201
|
Petry F, Ritz V, Meineke C, Middel P, Kietzmann T, Schmitz-Salue C, Hirsch-Ernst K. Subcellular localization of rat Abca5, a rat ATP-binding-cassette transporter expressed in Leydig cells, and characterization of its splice variant apparently encoding a half-transporter. Biochem J 2006; 393:79-87. [PMID: 16162093 PMCID: PMC1383666 DOI: 10.1042/bj20050808] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2005] [Revised: 09/12/2005] [Accepted: 09/14/2005] [Indexed: 11/17/2022]
Abstract
Several transporters belonging to the ABCA subfamily of ABC (ATP-binding cassette) proteins are involved in lipid trafficking. Human ABCA5 and its rat orthologue, rAbca5, represent recently identified subfamily members whose substrate spectrum remains to be defined. The elucidation of (sub)cellular rAbca5 distribution would be expected to provide a basis for optimization of functional analyses. In the present study, we applied in situ hybridization to examine rAbca5 mRNA distribution within sections of rat testis, a tissue expressing high levels of rAbca5 mRNA. We found rAbca5 mRNA to be predominantly expressed in interstitial Leydig cells, which are major sites of testosterone synthesis. To investigate rAbca5 subcellular localization, we constructed expression vectors yielding rAbca5 fused either to EGFP (enhanced green fluorescent protein) or to a peptide bearing the viral V5 epitope. During rAbca5 cDNA cloning, we discovered a splice variant sequence (rAbca5 V20+16), predicted to give rise to a truncated, half-size transporter, which was highly homologous with a human splice variant described by us previously. Quantitative RT (reverse transcription)-PCR demonstrated that the rAbca5 splice variant was expressed in numerous tissues (including testis, brain and lungs), its cDNA amounting to 2.6-11.2% of total rAbca5 cDNA. Transfection of individual rAbca5-EGFP, rAbca5 splice variant-EGFP or transporter-V5 expression plasmids along with organelle marker plasmids into HEK-293 cells (human embryonic kidney 293 cells) revealed that both rAbca5 and splice variant fusion proteins co-localized with marker protein for the Golgi apparatus. Expression of rAbca5 mRNA in Leydig cells, intracellular localization of rAbca5-EGFP/rAbca5-V5 and involvement of rAbca5-related proteins in lipid transport suggest that rAbca5 may participate in intracellular sterol/steroid trafficking.
Collapse
Key Words
- atp-binding-cassette (abc) transporter
- golgi
- leydig cell
- rat abca5
- real-time pcr
- splice variant
- abc, atp-binding cassette
- dig, digoxigenin
- dsred, discosoma sp. fluorescent protein
- ecfp, enhanced cyan fluorescent protein
- egfp, enhanced green fluorescent protein
- er, endoplasmic reticulum
- 6-fam, 6-carboxyfluorescein
- gap-43, growth-associated protein 43
- hdl, high-density lipoprotein
- hek-293 cells, human embryonic kidney 293 cells
- mdr1, multidrug resistance transporter 1
- mgb, minor groove binder
- orf, open reading frame
- rt, reverse transcription
- rtq pcr, real-time quantitative pcr
Collapse
Affiliation(s)
- Frauke Petry
- *Institute of Pharmacology and Toxicology, University of Goettingen, Robert-Koch-Str. 40, D-37075 Goettingen, Germany
| | - Vera Ritz
- *Institute of Pharmacology and Toxicology, University of Goettingen, Robert-Koch-Str. 40, D-37075 Goettingen, Germany
| | - Cornelia Meineke
- *Institute of Pharmacology and Toxicology, University of Goettingen, Robert-Koch-Str. 40, D-37075 Goettingen, Germany
| | - Peter Middel
- †Department of Pathology, University of Goettingen, Robert-Koch-Str. 40, D-37075 Goettingen, Germany
| | - Thomas Kietzmann
- ‡Department of Biochemistry, Faculty of Chemistry, University of Kaiserslautern, Erwin-Schroedinger-Str., Gebaeude 54, D-67663 Kaiserslautern, Germany
| | - Christoph Schmitz-Salue
- *Institute of Pharmacology and Toxicology, University of Goettingen, Robert-Koch-Str. 40, D-37075 Goettingen, Germany
| | - Karen I. Hirsch-Ernst
- *Institute of Pharmacology and Toxicology, University of Goettingen, Robert-Koch-Str. 40, D-37075 Goettingen, Germany
| |
Collapse
|
202
|
Abstract
Membrane lipids are essential for biological functions ranging from membrane trafficking to signal transduction. The composition of lipid membranes influences their organization and properties, so it is not surprising that disorders in lipid metabolism and transport have a role in human disease. Significant recent progress has enhanced our understanding of the molecular and cellular basis of lipid-associated disorders such as Tangier disease, Niemann-Pick disease type C and atherosclerosis. These insights have also led to improved understanding of normal physiology.
Collapse
Affiliation(s)
- Frederick R Maxfield
- Department of Biochemistry, Weill Medical College of Cornell University, 1300 York Avenue, New York, NY 10021, USA.
| | | |
Collapse
|
203
|
Kishimoto T, Yamamoto T, Tanaka K. Defects in structural integrity of ergosterol and the Cdc50p-Drs2p putative phospholipid translocase cause accumulation of endocytic membranes, onto which actin patches are assembled in yeast. Mol Biol Cell 2005; 16:5592-609. [PMID: 16195350 PMCID: PMC1289405 DOI: 10.1091/mbc.e05-05-0452] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2005] [Revised: 08/24/2005] [Accepted: 09/15/2005] [Indexed: 11/11/2022] Open
Abstract
Specific changes in membrane lipid composition are implicated in actin cytoskeletal organization, vesicle formation, and control of cell polarity. Cdc50p, a membrane protein in the endosomal/trans-Golgi network compartments, is a noncatalytic subunit of Drs2p, which is implicated in translocation of phospholipids across lipid bilayers. We found that the cdc50Delta mutation is synthetically lethal with mutations affecting the late steps of ergosterol synthesis (erg2 to erg6). Defects in cell polarity and actin organization were observed in the cdc50Delta erg3Delta mutant. In particular, actin patches, which are normally found at cortical sites, were assembled intracellularly along with their assembly factors, including Las17p, Abp1p, and Sla2p. The exocytic SNARE Snc1p, which is recycled by an endocytic route, was also intracellularly accumulated, and inhibition of endocytic internalization suppressed the cytoplasmic accumulation of both Las17p and Snc1p. Simultaneous loss of both phospholipid asymmetry and sterol structural integrity could lead to accumulation of endocytic intermediates capable of initiating assembly of actin patches in the cytoplasm.
