance pathways. Tyrosine kinase inhibitor treatment induces DTPs revealing greater activation of these pathways while converting the major preexisting CAF population into a new state that may further promote DTP survival.
Collapse
Affiliation(s)
- Nadeem Moghal
- Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario, Canada
| | - Quan Li
- Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario, Canada
| | - Erin L Stewart
- Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario, Canada; Department of Medical Biophysics, University of Toronto, Ontario, Canada
| | - Roya Navab
- Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario, Canada
| | - Masashi Mikubo
- Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario, Canada; Department of Thoracic Surgery, Kitasato University School of Medicine, Kanagawa, Japan
| | - Elisa D'Arcangelo
- Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario, Canada
| | - Sebastiao N Martins-Filho
- Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario, Canada; Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Ontario, Canada
| | - Vibha Raghavan
- Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario, Canada
| | - Nhu-An Pham
- Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario, Canada
| | - Ming Li
- Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario, Canada
| | - Frances A Shepherd
- Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario, Canada; Department of Medicine, University of Toronto, Toronto, Ontario, Canada
| | - Geoffrey Liu
- Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario, Canada; Department of Medical Biophysics, University of Toronto, Ontario, Canada; Department of Medicine, University of Toronto, Toronto, Ontario, Canada
| | - Ming-Sound Tsao
- Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario, Canada; Department of Medical Biophysics, University of Toronto, Ontario, Canada; Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Ontario, Canada.
| |
Collapse
|
249
|
Martin-Serrano MA, Kepecs B, Torres-Martin M, Bramel ER, Haber PK, Merritt E, Rialdi A, Param NJ, Maeda M, Lindblad KE, Carter JK, Barcena-Varela M, Mazzaferro V, Schwartz M, Affo S, Schwabe RF, Villanueva A, Guccione E, Friedman SL, Lujambio A, Tocheva A, Llovet JM, Thung SN, Tsankov AM, Sia D. Novel microenvironment-based classification of intrahepatic cholangiocarcinoma with therapeutic implications. Gut 2023; 72:736-748. [PMID: 35584893 PMCID: PMC10388405 DOI: 10.1136/gutjnl-2021-326514] [Citation(s) in RCA: 56] [Impact Index Per Article: 28.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/08/2021] [Accepted: 05/03/2022] [Indexed: 12/12/2022]
Abstract
OBJECTIVE The diversity of the tumour microenvironment (TME) of intrahepatic cholangiocarcinoma (iCCA) has not been comprehensively assessed. We aimed to generate a novel molecular iCCA classifier that incorporates elements of the stroma, tumour and immune microenvironment ('STIM' classification). DESIGN We applied virtual deconvolution to transcriptomic data from ~900 iCCAs, enabling us to devise a novel classification by selecting for the most relevant TME components. Murine models were generated through hydrodynamic tail vein injection and compared with the human disease. RESULTS iCCA is composed of five robust STIM classes encompassing both inflamed (35%) and non-inflamed profiles (65%). The inflamed classes, named immune classical (~10%) and inflammatory stroma (~25%), differ in oncogenic pathways and extent of desmoplasia, with the inflammatory stroma showing T cell exhaustion, abundant stroma and KRAS mutations (p<0.001). Analysis of cell-cell interactions highlights cancer-associated fibroblast subtypes as potential mediators of immune evasion. Among the non-inflamed classes, the desert-like class (~20%) harbours the lowest immune infiltration with abundant regulatory T cells (p<0.001), whereas the hepatic stem-like class (~35%) is enriched in 'M2-like' macrophages, mutations in IDH1/2 and BAP1, and FGFR2 fusions. The remaining class (tumour classical: ~10%) is defined by cell cycle pathways and poor prognosis. Comparative analysis unveils high similarity between a KRAS/p19 murine model and the inflammatory stroma class (p=0.02). The KRAS-SOS inhibitor, BI3406, sensitises a KRAS-mutant iCCA murine model to anti-PD1 therapy. CONCLUSIONS We describe a comprehensive TME-based stratification of iCCA. Cross-species analysis establishes murine models that align closely to human iCCA for the preclinical testing of combination strategies.
