201
|
Tu Y, Liang Y, Xiao Y, Lv J, Guan R, Xiao F, Xie Y, Xiao Q. Dexmedetomidine attenuates the neurotoxicity of propofol toward primary hippocampal neurons in vitro via Erk1/2/CREB/BDNF signaling pathways. Drug Des Devel Ther 2019; 13:695-706. [PMID: 30858699 PMCID: PMC6387615 DOI: 10.2147/dddt.s188436] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND Propofol is a commonly used general anesthetic for the induction and maintenance of anesthesia and critical care sedation in children, which may add risk to poor neurodevelopmental outcome. We aimed to evaluate the effect of propofol toward primary hippocampal neurons in vitro and the possibly neuroprotective effect of dexmedetomidine pretreatment, as well as the underlying mechanism. MATERIALS AND PROCEDURES Primary hippocampal neurons were cultured for 8 days in vitro and pretreated with or without dexmedetomidine or phosphorylation inhibitors prior to propofol exposure. Cell viability was measured using cell counting kit-8 assays. Cell apoptosis was evaluated using a transmission electron microscope and flow cytometry analyses. Levels of mRNAs encoding signaling pathway intermediates were assessed using qRT-PCR. The expression of signaling pathway intermediates and apoptosis-related proteins was determined by Western blotting. RESULTS Propofol significantly reduced cell viability, induced neuronal apoptosis, and downregulated the expression of the BDNF mRNA and the levels of the phospho-Erk1/2 (p-Erk1/2), phospho-CREB (p-CREB), and BDNF proteins. The dexmedetomidine pretreatment increased neuronal viability and alleviated propofol-induced neuronal apoptosis and rescued the propofol-induced downregulation of both the BDNF mRNA and the levels of the p-Erk1/2, p-CREB, and BDNF proteins. However, this neuroprotective effect was abolished by PD98059, H89, and KG501, further preventing the dexmedetomidine pretreatment from rescuing the propofol-induced downregulation of the BDNF mRNA and p-Erk1/2, p-CREB, and BDNF proteins. CONCLUSION Dexmedetomidine alleviates propofol-induced cytotoxicity toward primary hippocampal neurons in vitro, which correlated with the activation of Erk1/2/CREB/BDNF signaling pathways.
Collapse
Affiliation(s)
- Youbing Tu
- Department of Anesthesiology, The First Affiliated Hospital of Guangxi Medical University, Nanning 530021, China,
| | - Yubing Liang
- Department of Anesthesiology, The Affiliated Tumor Hospital of Guangxi Medical University, Nanning 530021, China
| | - Yong Xiao
- Department of Anesthesiology, The First Affiliated Hospital of Guangxi Medical University, Nanning 530021, China,
| | - Jing Lv
- Department of Anesthesiology, The First Affiliated Hospital of Guangxi Medical University, Nanning 530021, China,
| | - Ruicong Guan
- Department of Anesthesiology, The First Affiliated Hospital of Guangxi Medical University, Nanning 530021, China,
| | - Fei Xiao
- Department of Anesthesiology, The First Affiliated Hospital of Guangxi Medical University, Nanning 530021, China,
| | - Yubo Xie
- Department of Anesthesiology, The First Affiliated Hospital of Guangxi Medical University, Nanning 530021, China,
| | - Qiang Xiao
- Department of Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning 530021, China,
| |
Collapse
|
202
|
Adaniya SM, O-Uchi J, Cypress MW, Kusakari Y, Jhun BS. Posttranslational modifications of mitochondrial fission and fusion proteins in cardiac physiology and pathophysiology. Am J Physiol Cell Physiol 2019; 316:C583-C604. [PMID: 30758993 DOI: 10.1152/ajpcell.00523.2018] [Citation(s) in RCA: 77] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Mitochondrial fragmentation frequently occurs in chronic pathological conditions as seen in various human diseases. In fact, abnormal mitochondrial morphology and mitochondrial dysfunction are hallmarks of heart failure (HF) in both human patients and HF animal models. A link between mitochondrial fragmentation and cardiac pathologies has been widely proposed, but the physiological relevance of mitochondrial fission and fusion in the heart is still unclear. Recent studies have increasingly shown that posttranslational modifications (PTMs) of fission and fusion proteins are capable of directly modulating the stability, localization, and/or activity of these proteins. These PTMs include phosphorylation, acetylation, ubiquitination, conjugation of small ubiquitin-like modifier proteins, O-linked-N-acetyl-glucosamine glycosylation, and proteolysis. Thus, understanding the PTMs of fission and fusion proteins may allow us to understand the complexities that determine the balance of mitochondrial fission and fusion as well as mitochondrial function in various cell types and organs including cardiomyocytes and the heart. In this review, we summarize present knowledge regarding the function and regulation of mitochondrial fission and fusion in cardiomyocytes, specifically focusing on the PTMs of each mitochondrial fission/fusion protein. We also discuss the molecular mechanisms underlying abnormal mitochondrial morphology in HF and their contributions to the development of cardiac diseases, highlighting the crucial roles of PTMs of mitochondrial fission and fusion proteins. Finally, we discuss the future potential of manipulating PTMs of fission and fusion proteins as a therapeutic strategy for preventing and/or treating HF.
Collapse
Affiliation(s)
- Stephanie M Adaniya
- Lillehei Heart Institute, Cardiovascular Division, Department of Medicine, University of Minnesota , Minneapolis, Minnesota.,Cardiovascular Research Center, Department of Medicine, Rhode Island Hospital and the Alpert Medical School of Brown University , Providence, Rhode Island
| | - Jin O-Uchi
- Lillehei Heart Institute, Cardiovascular Division, Department of Medicine, University of Minnesota , Minneapolis, Minnesota
| | - Michael W Cypress
- Lillehei Heart Institute, Cardiovascular Division, Department of Medicine, University of Minnesota , Minneapolis, Minnesota
| | - Yoichiro Kusakari
- Department of Cell Physiology, The Jikei University School of Medicine , Tokyo , Japan
| | - Bong Sook Jhun
- Lillehei Heart Institute, Cardiovascular Division, Department of Medicine, University of Minnesota , Minneapolis, Minnesota
| |
Collapse
|
203
|
Pan S, Conaway S, Deshpande DA. Mitochondrial regulation of airway smooth muscle functions in health and pulmonary diseases. Arch Biochem Biophys 2019; 663:109-119. [PMID: 30629957 DOI: 10.1016/j.abb.2019.01.002] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2018] [Revised: 11/28/2018] [Accepted: 01/04/2019] [Indexed: 12/24/2022]
Abstract
Mitochondria are important for airway smooth muscle physiology due to their diverse yet interconnected roles in calcium handling, redox regulation, and cellular bioenergetics. Increasing evidence indicates that mitochondria dysfunction is intimately associated with airway diseases such as asthma, IPF and COPD. In these pathological conditions, increased mitochondrial ROS, altered bioenergetics profiles, and calcium mishandling contribute collectively to changes in cellular signaling, gene expression, and ultimately changes in airway smooth muscle contractile/proliferative properties. Therefore, understanding the basic features of airway smooth muscle mitochondria and their functional contribution to airway biology and pathology are key to developing novel therapeutics for airway diseases. This review summarizes the recent findings of airway smooth muscle mitochondria focusing on calcium homeostasis and redox regulation, two key determinants of physiological and pathological functions of airway smooth muscle.
Collapse
Affiliation(s)
- Shi Pan
- Center for Translational Medicine, Jane and Leonard Korman Lung Center, Thomas Jefferson University, Philadelphia, PA, 19107, USA
| | - Stanley Conaway
- Center for Translational Medicine, Jane and Leonard Korman Lung Center, Thomas Jefferson University, Philadelphia, PA, 19107, USA
| | - Deepak A Deshpande
- Center for Translational Medicine, Jane and Leonard Korman Lung Center, Thomas Jefferson University, Philadelphia, PA, 19107, USA.
| |
Collapse
|
204
|
Shimoda LA, Yun X, Sikka G. Revisiting the role of hypoxia-inducible factors in pulmonary hypertension. CURRENT OPINION IN PHYSIOLOGY 2019; 7:33-40. [PMID: 33103021 DOI: 10.1016/j.cophys.2018.12.003] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Pulmonary hypertension (PH) is a deadly condition with limited treatment options. Early studies implicated hypoxia-inducible factors as contributing to the development of hypoxia-induced PH. Recently, the use of cells derived from patients and transgenic animals with cell specific deletions for various parts of the HIF system have furthered our understanding of the mechanisms by which HIFs control pulmonary vascular tone and remodeling to promote PH. Additionally, identification of HIF inhibitors further allows assessment of the potential for targeting HIFs to prevent and/or reverse PH. In this review, recent findings exploring the role of HIFs as potential mediators and therapeutic targets for PH are discussed.
Collapse
Affiliation(s)
- Larissa A Shimoda
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Johns Hopkins School of Medicine, Baltimore, MD 21224
| | - Xin Yun
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Johns Hopkins School of Medicine, Baltimore, MD 21224
| | - Gautam Sikka
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Johns Hopkins School of Medicine, Baltimore, MD 21224
| |
Collapse
|
205
|
Puglisi R, Mattia G, Carè A, Marano G, Malorni W, Matarrese P. Non-genomic Effects of Estrogen on Cell Homeostasis and Remodeling With Special Focus on Cardiac Ischemia/Reperfusion Injury. Front Endocrinol (Lausanne) 2019; 10:733. [PMID: 31708877 PMCID: PMC6823206 DOI: 10.3389/fendo.2019.00733] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/16/2019] [Accepted: 10/10/2019] [Indexed: 12/12/2022] Open
Abstract
This review takes into consideration the main mechanisms involved in cellular remodeling following an ischemic injury, with special focus on the possible role played by non-genomic estrogen effects. Sex differences have also been considered. In fact, cardiac ischemic events induce damage to different cellular components of the heart, such as cardiomyocytes, vascular cells, endothelial cells, and cardiac fibroblasts. The ability of the cardiovascular system to counteract an ischemic insult is orchestrated by these cell types and is carried out thanks to a number of complex molecular pathways, including genomic (slow) or non-genomic (fast) effects of estrogen. These pathways are probably responsible for differences observed between the two sexes. Literature suggests that male and female hearts, and, more in general, cardiovascular system cells, show significant differences in many parameters under both physiological and pathological conditions. In particular, many experimental studies dealing with sex differences in the cardiovascular system suggest a higher ability of females to respond to environmental insults in comparison with males. For instance, as cells from females are more effective in counteracting the ischemia/reperfusion injury if compared with males, a role for estrogen in this sex disparity has been hypothesized. However, the possible involvement of estrogen-dependent non-genomic effects on the cardiovascular system is still under debate. Further experimental studies, including sex-specific studies, are needed in order to shed further light on this matter.
Collapse
Affiliation(s)
- Rossella Puglisi
- Center for Gender Specific Medicine, Istituto Superiore di Sanità, Rome, Italy
| | - Gianfranco Mattia
- Center for Gender Specific Medicine, Istituto Superiore di Sanità, Rome, Italy
| | - Alessandra Carè
- Center for Gender Specific Medicine, Istituto Superiore di Sanità, Rome, Italy
| | - Giuseppe Marano
- Center for Gender Specific Medicine, Istituto Superiore di Sanità, Rome, Italy
| | - Walter Malorni
- Center for Gender Specific Medicine, Istituto Superiore di Sanità, Rome, Italy
- School of Medicine, University of Rome Tor Vergata, Rome, Italy
| | - Paola Matarrese
- Center for Gender Specific Medicine, Istituto Superiore di Sanità, Rome, Italy
- *Correspondence: Paola Matarrese
| |
Collapse
|
206
|
Wang W, Zheng Y, Wang M, Yan M, Jiang J, Li Z. Exosomes derived miR-126 attenuates oxidative stress and apoptosis from ischemia and reperfusion injury by targeting ERRFI1. Gene 2018; 690:75-80. [PMID: 30597234 DOI: 10.1016/j.gene.2018.12.044] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2018] [Revised: 10/26/2018] [Accepted: 12/20/2018] [Indexed: 12/18/2022]
Abstract
AIMS Acute myocardial infarction is one of the most threaten disease in the world. In previous studies, exosome derived miR-126 has been verified that exert an pro-angiogenic function through exosomal transfer. However, the function of miR-126 in ischemic reperfusion injury remains unknown. The aim of the study was to investigate the function and mechanism of miR-126 in ischemic reperfusion injury. METHODS H2O2 and CoCl2-treated neonatal rat ventricular cardiomyocytes were used to analyze the function of miR-126 in vitro. Tunel, JC-1, ROS, LDH and cell survival rates were detected to evaluate the function of miR-126. Rat acute myocardial infarction was performed to elucidate the function of miR-126 in vivo. RESULTS We found that miR-126 could reduce the apoptosis and improved cell survival of H2O2-treated and CoCl2-treated neonatal rat ventricular cardiomyocytes. MiR-126 also attenuates the ROS elevation and mitochondrial membrane potential through JC-1 detection. miR-126 also improved the cardiac function in vivo. Luciferase activity revealed that miR-126 could bind to ERRFI1, suggesting miR-126 functioned through regulating ERRFI1. CONCLUSION We verified the function and mechanism of miR-126 and provide evidence that miR-126 may play important role in ischemic reperfusion injury, and understanding the precise role of miR-126 will undoubtedly shed new light on the clinical treatment.
Collapse
Affiliation(s)
- Wenyi Wang
- International Medical Center, Tianjin First Central Hospital, Tianjin, China.
| | - Yashu Zheng
- International Medical Center, Tianjin First Central Hospital, Tianjin, China
| | - Miao Wang
- International Medical Center, Tianjin First Central Hospital, Tianjin, China
| | - Meiling Yan
- Department of Pharmacy, Tianjin First Central Hospital, Tianjin, China
| | - Jiechun Jiang
- Clinical Laboratory, Tianjin First Central Hospital, Tianjin, China
| | - Zhigang Li
- International Medical Center, Tianjin First Central Hospital, Tianjin, China.
| |
Collapse
|
207
|
Jhun BS, O-Uchi J, Adaniya SM, Cypress MW, Yoon Y. Adrenergic Regulation of Drp1-Driven Mitochondrial Fission in Cardiac Physio-Pathology. Antioxidants (Basel) 2018; 7:antiox7120195. [PMID: 30567380 PMCID: PMC6316402 DOI: 10.3390/antiox7120195] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2018] [Revised: 12/13/2018] [Accepted: 12/14/2018] [Indexed: 12/28/2022] Open
Abstract
Abnormal mitochondrial morphology, especially fragmented mitochondria, and mitochondrial dysfunction are hallmarks of a variety of human diseases including heart failure (HF). Although emerging evidence suggests a link between mitochondrial fragmentation and cardiac dysfunction, it is still not well described which cardiac signaling pathway regulates mitochondrial morphology and function under pathophysiological conditions such as HF. Mitochondria change their shape and location via the activity of mitochondrial fission and fusion proteins. This mechanism is suggested as an important modulator for mitochondrial and cellular functions including bioenergetics, reactive oxygen species (ROS) generation, spatiotemporal dynamics of Ca2+ signaling, cell growth, and death in the mammalian cell- and tissue-specific manners. Recent reports show that a mitochondrial fission protein, dynamin-like/related protein 1 (DLP1/Drp1), is post-translationally modified via cell signaling pathways, which control its subcellular localization, stability, and activity in cardiomyocytes/heart. In this review, we summarize the possible molecular mechanisms for causing post-translational modifications (PTMs) of DLP1/Drp1 in cardiomyocytes, and further discuss how these PTMs of DLP1/Drp1 mediate abnormal mitochondrial morphology and mitochondrial dysfunction under adrenergic signaling activation that contributes to the development and progression of HF.
