201
|
Kahn SE, Chen YC, Esser N, Taylor AJ, van Raalte DH, Zraika S, Verchere CB. The β Cell in Diabetes: Integrating Biomarkers With Functional Measures. Endocr Rev 2021; 42:528-583. [PMID: 34180979 PMCID: PMC9115372 DOI: 10.1210/endrev/bnab021] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/12/2021] [Indexed: 02/08/2023]
Abstract
The pathogenesis of hyperglycemia observed in most forms of diabetes is intimately tied to the islet β cell. Impairments in propeptide processing and secretory function, along with the loss of these vital cells, is demonstrable not only in those in whom the diagnosis is established but typically also in individuals who are at increased risk of developing the disease. Biomarkers are used to inform on the state of a biological process, pathological condition, or response to an intervention and are increasingly being used for predicting, diagnosing, and prognosticating disease. They are also proving to be of use in the different forms of diabetes in both research and clinical settings. This review focuses on the β cell, addressing the potential utility of genetic markers, circulating molecules, immune cell phenotyping, and imaging approaches as biomarkers of cellular function and loss of this critical cell. Further, we consider how these biomarkers complement the more long-established, dynamic, and often complex measurements of β-cell secretory function that themselves could be considered biomarkers.
Collapse
Affiliation(s)
- Steven E Kahn
- Division of Metabolism, Endocrinology and Nutrition, Department of Medicine, VA Puget Sound Health Care System and University of Washington, Seattle, 98108 WA, USA
| | - Yi-Chun Chen
- BC Children's Hospital Research Institute and Centre for Molecular Medicine and Therapeutics, Vancouver, BC, V5Z 4H4, Canada.,Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, BC, V5Z 4H4, Canada.,Department of Surgery, University of British Columbia, Vancouver, BC, V5Z 4H4, Canada
| | - Nathalie Esser
- Division of Metabolism, Endocrinology and Nutrition, Department of Medicine, VA Puget Sound Health Care System and University of Washington, Seattle, 98108 WA, USA
| | - Austin J Taylor
- BC Children's Hospital Research Institute and Centre for Molecular Medicine and Therapeutics, Vancouver, BC, V5Z 4H4, Canada.,Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, BC, V5Z 4H4, Canada.,Department of Surgery, University of British Columbia, Vancouver, BC, V5Z 4H4, Canada
| | - Daniël H van Raalte
- Department of Internal Medicine, Amsterdam University Medical Center (UMC), Vrije Universiteit (VU) University Medical Center, 1007 MB Amsterdam, The Netherlands.,Department of Experimental Vascular Medicine, Amsterdam University Medical Center (UMC), Academic Medical Center, 1007 MB Amsterdam, The Netherlands
| | - Sakeneh Zraika
- Division of Metabolism, Endocrinology and Nutrition, Department of Medicine, VA Puget Sound Health Care System and University of Washington, Seattle, 98108 WA, USA
| | - C Bruce Verchere
- BC Children's Hospital Research Institute and Centre for Molecular Medicine and Therapeutics, Vancouver, BC, V5Z 4H4, Canada.,Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, BC, V5Z 4H4, Canada.,Department of Surgery, University of British Columbia, Vancouver, BC, V5Z 4H4, Canada
| |
Collapse
|
202
|
Lam S, Hartmann N, Benfeitas R, Zhang C, Arif M, Turkez H, Uhlén M, Englert C, Knight R, Mardinoglu A. Systems Analysis Reveals Ageing-Related Perturbations in Retinoids and Sex Hormones in Alzheimer's and Parkinson's Diseases. Biomedicines 2021; 9:1310. [PMID: 34680427 PMCID: PMC8533098 DOI: 10.3390/biomedicines9101310] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2021] [Revised: 09/22/2021] [Accepted: 09/22/2021] [Indexed: 01/13/2023] Open
Abstract
Neurodegenerative diseases, including Alzheimer's (AD) and Parkinson's diseases (PD), are complex heterogeneous diseases with highly variable patient responses to treatment. Due to the growing evidence for ageing-related clinical and pathological commonalities between AD and PD, these diseases have recently been studied in tandem. In this study, we analysed transcriptomic data from AD and PD patients, and stratified these patients into three subclasses with distinct gene expression and metabolic profiles. Through integrating transcriptomic data with a genome-scale metabolic model and validating our findings by network exploration and co-analysis using a zebrafish ageing model, we identified retinoids as a key ageing-related feature in all subclasses of AD and PD. We also demonstrated that the dysregulation of androgen metabolism by three different independent mechanisms is a source of heterogeneity in AD and PD. Taken together, our work highlights the need for stratification of AD/PD patients and development of personalised and precision medicine approaches based on the detailed characterisation of these subclasses.