Collapse
Affiliation(s)
- Takuma Kishimoto
- Division of Molecular Interaction, Institute for Genetic Medicine, Hokkaido University Graduate School of Medicine, N15 W7, Kita-ku, Sapporo 060-0815, Japan
| | | | | |
Collapse
|
204
|
Ishikawa T, Hwang K, Lazzarino D, Morris PL. Sertoli cell expression of steroidogenic acute regulatory protein-related lipid transfer 1 and 5 domain-containing proteins and sterol regulatory element binding protein-1 are interleukin-1beta regulated by activation of c-Jun N-terminal kinase and cyclooxygenase-2 and cytokine induction. Endocrinology 2005; 146:5100-11. [PMID: 16123165 DOI: 10.1210/en.2005-0567] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
In testicular Sertoli cells, IL-1beta regulates steroid, lactate, and transferrin secretion; although each influences germ cell development and spermatogenesis, little is known about the signaling mechanisms involved. In other cell types, IL-1beta potently induces reactive oxygen species and/or cyclooxygenase-2 (COX-2). In contrast, in Sertoli cells, IL-1beta does not generate reactive oxygen species, but rapidly phosphorylates c-Jun-NH(2)-terminal kinase (JNK), but not p44/42 or p38 MAPK. Phosphorylated JNK stimulates COX-2 activity, mediating the expression of ILs and steroidogenic acute regulatory (StAR)-related (StAR-related lipid transfer protein domain containing) proteins D1 and D5, but not D4. In a time- and dose-dependent manner, IL-1beta rapidly increases levels of COX-2 mRNA (2-fold); induction of COX-2 protein (50-fold) requires de novo protein synthesis. Concomitantly, increases in IL-1alpha, IL-6, and IL-1beta mRNAs (1-3 h) are observed. As StAR-related lipid transfer protein domain containing protein 1 (StARD1) mRNA decreases, StARD5 mRNA increases; substantial recovery phase induction of StARD1 mRNA above control is noted (24 h). Inhibition of JNK or COX-2 activities prevents IL-1beta induction of IL and StARD5 mRNAs and subsequent increases in StARD1 mRNA (24 h), indicating that these effects depend on the activation of both enzymes. StARD1 and D5 protein levels are significantly altered, consistent with posttranscriptional and posttranslational regulation. IL-1beta rapidly decreases levels of precursor and mature sterol regulatory element-binding protein-1, changes not altered by cycloheximide, suggesting coordinate regulation of StARD1 and -D5, but not StARD4, expression. These data demonstrate that JNK and COX-2 activities regulate Sertoli cytokines and particularly START domain-containing proteins, suggesting protective stress responses, including transcription and protein and lipid regulation, within this specialized epithelium.
Collapse
Affiliation(s)
- Tomomoto Ishikawa
- Center for Biomedical Research, The Population Council, New York, New York 10021, USA
| | | | | | | |
Collapse
|
205
|
Boadu E, Francis GA. The role of vesicular transport in ABCA1-dependent lipid efflux and its connection with NPC pathways. J Mol Med (Berl) 2005; 84:266-75. [PMID: 16328207 DOI: 10.1007/s00109-005-0001-9] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2005] [Accepted: 08/24/2005] [Indexed: 10/25/2022]
Abstract
The membrane transporter ATP-binding cassette transporter A1 (ABCA1) has been shown to be the rate-limiting step in the initial formation of plasma high-density lipoprotein (HDL) particles. The mechanisms of action of ABCA1, including its role in the vesicular transport of lipids to the cell surface for the lipidation of HDL apolipoproteins, are not fully understood. Niemann-Pick type C (NPC) disease is most often caused by mutations in the NPC1 gene, whose protein product is believed to facilitate the egress of cholesterol and other lipids from late endosomes and lysosomes to other cellular compartments. This report reviews current knowledge regarding the role of ABCA1 in vesicular lipid transport mechanisms required for HDL particle formation, and the relationship between ABCA1 and NPC1 in this process.
Collapse
Affiliation(s)
- Emmanuel Boadu
- CIHR Group in Molecular and Cell Biology of Lipids, Department of Medicine, University of Alberta, Edmonton, Canada
| | | |
Collapse
|
206
|
Hynynen R, Laitinen S, Käkelä R, Tanhuanpää K, Lusa S, Ehnholm C, Somerharju P, Ikonen E, Olkkonen V. Overexpression of OSBP-related protein 2 (ORP2) induces changes in cellular cholesterol metabolism and enhances endocytosis. Biochem J 2005; 390:273-83. [PMID: 15859942 PMCID: PMC1184581 DOI: 10.1042/bj20042082] [Citation(s) in RCA: 67] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
ORP2 [OSBP (oxysterol-binding protein)-related protein 2] belongs to the 12-member mammalian ORP gene/protein family. We characterize in the present study the effects of inducible ORP2 overexpression on cellular cholesterol metabolism in HeLa cells and compare the results with those obtained for CHO cells (Chinese-hamster ovary cells) that express ORP2 constitutively. In both cell systems, the prominent phenotype is enhancement of [14C]cholesterol efflux to all extracellular acceptors, which results in a reduction of cellular free cholesterol. No change was observed in the plasma membrane cholesterol content or distribution between raft and non-raft domains upon ORP2 expression. However, elevated HMG-CoA (3-hydroxy-3-methylglutaryl-CoA) reductase activity and LDL (low-density lipoprotein) receptor expression, as well as enhanced transport of newly synthesized cholesterol to a cyclodextrin-accessible pool, suggest that the ORP2 expression stimulates transport of cholesterol out of the endoplasmic reticulum. In contrast with ORP2/CHO cells, the inducible ORP2/HeLa cells do not show down-regulation of cholesterol esterification, suggesting that this effect represents an adaptive response to long-term cholesterol depletion in the CHO cell model. Finally, we provide evidence that ORP2 binds PtdIns(3,4,5)P(3) and enhances endocytosis, phenomena that are probably interconnected. Our results suggest a function of ORP2 in both cholesterol trafficking and control of endocytic membrane transport.