Collapse
Affiliation(s)
- Bong Sook Jhun
- Lillehei Heart Institute, Cardiovascular Division, Department of Medicine, University of Minnesota, Minneapolis, MN 55455, USA.
| | - Jin O-Uchi
- Lillehei Heart Institute, Cardiovascular Division, Department of Medicine, University of Minnesota, Minneapolis, MN 55455, USA.
| | - Stephanie M Adaniya
- Lillehei Heart Institute, Cardiovascular Division, Department of Medicine, University of Minnesota, Minneapolis, MN 55455, USA.
- Cardiovascular Research Center, Rhode Island Hospital, Providence, RI 02903, USA.
- Department of Medicine, Division of Cardiology, the Alpert Medical School of Brown University, Providence, RI 02903, USA.
| | - Michael W Cypress
- Lillehei Heart Institute, Cardiovascular Division, Department of Medicine, University of Minnesota, Minneapolis, MN 55455, USA.
| | - Yisang Yoon
- Department of Physiology, Medical College of Georgia, Augusta University, Augusta, GA 30912, USA.
| |
Collapse
|
208
|
Chen N, Zhou Z, Li J, Li B, Feng J, He D, Luo Y, Zheng X, Luo J, Zhang J. 3- n-butylphthalide exerts neuroprotective effects by enhancing anti-oxidation and attenuating mitochondrial dysfunction in an in vitro model of ischemic stroke. DRUG DESIGN DEVELOPMENT AND THERAPY 2018; 12:4261-4271. [PMID: 30587922 PMCID: PMC6298396 DOI: 10.2147/dddt.s189472] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Purpose This study examined whether the neuroprotective drug, 3-n-butylphthalide (NBP), which is used to treat ischemic stroke, prevents mitochondrial dysfunction. Materials and methods PC12 neuronal cells were pretreated for 24 hours with NBP (10 μmol/L), then exposed to oxygen and glucose deprivation (OGD) for 8 hours as an in vitro model of ischemic stroke. Indices of anti-oxidative response, mitochondrial function and mitochondrial dynamics were evaluated. Results OGD suppressed cell viability, induced apoptosis and increased caspase-3 activity. NBP significantly reversed these effects. NBP prevented oxidative damage by increasing the activity of superoxide dismutase and lowering levels of malondialdehyde (MDA) and reactive oxygen species (ROS). At the same time, it increased expression of Nrf2, HO-1 and AMPK. NBP attenuated mitochondrial dysfunction by enhancing mitochondrial membrane potential and increasing the activity of mitochondrial respiratory chain complexes I–IV and ATPase. NBP altered the balance of proteins regulating mitochondrial fusion and division. Conclusion NBP exerts neuroprotective actions by enhancing anti-oxidation and attenuating mitochondrial dysfunction. Our findings provide insight into how NBP may exert neuroprotective effects in ischemic stroke and raise the possibility that it may function similarly against other neurodegenerative diseases involving mitochondrial dysfunction.
Collapse
Affiliation(s)
- Ningyuan Chen
- Department of Pathophysiology, School of Preclinical Medicine, Guangxi Medical University, Nanning, People's Republic of China
| | - Zhibing Zhou
- Department of Emergency, The Second Affiliated Hospital of Guangxi Medical University, Nanning 530007, People's Republic of China,
| | - Ji Li
- Department of Emergency, The Second Affiliated Hospital of Guangxi Medical University, Nanning 530007, People's Republic of China,
| | - Bocheng Li
- Department of Emergency, The Second Affiliated Hospital of Guangxi Medical University, Nanning 530007, People's Republic of China,
| | - Jihua Feng
- Department of Emergency, The Second Affiliated Hospital of Guangxi Medical University, Nanning 530007, People's Republic of China,
| | - Dan He
- Department of Emergency, The Second Affiliated Hospital of Guangxi Medical University, Nanning 530007, People's Republic of China,
| | - Yifeng Luo
- Department of Emergency, The Second Affiliated Hospital of Guangxi Medical University, Nanning 530007, People's Republic of China,
| | - Xiaowen Zheng
- Department of Emergency, The Second Affiliated Hospital of Guangxi Medical University, Nanning 530007, People's Republic of China,
| | - Jiefeng Luo
- Department of Neurology, The Second Affiliated Hospital of Guangxi Medical University, Nanning 530007, People's Republic of China,
| | - Jianfeng Zhang
- Department of Emergency, The Second Affiliated Hospital of Guangxi Medical University, Nanning 530007, People's Republic of China,
| |
Collapse
|
209
|
Daghistani HM, Rajab BS, Kitmitto A. Three-dimensional electron microscopy techniques for unravelling mitochondrial dysfunction in heart failure and identification of new pharmacological targets. Br J Pharmacol 2018; 176:4340-4359. [PMID: 30225980 PMCID: PMC6887664 DOI: 10.1111/bph.14499] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2018] [Revised: 07/30/2018] [Accepted: 08/18/2018] [Indexed: 12/23/2022] Open
Abstract
A hallmark of heart failure is mitochondrial dysfunction leading to a bioenergetics imbalance in the myocardium. Consequently, there is much interest in targeting mitochondrial abnormalities to attenuate the pathogenesis of heart failure. This review discusses (i) how electron microscopy (EM) techniques have been fundamental for the current understanding of mitochondrial structure–function, (ii) the paradigm shift in resolutions now achievable by 3‐D EM techniques due to the introduction of direct detection devices and phase plate technology, and (iii) the application of EM for unravelling mitochondrial pathological remodelling in heart failure. We further consider the tremendous potential of multi‐scale EM techniques for the development of therapeutics, structure‐based ligand design and for delineating how a drug elicits nanostructural effects at the molecular, organelle and cellular levels. In conclusion, 3‐D EM techniques have entered a new era of structural biology and are poised to play a pivotal role in discovering new therapies targeting mitochondria for treating heart failure. Linked Articles This article is part of a themed section on Mitochondrial Pharmacology: Featured Mechanisms and Approaches for Therapy Translation. To view the other articles in this section visit http://onlinelibrary.wiley.com/doi/10.1111/bph.v176.22/issuetoc
Collapse
Affiliation(s)
- Hussam M Daghistani
- Division of Cardiovascular Sciences, School of Medical Sciences, Faculty of Biology, Medicine and Health, The University of Manchester, Manchester Academic Health Science Centre, Manchester, UK
| | - Bodour S Rajab
- Division of Cardiovascular Sciences, School of Medical Sciences, Faculty of Biology, Medicine and Health, The University of Manchester, Manchester Academic Health Science Centre, Manchester, UK
| | - Ashraf Kitmitto
- Division of Cardiovascular Sciences, School of Medical Sciences, Faculty of Biology, Medicine and Health, The University of Manchester, Manchester Academic Health Science Centre, Manchester, UK
| |
Collapse
|
210
|
Pulmonary arterial hypertension and the potential roles of metallothioneins: A focused review. Life Sci 2018; 214:77-83. [PMID: 30355531 DOI: 10.1016/j.lfs.2018.10.039] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2018] [Revised: 10/10/2018] [Accepted: 10/19/2018] [Indexed: 12/17/2022]
Abstract
The pathophysiology of pulmonary arterial hypertension (PAH) is underlined by cell proliferation and vasoconstriction of pulmonary arterioles this involves multiple molecular factors or proteins, but it is not clear what the exact roles of these factors/proteins are. In addition, there may be other factors/proteins that have not been identified that contribute to PAH pathophysiology. Therefore, research has focused on investigating novel role players, in order to facilitate a better understanding of how PAH develop. Evidence suggest that mitochondrial regulators are key role players in PAH pathophysiology, but regulators that have not received sufficient attention in PAH are metallothioneins (MTs). In PAH patients, MT expression is elevated compared to healthy individuals, suggesting that MTs may be possible biomarkers. In other disease-models, MTs have been shown to regulate cell proliferation and vasoconstriction, processes that are instrumental in PAH pathophysiology. Due to the involvement of these processes in PAH pathophysiology and the ability of MTs to modulate them, this paper propose that cellular MTs may also play a role in PAH development. This paper suggests that PAH-research should perhaps begin to investigate the involvement of cellular MTs in the development of PAH.
Collapse
|
211
|
Kuebler WM, Nicolls MR, Olschewski A, Abe K, Rabinovitch M, Stewart D, Chan SY, Morrell NW, Archer SL, Spiekerkoetter E. A pro-con debate: current controversies in PAH pathogenesis at the American Thoracic Society International Conference in 2017. Am J Physiol Lung Cell Mol Physiol 2018; 315:L502-L516. [PMID: 29877097 PMCID: PMC6230875 DOI: 10.1152/ajplung.00150.2018] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2018] [Revised: 05/22/2018] [Accepted: 06/02/2018] [Indexed: 12/16/2022] Open
Abstract
The following review summarizes the pro-con debate about current controversies regarding the pathogenesis of pulmonary arterial hypertension (PAH) that took place at the American Thoracic Society Conference in May 2017. Leaders in the field of PAH research discussed the importance of the immune system, the role of hemodynamic stress and endothelial apoptosis, as well as bone morphogenetic protein receptor-2 signaling in PAH pathogenesis. Whereas this summary does not intend to resolve obvious conflicts in opinion, we hope that the presented arguments entice further discussions and draw a new generation of enthusiastic researchers into this vibrant field of science to bridge existing gaps for a better understanding and therapy of this fatal disease.
Collapse
Affiliation(s)
- Wolfgang M Kuebler
- Institute of Physiology, Charité-Universitaetsmedizin Berlin, Berlin , Germany
- Keenan Research Centre for Biomedical Science at Saint Michael's , Toronto, Ontario , Canada
- Department of Surgery, University of Toronto , Toronto, Ontario , Canada
- Department of Physiology, University of Toronto , Toronto, Ontario , Canada
| | - Mark R Nicolls
- Division of Pulmonary and Critical Care, Department of Medicine, Wall Center for Pulmonary Vascular Disease, Cardiovascular Institute, Stanford University , Stanford, California
| | - Andrea Olschewski
- Ludwig Boltzmann Institute, Lung Vascular Research, Medical University of Graz , Graz , Austria
- Johannes Kepler University Linz, Medicine Rectorate, Linz, Austria
| | - Kohtaro Abe
- Department of Cardiovascular Medicine, Kyushu University Graduate School of Medical Sciences , Fukuoka , Japan
| | - Marlene Rabinovitch
- Division of Cardiology, Department of Pediatrics, Stanford University School of Medicine , Stanford, California
| | - Duncan Stewart
- Division of Cardiology, Department of Medicine, Ottawa Hospital Research Institute , Ottawa, Ontario , Canada
| | - Stephen Y Chan
- Division of Cardiology, Department of Medicine, Center for Pulmonary Vascular Biology and Medicine, Pittsburgh Heart, Lung, Blood, and Vascular Medicine Institute, University of Pittsburgh School of Medicine and University of Pittsburgh Medical Center , Pittsburgh, Pennsylvania
| | - Nicholas W Morrell
- Division of Respiratory Medicine, Department of Medicine, University of Cambridge School of Clinical Medicine, University of Cambridge , Cambridge , United Kingdom
| | - Stephen L Archer
- Department of Medicine, Queen's University , Kingston, Ontario , Canada
| | - Edda Spiekerkoetter
- Division of Pulmonary and Critical Care, Department of Medicine, Wall Center for Pulmonary Vascular Disease, Cardiovascular Institute, Stanford University , Stanford, California
| |
Collapse
|
212
|
Durgin BG, Straub AC. Redox control of vascular smooth muscle cell function and plasticity. J Transl Med 2018; 98:1254-1262. [PMID: 29463879 PMCID: PMC6102093 DOI: 10.1038/s41374-018-0032-9] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2017] [Revised: 12/15/2017] [Accepted: 12/18/2017] [Indexed: 02/07/2023] Open
Abstract
Vascular smooth muscle cells (SMC) play a major role in vascular diseases, such as atherosclerosis and hypertension. It has long been established in vitro that contractile SMC can phenotypically switch to function as proliferative and/or migratory cells in response to stimulation by oxidative stress, growth factors, and inflammatory cytokines. Reactive oxygen species (ROS) are oxidative stressors implicated in driving vascular diseases, shifting cell bioenergetics, and increasing SMC proliferation, migration, and apoptosis. In this review, we summarize our current knowledge of how disruptions to redox balance can functionally change SMC and how this may influence vascular disease pathogenesis. Specifically, we focus on our current understanding of the role of vascular nicotinamide adenine dinucleotide phosphate (NADPH) oxidases (NOX) 1, 4, and 5 in SMC function. We also review the evidence implicating mitochondrial fission in SMC phenotypic transitions and mitochondrial fusion in maintenance of SMC homeostasis. Finally, we discuss the importance of the redox regulation of the soluble guanylate cyclase (sGC)-cyclic guanosine monophosphate (cGMP)-protein kinase G (PKG) pathway as a potential oxidative and therapeutic target for regulating SMC function.
Collapse
Affiliation(s)
- Brittany G Durgin
- Heart, Lung, Blood and Vascular Medicine Institute, University of Pittsburgh, Pittsburgh, PA, USA
| | - Adam C Straub
- Heart, Lung, Blood and Vascular Medicine Institute, University of Pittsburgh, Pittsburgh, PA, USA.
- Department of Pharmacology and Chemical Biology, University of Pittsburgh, Pittsburgh, PA, USA.
| |
Collapse
|
213
|
Role of oxidative stress in the process of vascular remodeling following coronary revascularization. Int J Cardiol 2018; 268:27-33. [DOI: 10.1016/j.ijcard.2018.05.046] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/14/2018] [Revised: 04/17/2018] [Accepted: 05/14/2018] [Indexed: 12/26/2022]
|
214
|
Leptin-induced cardiomyocyte hypertrophy is associated with enhanced mitochondrial fission. Mol Cell Biochem 2018; 454:33-44. [PMID: 30251118 DOI: 10.1007/s11010-018-3450-5] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2018] [Accepted: 09/19/2018] [Indexed: 12/14/2022]
Abstract
Cardiac pathology including hypertrophy has been associated with an imbalance between mitochondrial fission and fusion. Generally, well-balanced mitochondrial fission and fusion are essential for proper functions of mitochondria. Leptin is a 16-kDa appetite-suppressing protein which has been shown to induce cardiomyocyte hypertrophy. In the present study, we determined whether leptin can influence mitochondrial fission or fusion and whether this can be related to its hypertrophic effect. Cardiomyocytes treated for 24 h with 3.1 nM leptin (50 ng/ml), a concentration representing plasma levels in obese individuals, demonstrated an increase in surface area and a significant 1.6-fold increase in the expression of the β-myosin heavy chain. Mitochondrial staining with MitoTracker Green dye showed elongated structures in control cells with an average length of 4.5 µm. Leptin produced a time-dependent increase in mitochondrial fragmentation with decreasing mitochondrial length. The hypertrophic response to leptin was also associated with increased protein levels of the mitochondrial fission protein dynamin-related protein1 (Drp1) although gene expression of Drp1 was unaffected possibly suggesting post-translational modifications of Drp1. Indeed, leptin treatment was associated with decreased levels of phosphorylated Drp1 and increased translocation of Drp1 to the mitochondria thereby demonstrating a pro-fission effect of leptin. As calcineurin may dephosphorylate Drp1, we determined the effect of a calcineurin inhibitor, FK506, which prevented leptin-induced hypertrophy as well as mitochondrial fission and mitochondrial dysfunction. In conclusion, our data show that leptin-induced cardiomyocyte hypertrophy is associated with enhanced mitochondrial fission via a calcineurin-mediated pathway. The ability of leptin to stimulate mitochondrial fission may be important in understanding the role of this protein in cardiac pathology especially that related to mitochondrial dysfunction.