Collapse
Affiliation(s)
- Simon Lam
- Faculty of Dentistry, Oral and Craniofacial Sciences, King’s College London, London SE1 9RT, UK;
| | - Nils Hartmann
- Leibniz Institute on Aging-Fritz Lipmann Institute, 07745 Jena, Germany; (N.H.); (C.E.)
| | - Rui Benfeitas
- National Bioinformatics Infrastructure Sweden (NBIS), Science for Life Laboratory, Department of Biochemistry and Biophysics, Stockholm University, SE-17121 Stockholm, Sweden;
| | - Cheng Zhang
- Science for Life Laboratory, KTH—Royal Institute of Technology, SE-17121 Stockholm, Sweden; (C.Z.); (M.A.); (M.U.)
| | - Muhammad Arif
- Science for Life Laboratory, KTH—Royal Institute of Technology, SE-17121 Stockholm, Sweden; (C.Z.); (M.A.); (M.U.)
| | - Hasan Turkez
- Department of Medical Biology, Faculty of Medicine, Atatürk University, 25240 Erzurum, Turkey;
| | - Mathias Uhlén
- Science for Life Laboratory, KTH—Royal Institute of Technology, SE-17121 Stockholm, Sweden; (C.Z.); (M.A.); (M.U.)
| | - Christoph Englert
- Leibniz Institute on Aging-Fritz Lipmann Institute, 07745 Jena, Germany; (N.H.); (C.E.)
- Institute of Biochemistry and Biophysics, Freidrich-Schiller-University Jena, 07745 Jena, Germany
| | - Robert Knight
- Faculty of Dentistry, Oral and Craniofacial Sciences, King’s College London, London SE1 9RT, UK;
| | - Adil Mardinoglu
- Faculty of Dentistry, Oral and Craniofacial Sciences, King’s College London, London SE1 9RT, UK;
- Science for Life Laboratory, KTH—Royal Institute of Technology, SE-17121 Stockholm, Sweden; (C.Z.); (M.A.); (M.U.)
| |
Collapse
|
203
|
Insulin and Insulin Resistance in Alzheimer's Disease. Int J Mol Sci 2021; 22:ijms22189987. [PMID: 34576151 PMCID: PMC8472298 DOI: 10.3390/ijms22189987] [Citation(s) in RCA: 156] [Impact Index Per Article: 39.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2021] [Revised: 09/09/2021] [Accepted: 09/14/2021] [Indexed: 02/08/2023] Open
Abstract
Insulin plays a range of roles as an anabolic hormone in peripheral tissues. It regulates glucose metabolism, stimulates glucose transport into cells and suppresses hepatic glucose production. Insulin influences cell growth, differentiation and protein synthesis, and inhibits catabolic processes such as glycolysis, lipolysis and proteolysis. Insulin and insulin-like growth factor-1 receptors are expressed on all cell types in the central nervous system. Widespread distribution in the brain confirms that insulin signaling plays important and diverse roles in this organ. Insulin is known to regulate glucose metabolism, support cognition, enhance the outgrowth of neurons, modulate the release and uptake of catecholamine, and regulate the expression and localization of gamma-aminobutyric acid (GABA). Insulin is also able to freely cross the blood–brain barrier from the circulation. In addition, changes in insulin signaling, caused inter alia insulin resistance, may accelerate brain aging, and affect plasticity and possibly neurodegeneration. There are two significant insulin signal transduction pathways: the PBK/AKT pathway which is responsible for metabolic effects, and the MAPK pathway which influences cell growth, survival and gene expression. The aim of this study is to describe the role played by insulin in the CNS, in both healthy people and those with pathologies such as insulin resistance and Alzheimer’s disease.
Collapse
|
204
|
Ribeiro R, Santos AC, Calazans MO, De Oliveira ACP, Vieira LB. Is resveratrol a prospective therapeutic strategy in the co-association of glucose metabolism disorders and neurodegenerative diseases? Nutr Neurosci 2021; 25:2442-2457. [PMID: 34514962 DOI: 10.1080/1028415x.2021.1972514] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Objectives: The mechanism behind the progression of Mild Cognitive Impairment (MCI) to Alzheimer's disease (AD) remains poorly understood. However some evidence pointed out that the co-occurrence of metabolic conditions affecting glucose homeostasis, as type 2 diabetes mellitus (T2DM), may be an important catalyst in this context. Notably, candidate drugs which modulate common pathways in the development of MCI-to-AD mediated by T2DM may offer likely therapy for AD. Nonetheless, limited pharmacological alternatives that modulate common pathways in T2DM, MCI, and AD are available. In the recent decades, studies have shown that resveratrol may act as a neuroprotective compound, but little is known about its potential in improving cognitive and metabolic aspects associated with AD progression mediated by the co-association between TDM2-MCI.Methods: In this review, we discuss possible protective mechanisms of resveratrol on shared pathways associated with AD progression mediated by T2DM-MCI co-occurrence.Results: Some studies indicated that insulin resistance and hyperglycemia may be also a T2DM risk factor for the progression of MCI-to-AD, promoting alterations in metabolic pathways associated with neuronal plasticity, and increasing pro-inflammatory environment. Interestingly, basic research and clinical trials indicate that resveratrol may modulate those pathways, showing a potential neuroprotective effect of this polyphenol.Conclusion: Therefore, there is not enough clinical data supporting the translational therapeutic use of resveratrol in this scenario.
