201
|
Błyszczuk P, Zuppinger C, Costa A, Nurzynska D, Di Meglio F, Stellato M, Agarkova I, Smith GL, Distler O, Kania G. Activated Cardiac Fibroblasts Control Contraction of Human Fibrotic Cardiac Microtissues by a β-Adrenoreceptor-Dependent Mechanism. Cells 2020; 9:1270. [PMID: 32443848 PMCID: PMC7290967 DOI: 10.3390/cells9051270] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2020] [Revised: 05/10/2020] [Accepted: 05/19/2020] [Indexed: 12/16/2022] Open
Abstract
Cardiac fibrosis represents a serious clinical problem. Development of novel treatment strategies is currently restricted by the lack of the relevant experimental models in a human genetic context. In this study, we fabricated self-aggregating, scaffold-free, 3D cardiac microtissues using human inducible pluripotent stem cell (iPSC)-derived cardiomyocytes and human cardiac fibroblasts. Fibrotic condition was obtained by treatment of cardiac microtissues with profibrotic cytokine transforming growth factor β1 (TGF-β1), preactivation of foetal cardiac fibroblasts with TGF-β1, or by the use of cardiac fibroblasts obtained from heart failure patients. In our model, TGF-β1 effectively induced profibrotic changes in cardiac fibroblasts and in cardiac microtissues. Fibrotic phenotype of cardiac microtissues was inhibited by treatment with TGF-β-receptor type 1 inhibitor SD208 in a dose-dependent manner. We observed that fibrotic cardiac microtissues substantially increased the spontaneous beating rate by shortening the relaxation phase and showed a lower contraction amplitude. Instead, no changes in action potential profile were detected. Furthermore, we demonstrated that contraction of human cardiac microtissues could be modulated by direct electrical stimulation or treatment with the β-adrenergic receptor agonist isoproterenol. However, in the absence of exogenous agonists, the β-adrenoreceptor blocker nadolol decreased beating rate of fibrotic cardiac microtissues by prolonging relaxation time. Thus, our data suggest that in fibrosis, activated cardiac fibroblasts could promote cardiac contraction rate by a direct stimulation of β-adrenoreceptor signalling. In conclusion, a model of fibrotic cardiac microtissues can be used as a high-throughput model for drug testing and to study cellular and molecular mechanisms of cardiac fibrosis.
Collapse
Affiliation(s)
- Przemysław Błyszczuk
- Center of Experimental Rheumatology, Department of Rheumatology, University Hospital Zurich, Wagistr. 14, 8952 Schlieren, Switzerland; (M.S.); (O.D.)
- Department of Clinical Immunology, Jagiellonian University Medical College, 30-663 Cracow, Poland
| | - Christian Zuppinger
- Department for BioMedical Research, Department of Cardiology, University Hospital Bern, 3008 Bern, Switzerland;
| | - Ana Costa
- Institute of Cardiovascular and Medical Sciences, University of Glasgow, Glasgow G12 8TA, UK; (A.C.); (G.S.)
| | - Daria Nurzynska
- Department of Public Health, University of Naples “Federico II”, 80131 Naples, Italy; (D.N.); (F.D.M.)
| | - Franca Di Meglio
- Department of Public Health, University of Naples “Federico II”, 80131 Naples, Italy; (D.N.); (F.D.M.)
| | - Mara Stellato
- Center of Experimental Rheumatology, Department of Rheumatology, University Hospital Zurich, Wagistr. 14, 8952 Schlieren, Switzerland; (M.S.); (O.D.)
| | | | - Godfrey L. Smith
- Institute of Cardiovascular and Medical Sciences, University of Glasgow, Glasgow G12 8TA, UK; (A.C.); (G.S.)
| | - Oliver Distler
- Center of Experimental Rheumatology, Department of Rheumatology, University Hospital Zurich, Wagistr. 14, 8952 Schlieren, Switzerland; (M.S.); (O.D.)
| | - Gabriela Kania
- Center of Experimental Rheumatology, Department of Rheumatology, University Hospital Zurich, Wagistr. 14, 8952 Schlieren, Switzerland; (M.S.); (O.D.)
| |
Collapse
|
202
|
Lemcke H, Skorska A, Lang CI, Johann L, David R. Quantitative Evaluation of the Sarcomere Network of Human hiPSC-Derived Cardiomyocytes Using Single-Molecule Localization Microscopy. Int J Mol Sci 2020; 21:ijms21082819. [PMID: 32316650 PMCID: PMC7216082 DOI: 10.3390/ijms21082819] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2020] [Revised: 04/15/2020] [Accepted: 04/16/2020] [Indexed: 02/07/2023] Open
Abstract
The maturation of iPSC-derived cardiomyocytes is still a critical point for their application in cardiovascular research as well as for their clinical use. Although multiple differentiation protocols have been established, researchers failed to generate fully mature cardiomyocytes in vitro possessing identical phenotype-related and functional properties as their native adult counterparts. Besides electrophysiological and metabolic changes, the establishment of a well structured sarcomere network is important for the development of a mature cardiac phenotype. Here, we present a super resolution-based approach to quantitatively evaluate the structural maturation of iPSC-derived cardiomyocytes. Fluorescence labelling of the α-actinin cytoskeleton and subsequent visualization by photoactivated localization microscopy allows the acquisition of highly resolved images for measuring sarcomere length and z-disc thickness. Our image analysis revealed that iPSC and neonatal cardiomyocyte share high similarity with respect to their sarcomere organization, however, contraction capacity was inferior in iPSC-derived cardiac cells, indicating an early maturation level. Moreover, we demonstrate that this imaging approach can be used as a tool to monitor cardiomyocyte integrity, helping to optimize iPSC differentiation as well as somatic cell direct-reprogramming strategies.
Collapse
Affiliation(s)
- Heiko Lemcke
- Department of Cardiac Surgery, Reference and Translation Center for Cardiac Stem Cell Therapy (RTC), Rostock University Medical Center, 18057 Rostock, Germany; (H.L.); (A.S.); (L.J.)
- Faculty of Interdisciplinary Research, Department Life, Light & Matter, University Rostock, 18059 Rostock, Germany
| | - Anna Skorska
- Department of Cardiac Surgery, Reference and Translation Center for Cardiac Stem Cell Therapy (RTC), Rostock University Medical Center, 18057 Rostock, Germany; (H.L.); (A.S.); (L.J.)
- Faculty of Interdisciplinary Research, Department Life, Light & Matter, University Rostock, 18059 Rostock, Germany
| | - Cajetan Immanuel Lang
- Department of Cardiology, Rostock University Medical Center, 18057 Rostock, Germany;
| | - Lisa Johann
- Department of Cardiac Surgery, Reference and Translation Center for Cardiac Stem Cell Therapy (RTC), Rostock University Medical Center, 18057 Rostock, Germany; (H.L.); (A.S.); (L.J.)
- Faculty of Interdisciplinary Research, Department Life, Light & Matter, University Rostock, 18059 Rostock, Germany
| | - Robert David
- Department of Cardiac Surgery, Reference and Translation Center for Cardiac Stem Cell Therapy (RTC), Rostock University Medical Center, 18057 Rostock, Germany; (H.L.); (A.S.); (L.J.)
- Faculty of Interdisciplinary Research, Department Life, Light & Matter, University Rostock, 18059 Rostock, Germany
- Correspondence:
| |
Collapse
|
203
|
Blair CA, Pruitt BL. Mechanobiology Assays with Applications in Cardiomyocyte Biology and Cardiotoxicity. Adv Healthc Mater 2020; 9:e1901656. [PMID: 32270928 PMCID: PMC7480481 DOI: 10.1002/adhm.201901656] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2019] [Revised: 01/31/2020] [Accepted: 02/03/2020] [Indexed: 12/19/2022]
Abstract
Cardiomyocytes are the motor units that drive the contraction and relaxation of the heart. Traditionally, testing of drugs for cardiotoxic effects has relied on primary cardiomyocytes from animal models and focused on short-term, electrophysiological, and arrhythmogenic effects. However, primary cardiomyocytes present challenges arising from their limited viability in culture, and tissue from animal models suffers from a mismatch in their physiology to that of human heart muscle. Human-induced pluripotent stem cell-derived cardiomyocytes (hiPSC-CMs) can address these challenges. They also offer the potential to study not only electrophysiological effects but also changes in cardiomyocyte contractile and mechanical function in response to cardiotoxic drugs. With growing recognition of the long-term cardiotoxic effects of some drugs on subcellular structure and function, there is increasing interest in using hiPSC-CMs for in vitro cardiotoxicity studies. This review provides a brief overview of techniques that can be used to quantify changes in the active force that cardiomyocytes generate and variations in their inherent stiffness in response to cardiotoxic drugs. It concludes by discussing the application of these tools in understanding how cardiotoxic drugs directly impact the mechanobiology of cardiomyocytes and how cardiomyocytes sense and respond to mechanical load at the cellular level.
Collapse
Affiliation(s)
- Cheavar A. Blair
- Department of mechanical Engineering, University of California Santa Barbara, Santa Barbara, CA, USA
- Biomolecular Science and Engineering, University of California Santa Barbara, Santa Barbara, CA, USA
| | - Beth L. Pruitt
- Department of mechanical Engineering, University of California Santa Barbara, Santa Barbara, CA, USA
- Biomolecular Science and Engineering, University of California Santa Barbara, Santa Barbara, CA, USA
- Molecular, Cellular and Developmental Biology, University of California Santa Barbara, Santa Barbara, CA, USA
| |
Collapse
|
204
|
Fang YH, Wang SP, Gao ZH, Wu SN, Chang HY, Yang PJ, Liu PY, Liu YW. Efficient Cardiac Differentiation of Human Amniotic Fluid-Derived Stem Cells into Induced Pluripotent Stem Cells and Their Potential Immune Privilege. Int J Mol Sci 2020; 21:2359. [PMID: 32235313 PMCID: PMC7177657 DOI: 10.3390/ijms21072359] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2020] [Revised: 03/25/2020] [Accepted: 03/27/2020] [Indexed: 12/13/2022] Open
Abstract
Mature mammalian hearts possess very limited regenerative potential. The irreversible cardiomyocyte loss after heart injury can lead to heart failure and death. Pluripotent stem cells (PSCs) can differentiate into cardiomyocytes for cardiac repair, but there are obstacles to their clinical application. Among these obstacles is their potential for post-transplant rejection. Although human amniotic fluid-derived stem cells (hAFSCs) are immune privileged, they cannot induce cardiac differentiation. Thus, we generated hAFSC-derived induced PSCs (hAFSC-iPSCs) and used a Wnt-modulating differentiation protocol for the cardiac differentiation of hAFSC-iPSCs. In vitro studies using flow cytometry, immunofluorescence staining, and patch-clamp electrophysiological study, were performed to identify the characteristics of hAFSC-iPSC-derived cardiomyocytes (hAFSC-iPSC-CMs). We injected hAFSC-iPSC-CMs intramuscularly into rat infarcted hearts to evaluate the therapeutic potential of hAFSC-iPSC-CM transplantation. At day 21 of differentiation, the hAFSC-iPSC-CMs expressed cardiac-specific marker (cardiac troponin T), presented cardiomyocyte-specific electrophysiological properties, and contracted spontaneously. Importantly, these hAFSC-iPSC-CMs demonstrated low major histocompatibility complex (MHC) class I antigen expression and the absence of MHC class II antigens, indicating their low immunogenicity. The intramyocardial transplantation of hAFSC-iPSC-CMs restored cardiac function, partially remuscularized the injured region, and reduced fibrosis in the rat infarcted hearts. Therefore, hAFSC-iPSCs are potential candidates for the repair of infarcted myocardium.
Collapse
Affiliation(s)
- Yi-Hsien Fang
- Institute of Clinical Medicine, College of Medicine, National Cheng Kung University, Tainan 70457, Taiwan; (Y.-H.F.); (H.-Y.C.); (P.-J.Y.)
| | - Saprina P.H. Wang
- Institute of Clinical Medicine, College of Medicine, National Cheng Kung University, Tainan 70457, Taiwan; (Y.-H.F.); (H.-Y.C.); (P.-J.Y.)
- Division of Cardiology, Department of Internal Medicine, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan 70403, Taiwan
| | - Zi-Han Gao
- Department of Physiology, College of Medicine, National Cheng Kung University, Tainan 70101, Taiwan; (Z.-H.G.); (S.-N.W.)
| | - Sheng-Nan Wu
- Department of Physiology, College of Medicine, National Cheng Kung University, Tainan 70101, Taiwan; (Z.-H.G.); (S.-N.W.)
- Institute of Basic Medical Sciences, College of Medicine, National Cheng Kung University, Tainan 70101, Taiwan
| | - Hsien-Yuan Chang
- Institute of Clinical Medicine, College of Medicine, National Cheng Kung University, Tainan 70457, Taiwan; (Y.-H.F.); (H.-Y.C.); (P.-J.Y.)
- Division of Cardiology, Department of Internal Medicine, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan 70403, Taiwan
| | - Pei-Jung Yang
- Institute of Clinical Medicine, College of Medicine, National Cheng Kung University, Tainan 70457, Taiwan; (Y.-H.F.); (H.-Y.C.); (P.-J.Y.)
- Division of Cardiology, Department of Internal Medicine, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan 70403, Taiwan
| | - Ping-Yen Liu
- Institute of Clinical Medicine, College of Medicine, National Cheng Kung University, Tainan 70457, Taiwan; (Y.-H.F.); (H.-Y.C.); (P.-J.Y.)
- Division of Cardiology, Department of Internal Medicine, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan 70403, Taiwan
- Center of Cell therapy, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan 70403, Taiwan
| | - Yen-Wen Liu
- Institute of Clinical Medicine, College of Medicine, National Cheng Kung University, Tainan 70457, Taiwan; (Y.-H.F.); (H.-Y.C.); (P.-J.Y.)
- Division of Cardiology, Department of Internal Medicine, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan 70403, Taiwan
- Center of Cell therapy, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan 70403, Taiwan
| |
Collapse
|
205
|
Golforoush P, Schneider MD. Intensive care for human hearts in pluripotent stem cell models. NPJ Regen Med 2020; 5:4. [PMID: 32194989 PMCID: PMC7060343 DOI: 10.1038/s41536-020-0090-7] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2019] [Accepted: 02/06/2020] [Indexed: 12/12/2022] Open
Abstract
Successful drug discovery is ultimately contingent on the availability of workable, relevant, predictive model systems. Conversely, for cardiac muscle, the lack of human preclinical models to inform target validation and compound development has likely contributed to the perennial problem of clinical trial failures, despite encouraging non-human results. By contrast, human cardiomyocytes produced from pluripotent stem cell models have recently been applied to safety pharmacology, phenotypic screening, target validation and high-throughput assays, facilitating cardiac drug discovery. Here, we review the impact of human pluripotent stem cell models in cardiac drug discovery, discussing the range of applications, readouts, and disease models employed, along with the challenges and prospects to advance this fruitful mode of research further.