Collapse
|
215
|
Abstract
BACKGROUND Patients treated with 5-FU can develop rare but potentially severe cardiac effects, including cardiomyopathy, angina pectoris, ventricular tachycardia, heart failure, acute myocardial infarction, and cardiogenic shock. The specific pathologies and mechanisms are not fully understood. Research found that mitochondrial dynamics are widely detected in many angiocardiopathies. Therefore, in the present study we studied the mitochondrial damage and explored the role of mitochondrial fusion/fission proteins on myocardium of rats treated with 5-fluorouracil (5-FU). MATERIAL AND METHODS Thirty male SD rats were randomly divided into 3 groups with 10 rats in each group: (1) control group, (2) low 5-FU group (25 mg/kg), (3) high 5-FU group (50 mg/kg). The animals received intraperitoneal injection for 5 consecutive days. We assessed alterations in mitochondrial morphology, ATP content, mitochondrial membrane potential, and mitochondria fusion/fission proteins expression in hearts of rats receiving intraperitoneal injection with different doses of 5-FU. RESULTS 5-FU intraperitoneal injection induced ultra-structural damage in hearts, such as mitochondrial swelling, cristae disorder, and vacuolization. These changes were accompanied by decreases of mitochondrial membrane potential. The low dose of 5-FU led to a slight increase in ATP content. However, the high 5-FU dose caused a more significant reduction compared with the control group. Furthermore, 5-FU intraperitoneal injection significantly increased specific mitochondrial fission proteins (Drp1 and Fis1) and decreased mitochondrial fusion proteins (Opa1, Mfn1, and Mfn2) in rat hearts. However, no changes in cardiac structure and function were detected by echocardiogram. The high dose caused more damage to mitochondrial function than the low dose. CONCLUSIONS Mitochondrial damage is a potentially important mechanism and early indicator for 5-FU-induced cardiovascular disease.
Collapse
Affiliation(s)
- Dongxia Zhang
- The Fourth Hospital of Hebei Medical University, Shijiazhuang, Hebei, China (mainland)
| | - Jingtao Ma
- The Fourth Hospital of Hebei Medical University, Shijiazhuang, Hebei, China (mainland)
| |
Collapse
|
216
|
Liu W, Ye C, Cheng Q, Zhang X, Yao L, Li Q, Huang J, Liu Y, Zou Z, Wang H, Yan J, Zhu Y, Wang C, Ai D. Macrophage Raptor Deficiency-Induced Lysosome Dysfunction Exacerbates Nonalcoholic Steatohepatitis. Cell Mol Gastroenterol Hepatol 2018; 7:211-231. [PMID: 30539788 PMCID: PMC6282883 DOI: 10.1016/j.jcmgh.2018.09.011] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/20/2018] [Revised: 09/11/2018] [Accepted: 09/11/2018] [Indexed: 12/11/2022]
Abstract
BACKGROUND & AIMS Nonalcoholic steatohepatitis (NASH) is an increasingly prevalent nonalcoholic fatty liver disease, characterized by inflammatory cell infiltration and hepatocellular damage. Mammalian target of rapamycin complex 1 (mTORC1) has been investigated extensively in the context of cancer, including hepatocellular carcinoma. However, the role of mTORC1 in NASH remains largely unknown. METHODS mTORC1 activity in macrophages in human mild and severe NASH liver was compared. Mice with macrophage-specific deletion of the regulatory-associated protein of mTOR (Raptor) subunit and littermate controls were fed a high-fructose, palmitate, and cholesterol diet for 24 weeks or a methionine- and choline-deficient diet for 4 weeks to develop NASH. RESULTS We report that in human beings bearing NASH, macrophage mTORC1 activity was lower in livers experiencing severe vs mild NASH liver. Moreover, macrophage mTORC1 disruption exacerbated the inflammatory response in 2 diet-induced NASH mouse models. Mechanistically, in response to apoptotic hepatocytes (AHs), macrophage polarization toward a M2 anti-inflammatory phenotype was inhibited in Raptor-deficient macrophages. During the digestion of AHs, macrophage mTORC1 was activated and coupled with dynamin-related protein 1 to facilitate the latter's phosphorylation, leading to mitochondrial fission-mediated calcium release. Ionomycin or A23187, calcium ionophores, prevented Raptor deficiency-mediated failure of lysosome acidification and subsequent lipolysis. Blocking dynamin-related protein 1-dependent mitochondria fission impaired lysosome function, resulting in reduced production of anti-inflammatory factors such as interleukins 10 and 13. CONCLUSIONS Persistent mTORC1 deficiency in macrophages contributes to the progression of NASH by causing lysosome dysfunction and subsequently attenuating anti-inflammatory M2-like response in macrophages during clearance of AHs.
Collapse
Affiliation(s)
- Wenli Liu
- Tianjin Key Laboratory of Metabolic Diseases, Department of Physiology and Pathophysiology, Tianjin Medical University, Tianjin, China
| | - Chenji Ye
- Tianjin Key Laboratory of Metabolic Diseases, Department of Physiology and Pathophysiology, Tianjin Medical University, Tianjin, China
| | - Qian Cheng
- Tianjin Key Laboratory of Metabolic Diseases, Department of Physiology and Pathophysiology, Tianjin Medical University, Tianjin, China
| | - Xuejiao Zhang
- Tianjin Key Laboratory of Metabolic Diseases, Department of Physiology and Pathophysiology, Tianjin Medical University, Tianjin, China
| | - Liu Yao
- Tianjin Key Laboratory of Metabolic Diseases, Department of Physiology and Pathophysiology, Tianjin Medical University, Tianjin, China
| | - Qi Li
- Tianjin Key Laboratory of Metabolic Diseases, Department of Physiology and Pathophysiology, Tianjin Medical University, Tianjin, China
| | - Jing Huang
- Tianjin Key Laboratory of Metabolic Diseases, Department of Physiology and Pathophysiology, Tianjin Medical University, Tianjin, China
| | - Yajin Liu
- Tianjin Key Laboratory of Metabolic Diseases, Department of Physiology and Pathophysiology, Tianjin Medical University, Tianjin, China
| | - Zhengsheng Zou
- The Center for Non-infectious Liver Diseases, Beijing 302 Military Hospital, Beijing, China
| | - Hua Wang
- Department of Oncology, the First Affiliated Hospital, Institute for Liver Diseases of Anhui Medical University, Hefei, China
| | - Jun Yan
- Department of Pathology, Tianjin First Center Hospital, Tianjin, China
| | - Yi Zhu
- Tianjin Key Laboratory of Metabolic Diseases, Department of Physiology and Pathophysiology, Tianjin Medical University, Tianjin, China
| | - Chunjiong Wang
- Tianjin Key Laboratory of Metabolic Diseases, Department of Physiology and Pathophysiology, Tianjin Medical University, Tianjin, China.
| | - Ding Ai
- Tianjin Key Laboratory of Metabolic Diseases, Department of Physiology and Pathophysiology, Tianjin Medical University, Tianjin, China.
| |
Collapse
|
217
|
Zhang L, Ma C, Gu R, Zhang M, Wang X, Yang L, Liu Y, Zhou Y, He S, Zhu D. Paeonol regulates hypoxia-induced proliferation of pulmonary artery smooth muscle cells via EKR 1/2 signalling. Eur J Pharmacol 2018; 834:257-265. [DOI: 10.1016/j.ejphar.2018.07.017] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2018] [Revised: 07/11/2018] [Accepted: 07/12/2018] [Indexed: 01/08/2023]
|
218
|
Hecker M, Sommer N, Foch S, Hecker A, Hackstein H, Witzenrath M, Weissmann N, Seeger W, Mayer K. Resolvin E1 and its precursor 18R-HEPE restore mitochondrial function in inflammation. Biochim Biophys Acta Mol Cell Biol Lipids 2018; 1863:1016-1028. [DOI: 10.1016/j.bbalip.2018.06.011] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2017] [Revised: 05/10/2018] [Accepted: 06/10/2018] [Indexed: 01/14/2023]
|
219
|
Izquierdo-Garcia JL, Arias T, Rojas Y, Garcia-Ruiz V, Santos A, Martin-Puig S, Ruiz-Cabello J. Metabolic Reprogramming in the Heart and Lung in a Murine Model of Pulmonary Arterial Hypertension. Front Cardiovasc Med 2018; 5:110. [PMID: 30159317 PMCID: PMC6104186 DOI: 10.3389/fcvm.2018.00110] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2018] [Accepted: 07/27/2018] [Indexed: 01/01/2023] Open
Abstract
A significant glycolytic shift in the cells of the pulmonary vasculature and right ventricle during pulmonary arterial hypertension (PAH) has been recently described. Due to the late complications and devastating course of any variant of this disease, there is a great need for animal models that reproduce potential metabolic reprograming of PAH. Our objective is to study, in situ, the metabolic reprogramming in the lung and the right ventricle of a mouse model of PAH by metabolomic profiling and molecular imaging. PAH was induced by chronic hypoxia exposure plus treatment with SU5416, a vascular endothelial growth factor receptor inhibitor. Lung and right ventricle samples were analyzed by magnetic resonance spectroscopy. In vivo energy metabolism was studied by positron emission tomography. Our results show that metabolomic profiling of lung samples clearly identifies significant alterations in glycolytic pathways. We also confirmed an upregulation of glutamine metabolism and alterations in lipid metabolism. Furthermore, we identified alterations in glycine and choline metabolism in lung tissues. Metabolic reprograming was also confirmed in right ventricle samples. Lactate and alanine, endpoints of glycolytic oxidation, were found to have increased concentrations in mice with PAH. Glutamine and taurine concentrations were correlated to specific ventricle hypertrophy features. We demonstrated that most of the metabolic features that characterize human PAH were detected in a hypoxia plus SU5416 mouse model and it may become a valuable tool to test new targeting treatments of this severe disease.
Collapse
Affiliation(s)
- Jose L Izquierdo-Garcia
- CIC biomaGUNE, San Sebastian-Donostia, Spain.,CIBER de Enfermedades Respiratorias, Madrid, Spain.,Centro Nacional de Investigaciones Cardiovasculares, Madrid, Spain
| | - Teresa Arias
- CIBER de Enfermedades Respiratorias, Madrid, Spain.,Centro Nacional de Investigaciones Cardiovasculares, Madrid, Spain
| | - Yeny Rojas
- Centro Nacional de Investigaciones Cardiovasculares, Madrid, Spain
| | - Victoria Garcia-Ruiz
- Centro Nacional de Investigaciones Cardiovasculares, Madrid, Spain.,Unidad de Gestion Clinica del Corazon, Hospital Universitario Virgen de la Victoria, Málaga, Spain
| | | | | | - Jesus Ruiz-Cabello
- CIC biomaGUNE, San Sebastian-Donostia, Spain.,CIBER de Enfermedades Respiratorias, Madrid, Spain.,IKERBASQUE, Basque Foundation for Science, Bilbao, Spain.,Universidad Complutense Madrid, Facultad de Farmacia, Departamento de Quimica en Ciencias Farmaceuticas, Madrid, Spain
| |
Collapse
|
220
|
Culley MK, Chan SY. Mitochondrial metabolism in pulmonary hypertension: beyond mountains there are mountains. J Clin Invest 2018; 128:3704-3715. [PMID: 30080181 DOI: 10.1172/jci120847] [Citation(s) in RCA: 129] [Impact Index Per Article: 18.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Pulmonary hypertension (PH) is a heterogeneous and fatal disease of the lung vasculature, where metabolic and mitochondrial dysfunction may drive pathogenesis. Similar to the Warburg effect in cancer, a shift from mitochondrial oxidation to glycolysis occurs in diseased pulmonary vessels and the right ventricle. However, appreciation of metabolic events in PH beyond the Warburg effect is only just emerging. This Review discusses molecular, translational, and clinical concepts centered on the mitochondria and highlights promising, controversial, and challenging areas of investigation. If we can move beyond the "mountains" of obstacles in this field and elucidate these fundamental tenets of pulmonary vascular metabolism, such work has the potential to usher in much-needed diagnostic and therapeutic approaches for the mitochondrial and metabolic management of PH.
Collapse
Affiliation(s)
- Miranda K Culley
- Center for Pulmonary Vascular Biology and Medicine, Pittsburgh Heart, Lung, Blood, and Vascular Medicine Institute, Division of Cardiology, Department of Medicine, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| | - Stephen Y Chan
- Center for Pulmonary Vascular Biology and Medicine, Pittsburgh Heart, Lung, Blood, and Vascular Medicine Institute, Division of Cardiology, Department of Medicine, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA.,University of Pittsburgh Medical Center, Pittsburgh, Pennsylvania, USA
| |
Collapse
|
221
|
Tian L, Potus F, Wu D, Dasgupta A, Chen KH, Mewburn J, Lima P, Archer SL. Increased Drp1-Mediated Mitochondrial Fission Promotes Proliferation and Collagen Production by Right Ventricular Fibroblasts in Experimental Pulmonary Arterial Hypertension. Front Physiol 2018; 9:828. [PMID: 30042687 PMCID: PMC6048272 DOI: 10.3389/fphys.2018.00828] [Citation(s) in RCA: 61] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2018] [Accepted: 06/12/2018] [Indexed: 12/20/2022] Open
Abstract
Introduction: Right ventricular (RV) fibrosis contributes to RV failure in pulmonary arterial hypertension (PAH). The mechanisms underlying RV fibrosis in PAH and the role of RV fibroblasts (RVfib) are unknown. Activation of the mitochondrial fission mediator dynamin-related protein 1 (Drp1) contributes to dysfunction of RV myocytes in PAH through interaction with its binding partner, fission protein 1 (Fis1). However, the role of mitochondrial fission in RVfib and RV fibrosis in PAH is unknown. Objective: We hypothesize that mitochondrial fission is increased in RVfib of rats with monocrotaline (MCT)-induced PAH. We evaluated the contribution of Drp1 and Drp1-Fis1 interaction to RVfib proliferation and collagen production in culture and to RV fibrosis in vivo. Methods: Vimentin (+) RVfib were enzymatically isolated and cultured from the RVs of male Sprague-Dawley rats that received MCT (60 mg/kg) or saline. Mitochondrial morphology, proliferation, collagen production, and expression of Drp1, Drp1 binding partners and mitochondrial fusion mediators were measured. The Drp1 inhibitor mitochondrial division inhibitor 1 (Mdivi-1), P110, a competitive peptide inhibitor of Drp1-Fis1 interaction, and siRNA targeting Drp1 were assessed. Subsequently, prevention and regression studies tested the antifibrotic effects of P110 (0.5 mg/kg) in vivo. At week 4 post MCT, echocardiography and right heart catheterization were performed. The RV was stained for collagen. Results: Mitochondrial fragmentation, proliferation rates and collagen production were increased in MCT-RVfib versus control-RVfib. MCT-RVfib had increased expression of activated Drp1 protein and a trend to decreased mitofusin-2 expression. Mdivi-1 and P110 inhibited mitochondrial fission, proliferation and collagen III expression in MCT-RVfib. However, P110 was only effective at high doses (1 mM). siDrp1 also reduced fission in MCT-RVfib. Despite promising results in cell therapy, in vivo therapy with P110 failed to prevent or regress RV fibrosis in MCT rats, perhaps due to failure to achieve adequate P110 levels or to the greater importance of interaction of Drp1 with other binding partners. Conclusion: PAH RVfib have increased Drp1-mediated mitochondrial fission. Inhibiting Drp1 prevents mitochondrial fission and reduces RVfib proliferation and collagen production. This is the first description of disordered mitochondrial dynamics in RVfib and suggests that Drp1 is a potential new antifibrotic target.