Collapse
Affiliation(s)
- Riikka Hynynen
- *Department of Molecular Medicine, National Public Health Institute, Biomedicum, P.O. Box 104, Helsinki FI-00251, Finland
| | - Saara Laitinen
- *Department of Molecular Medicine, National Public Health Institute, Biomedicum, P.O. Box 104, Helsinki FI-00251, Finland
| | - Reijo Käkelä
- †Department of Biology, University of Joensuu, P.O. Box 111, Joensuu FI-80101, Finland
| | - Kimmo Tanhuanpää
- ‡Institute of Biotechnology, University of Helsinki, Viikinkaari 9, P.O. Box 56, Helsinki FI-00014, Finland
| | - Sari Lusa
- ‡Institute of Biotechnology, University of Helsinki, Viikinkaari 9, P.O. Box 56, Helsinki FI-00014, Finland
| | - Christian Ehnholm
- *Department of Molecular Medicine, National Public Health Institute, Biomedicum, P.O. Box 104, Helsinki FI-00251, Finland
| | - Pentti Somerharju
- §Department of Biochemistry, Institute of Biomedicine, University of Helsinki, Biomedicum, P.O. Box 63, Helsinki FI-00014, Finland
| | - Elina Ikonen
- ‡Institute of Biotechnology, University of Helsinki, Viikinkaari 9, P.O. Box 56, Helsinki FI-00014, Finland
| | - Vesa M. Olkkonen
- *Department of Molecular Medicine, National Public Health Institute, Biomedicum, P.O. Box 104, Helsinki FI-00251, Finland
- To whom correspondence should be addressed (email )
| |
Collapse
|
207
|
Tosi MR, Tugnoli V. Cholesteryl esters in malignancy. Clin Chim Acta 2005; 359:27-45. [PMID: 15939411 DOI: 10.1016/j.cccn.2005.04.003] [Citation(s) in RCA: 92] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2005] [Revised: 03/31/2005] [Accepted: 04/04/2005] [Indexed: 01/23/2023]
Abstract
Cholesteryl esters, formed by the esterification of cholesterol with long-chain fatty acids, on one hand, are the means by which cholesterol is transported through the blood by lipoproteins, on the other, the way cholesterol itself can be accumulated in the cells. Therefore, these important molecules play an active part in metabolic pathways that form the basis of cholesterol trafficking and homeostasis. The role of different regulatory mechanisms in cholesterol homeostasis in physiologic and neoplastic conditions with emphasis on intracellular content of cholesteryl esters is here reviewed. Numerous studies carried out on tumor cell lines, experimental tumors, and human tumors have shown an abnormal cholesterol metabolism that is reflected by an increase in intracellular cholesteryl esters due to an alteration in all the mechanisms that form the basis of regulation, in particular: cholesterol de novo biosynthesis; uptake of exogenous cholesterol LDL receptor mediated; cholesterol esterification mediated by the ACAT activity; cholesterol efflux HDL receptor mediated. The most recent analytic-spectroscopic applications that permit cholesteryl ester determination on tumor lipidic extracts and directly in vivo are also reported. This review gives an overview of cholesterol homeostasis in physiological and pathological conditions where cholesteryl esters are over-expressed.
Collapse
Affiliation(s)
- Maria R Tosi
- ITOI-CNR, presso IOR, via di Barbiano 1/10, 40136, Bologna, Italy.
| | | |
Collapse
|
208
|
Reiner S, Micolod D, Zellnig G, Schneiter R. A genomewide screen reveals a role of mitochondria in anaerobic uptake of sterols in yeast. Mol Biol Cell 2005; 17:90-103. [PMID: 16251356 PMCID: PMC1345649 DOI: 10.1091/mbc.e05-06-0515] [Citation(s) in RCA: 69] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
The mechanisms that govern intracellular transport of sterols in eukaryotic cells are not well understood. Saccharomyces cerevisiae is a facultative anaerobic organism that becomes auxotroph for sterols and unsaturated fatty acids in the absence of oxygen. To identify pathways that are required for uptake and transport of sterols, we performed a systematic screen of the yeast deletion mutant collection for genes that are required for growth under anaerobic conditions. Of the approximately 4800 nonessential genes represented in the deletion collection, 37 were essential for growth under anaerobic conditions. These affect a wide range of cellular functions, including biosynthetic pathways for certain amino acids and cofactors, reprogramming of transcription and translation, mitochondrial function and biogenesis, and membrane trafficking. Thirty-three of these mutants failed to grow on lipid-supplemented media when combined with a mutation in HEM1, which mimics anaerobic conditions in the presence of oxygen. Uptake assays with radio- and fluorescently labeled cholesterol revealed that 17 of the 33 mutants strongly affect uptake and/or esterification of exogenously supplied cholesterol. Examination of the subcellular distribution of sterols in these uptake mutants by cell fractionation and fluorescence microscopy indicates that some of the mutants block incorporation of cholesterol into the plasma membrane, a presumably early step in sterol uptake. Unexpectedly, the largest class of uptake mutants is affected in mitochondrial functions, and many of the uptake mutants show electron-dense mitochondrial inclusions. These results indicate that a hitherto uncharacterized mitochondrial function is required for sterol uptake and/or transport under anaerobic conditions and are discussed in light of the fact that mitochondrial import of cholesterol is required for steroidogenesis in vertebrate cells.
Collapse
Affiliation(s)
- Sonja Reiner
- Institute of Biochemistry, Graz University of Technology, 8010 Graz, Austria
| | | | | | | |
Collapse
|
209
|
Saccharomyces cerevisiae, a model to study sterol uptake and transport in eukaryotes. Biochem Soc Trans 2005. [DOI: 10.1042/bst0331186] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
The molecular mechanisms that govern intracellular transport of sterols in eukaryotic cells are only poorly understood. Saccharomyces cerevisiae is a facultative anaerobic organism that requires supplementation with unsaturated fatty acids and sterols to grow in the absence of oxygen, as the synthesis of these lipids requires molecular oxygen. The fact that yeast grows well under anaerobic conditions indicates that lipid uptake is rapid and efficient. To identify components in this lipid uptake and transport pathway, we screened the yeast mutant collection for genes that are essential under anaerobic conditions. Out of the approx. 4800 non-essential genes represented in the mutant collection, 37 were required for growth under anaerobic conditions. Uptake assays using radiolabelled cholesterol revealed that 16 of these genes are required for cholesterol uptake/transport and esterification. Further characterization of the precise role of these genes is likely to advance our understanding of this elusive pathway in yeast and may prove to be relevant to understand sterol homoeostasis in higher eukaryotic cells.