Collapse
Affiliation(s)
- Pelin Golforoush
- National Heart and Lung Institute, Imperial College London, London, W12 0NN UK
| | | |
Collapse
|
206
|
Beauchamp P, Jackson CB, Ozhathil LC, Agarkova I, Galindo CL, Sawyer DB, Suter TM, Zuppinger C. 3D Co-culture of hiPSC-Derived Cardiomyocytes With Cardiac Fibroblasts Improves Tissue-Like Features of Cardiac Spheroids. Front Mol Biosci 2020; 7:14. [PMID: 32118040 PMCID: PMC7033479 DOI: 10.3389/fmolb.2020.00014] [Citation(s) in RCA: 120] [Impact Index Per Article: 24.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2019] [Accepted: 01/24/2020] [Indexed: 12/16/2022] Open
Abstract
Purpose: Both cardiomyocytes and cardiac fibroblasts (CF) play essential roles in cardiac development, function, and remodeling. Properties of 3D co-cultures are incompletely understood. Hence, 3D co-culture of cardiomyocytes and CF was characterized, and selected features compared with single-type and 2D culture conditions. Methods: Human cardiomyocytes derived from induced-pluripotent stem cells (hiPSC-CMs) were obtained from Cellular Dynamics or Ncardia, and primary human cardiac fibroblasts from ScienCell. Cardiac spheroids were investigated using cryosections and whole-mount confocal microscopy, video motion analysis, scanning-, and transmission-electron microscopy (SEM, TEM), action potential recording, and quantitative PCR (qPCR). Results: Spheroids formed in hanging drops or in non-adhesive wells showed spontaneous contractions for at least 1 month with frequent media changes. SEM of mechanically opened spheroids revealed a dense inner structure and no signs of blebbing. TEM of co-culture spheroids at 1 month showed myofibrils, intercalated disc-like structures and mitochondria. Ultrastructural features were comparable to fetal human myocardium. We then assessed immunostained 2D cultures, cryosections of spheroids, and whole-mount preparations by confocal microscopy. CF in co-culture spheroids assumed a small size and shape similar to the situation in ventricular tissue. Spheroids made only of CF and cultured for 3 weeks showed no stress fibers and strongly reduced amounts of alpha smooth muscle actin compared to early spheroids and 2D cultures as shown by confocal microscopy, western blotting, and qPCR. The addition of CF to cardiac spheroids did not lead to arrhythmogenic effects as measured by sharp-electrode electrophysiology. Video motion analysis showed a faster spontaneous contraction rate in co-culture spheroids compared to pure hiPSC-CMs, but similar contraction amplitudes and kinetics. Spontaneous contraction rates were not dependent on spheroid size. Applying increasing pacing frequencies resulted in decreasing contraction amplitudes without positive staircase effect. Gene expression analysis of selected cytoskeleton and myofibrillar proteins showed more tissue-like expression patterns in co-culture spheroids than with cardiomyocytes alone or in 2D culture. Conclusion: We demonstrate that the use of 3D co-culture of hiPSC-CMs and CF is superior over 2D culture conditions for co-culture models and more closely mimicking the native state of the myocardium with relevance to drug development as well as for personalized medicine.
Collapse
Affiliation(s)
- Philippe Beauchamp
- Cardiology Department, DBMR MEM C812, Bern University Hospital, Bern, Switzerland
| | - Christopher B. Jackson
- Stem Cells and Metabolism Research Program, Faculty of Medicine, University of Helsinki, Helsinki, Finland
- IKELOS GmbH, Bern, Switzerland
| | | | | | - Cristi L. Galindo
- Division of Cardiovascular Medicine, Vanderbilt University Medical School, Nashville, TN, United States
- Department of Cell Biology and Molecular Biology, Rutgers New Jersey Medical School, Newark, NJ, United States
| | - Douglas B. Sawyer
- Department of Cardiac Services, Maine Medical Center, Scarborough, ME, United States
| | - Thomas M. Suter
- Cardiology Department, DBMR MEM C812, Bern University Hospital, Bern, Switzerland
| | - Christian Zuppinger
- Cardiology Department, DBMR MEM C812, Bern University Hospital, Bern, Switzerland
| |
Collapse
|
207
|
Huethorst E, Cutiongco MF, Campbell FA, Saeed A, Love R, Reynolds PM, Dalby MJ, Gadegaard N. Customizable, engineered substrates for rapid screening of cellular cues. Biofabrication 2020; 12:025009. [PMID: 31783378 PMCID: PMC7655147 DOI: 10.1088/1758-5090/ab5d3f] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Biophysical cues robustly direct cell responses and are thus important tools for
in vitro and translational biomedical applications. High
throughput platforms exploring substrates with varying physical properties are
therefore valuable. However, currently existing platforms are limited in
throughput, the biomaterials used, the capability to segregate between different
cues and the assessment of dynamic responses. Here we present a multiwell array
(3 × 8) made of a substrate engineered to present topography or rigidity cues
welded to a bottomless plate with a 96-well format. Both the patterns on the
engineered substrate and the well plate format can be easily customized,
permitting systematic and efficient screening of biophysical cues. To
demonstrate the broad range of possible biophysical cues examinable, we designed
and tested three multiwell arrays to influence cardiomyocyte, chondrocyte and
osteoblast function. Using the multiwell array, we were able to measure
different cell functionalities using analytical modalities such as live
microscopy, qPCR and immunofluorescence. We observed that grooves (5
μm in size) induced less variation in contractile function
of cardiomyocytes. Compared to unpatterned plastic, nanopillars with 127 nm
height, 100 nm diameter and 300 nm pitch enhanced matrix deposition,
chondrogenic gene expression and chondrogenic maintenance. High aspect ratio
pillars with an elastic shear modulus of 16 kPa mimicking the matrix found in
early stages of bone development improved osteogenic gene expression compared to
stiff plastic. We envisage that our bespoke multiwell array will accelerate the
discovery of relevant biophysical cues through improved throughput and
variety.
Collapse
Affiliation(s)
- Eline Huethorst
- Division of Biomedical Engineering, School of Engineering, University of Glasgow, Glasgow, G12 8LT, United Kingdom. Institute of Cardiovascular and Medical Sciences, University of Glasgow, Glasgow, G12 8QQ, United Kingdom
| | | | | | | | | | | | | | | |
Collapse
|
208
|
Automated high-throughput heartbeat quantification in medaka and zebrafish embryos under physiological conditions. Sci Rep 2020; 10:2046. [PMID: 32029752 PMCID: PMC7005164 DOI: 10.1038/s41598-020-58563-w] [Citation(s) in RCA: 47] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2019] [Accepted: 01/13/2020] [Indexed: 01/14/2023] Open
Abstract
Accurate quantification of heartbeats in fish models is an important readout to study cardiovascular biology, disease states and pharmacology. However, dependence on anaesthesia, laborious sample orientation or requirement for fluorescent reporters have hampered the use of high-throughput heartbeat analysis. To overcome these limitations, we established an efficient screening assay employing automated label-free heart rate determination of randomly oriented, non-anesthetized medaka (Oryzias latipes) and zebrafish (Danio rerio) embryos in microtiter plates. Automatically acquired bright-field data feeds into an easy-to-use HeartBeat software with graphical user interface for automated quantification of heart rate and rhythm. Sensitivity of the assay was demonstrated by profiling heart rates during entire embryonic development. Our analysis revealed rapid adaption of heart rates to temperature changes, which has implications for standardization of experimental layout. The assay allows scoring of multiple embryos per well enabling a throughput of >500 embryos per 96-well plate. In a proof of principle screen for compound testing, we captured concentration-dependent effects of nifedipine and terfenadine over time. Our novel assay permits large-scale applications ranging from phenotypic screening, interrogation of gene functions to cardiovascular drug development.
Collapse
|
209
|
Dai Y, Amenov A, Ignatyeva N, Koschinski A, Xu H, Soong PL, Tiburcy M, Linke WA, Zaccolo M, Hasenfuss G, Zimmermann WH, Ebert A. Troponin destabilization impairs sarcomere-cytoskeleton interactions in iPSC-derived cardiomyocytes from dilated cardiomyopathy patients. Sci Rep 2020; 10:209. [PMID: 31937807 PMCID: PMC6959358 DOI: 10.1038/s41598-019-56597-3] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2019] [Accepted: 09/13/2019] [Indexed: 12/14/2022] Open
Abstract
The sarcomeric troponin-tropomyosin complex is a critical mediator of excitation-contraction coupling, sarcomeric stability and force generation. We previously reported that induced pluripotent stem cell-derived cardiomyocytes (iPSC-CMs) from patients with a dilated cardiomyopathy (DCM) mutation, troponin T (TnT)-R173W, display sarcomere protein misalignment and impaired contractility. Yet it is not known how TnT mutation causes dysfunction of sarcomere microdomains and how these events contribute to misalignment of sarcomeric proteins in presence of DCM TnT-R173W. Using a human iPSC-CM model combined with CRISPR/Cas9-engineered isogenic controls, we uncovered that TnT-R173W destabilizes molecular interactions of troponin with tropomyosin, and limits binding of PKA to local sarcomere microdomains. This attenuates troponin phosphorylation and dysregulates local sarcomeric microdomains in DCM iPSC-CMs. Disrupted microdomain signaling impairs MYH7-mediated, AMPK-dependent sarcomere-cytoskeleton filament interactions and plasma membrane attachment. Small molecule-based activation of AMPK can restore TnT microdomain interactions, and partially recovers sarcomere protein misalignment as well as impaired contractility in DCM TnT-R173W iPSC-CMs. Our findings suggest a novel therapeutic direction targeting sarcomere- cytoskeleton interactions to induce sarcomere re-organization and contractile recovery in DCM.
Collapse
Affiliation(s)
- Yuanyuan Dai
- Heart Center, Department of Cardiology and Pneumology, Goettingen, Germany.,DZHK (German Center for Cardiovascular Research), partner site, Goettingen, Germany
| | - Asset Amenov
- Heart Center, Department of Cardiology and Pneumology, Goettingen, Germany.,DZHK (German Center for Cardiovascular Research), partner site, Goettingen, Germany
| | - Nadezda Ignatyeva
- Heart Center, Department of Cardiology and Pneumology, Goettingen, Germany.,DZHK (German Center for Cardiovascular Research), partner site, Goettingen, Germany
| | - Andreas Koschinski
- Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford, OX1 3PT, UK
| | - Hang Xu
- Heart Center, Department of Cardiology and Pneumology, Goettingen, Germany.,DZHK (German Center for Cardiovascular Research), partner site, Goettingen, Germany
| | - Poh Loong Soong
- Institute of Pharmacology, University of Goettingen, Robert-Koch-Str. 40, 37075, Goettingen, Germany.,DZHK (German Center for Cardiovascular Research), partner site, Goettingen, Germany
| | - Malte Tiburcy
- Institute of Pharmacology, University of Goettingen, Robert-Koch-Str. 40, 37075, Goettingen, Germany.,DZHK (German Center for Cardiovascular Research), partner site, Goettingen, Germany
| | - Wolfgang A Linke
- Heart Center, Department of Cardiology and Pneumology, Goettingen, Germany.,DZHK (German Center for Cardiovascular Research), partner site, Goettingen, Germany.,Institute of Physiology II, University of Muenster, Muenster, Germany
| | - Manuela Zaccolo
- Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford, OX1 3PT, UK
| | - Gerd Hasenfuss
- Heart Center, Department of Cardiology and Pneumology, Goettingen, Germany.,DZHK (German Center for Cardiovascular Research), partner site, Goettingen, Germany
| | - Wolfram-Hubertus Zimmermann
- Institute of Pharmacology, University of Goettingen, Robert-Koch-Str. 40, 37075, Goettingen, Germany.,DZHK (German Center for Cardiovascular Research), partner site, Goettingen, Germany
| | - Antje Ebert
- Heart Center, Department of Cardiology and Pneumology, Goettingen, Germany. .,DZHK (German Center for Cardiovascular Research), partner site, Goettingen, Germany.
| |
Collapse
|
210
|
van den Brink L, Brandão KO, Yiangou L, Mol MPH, Grandela C, Mummery CL, Verkerk AO, Davis RP. Cryopreservation of human pluripotent stem cell-derived cardiomyocytes is not detrimental to their molecular and functional properties. Stem Cell Res 2020; 43:101698. [PMID: 31945612 PMCID: PMC7611364 DOI: 10.1016/j.scr.2019.101698] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/29/2019] [Revised: 12/06/2019] [Accepted: 12/30/2019] [Indexed: 12/15/2022] Open
Abstract
Human induced pluripotent stem cell-derived cardiomyocytes (hiPSC-CMs) have emerged as a powerful platform for in vitro modelling of cardiac diseases, safety pharmacology and drug screening. All these applications require large quantities of well-characterised and standardised batches of hiPSC-CMs. Cryopreservation of hiPSC-CMs without affecting their biochemical or biophysical phenotype is essential for facilitating this, but ideally requires the cells being unchanged by the freeze-thaw procedure. We therefore compared the in vitro functional and molecular characteristics of fresh and cryopreserved hiPSC-CMs generated from multiple independent hiPSC lines. While the frozen hiPSC-CMs exhibited poorer replating than their freshly-derived counterparts, there was no difference in the proportion of cardiomyocytes retrieved from the mixed population when this was factored in, although for several lines a higher percentage of ventricular-like hiPSC-CMs were recovered following cryopreservation. Furthermore, cryopreserved hiPSC-CMs from one line exhibited longer action potential durations. These results provide evidence that cryopreservation does not compromise the in vitro molecular, physiological and mechanical properties of hiPSC-CMs, though can lead to an enrichment in ventricular myocytes. It also validates this procedure for storing hiPSC-CMs, thereby allowing the same batch of hiPSC-CMs to be used for multiple applications and evaluations.
Collapse
Affiliation(s)
- Lettine van den Brink
- Department of Anatomy and Embryology, Leiden University Medical Center, Einthovenweg 20, 2300 RC Leiden, the Netherlands
| | - Karina O Brandão
- Department of Anatomy and Embryology, Leiden University Medical Center, Einthovenweg 20, 2300 RC Leiden, the Netherlands
| | - Loukia Yiangou
- Department of Anatomy and Embryology, Leiden University Medical Center, Einthovenweg 20, 2300 RC Leiden, the Netherlands
| | - Mervyn P H Mol
- Department of Anatomy and Embryology, Leiden University Medical Center, Einthovenweg 20, 2300 RC Leiden, the Netherlands
| | - Catarina Grandela
- Department of Anatomy and Embryology, Leiden University Medical Center, Einthovenweg 20, 2300 RC Leiden, the Netherlands
| | - Christine L Mummery
- Department of Anatomy and Embryology, Leiden University Medical Center, Einthovenweg 20, 2300 RC Leiden, the Netherlands
| | - Arie O Verkerk
- Department of Medical Biology, Amsterdam UMC, 1105 AZ Amsterdam, the Netherlands
| | - Richard P Davis
- Department of Anatomy and Embryology, Leiden University Medical Center, Einthovenweg 20, 2300 RC Leiden, the Netherlands.
| |
Collapse
|
211
|
Shradhanjali A, Riehl BD, Duan B, Yang R, Lim JY. Spatiotemporal Characterizations of Spontaneously Beating Cardiomyocytes with Adaptive Reference Digital Image Correlation. Sci Rep 2019; 9:18382. [PMID: 31804542 PMCID: PMC6895104 DOI: 10.1038/s41598-019-54768-w] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2019] [Accepted: 11/18/2019] [Indexed: 11/29/2022] Open
Abstract
We developed an Adaptive Reference-Digital Image Correlation (AR-DIC) method that enables unbiased and accurate mechanics measurements of moving biological tissue samples. We applied the AR-DIC analysis to a spontaneously beating cardiomyocyte (CM) tissue, and could provide correct quantifications of tissue displacement and strain for the beating CMs utilizing physiologically-relevant, sarcomere displacement length-based contraction criteria. The data were further synthesized into novel spatiotemporal parameters of CM contraction to account for the CM beating homogeneity, synchronicity, and propagation as holistic measures of functional myocardial tissue development. Our AR-DIC analyses may thus provide advanced non-invasive characterization tools for assessing the development of spontaneously contracting CMs, suggesting an applicability in myocardial regenerative medicine.