Collapse
|
222
|
Zhang D, Liu Y, Tang Y, Wang X, Li Z, Li R, Ti Z, Gao W, Bai J, Lv Y. Increased mitochondrial fission is critical for hypoxia-induced pancreatic beta cell death. PLoS One 2018; 13:e0197266. [PMID: 29768513 PMCID: PMC5955518 DOI: 10.1371/journal.pone.0197266] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2017] [Accepted: 04/30/2018] [Indexed: 01/27/2023] Open
Abstract
Hypoxia-mediated pancreatic beta cell death is one of the main causes of pancreatic beta celldeath, which leads to the loss of functional pancreatic beta cell mass and type 1 diabetes andtype 2 diabetes.However, the molecular mechanisms that control life and death of pancreatic beta cells remain poorly understood. Here we showed that mitochondrial fission was strongly induced in pancreatic beta cellsmainly due to an elevation of DRP1S616 phosphorylation through HIF-1αactivation and subsequent DRP1 mitochondrial translocation. Hypoxia-induced pancreatic beta cell death can be reversed by the inhibition of mitochondrial fission viaDRP1 knockdown. We further demonstrated that hypoxia-induced mitochondrial fission untightened the cristae formation, which subsequently triggers mitochondrial cytochrome c release and consequent caspase activation. Moreover, treatment with mitochondrial division inhibitor-1 (Mdivi-1), a specific inhibitor of DRP1-mediated mitochondrial fission, significantly suppressedbeta cell death in vitro, indicating a promising therapeutic strategy for treatment of diabetes.Taken together, our results reveal a crucial role for the DRP1-mediated mitochondrial fission in hypoxia-induced beta cell death, which provides a strong evidence for thisprocess as drug target indiabetestreatment.
Collapse
Affiliation(s)
- Da Zhang
- Department of Hepatobiliary Surgery, Institute of Advanced Surgical Technology and Engineering, Shaanxi Center for Regenerative Medicine and Surgical Engineering, The First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, China
- Department of General Surgery, Xi'an No.3 Hospital, Xi’an, China
| | - Yanfang Liu
- Department of Ophthalmology, Xi'an Children’s Hospital,Xi’an, China
| | - Yao Tang
- Department of General Surgery, Xi'an No.3 Hospital, Xi’an, China
| | - Xiaofeng Wang
- Department of General Surgery, Xi'an No.3 Hospital, Xi’an, China
| | - Zhichao Li
- Department of General Surgery, Xi'an No.3 Hospital, Xi’an, China
| | - Rui Li
- Department of General Surgery, Xi'an No.3 Hospital, Xi’an, China
| | - Zhenyu Ti
- Department of General Surgery, Xi'an No.3 Hospital, Xi’an, China
| | - Weidong Gao
- Department of General Surgery, Xi'an No.3 Hospital, Xi’an, China
| | - Jigang Bai
- Department of Hepatobiliary Surgery, Institute of Advanced Surgical Technology and Engineering, Shaanxi Center for Regenerative Medicine and Surgical Engineering, The First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, China
| | - Yi Lv
- Department of Hepatobiliary Surgery, Institute of Advanced Surgical Technology and Engineering, Shaanxi Center for Regenerative Medicine and Surgical Engineering, The First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, China
- * E-mail:
| |
Collapse
|
223
|
Recurrent inhibition of mitochondrial complex III induces chronic pulmonary vasoconstriction and glycolytic switch in the rat lung. Respir Res 2018; 19:69. [PMID: 29685148 PMCID: PMC5914012 DOI: 10.1186/s12931-018-0776-1] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2017] [Accepted: 04/12/2018] [Indexed: 12/23/2022] Open
Abstract
BACKGROUND Pulmonary arterial hypertension (PAH) is a fatal disease; however, the mechanisms directly involved in triggering and the progression of PAH are not clear. Based on previous studies that demonstrated a possible role of mitochondrial dysfunction in the pathogenesis of PAH, we investigated the effects of chronic inhibition of mitochondrial function in vivo in healthy rodents. METHODS Right ventricle systolic pressure (RVSP) was measured in female rats at baseline and up to 24 days after inhibition of mitochondrial respiratory Complex III, induced by Antimycin A (AA, 0.35 mg/kg, given three times starting at baseline and then days 3 and 6 as a bolus injection into the right atrial chamber). RESULTS Rodents exposed to AA demonstrated sustained increases in RVSP from days 6 through 24. AA-exposed rodents also possessed a progressive increase in RV end-diastolic pressure but not RV hypertrophy, which may be attributed to either early stages of PAH development or to reduced RV contractility due to inhibition of myocardial respiration. Protein nitration levels in plasma were positively correlated with PAH development in AA-treated rats. This finding was strongly supported by results obtained from PAH humans where plasma protein nitration levels were correlated with markers of PAH severity in female but not male PAH patients. Based on previously reported associations between increased nitric oxide production levels with female gender, we speculate that in females with PAH mitochondrial dysfunction may represent a more deleterious form, in part, due to an increased nitrosative stress development. Indeed, the histological analysis of AA treated rats revealed a strong perivascular edema, a marker of pulmonary endothelial damage. Finally, AA treatment was accompanied by a severe metabolic shift toward glycolysis, a hallmark of PAH pathology. CONCLUSIONS Chronic mitochondrial dysfunction induces the combination of vascular damage and metabolic reprogramming that may be responsible for PAH development. This mechanism may be especially important in females, perhaps due to an increased NO production and nitrosative stress development.
Collapse
|
224
|
Wang D, Uhrin P, Mocan A, Waltenberger B, Breuss JM, Tewari D, Mihaly-Bison J, Huminiecki Ł, Starzyński RR, Tzvetkov NT, Horbańczuk J, Atanasov AG. Vascular smooth muscle cell proliferation as a therapeutic target. Part 1: molecular targets and pathways. Biotechnol Adv 2018; 36:1586-1607. [PMID: 29684502 DOI: 10.1016/j.biotechadv.2018.04.006] [Citation(s) in RCA: 77] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2017] [Revised: 04/15/2018] [Accepted: 04/18/2018] [Indexed: 12/16/2022]
Abstract
Cardiovascular diseases are a major cause of human death worldwide. Excessive proliferation of vascular smooth muscle cells contributes to the etiology of such diseases, including atherosclerosis, restenosis, and pulmonary hypertension. The control of vascular cell proliferation is complex and encompasses interactions of many regulatory molecules and signaling pathways. Herein, we recapitulated the importance of signaling cascades relevant for the regulation of vascular cell proliferation. Detailed understanding of the mechanism underlying this process is essential for the identification of new lead compounds (e.g., natural products) for vascular therapies.
Collapse
Affiliation(s)
- Dongdong Wang
- Department of Molecular Biology, Institute of Genetics and Animal Breeding of the Polish Academy of Sciences, ul. Postepu 36A, Jastrzębiec, 05-552 Magdalenka, Poland; Department of Pharmacognosy, University of Vienna, Althanstrasse 14, A-1090 Vienna, Austria; Institute of Clinical Chemistry, University Hospital Zurich, Wagistrasse 14, 8952 Schlieren, Switzerland
| | - Pavel Uhrin
- Center for Physiology and Pharmacology, Institute of Vascular Biology and Thrombosis Research, Medical University of Vienna, Schwarzspanierstrasse 17, 1090 Vienna, Austria.
| | - Andrei Mocan
- Department of Pharmaceutical Botany, "Iuliu Hațieganu" University of Medicine and Pharmacy, Strada Gheorghe Marinescu 23, 400337 Cluj-Napoca, Romania; Institute for Life Sciences, University of Agricultural Sciences and Veterinary Medicine of Cluj-Napoca, Calea Mănăştur 3-5, 400372 Cluj-Napoca, Romania
| | - Birgit Waltenberger
- Institute of Pharmacy/Pharmacognosy and Center for Molecular Biosciences Innsbruck (CMBI), University of Innsbruck, Innrain 80-82, 6020 Innsbruck, Austria
| | - Johannes M Breuss
- Center for Physiology and Pharmacology, Institute of Vascular Biology and Thrombosis Research, Medical University of Vienna, Schwarzspanierstrasse 17, 1090 Vienna, Austria
| | - Devesh Tewari
- Department of Pharmaceutical Sciences, Faculty of Technology, Kumaun University, Bhimtal, 263136 Nainital, Uttarakhand, India
| | - Judit Mihaly-Bison
- Center for Physiology and Pharmacology, Institute of Vascular Biology and Thrombosis Research, Medical University of Vienna, Schwarzspanierstrasse 17, 1090 Vienna, Austria
| | - Łukasz Huminiecki
- Department of Molecular Biology, Institute of Genetics and Animal Breeding of the Polish Academy of Sciences, ul. Postepu 36A, Jastrzębiec, 05-552 Magdalenka, Poland
| | - Rafał R Starzyński
- Department of Molecular Biology, Institute of Genetics and Animal Breeding of the Polish Academy of Sciences, ul. Postepu 36A, Jastrzębiec, 05-552 Magdalenka, Poland
| | - Nikolay T Tzvetkov
- Pharmaceutical Institute, University of Bonn, An der Immenburg 4, 53121 Bonn, Germany; NTZ Lab Ltd., Krasno Selo 198, 1618 Sofia, Bulgaria
| | - Jarosław Horbańczuk
- Department of Molecular Biology, Institute of Genetics and Animal Breeding of the Polish Academy of Sciences, ul. Postepu 36A, Jastrzębiec, 05-552 Magdalenka, Poland
| | - Atanas G Atanasov
- Department of Molecular Biology, Institute of Genetics and Animal Breeding of the Polish Academy of Sciences, ul. Postepu 36A, Jastrzębiec, 05-552 Magdalenka, Poland; Department of Pharmacognosy, University of Vienna, Althanstrasse 14, A-1090 Vienna, Austria.
| |
Collapse
|
225
|
Breitzig MT, Alleyn MD, Lockey RF, Kolliputi N. A mitochondrial delicacy: dynamin-related protein 1 and mitochondrial dynamics. Am J Physiol Cell Physiol 2018; 315:C80-C90. [PMID: 29669222 DOI: 10.1152/ajpcell.00042.2018] [Citation(s) in RCA: 49] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
The constant physiological flux of mitochondrial fission and fusion is inextricably tied to the maintenance of cellular bioenergetics and the fluidity of mitochondrial networks. Yet, the intricacies of this dynamic duo remain unclear in diseases that encompass mitochondrial dysregulation. Particularly, the role of the GTPase fission protein dynamin-related protein 1 (Drp1) is of profound interest. Studies have identified that Drp1 participates in complex signaling pathways, suggesting that the function of mitochondria in pathophysiology may extend far beyond energetics alone. Research indicates that, in stressed conditions, Drp1 translocation to the mitochondria leads to elevated fragmentation and mitophagy; however, despite this, there is limited knowledge about the mechanistic regulation of Drp1 in disease conditions. This review highlights literature about fission, fusion, and, more importantly, discusses Drp1 in cardiac, neural, carcinogenic, renal, and pulmonary diseases. The therapeutic desirability for further research into its contribution to diseases that involve mitochondrial dysregulation is also discussed.
Collapse
Affiliation(s)
- Mason T Breitzig
- Division of Allergy and Immunology, Department of Internal Medicine, Morsani College of Medicine, University of South Florida , Tampa, Florida
| | - Matthew D Alleyn
- Division of Allergy and Immunology, Department of Internal Medicine, Morsani College of Medicine, University of South Florida , Tampa, Florida
| | - Richard F Lockey
- Division of Allergy and Immunology, Department of Internal Medicine, Morsani College of Medicine, University of South Florida , Tampa, Florida
| | - Narasaiah Kolliputi
- Division of Allergy and Immunology, Department of Internal Medicine, Morsani College of Medicine, University of South Florida , Tampa, Florida
| |
Collapse
|
226
|
Robichaux WG, Cheng X. Intracellular cAMP Sensor EPAC: Physiology, Pathophysiology, and Therapeutics Development. Physiol Rev 2018; 98:919-1053. [PMID: 29537337 PMCID: PMC6050347 DOI: 10.1152/physrev.00025.2017] [Citation(s) in RCA: 142] [Impact Index Per Article: 20.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2017] [Revised: 09/05/2017] [Accepted: 09/06/2017] [Indexed: 12/13/2022] Open
Abstract
This review focuses on one family of the known cAMP receptors, the exchange proteins directly activated by cAMP (EPACs), also known as the cAMP-regulated guanine nucleotide exchange factors (cAMP-GEFs). Although EPAC proteins are fairly new additions to the growing list of cAMP effectors, and relatively "young" in the cAMP discovery timeline, the significance of an EPAC presence in different cell systems is extraordinary. The study of EPACs has considerably expanded the diversity and adaptive nature of cAMP signaling associated with numerous physiological and pathophysiological responses. This review comprehensively covers EPAC protein functions at the molecular, cellular, physiological, and pathophysiological levels; and in turn, the applications of employing EPAC-based biosensors as detection tools for dissecting cAMP signaling and the implications for targeting EPAC proteins for therapeutic development are also discussed.
Collapse
Affiliation(s)
- William G Robichaux
- Department of Integrative Biology and Pharmacology, Texas Therapeutics Institute, The Brown Foundation Institute of Molecular Medicine, The University of Texas Health Science Center , Houston, Texas
| | - Xiaodong Cheng
- Department of Integrative Biology and Pharmacology, Texas Therapeutics Institute, The Brown Foundation Institute of Molecular Medicine, The University of Texas Health Science Center , Houston, Texas
| |
Collapse
|
227
|
VandenBrooks JM, Gstrein G, Harmon J, Friedman J, Olsen M, Ward A, Parker G. Supply and demand: How does variation in atmospheric oxygen during development affect insect tracheal and mitochondrial networks? JOURNAL OF INSECT PHYSIOLOGY 2018; 106:217-223. [PMID: 29122550 DOI: 10.1016/j.jinsphys.2017.11.001] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/11/2017] [Revised: 10/24/2017] [Accepted: 11/06/2017] [Indexed: 06/07/2023]
Abstract
Atmospheric oxygen is one of the most important atmospheric component for all terrestrial organisms. Variation in atmospheric oxygen has wide ranging effects on animal physiology, development, and evolution. This variation in oxygen has the potential to affect both respiratory systems (the supply side) and mitochondrial networks (the demand side) in animals. Insect respiratory systems supplying oxygen to tissues in the gas phase through blind ended tracheal systems are particularly susceptible to this variation. While the large conducting tracheae have previously been shown to respond developmentally to changes in rearing oxygen, the effect of oxygen on the tracheolar network has been relatively unexplored, especially in adult insects. Similarly, mitochondrial networks that meet energy demand in insects and other animals are dynamic and their enzyme activities have been shown to vary in the presence of oxygen. These two systems together should be under selective pressure to meet the aerobic metabolic requirements of insects. To test this hypothesis, we reared Mito-YFP Drosophila under three different oxygen concentrations hypoxia (12%), normoxia (21%), and hyperoxia (31%) and imaged their tracheolar and mitochondrial networks within their flight muscle using confocal microscopy. In terms of oxygen supply, hypoxia increased mean (mid-length) tracheolar diameters, tracheolar tip diameters, the number of tracheoles per main branch and affected tracheal branching patterns, while the opposite was observed in hyperoxia. In terms of oxygen demand, hypoxia increased mitochondrial investment and mitochondrial to tracheolar volume ratios; while the opposite was observed in hyperoxia. Generally, hypoxia had a stronger effect on both systems than hyperoxia. These results show that insects are capable of developmentally changing investment in both their supply and demand networks to increase overall fitness.