Collapse
|
210
|
Huang X, Suyama K, Buchanan J, Zhu AJ, Scott MP. A Drosophila model of the Niemann-Pick type C lysosome storage disease: dnpc1a is required for molting and sterol homeostasis. Development 2005; 132:5115-24. [PMID: 16221727 DOI: 10.1242/dev.02079] [Citation(s) in RCA: 120] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
Niemann-Pick type C (NPC) disease is a fatal autosomal-recessive neurodegenerative disorder characterized by the inappropriate accumulation of unesterified cholesterol in aberrant organelles. The disease is due to mutations in either of two genes, NPC1, which encodes a transmembrane protein related to the Hedgehog receptor Patched, and NPC2, which encodes a secreted cholesterol-binding protein. Npc1 mutant mice can be partially rescued by treatment with specific steroids. We have created a Drosophila NPC model by mutating dnpc1a, one of two Drosophila genes related to mammalian NPC1. Cells throughout the bodies of dnpc1a mutants accumulated sterol in a punctate pattern, as in individuals with NPC1 mutations. The mutants developed only to the first larval stage and were unable to molt. Molting after the normal first instar period was restored to various degrees by feeding the mutants the steroid molting hormone 20-hydroxyecdysone, or the precursors of ecdysone biosynthesis, cholesterol and 7-dehydrocholesterol. dnpc1a is normally highly expressed in the ecdysone-producing ring gland. Ring gland-specific expression of dnpc1a in otherwise mutant flies allowed development to adulthood, suggesting that the lack of ecdysone in the mutants is the cause of death. We propose that dnpc1a mutants have sterols trapped in aberrant organelles, leading to a shortage of sterol in the endoplasmic reticulum and/or mitochondria of ring gland cells, and, consequently, inadequate ecdysone synthesis.
Collapse
Affiliation(s)
- Xun Huang
- Departments of Developmental Biology, Genetics, and Bioengineering, Howard Hughes Medical Institute, Stanford University School of Medicine, Stanford, CA 94305-5439, USA
| | | | | | | | | |
Collapse
|
211
|
Dove DE, Su YR, Swift LL, Linton MF, Fazio S. ACAT1 deficiency increases cholesterol synthesis in mouse peritoneal macrophages. Atherosclerosis 2005; 186:267-74. [PMID: 16144700 DOI: 10.1016/j.atherosclerosis.2005.08.005] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/22/2004] [Revised: 07/20/2005] [Accepted: 08/01/2005] [Indexed: 11/30/2022]
Abstract
Acyl-coenzyme A:cholesterol acyltransferase (ACAT) esterifies free cholesterol and stores cholesteryl esters in lipid droplets. Macrophage ACAT1 deficiency results in increased atherosclerotic lesion area in hyperlipidemic mice via disrupted cholesterol efflux, increased lipoprotein uptake, accumulation of intracellular vesicles, and accelerated apoptosis. The objective of this study was to determine whether lipid synthesis is affected by ACAT1. The synthesis, esterification, and efflux of new cholesterol were measured in peritoneal macrophages from ACAT1(-/-) mice. Cholesterol synthesis was increased by 134% (p=0.001) in ACAT1(-/-) macrophages compared to wildtype macrophages. Increased synthesis resulted in a proportional increase in the efflux of newly synthesized cholesterol. Although the esterification of new cholesterol was reduced by 93% (p<0.001) in ACAT1(-/-) macrophages, trace amounts of newly synthesized cholesteryl esters were detectable. Furthermore, the expression of SREBP1a mRNA was increased 6-fold in ACAT1(-/-) macrophages compared to wildtype macrophages, suggesting an up-regulation of cholesterol and fatty acid synthesis in ACAT1(-/-) macrophages. Increased cholesterol synthesis and up-regulation of SREBP in ACAT1(-/-) macrophages suggests that ACAT1 affects the regulation of lipid metabolism in macrophages. This change in cholesterol homeostasis may contribute to the atherogenic potential of ACAT1(-/-) macrophages.
Collapse
Affiliation(s)
- Dwayne E Dove
- Department of Pathology, Vanderbilt University Medical Center, Nashville, TN 37232-6300, USA
| | | | | | | | | |
Collapse
|
212
|
Abstract
Megalin is a member of the low-density lipoprotein receptor-related protein (LRP) family. The plasma membrane-anchored LRPs serve as receptors for a wide variety of extracellular ligands, promoting their entry into cells by endocytosis of the receptor-ligand complex. In this issue of Cell, Hammes et al. (2005) show that resistance (insensitivity) to sex steroid hormones is encountered in animals lacking megalin. These data provide important insights into an endocytic mechanism for the uptake of sex steroids by mammalian cells.
Collapse
Affiliation(s)
- John S Adams
- Burns and Allen Research Institute, Cedars-Sinai Medical Center, David Geffen School of Medicine at UCLA, University of California, Los angeles, CA 90048, USA
| |
Collapse
|
213
|
Abstract
The cellular lipidome comprises over 1000 different lipids. Most lipids look similar having a polar head and hydrophobic tails. Still, cells recognize lipids with exquisite specificity. The functionality of lipids is determined by their local concentration, which varies between organelles, between the two leaflets of the lipid bilayer and even within the lateral plane of the membrane. To incorporate function, cellular lipidomics must not only determine which lipids are present but also the concentration of each lipid at each specific intracellular location in time and the lipid's interaction partners. Moreover, cellular lipidomics must include the enzymes of lipid metabolism and transport, their specificity, localization and regulation. Finally, it requires a thorough understanding of the physical properties of lipids and membranes, especially lipid-lipid and lipid-protein interactions. In the context of a cell, the complex relationships between metabolites can only be understood by viewing them as an integrated system. Cellular lipidomics provides a framework for understanding and manipulating the vital role of lipids, especially in membrane transport and sorting and in cell signaling.
Collapse
Affiliation(s)
- Gerrit van Meer
- Department of Membrane Enzymology, Bijvoet Center and Institute of Biomembranes, Utrecht University, The Netherlands.
| |
Collapse
|
214
|
Fluegel ML, Parker TJ, Pallanck LJ. Mutations of a Drosophila NPC1 gene confer sterol and ecdysone metabolic defects. Genetics 2005; 172:185-96. [PMID: 16079224 PMCID: PMC1456146 DOI: 10.1534/genetics.105.046565] [Citation(s) in RCA: 70] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023] Open
Abstract
The molecular mechanisms by which dietary cholesterol is trafficked within cells are poorly understood. Previous work indicates that the NPC1 family of proteins plays an important role in this process, although the precise functions performed by this protein family remain elusive. We have taken a genetic approach to further explore the NPC1 family in the fruit fly Drosophila melanogaster. The Drosophila genome encodes two NPC1 homologs, designated NPC1a and NPC1b, that exhibit 42% and 35% identity to the human NPC1 protein, respectively. Here we describe the results of mutational analysis of the NPC1a gene. The NPC1a gene is ubiquitously expressed, and a null allele of NPC1a confers early larval lethality. The recessive lethal phenotype of NPC1a mutants can be partially rescued on a diet of high cholesterol or one that includes the insect steroid hormone 20-hydroxyecdysone. We also find that expression of NPC1a in the ring gland is sufficient to rescue the lethality associated with the loss of NPC1a and that cholesterol levels in NPC1a mutant larvae are unchanged relative to controls. Our results suggest that NPC1a promotes efficient intracellular trafficking of sterols in many Drosophila tissues including the ring gland where sterols must be delivered to sites of ecdysone synthesis.