Collapse
Grants
- P20 GM104320 NIGMS NIH HHS
- P20 GM113126 NIGMS NIH HHS
- P30 GM127200 NIGMS NIH HHS
- U54 GM115458 NIGMS NIH HHS
- American Heart Association (American Heart Association, Inc.)
- National Science Foundation (NSF)
- NIH/NIGMS Nebraska Center for Integrated Biomolecular Communication (NCIBC) (P20GM113126, PI: Takacs), NIH/NIGMS Nebraska Center for Nanomedicine (P30GM127200, PI: Bronich), Nebraska Collaborative Initiative (PI: Yang)
- NSF | ENG/OAD | Division of Chemical, Bioengineering, Environmental, and Transport Systems (CBET)
- NE DHHS Stem Cell Research Project (2018-07, PI: Lim); UNL Layman New Directions Award (PI: Lim); NIH/NIGMS COBRE NPOD Seed Grant (P20GM104320, PI: Zempleni); NIH/NIGMS Great Plains IDeA-CTR Pilot Grant (1U54GM115458-01, PI: Rizzo)
Collapse
Affiliation(s)
- Akankshya Shradhanjali
- Department of Mechanical and Materials Engineering, University of Nebraska-Lincoln, Lincoln, NE, 68588, USA
| | - Brandon D Riehl
- Department of Mechanical and Materials Engineering, University of Nebraska-Lincoln, Lincoln, NE, 68588, USA
| | - Bin Duan
- Department of Mechanical and Materials Engineering, University of Nebraska-Lincoln, Lincoln, NE, 68588, USA
- Mary & Dick Holland Regenerative Medicine Program, University of Nebraska Medical Center, Omaha, NE, 68198, USA
- Division of Cardiology, Department of Internal Medicine, University of Nebraska Medical Center, Omaha, NE, 68198, USA
| | - Ruiguo Yang
- Department of Mechanical and Materials Engineering, University of Nebraska-Lincoln, Lincoln, NE, 68588, USA
- Mary & Dick Holland Regenerative Medicine Program, University of Nebraska Medical Center, Omaha, NE, 68198, USA
- Nebraska Center for Integrated Biomolecular Communication, University of Nebraska-Lincoln, Lincoln, NE, 68588, USA
| | - Jung Yul Lim
- Department of Mechanical and Materials Engineering, University of Nebraska-Lincoln, Lincoln, NE, 68588, USA.
- Mary & Dick Holland Regenerative Medicine Program, University of Nebraska Medical Center, Omaha, NE, 68198, USA.
| |
Collapse
|
212
|
Neiman G, Scarafía MA, La Greca A, Santín Velazque NL, Garate X, Waisman A, Möbbs AM, Kasai-Brunswick TH, Mesquita F, Martire-Greco D, Moro LN, Luzzani C, Bastos Carvalho A, Sevlever GE, Campos de Carvalho A, Guberman AS, Miriuka SG. Integrin alpha-5 subunit is critical for the early stages of human pluripotent stem cell cardiac differentiation. Sci Rep 2019; 9:18077. [PMID: 31792288 PMCID: PMC6889169 DOI: 10.1038/s41598-019-54352-2] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2019] [Accepted: 11/12/2019] [Indexed: 02/08/2023] Open
Abstract
The stem cell niche has a strong influence in the differentiation potential of human pluripotent stem cells with integrins playing a major role in communicating cells with the extracellular environment. However, it is not well understood how interactions between integrins and the extracellular matrix are involved in cardiac stem cell differentiation. To evaluate this, we performed a profile of integrins expression in two stages of cardiac differentiation: mesodermal progenitors and cardiomyocytes. We found an active regulation of the expression of different integrins during cardiac differentiation. In particular, integrin α5 subunit showed an increased expression in mesodermal progenitors, and a significant downregulation in cardiomyocytes. To analyze the effect of α5 subunit, we modified its expression by using a CRISPRi technique. After its downregulation, a significant impairment in the process of epithelial-to-mesenchymal transition was seen. Early mesoderm development was significantly affected due to a downregulation of key genes such as T Brachyury and TBX6. Furthermore, we observed that repression of integrin α5 during early stages led to a reduction in cardiomyocyte differentiation and impaired contractility. In summary, our results showed the link between changes in cell identity with the regulation of integrin α5 expression through the alteration of early stages of mesoderm commitment.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Tais Hanae Kasai-Brunswick
- Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ, Brazil
| | - Fernanda Mesquita
- Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ, Brazil
| | | | | | | | - Adriana Bastos Carvalho
- Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ, Brazil
| | | | - Antonio Campos de Carvalho
- Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ, Brazil
| | - Alejandra S Guberman
- Laboratorio de Regulación Génica en Células Madre, Departamento de Química Biológica y Departamento de Fisiología y Biología Molecular y Celular, Facultad de Ciencias Exactas y Naturales, UBA, Buenos Aires, Argentina
| | - Santiago G Miriuka
- LIAN-CONICET, FLENI, Buenos Aires, Argentina.
- Consejo Nacional sobre Investgaciones Científicas y Técnias (CONICET), Buenos Aires, Argentina.
| |
Collapse
|
213
|
Takasuna K, Kazusa K, Hayakawa T. Comprehensive Cardiac Safety Assessment using hiPS-cardiomyocytes (Consortium for Safety Assessment using Human iPS Cells: CSAHi). Curr Pharm Biotechnol 2019; 21:829-841. [PMID: 31749424 DOI: 10.2174/1389201020666191024172425] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2019] [Revised: 09/16/2019] [Accepted: 09/24/2019] [Indexed: 11/22/2022]
Abstract
Current cardiac safety assessment platforms (in vitro hERG-centric, APD, and/or in vivo animal QT assays) are not fully predictive of drug-induced Torsades de Pointes (TdP) and do not address other mechanism-based arrhythmia, including ventricular tachycardia or ventricular fibrillation, or cardiac safety liabilities such as contractile and structural cardiotoxicity which are another growing safety concerns. We organized the Consortium for Safety Assessment using Human iPS cells (CSAHi; http://csahi.org/en/) in 2013, based on the Japan Pharmaceutical Manufacturers Association (JPMA), to verify the application of human iPS/ES cell-derived cardiomyocytes for drug safety evaluation. The CSAHi HEART team focused on comprehensive screening strategies to predict a diverse range of cardiotoxicities using recently introduced platforms such as the Multi-Electrode Array (MEA), cellular impedance, Motion Field Imaging (MFI), and optical imaging of Ca transient to identify strengths and weaknesses of each platform. Our study showed that hiPS-CMs used in these platforms could detect pharmacological responses that were more relevant to humans compared to existing hERG, APD, or Langendorff (MAPD/contraction) assays. Further, MEA and other methods such as impedance, MFI, and Ca transient assays provided paradigm changes of platforms for predicting drug-induced QT risk and/or arrhythmia or contractile dysfunctions. In contrast, since discordances such as overestimation (false positive) of arrhythmogenicity, oversight, or opposite conclusions in positive inotropic and negative chronotropic activities to some compounds were also confirmed, possibly due to their functional immaturity of hiPS-CMs, hiPS-CMs should be used in these platforms for cardiac safety assessment based upon their advantages and disadvantages.
Collapse
Affiliation(s)
- Kiyoshi Takasuna
- Consortium for Safety Assessment using Human iPS Cells (CSAHi), Heart Team, Japan
| | - Katsuyuki Kazusa
- Consortium for Safety Assessment using Human iPS cells (CSAHi), Heart team, Japan
| | - Tomohiro Hayakawa
- Consortium for Safety Assessment using Human iPS cells (CSAHi), Heart team, Japan
| |
Collapse
|
214
|
Albers HJ, Passier R, van den Berg A, van der Meer AD. Automated Analysis of Platelet Aggregation on Cultured Endothelium in a Microfluidic Chip Perfused with Human Whole Blood. MICROMACHINES 2019; 10:E781. [PMID: 31739604 PMCID: PMC6915557 DOI: 10.3390/mi10110781] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/11/2019] [Revised: 11/04/2019] [Accepted: 11/13/2019] [Indexed: 12/17/2022]
Abstract
Organ-on-a-chip models with incorporated vasculature are becoming more popular to study platelet biology. A large variety of image analysis techniques are currently used to determine platelet coverage, ranging from manually setting thresholds to scoring platelet aggregates. In this communication, an automated methodology is introduced, which corrects misalignment of a microfluidic channel, automatically defines regions of interest and utilizes a triangle threshold to determine platelet coverages and platelet aggregate size distributions. A comparison between the automated methodology and manual identification of platelet aggregates shows a high accuracy of the triangle methodology. Furthermore, the image analysis methodology can determine platelet coverages and platelet size distributions in microfluidic channels lined with either untreated or activated endothelium used for whole blood perfusion, proving the robustness of the method.
Collapse
Affiliation(s)
- Hugo J. Albers
- BIOS Lab-on-a-Chip Group, University of Twente, 7522 NH Enschede, The Netherlands
- Applied Stem Cell Technologies Group, University of Twente, 7522 NB Enschede, The Netherlands
| | - Robert Passier
- Applied Stem Cell Technologies Group, University of Twente, 7522 NB Enschede, The Netherlands
| | - Albert van den Berg
- BIOS Lab-on-a-Chip Group, University of Twente, 7522 NH Enschede, The Netherlands
| | - Andries D. van der Meer
- Applied Stem Cell Technologies Group, University of Twente, 7522 NB Enschede, The Netherlands
| |
Collapse
|
215
|
High-Throughput Phenotyping Toolkit for Characterizing Cellular Models of Hypertrophic Cardiomyopathy In Vitro. Methods Protoc 2019; 2:mps2040083. [PMID: 31717790 PMCID: PMC6961126 DOI: 10.3390/mps2040083] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2019] [Revised: 10/18/2019] [Accepted: 10/24/2019] [Indexed: 12/12/2022] Open
Abstract
Hypertrophic cardiomyopathy (HCM) is a prevalent and complex cardiovascular disease characterised by multifarious hallmarks, a heterogeneous set of clinical manifestations, and several molecular mechanisms. Various disease models have been developed to study this condition, but they often show contradictory results, due to technical constraints and/or model limitations. Therefore, new tools are needed to better investigate pathological features in an unbiased and technically refined approach, towards improving understanding of disease progression. Herein, we describe three simple protocols to phenotype cellular models of HCM in vitro, in a high-throughput manner where technical artefacts are minimized. These are aimed at investigating: (1) Hypertrophy, by measuring cell volume by flow cytometry; (2) HCM molecular features, through the analysis of a hypertrophic marker, multinucleation, and sarcomeric disarray by high-content imaging; and (3) mitochondrial respiration and content via the Seahorse™ platform. Collectively, these protocols comprise straightforward tools to evaluate molecular and functional parameters of HCM phenotypes in cardiomyocytes in vitro. These facilitate greater understanding of HCM and high-throughput drug screening approaches and are accessible to all researchers of cardiac disease modelling. Whilst HCM is used as an exemplar, the approaches described are applicable to other cellular models where the investigation of identical biological changes is paramount.
Collapse
|
216
|
The "MYOCYTER" - Convert cellular and cardiac contractions into numbers with ImageJ. Sci Rep 2019; 9:15112. [PMID: 31641278 PMCID: PMC6805901 DOI: 10.1038/s41598-019-51676-x] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2019] [Accepted: 10/02/2019] [Indexed: 12/28/2022] Open
Abstract
Measurement and quantification of cardiomyocyte or cardiac contractions as important (patho) physiologic parameters require highly specialized and expensive setups of fully integrated hard- and software that may be very difficult to use and may also depend on highly sophisticated methods of further data evaluation. With MYOCYTER (MC) we present a complete and highly customizable open-source macro for ImageJ, enabling fast, reliable user-friendly large scale analysis extracting an extensive amount of parameters from (even multiple) video recorded contracting cells or whole hearts, gained from a very competitive experimental setup. The extracted parameters enable extensive further (statistical) analysis to identify and quantify the effects of pathologic changes or drugs. Using videos following known mathematical functions, we were able to demonstrate the accuracy of MYOCYTER’s data extraction, also successfully applied the software to both cellular and animal models, introducing innovations like dynamic thresholding, automatic multi-cell recognition, “masked” evaluation and change of applied parameters even after evaluation.
Collapse
|
217
|
Pang L, Sager P, Yang X, Shi H, Sannajust F, Brock M, Wu JC, Abi-Gerges N, Lyn-Cook B, Berridge BR, Stockbridge N. Workshop Report: FDA Workshop on Improving Cardiotoxicity Assessment With Human-Relevant Platforms. Circ Res 2019; 125:855-867. [PMID: 31600125 PMCID: PMC6788760 DOI: 10.1161/circresaha.119.315378] [Citation(s) in RCA: 51] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/13/2019] [Accepted: 09/09/2019] [Indexed: 12/15/2022]
Abstract
Given that cardiovascular safety concerns remain the leading cause of drug attrition at the preclinical drug development stage, the National Center for Toxicological Research of the US Food and Drug Administration hosted a workshop to discuss current gaps and challenges in translating preclinical cardiovascular safety data to humans. This white paper summarizes the topics presented by speakers from academia, industry, and government intended to address the theme of improving cardiotoxicity assessment in drug development. The main conclusion is that to reduce cardiovascular safety liabilities of new therapeutic agents, there is an urgent need to integrate human-relevant platforms/approaches into drug development. Potential regulatory applications of human-derived cardiomyocytes and future directions in employing human-relevant platforms to fill the gaps and overcome barriers and challenges in preclinical cardiovascular safety assessment were discussed. This paper is intended to serve as an initial step in a public-private collaborative development program for human-relevant cardiotoxicity tools, particularly for cardiotoxicities characterized by contractile dysfunction or structural injury.