Collapse
Affiliation(s)
| | - Gregory Gstrein
- College of Veterinary Medicine, Midwestern University, Glendale, AZ 85308, USA
| | - Jason Harmon
- Arizona College of Osteopathic Medicine, Midwestern University, Glendale, AZ 85308, USA
| | - Jessica Friedman
- College of Veterinary Medicine, Midwestern University, Glendale, AZ 85308, USA
| | - Matthew Olsen
- College of Veterinary Medicine, Midwestern University, Glendale, AZ 85308, USA
| | - Anna Ward
- College of Veterinary Medicine, Midwestern University, Glendale, AZ 85308, USA
| | - Gregory Parker
- Department of Physiology, Midwestern University, Glendale, AZ 85308, USA
| |
Collapse
|
228
|
Abstract
Pulmonary hypertension is defined as a resting mean pulmonary artery pressure of 25 mm Hg or above. This review deals with pulmonary arterial hypertension (PAH), a type of pulmonary hypertension that primarily affects the pulmonary vasculature. In PAH, the pulmonary vasculature is dynamically obstructed by vasoconstriction, structurally obstructed by adverse vascular remodeling, and pathologically non-compliant as a result of vascular fibrosis and stiffening. Many cell types are abnormal in PAH, including vascular cells (endothelial cells, smooth muscle cells, and fibroblasts) and inflammatory cells. Progress has been made in identifying the causes of PAH and approving new drug therapies. A cancer-like increase in cell proliferation and resistance to apoptosis reflects acquired abnormalities of mitochondrial metabolism and dynamics. Mutations in the type II bone morphogenetic protein receptor (BMPR2) gene dramatically increase the risk of developing heritable PAH. Epigenetic dysregulation of DNA methylation, histone acetylation, and microRNAs also contributes to disease pathogenesis. Aberrant bone morphogenetic protein signaling and epigenetic dysregulation in PAH promote cell proliferation in part through induction of a Warburg mitochondrial-metabolic state of uncoupled glycolysis. Complex changes in cytokines (interleukins and tumor necrosis factor), cellular immunity (T lymphocytes, natural killer cells, macrophages), and autoantibodies suggest that PAH is, in part, an autoimmune, inflammatory disease. Obstructive pulmonary vascular remodeling in PAH increases right ventricular afterload causing right ventricular hypertrophy. In some patients, maladaptive changes in the right ventricle, including ischemia and fibrosis, reduce right ventricular function and cause right ventricular failure. Patients with PAH have dyspnea, reduced exercise capacity, exertional syncope, and premature death from right ventricular failure. PAH targeted therapies (prostaglandins, phosphodiesterase-5 inhibitors, endothelin receptor antagonists, and soluble guanylate cyclase stimulators), used alone or in combination, improve functional capacity and hemodynamics and reduce hospital admissions. However, these vasodilators do not target key features of PAH pathogenesis and have not been shown to reduce mortality, which remains about 50% at five years. This review summarizes the epidemiology, pathogenesis, diagnosis, and treatment of PAH.
Collapse
Affiliation(s)
| | - Mark L Ormiston
- Department of Medicine, Queen's University, Kingston, ON, Canada
| | - John J Ryan
- Department of Medicine, University of Utah, Salt Lake City, UT, USA
| | - Stephen L Archer
- Department of Medicine, Queen's University, Kingston, ON, Canada
| |
Collapse
|
229
|
Liu X, Tan H, Liu X, Wu Q. Correlation between the expression of Drp1 in vascular endothelial cells and inflammatory factors in hypertension rats. Exp Ther Med 2018; 15:3892-3898. [PMID: 29563985 PMCID: PMC5858055 DOI: 10.3892/etm.2018.5899] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2017] [Accepted: 01/04/2018] [Indexed: 01/19/2023] Open
Abstract
The objective of this study was to investigate the expression level of dynamin-related protein 1 (Drp1) in vascular endothelium of hypertension rats and its correlation with expression of inflammatory factors. Twenty spontaneous hypertension rats (SHR) were randomly divided into SHR group (n=10) and inhibition group (MD group, n=10), and the Sprague Dawley rats were enrolled as the control group (C group, n=10). For rats in the MD group, Mdivi-1, a mitochondrial division inhibitor, was given in dosage of 25 mg/kg. After 4 weeks of administration, blood pressure was measured via tail-artery blood pressure measurement. The blood samples collected from the abdominal aorta of rats were used to assay the C-reaction protein (CRP) concentration in serum through radioimmunoassay. Hematoxylin and eosin (H&E) staining was performed for sections of thoracic aorta for morphological observation and measurement of medial thickness. Enzyme-linked immunosorbant assay (ELISA), semi-quantitative real-time polymerase chain reaction (RT-PCR) and western blotting was carried out for detecting the expression levels of interleukin-6 (IL-6) and tumor necrosis factor-α (TNF-α). Drp1 and monocyte chemotactic protein 1 (MCP-1). After 4 weeks of drug administration, the blood pressure in the MD group was significantly higher (P<0.01). The medial thickness of the thoracic aorta in the MD group was significantly decreased in comparison with the SHR group (P<0.01). The results of ELISA showed that compared with the SHR group, the expression levels of IL-6 and TNF-α in the MD group were remarkably decreased (P<0.01). Semi-quantitative RT-PCR results indicated that the mRNA expression levels of Drp1 and MCP-1 in the MD group were significantly lower than those in the SHR group (P<0.05). In the SHR rats, after administration of Mdivi-1, the expression of Drp1 is decreased, which contributes to the alleviation in inflammatory reactions and protects the vessels in SHR rats.
Collapse
Affiliation(s)
- Xinghui Liu
- Department of Cardiology, Guizhou Provincial People's Hospital, Guiyang, Guizhou 550002, P.R. China
| | - Hongwen Tan
- Department of Cardiology, Guizhou Provincial People's Hospital, Guiyang, Guizhou 550002, P.R. China
| | - Xiaoqiao Liu
- Department of Cardiology, Guizhou Provincial People's Hospital, Guiyang, Guizhou 550002, P.R. China
| | - Qiang Wu
- Department of Cardiology, Guizhou Provincial People's Hospital, Guiyang, Guizhou 550002, P.R. China
| |
Collapse
|
230
|
Kim DY, Jung SY, Kim YJ, Kang S, Park JH, Ji ST, Jang WB, Lamichane S, Lamichane BD, Chae YC, Lee D, Chung JS, Kwon SM. Hypoxia-dependent mitochondrial fission regulates endothelial progenitor cell migration, invasion, and tube formation. THE KOREAN JOURNAL OF PHYSIOLOGY & PHARMACOLOGY : OFFICIAL JOURNAL OF THE KOREAN PHYSIOLOGICAL SOCIETY AND THE KOREAN SOCIETY OF PHARMACOLOGY 2018. [PMID: 29520173 PMCID: PMC5840079 DOI: 10.4196/kjpp.2018.22.2.203] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Tumor undergo uncontrolled, excessive proliferation leads to hypoxic microenvironment. To fulfill their demand for nutrient, and oxygen, tumor angiogenesis is required. Endothelial progenitor cells (EPCs) have been known to the main source of angiogenesis because of their potential to differentiation into endothelial cells. Therefore, understanding the mechanism of EPC-mediated angiogenesis in hypoxia is critical for development of cancer therapy. Recently, mitochondrial dynamics has emerged as a critical mechanism for cellular function and differentiation under hypoxic conditions. However, the role of mitochondrial dynamics in hypoxia-induced angiogenesis remains to be elucidated. In this study, we demonstrated that hypoxia-induced mitochondrial fission accelerates EPCs bioactivities. We first investigated the effect of hypoxia on EPC-mediated angiogenesis. Cell migration, invasion, and tube formation was significantly increased under hypoxic conditions; expression of EPC surface markers was unchanged. And mitochondrial fission was induced by hypoxia time-dependent manner. We found that hypoxia-induced mitochondrial fission was triggered by dynamin-related protein Drp1, specifically, phosphorylated DRP1 at Ser637, a suppression marker for mitochondrial fission, was impaired in hypoxia time-dependent manner. To confirm the role of DRP1 in EPC-mediated angiogenesis, we analyzed cell bioactivities using Mdivi-1, a selective DRP1 inhibitor, and DRP1 siRNA. DRP1 silencing or Mdivi-1 treatment dramatically reduced cell migration, invasion, and tube formation in EPCs, but the expression of EPC surface markers was unchanged. In conclusion, we uncovered a novel role of mitochondrial fission in hypoxia-induced angiogenesis. Therefore, we suggest that specific modulation of DRP1-mediated mitochondrial dynamics may be a potential therapeutic strategy in EPC-mediated tumor angiogenesis.
Collapse
Affiliation(s)
- Da Yeon Kim
- Department of Physiology, Laboratory for Vascular Medicine and Stem Cell Biology, Convergence Stem Cell Research Center, Medical Research Institute, Pusan National University School of Medicine, Yangsan 50612, Korea
| | - Seok Yun Jung
- Department of Physiology, Laboratory for Vascular Medicine and Stem Cell Biology, Convergence Stem Cell Research Center, Medical Research Institute, Pusan National University School of Medicine, Yangsan 50612, Korea
| | - Yeon Ju Kim
- Department of Physiology, Laboratory for Vascular Medicine and Stem Cell Biology, Convergence Stem Cell Research Center, Medical Research Institute, Pusan National University School of Medicine, Yangsan 50612, Korea
| | - Songhwa Kang
- Department of Physiology, Laboratory for Vascular Medicine and Stem Cell Biology, Convergence Stem Cell Research Center, Medical Research Institute, Pusan National University School of Medicine, Yangsan 50612, Korea
| | - Ji Hye Park
- Department of Physiology, Laboratory for Vascular Medicine and Stem Cell Biology, Convergence Stem Cell Research Center, Medical Research Institute, Pusan National University School of Medicine, Yangsan 50612, Korea
| | - Seung Taek Ji
- Department of Physiology, Laboratory for Vascular Medicine and Stem Cell Biology, Convergence Stem Cell Research Center, Medical Research Institute, Pusan National University School of Medicine, Yangsan 50612, Korea
| | - Woong Bi Jang
- Department of Physiology, Laboratory for Vascular Medicine and Stem Cell Biology, Convergence Stem Cell Research Center, Medical Research Institute, Pusan National University School of Medicine, Yangsan 50612, Korea
| | - Shreekrishna Lamichane
- Department of Physiology, Laboratory for Vascular Medicine and Stem Cell Biology, Convergence Stem Cell Research Center, Medical Research Institute, Pusan National University School of Medicine, Yangsan 50612, Korea
| | - Babita Dahal Lamichane
- Department of Physiology, Laboratory for Vascular Medicine and Stem Cell Biology, Convergence Stem Cell Research Center, Medical Research Institute, Pusan National University School of Medicine, Yangsan 50612, Korea
| | - Young Chan Chae
- School of Life Sciences, Ulsan National Institute of Science and Technology, Ulsan 44919, Korea
| | - Dongjun Lee
- Department of Medical Science, Pusan National University School of Medicine, Yangsan 50612, Korea
| | - Joo Seop Chung
- Division of Hemato-Oncology, Department of Internal Medicine, Pusan National University Hospital Medical Research Institute, Busan 49241, Korea
| | - Sang-Mo Kwon
- Department of Physiology, Laboratory for Vascular Medicine and Stem Cell Biology, Convergence Stem Cell Research Center, Medical Research Institute, Pusan National University School of Medicine, Yangsan 50612, Korea
| |
Collapse
|
231
|
Tandler B, Hoppel CL, Mears JA. Morphological Pathways of Mitochondrial Division. Antioxidants (Basel) 2018; 7:antiox7020030. [PMID: 29462856 PMCID: PMC5836020 DOI: 10.3390/antiox7020030] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2017] [Revised: 02/12/2018] [Accepted: 02/14/2018] [Indexed: 11/18/2022] Open
Abstract
Mitochondrial fission is essential for distributing cellular energy throughout cells and for isolating damaged regions of the organelle that are targeted for degradation. Excessive fission is associated with the progression of cell death as well. Therefore, this multistep process is tightly regulated and several physiologic cues directly impact mitochondrial division. The double membrane structure of mitochondria complicates this process, and protein factors that drive membrane scission need to coordinate the separation of both the outer and inner mitochondrial membranes. In this review, we discuss studies that characterize distinct morphological changes associated with mitochondrial division. Specifically, coordinated partitioning and pinching of mitochondria have been identified as alternative mechanisms associated with fission. Additionally, we highlight the major protein constituents that drive mitochondrial fission and the role of connections with the endoplasmic reticulum in establishing sites of membrane division. Collectively, we review decades of research that worked to define the molecular framework of mitochondrial fission. Ongoing studies will continue to sort through the complex network of interactions that drive this critical event.
Collapse
Affiliation(s)
- Bernard Tandler
- Center for Mitochondrial Disease, Cleveland, OH 44106, USA.
- Department of Biological Sciences, School of Dental Medicine, Case Western Reserve University, Cleveland, OH 44106, USA.
| | - Charles L Hoppel
- Center for Mitochondrial Disease, Cleveland, OH 44106, USA.
- Department of Pharmacology, School of Medicine, Case Western Reserve University, Cleveland, OH 44106, USA.
- Department of Medicine, School of Medicine, Case Western Reserve University, Cleveland, OH 44106, USA.
| | - Jason A Mears
- Center for Mitochondrial Disease, Cleveland, OH 44106, USA.
- Department of Pharmacology, School of Medicine, Case Western Reserve University, Cleveland, OH 44106, USA.
| |
Collapse
|
232
|
Zhu L, Zhang J, Zhou J, Lu Y, Huang S, Xiao R, Yu X, Zeng X, Liu B, Liu F, Sun M, Dai M, Hao Q, Li J, Wang T, Li T, Hu Q. Mitochondrial transplantation attenuates hypoxic pulmonary hypertension. Oncotarget 2018; 7:48925-48940. [PMID: 27419637 PMCID: PMC5226481 DOI: 10.18632/oncotarget.10596] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2016] [Accepted: 06/30/2016] [Indexed: 01/01/2023] Open
Abstract
Mitochondria are essential for the onset of hypoxia-induced pulmonary vasoconstriction and pulmonary vascular-remodeling, two major aspects underlying the development of pulmonary hypertension, an incurable disease. However, hypoxia induces relaxation of systemic arteries such as femoral arteries and mitochondrial heterogeneity controls the distinct responses of pulmonary versus femoral artery smooth muscle cells to hypoxia in vitro. The aim of this study was to determine whether mitochondrial heterogeneity can be experimentally exploited in vivo for a potential treatment against pulmonary hypertension. The intact mitochondria were transplanted into Sprague-Dawley rat pulmonary artery smooth muscle cells in vivo via intravenous administration. The immune-florescent staining and ultrastructural examinations on pulmonary arteries confirmed the intracellular distribution of exogenous mitochondria and revealed the possible mitochondrial transfer from pulmonary artery endothelial cells into smooth muscle cells in part through their intercellular space and intercellular junctions. The transplantation of mitochondria derived from femoral artery smooth muscle cells inhibited acute hypoxia-triggered pulmonary vasoconstriction, attenuated chronic hypoxia-induced pulmonary vascular remodeling, and thus prevented the development of pulmonary hypertension or cured the established pulmonary hypertension in rats exposed to chronic hypoxia. Our findings suggest that mitochondrial transplantation possesses potential implications for exploring a novel therapeutic and preventive strategy against pulmonary hypertension.