Collapse
Affiliation(s)
- Megan L Fluegel
- Molecular and Cellular Biology Graduate Program, University of Washington, Seattle, Washington 98195, USA
| | | | | |
Collapse
|
215
|
Fernandez-Checa JC, Kaplowitz N. Hepatic mitochondrial glutathione: transport and role in disease and toxicity. Toxicol Appl Pharmacol 2005; 204:263-73. [PMID: 15845418 DOI: 10.1016/j.taap.2004.10.001] [Citation(s) in RCA: 193] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2004] [Accepted: 10/01/2004] [Indexed: 01/02/2023]
Abstract
Synthesized in the cytosol of cells, a fraction of cytosolic glutathione (GSH) is then transported into the mitochondrial matrix where it reaches a high concentration and plays a critical role in defending mitochondria against oxidants and electrophiles. Evidence mainly from kidney and liver mitochondria indicated that the dicarboxylate and the 2-oxoglutarate carriers contribute to the transport of GSH across the mitochondrial inner membrane. However, differential features between kidney and liver mitochondrial GSH (mGSH) transport seem to suggest the existence of additional carriers the identity of which remains to be established. One of the characteristic features of the hepatic mitochondrial transport of GSH is its regulation by membrane fluidity. Conditions leading to increased cholesterol deposition in the mitochondrial inner membrane such as in alcohol-induced liver injury decrease membrane fluidity and impair the mitochondrial transport of GSH. Depletion of mitochondrial GSH by alcohol is believed to contribute to the sensitization of the liver to alcohol-induced injury through tumor necrosis factor (TNF)-mediated hepatocellular death. Through control of mitochondrial electron transport chain-generated oxidants, mitochondrial GSH modulates cell death and hence its regulation may be a key target to influence disease progression and drug-induced cell death.
Collapse
Affiliation(s)
- Jose C Fernandez-Checa
- Liver Unit, Hospital Clinic I Provincial, Instituto Investigaciones Biomedicas August Pi i Sunyer, Spain.
| | | |
Collapse
|
216
|
Soccio RE, Adams RM, Maxwell KN, Breslow JL. Differential Gene Regulation of StarD4 and StarD5 Cholesterol Transfer Proteins. J Biol Chem 2005; 280:19410-8. [PMID: 15760897 DOI: 10.1074/jbc.m501778200] [Citation(s) in RCA: 92] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The StarD4 and StarD5 proteins share approximately 30% identity, and each is a steroidogenic acute regulatory protein (StAR)-related lipid transfer (START) domain. We previously showed StarD4 expression is sterol-repressed, consistent with regulation by sterol regulatory element-binding proteins (SREBPs), whereas StarD5 is not sterol-regulated. Here we further address the regulation and function of StarD4 and StarD5. Unlike StAR, the START family prototype, StarD4 and StarD5 were not induced by steroidogenic stimuli in Leydig cells. However, StarD4 and StarD5 showed StAR-like activity in a cell culture steroidogenesis assay, indicating cholesterol transfer. In transgenic mice expressing active SREBPs, StarD4 was predominantly activated by SREBP-2 rather than SREBP-1a. The mouse and human StarD4 proximal promoters share approximately 70% identity, including several potential sterol regulatory elements (SREs). Reporters driven by the StarD4 promoter from either species were transfected into NIH-3T3 cells, and reporter activity was highly repressed by sterols. Site-directed mutagenesis of potential SREs identified a conserved functional SRE in the mouse (TCGGTCCAT) and human (TCATTCCAT) promoters. StarD5 was not sterol-repressed via SREBPs nor was it sterol-activated via liver X receptors (LXRs). Even though StarD4 and StarD5 were not LXR targets, their overexpression stimulated LXR reporter activity, suggesting roles in cholesterol metabolism. StarD5 expression increased 3-fold in free cholesterol-loaded macrophages, which activate the endoplasmic reticulum (ER) stress response. When NIH-3T3 cells were treated with agents to induce ER stress, StarD5 expression increased 6-8-fold. Because StarD4 is regulated by sterols via SREBP-2, whereas StarD5 is activated by ER stress, they likely serve distinct functions in cholesterol metabolism.
Collapse
MESH Headings
- Adaptor Proteins, Vesicular Transport
- Animals
- Base Sequence
- Blotting, Northern
- Blotting, Western
- CCAAT-Enhancer-Binding Proteins/metabolism
- COS Cells
- Carrier Proteins
- Cholesterol/metabolism
- Cloning, Molecular
- DNA, Complementary/metabolism
- DNA-Binding Proteins/metabolism
- Endoplasmic Reticulum/metabolism
- Enzyme-Linked Immunosorbent Assay
- Gene Expression Regulation
- Genes, Reporter
- Humans
- Liver/metabolism
- Liver X Receptors
- Luciferases/metabolism
- Macrophages/metabolism
- Male
- Membrane Transport Proteins/biosynthesis
- Membrane Transport Proteins/genetics
- Mice
- Mice, Inbred C57BL
- Mice, Transgenic
- Molecular Sequence Data
- Mutagenesis
- Mutagenesis, Site-Directed
- NIH 3T3 Cells
- Orphan Nuclear Receptors
- Plasmids/metabolism
- Polymerase Chain Reaction
- Promoter Regions, Genetic
- Protein Structure, Tertiary
- RNA, Messenger/metabolism
- Receptors, Cytoplasmic and Nuclear
- Sterol Regulatory Element Binding Protein 1
- Sterol Regulatory Element Binding Protein 2
- Sterols/metabolism
- Transcription Factors/metabolism
- Transfection
- Transgenes
Collapse
Affiliation(s)
- Raymond E Soccio
- Laboratory of Biochemical Genetics and Metabolism, Rockefeller University, New York, New York 10021, USA
| | | | | | | |
Collapse
|
217
|
Francone OL, Royer L, Boucher G, Haghpassand M, Freeman A, Brees D, Aiello RJ. Increased cholesterol deposition, expression of scavenger receptors, and response to chemotactic factors in Abca1-deficient macrophages. Arterioscler Thromb Vasc Biol 2005; 25:1198-205. [PMID: 15831807 DOI: 10.1161/01.atv.0000166522.69552.99] [Citation(s) in RCA: 78] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
OBJECTIVE Studies in bone marrow transplanted from ATP-binding cassette transporter A1 (ABCA1)-deficient mice into normal mice provides direct evidence that the absence of leukocyte ABCA1 exerts a marked proatherogenic effect independent of changes in plasma lipids, suggesting that ABCA1 plays a key role in the regulation of cholesterol homeostasis and function of macrophages. Therefore, we examined whether the absence of ABCA1 affects the morphology, properties, and functional activities of macrophages that could be related to the development of atherosclerosis. METHODS AND RESULTS We conducted a series of experiments in macrophages isolated from Abca1-deficient and wild-type mice and compared several of their properties that are thought to be related to the development of atherosclerosis. Macrophages isolated from Abca1-deficient mice have an increase in cholesterol content, expression of scavenger receptors, and secretion of chemokines, growth factors, and cytokines, resulting in an increased ability to respond to a variety of chemotactic factors. CONCLUSIONS Our studies indicate that the absence of ABCA1 leads to significant changes in the morphology, properties, and functional activities of macrophages. These changes, together with the proinflammatory condition present in ABCA1-deficient mice and increased reactivity of macrophages to chemotactic factors, play a key role in the development and progression of atherosclerosis.