Collapse
Affiliation(s)
- R Ribeiro
- Departamento de Farmacologia, ICB, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - A C Santos
- Departamento de Farmacologia, ICB, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - M O Calazans
- Departamento de Farmacologia, ICB, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - A C P De Oliveira
- Departamento de Farmacologia, ICB, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - L B Vieira
- Departamento de Farmacologia, ICB, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| |
Collapse
|
205
|
Dekens DW, Eisel ULM, Gouweleeuw L, Schoemaker RG, De Deyn PP, Naudé PJW. Lipocalin 2 as a link between ageing, risk factor conditions and age-related brain diseases. Ageing Res Rev 2021; 70:101414. [PMID: 34325073 DOI: 10.1016/j.arr.2021.101414] [Citation(s) in RCA: 50] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2021] [Revised: 07/19/2021] [Accepted: 07/20/2021] [Indexed: 12/12/2022]
Abstract
Chronic (neuro)inflammation plays an important role in many age-related central nervous system (CNS) diseases, including Alzheimer's disease, Parkinson's disease and vascular dementia. Inflammation also characterizes many conditions that form a risk factor for these CNS disorders, such as physical inactivity, obesity and cardiovascular disease. Lipocalin 2 (Lcn2) is an inflammatory protein shown to be involved in different age-related CNS diseases, as well as risk factor conditions thereof. Lcn2 expression is increased in the periphery and the brain in different age-related CNS diseases and also their risk factor conditions. Experimental studies indicate that Lcn2 contributes to various neuropathophysiological processes of age-related CNS diseases, including exacerbated neuroinflammation, cell death and iron dysregulation, which may negatively impact cognitive function. We hypothesize that increased Lcn2 levels as a result of age-related risk factor conditions may sensitize the brain and increase the risk to develop age-related CNS diseases. In this review we first provide a comprehensive overview of the known functions of Lcn2, and its effects in the CNS. Subsequently, this review explores Lcn2 as a potential (neuro)inflammatory link between different risk factor conditions and the development of age-related CNS disorders. Altogether, evidence convincingly indicates Lcn2 as a key constituent in ageing and age-related brain diseases.
Collapse
Affiliation(s)
- Doortje W Dekens
- Department of Neurology and Alzheimer Center Groningen, University Medical Center Groningen, University of Groningen, Groningen, the Netherlands; Department of Molecular Neurobiology, Groningen Institute for Evolutionary Life Sciences (GELIFES), University of Groningen, Groningen, the Netherlands
| | - Ulrich L M Eisel
- Department of Molecular Neurobiology, Groningen Institute for Evolutionary Life Sciences (GELIFES), University of Groningen, Groningen, the Netherlands
| | - Leonie Gouweleeuw
- Department of Molecular Neurobiology, Groningen Institute for Evolutionary Life Sciences (GELIFES), University of Groningen, Groningen, the Netherlands
| | - Regien G Schoemaker
- Department of Molecular Neurobiology, Groningen Institute for Evolutionary Life Sciences (GELIFES), University of Groningen, Groningen, the Netherlands
| | - Peter P De Deyn
- Department of Neurology and Alzheimer Center Groningen, University Medical Center Groningen, University of Groningen, Groningen, the Netherlands; Laboratory of Neurochemistry and Behaviour, Biobank, Institute Born-Bunge, University of Antwerp, Antwerp, Belgium
| | - Petrus J W Naudé
- Department of Neurology and Alzheimer Center Groningen, University Medical Center Groningen, University of Groningen, Groningen, the Netherlands; Department of Molecular Neurobiology, Groningen Institute for Evolutionary Life Sciences (GELIFES), University of Groningen, Groningen, the Netherlands; Department of Psychiatry and Mental Health and Neuroscience Institute, Brain Behaviour Unit, University of Cape Town, Cape Town, South Africa.
| |
Collapse
|
206
|
Sharif O, Brunner JS, Korosec A, Martins R, Jais A, Snijder B, Vogel A, Caldera M, Hladik A, Lakovits K, Saluzzo S, Boehm B, Gorki AD, Mesteri I, Lindroos-Christensen J, Tillmann K, Stoiber D, Menche J, Schabbauer G, Bilban M, Superti-Furga G, Esterbauer H, Knapp S. Beneficial Metabolic Effects of TREM2 in Obesity Are Uncoupled From Its Expression on Macrophages. Diabetes 2021; 70:2042-2057. [PMID: 33627323 PMCID: PMC8576425 DOI: 10.2337/db20-0572] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/05/2020] [Accepted: 02/19/2021] [Indexed: 12/03/2022]
Abstract
Obesity-induced white adipose tissue (WAT) hypertrophy is associated with elevated adipose tissue macrophage (ATM) content. Overexpression of the triggering receptor expressed on myeloid cells 2 (TREM2) reportedly increases adiposity, worsening health. Paradoxically, using insulin resistance, elevated fat mass, and hypercholesterolemia as hallmarks of unhealthy obesity, a recent report demonstrated that ATM-expressed TREM2 promoted health. Here, we identified that in mice, TREM2 deficiency aggravated diet-induced insulin resistance and hepatic steatosis independently of fat and cholesterol levels. Metabolomics linked TREM2 deficiency with elevated obesity-instigated serum ceramides that correlated with impaired insulin sensitivity. Remarkably, while inhibiting ceramide synthesis exerted no influences on TREM2-dependent ATM remodeling, inflammation, or lipid load, it restored insulin tolerance, reversing adipose hypertrophy and secondary hepatic steatosis of TREM2-deficient animals. Bone marrow transplantation experiments revealed unremarkable influences of immune cell-expressed TREM2 on health, instead demonstrating that WAT-intrinsic mechanisms impinging on sphingolipid metabolism dominate in the systemic protective effects of TREM2 on metabolic health.