Collapse
Affiliation(s)
- Liping Zhu
- Department of Pathophysiology, School of Basic Medicine, Huazhong University of Science and Technology (HUST), Wuhan, Hubei, China.,Key Laboratory of Pulmonary Diseases of Ministry of Health, Huazhong University of Science and Technology (HUST), Wuhan, Hubei, China
| | - Jiwei Zhang
- Department of Pathophysiology, School of Basic Medicine, Huazhong University of Science and Technology (HUST), Wuhan, Hubei, China.,Key Laboratory of Pulmonary Diseases of Ministry of Health, Huazhong University of Science and Technology (HUST), Wuhan, Hubei, China.,Department of Pathology, Union Hospital, Huazhong University of Science and Technology (HUST), Wuhan, Hubei, China
| | - Juan Zhou
- Department of Pathophysiology, School of Basic Medicine, Huazhong University of Science and Technology (HUST), Wuhan, Hubei, China.,Key Laboratory of Pulmonary Diseases of Ministry of Health, Huazhong University of Science and Technology (HUST), Wuhan, Hubei, China.,Current address: Department of Clinical Laboratory of Xuzhou Central Hospital, Xuzhou, China
| | - Yankai Lu
- Department of Pathophysiology, School of Basic Medicine, Huazhong University of Science and Technology (HUST), Wuhan, Hubei, China.,Key Laboratory of Pulmonary Diseases of Ministry of Health, Huazhong University of Science and Technology (HUST), Wuhan, Hubei, China
| | - Songling Huang
- Department of Pathophysiology, School of Basic Medicine, Huazhong University of Science and Technology (HUST), Wuhan, Hubei, China.,Key Laboratory of Pulmonary Diseases of Ministry of Health, Huazhong University of Science and Technology (HUST), Wuhan, Hubei, China
| | - Rui Xiao
- Department of Pathophysiology, School of Basic Medicine, Huazhong University of Science and Technology (HUST), Wuhan, Hubei, China.,Key Laboratory of Pulmonary Diseases of Ministry of Health, Huazhong University of Science and Technology (HUST), Wuhan, Hubei, China
| | - Xiangyuan Yu
- Department of Pathophysiology, School of Basic Medicine, Huazhong University of Science and Technology (HUST), Wuhan, Hubei, China.,Key Laboratory of Pulmonary Diseases of Ministry of Health, Huazhong University of Science and Technology (HUST), Wuhan, Hubei, China
| | - Xianqin Zeng
- Department of Pathophysiology, School of Basic Medicine, Huazhong University of Science and Technology (HUST), Wuhan, Hubei, China.,Key Laboratory of Pulmonary Diseases of Ministry of Health, Huazhong University of Science and Technology (HUST), Wuhan, Hubei, China
| | - Bingxun Liu
- Department of Pathophysiology, School of Basic Medicine, Huazhong University of Science and Technology (HUST), Wuhan, Hubei, China.,Key Laboratory of Pulmonary Diseases of Ministry of Health, Huazhong University of Science and Technology (HUST), Wuhan, Hubei, China
| | - Fangbo Liu
- Department of Pathophysiology, School of Basic Medicine, Huazhong University of Science and Technology (HUST), Wuhan, Hubei, China.,Key Laboratory of Pulmonary Diseases of Ministry of Health, Huazhong University of Science and Technology (HUST), Wuhan, Hubei, China
| | - Mengxiang Sun
- Department of Pathophysiology, School of Basic Medicine, Huazhong University of Science and Technology (HUST), Wuhan, Hubei, China.,Key Laboratory of Pulmonary Diseases of Ministry of Health, Huazhong University of Science and Technology (HUST), Wuhan, Hubei, China
| | - Mao Dai
- Department of Pathophysiology, School of Basic Medicine, Huazhong University of Science and Technology (HUST), Wuhan, Hubei, China.,Key Laboratory of Pulmonary Diseases of Ministry of Health, Huazhong University of Science and Technology (HUST), Wuhan, Hubei, China
| | - Qiang Hao
- Department of Pathophysiology, School of Basic Medicine, Huazhong University of Science and Technology (HUST), Wuhan, Hubei, China.,Key Laboratory of Pulmonary Diseases of Ministry of Health, Huazhong University of Science and Technology (HUST), Wuhan, Hubei, China
| | - Jiansha Li
- Key Laboratory of Pulmonary Diseases of Ministry of Health, Huazhong University of Science and Technology (HUST), Wuhan, Hubei, China.,Department of Pathology, Tongji Hospital, Huazhong University of Science and Technology (HUST), Wuhan, Hubei, China
| | - Tao Wang
- Key Laboratory of Pulmonary Diseases of Ministry of Health, Huazhong University of Science and Technology (HUST), Wuhan, Hubei, China.,Department of Respiratory and Critical Care Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology (HUST), Wuhan, Hubei, China
| | - Tongfei Li
- Department of Pathology, School of Basic Medical Sciences, Hubei University of Medicine, Shiyan, China
| | - Qinghua Hu
- Department of Pathophysiology, School of Basic Medicine, Huazhong University of Science and Technology (HUST), Wuhan, Hubei, China.,Key Laboratory of Pulmonary Diseases of Ministry of Health, Huazhong University of Science and Technology (HUST), Wuhan, Hubei, China
| |
Collapse
|
233
|
Chen KH, Dasgupta A, Lin J, Potus F, Bonnet S, Iremonger J, Fu J, Mewburn J, Wu D, Dunham-Snary K, Theilmann AL, Jing ZC, Hindmarch C, Ormiston ML, Lawrie A, Archer SL. Epigenetic Dysregulation of the Dynamin-Related Protein 1 Binding Partners MiD49 and MiD51 Increases Mitotic Mitochondrial Fission and Promotes Pulmonary Arterial Hypertension: Mechanistic and Therapeutic Implications. Circulation 2018; 138:287-304. [PMID: 29431643 DOI: 10.1161/circulationaha.117.031258] [Citation(s) in RCA: 131] [Impact Index Per Article: 18.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/23/2017] [Accepted: 01/22/2018] [Indexed: 01/01/2023]
Abstract
BACKGROUND Mitotic fission is increased in pulmonary arterial hypertension (PAH), a hyperproliferative, apoptosis-resistant disease. The fission mediator dynamin-related protein 1 (Drp1) must complex with adaptor proteins to cause fission. Drp1-induced fission has been therapeutically targeted in experimental PAH. Here, we examine the role of 2 recently discovered, poorly understood Drp1 adapter proteins, mitochondrial dynamics protein of 49 and 51 kDa (MiD49 and MiD51), in normal vascular cells and explore their dysregulation in PAH. METHODS Immunoblots of pulmonary artery smooth muscle cells (control, n=6; PAH, n=8) and immunohistochemistry of lung sections (control, n=6; PAH, n=6) were used to assess the expression of MiD49 and MiD51. The effects of manipulating MiDs on cell proliferation, cell cycle, and apoptosis were assessed in human and rodent PAH pulmonary artery smooth muscle cells with flow cytometry. Mitochondrial fission was studied by confocal imaging. A microRNA (miR) involved in the regulation of MiD expression was identified using microarray techniques and in silico analyses. The expression of circulatory miR was assessed with quantitative reverse transcription-polymerase chain reaction in healthy volunteers (HVs) versus patients with PAH from Sheffield, UK (plasma: HV, n=29, PAH, n=27; whole blood: HV, n=11, PAH, n=14) and then confirmed in a cohort from Beijing, China (plasma: HV, n=19, PAH, n=36; whole blood: HV, n=20, PAH, n=39). This work was replicated in monocrotaline and Sugen 5416-hypoxia, preclinical PAH models. Small interfering RNAs targeting MiDs or an miR mimic were nebulized to rats with monocrotaline-induced PAH (n=4-10). RESULTS MiD expression is increased in PAH pulmonary artery smooth muscle cells, which accelerates Drp1-mediated mitotic fission, increases cell proliferation, and decreases apoptosis. Silencing MiDs (but not other Drp1 binding partners, fission 1 or mitochondrial fission factor) promotes mitochondrial fusion and causes G1-phase cell cycle arrest through extracellular signal-regulated kinases 1/2- and cyclin-dependent kinase 4-dependent mechanisms. Augmenting MiDs in normal cells causes fission and recapitulates the PAH phenotype. MiD upregulation results from decreased miR-34a-3p expression. Circulatory miR-34a-3p expression is decreased in both patients with PAH and preclinical models of PAH. Silencing MiDs or augmenting miR-34a-3p regresses experimental PAH. CONCLUSIONS In health, MiDs regulate Drp1-mediated fission, whereas in disease, epigenetic upregulation of MiDs increases mitotic fission, which drives pathological proliferation and apoptosis resistance. The miR-34a-3p-MiD pathway offers new therapeutic targets for PAH.
Collapse
Affiliation(s)
- Kuang-Hueih Chen
- Department of Medicine (K.-H.C., A.D., F.P., J.F., J.M., D.W., K.D.-S., A.L.T., M.L.O., S.L.A.)
| | - Asish Dasgupta
- Department of Medicine (K.-H.C., A.D., F.P., J.F., J.M., D.W., K.D.-S., A.L.T., M.L.O., S.L.A.)
| | - Jianhui Lin
- Queen's University, Kingston, Canada. Department of Infection, Immunity and Cardiovascular Disease, University of Sheffield, UK (J.L., J.I, A.L.)
| | - François Potus
- Department of Medicine (K.-H.C., A.D., F.P., J.F., J.M., D.W., K.D.-S., A.L.T., M.L.O., S.L.A.)
| | - Sébastien Bonnet
- Pulmonary Hypertension Research Group of the University Cardiology and Pulmonary Institute of the Quebec Research Centre, Laval University, Quebec City, Canada (S.B.)
| | - James Iremonger
- Queen's University, Kingston, Canada. Department of Infection, Immunity and Cardiovascular Disease, University of Sheffield, UK (J.L., J.I, A.L.)
| | - Jennifer Fu
- Department of Medicine (K.-H.C., A.D., F.P., J.F., J.M., D.W., K.D.-S., A.L.T., M.L.O., S.L.A.)
| | - Jeffrey Mewburn
- Department of Medicine (K.-H.C., A.D., F.P., J.F., J.M., D.W., K.D.-S., A.L.T., M.L.O., S.L.A.).,Queen's Cardiopulmonary Unit, Translational Institute of Medicine, Department of Medicine (J.M., C.H., M.L.O., S.L.A.)
| | - Danchen Wu
- Department of Medicine (K.-H.C., A.D., F.P., J.F., J.M., D.W., K.D.-S., A.L.T., M.L.O., S.L.A.)
| | - Kimberly Dunham-Snary
- Department of Medicine (K.-H.C., A.D., F.P., J.F., J.M., D.W., K.D.-S., A.L.T., M.L.O., S.L.A.)
| | - Anne L Theilmann
- Department of Medicine (K.-H.C., A.D., F.P., J.F., J.M., D.W., K.D.-S., A.L.T., M.L.O., S.L.A.)
| | - Zhi-Cheng Jing
- State Key Laboratory of Cardiovascular Disease, FuWai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China (Z.-C.J.)
| | - Charles Hindmarch
- Queen's Cardiopulmonary Unit, Translational Institute of Medicine, Department of Medicine (J.M., C.H., M.L.O., S.L.A.)
| | - Mark L Ormiston
- Department of Medicine (K.-H.C., A.D., F.P., J.F., J.M., D.W., K.D.-S., A.L.T., M.L.O., S.L.A.).,Queen's Cardiopulmonary Unit, Translational Institute of Medicine, Department of Medicine (J.M., C.H., M.L.O., S.L.A.)
| | - Allan Lawrie
- Queen's University, Kingston, Canada. Department of Infection, Immunity and Cardiovascular Disease, University of Sheffield, UK (J.L., J.I, A.L.)
| | - Stephen L Archer
- Department of Medicine (K.-H.C., A.D., F.P., J.F., J.M., D.W., K.D.-S., A.L.T., M.L.O., S.L.A.) .,Queen's Cardiopulmonary Unit, Translational Institute of Medicine, Department of Medicine (J.M., C.H., M.L.O., S.L.A.)
| |
Collapse
|
234
|
Mitochondria and Sex-Specific Cardiac Function. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2018; 1065:241-256. [PMID: 30051389 DOI: 10.1007/978-3-319-77932-4_16] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
The focus of this chapter is the gender differences in mitochondria in cardiovascular disease. There is broad evidence suggesting that some of the gender differences in cardiovascular outcome may be partially related to differences in mitochondrial biology (Ventura-Clapier R, Moulin M, Piquereau J, Lemaire C, Mericskay M, Veksler V, Garnier A, Clin Sci (Lond) 131(9):803-822, 2017)). Mitochondrial disorders are causally affected by mutations in either nuclear or mitochondrial genes involved in the synthesis of respiratory chain subunits or in their posttranslational control. This can be due to mutations of the mtDNA which are transmitted by the mother or mutations in the nuclear DNA. Because natural selection on mitochondria operates only in females, mutations may have had more deleterious effects in males than in females (Ventura-Clapier R, Moulin M, Piquereau J, Lemaire C, Mericskay M, Veksler V, Garnier A, Clin Sci (Lond) 131(9):803-822, 2017; Camara AK, Lesnefsky EJ, Stowe DF. Antioxid Redox Signal 13(3):279-347, 2010). As mitochondrial mutations can affect all tissues, they are responsible for a large panel of pathologies including neuromuscular disorders, encephalopathies, metabolic disorders, cardiomyopathies, neuropathies, renal dysfunction, etc. Many of these pathologies present sex/gender specificity. Thus, alleviating or preventing mitochondrial dysfunction will contribute to mitigating the severity or progression of the development of diseases. Here, we present evidence for the involvement of mitochondria in the sex specificity of cardiovascular disorders.
Collapse
|
235
|
Xiong PY, Potus F, Chan W, Archer SL. Models and Molecular Mechanisms of World Health Organization Group 2 to 4 Pulmonary Hypertension. Hypertension 2018; 71:34-55. [PMID: 29158355 PMCID: PMC5777609 DOI: 10.1161/hypertensionaha.117.08824] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Affiliation(s)
- Ping Yu Xiong
- From the Department of Medicine and Queen's Cardiopulmonary Unit (QCPU) (P.Y.X., F.P., W.C., S.L.A.) and Biomedical and Molecular Sciences (P.Y.X.), Queen's University, Kingston, Ontario, Canada
| | - Francois Potus
- From the Department of Medicine and Queen's Cardiopulmonary Unit (QCPU) (P.Y.X., F.P., W.C., S.L.A.) and Biomedical and Molecular Sciences (P.Y.X.), Queen's University, Kingston, Ontario, Canada
| | - Winnie Chan
- From the Department of Medicine and Queen's Cardiopulmonary Unit (QCPU) (P.Y.X., F.P., W.C., S.L.A.) and Biomedical and Molecular Sciences (P.Y.X.), Queen's University, Kingston, Ontario, Canada
| | - Stephen L Archer
- From the Department of Medicine and Queen's Cardiopulmonary Unit (QCPU) (P.Y.X., F.P., W.C., S.L.A.) and Biomedical and Molecular Sciences (P.Y.X.), Queen's University, Kingston, Ontario, Canada.
| |
Collapse
|
236
|
Zhou J, Zhang J, Lu Y, Huang S, Xiao R, Zeng X, Zhang X, Li J, Wang T, Li T, Zhu L, Hu Q. Mitochondrial transplantation attenuates hypoxic pulmonary vasoconstriction. Oncotarget 2017; 7:31284-98. [PMID: 27121314 PMCID: PMC5058756 DOI: 10.18632/oncotarget.8893] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2016] [Accepted: 04/02/2016] [Indexed: 01/15/2023] Open
Abstract
Hypoxia triggers pulmonary vasoconstriction, however induces relaxation of systemic arteries such as femoral arteries. Mitochondria are functionally and structurally heterogeneous between different cell types. The aim of this study was to reveal whether mitochondrial heterogeneity controls the distinct responses of pulmonary versus systemic artery smooth muscle cells to hypoxia. Intact mitochondria were transplanted into Sprague-Dawley rat pulmonary artery smooth muscle cells in culture and pulmonary arteries in vitro. Mitochondria retained functional after transplantation. The cross transplantation of mitochondria between pulmonary and femoral artery smooth muscle cells reversed acute hypoxia-induced alterations in cell membrane potential, [Ca2+]i signaling in smooth muscle cells and constriction or relaxation of arteries. Furthermore, the high or low amount of reactive oxygen species generation from mitochondria and their divergent (dis-)abilities in activating extracellular Ca2+-sensing receptor in smooth muscle cells were found to cause cell membrane potential depolarization, [Ca2+]i elevation and constriction of pulmonary arteries versus cell membrane potential hyperpolarization, [Ca2+]i decline and relaxation of femoral arteries in response to hypoxia, respectively. Our findings suggest that mitochondria necessarily determine the behaviors of vascular smooth muscle cells in response to hypoxia.