Collapse
MESH Headings
- ATP Binding Cassette Transporter 1
- ATP-Binding Cassette Transporters/genetics
- Animals
- Atherosclerosis/immunology
- Atherosclerosis/pathology
- Atherosclerosis/physiopathology
- Cells, Cultured
- Chemokines/metabolism
- Chemotaxis, Leukocyte/physiology
- Cholesterol/metabolism
- Female
- Lipopolysaccharides/pharmacology
- Macrophages, Peritoneal/metabolism
- Macrophages, Peritoneal/pathology
- Macrophages, Peritoneal/ultrastructure
- Male
- Mice
- Mice, Inbred C57BL
- Mice, Inbred DBA
- Mice, Mutant Strains
- Microscopy, Electron
- Receptors, Scavenger/genetics
- Shock, Septic/immunology
- Shock, Septic/pathology
- Shock, Septic/physiopathology
- Tumor Necrosis Factor-alpha/metabolism
- Vacuoles/metabolism
- Vacuoles/ultrastructure
Collapse
Affiliation(s)
- Omar L Francone
- Pfizer Global Research and Development, Department of Cardiovascular and Metabolic Diseases, Groton, CT 06340.
| | | | | | | | | | | | | |
Collapse
|
218
|
Zhang Z, Hirano KI, Tsukamoto K, Ikegami C, Koseki M, Saijo K, Ohno T, Sakai N, Hiraoka H, Shimomura I, Yamashita S. Defective cholesterol efflux in Werner syndrome fibroblasts and its phenotypic correction by Cdc42, a RhoGTPase. Exp Gerontol 2005; 40:286-94. [PMID: 15820609 DOI: 10.1016/j.exger.2005.01.011] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2004] [Revised: 12/14/2004] [Accepted: 01/13/2005] [Indexed: 11/18/2022]
Abstract
Werner syndrome (WS) is characterized by the early onset of senescent phenotypes including premature atherosclerotic cardiovascular diseases, although the underlying molecular mechanism for atherosclerosis has not been fully understood yet. Cholesterol efflux from the cells is the initial step of reverse cholesterol transport, a major protective system against atherosclerosis. The aim of the present study was to determine whether this crucial step may be altered in WS. We examined intracellular lipid transport and cholesterol efflux and the expression levels of its related molecules in skin fibroblasts obtained from patients with WS. Cholesterol efflux was markedly reduced in the WS fibroblasts in association with increased cellular cholesterol. Fluorescent recovery after photobleaching (FRAP) technique revealed that intracellular lipid transport around Golgi apparatus was markedly reduced when using a C6-NBD-Ceramide as a tracer. Cdc42 protein and its GTP-bound form were markedly reduced in the WS fibroblasts. The complementation of wild-type Cdc42 corrected cholesterol efflux, intracellular lipid transport, and cellular cholesterol levels in the WS fibroblasts. These data indicated that the reduced expression of Cdc42 may be responsible for the abnormal lipid transport, which in turn might be related to the cardiovascular manifestations in WS.
Collapse
Affiliation(s)
- Zhongyan Zhang
- Department of Internal Medicine and Molecular Science, Graduate School of Medicine, Osaka University, 2-2, Yamadaoka, Suita, Osaka 565-0871, Japan
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
219
|
Cunningham D, Swartzlander D, Liyanarachchi S, Davuluri RV, Herman GE. Changes in gene expression associated with loss of function of the NSDHL sterol dehydrogenase in mouse embryonic fibroblasts. J Lipid Res 2005; 46:1150-62. [PMID: 15805545 DOI: 10.1194/jlr.m400462-jlr200] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Seven human disorders of postsqualene cholesterol biosynthesis have been described. One of these, congenital hemidysplasia with ichthyosiform nevus and limb defects (CHILD) syndrome, results from mutations in the X-linked gene NADH sterol dehydrogenase-like (NSDHL) encoding a sterol dehydrogenase. A series of mutant alleles of the murine Nsdhl gene are carried by bare patches (Bpa) mice, with Bpa(1H) representing a null allele. Heterozygous Bpa(1H) females display skin and skeletal abnormalities in a distribution reflecting random X inactivation, whereas hemizygous male embryos die before embryonic day 10.5. To investigate the molecular basis of defects associated with perturbations in cholesterol biosynthesis, microarray analysis was performed comparing gene expression in embryonic fibroblasts expressing the Bpa(1H) allele versus wild-type (wt) cells. Labeled cDNAs from cells grown in normal serum or lipid-depleted serum (LDS) were hybridized to microarrays containing 22,000 mouse genes. Among 44 genes that showed higher expression in the Bpa(1H) versus wt cells grown in LDS, 11 function in cholesterol biosynthesis, 7 are involved in fatty acid synthesis, 3 (Srebp2, Insig1, and Orf11) encode sterol-regulatory proteins, and 2 (Ldlr and StarD4) are lipid transporters. Of the 21 remaining genes, 16 are known genes, some of which have been implicated previously in cholesterol homeostasis or lipid-mediated signaling, and 5 are uncharacterized cDNA clones.