Collapse
Affiliation(s)
- Omar Sharif
- Department of Medicine I, Laboratory of Infection Biology, Medical University of Vienna, Vienna, Austria
- Research Center for Molecular Medicine of the Austrian Academy of Sciences, Vienna, Austria
- Institute for Vascular Biology, Centre for Physiology and Pharmacology, Medical University Vienna, Vienna, Austria
- Christian Doppler Laboratory for Arginine Metabolism in Rheumatoid Arthritis and Multiple Sclerosis, Vienna, Austria
| | - Julia Stefanie Brunner
- Department of Medicine I, Laboratory of Infection Biology, Medical University of Vienna, Vienna, Austria
- Research Center for Molecular Medicine of the Austrian Academy of Sciences, Vienna, Austria
- Institute for Vascular Biology, Centre for Physiology and Pharmacology, Medical University Vienna, Vienna, Austria
- Christian Doppler Laboratory for Arginine Metabolism in Rheumatoid Arthritis and Multiple Sclerosis, Vienna, Austria
| | - Ana Korosec
- Department of Medicine I, Laboratory of Infection Biology, Medical University of Vienna, Vienna, Austria
- Research Center for Molecular Medicine of the Austrian Academy of Sciences, Vienna, Austria
| | - Rui Martins
- Department of Medicine I, Laboratory of Infection Biology, Medical University of Vienna, Vienna, Austria
- Research Center for Molecular Medicine of the Austrian Academy of Sciences, Vienna, Austria
| | - Alexander Jais
- Department of Laboratory Medicine, Medical University of Vienna, Vienna, Austria
| | - Berend Snijder
- Research Center for Molecular Medicine of the Austrian Academy of Sciences, Vienna, Austria
| | - Andrea Vogel
- Institute for Vascular Biology, Centre for Physiology and Pharmacology, Medical University Vienna, Vienna, Austria
- Christian Doppler Laboratory for Arginine Metabolism in Rheumatoid Arthritis and Multiple Sclerosis, Vienna, Austria
| | - Michael Caldera
- Department of Structural and Computational Biology, Max Perutz Laboratories, University of Vienna, Vienna, Austria
| | - Anastasiya Hladik
- Department of Medicine I, Laboratory of Infection Biology, Medical University of Vienna, Vienna, Austria
- Research Center for Molecular Medicine of the Austrian Academy of Sciences, Vienna, Austria
| | - Karin Lakovits
- Department of Medicine I, Laboratory of Infection Biology, Medical University of Vienna, Vienna, Austria
- Research Center for Molecular Medicine of the Austrian Academy of Sciences, Vienna, Austria
| | - Simona Saluzzo
- Department of Medicine I, Laboratory of Infection Biology, Medical University of Vienna, Vienna, Austria
- Research Center for Molecular Medicine of the Austrian Academy of Sciences, Vienna, Austria
| | - Benedikta Boehm
- Department of Medicine I, Laboratory of Infection Biology, Medical University of Vienna, Vienna, Austria
- Research Center for Molecular Medicine of the Austrian Academy of Sciences, Vienna, Austria
| | - Anna-Dorothea Gorki
- Department of Medicine I, Laboratory of Infection Biology, Medical University of Vienna, Vienna, Austria
- Research Center for Molecular Medicine of the Austrian Academy of Sciences, Vienna, Austria
| | | | | | - Katharina Tillmann
- Center of Biomedical Research, Medical University of Vienna, Vienna, Austria
| | - Dagmar Stoiber
- Institute of Pharmacology, Center of Physiology and Pharmacology, Medical University of Vienna, Vienna, Austria
- Division of Pharmacology, Department of Pharmacology, Physiology and Microbiology, Karl Landsteiner University of Health Sciences, Krems, Austria
| | - Jörg Menche
- Research Center for Molecular Medicine of the Austrian Academy of Sciences, Vienna, Austria
- Department of Structural and Computational Biology, Max Perutz Laboratories, University of Vienna, Vienna, Austria
- Faculty of Mathematics, University of Vienna, Vienna, Austria
| | - Gernot Schabbauer
- Institute for Vascular Biology, Centre for Physiology and Pharmacology, Medical University Vienna, Vienna, Austria
- Christian Doppler Laboratory for Arginine Metabolism in Rheumatoid Arthritis and Multiple Sclerosis, Vienna, Austria
| | - Martin Bilban
- Department of Laboratory Medicine, Medical University of Vienna, Vienna, Austria
| | - Giulio Superti-Furga
- Research Center for Molecular Medicine of the Austrian Academy of Sciences, Vienna, Austria
- Institute of Pharmacology, Center of Physiology and Pharmacology, Medical University of Vienna, Vienna, Austria
| | - Harald Esterbauer
- Department of Laboratory Medicine, Medical University of Vienna, Vienna, Austria
| | - Sylvia Knapp
- Department of Medicine I, Laboratory of Infection Biology, Medical University of Vienna, Vienna, Austria
- Research Center for Molecular Medicine of the Austrian Academy of Sciences, Vienna, Austria
| |
Collapse
|
207
|
Sharma P, Kaushik P, Jain S, Sharma BM, Awasthi R, Kulkarni GT, Sharma B. Efficacy of Ulinastatin and Sulforaphane Alone or in Combination in Rat Model of Streptozotocin Diabetes Induced Vascular Dementia. CLINICAL PSYCHOPHARMACOLOGY AND NEUROSCIENCE 2021; 19:470-489. [PMID: 34294616 PMCID: PMC8316668 DOI: 10.9758/cpn.2021.19.3.470] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/02/2020] [Revised: 09/25/2020] [Accepted: 12/11/2020] [Indexed: 11/22/2022]