Collapse
Affiliation(s)
- Juan Zhou
- Department of Pathophysiology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China.,Key Laboratory of Pulmonary Diseases of Ministry of Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China.,Current address: Department of Clinical Laboratory of Xuzhou Central Hospital, Xuzhou 221009, China
| | - Jiwei Zhang
- Department of Pathology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Yankai Lu
- Department of Pathophysiology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China.,Key Laboratory of Pulmonary Diseases of Ministry of Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China.,Department of Pathology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Songling Huang
- Department of Pathophysiology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China.,Key Laboratory of Pulmonary Diseases of Ministry of Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Rui Xiao
- Department of Pathophysiology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China.,Key Laboratory of Pulmonary Diseases of Ministry of Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Xianqin Zeng
- Department of Pathophysiology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China.,Key Laboratory of Pulmonary Diseases of Ministry of Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Xiuyun Zhang
- Department of Pathophysiology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China.,Key Laboratory of Pulmonary Diseases of Ministry of Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Jiansha Li
- Key Laboratory of Pulmonary Diseases of Ministry of Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China.,Department of Pathology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Tao Wang
- Key Laboratory of Pulmonary Diseases of Ministry of Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China.,Department of Respiratory and Critical Care Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Tongfei Li
- Department of Pathology, School of Basic Medical Sciences, Hubei University of Medicine, Shiyan 442000, China
| | - Liping Zhu
- Department of Pathophysiology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China.,Key Laboratory of Pulmonary Diseases of Ministry of Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Qinghua Hu
- Department of Pathophysiology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China.,Key Laboratory of Pulmonary Diseases of Ministry of Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| |
Collapse
|
237
|
Chan SY, Rubin LJ. Metabolic dysfunction in pulmonary hypertension: from basic science to clinical practice. Eur Respir Rev 2017; 26:26/146/170094. [PMID: 29263174 PMCID: PMC5842433 DOI: 10.1183/16000617.0094-2017] [Citation(s) in RCA: 65] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2017] [Accepted: 10/28/2017] [Indexed: 01/29/2023] Open
Abstract
Pulmonary hypertension (PH) is an often-fatal vascular disease of unclear molecular origins. The pulmonary vascular remodelling which occurs in PH is characterised by elevated vasomotor tone and a pro-proliferative state, ultimately leading to right ventricular dysfunction and heart failure. Guided in many respects by prior evidence from cancer biology, recent investigations have identified metabolic aberrations as crucial components of the disease process in both the pulmonary vessels and the right ventricle. Given the need for improved diagnostic and therapeutic options for PH, the development or repurposing of metabolic tracers and medications could provide an effective avenue for preventing or even reversing disease progression. In this review, we describe the metabolic mechanisms that are known to be dysregulated in PH; we explore the advancing diagnostic testing and imaging modalities that are being developed to improve diagnostic capability for this disease; and we discuss emerging drugs for PH which target these metabolic pathways. Understanding metabolic pathways in PH provides opportunities for improved diagnostic and therapeutic optionshttp://ow.ly/pFQb30guez6
Collapse
Affiliation(s)
- Stephen Y Chan
- Center for Pulmonary Vascular Biology and Medicine, Pittsburgh Heart, Lung, Blood, and Vascular Medicine Institute, Division of Cardiology, Dept of Medicine, University of Pittsburgh School of Medicine and University of Pittsburgh Medical Center, Pittsburgh, PA, USA
| | - Lewis J Rubin
- University of California, San Diego School of Medicine, La Jolla, CA, USA
| |
Collapse
|
238
|
Abstract
Mitochondrial activity in cells must be tightly controlled in response to changes in intracellular circumstances. Despite drastic changes in intracellular conditions and mitochondrial morphology, it is not clear how mitochondrial activity is controlled during M phase of the cell cycle. Here, we show that mitochondrial activity is drastically changed during M phase. Mitochondrial membrane potential changed during M phase progression. Mitochondria were polarized until metaphase to the same extent as mitochondria in interphase cells, but were depolarized at around telophase and cytokinesis. After cytokinesis, mitochondrial membrane potential was recovered. In addition, the generation of superoxide anions in mitochondria was significantly reduced at metaphase even in the presence of antimycin A, an inhibitor of complex III. These results suggest that the electron supply to the mitochondrial electron transfer chain is suppressed during M phase. This suppression might decrease the reactive oxygen species generated by the fragmentation of mitochondria during M phase.
Collapse
|
239
|
Zhang X, Chen W, Li J, Qi S, Hong S, Wang Y, Gao L, Shi Z, Liu Y, Liu W, Chi Y, Liu C, Fu Y, Yin X. Involvement of mitochondrial fission in calcium sensing receptor-mediated vascular smooth muscle cells proliferation during hypertension. Biochem Biophys Res Commun 2017; 495:454-460. [PMID: 29128361 DOI: 10.1016/j.bbrc.2017.11.048] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2017] [Accepted: 11/07/2017] [Indexed: 10/18/2022]
Abstract
Hyperproliferation of vascular smooth muscle cells (VSMC) is a major risk factor for cardiovascular diseases. Proper mitochondrial fission and fusion is involved with VSMC function. However, the role and mechanism of mitochondrial morphological changes in VSMC proliferation are not well understood. Here, we found that calcium sensing receptor (CaSR) was increased in the aortas from spontaneous hypertensive rats (SHRs) compared with age-matched Wistar Kyoto (WKY) rats. There was also an increase in mitochondrial fission and VSMC proliferation, which was attenuated by Calhex231. In primary rat VMSC, angiotensin II (Ang II) stimulation induced cytosolic [Ca2+]i increase, mitochondrial shortening and proliferation, all of which could be attenuated by pretreatment with mitochondrial division inhibitor-1 (Mdivi-1) and Calhex231. Our data indicate that CaSR-mediated mitochondrial fission could be a therapeutic target for hyperproliferative disorders.
Collapse
Affiliation(s)
- Xin Zhang
- Department of Cardiology, First Affiliated Hospital of Harbin Medical University, Harbin 150001, Heilongjiang Province, PR China
| | - Wenjia Chen
- Department of Cardiology, First Affiliated Hospital of Harbin Medical University, Harbin 150001, Heilongjiang Province, PR China
| | - Jiawen Li
- Department of Cardiology, First Affiliated Hospital of Harbin Medical University, Harbin 150001, Heilongjiang Province, PR China
| | - Shuhan Qi
- Department of Cardiology, First Affiliated Hospital of Harbin Medical University, Harbin 150001, Heilongjiang Province, PR China
| | - Siting Hong
- Department of Cardiology, First Affiliated Hospital of Harbin Medical University, Harbin 150001, Heilongjiang Province, PR China
| | - Ying Wang
- Department of Cardiology, First Affiliated Hospital of Harbin Medical University, Harbin 150001, Heilongjiang Province, PR China
| | - Lei Gao
- Department of Cardiology, First Affiliated Hospital of Harbin Medical University, Harbin 150001, Heilongjiang Province, PR China
| | - Zhiyu Shi
- Department of Cardiology, First Affiliated Hospital of Harbin Medical University, Harbin 150001, Heilongjiang Province, PR China
| | - Yue Liu
- Department of Cardiology, First Affiliated Hospital of Harbin Medical University, Harbin 150001, Heilongjiang Province, PR China
| | - Wenxiu Liu
- Department of Cardiology, First Affiliated Hospital of Harbin Medical University, Harbin 150001, Heilongjiang Province, PR China
| | - Yinyu Chi
- Department of Cardiology, First Affiliated Hospital of Harbin Medical University, Harbin 150001, Heilongjiang Province, PR China
| | - Chunnan Liu
- Department of Cardiology, First Affiliated Hospital of Harbin Medical University, Harbin 150001, Heilongjiang Province, PR China
| | - Yu Fu
- Department of Cardiology, First Affiliated Hospital of Harbin Medical University, Harbin 150001, Heilongjiang Province, PR China
| | - Xinhua Yin
- Department of Cardiology, First Affiliated Hospital of Harbin Medical University, Harbin 150001, Heilongjiang Province, PR China.
| |
Collapse
|
240
|
Inhibition of mitochondrial fission prevents hypoxia-induced metabolic shift and cellular proliferation of pulmonary arterial smooth muscle cells. Biochim Biophys Acta Mol Basis Dis 2017; 1863:2891-2903. [DOI: 10.1016/j.bbadis.2017.07.018] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2017] [Revised: 07/17/2017] [Accepted: 07/20/2017] [Indexed: 12/20/2022]
|
241
|
Baltatu OC, Amaral FG, Campos LA, Cipolla-Neto J. Melatonin, mitochondria and hypertension. Cell Mol Life Sci 2017; 74:3955-3964. [PMID: 28791422 PMCID: PMC11107636 DOI: 10.1007/s00018-017-2613-y] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2017] [Accepted: 08/03/2017] [Indexed: 12/29/2022]
Abstract
Melatonin, due to its multiple means and mechanisms of action, plays a fundamental role in the regulation of the organismal physiology by fine tunning several functions. The cardiovascular system is an important site of action as melatonin regulates blood pressure both by central and peripheral interventions, in addition to its relation with the renin-angiotensin system. Besides, the systemic management of several processes, melatonin acts on mitochondria regulation to maintain a healthy cardiovascular system. Hypertension affects target organs in different ways and cellular energy metabolism is frequently involved due to mitochondrial alterations that include a rise in reactive oxygen species production and an ATP synthesis decrease. The discussion that follows shows the role played by melatonin in the regulation of mitochondrial physiology in several levels of the cardiovascular system, including brain, heart, kidney, blood vessels and, particularly, regulating the renin-angiotensin system. This discussion shows the putative importance of using melatonin as a therapeutic tool involving its antioxidant potential and its action on mitochondrial physiology in the cardiovascular system.
Collapse
Affiliation(s)
- Ovidiu C Baltatu
- Center of Innovation, Technology and Education (CITE) at Anhembi Morumbi University-Laureate International Universities, 500 Dr. Altino Bondensan Ave, São José dos Campos, SP, 12247-016, Brazil
| | - Fernanda G Amaral
- Department of Physiology, Federal University of São Paulo, 862 Botucatu St, 5th Floor, São Paulo, SP, 04023-901, Brazil
| | - Luciana A Campos
- Center of Innovation, Technology and Education (CITE) at Anhembi Morumbi University-Laureate International Universities, 500 Dr. Altino Bondensan Ave, São José dos Campos, SP, 12247-016, Brazil
| | - Jose Cipolla-Neto
- Department of Physiology, Institute of Biomedical Sciences, University of São Paulo, Av. Lineu Prestes, 1524, room 115/118, São Paulo, SP, 05508-000, Brazil.
| |
Collapse
|
242
|
Wang W, Fernandez-Sanz C, Sheu SS. Regulation of mitochondrial bioenergetics by the non-canonical roles of mitochondrial dynamics proteins in the heart. Biochim Biophys Acta Mol Basis Dis 2017; 1864:1991-2001. [PMID: 28918113 DOI: 10.1016/j.bbadis.2017.09.004] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2017] [Revised: 08/25/2017] [Accepted: 09/05/2017] [Indexed: 01/09/2023]
Abstract
Recent advancement in mitochondrial research has significantly extended our knowledge on the role and regulation of mitochondria in health and disease. One important breakthrough is the delineation of how mitochondrial morphological changes, termed mitochondrial dynamics, are coupled to the bioenergetics and signaling functions of mitochondria. In general, it is believed that fusion leads to an increased mitochondrial respiration efficiency and resistance to stress-induced dysfunction while fission does the contrary. This concept seems not applicable to adult cardiomyocytes. The mitochondria in adult cardiomyocytes exhibit fragmented morphology (tilted towards fission) and show less networking and movement as compared to other cell types. However, being the most energy-demanding cells, cardiomyocytes in the adult heart possess vast number of mitochondria, high level of energy flow, and abundant mitochondrial dynamics proteins. This apparent discrepancy could be explained by recently identified new functions of the mitochondrial dynamics proteins. These "non-canonical" roles of mitochondrial dynamics proteins range from controlling inter-organelle communication to regulating cell viability and survival under metabolic stresses. Here, we summarize the newly identified non-canonical roles of mitochondrial dynamics proteins. We focus on how these fission and fusion independent roles of dynamics proteins regulate mitochondrial bioenergetics. We also discuss potential molecular mechanisms, unique intracellular location, and the cardiovascular disease relevance of these non-canonical roles of the dynamics proteins. We propose that future studies are warranted to differentiate the canonical and non-canonical roles of dynamics proteins and to identify new approaches for the treatment of heart diseases. This article is part of a Special issue entitled Cardiac adaptations to obesity, diabetes and insulin resistance, edited by Professors Jan F.C. Glatz, Jason R.B. Dyck and Christine Des Rosiers.