Collapse
Affiliation(s)
- Li Pang
- From the Division of Systems Biology, National Center for Toxicological Research, U.S. Food and Drug Administration (L.P.)
| | | | - Xi Yang
- Division of Cardiovascular and Renal Products, Center for Drug Evaluation and Research, U.S. Food and Drug Administration (X.Y.)
| | - Hong Shi
- Discovery Toxicology, Bristol-Myers Squibb (BMS) Company (H.S.)
| | - Frederick Sannajust
- Safety & Exploratory Pharmacology Department, SALAR Division, Merck & Co (F.S.)
| | | | - Joseph C Wu
- Stanford University School of Medicine, Stanford Cardiovascular Institute (J.C.W.)
| | | | - Beverly Lyn-Cook
- Division of Biochemical Toxicology, National Center for Toxicological Research, U.S. Food and Drug Administration (B.L.-C.)
| | - Brian R Berridge
- Division of the National Toxicology Program, National Institute of Environmental Health Sciences, National Institutes of Health (B.R.B.)
| | - Norman Stockbridge
- Division of Cardiovascular and Renal Products, Center for Drug Evaluation and Research, U.S. Food and Drug Administration (N.S.)
| |
Collapse
|
218
|
Ronaldson-Bouchard K, Yeager K, Teles D, Chen T, Ma S, Song L, Morikawa K, Wobma HM, Vasciaveo A, Ruiz EC, Yazawa M, Vunjak-Novakovic G. Engineering of human cardiac muscle electromechanically matured to an adult-like phenotype. Nat Protoc 2019; 14:2781-2817. [PMID: 31492957 PMCID: PMC7195192 DOI: 10.1038/s41596-019-0189-8] [Citation(s) in RCA: 90] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2018] [Accepted: 05/13/2019] [Indexed: 12/19/2022]
Abstract
The application of tissue-engineering approaches to human induced pluripotent stem (hiPS) cells enables the development of physiologically relevant human tissue models for in vitro studies of development, regeneration, and disease. However, the immature phenotype of hiPS-derived cardiomyocytes (hiPS-CMs) limits their utility. We have developed a protocol to generate engineered cardiac tissues from hiPS cells and electromechanically mature them toward an adult-like phenotype. This protocol also provides optimized methods for analyzing these tissues' functionality, ultrastructure, and cellular properties. The approach relies on biological adaptation of cultured tissues subjected to biomimetic cues, applied at an increasing intensity, to drive accelerated maturation. hiPS cells are differentiated into cardiomyocytes and used immediately after the first contractions are observed, when they still have developmental plasticity. This starting cell population is combined with human dermal fibroblasts, encapsulated in a fibrin hydrogel and allowed to compact under passive tension in a custom-designed bioreactor. After 7 d of tissue formation, the engineered tissues are matured for an additional 21 d by increasingly intense electromechanical stimulation. Tissue properties can be evaluated by measuring contractile function, responsiveness to electrical stimuli, ultrastructure properties (sarcomere length, mitochondrial density, networks of transverse tubules), force-frequency and force-length relationships, calcium handling, and responses to β-adrenergic agonists. Cell properties can be evaluated by monitoring gene/protein expression, oxidative metabolism, and electrophysiology. The protocol takes 4 weeks and requires experience in advanced cell culture and machining methods for bioreactor fabrication. We anticipate that this protocol will improve modeling of cardiac diseases and testing of drugs.
Collapse
Affiliation(s)
| | - Keith Yeager
- Department of Biomedical Engineering, Columbia University, New York, NY, USA
| | - Diogo Teles
- Department of Biomedical Engineering, Columbia University, New York, NY, USA
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Braga, Portugal
- ICVS/3B's, PT Government Associate Laboratory, Braga/Guimarães, Portugal
| | - Timothy Chen
- Department of Biomedical Engineering, Columbia University, New York, NY, USA
| | - Stephen Ma
- Department of Biomedical Engineering, Columbia University, New York, NY, USA
| | - LouJin Song
- Departments of Rehabilitation and Regenerative Medicine, and of Pharmacology, College of Physicians and Surgeons, Columbia University, New York, NY, USA
| | - Kumi Morikawa
- Departments of Rehabilitation and Regenerative Medicine, and of Pharmacology, College of Physicians and Surgeons, Columbia University, New York, NY, USA
| | - Holly M Wobma
- Department of Biomedical Engineering, Columbia University, New York, NY, USA
| | | | - Edward C Ruiz
- Department of Biomedical Engineering, Columbia University, New York, NY, USA
- Department of Systems Biology, Columbia University, New York, NY, USA
| | - Masayuki Yazawa
- Departments of Rehabilitation and Regenerative Medicine, and of Pharmacology, College of Physicians and Surgeons, Columbia University, New York, NY, USA
| | - Gordana Vunjak-Novakovic
- Department of Biomedical Engineering, Columbia University, New York, NY, USA.
- Department of Medicine, Columbia University, New York, NY, USA.
| |
Collapse
|
219
|
Alvarez-Paino M, Amer MH, Nasir A, Cuzzucoli Crucitti V, Thorpe J, Burroughs L, Needham D, Denning C, Alexander MR, Alexander C, Rose FRAJ. Polymer Microparticles with Defined Surface Chemistry and Topography Mediate the Formation of Stem Cell Aggregates and Cardiomyocyte Function. ACS APPLIED MATERIALS & INTERFACES 2019; 11:34560-34574. [PMID: 31502820 DOI: 10.1021/acsami.9b04769] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Surface-functionalized microparticles are relevant to fields spanning engineering and biomedicine, with uses ranging from cell culture to advanced cell delivery. Varying topographies of biomaterial surfaces are also being investigated as mediators of cell-material interactions and subsequent cell fate. To investigate competing or synergistic effects of chemistry and topography in three-dimensional cell cultures, methods are required to introduce these onto microparticles without modification of their underlying morphology or bulk properties. In this study, a new approach for surface functionalization of poly(lactic acid) (PLA) microparticles is reported that allows decoration of the outer shell of the polyesters with additional polymers via aqueous atom transfer radical polymerization routes. PLA microparticles with smooth or dimpled surfaces were functionalized with poly(poly(ethylene glycol) methacrylate) and poly[N-(3-aminopropyl)methacrylamide] brushes, chosen for their potential abilities to mediate cell adhesion. X-ray photoelectron spectroscopy and time-of-flight secondary ion mass spectrometry analysis indicated homogeneous coverage of the microparticles with polymer brushes while maintaining the original topographies. These materials were used to investigate the relative importance of surface chemistry and topography both on the formation of human immortalized mesenchymal stem cell (hiMSCs) particle-cell aggregates and on the enhanced contractility of cardiomyocytes derived from human-induced pluripotent stem cells (hiPSC-CMs). The influence of surface chemistry was found to be more important on the size of particle-cell aggregates than topographies. In addition, surface chemistries that best promoted hiMSC attachment also improved hiPSC-CM attachment and contractility. These studies demonstrated a new route to obtain topo-chemical combinations on polyester-based biomaterials and provided clear evidence for the predominant effect of surface functionality over micron-scale dimpled topography in cell-microparticle interactions. These findings, thus, provide new guiding principles for the design of biomaterial interfaces to direct cell function.
Collapse
|
220
|
van Meer BJ, Krotenberg A, Sala L, Davis RP, Eschenhagen T, Denning C, Tertoolen LGJ, Mummery CL. Simultaneous measurement of excitation-contraction coupling parameters identifies mechanisms underlying contractile responses of hiPSC-derived cardiomyocytes. Nat Commun 2019; 10:4325. [PMID: 31541103 PMCID: PMC6754438 DOI: 10.1038/s41467-019-12354-8] [Citation(s) in RCA: 44] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2018] [Accepted: 09/04/2019] [Indexed: 02/07/2023] Open
Abstract
Cardiomyocytes from human induced pluripotent stem cells (hiPSC-CMs) are increasingly recognized as valuable for determining the effects of drugs on ion channels but they do not always accurately predict contractile responses of the human heart. This is in part attributable to their immaturity but the sensitivity of measurement tools may also be limiting. Measuring action potential, calcium flux or contraction individually misses critical information that is captured when interrogating the complete excitation-contraction coupling cascade simultaneously. Here, we develop an hypothesis-based statistical algorithm that identifies mechanisms of action. We design and build a high-speed optical system to measure action potential, cytosolic calcium and contraction simultaneously using fluorescent sensors. These measurements are automatically processed, quantified and then assessed by the algorithm. Multiplexing these three critical physical features of hiPSC-CMs allows identification of all major drug classes affecting contractility with detection sensitivities higher than individual measurement of action potential, cytosolic calcium or contraction.
Collapse
Affiliation(s)
- Berend J van Meer
- Dept. of Anatomy and Embryology, Leiden University Medical Center, Einthovenweg 20, 2333 ZD, Leiden, The Netherlands
| | - Ana Krotenberg
- Dept. of Anatomy and Embryology, Leiden University Medical Center, Einthovenweg 20, 2333 ZD, Leiden, The Netherlands
| | - Luca Sala
- Dept. of Anatomy and Embryology, Leiden University Medical Center, Einthovenweg 20, 2333 ZD, Leiden, The Netherlands.,Istituto Auxologico Italiano, IRCCS, Center for Cardiac Arrhythmias of Genetic Origin, Laboratory of Cardiovascular Genetics, Via Zucchi 18, 20095, Cusano Milanino, MI, Italy
| | - Richard P Davis
- Dept. of Anatomy and Embryology, Leiden University Medical Center, Einthovenweg 20, 2333 ZD, Leiden, The Netherlands
| | - Thomas Eschenhagen
- Dept. of Experimental Pharmacology and Toxicology, University Medical Center Hamburg Eppendorf, Martinistraße 52, 20246, Hamburg, Germany.,DZHK (German Center for Cardiovascular Research), partner site Hamburg/Kiel/Lübeck, Hamburg, Germany
| | - Chris Denning
- Dept. of Stem Cell Biology, Centre for Biomolecular Sciences, University of Nottingham, University Park, Nottingham, NG7 2RD, UK
| | - Leon G J Tertoolen
- Dept. of Anatomy and Embryology, Leiden University Medical Center, Einthovenweg 20, 2333 ZD, Leiden, The Netherlands
| | - Christine L Mummery
- Dept. of Anatomy and Embryology, Leiden University Medical Center, Einthovenweg 20, 2333 ZD, Leiden, The Netherlands. .,Dept. of Applied Stem Cell Technologies, University of Twente, Drienerlolaan 5, 7522 NB, Enschede, The Netherlands.
| |
Collapse
|
221
|
de Korte T, Katili PA, Mohd Yusof NAN, van Meer BJ, Saleem U, Burton FL, Smith GL, Clements P, Mummery CL, Eschenhagen T, Hansen A, Denning C. Unlocking Personalized Biomedicine and Drug Discovery with Human Induced Pluripotent Stem Cell-Derived Cardiomyocytes: Fit for Purpose or Forever Elusive? Annu Rev Pharmacol Toxicol 2019; 60:529-551. [PMID: 31506008 DOI: 10.1146/annurev-pharmtox-010919-023309] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
In recent decades, drug development costs have increased by approximately a hundredfold, and yet about 1 in 7 licensed drugs are withdrawn from the market, often due to cardiotoxicity. This review considers whether technologies using human induced pluripotent stem cell-derived cardiomyocytes (hiPSC-CMs) could complement existing assays to improve discovery and safety while reducing socioeconomic costs and assisting with regulatory guidelines on cardiac safety assessments. We draw on lessons from our own work to suggest a panel of 12 drugs that will be useful in testing the suitability of hiPSC-CM platforms to evaluate contractility. We review issues, including maturity versus complexity, consistency, quality, and cost, while considering a potential need to incorporate auxiliary approaches to compensate for limitations in hiPSC-CM technology. We give examples on how coupling hiPSC-CM technologies with Cas9/CRISPR genome engineering is starting to be used to personalize diagnosis, stratify risk, provide mechanistic insights, and identify new pathogenic variants for cardiovascular disease.
Collapse
Affiliation(s)
- Tessa de Korte
- Ncardia, 2333 BD Leiden, The Netherlands.,Department of Anatomy and Embryology, Leiden University Medical Center, 2333 ZD Leiden, The Netherlands
| | - Puspita A Katili
- Department of Stem Cell Biology, University of Nottingham, NG7 2RD Nottingham, United Kingdom;
| | - Nurul A N Mohd Yusof
- Department of Stem Cell Biology, University of Nottingham, NG7 2RD Nottingham, United Kingdom;
| | - Berend J van Meer
- Department of Anatomy and Embryology, Leiden University Medical Center, 2333 ZD Leiden, The Netherlands
| | - Umber Saleem
- Department of Experimental Pharmacology and Toxicology, University Medical Center Hamburg Eppendorf, 20246 Hamburg, Germany
| | - Francis L Burton
- Institute of Cardiovascular and Medical Sciences, University of Glasgow, G12 8QQ Glasgow, United Kingdom
| | - Godfrey L Smith
- Institute of Cardiovascular and Medical Sciences, University of Glasgow, G12 8QQ Glasgow, United Kingdom
| | - Peter Clements
- David Jack Centre for Research & Development, GlaxoSmithKline, SG12 0DP Hertfordshire, United Kingdom
| | - Christine L Mummery
- Department of Anatomy and Embryology, Leiden University Medical Center, 2333 ZD Leiden, The Netherlands
| | - Thomas Eschenhagen
- Department of Experimental Pharmacology and Toxicology, University Medical Center Hamburg Eppendorf, 20246 Hamburg, Germany
| | - Arne Hansen
- Department of Experimental Pharmacology and Toxicology, University Medical Center Hamburg Eppendorf, 20246 Hamburg, Germany
| | - Chris Denning
- Department of Stem Cell Biology, University of Nottingham, NG7 2RD Nottingham, United Kingdom;
| |
Collapse
|
222
|
Padrón-Barthe L, Villalba-Orero M, Gómez-Salinero JM, Domínguez F, Román M, Larrasa-Alonso J, Ortiz-Sánchez P, Martínez F, López-Olañeta M, Bonzón-Kulichenko E, Vázquez J, Martí-Gómez C, Santiago DJ, Prados B, Giovinazzo G, Gómez-Gaviro MV, Priori S, Garcia-Pavia P, Lara-Pezzi E. Severe Cardiac Dysfunction and Death Caused by Arrhythmogenic Right Ventricular Cardiomyopathy Type 5 Are Improved by Inhibition of Glycogen Synthase Kinase-3β. Circulation 2019; 140:1188-1204. [PMID: 31567019 PMCID: PMC6784777 DOI: 10.1161/circulationaha.119.040366] [Citation(s) in RCA: 61] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
BACKGROUND Arrhythmogenic cardiomyopathy/arrhythmogenic right ventricular cardiomyopathy (ARVC) is an inherited cardiac disease characterized by fibrofatty replacement of the myocardium, resulting in heart failure and sudden cardiac death. The most aggressive arrhythmogenic cardiomyopathy/ARVC subtype is ARVC type 5 (ARVC5), caused by a p.S358L mutation in TMEM43 (transmembrane protein 43). The function and localization of TMEM43 are unknown, as is the mechanism by which the p.S358L mutation causes the disease. Here, we report the characterization of the first transgenic mouse model of ARVC5. METHODS We generated transgenic mice overexpressing TMEM43 in either its wild-type or p.S358L mutant (TMEM43-S358L) form in postnatal cardiomyocytes under the control of the α-myosin heavy chain promoter. RESULTS We found that mice expressing TMEM43-S358L recapitulate the human disease and die at a young age. Mutant TMEM43 causes cardiomyocyte death and severe fibrofatty replacement. We also demonstrate that TMEM43 localizes at the nuclear membrane and interacts with emerin and β-actin. TMEM43-S358L shows partial delocalization to the cytoplasm, reduced interaction with emerin and β-actin, and activation of glycogen synthase kinase-3β (GSK3β). Furthermore, we show that targeting cardiac fibrosis has no beneficial effect, whereas overexpression of the calcineurin splice variant calcineurin Aβ1 results in GSK3β inhibition and improved cardiac function and survival. Similarly, treatment of TMEM43 mutant mice with a GSK3β inhibitor improves cardiac function. Finally, human induced pluripotent stem cells bearing the p.S358L mutation also showed contractile dysfunction that was partially restored after GSK3β inhibition. CONCLUSIONS Our data provide evidence that TMEM43-S358L leads to sustained cardiomyocyte death and fibrofatty replacement. Overexpression of calcineurin Aβ1 in TMEM43 mutant mice or chemical GSK3β inhibition improves cardiac function and increases mice life span. Our results pave the way toward new therapeutic approaches for ARVC5.