Collapse
Affiliation(s)
- Miguel A Martin-Serrano
- Division of Liver Diseases, Department of Medicine, Tisch Cancer Institute, Liver Cancer Program, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Benjamin Kepecs
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Miguel Torres-Martin
- Translational Research in Hepatic Oncology, Liver Unit, IDIBAPS, Hospital Clinic, University of Barcelona, Barcelona, Catalunya, Spain
| | - Emily R Bramel
- Division of Liver Diseases, Department of Medicine, Tisch Cancer Institute, Liver Cancer Program, Icahn School of Medicine at Mount Sinai, New York, New York, USA
- Graduate School of Biomedical Sciences, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Philipp K Haber
- Division of Liver Diseases, Department of Medicine, Tisch Cancer Institute, Liver Cancer Program, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Elliot Merritt
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, New York, USA
- The Precision Immunology Institute (PrIISM), Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Alexander Rialdi
- Division of Liver Diseases, Department of Medicine, Tisch Cancer Institute, Liver Cancer Program, Icahn School of Medicine at Mount Sinai, New York, New York, USA
- Department of Oncological Sciences, Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Nesteene Joy Param
- Graduate School of Biomedical Sciences, Icahn School of Medicine at Mount Sinai, New York, New York, USA
- Department of Oncological Sciences, Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Miho Maeda
- Division of Liver Diseases, Department of Medicine, Tisch Cancer Institute, Liver Cancer Program, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Katherine E Lindblad
- Division of Liver Diseases, Department of Medicine, Tisch Cancer Institute, Liver Cancer Program, Icahn School of Medicine at Mount Sinai, New York, New York, USA
- Graduate School of Biomedical Sciences, Icahn School of Medicine at Mount Sinai, New York, New York, USA
- The Precision Immunology Institute (PrIISM), Icahn School of Medicine at Mount Sinai, New York, New York, USA
- Department of Oncological Sciences, Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - James K Carter
- Division of Liver Diseases, Department of Medicine, Tisch Cancer Institute, Liver Cancer Program, Icahn School of Medicine at Mount Sinai, New York, New York, USA
- Graduate School of Biomedical Sciences, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Marina Barcena-Varela
- Division of Liver Diseases, Department of Medicine, Tisch Cancer Institute, Liver Cancer Program, Icahn School of Medicine at Mount Sinai, New York, New York, USA
- The Precision Immunology Institute (PrIISM), Icahn School of Medicine at Mount Sinai, New York, New York, USA
- Department of Oncological Sciences, Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Vincenzo Mazzaferro
- General Surgery and Liver Transplantation Unit, Department of Oncology and Hemato-Oncology, University of Milan and Istituto Nazionale Tumori, IRCCS Foundation, Milano, Lombardia, Italy
| | - Myron Schwartz
- Department of Surgery, Tisch Cancer Institute, Liver Cancer Program, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Silvia Affo
- Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Catalunya, Spain
| | - Robert F Schwabe
- Department of Medicine, Columbia University, New York, New York, USA
| | - Augusto Villanueva
- Division of Liver Diseases, Department of Medicine, Tisch Cancer Institute, Liver Cancer Program, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Ernesto Guccione
- Division of Liver Diseases, Department of Medicine, Tisch Cancer Institute, Liver Cancer Program, Icahn School of Medicine at Mount Sinai, New York, New York, USA
- Department of Oncological Sciences, Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Scott L Friedman
- Division of Liver Diseases, Department of Medicine, Tisch Cancer Institute, Liver Cancer Program, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Amaia Lujambio