Collapse
Affiliation(s)
- Wang Wang
- Mitochondria and Metabolism Center, Department of Anesthesiology and Pain Medicine, University of Washington, Seattle, WA 98109, USA.
| | - Celia Fernandez-Sanz
- Center for Translational Medicine, Department of Medicine, Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, PA 19107, USA
| | - Shey-Shing Sheu
- Center for Translational Medicine, Department of Medicine, Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, PA 19107, USA.
| |
Collapse
|
243
|
Hong Z, Chen KH, DasGupta A, Potus F, Dunham-Snary K, Bonnet S, Tian L, Fu J, Breuils-Bonnet S, Provencher S, Wu D, Mewburn J, Ormiston ML, Archer SL. MicroRNA-138 and MicroRNA-25 Down-regulate Mitochondrial Calcium Uniporter, Causing the Pulmonary Arterial Hypertension Cancer Phenotype. Am J Respir Crit Care Med 2017; 195:515-529. [PMID: 27648837 DOI: 10.1164/rccm.201604-0814oc] [Citation(s) in RCA: 132] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
RATIONALE Pulmonary arterial hypertension (PAH) is an obstructive vasculopathy characterized by excessive pulmonary artery smooth muscle cell (PASMC) proliferation, migration, and apoptosis resistance. This cancer-like phenotype is promoted by increased cytosolic calcium ([Ca2+]cyto), aerobic glycolysis, and mitochondrial fission. OBJECTIVES To determine how changes in mitochondrial calcium uniporter (MCU) complex (MCUC) function influence mitochondrial dynamics and contribute to PAH's cancer-like phenotype. METHODS PASMCs were isolated from patients with PAH and healthy control subjects and assessed for expression of MCUC subunits. Manipulation of the pore-forming subunit, MCU, in PASMCs was achieved through small interfering RNA knockdown or MCU plasmid-mediated up-regulation, as well as through modulation of the upstream microRNAs (miRs) miR-138 and miR-25. In vivo, nebulized anti-miRs were administered to rats with monocrotaline-induced PAH. MEASUREMENTS AND MAIN RESULTS Impaired MCUC function, resulting from down-regulation of MCU and up-regulation of an inhibitory subunit, mitochondrial calcium uptake protein 1, is central to PAH's pathogenesis. MCUC dysfunction decreases intramitochondrial calcium ([Ca2+]mito), inhibiting pyruvate dehydrogenase activity and glucose oxidation, while increasing [Ca2+]cyto, promoting proliferation, migration, and fission. In PAH PASMCs, increasing MCU decreases cell migration, proliferation, and apoptosis resistance by lowering [Ca2+]cyto, raising [Ca2+]mito, and inhibiting fission. In normal PASMCs, MCUC inhibition recapitulates the PAH phenotype. In PAH, elevated miRs (notably miR-138) down-regulate MCU directly and also by decreasing MCU's transcriptional regulator cAMP response element-binding protein 1. Nebulized anti-miRs against miR-25 and miR-138 restore MCU expression, reduce cell proliferation, and regress established PAH in the monocrotaline model. CONCLUSIONS These results highlight miR-mediated MCUC dysfunction as a unifying mechanism in PAH that can be therapeutically targeted.
Collapse
Affiliation(s)
- Zhigang Hong
- 1 Department of Medicine, Queen's University, Kingston, Ontario, Canada; and
| | - Kuang-Hueih Chen
- 1 Department of Medicine, Queen's University, Kingston, Ontario, Canada; and
| | - Asish DasGupta
- 1 Department of Medicine, Queen's University, Kingston, Ontario, Canada; and
| | - Francois Potus
- 2 Pulmonary Hypertension Research Group of the University Cardiology and Pulmonary Institute of the Quebec Research Centre, Laval University, Quebec City, Quebec, Canada
| | | | - Sebastien Bonnet
- 2 Pulmonary Hypertension Research Group of the University Cardiology and Pulmonary Institute of the Quebec Research Centre, Laval University, Quebec City, Quebec, Canada
| | - Lian Tian
- 1 Department of Medicine, Queen's University, Kingston, Ontario, Canada; and
| | - Jennifer Fu
- 1 Department of Medicine, Queen's University, Kingston, Ontario, Canada; and
| | - Sandra Breuils-Bonnet
- 2 Pulmonary Hypertension Research Group of the University Cardiology and Pulmonary Institute of the Quebec Research Centre, Laval University, Quebec City, Quebec, Canada
| | - Steeve Provencher
- 2 Pulmonary Hypertension Research Group of the University Cardiology and Pulmonary Institute of the Quebec Research Centre, Laval University, Quebec City, Quebec, Canada
| | - Danchen Wu
- 1 Department of Medicine, Queen's University, Kingston, Ontario, Canada; and
| | - Jeffrey Mewburn
- 1 Department of Medicine, Queen's University, Kingston, Ontario, Canada; and
| | - Mark L Ormiston
- 1 Department of Medicine, Queen's University, Kingston, Ontario, Canada; and
| | - Stephen L Archer
- 1 Department of Medicine, Queen's University, Kingston, Ontario, Canada; and
| |
Collapse
|
244
|
Mistriotis P, Andreadis ST. Vascular aging: Molecular mechanisms and potential treatments for vascular rejuvenation. Ageing Res Rev 2017; 37:94-116. [PMID: 28579130 DOI: 10.1016/j.arr.2017.05.006] [Citation(s) in RCA: 69] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2017] [Revised: 05/22/2017] [Accepted: 05/25/2017] [Indexed: 12/14/2022]
Abstract
Aging is the main risk factor contributing to vascular dysfunction and the progression of vascular diseases. In this review, we discuss the causes and mechanisms of vascular aging at the tissue and cellular level. We focus on Endothelial Cell (EC) and Smooth Muscle Cell (SMC) aging due to their critical role in mediating the defective vascular phenotype. We elaborate on two categories that contribute to cellular dysfunction: cell extrinsic and intrinsic factors. Extrinsic factors reflect systemic or environmental changes which alter EC and SMC homeostasis compromising vascular function. Intrinsic factors induce EC and SMC transformation resulting in cellular senescence. Replenishing or rejuvenating the aged/dysfunctional vascular cells is critical to the effective repair of the vasculature. As such, this review also elaborates on recent findings which indicate that stem cell and gene therapies may restore the impaired vascular cell function, reverse vascular aging, and prolong lifespan.
Collapse
Affiliation(s)
- Panagiotis Mistriotis
- Bioengineering Laboratory, Department of Chemical and Biological Engineering, University at Buffalo, The State University of New York, Amherst, NY 14260-4200, USA
| | - Stelios T Andreadis
- Bioengineering Laboratory, Department of Chemical and Biological Engineering, University at Buffalo, The State University of New York, Amherst, NY 14260-4200, USA; Department of Biomedical Engineering, University at Buffalo, The State University of New York, Amherst, NY 14260-4200, USA; Center of Excellence in Bioinformatics and Life Sciences, Buffalo, NY 14203, USA.
| |
Collapse
|
245
|
Epigallocatechin-3-gallate ameliorates hypoxia-induced pulmonary vascular remodeling by promoting mitofusin-2-mediated mitochondrial fusion. Eur J Pharmacol 2017; 809:42-51. [DOI: 10.1016/j.ejphar.2017.05.003] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2017] [Revised: 05/01/2017] [Accepted: 05/02/2017] [Indexed: 01/21/2023]
|
246
|
Perdiz D, Lorin S, Leroy-Gori I, Poüs C. Stress-induced hyperacetylation of microtubule enhances mitochondrial fission and modulates the phosphorylation of Drp1 at 616Ser. Cell Signal 2017; 39:32-43. [PMID: 28757354 DOI: 10.1016/j.cellsig.2017.07.020] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2017] [Revised: 06/22/2017] [Accepted: 07/26/2017] [Indexed: 01/01/2023]
Abstract
Mitochondria dynamics results from fission and fusion events that may be unbalanced in favor of mitochondrial fragmentation upon cell stress. During oxidative stress, microtubules are hyperacetylated in a mitochondria-dependent manner. In this study, we show that under stress conditions, most of the mitochondria form foci with microtubule domains that carry Drp1. We also demonstrate that stress-induced hyperacetylation of microtubules is required for the effective induction of Drp1 phosphorylation at 616Ser, in a kinesin-1- and c-Jun N-terminal kinase-dependent manner. Furthermore, hyperacetylation of microtubules contributes to the recruitment of total Drp1 to mitochondria to enhance fission. These results highlight a new way of interaction between microtubules and mitochondria dynamics.
Collapse
Affiliation(s)
- Daniel Perdiz
- Univ. Paris-Sud, INSERM UMR-S 1193, Université Paris-Saclay, Faculté de Pharmacie, Châtenay-Malabry, France.
| | - Séverine Lorin
- Univ. Paris-Sud, INSERM UMR-S 1193, Université Paris-Saclay, Faculté de Pharmacie, Châtenay-Malabry, France
| | - Ingrid Leroy-Gori
- Univ. Paris-Sud, INSERM UMR-S 1193, Université Paris-Saclay, Faculté de Pharmacie, Châtenay-Malabry, France
| | - Christian Poüs
- Univ. Paris-Sud, INSERM UMR-S 1193, Université Paris-Saclay, Faculté de Pharmacie, Châtenay-Malabry, France; Biochimie-Hormonologie, APHP, Hôpitaux Universitaires Paris-Sud, Site Antoine Béclère, Clamart, France
| |
Collapse
|
247
|
Vartanian V, Tumova J, Dobrzyn P, Dobrzyn A, Nakabeppu Y, Lloyd RS, Sampath H. 8-oxoguanine DNA glycosylase (OGG1) deficiency elicits coordinated changes in lipid and mitochondrial metabolism in muscle. PLoS One 2017; 12:e0181687. [PMID: 28727777 PMCID: PMC5519207 DOI: 10.1371/journal.pone.0181687] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2017] [Accepted: 07/04/2017] [Indexed: 12/04/2022] Open
Abstract
Oxidative stress resulting from endogenous and exogenous sources causes damage to cellular components, including genomic and mitochondrial DNA. Oxidative DNA damage is primarily repaired via the base excision repair pathway that is initiated by DNA glycosylases. 8-oxoguanine DNA glycosylase (OGG1) recognizes and cleaves oxidized and ring-fragmented purines, including 8-oxoguanine, the most commonly formed oxidative DNA lesion. Mice lacking the OGG1 gene product are prone to multiple features of the metabolic syndrome, including high-fat diet-induced obesity, hepatic steatosis, and insulin resistance. Here, we report that OGG1-deficient mice also display skeletal muscle pathologies, including increased muscle lipid deposition and alterations in genes regulating lipid uptake and mitochondrial fission in skeletal muscle. In addition, expression of genes of the TCA cycle and of carbohydrate and lipid metabolism are also significantly altered in muscle of OGG1-deficient mice. These tissue changes are accompanied by marked reductions in markers of muscle function in OGG1-deficient animals, including decreased grip strength and treadmill endurance. Collectively, these data indicate a role for skeletal muscle OGG1 in the maintenance of optimal tissue function.
Collapse
Affiliation(s)
- Vladimir Vartanian
- From the Oregon Institute of Occupational Health Sciences, Oregon Health & Science University, Portland, Oregon, United States of America
| | - Jana Tumova
- Department of Nutritional Sciences, Rutgers University, New Brunswick, New Jersey, United States of America
| | - Pawel Dobrzyn
- Nencki Institute of Experimental Biology, Warsaw, Poland
| | | | - Yusaku Nakabeppu
- Division of Neurofunctional Genomics, Department of Immunobiology and Neuroscience, Medical Institute of Bioregulation, Kyushu University, Fukuoka, Japan
| | - R. Stephen Lloyd
- From the Oregon Institute of Occupational Health Sciences, Oregon Health & Science University, Portland, Oregon, United States of America
- Department of Physiology and Pharmacology, Oregon Health & Science University, Portland, Oregon, United States of America
| | - Harini Sampath
- Department of Nutritional Sciences, Rutgers University, New Brunswick, New Jersey, United States of America
- Rutgers Center for Lipid Research and Center for Digestive Health, New Jersey Institute for Food, Nutrition, and Health, Rutgers University, New Brunswick, New Jersey, United States of America
| |
Collapse
|
248
|
Abstract
The pathogenesis of pulmonary diseases is often complex and characterized by multiple cellular events, including inflammation, cell death, and cell proliferation. The mechanisms by which these events are regulated in pulmonary diseases remain poorly understood. Autophagy is an essential process for cellular homeostasis and stress adaptation in eukaryotic cells. This highly conserved cellular process involves the sequestration of cytoplasmic components in double-membrane autophagosomes, which are delivered to lysosomes for degradation. The critical roles of autophagy have been demonstrated in a wide range of pathophysiological conditions. Emerging studies have identified that autophagy plays important roles in the pathogenesis of various lung diseases. In addition, autophagy has been shown to selectively degrade subcellular targets, including proteins, organelles, and pathogens. Here, we highlight the recent advances in the molecular regulation and function of autophagy in lung diseases.
Collapse
Affiliation(s)
- Kiichi Nakahira
- Division of Pulmonary and Critical Care Medicine, Joan and Sanford I. Weill Department of Medicine, Weill Cornell Medicine, New York, New York
| | - Maria Angelica Pabon Porras
- Division of Pulmonary and Critical Care Medicine, Joan and Sanford I. Weill Department of Medicine, Weill Cornell Medicine, New York, New York
| | - Augustine M K Choi
- Division of Pulmonary and Critical Care Medicine, Joan and Sanford I. Weill Department of Medicine, Weill Cornell Medicine, New York, New York
| |
Collapse
|
249
|
The role of Drp1 adaptor proteins MiD49 and MiD51 in mitochondrial fission: implications for human disease. Clin Sci (Lond) 2017; 130:1861-74. [PMID: 27660309 DOI: 10.1042/cs20160030] [Citation(s) in RCA: 84] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2016] [Accepted: 07/26/2016] [Indexed: 02/01/2023]
Abstract
Mitochondrial morphology is governed by the balance of mitochondrial fusion, mediated by mitofusins and optic atrophy 1 (OPA1), and fission, mediated by dynamin-related protein 1 (Drp1). Disordered mitochondrial dynamics alters metabolism, proliferation, apoptosis and mitophagy, contributing to human diseases, including neurodegenerative syndromes, pulmonary arterial hypertension (PAH), cancer and ischemia/reperfusion injury. Post-translational regulation of Drp1 (by phosphorylation and SUMOylation) is an established means of modulating Drp1 activation and translocation to the outer mitochondrial membrane (OMM). This review focuses on Drp1 adaptor proteins that also regulate fission. The proteins include fission 1 (Fis1), mitochondrial fission factor (Mff) and mitochondrial dynamics proteins of 49 kDa and 51 kDa (MiD49, MiD51). Heterologous MiD overexpression sequesters inactive Drp1 on the OMM, promoting fusion; conversely, increased endogenous MiD creates focused Drp1 multimers that optimize OMM scission. The triggers that activate MiD-bound Drp1 in disease states are unknown; however, MiD51 has a unique capacity for ADP binding at its nucleotidyltransferase domain. Without ADP, MiD51 inhibits Drp1, whereas ADP promotes MiD51-mediated fission, suggesting a link between metabolism and fission. Confusion over whether MiDs mediate fusion (by sequestering inactive Drp1) or fission (by guiding Drp1 assembly) relates to a failure to consider cell types used and to distinguish endogenous compared with heterologous changes in expression. We speculate that endogenous MiDs serve as Drp1-binding partners that are dysregulated in disease states and may be important targets for inhibiting cell proliferation and ischemia/reperfusion injury. Moreover, it appears that the composition of the fission apparatus varies between disease states and amongst individuals. MiDs may be important targets for inhibiting cell proliferation and attenuating ischemia/reperfusion injury.
Collapse
|
250
|
Abstract
The pathogenesis of pulmonary arterial hypertension remains undefined. Changes in the expression and effects mediated by a number of vasoactive factors have been implicated to play a role in the onset and progression of the disease. The source of many of these mediators, such as nitric oxide (NO), prostacyclin and endothelin-1 (ET-1), is the pulmonary endothelium. This article focus in the role of nitric oxide in PAH, reviewing the evidence for its involvement in regulation of pulmonary a vascular tone under physiological conditions, the mechanisms by which it can contribute to the pathological changes seen in PAH and strategies for the use of NO as a therapy for treatment of the disease.
Collapse
Affiliation(s)
- Adrian H Chester
- National Heart & Lung Institute, Imperial College London, Heart Science Centre, Harefield, Middlesex, UB9 6JH, United Kingdom
| | - Magdi H Yacoub
- National Heart & Lung Institute, Imperial College London, Heart Science Centre, Harefield, Middlesex, UB9 6JH, United Kingdom
| | - Salvador Moncada
- School of Medical Sciences, Manchester Cancer Research Centre, University of Manchester, Wilmslow Road, Manchester, M20 4QL, United Kingdom
| |
Collapse
|