Collapse
Affiliation(s)
- Laura Padrón-Barthe
- Centro Nacional de Investigaciones Cardiovasculares Carlos III (CNIC), Madrid, Spain (L.P.-B., M.V.-O., J.M.G.-S., F.D., J.L.-A., P.O.-S., F.M., M.L.-O., E.B.-K., J.V., C.M.-G., D.J.S., B.P., G.G., S.P., E.L.-P.).,Heart Failure and Inherited Cardiac Diseases Unit, Department of Cardiology, Hospital Universitario Puerta de Hierro Majadahonda, Madrid, Spain (L.P.-B., F.D., M.R., P.G.-P.).,CIBER Cardiovascular Diseases (CIBERCV), Madrid, Spain (L.P.-B., F.D., E.B.-K., J.V., C.M.-G., P.G.-P., E.L.-P.)
| | - María Villalba-Orero
- Centro Nacional de Investigaciones Cardiovasculares Carlos III (CNIC), Madrid, Spain (L.P.-B., M.V.-O., J.M.G.-S., F.D., J.L.-A., P.O.-S., F.M., M.L.-O., E.B.-K., J.V., C.M.-G., D.J.S., B.P., G.G., S.P., E.L.-P.)
| | - Jesús M Gómez-Salinero
- Centro Nacional de Investigaciones Cardiovasculares Carlos III (CNIC), Madrid, Spain (L.P.-B., M.V.-O., J.M.G.-S., F.D., J.L.-A., P.O.-S., F.M., M.L.-O., E.B.-K., J.V., C.M.-G., D.J.S., B.P., G.G., S.P., E.L.-P.)
| | - Fernando Domínguez
- Centro Nacional de Investigaciones Cardiovasculares Carlos III (CNIC), Madrid, Spain (L.P.-B., M.V.-O., J.M.G.-S., F.D., J.L.-A., P.O.-S., F.M., M.L.-O., E.B.-K., J.V., C.M.-G., D.J.S., B.P., G.G., S.P., E.L.-P.).,Heart Failure and Inherited Cardiac Diseases Unit, Department of Cardiology, Hospital Universitario Puerta de Hierro Majadahonda, Madrid, Spain (L.P.-B., F.D., M.R., P.G.-P.).,CIBER Cardiovascular Diseases (CIBERCV), Madrid, Spain (L.P.-B., F.D., E.B.-K., J.V., C.M.-G., P.G.-P., E.L.-P.).,ERN GUARD-HEART (European Reference Network for Rare and Complex Diseases of the Heart) (F.D., S.P., P.G.-P.)
| | - Marta Román
- Heart Failure and Inherited Cardiac Diseases Unit, Department of Cardiology, Hospital Universitario Puerta de Hierro Majadahonda, Madrid, Spain (L.P.-B., F.D., M.R., P.G.-P.)
| | - Javier Larrasa-Alonso
- Centro Nacional de Investigaciones Cardiovasculares Carlos III (CNIC), Madrid, Spain (L.P.-B., M.V.-O., J.M.G.-S., F.D., J.L.-A., P.O.-S., F.M., M.L.-O., E.B.-K., J.V., C.M.-G., D.J.S., B.P., G.G., S.P., E.L.-P.)
| | - Paula Ortiz-Sánchez
- Centro Nacional de Investigaciones Cardiovasculares Carlos III (CNIC), Madrid, Spain (L.P.-B., M.V.-O., J.M.G.-S., F.D., J.L.-A., P.O.-S., F.M., M.L.-O., E.B.-K., J.V., C.M.-G., D.J.S., B.P., G.G., S.P., E.L.-P.)
| | - Fernando Martínez
- Centro Nacional de Investigaciones Cardiovasculares Carlos III (CNIC), Madrid, Spain (L.P.-B., M.V.-O., J.M.G.-S., F.D., J.L.-A., P.O.-S., F.M., M.L.-O., E.B.-K., J.V., C.M.-G., D.J.S., B.P., G.G., S.P., E.L.-P.)
| | - Marina López-Olañeta
- Centro Nacional de Investigaciones Cardiovasculares Carlos III (CNIC), Madrid, Spain (L.P.-B., M.V.-O., J.M.G.-S., F.D., J.L.-A., P.O.-S., F.M., M.L.-O., E.B.-K., J.V., C.M.-G., D.J.S., B.P., G.G., S.P., E.L.-P.)
| | - Elena Bonzón-Kulichenko
- Centro Nacional de Investigaciones Cardiovasculares Carlos III (CNIC), Madrid, Spain (L.P.-B., M.V.-O., J.M.G.-S., F.D., J.L.-A., P.O.-S., F.M., M.L.-O., E.B.-K., J.V., C.M.-G., D.J.S., B.P., G.G., S.P., E.L.-P.).,CIBER Cardiovascular Diseases (CIBERCV), Madrid, Spain (L.P.-B., F.D., E.B.-K., J.V., C.M.-G., P.G.-P., E.L.-P.)
| | - Jesús Vázquez
- Centro Nacional de Investigaciones Cardiovasculares Carlos III (CNIC), Madrid, Spain (L.P.-B., M.V.-O., J.M.G.-S., F.D., J.L.-A., P.O.-S., F.M., M.L.-O., E.B.-K., J.V., C.M.-G., D.J.S., B.P., G.G., S.P., E.L.-P.).,CIBER Cardiovascular Diseases (CIBERCV), Madrid, Spain (L.P.-B., F.D., E.B.-K., J.V., C.M.-G., P.G.-P., E.L.-P.)
| | - Carlos Martí-Gómez
- Centro Nacional de Investigaciones Cardiovasculares Carlos III (CNIC), Madrid, Spain (L.P.-B., M.V.-O., J.M.G.-S., F.D., J.L.-A., P.O.-S., F.M., M.L.-O., E.B.-K., J.V., C.M.-G., D.J.S., B.P., G.G., S.P., E.L.-P.).,CIBER Cardiovascular Diseases (CIBERCV), Madrid, Spain (L.P.-B., F.D., E.B.-K., J.V., C.M.-G., P.G.-P., E.L.-P.)
| | - Demetrio J Santiago
- Centro Nacional de Investigaciones Cardiovasculares Carlos III (CNIC), Madrid, Spain (L.P.-B., M.V.-O., J.M.G.-S., F.D., J.L.-A., P.O.-S., F.M., M.L.-O., E.B.-K., J.V., C.M.-G., D.J.S., B.P., G.G., S.P., E.L.-P.)
| | - Belén Prados
- Centro Nacional de Investigaciones Cardiovasculares Carlos III (CNIC), Madrid, Spain (L.P.-B., M.V.-O., J.M.G.-S., F.D., J.L.-A., P.O.-S., F.M., M.L.-O., E.B.-K., J.V., C.M.-G., D.J.S., B.P., G.G., S.P., E.L.-P.)
| | - Giovanna Giovinazzo
- Centro Nacional de Investigaciones Cardiovasculares Carlos III (CNIC), Madrid, Spain (L.P.-B., M.V.-O., J.M.G.-S., F.D., J.L.-A., P.O.-S., F.M., M.L.-O., E.B.-K., J.V., C.M.-G., D.J.S., B.P., G.G., S.P., E.L.-P.)
| | - María Victoria Gómez-Gaviro
- Departamento de Medicina y Cirugía Experimental, Instituto de Investigación Sanitaria Gregorio Marañón, Madrid, Spain (M.V.G.-G.).,Centro de Investigación Biomédica en Red de Salud Mental (CIBERSAM), Madrid, Spain (M.V.G.-G.)
| | - Silvia Priori
- Centro Nacional de Investigaciones Cardiovasculares Carlos III (CNIC), Madrid, Spain (L.P.-B., M.V.-O., J.M.G.-S., F.D., J.L.-A., P.O.-S., F.M., M.L.-O., E.B.-K., J.V., C.M.-G., D.J.S., B.P., G.G., S.P., E.L.-P.).,ERN GUARD-HEART (European Reference Network for Rare and Complex Diseases of the Heart) (F.D., S.P., P.G.-P.).,Molecular Cardiology, IRCCS Istituti Clinici Scientifici Maugeri, Pavia, Italy (S.P.)
| | - Pablo Garcia-Pavia
- Heart Failure and Inherited Cardiac Diseases Unit, Department of Cardiology, Hospital Universitario Puerta de Hierro Majadahonda, Madrid, Spain (L.P.-B., F.D., M.R., P.G.-P.).,CIBER Cardiovascular Diseases (CIBERCV), Madrid, Spain (L.P.-B., F.D., E.B.-K., J.V., C.M.-G., P.G.-P., E.L.-P.).,ERN GUARD-HEART (European Reference Network for Rare and Complex Diseases of the Heart) (F.D., S.P., P.G.-P.).,Facultad de Ciencias de la Salud, Universidad Francisco de Vitoria, Pozuelo de Alarcón, Madrid, Spain (P.G.-P.).,Faculty of Medicine, Universidad Autónoma de Madrid (UAM), Madrid, Spain (P.G.-P.)
| | - Enrique Lara-Pezzi
- Centro Nacional de Investigaciones Cardiovasculares Carlos III (CNIC), Madrid, Spain (L.P.-B., M.V.-O., J.M.G.-S., F.D., J.L.-A., P.O.-S., F.M., M.L.-O., E.B.-K., J.V., C.M.-G., D.J.S., B.P., G.G., S.P., E.L.-P.).,CIBER Cardiovascular Diseases (CIBERCV), Madrid, Spain (L.P.-B., F.D., E.B.-K., J.V., C.M.-G., P.G.-P., E.L.-P.).,Faculty of Medicine, National Heart & Lung Institute, Imperial College London, UK (E.L.-P.)
| |
Collapse
|
223
|
Ribeiro AJS, Guth BD, Engwall M, Eldridge S, Foley CM, Guo L, Gintant G, Koerner J, Parish ST, Pierson JB, Brock M, Chaudhary KW, Kanda Y, Berridge B. Considerations for an In Vitro, Cell-Based Testing Platform for Detection of Drug-Induced Inotropic Effects in Early Drug Development. Part 2: Designing and Fabricating Microsystems for Assaying Cardiac Contractility With Physiological Relevance Using Human iPSC-Cardiomyocytes. Front Pharmacol 2019; 10:934. [PMID: 31555128 PMCID: PMC6727630 DOI: 10.3389/fphar.2019.00934] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2019] [Accepted: 07/22/2019] [Indexed: 12/14/2022] Open
Abstract
Contractility of the myocardium engines the pumping function of the heart and is enabled by the collective contractile activity of its muscle cells: cardiomyocytes. The effects of drugs on the contractility of human cardiomyocytes in vitro can provide mechanistic insight that can support the prediction of clinical cardiac drug effects early in drug development. Cardiomyocytes differentiated from human-induced pluripotent stem cells have high potential for overcoming the current limitations of contractility assays because they attach easily to extracellular materials and last long in culture, while having human- and patient-specific properties. Under these conditions, contractility measurements can be non-destructive and minimally invasive, which allow assaying sub-chronic effects of drugs. For this purpose, the function of cardiomyocytes in vitro must reflect physiological settings, which is not observed in cultured cardiomyocytes derived from induced pluripotent stem cells because of the fetal-like properties of their contractile machinery. Primary cardiomyocytes or tissues of human origin fully represent physiological cellular properties, but are not easily available, do not last long in culture, and do not attach easily to force sensors or mechanical actuators. Microengineered cellular systems with a more mature contractile function have been developed in the last 5 years to overcome this limitation of stem cell-derived cardiomyocytes, while simultaneously measuring contractile endpoints with integrated force sensors/actuators and image-based techniques. Known effects of engineered microenvironments on the maturity of cardiomyocyte contractility have also been discovered in the development of these systems. Based on these discoveries, we review here design criteria of microengineered platforms of cardiomyocytes derived from pluripotent stem cells for measuring contractility with higher physiological relevance. These criteria involve the use of electromechanical, chemical and morphological cues, co-culture of different cell types, and three-dimensional cellular microenvironments. We further discuss the use and the current challenges for developing and improving these novel technologies for predicting clinical effects of drugs based on contractility measurements with cardiomyocytes differentiated from induced pluripotent stem cells. Future research should establish contexts of use in drug development for novel contractility assays with stem cell-derived cardiomyocytes.
Collapse
Affiliation(s)
- Alexandre J S Ribeiro
- Division of Applied Regulatory Science, Office of Clinical Pharmacology, Office of Translation Sciences, Center for Drug Evaluation and Research, US Food and Drug Administration, Silver Spring, MD, United States
| | - Brian D Guth
- Department of Drug Discovery Sciences, Boehringer Ingelheim Pharma GmbH & Co KG, Biberach an der Riss, Germany.,PreClinical Drug Development Platform (PCDDP), North-West University, Potchefstroom, South Africa
| | - Michael Engwall
- Safety Pharmacology and Animal Research Center, Amgen Research, Thousand Oaks, CA, United States
| | - Sandy Eldridge
- Division of Cancer Treatment and Diagnosis, National Cancer Institute, National Institutes of Health, Bethesda, MD, United States
| | - C Michael Foley
- Department of Integrative Pharmacology, Integrated Sciences and Technology, AbbVie, North Chicago, IL, United States
| | - Liang Guo
- Laboratory of Investigative Toxicology, Frederick National Laboratory for Cancer Research, Frederick, MD, United States
| | - Gary Gintant
- Department of Integrative Pharmacology, Integrated Sciences and Technology, AbbVie, North Chicago, IL, United States
| | - John Koerner
- Division of Applied Regulatory Science, Office of Clinical Pharmacology, Office of Translation Sciences, Center for Drug Evaluation and Research, US Food and Drug Administration, Silver Spring, MD, United States
| | - Stanley T Parish
- Health and Environmental Sciences Institute, Washington, DC, United States
| | - Jennifer B Pierson
- Health and Environmental Sciences Institute, Washington, DC, United States
| | - Mathew Brock
- Department of Safety Assessment, Genentech, South San Francisco, CA, United States
| | - Khuram W Chaudhary
- Global Safety Pharmacology, GlaxoSmithKline plc, Collegeville, PA, United States
| | - Yasunari Kanda
- Division of Pharmacology, National Institute of Health Sciences, Kanagawa, Japan
| | - Brian Berridge
- National Toxicology Program, National Institute of Environmental Health Sciences, Research Triangle Park, NC, United States
| |
Collapse
|
224
|
Guth BD, Engwall M, Eldridge S, Foley CM, Guo L, Gintant G, Koerner J, Parish ST, Pierson JB, Ribeiro AJS, Zabka T, Chaudhary KW, Kanda Y, Berridge B. Considerations for an In Vitro, Cell-Based Testing Platform for Detection of Adverse Drug-Induced Inotropic Effects in Early Drug Development. Part 1: General Considerations for Development of Novel Testing Platforms. Front Pharmacol 2019; 10:884. [PMID: 31447679 PMCID: PMC6697071 DOI: 10.3389/fphar.2019.00884] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2019] [Accepted: 07/15/2019] [Indexed: 01/10/2023] Open
Abstract
Drug-induced effects on cardiac contractility can be assessed through the measurement of the maximal rate of pressure increase in the left ventricle (LVdP/dtmax) in conscious animals, and such studies are often conducted at the late stage of preclinical drug development. Detection of such effects earlier in drug research using simpler, in vitro test systems would be a valuable addition to our strategies for identifying the best possible drug development candidates. Thus, testing platforms with reasonably high throughput, and affordable costs would be helpful for early screening purposes. There may also be utility for testing platforms that provide mechanistic information about how a given drug affects cardiac contractility. Finally, there could be in vitro testing platforms that could ultimately contribute to the regulatory safety package of a new drug. The characteristics needed for a successful cell or tissue-based testing platform for cardiac contractility will be dictated by its intended use. In this article, general considerations are presented with the intent of guiding the development of new testing platforms that will find utility in drug research and development. In the following article (part 2), specific aspects of using human-induced stem cell-derived cardiomyocytes for this purpose are addressed.