Abstract
Objective Vascular Dementia (VaD), is associated with metabolic conditions. Diabetes is a major risk factor for the development of VaD. This study investigates the efficacy of ulinastatin (UTI) and sulforaphane (SUL) in streptozotocin (STZ)-diabetes induced vascular endothelium dysfunction and related dementia. Methods Single dose STZ (50 mg/kg i.p.) was administered to Albino Wistar rats (male, 200−250 g). Morris water maze and attentional set shifting tests were used to assess the spatial learning, memory, reversal learning, and executive functioning in animals. Body weight, serum glucose, serum nitrite/nitrate, vascular endothelial function, aortic superoxide anion, brains’ oxidative markers (thiobarbituric acid reactive species-TBARS, reduced glutathione-GSH, superoxide dismutase-SOD, and catalase-CAT), inflammatory markers (IL-6, IL-10, TNF-a, and myeloperoxidase-MPO), acetylcholinesterase activity-AChE, blood brain barrier (BBB) permeability and histopathological changes were also assessed. UTI (10,000 U/kg) and SUL (25 mg/kg) were used alone as well as in combination, as the treatment drugs. Donepezil (0.5 mg/kg) was used as a positive control. Results STZ-administered rats showed reduction in body weight, learning, memory, reversal learning, executive functioning, impairment in endothelial function, BBB permeability, increase in serum glucose, brains’ oxidative stress, inflammation, AChE-activity, BBB permeability and histopathological changes. Administration of UTI and SUL alone as well as in combination, significantly and dose dependently attenuated the STZ-diabetes-induced impairments in the behavioral, endothelial, and biochemical parameters. Conclusion STZ administration caused diabetes and VaD which was attenuated by the administration of UTI and SUL. Therefore, these agents may be studied further for the assessment of their full potential in diabetes induced VaD.
Collapse
Affiliation(s)
- Poonam Sharma
- Department of Pharmacology, Amity Institute of Pharmacy, Amity University Uttar Pradesh, Noida, India
| | - Prachi Kaushik
- Department of Pharmacology, Amity Institute of Pharmacy, Amity University Uttar Pradesh, Noida, India
| | - Swati Jain
- Department of Pharmacology, School of Pharmacy, BIT, Meerut, India
| | | | - Rajendra Awasthi
- Amity Institute of Pharmacy, Amity University Uttar Pradesh, Noida, India
| | | | - Bhupesh Sharma
- Department of Pharmacology, Amity Institute of Pharmacy, Amity University Uttar Pradesh, Noida, India.,CNS and CVS Pharmacology, Conscience Research, Delhi, India
| |
Collapse
|
208
|
Dow CT. Warm, Sweetened Milk at the Twilight of Immunity - Alzheimer's Disease - Inflammaging, Insulin Resistance, M. paratuberculosis and Immunosenescence. Front Immunol 2021; 12:714179. [PMID: 34421917 PMCID: PMC8375433 DOI: 10.3389/fimmu.2021.714179] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2021] [Accepted: 07/09/2021] [Indexed: 01/22/2023] Open
Abstract
This article prosecutes a case against the zoonotic pathogen Mycobacterium avium ss. paratuberculosis (MAP) as a precipitant of Alzheimer’s disease (AD). Like the other major neurodegenerative diseases AD is, at its core, a proteinopathy. Aggregated extracellular amyloid protein plaques and intracellular tau protein tangles are the recognized protein pathologies of AD. Autophagy is the cellular housekeeping process that manages protein quality control and recycling, cellular metabolism, and pathogen elimination. Impaired autophagy and cerebral insulin resistance are invariant features of AD. With a backdrop of age-related low-grade inflammation (inflammaging) and heightened immune risk (immunosenescence), infection with MAP subverts glucose metabolism and further exhausts an already exhausted autophagic capacity. Increasingly, a variety of agents have been found to favorably impact AD; they are agents that promote autophagy and reduce insulin resistance. The potpourri of these therapeutic agents: mTOR inhibitors, SIRT1 activators and vaccines are seemingly random until one recognizes that all these agents also suppress intracellular mycobacterial infection. The zoonotic mycobacterial MAP causes a common fatal enteritis in ruminant animals. Humans are exposed to MAP from contaminated food products and from the environment. The enteritis in animals is called paratuberculosis or Johne’s disease; in humans, it is the putative cause of Crohn’s disease. Beyond Crohn’s, MAP is associated with an increasing number of inflammatory and autoimmune diseases: sarcoidosis, Blau syndrome, autoimmune diabetes, autoimmune thyroiditis, multiple sclerosis, and rheumatoid arthritis. Moreover, MAP has been associated with Parkinson’s disease. India is one county that has extensively studied the human bio-load of MAP; 30% of more than 28,000 tested individuals were found to harbor, or to have harbored, MAP. This article asserts an unfolding realization that MAP infection of humans 1) is widespread in its presence, 2) is wide-ranging in its zoonosis and 3) provides a plausible link connecting MAP to AD.