- Division of Liver Diseases, Department of Medicine, Tisch Cancer Institute, Liver Cancer Program, Icahn School of Medicine at Mount Sinai, New York, New York, USA
- Graduate School of Biomedical Sciences, Icahn School of Medicine at Mount Sinai, New York, New York, USA
- The Precision Immunology Institute (PrIISM), Icahn School of Medicine at Mount Sinai, New York, New York, USA
- Department of Oncological Sciences, Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Anna Tocheva
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, New York, USA
- The Precision Immunology Institute (PrIISM), Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Josep M Llovet
- Division of Liver Diseases, Department of Medicine, Tisch Cancer Institute, Liver Cancer Program, Icahn School of Medicine at Mount Sinai, New York, New York, USA
- Translational Research in Hepatic Oncology, Liver Unit, IDIBAPS, Hospital Clinic, University of Barcelona, Barcelona, Catalunya, Spain
- Institució Catalana de Recerca i Estudis Avançats, Barcelona, Spain
| | - Swan N Thung
- Department of Pathology, Liver Cancer Program, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Alexander M Tsankov
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Daniela Sia
- Division of Liver Diseases, Department of Medicine, Tisch Cancer Institute, Liver Cancer Program, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| |
Collapse
|
250
|
Matarrese P, Vona R, Ascione B, Cittadini C, Tocci A, Mileo AM. Tumor Microenvironmental Cytokines Drive NSCLC Cell Aggressiveness and Drug-Resistance via YAP-Mediated Autophagy. Cells 2023; 12:cells12071048. [PMID: 37048121 PMCID: PMC10093141 DOI: 10.3390/cells12071048] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Revised: 03/27/2023] [Accepted: 03/28/2023] [Indexed: 04/03/2023] Open
Abstract
Dynamic reciprocity between cellular components of the tumor microenvironment and tumor cells occurs primarily through the interaction of soluble signals, i.e., cytokines produced by stromal cells to support cancer initiation and progression by regulating cell survival, differentiation and immune cell functionality, as well as cell migration and death. In the present study, we focused on the analysis of the functional response of non-small cell lung cancer cell lines elicited by the treatment with some crucial stromal factors which, at least in part, mimic the stimulus exerted in vivo on tumor cells by microenvironmental components. Our molecular and functional results highlight the role played by the autophagic machinery in the cellular response in terms of the invasive capacity, stemness and drug resistance of two non-small lung cancer cell lines treated with stromal cytokines, also highlighting the emerging role of the YAP pathway in the mutual and dynamic crosstalk between tumor cells and tumor microenvironment elements. The results of this study provide new insights into the YAP-mediated autophagic mechanism elicited by microenvironmental cytokines on non-small cell lung cancer cell lines and may suggest new potential strategies for future cancer therapeutic interventions.
Collapse
Affiliation(s)
- Paola Matarrese
- Oncology Unit, Center for Gender-Specific Medicine, Italian National Institute of Health, Viale Regina Elena, 299-00161 Rome, Italy
- Correspondence: (P.M.); (A.M.M.)
| | - Rosa Vona
- Oncology Unit, Center for Gender-Specific Medicine, Italian National Institute of Health, Viale Regina Elena, 299-00161 Rome, Italy
| | - Barbara Ascione
- Oncology Unit, Center for Gender-Specific Medicine, Italian National Institute of Health, Viale Regina Elena, 299-00161 Rome, Italy
| | - Camilla Cittadini
- Oncology Unit, Center for Gender-Specific Medicine, Italian National Institute of Health, Viale Regina Elena, 299-00161 Rome, Italy
| | - Annalisa Tocci
- Tumor Immunology and Immunotherapy Unit, IRCCS Regina Elena National Cancer Institute, Via Elio Chianesi, 53-00144 Rome, Italy
| | - Anna Maria Mileo
- Tumor Immunology and Immunotherapy Unit, IRCCS Regina Elena National Cancer Institute, Via Elio Chianesi, 53-00144 Rome, Italy
- Correspondence: (P.M.); (A.M.M.)
| |
Collapse
|