Collapse
Affiliation(s)
- David Cunningham
- Center for Molecular and Human Genetics, Columbus Children's Research Institute, Ohio State University, Columbus, OH, USA
| | | | | | | | | |
Collapse
|
220
|
Ikonen E. Introduction: new aspects of cellular sterol metabolism and transport. Semin Cell Dev Biol 2005; 16:151-3. [PMID: 15797825 DOI: 10.1016/j.semcdb.2005.02.016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
221
|
. RCZ. Alterations in Hepatic Cholesterol Levels in Response to Drugs That Induce
Cytochrome P450 3A23. INT J PHARMACOL 2005. [DOI: 10.3923/ijp.2005.172.179] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
222
|
Wüstner D, Mondal M, Tabas I, Maxfield FR. Direct Observation of Rapid Internalization and Intracellular Transport of Sterol by Macrophage Foam Cells. Traffic 2005; 6:396-412. [PMID: 15813750 DOI: 10.1111/j.1600-0854.2005.00285.x] [Citation(s) in RCA: 79] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Transport of the fluorescent cholesterol analog dehydroergosterol (DHE) from the plasma membrane was studied in J774 macrophages (Mphis) with normal and elevated cholesterol content. Cells were labeled with DHE bound to methyl-beta-cyclodextrin. In J774, Mphis with normal cholesterol, intracellular DHE became enriched in recycling endosomes, but was not highly concentrated in the trans-Golgi network or late endosomes and lysosomes. After raising cellular cholesterol by incubation with acetylated low-density lipoprotein (AcLDL), DHE was transported to lipid droplets, and less sterol was found in recycling endosomes. Transport of DHE to droplets was very rapid (t1/2 = 1.5 min after photobleaching) and did not require metabolic energy. In cholesterol-loaded J774 Mphis, the initial fraction of DHE in the plasma membrane was reduced, and rapid DHE efflux from the plasma membrane to intracellular organelles was observed. This rapid sterol transport was not related to plasma membrane vesiculation, as DHE did not become enriched in endocytic vesicles formed after sphingomyelinase C treatment of cells. When cells were incubated with DHE ester incorporated into AcLDL, fluorescence of the sterol was first found in punctate endosomes. After a chase, this DHE colocalized with transferrin in a distribution similar to cells labeled with DHE delivered by methyl-beta-cyclodextrin. Our results indicate that elevation of sterol levels in Mphis enhances transport of sterol from the plasma membrane by a non-vesicular pathway.
Collapse
Affiliation(s)
- Daniel Wüstner
- Department of Biochemistry, Weill Medical College of Cornell University, 1300 York Avenue, New York, NY 10021, USA
| | | | | | | |
Collapse
|
223
|
Williams KJ, Fisher EA. Oxidation, lipoproteins, and atherosclerosis: which is wrong, the antioxidants or the theory? Curr Opin Clin Nutr Metab Care 2005; 8:139-46. [PMID: 15716791 DOI: 10.1097/00075197-200503000-00006] [Citation(s) in RCA: 60] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
PURPOSE OF REVIEW Paradoxically, many well-established components of the heart-healthy lifestyle are pro-oxidant, including polyunsaturated fat and moderate alcohol consumption. Moreover, antioxidant supplements have failed to decrease cardiovascular risk in extensive human clinical trials to date. Recent progress in understanding the roles of oxidants in regulating VLDL secretion and as essential signaling molecules supports the concept that oxidation may be beneficial in certain circumstances but damaging in others. We summarize recent data on the roles played by oxidative metabolism in different tissues and pathways, and address whether it is currently advisable to use antioxidant supplements to reduce cardiovascular risk. RECENT FINDINGS Our recent study reported that in liver cells, polyunsaturated fatty acids increased reactive oxygen species, which in turn lowered the secretion of the atherogenic lipoprotein, VLDL, in vitro and in vivo. Antioxidant treatments prevented VLDL-lowering effects of polyunsaturated fatty acids in vitro, suggesting that supplemental antioxidants could either raise apolipoprotein-B-lipoprotein plasma levels in vivo, or impair the response to lipid-lowering therapies. The failure of antioxidants to decrease cardiovascular disease risk in many trials is also discussed in the context of current models for atherosclerosis progression and regression. SUMMARY Oxidation includes distinct biochemical reactions, and it is overly simplistic to lump them into a unitary process that affects all cell types and metabolic pathways adversely. Guidelines for diet should adhere closely to what has been clinically proved, and by this standard there is no basis to recommend antioxidant use, beyond what is inherent to the 'heart healthy' diet in order to benefit cardiovascular health.
Collapse
Affiliation(s)
- Kevin Jon Williams
- Division of Endocrinology, Department of Medicine, Thomas Jefferson University, Philadelphia, Pennsylvania, USA
| | | |
Collapse
|
224
|
Alpy F, Latchumanan VK, Kedinger V, Janoshazi A, Thiele C, Wendling C, Rio MC, Tomasetto C. Functional characterization of the MENTAL domain. J Biol Chem 2005; 280:17945-52. [PMID: 15718238 DOI: 10.1074/jbc.m500723200] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Human metastatic lymph node (MLN) 64 is composed of two conserved regions. The amino terminus contains a conserved membrane-spanning MENTAL (MLN64 NH(2)-terminal) domain shared with an unique protein called MENTHO (MLN64 NH(2)-terminal domain homologue) and targets the protein to late endosome. The carboxyl-terminal domain is composed of a cholesterol binding steroidogenic acute regulatory-related lipid transfer domain exposed to the cytoplasm. MENTHO overexpression leads to the accumulation of enlarged endosomes. In this study, we show that MLN64 overexpression also induces the formation of enlarged endosomes, an effect that is probably mediated by the MENTAL domain. Using an in vivo photocholesterol binding assay, we find that the MENTAL domain of MLN64 is a cholesterol binding domain. Moreover, glutathione S-transferase pull-down or co-immunoprecipitation experiments demonstrate that this domain mediates homo- and hetero-interaction of MLN64 and MENTHO. In living cells, the expression of paired yellow fluorescent and cyan fluorescent fusion proteins show MENTHO homo-interaction and its interaction with MLN64. These data indicate that within late-endosomal membranes, MLN64 and MENTHO define discrete cholesterol-containing subdomains. The MENTAL domain might serve to maintain cholesterol at the membrane of late endosomes prior to its shuttle to cytoplasmic acceptor(s).