Collapse
Affiliation(s)
- Coad Thomas Dow
- McPherson Eye Research Institute, University of Wisconsin-Madison, Madison, WI, United States
| |
Collapse
|
209
|
Sousa L, Guarda M, Meneses MJ, Macedo MP, Vicente Miranda H. Insulin-degrading enzyme: an ally against metabolic and neurodegenerative diseases. J Pathol 2021; 255:346-361. [PMID: 34396529 DOI: 10.1002/path.5777] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2021] [Revised: 07/01/2021] [Accepted: 08/09/2021] [Indexed: 11/11/2022]
Abstract
Insulin-degrading enzyme (IDE) function goes far beyond its known proteolytic role as a regulator of insulin levels. IDE has a wide substrate promiscuity, degrading several proteins such as amyloid-β peptide, glucagon, islet amyloid polypeptide (IAPP) and insulin-like growth factors, that have diverse physiological and pathophysiological functions. Importantly, IDE plays other non-proteolytical functions such as a chaperone/dead-end chaperone, an E1-ubiquitin activating enzyme, and a proteasome modulator. It also responds as a heat shock protein, regulating cellular proteostasis. Notably, amyloidogenic proteins such as IAPP, amyloid-β and α-synuclein have been reported as substrates for IDE chaperone activity. This is of utmost importance as failure of IDE may result in increased protein aggregation, a key hallmark in the pathogenesis of beta cells in type 2 diabetes mellitus and of neurons in neurodegenerative diseases such as Alzheimer's and Parkinson's disease. In this review, we focus on the biochemical and biophysical properties of IDE and the regulation of its physiological functions. We further raise the hypothesis that IDE plays a central role in the pathological context of dysmetabolic and neurodegenerative diseases and discuss its potential as a therapeutic target. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Luís Sousa
- CEDOC, NOVA Medical School, NMS, Universidade Nova de Lisboa, 1169-056, Lisbon, Portugal
| | - Mariana Guarda
- CEDOC, NOVA Medical School, NMS, Universidade Nova de Lisboa, 1169-056, Lisbon, Portugal
| | - Maria João Meneses
- CEDOC, NOVA Medical School, NMS, Universidade Nova de Lisboa, 1169-056, Lisbon, Portugal.,APDP-Diabetes Portugal Education and Research Center (APDP-ERC), Lisbon, Portugal
| | - M Paula Macedo
- CEDOC, NOVA Medical School, NMS, Universidade Nova de Lisboa, 1169-056, Lisbon, Portugal.,APDP-Diabetes Portugal Education and Research Center (APDP-ERC), Lisbon, Portugal.,Departamento de Ciências Médicas, Instituto de Biomedicina - iBiMED, Universidade de Aveiro, Aveiro, Portugal
| | - Hugo Vicente Miranda
- CEDOC, NOVA Medical School, NMS, Universidade Nova de Lisboa, 1169-056, Lisbon, Portugal
| |
Collapse
|
210
|
From Menopause to Neurodegeneration-Molecular Basis and Potential Therapy. Int J Mol Sci 2021; 22:ijms22168654. [PMID: 34445359 PMCID: PMC8395405 DOI: 10.3390/ijms22168654] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2021] [Revised: 08/09/2021] [Accepted: 08/09/2021] [Indexed: 12/12/2022] Open
Abstract
The impacts of menopause on neurodegenerative diseases, especially the changes in steroid hormones, have been well described in cell models, animal models, and humans. However, the therapeutic effects of hormone replacement therapy on postmenopausal women with neurodegenerative diseases remain controversial. The steroid hormones, steroid hormone receptors, and downstream signal pathways in the brain change with aging and contribute to disease progression. Estrogen and progesterone are two steroid hormones which decline in circulation and the brain during menopause. Insulin-like growth factor 1 (IGF-1), which plays an import role in neuroprotection, is rapidly decreased in serum after menopause. Here, we summarize the actions of estrogen, progesterone, and IGF-1 and their signaling pathways in the brain. Since the incidence of Alzheimer’s disease (AD) is higher in women than in men, the associations of steroid hormone changes and AD are emphasized. The signaling pathways and cellular mechanisms for how steroid hormones and IGF-1 provide neuroprotection are also addressed. Finally, the molecular mechanisms of potential estrogen modulation on N-methyl-d-aspartic acid receptors (NMDARs) are also addressed. We provide the viewpoint of why hormone therapy has inconclusive results based on signaling pathways considering their complex response to aging and hormone treatments. Nonetheless, while diagnosable AD may not be treatable by hormone therapy, its preceding stage of mild cognitive impairment may very well be treatable by hormone therapy.
Collapse
|
211
|
Sim AY, Barua S, Kim JY, Lee YH, Lee JE. Role of DPP-4 and SGLT2 Inhibitors Connected to Alzheimer Disease in Type 2 Diabetes Mellitus. Front Neurosci 2021; 15:708547. [PMID: 34489627 PMCID: PMC8417940 DOI: 10.3389/fnins.2021.708547] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2021] [Accepted: 07/12/2021] [Indexed: 12/12/2022] Open
Abstract
Alzheimer's disease (AD) is characterized by memory loss and cognitive decline. Additionally, abnormal extracellular amyloid plaques accumulation and nerve damage caused by intracellular neurofibrillary tangles, and tau protein are characteristic of AD. Furthermore, AD is associated with oxidative stress, impaired mitochondrial structure and function, denormalization, and inflammatory responses. Recently, besides the amyloid β hypothesis, another hypothesis linking AD to systemic diseases has been put forth by multiple studies as a probable cause for AD. Particularly, type 2 diabetes mellitus (T2DM) and its features, including hyperinsulinemia, and chronic hyperglycemia with an inflammatory response, have been shown to be closely related to AD through insulin resistance. The brain cannot synthesize or store glucose, but it does require glucose, and the use of glucose in the brain is higher than that in any other organ in the mammalian body. One of the therapeutic drugs for T2DM, dipeptidyl peptidase-4 (DPP-4) inhibitor, suppresses the degradation of incretins, glucagon-like peptides and glucose-dependent insulinotropic peptide. Sodium-glucose cotransporter 2 (SGLT2) inhibitors, recently used in T2DM treatment, have a unique mechanism of action via inhibition of renal glucose reabsorption, and which is different from the mechanisms of previously used medications. This manuscript reviews the pathophysiological relationship between the two diseases, AD and T2DM, and the pharmacological effects of therapeutic T2DM drugs, especially DPP-4 inhibitors, and SGLT2 inhibitors.