Collapse
Affiliation(s)
- Brian D Guth
- Department of Drug Discovery Sciences, Boehringer Ingelheim Pharma GmbH & Co KG, Biberach an der Riss, Germany.,PreClinical Drug Development Platform (PCDDP), North-West University, Potchefstroom, South Africa
| | - Michael Engwall
- Safety Pharmacology and Animal Research Center, Amgen Research, Thousand Oaks, CA, United States
| | - Sandy Eldridge
- Division of Cancer Treatment and Diagnosis, National Cancer Institute, National Institutes of Health, Bethesda, MD, United States
| | - C Michael Foley
- Department of Integrative Pharmacology, Integrated Sciences and Technology, AbbVie, North Chicago, IL, United States
| | - Liang Guo
- Laboratory of Investigative Toxicology, Frederick National Laboratory for Cancer Research, Leidos Biomedical Research, Inc., Frederick, MD, United States
| | - Gary Gintant
- Department of Integrative Pharmacology, Integrated Sciences and Technology, AbbVie, North Chicago, IL, United States
| | - John Koerner
- Center for Drug Evaluation and Research, US Food and Drug Administration, Silver Spring, MD, United States
| | - Stanley T Parish
- Health and Environmental Sciences Institute, Washington, DC, United States
| | - Jennifer B Pierson
- Health and Environmental Sciences Institute, Washington, DC, United States
| | - Alexandre J S Ribeiro
- Division of Applied Regulatory Science, Office of Clinical Pharmacology, Office of Translation Sciences, Center for Drug Evaluation and Research, US Food and Drug Administration, Silver Spring, MD, United States
| | - Tanja Zabka
- Department of Safety Assessment, Genentech, South San Francisco, CA, United States
| | - Khuram W Chaudhary
- Global Safety Pharmacology, GlaxoSmithKline plc, Collegeville, PA, United States
| | - Yasunari Kanda
- Division of Pharmacology, National Institute of Health Sciences, Kanagawa, Japan
| | - Brian Berridge
- National Toxicology Program, National Institute of Environmental Health Sciences, Durham, NC, United States
| |
Collapse
|
225
|
Roshanbinfar K, Mohammadi Z, Sheikh-Mahdi Mesgar A, Dehghan MM, Oommen OP, Hilborn J, Engel FB. Carbon nanotube doped pericardial matrix derived electroconductive biohybrid hydrogel for cardiac tissue engineering. Biomater Sci 2019; 7:3906-3917. [PMID: 31322163 DOI: 10.1039/c9bm00434c] [Citation(s) in RCA: 69] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Cardiovascular diseases represent a major socio-economic burden. In recent years, considerable effort has been invested in optimizing cell delivery strategies to advance cell transplantation therapies to restore heart function for example after an infarct. A particular issue is that the implantation of cells using a non-electroconductive matrix potentially causes arrhythmia. Here, we demonstrate that our hydrazide-functionalized nanotubes-pericardial matrix-derived electroconductive biohybrid hydrogel provides a suitable environment for maturation of human-induced pluripotent stem cell (hiPSC)-derived cardiomyocytes. hiPSC-derived cardiomyocytes exhibited an improved contraction amplitude (>500%) on conductive hydrogels compared to cells cultured on Matrigel®. This was accompanied by increased cellular alignment, enhanced connexin 43 expression, and improved sarcomere organization suggesting maturation of the hiPSC-derived cardiomyocytes. Sarcomeric length of these cells increased from 1.3 to 1.7 μm. Moreover, 3D cell-laden engineered tissues exhibited enhanced calcium handling as well as positive response to external electrical and pharmaceutical stimulation. Collectively, our data indicate that our biohybrid hydrogels consisting of solubilized nanostructured pericardial matrix and electroconductive positively charged hydrazide-conjugated carbon nanotubes provide a promising material for stem cell-based cardiac tissue engineering.
Collapse
Affiliation(s)
- Kaveh Roshanbinfar
- Experimental Renal and Cardiovascular Research, Department of Nephropathology, Institute of Pathology, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), 91054 Erlangen, Germany. and Muscle Research Center Erlangen (MURCE), 91054 Erlangen, Germany and Biomaterials group, Bioceramics laboratory, Biomedical Engineering Department, Faculty of New Sciences and Technologies, University of Tehran, 1439957131 Tehran, Iran
| | - Zahra Mohammadi
- Biomaterials group, Bioceramics laboratory, Biomedical Engineering Department, Faculty of New Sciences and Technologies, University of Tehran, 1439957131 Tehran, Iran
| | - Abdorreza Sheikh-Mahdi Mesgar
- Biomaterials group, Bioceramics laboratory, Biomedical Engineering Department, Faculty of New Sciences and Technologies, University of Tehran, 1439957131 Tehran, Iran
| | - Mohammad Mehdi Dehghan
- Department of Surgery and Radiology, Faculty of Veterinary Medicine, University of Tehran, Tehran, 1417466191, Iran
| | - Oommen P Oommen
- Bioengineering and Nanomedicine Lab, Faculty of Biomedical Sciences and Engineering, Tampere University of Technology and BioMediTech Institute, 33720 Tampere, Finland
| | - Jöns Hilborn
- Department of Chemistry, Angstrom Laboratory, Uppsala University, SE 75121 Uppsala, Sweden
| | - Felix B Engel
- Experimental Renal and Cardiovascular Research, Department of Nephropathology, Institute of Pathology, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), 91054 Erlangen, Germany. and Muscle Research Center Erlangen (MURCE), 91054 Erlangen, Germany
| |
Collapse
|
226
|
Mosqueira D, Smith JGW, Bhagwan JR, Denning C. Modeling Hypertrophic Cardiomyopathy: Mechanistic Insights and Pharmacological Intervention. Trends Mol Med 2019; 25:775-790. [PMID: 31324451 DOI: 10.1016/j.molmed.2019.06.005] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2019] [Revised: 06/12/2019] [Accepted: 06/18/2019] [Indexed: 02/06/2023]
Abstract
Hypertrophic cardiomyopathy (HCM) is a prevalent and complex cardiovascular disease where cardiac dysfunction often associates with mutations in sarcomeric genes. Various models based on tissue explants, isolated cardiomyocytes, skinned myofibrils, and purified actin/myosin preparations have uncovered disease hallmarks, enabling the development of putative therapeutics, with some reaching clinical trials. Newly developed human pluripotent stem cell (hPSC)-based models could be complementary by overcoming some of the inconsistencies of earlier systems, whilst challenging and/or clarifying previous findings. In this article we compare recent progress in unveiling multiple HCM mechanisms in different models, highlighting similarities and discrepancies. We explore how insight is facilitating the design of new HCM therapeutics, including those that regulate metabolism, contraction and heart rhythm, providing a future perspective for treatment of HCM.
Collapse
Affiliation(s)
- Diogo Mosqueira
- Department of Stem Cell Biology, Centre of Biomolecular Sciences, University of Nottingham, Nottingham NG7 2RD, UK.
| | - James G W Smith
- Faculty of Medicine and Health Sciences, Norwich Medical School, University of East Anglia, Norwich Research Park, Norwich NR4 7UQ, UK
| | - Jamie R Bhagwan
- Department of Stem Cell Biology, Centre of Biomolecular Sciences, University of Nottingham, Nottingham NG7 2RD, UK
| | - Chris Denning
- Department of Stem Cell Biology, Centre of Biomolecular Sciences, University of Nottingham, Nottingham NG7 2RD, UK
| |
Collapse
|
227
|
Zuppinger C. 3D Cardiac Cell Culture: A Critical Review of Current Technologies and Applications. Front Cardiovasc Med 2019; 6:87. [PMID: 31294032 PMCID: PMC6606697 DOI: 10.3389/fcvm.2019.00087] [Citation(s) in RCA: 107] [Impact Index Per Article: 17.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2018] [Accepted: 06/10/2019] [Indexed: 12/23/2022] Open
Abstract
Three-dimensional (3D) cell culture is often mentioned in the context of regenerative medicine, for example, for the replacement of ischemic myocardium with tissue-engineered muscle constructs. Additionally, 3D cell culture is used, although less commonly, in basic research, toxicology, and drug development. These applications have recently benefited from innovations in stem cell technologies allowing the mass-production of hiPSC-derived cardiomyocytes or other cardiovascular cells, and from new culturing methods including organ-on-chip and bioprinting technologies. On the analysis side, improved sensors, computer-assisted image analysis, and data collection techniques have lowered the bar for switching to 3D cell culture models. Nevertheless, 3D cell culture is not as widespread or standardized as traditional cell culture methods using monolayers of cells on flat surfaces. The many possibilities of 3D cell culture, but also its limitations, drawbacks and methodological pitfalls, are less well-known. This article reviews currently used cardiovascular 3D cell culture production methods and analysis techniques for the investigation of cardiotoxicity, in drug development and for disease modeling.
Collapse
Affiliation(s)
- Christian Zuppinger
- Cardiology, Department of Biomedical Research, Bern University Hospital, Bern, Switzerland
| |
Collapse
|
228
|
Williams R. Circulation Research "In This Issue" Anthology. Circ Res 2019; 124:e123-e148. [PMID: 31170049 DOI: 10.1161/res.0000000000000275] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
229
|
Azad A, Poloni G, Sontayananon N, Jiang H, Gehmlich K. The giant titin: how to evaluate its role in cardiomyopathies. J Muscle Res Cell Motil 2019; 40:159-167. [PMID: 31147888 PMCID: PMC6726704 DOI: 10.1007/s10974-019-09518-w] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2019] [Accepted: 05/28/2019] [Indexed: 01/02/2023]
Abstract
Titin, the largest protein known, has attracted a lot of interest in the cardiovascular field in recent years, since the discovery that truncating variants in titin are commonly found in patients with dilated cardiomyopathy. This review will discuss the contribution of variants in titin to inherited cardiac conditions (cardiomyopathies) and how model systems, such as animals and cellular systems, can help to provide insights into underlying disease mechanisms. It will also give an outlook onto exciting technological developments, such as in the field of CRISPR, which may facilitate future research on titin variants and their contributions to cardiomyopathies.
Collapse
Affiliation(s)
- Amar Azad
- Division of Cardiovascular Medicine, Radcliffe Department of Medicine and British Heart Foundation Centre of Research Excellence, University of Oxford, Oxford, OX3 9DU, UK
- Swansea University Medical School, Swansea, SA2 8PP, UK
| | - Giulia Poloni
- Division of Cardiovascular Medicine, Radcliffe Department of Medicine and British Heart Foundation Centre of Research Excellence, University of Oxford, Oxford, OX3 9DU, UK
| | - Naeramit Sontayananon
- Division of Cardiovascular Medicine, Radcliffe Department of Medicine and British Heart Foundation Centre of Research Excellence, University of Oxford, Oxford, OX3 9DU, UK
| | - He Jiang
- Division of Cardiovascular Medicine, Radcliffe Department of Medicine and British Heart Foundation Centre of Research Excellence, University of Oxford, Oxford, OX3 9DU, UK
| | - Katja Gehmlich
- Division of Cardiovascular Medicine, Radcliffe Department of Medicine and British Heart Foundation Centre of Research Excellence, University of Oxford, Oxford, OX3 9DU, UK.
- Institute of Cardiovascular Sciences, University of Birmingham, Birmingham, B15 2TT, UK.
| |
Collapse
|
230
|
Sala L, Gnecchi M, Schwartz PJ. Long QT Syndrome Modelling with Cardiomyocytes Derived from Human-induced Pluripotent Stem Cells. Arrhythm Electrophysiol Rev 2019; 8:105-110. [PMID: 31114684 PMCID: PMC6528025 DOI: 10.15420/aer.2019.1.1] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Long QT syndrome (LQTS) is a potentially severe arrhythmogenic disorder, associated with a prolonged QT interval and sudden death, caused by mutations in key genes regulating cardiac electrophysiology. Current strategies to study LQTS in vitro include heterologous systems or animal models. Despite their value, the overwhelming power of genetic tools has exposed the many limitations of these technologies. In 2010, human-induced pluripotent stem cells (hiPSCs) revolutionised the field and allowed scientists to study in vitro some of the disease traits of LQTS on hiPSC-derived cardiomyocytes (hiPSC-CMs) from LQTS patients. In this concise review we present how the hiPSC technology has been used to model three main forms of LQTS and the severe form of LQTS associated with mutations in calmodulin. We also introduce some of the most recent challenges that must be tackled in the upcoming years to successfully shift hiPSC-CMs from powerful in vitro disease modelling tools into assets to improve risk stratification and clinical decision-making.