Collapse
Affiliation(s)
- Fabien Alpy
- Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), Département de Pathologie Moléculaire, UPR 6520 CNRS/U596 INSERM/Université Louis Pasteur, BP10142, 67404 Illkirch, C. U. de Strasbourg, France
| | | | | | | | | | | | | | | |
Collapse
|
225
|
Kosters A, Frijters RJJM, Kunne C, Vink E, Schneiders MS, Schaap FG, Nibbering CP, Patel SB, Groen AK. Diosgenin-induced biliary cholesterol secretion in mice requires Abcg8. Hepatology 2005; 41:141-50. [PMID: 15619238 DOI: 10.1002/hep.20540] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
The plant sterol diosgenin has been shown to stimulate biliary cholesterol secretion in mice without affecting the expression of the adenosine triphosphate-binding cassette transporter heterodimer Abcg5/g8. The aim of this study was to investigate the mechanism of diosgenin-induced cholesterol hypersecretion and to identify the genes involved. Surprisingly, despite its lack of effect on Abcg5/g8 expression in wild-type mice, diosgenin did not stimulate biliary cholesterol secretion in mice deficient for Abcg8. Analysis of the kinetics of cholesterol secretion suggested that diosgenin probably activates a step before Abcg5/g8. To identify potential diosgenin targets, gene expression profiling was performed in mice fed a diosgenin-supplemented diet. Diosgenin feeding increased hepatic expression of genes involved in cholesterol synthesis as well as genes encoding for several cytochrome P450s. No significant change in expression of known cholesterol transporters was found. Comparison with published expression-profiling data for Srebp2-overexpressing mice, another mouse model in which biliary cholesterol secretion is elevated, revealed a number of genes with unknown function that were upregulated in both diosgenin-fed mice and mice overexpressing Srebp2. In conclusion, we found that although Abcg8 is essential for most diosgenin-induced biliary cholesterol hypersecretion, diosgenin probably does not interact directly with Abcg5/Abcg8, but rather increases cholesterol delivery to the heterodimer. Supplementary material for this article can be found on the HEPATOLOGY website (http://interscience.wiley.com/jpages/0270-9139/suppmat/index.html).
Collapse
Affiliation(s)
- Astrid Kosters
- AMC Liver Center Academic Medical Center, Amsterdam, The Netherlands.
| | | | | | | | | | | | | | | | | |
Collapse
|
226
|
Abstract
The goal of this article is to summarize what is known about the pathways of steroid hormone synthesis and metabolism in human pregnancy. Emphasis is placed on the distinctions between steroidogenic pathways in adults and those that are operative during human pregnancy.
Collapse
Affiliation(s)
- Caleb B Kallen
- Department of Obstetrics and Gynecology, Section of Reproductive Endocrinology and Infertility, Yale University School of Medicine, 333 Cedar Street, P.O. Box 208063, New Haven, CT 06520, USA.
| |
Collapse
|
227
|
Greaves DR, Gordon S. Thematic review series: the immune system and atherogenesis. Recent insights into the biology of macrophage scavenger receptors. J Lipid Res 2004; 46:11-20. [PMID: 15548472 DOI: 10.1194/jlr.r400011-jlr200] [Citation(s) in RCA: 155] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
Scavenger receptors were originally defined by their ability to bind and internalize modified lipoproteins. Macrophages express at least six structurally different cell surface receptors for modified forms of LDL that contribute to foam cell formation in atherosclerosis. In addition to their role in the pathology of atherosclerosis, macrophage scavenger receptors, especially SR-A, play critical roles in innate immunity, apoptotic cell clearance, and tissue homeostasis. In this review, we highlight recent advances in understanding the biology of macrophage scavenger receptors as pattern recognition receptors for both infectious nonself (pathogens) and modified self (apoptotic cells and modified LDL). We critically evaluate the potential of scavenger receptors and their ligands as targets for therapeutic intervention in human disease.
Collapse
Affiliation(s)
- David R Greaves
- Sir William Dunn School of Pathology, University of Oxford, Oxford OX1 3RE, United Kingdom.
| | | |
Collapse
|
228
|
Du X, Pham YH, Brown AJ. Effects of 25-Hydroxycholesterol on Cholesterol Esterification and Sterol Regulatory Element-binding Protein Processing Are Dissociable. J Biol Chem 2004; 279:47010-6. [PMID: 15317807 DOI: 10.1074/jbc.m408690200] [Citation(s) in RCA: 51] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
The regulatory pool of cholesterol is located in the endoplasmic reticulum (ER) and is key to how mammalian cells sense and respond to changes in cellular cholesterol levels. The extent of cholesterol esterification by the ER-resident protein, acyl-coenzyme A:cholesterol acyl-transferase (ACAT), has become the standard method for monitoring cholesterol transport to the ER and is assumed to reflect the regulatory pool of ER cholesterol. The oxysterol, 25-hydroxycholesterol (25HC), is thought to trigger intracellular cholesterol transport to the ER. In support of this contention, we confirmed previous reports that 25HC activates cholesterol esterification and is a potent suppressor of the sterol regulatory element-binding protein (SREBP) pathway. Processing of the ER membrane-bound SREBP into a soluble transcription factor is controlled by cholesterol levels in the ER. In this study, we addressed whether or not cholesterol esterification necessarily reflects cholesterol movement to the cholesterol homeostatic machinery in the ER as determined by SREBP processing. We found that three agents that inhibited the ability of 25HC to induce cholesterol esterification (progesterone, nigericin, and monensin) did not have a corresponding effect on 25HC suppression of SREBP processing. Moreover, ACAT inhibition did not alter the sensitivity of SREBP processing to 25HC. Therefore, cholesterol esterification by the ER-resident protein ACAT is dissociable from cholesterol transport to the cholesterol homeostatic machinery in the ER. In light of our results, we question the security of previous work that has inferred cholesterol transport to the ER regulatory pool based solely on cholesterol esterification.
Collapse
Affiliation(s)
- Ximing Du
- School of Biotechnology and Biomolecular Sciences, Biological Sciences Building D26, University of New South Wales, Sydney, 2052, Australia
| | | | | |
Collapse
|
229
|
Li Y, Prinz WA. ATP-binding cassette (ABC) transporters mediate nonvesicular, raft-modulated sterol movement from the plasma membrane to the endoplasmic reticulum. J Biol Chem 2004; 279:45226-34. [PMID: 15316012 DOI: 10.1074/jbc.m407600200] [Citation(s) in RCA: 113] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Little is known about the mechanisms of intracellular sterol transport or how cells maintain the high sterol concentration of the plasma membrane (PM). Here we demonstrate that two inducible ATP-binding cassette (ABC) transporters (Aus1p and Pdr11p) mediate nonvesicular movement of PM sterol to the endoplasmic reticulum (ER) in Saccharomyces cerevisiae. This transport facilitates exogenous sterol uptake, which we find requires steryl ester synthesis in the ER. Surprisingly, while expression of Aus1p and Pdr11p significantly increases sterol movement from PM to ER, it does not alter intracellular sterol distribution. Thus, ER sterol is likely rapidly returned to the PM when it is not esterified in the ER. We show that the propensity of PM sterols to be moved to the ER is largely determined by their affinity for sterol sphingolipid-enriched microdomains (rafts). Our findings suggest that raft association is a primary determinant of sterol accumulation in the PM and that Aus1p and Pdr11p facilitate sterol uptake by increasing the cycling of sterol between the PM and ER.
Collapse
Affiliation(s)
- Yifu Li
- Laboratory of Cell Biochemistry and Biology, NIDDK, National Institutes of Health, Bethesda, Maryland 20892, USA
| | | |
Collapse
|