Collapse
Affiliation(s)
- A Young Sim
- Department of Anatomy, Yonsei University College of Medicine, Seoul, South Korea
- Brain Korea 21 Plus Project for Medical Science, Yonsei University College of Medicine, Seoul, South Korea
| | - Sumit Barua
- Department of Anatomy, Yonsei University College of Medicine, Seoul, South Korea
| | - Jong Youl Kim
- Department of Anatomy, Yonsei University College of Medicine, Seoul, South Korea
| | - Yong-ho Lee
- Department of Internal Medicine, Yonsei University College of Medicine, Seoul, South Korea
| | - Jong Eun Lee
- Department of Anatomy, Yonsei University College of Medicine, Seoul, South Korea
- Brain Korea 21 Plus Project for Medical Science, Yonsei University College of Medicine, Seoul, South Korea
- Brain Research Institute, Yonsei University College of Medicine, Seoul, South Korea
| |
Collapse
|
212
|
Jacobs MJ, Pinger CW, Castiaux AD, Maloney KJ, Spence DM. A novel 3D-printed centrifugal ultrafiltration method reveals in vivo glycation of human serum albumin decreases its binding affinity for zinc. Metallomics 2021; 12:1036-1043. [PMID: 32626857 DOI: 10.1039/d0mt00123f] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Plasma proteins are covalently modified in vivo by the high-glucose conditions in the bloodstreams of people with diabetes, resulting in changes to both structure and function. Human Serum Albumin (HSA) functions as a carrier-protein in the bloodstream, binding various ligands and tightly regulating their bioavailability. HSA is known to react with glucose via the Maillard reaction, causing adverse effects on its ability to bind and deliver certain ligands, such as metals. Here, the binding between in vivo glycated HSA and zinc (Zn2+) was determined using a novel centrifugal ultrafiltration method that was developed using a 3D-printed device. This method is rapid (90 minutes), capable of high-throughput measurements (24 samples), low-cost (<$1.00 USD per device) and requires lower sample volumes (200 μL) compared to other binding techniques. This device was used to determine an equilibrium dissociation constant between Zn2+ and a commercially obtained normal HSA (nHSA) with a glycation level of 11.5% (Kd = 2.1 (±0.5) × 10-7 M). A glycated fraction of the nHSA sample was enriched (gHSA, 65.5%) and isolated using boronate-affinity chromatography, and found to have a 2.3-fold decrease in Zn2+ binding-affinity (Kd = 4.8 (±0.8) × 10-7 M) when compared to the nHSA sample. The level of glycation of HSA in control plasma (13.0% ± 0.8, n = 3 donors) and plasma from people with diabetes (26.9% ± 6.6, n = 5 donors) was assessed using mass spectrometry. Furthermore, HSA was isolated from plasma obtained in-house from a person with type 1 diabetes and found to have a glycation level of 24.1% and Kd = 3.3 (± 0.5) × 10-7 M for Zn2+, revealing a 1.5-fold decrease in binding affinity compared to nHSA. These findings suggest that increased levels of glycated HSA result in reduced binding to Zn2+, which may have implications in complications associated with diabetes.