Collapse
Affiliation(s)
- Luca Sala
- Istituto Auxologico Italiano, IRCCS, Laboratory of Cardiovascular Genetics Milan, Italy
| | - Massimiliano Gnecchi
- Coronary Care Unit and Laboratory of Experimental Cardiology for Cell and Molecular Therapy, IRCCS Policlinico San Matteo Foundation Pavia, Italy.,Department of Medicine, University of Cape Town Cape Town, South Africa
| | - Peter J Schwartz
- Istituto Auxologico Italiano, IRCCS, Laboratory of Cardiovascular Genetics Milan, Italy.,Istituto Auxologico Italiano, IRCCS, Center for Cardiac Arrhythmias of Genetic Origin Milan, Italy.,Cardiovascular Genetics Laboratory, Hatter Institute for Cardiovascular Research in Africa, Department of Medicine, University of Cape Town Cape Town, South Africa
| |
Collapse
|
231
|
Toepfer CN, Sharma A, Cicconet M, Garfinkel AC, Mücke M, Neyazi M, Willcox JA, Agarwal R, Schmid M, Rao J, Ewoldt J, Pourquié O, Chopra A, Chen CS, Seidman JG, Seidman CE. SarcTrack. Circ Res 2019; 124:1172-1183. [PMID: 30700234 PMCID: PMC6485312 DOI: 10.1161/circresaha.118.314505] [Citation(s) in RCA: 88] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/30/2018] [Revised: 01/18/2019] [Accepted: 01/30/2019] [Indexed: 12/18/2022]
Abstract
RATIONALE Human induced pluripotent stem cell-derived cardiomyocytes (hiPSC-CMs) in combination with CRISPR/Cas9 genome editing provide unparalleled opportunities to study cardiac biology and disease. However, sarcomeres, the fundamental units of myocyte contraction, are immature and nonlinear in hiPSC-CMs, which technically challenge accurate functional interrogation of contractile parameters in beating cells. Furthermore, existing analysis methods are relatively low-throughput, indirectly assess contractility, or only assess well-aligned sarcomeres found in mature cardiac tissues. OBJECTIVE We aimed to develop an analysis platform that directly, rapidly, and automatically tracks sarcomeres in beating cardiomyocytes. The platform should assess sarcomere content, contraction and relaxation parameters, and beat rate. METHODS AND RESULTS We developed SarcTrack, a MatLab software that monitors fluorescently tagged sarcomeres in hiPSC-CMs. The algorithm determines sarcomere content, sarcomere length, and returns rates of sarcomere contraction and relaxation. By rapid measurement of hundreds of sarcomeres in each hiPSC-CM, SarcTrack provides large data sets for robust statistical analyses of multiple contractile parameters. We validated SarcTrack by analyzing drug-treated hiPSC-CMs, confirming the contractility effects of compounds that directly activate (CK-1827452) or inhibit (MYK-461) myosin molecules or indirectly alter contractility (verapamil and propranolol). SarcTrack analysis of hiPSC-CMs carrying a heterozygous truncation variant in the myosin-binding protein C ( MYBPC3) gene, which causes hypertrophic cardiomyopathy, recapitulated seminal disease phenotypes including cardiac hypercontractility and diminished relaxation, abnormalities that normalized with MYK-461 treatment. CONCLUSIONS SarcTrack provides a direct and efficient method to quantitatively assess sarcomere function. By improving existing contractility analysis methods and overcoming technical challenges associated with functional evaluation of hiPSC-CMs, SarcTrack enhances translational prospects for sarcomere-regulating therapeutics and accelerates interrogation of human cardiac genetic variants.
Collapse
Affiliation(s)
- Christopher N. Toepfer
- From the Department of Genetics (C.N.T., A.S., A.C.G., M.N., J.A.L.W., R.A., M.S., J.R., O.P., J.G.S., C.E.S.), Harvard Medical School, Boston, MA
- Cardiovascular Medicine, Radcliffe Department of Medicine (C.N.T.), University of Oxford, United Kingdom
- Wellcome Centre for Human Genetics (C.N.T.), University of Oxford, United Kingdom
| | - Arun Sharma
- From the Department of Genetics (C.N.T., A.S., A.C.G., M.N., J.A.L.W., R.A., M.S., J.R., O.P., J.G.S., C.E.S.), Harvard Medical School, Boston, MA
| | - Marcelo Cicconet
- Image and Data Analysis Core (M.C.), Harvard Medical School, Boston, MA
| | - Amanda C. Garfinkel
- From the Department of Genetics (C.N.T., A.S., A.C.G., M.N., J.A.L.W., R.A., M.S., J.R., O.P., J.G.S., C.E.S.), Harvard Medical School, Boston, MA
| | - Michael Mücke
- Cardiovascular and Metabolic Sciences, Max Delbrück Center for Molecular Medicine, Berlin, Germany (M.M.)
- German Centre for Cardiovascular Research, Berlin, Germany (M.M.)
- Charité-Universitätsmedizin, Berlin, Germany (M.M.)
| | - Meraj Neyazi
- From the Department of Genetics (C.N.T., A.S., A.C.G., M.N., J.A.L.W., R.A., M.S., J.R., O.P., J.G.S., C.E.S.), Harvard Medical School, Boston, MA
- Hannover Medical School, Germany (M.N.)
| | - Jon A.L. Willcox
- From the Department of Genetics (C.N.T., A.S., A.C.G., M.N., J.A.L.W., R.A., M.S., J.R., O.P., J.G.S., C.E.S.), Harvard Medical School, Boston, MA
| | - Radhika Agarwal
- From the Department of Genetics (C.N.T., A.S., A.C.G., M.N., J.A.L.W., R.A., M.S., J.R., O.P., J.G.S., C.E.S.), Harvard Medical School, Boston, MA
| | - Manuel Schmid
- From the Department of Genetics (C.N.T., A.S., A.C.G., M.N., J.A.L.W., R.A., M.S., J.R., O.P., J.G.S., C.E.S.), Harvard Medical School, Boston, MA
- Deutsches Herzzentrum München, Technische Universität München, Germany (M.S.)
| | - Jyoti Rao
- From the Department of Genetics (C.N.T., A.S., A.C.G., M.N., J.A.L.W., R.A., M.S., J.R., O.P., J.G.S., C.E.S.), Harvard Medical School, Boston, MA
- Department of Pathology (J.R., O.P.), Brigham and Women’s Hospital, Boston, MA
- Harvard Stem Cell Institute, Boston, MA (J.R., O.P.)
| | - Jourdan Ewoldt
- Biomedical Engineering, Boston University, MA (J.E., A.C., C.S.C.)
- The Wyss Institute for Biologically Inspired Engineering at Harvard University, Boston, MA (J.E., A.C., C.S.C.)
| | - Olivier Pourquié
- From the Department of Genetics (C.N.T., A.S., A.C.G., M.N., J.A.L.W., R.A., M.S., J.R., O.P., J.G.S., C.E.S.), Harvard Medical School, Boston, MA
- Department of Pathology (J.R., O.P.), Brigham and Women’s Hospital, Boston, MA
- Harvard Stem Cell Institute, Boston, MA (J.R., O.P.)
| | - Anant Chopra
- Biomedical Engineering, Boston University, MA (J.E., A.C., C.S.C.)
- The Wyss Institute for Biologically Inspired Engineering at Harvard University, Boston, MA (J.E., A.C., C.S.C.)
| | - Christopher S. Chen
- Biomedical Engineering, Boston University, MA (J.E., A.C., C.S.C.)
- The Wyss Institute for Biologically Inspired Engineering at Harvard University, Boston, MA (J.E., A.C., C.S.C.)
| | - Jonathan G. Seidman
- From the Department of Genetics (C.N.T., A.S., A.C.G., M.N., J.A.L.W., R.A., M.S., J.R., O.P., J.G.S., C.E.S.), Harvard Medical School, Boston, MA
| | - Christine E. Seidman
- From the Department of Genetics (C.N.T., A.S., A.C.G., M.N., J.A.L.W., R.A., M.S., J.R., O.P., J.G.S., C.E.S.), Harvard Medical School, Boston, MA
- Cardiovascular Division, Department of Medicine (C.E.S.), Brigham and Women’s Hospital, Boston, MA
- Howard Hughes Medical Institute, Chevy Chase, MD (C.E.S.)
| |
Collapse
|
232
|
Callaghan NI, Hadipour-Lakmehsari S, Lee SH, Gramolini AO, Simmons CA. Modeling cardiac complexity: Advancements in myocardial models and analytical techniques for physiological investigation and therapeutic development in vitro. APL Bioeng 2019; 3:011501. [PMID: 31069331 PMCID: PMC6481739 DOI: 10.1063/1.5055873] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2018] [Accepted: 12/31/2018] [Indexed: 02/06/2023] Open
Abstract
Cardiomyopathies, heart failure, and arrhythmias or conduction blockages impact millions of patients worldwide and are associated with marked increases in sudden cardiac death, decline in the quality of life, and the induction of secondary pathologies. These pathologies stem from dysfunction in the contractile or conductive properties of the cardiomyocyte, which as a result is a focus of fundamental investigation, drug discovery and therapeutic development, and tissue engineering. All of these foci require in vitro myocardial models and experimental techniques to probe the physiological functions of the cardiomyocyte. In this review, we provide a detailed exploration of different cell models, disease modeling strategies, and tissue constructs used from basic to translational research. Furthermore, we highlight recent advancements in imaging, electrophysiology, metabolic measurements, and mechanical and contractile characterization modalities that are advancing our understanding of cardiomyocyte physiology. With this review, we aim to both provide a biological framework for engineers contributing to the field and demonstrate the technical basis and limitations underlying physiological measurement modalities for biologists attempting to take advantage of these state-of-the-art techniques.
Collapse
Affiliation(s)
| | | | | | | | - Craig A. Simmons
- Author to whom correspondence should be addressed: . Present address: Ted Rogers Centre for Heart
Research, 661 University Avenue, 14th Floor Toronto, Ontario M5G 1M1, Canada. Tel.:
416-946-0548. Fax: 416-978-7753
| |
Collapse
|
233
|
Cardiac macrotissues-on-a-plate models for phenotypic drug screens. Adv Drug Deliv Rev 2019; 140:93-100. [PMID: 30902615 DOI: 10.1016/j.addr.2019.03.002] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2018] [Revised: 02/11/2019] [Accepted: 03/13/2019] [Indexed: 12/17/2022]
Abstract
Facilitated by the introduction of human induced pluripotent stem cells and protocols for their efficient directed differentiation at high quantity and quality, innovative human heart muscle models are being developed for applications in drug screens. Employed models range from the microscopic cardiomyocytes-on-a-chip scale to the cardiac macrotissues-on-a-plate scale. Whilst cardiomyocyte-on-a-chip models can be readily adapted to high-throughput primary screening, they are limited as to the deep phenotyping of contractility, and here in particular contractile force development. In lower throughput cardiac macrotissue-on-a-plate platforms, organotypic function, including anisotropic electrical spread of excitation and contractility, can be recapitulated at the macroscopic scale. This review serves as an overview of cardiac macrotissue-on-a-plate technologies with a focus on their application in the investigation of drug effects on heart muscle contractility and disease modeling.
Collapse
|
234
|
Abstract
There is a need for organotypic in vitro models that resemble the native tissue in functionality and tissue architecture for disease models and drug development. To this end, many 3D culture formats have been developed over time. Among the most often used type is the scaffold-free multicellular aggregate, also called spheroid, that forms by self-assembly. However, working with 3D cultures can be challenging because single cells are not as accessible as in 2D cultures and standard lab procedures must be adapted or replaced altogether. This chapter describes methods to create cardiac spheroids consisting of human iPSC-derived cardiomyocytes and cardiac fibroblasts and how to measure contractility or calcium signals using quantitative video analysis and confocal microscopy. Emphasis is on the particular challenges that 3D cultures pose and on affordable methods that do not require specialized equipment.
Collapse
Affiliation(s)
- Christian Zuppinger
- Cardiology Department, DBMR MEM C812, University Hospital Bern, Bern, Switzerland.
| |
Collapse
|
235
|
Mannhardt I, Warncke C, Trieu HK, Müller J, Eschenhagen T. Piezo-bending actuators for isometric or auxotonic contraction analysis of engineered heart tissue. J Tissue Eng Regen Med 2018; 13:3-11. [PMID: 30334614 DOI: 10.1002/term.2755] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2018] [Revised: 06/28/2018] [Accepted: 09/24/2018] [Indexed: 01/02/2023]
Abstract
Engineered heart tissue (EHT) has proven as valuable tool for disease modelling, drug safety screening, and cardiac repair. Especially in combination with the stem cell technology, these in vitro models of the human heart have generated interest not only of basic cardiovascular researchers but also of regulatory authorities responsible for drug safety. A main limitation of 3D-based assays for evaluating cardiotoxicity is their limited throughput. We integrated piezo-bending actuators in a 24-well system for the generation of strip-like rat and human EHT attached to hollow, elastic silicone posts. Muscle contractions of EHTs induced a measurable electrical current in the piezo-bending actuators that could be analysed for contraction amplitude, frequency, and contraction and relaxation kinetics. Compared with the standard video-optical analysis of contractile activity, the new system allows for (a) the analysis of several tissues in parallel, (b) switching between auxotonic and isometric contractions by inserting a stiff metal post in the silicone post opposing the piezo actuator, (c) continuous measurement over days with low data volume (megabyte), (d) automated measurement without the necessity of adjustment of tissue position for video-optical analysis, (e) reduced complexity and costs, (f) high sensitivity of contraction detection, (g) calculation of absolute contraction force, and (h) suitability for variable tissue geometries. The new set-up for contraction analysis based on piezo-bending actuators is a promising new method for the parallel screening of EHT for pharmacological drug effects and other applications of muscle tissue engineering (e.g., skeletal muscle engineering or cardiac repair).
Collapse
Affiliation(s)
- Ingra Mannhardt
- Department of Experimental Pharmacology and Toxicology, Cardiovascular Research Center, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- DZHK (German Center for Cardiovascular Research), partner site Hamburg/Kiel/Lübeck, Germany
| | - Christoph Warncke
- Institute of Microsystems Technology, Hamburg University of Technology, Hamburg, Germany
| | - Hoc Khiem Trieu
- Institute of Microsystems Technology, Hamburg University of Technology, Hamburg, Germany
| | - Jörg Müller
- Institute of Microsystems Technology, Hamburg University of Technology, Hamburg, Germany
| | - Thomas Eschenhagen
- Department of Experimental Pharmacology and Toxicology, Cardiovascular Research Center, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- DZHK (German Center for Cardiovascular Research), partner site Hamburg/Kiel/Lübeck, Germany
| |
Collapse
|
236
|
Lemme M, Ulmer BM, Lemoine MD, Zech ATL, Flenner F, Ravens U, Reichenspurner H, Rol-Garcia M, Smith G, Hansen A, Christ T, Eschenhagen T. Atrial-like Engineered Heart Tissue: An In Vitro Model of the Human Atrium. Stem Cell Reports 2018; 11:1378-1390. [PMID: 30416051 PMCID: PMC6294072 DOI: 10.1016/j.stemcr.2018.10.008] [Citation(s) in RCA: 115] [Impact Index Per Article: 16.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2018] [Revised: 10/09/2018] [Accepted: 10/10/2018] [Indexed: 12/20/2022] Open
Abstract
Cardiomyocytes (CMs) generated from human induced pluripotent stem cells (hiPSCs) are under investigation for their suitability as human models in preclinical drug development. Antiarrhythmic drug development focuses on atrial biology for the treatment of atrial fibrillation. Here we used recent retinoic acid-based protocols to generate atrial CMs from hiPSCs and establish right atrial engineered heart tissue (RA-EHT) as a 3D model of human atrium. EHT from standard protocol-derived hiPSC-CMs (Ctrl-EHT) and intact human muscle strips served as comparators. RA-EHT exhibited higher mRNA and protein concentrations of atrial-selective markers, faster contraction kinetics, lower force generation, shorter action potential duration, and higher repolarization fraction than Ctrl-EHTs. In addition, RA-EHTs but not Ctrl-EHTs responded to pharmacological manipulation of atrial-selective potassium currents. RA- and Ctrl-EHTs’ behavior reflected differences between human atrial and ventricular muscle preparations. Taken together, RA-EHT is a model of human atrium that may be useful in preclinical drug screening. Retinoic acid induced differentiation of hiPSCs into atrial-like myocytes 3D engineered heart tissue format favored atrial specificity compared with 2D culture Atrial-like engineered heart tissue can be used as a model of human atrium
Collapse
Affiliation(s)
- Marta Lemme
- Institute of Experimental Pharmacology and Toxicology, University Medical Center Hamburg-Eppendorf, Martinistrasse 52, 20246 Hamburg, Germany; DZHK (German Centre for Cardiovascular Research), Partner Site Hamburg/Kiel/Lübeck, 20246 Hamburg, Germany; Clyde Biosciences Ltd, BioCity Scotland, Bo'Ness Road, Newhouse, Lanarkshire ML1 5UH, UK
| | - Bärbel M Ulmer
- Institute of Experimental Pharmacology and Toxicology, University Medical Center Hamburg-Eppendorf, Martinistrasse 52, 20246 Hamburg, Germany; DZHK (German Centre for Cardiovascular Research), Partner Site Hamburg/Kiel/Lübeck, 20246 Hamburg, Germany
| | - Marc D Lemoine
- Institute of Experimental Pharmacology and Toxicology, University Medical Center Hamburg-Eppendorf, Martinistrasse 52, 20246 Hamburg, Germany; DZHK (German Centre for Cardiovascular Research), Partner Site Hamburg/Kiel/Lübeck, 20246 Hamburg, Germany; Department of Cardiology-Electrophysiology, University Heart Center, 20246 Hamburg, Germany
| | - Antonia T L Zech
- Institute of Experimental Pharmacology and Toxicology, University Medical Center Hamburg-Eppendorf, Martinistrasse 52, 20246 Hamburg, Germany; DZHK (German Centre for Cardiovascular Research), Partner Site Hamburg/Kiel/Lübeck, 20246 Hamburg, Germany
| | - Frederik Flenner
- Institute of Experimental Pharmacology and Toxicology, University Medical Center Hamburg-Eppendorf, Martinistrasse 52, 20246 Hamburg, Germany; DZHK (German Centre for Cardiovascular Research), Partner Site Hamburg/Kiel/Lübeck, 20246 Hamburg, Germany
| | - Ursula Ravens
- Institute of Experimental Cardiovascular Medicine, University Heart Center Freiburg-Bad Krozingen, 79106 Freiburg, Germany; Institute of Physiology, Medical Faculty Carl Gustav Carus, TU Dresden, 01307 Dresden, Germany
| | - Hermann Reichenspurner
- DZHK (German Centre for Cardiovascular Research), Partner Site Hamburg/Kiel/Lübeck, 20246 Hamburg, Germany; Department of Cardiovascular Surgery, University Heart Center, 20246 Hamburg, Germany
| | - Miriam Rol-Garcia
- Clyde Biosciences Ltd, BioCity Scotland, Bo'Ness Road, Newhouse, Lanarkshire ML1 5UH, UK
| | - Godfrey Smith
- Clyde Biosciences Ltd, BioCity Scotland, Bo'Ness Road, Newhouse, Lanarkshire ML1 5UH, UK
| | - Arne Hansen
- Institute of Experimental Pharmacology and Toxicology, University Medical Center Hamburg-Eppendorf, Martinistrasse 52, 20246 Hamburg, Germany; DZHK (German Centre for Cardiovascular Research), Partner Site Hamburg/Kiel/Lübeck, 20246 Hamburg, Germany
| | - Torsten Christ
- Institute of Experimental Pharmacology and Toxicology, University Medical Center Hamburg-Eppendorf, Martinistrasse 52, 20246 Hamburg, Germany; DZHK (German Centre for Cardiovascular Research), Partner Site Hamburg/Kiel/Lübeck, 20246 Hamburg, Germany
| | - Thomas Eschenhagen
- Institute of Experimental Pharmacology and Toxicology, University Medical Center Hamburg-Eppendorf, Martinistrasse 52, 20246 Hamburg, Germany; DZHK (German Centre for Cardiovascular Research), Partner Site Hamburg/Kiel/Lübeck, 20246 Hamburg, Germany.
| |
Collapse
|
237
|
Armstrong JPK, Puetzer JL, Serio A, Guex AG, Kapnisi M, Breant A, Zong Y, Assal V, Skaalure SC, King O, Murty T, Meinert C, Franklin AC, Bassindale PG, Nichols MK, Terracciano CM, Hutmacher DW, Drinkwater BW, Klein TJ, Perriman AW, Stevens MM. Engineering Anisotropic Muscle Tissue using Acoustic Cell Patterning. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2018; 30:e1802649. [PMID: 30277617 PMCID: PMC6386124 DOI: 10.1002/adma.201802649] [Citation(s) in RCA: 123] [Impact Index Per Article: 17.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/25/2018] [Revised: 07/13/2018] [Indexed: 05/16/2023]
Abstract
Tissue engineering has offered unique opportunities for disease modeling and regenerative medicine; however, the success of these strategies is dependent on faithful reproduction of native cellular organization. Here, it is reported that ultrasound standing waves can be used to organize myoblast populations in material systems for the engineering of aligned muscle tissue constructs. Patterned muscle engineered using type I collagen hydrogels exhibits significant anisotropy in tensile strength, and under mechanical constraint, produced microscale alignment on a cell and fiber level. Moreover, acoustic patterning of myoblasts in gelatin methacryloyl hydrogels significantly enhances myofibrillogenesis and promotes the formation of muscle fibers containing aligned bundles of myotubes, with a width of 120-150 µm and a spacing of 180-220 µm. The ability to remotely pattern fibers of aligned myotubes without any material cues or complex fabrication procedures represents a significant advance in the field of muscle tissue engineering. In general, these results are the first instance of engineered cell fibers formed from the differentiation of acoustically patterned cells. It is anticipated that this versatile methodology can be applied to many complex tissue morphologies, with broader relevance for spatially organized cell cultures, organoid development, and bioelectronics.
Collapse
Affiliation(s)
- James P. K. Armstrong
- Department of MaterialsDepartment of Bioengineering, and Institute for Biomedical EngineeringImperial College LondonLondonSW7 2AZUK
| | - Jennifer L. Puetzer
- Department of MaterialsDepartment of Bioengineering, and Institute for Biomedical EngineeringImperial College LondonLondonSW7 2AZUK
| | - Andrea Serio
- Department of MaterialsDepartment of Bioengineering, and Institute for Biomedical EngineeringImperial College LondonLondonSW7 2AZUK
| | - Anne Géraldine Guex
- Department of MaterialsDepartment of Bioengineering, and Institute for Biomedical EngineeringImperial College LondonLondonSW7 2AZUK
| | - Michaella Kapnisi
- Department of MaterialsDepartment of Bioengineering, and Institute for Biomedical EngineeringImperial College LondonLondonSW7 2AZUK
| | - Alexandre Breant
- Department of MaterialsDepartment of Bioengineering, and Institute for Biomedical EngineeringImperial College LondonLondonSW7 2AZUK
| | - Yifan Zong
- Department of MaterialsDepartment of Bioengineering, and Institute for Biomedical EngineeringImperial College LondonLondonSW7 2AZUK
| | - Valentine Assal
- Department of MaterialsDepartment of Bioengineering, and Institute for Biomedical EngineeringImperial College LondonLondonSW7 2AZUK
| | - Stacey C. Skaalure
- Department of MaterialsDepartment of Bioengineering, and Institute for Biomedical EngineeringImperial College LondonLondonSW7 2AZUK
| | - Oisín King
- National Heart and Lung InstituteImperial College LondonLondonW12 0NNUK
| | - Tara Murty
- School of Engineering and Applied SciencesHarvard UniversityCambridgeMA02138USA
| | - Christoph Meinert
- Institute of Health and Biomedical InnovationQueensland University of TechnologyBrisbaneQueensland4059Australia
- Australian Research Council Training Centre in Additive BiomanufacturingQueensland University of TechnologyBrisbaneQueensland4059Australia
| | - Amanda C. Franklin
- Department of Mechanical EngineeringUniversity of BristolBristolBS8 1TRUK
| | - Philip G. Bassindale
- Department of Mechanical EngineeringUniversity of BristolBristolBS8 1TRUK
- Bristol Centre for Functional NanomaterialsHH Wills LaboratoryTyndall AvenueBristolBS8 1TLUK
| | - Madeleine K. Nichols
- Department of Mechanical EngineeringUniversity of BristolBristolBS8 1TRUK
- Bristol Centre for Functional NanomaterialsHH Wills LaboratoryTyndall AvenueBristolBS8 1TLUK
- Centre for Organized Matter Chemistry and Centre for Protolife ResearchSchool of ChemistryUniversity of BristolBristolBS8 1TSUK
| | | | - Dietmar W. Hutmacher
- Institute of Health and Biomedical InnovationQueensland University of TechnologyBrisbaneQueensland4059Australia
- Australian Research Council Training Centre in Additive BiomanufacturingQueensland University of TechnologyBrisbaneQueensland4059Australia
| | | | - Travis J. Klein
- Institute of Health and Biomedical InnovationQueensland University of TechnologyBrisbaneQueensland4059Australia
- Australian Research Council Training Centre in Additive BiomanufacturingQueensland University of TechnologyBrisbaneQueensland4059Australia
| | - Adam W. Perriman
- School of Cellular and Molecular MedicineUniversity of BristolBristolBS8 1TLUK
| | - Molly M. Stevens
- Department of MaterialsDepartment of Bioengineering, and Institute for Biomedical EngineeringImperial College LondonLondonSW7 2AZUK
| |
Collapse
|
238
|
van Meer BJ, Sala L, Tertoolen LGJ, Smith GL, Burton FL, Mummery CL. Quantification of Muscle Contraction In Vitro and In Vivo Using MUSCLEMOTION Software: From Stem Cell-Derived Cardiomyocytes to Zebrafish and Human Hearts. ACTA ACUST UNITED AC 2018; 99:e67. [PMID: 30253059 DOI: 10.1002/cphg.67] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Quantification of contraction is essential to the study of cardiac diseases, injury, and responses to drugs. While there are many techniques to assess contractility, most rely on costly, dedicated hardware and advanced informatics, and can only be used in specific experimental models. We have developed an automated open-source software tool (MUSCLEMOTION) for use with standard imaging equipment, to assess contractility in vitro and in vivo and quantify responses to drugs and diseases. We describe high-speed and disturbance-free acquisition of images from either electrically paced or non-paced human pluripotent stem cell-derived cardiomyocytes, isolated adult cardiomyocytes, zebrafish hearts, and human echocardiograms. Recordings are then used as input for automated batch analysis by the MUSCLEMOTION software tool configured with specific settings and parameters tailored to the recording technique. Details on accuracy, interpretation, and troubleshooting are discussed. Acquisition duration depends on the experimental setup and aim, but quantification of drug or disease responses in an in vitro muscle model can typically be completed within a few hours. © 2018 by John Wiley & Sons, Inc.
Collapse
Affiliation(s)
- Berend J van Meer
- Department of Anatomy and Embryology, Leiden University Medical Center, Leiden, The Netherlands
| | - Luca Sala
- Department of Anatomy and Embryology, Leiden University Medical Center, Leiden, The Netherlands.,Present address: Istituto Auxologico Italiano, IRCCS, Center for Cardiac Arrhythmias of Genetic Origin, Laboratory of Cardiovascular Genetics, Cusano Milanino, Italy
| | - Leon G J Tertoolen
- Department of Anatomy and Embryology, Leiden University Medical Center, Leiden, The Netherlands
| | - Godfrey L Smith
- Institute of Cardiovascular and Medical Sciences, College of Medical, Veterinary and Life Science, University of Glasgow, Glasgow, United Kingdom.,Clyde Biosciences, BioCity Scotland, Newhouse, Lanarkshire, United Kingdom
| | - Francis L Burton
- Institute of Cardiovascular and Medical Sciences, College of Medical, Veterinary and Life Science, University of Glasgow, Glasgow, United Kingdom.,Clyde Biosciences, BioCity Scotland, Newhouse, Lanarkshire, United Kingdom
| | - Christine L Mummery
- Department of Anatomy and Embryology, Leiden University Medical Center, Leiden, The Netherlands.,Department of Applied Stem Cell Technologies, University of Twente, Enschede, The Netherlands
| |
Collapse
|
239
|
Dystrophin Cardiomyopathies: Clinical Management, Molecular Pathogenesis and Evolution towards Precision Medicine. J Clin Med 2018; 7:jcm7090291. [PMID: 30235804 PMCID: PMC6162458 DOI: 10.3390/jcm7090291] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2018] [Revised: 09/02/2018] [Accepted: 09/14/2018] [Indexed: 12/16/2022] Open
Abstract
Duchenne’s muscular dystrophy is an X-linked neuromuscular disease that manifests as muscle atrophy and cardiomyopathy in young boys. However, a considerable percentage of carrier females are often diagnosed with cardiomyopathy at an advanced stage. Existing therapy is not disease-specific and has limited effect, thus many patients and symptomatic carrier females prematurely die due to heart failure. Early detection is one of the major challenges that muscular dystrophy patients, carrier females, family members and, research and medical teams face in the complex course of dystrophic cardiomyopathy management. Despite the widespread adoption of advanced imaging modalities such as cardiac magnetic resonance, there is much scope for refining the diagnosis and treatment of dystrophic cardiomyopathy. This comprehensive review will focus on the pertinent clinical aspects of cardiac disease in muscular dystrophy while also providing a detailed consideration of the known and developing concepts in the pathophysiology of muscular dystrophy and forthcoming therapeutic options.
Collapse
|
240
|
Bruyneel AA, McKeithan WL, Feyen DA, Mercola M. Will iPSC-cardiomyocytes revolutionize the discovery of drugs for heart disease? Curr Opin Pharmacol 2018; 42:55-61. [PMID: 30081259 DOI: 10.1016/j.coph.2018.07.003] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2018] [Accepted: 07/01/2018] [Indexed: 12/30/2022]
Abstract
Cardiovascular disease remains the largest single cause of mortality in the Western world, despite significant advances in clinical management over the years. Unfortunately, the development of new cardiovascular medicines is stagnating and can in part be attributed to the difficulty of screening for novel therapeutic strategies due to a lack of suitable models. The advent of human induced pluripotent stem cells and the ability to make limitless numbers of cardiomyocytes could revolutionize heart disease modeling and drug discovery. This review summarizes the state of the art in the field, describes the strengths and weaknesses of the technology, and applications where the model system would be most appropriate.
Collapse
Affiliation(s)
- Arne An Bruyneel
- The Cardiovascular Institute and Department of Medicine, Stanford University School of Medicine, Stanford, CA, USA
| | - Wesley L McKeithan
- The Cardiovascular Institute and Department of Medicine, Stanford University School of Medicine, Stanford, CA, USA
| | - Dries Am Feyen
- The Cardiovascular Institute and Department of Medicine, Stanford University School of Medicine, Stanford, CA, USA
| | - Mark Mercola
- The Cardiovascular Institute and Department of Medicine, Stanford University School of Medicine, Stanford, CA, USA.
| |
Collapse
|