Collapse
Affiliation(s)
- Monica J Jacobs
- Institute for Quantitative Health Science & Engineering, Michigan State University, East Lansing, MI 48824, USA. and Comparative Medicine and Integrative Biology, Michigan State University, East Lansing, MI 48824, USA
| | - Cody W Pinger
- Institute for Quantitative Health Science & Engineering, Michigan State University, East Lansing, MI 48824, USA. and Department of Biomedical Engineering, Michigan State University, East Lansing, MI 48824, USA
| | - Andre D Castiaux
- Department of Chemistry, Saint Louis University, East Lansing, MI 48824, USA
| | - Konnor J Maloney
- Department of Biomedical Engineering, Michigan State University, East Lansing, MI 48824, USA
| | - Dana M Spence
- Institute for Quantitative Health Science & Engineering, Michigan State University, East Lansing, MI 48824, USA. and Department of Biomedical Engineering, Michigan State University, East Lansing, MI 48824, USA
| |
Collapse
|
213
|
Diabetes and Alzheimer's Disease: Might Mitochondrial Dysfunction Help Deciphering the Common Path? Antioxidants (Basel) 2021; 10:antiox10081257. [PMID: 34439505 PMCID: PMC8389322 DOI: 10.3390/antiox10081257] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2021] [Revised: 08/03/2021] [Accepted: 08/04/2021] [Indexed: 02/06/2023] Open
Abstract
A growing number of clinical and epidemiological studies support the hypothesis of a tight correlation between type 2 diabetes mellitus (T2DM) and the development risk of Alzheimer's disease (AD). Indeed, the proposed definition of Alzheimer's disease as type 3 diabetes (T3D) underlines the key role played by deranged insulin signaling to accumulation of aggregated amyloid beta (Aβ) peptides in the senile plaques of the brain. Metabolic disturbances such as hyperglycemia, peripheral hyperinsulinemia, dysregulated lipid metabolism, and chronic inflammation associated with T2DM are responsible for an inefficient transport of insulin to the brain, producing a neuronal insulin resistance that triggers an enhanced production and deposition of Aβ and concomitantly contributes to impairment in the micro-tubule-associated protein Tau, leading to neural degeneration and cognitive decline. Furthermore, the reduced antioxidant capacity observed in T2DM patients, together with the impairment of cerebral glucose metabolism and the decreased performance of mitochondrial activity, suggests the existence of a relationship between oxidative damage, mitochondrial impairment, and cognitive dysfunction that could further reinforce the common pathophysiology of T2DM and AD. In this review, we discuss the molecular mechanisms by which insulin-signaling dysregulation in T2DM can contribute to the pathogenesis and progression of AD, deepening the analysis of complex mechanisms involved in reactive oxygen species (ROS) production under oxidative stress and their possible influence in AD and T2DM. In addition, the role of current therapies as tools for prevention or treatment of damage induced by oxidative stress in T2DM and AD will be debated.
Collapse
|
214
|
Borgnakke WS, Poudel P. Diabetes and Oral Health: Summary of Current Scientific Evidence for Why Transdisciplinary Collaboration Is Needed. FRONTIERS IN DENTAL MEDICINE 2021. [DOI: 10.3389/fdmed.2021.709831] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
This Perspective provides a brief summary of the scientific evidence for the often two-way links between hyperglycemia, including manifest diabetes mellitus (DM), and oral health. It delivers in a nutshell examples of current scientific evidence for the following oral manifestations of hyperglycemia, along with any available evidence for effect in the opposite direction: periodontal diseases, caries/periapical periodontitis, tooth loss, peri-implantitis, dry mouth (xerostomia/hyposalivation), dysbiosis in the oral microbiome, candidiasis, taste disturbances, burning mouth syndrome, cancer, traumatic ulcers, infections of oral wounds, delayed wound healing, melanin pigmentation, fissured tongue, benign migratory glossitis (geographic tongue), temporomandibular disorders, and osteonecrosis of the jaw. Evidence for effects on quality of life will also be reported. This condensed overview delivers the rationale and sets the stage for the urgent need for delivery of oral and general health care in patient-centered transdisciplinary collaboration for early detection and management of both hyperglycemia and oral diseases to improve quality of life.
Collapse
|
215
|
Wu HM, Goate AM, O'Reilly PF. Heterogeneous effects of genetic risk for Alzheimer's disease on the phenome. Transl Psychiatry 2021; 11:406. [PMID: 34301914 PMCID: PMC8302633 DOI: 10.1038/s41398-021-01518-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/05/2021] [Revised: 06/11/2021] [Accepted: 07/01/2021] [Indexed: 12/18/2022] Open
Abstract
Here we report how four major forms of Alzheimer's disease (AD) genetic risk-APOE-ε4, APOE-ε2, polygenic risk and familial risk-are associated with 273 traits in ~500,000 individuals in the UK Biobank. The traits cover blood biochemistry and cell traits, metabolic and general health, psychosocial health, and cognitive function. The difference in the profile of traits associated with the different forms of AD risk is striking and may contribute to heterogenous presentation of the disease. However, we also identify traits significantly associated with multiple forms of AD genetic risk, as well as traits showing significant changes across ages in those at high risk of AD, which may point to their potential roles in AD etiology. Finally, we highlight how survivor effects, in particular those relating to shared risks of cardiovascular disease and AD, can generate associations that may mislead interpretation in epidemiological AD studies. The UK Biobank provides a unique opportunity to powerfully compare the effects of different forms of AD genetic risk on the phenome in the same cohort.
Collapse
Affiliation(s)
- Hei Man Wu
- Department of Genetics and Genomic Sciences, Icahn School of Medicine, Mount Sinai, New York, NY, USA.
| | - Alison M Goate
- Department of Genetics and Genomic Sciences, Icahn School of Medicine, Mount Sinai, New York, NY, USA
- Department of Neurosciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Paul F O'Reilly
- Department of Genetics and Genomic Sciences, Icahn School of Medicine, Mount Sinai, New York, NY, USA.
| |
Collapse
|
216
|
Elesawy BH, Alsanie WF, Algahtany MA, Al-Ashkhari JM, Alyarobi AK, Sakr HF. Whole and refined grains change behavior and reduce brain derived neurotrophic factor and neurotrophin-3 in rats. J Food Biochem 2021; 45:e13867. [PMID: 34278588 DOI: 10.1111/jfbc.13867] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2021] [Revised: 06/06/2021] [Accepted: 07/03/2021] [Indexed: 11/30/2022]
Abstract
In most of the world, wheat is one of the main staple foods, and is also widely used in livestock feed. In the current study, we investigated the effects of wheat grain consumption on the rat behavior and neurogenesis markers. Thirty male rats were divided into three equal groups (n = 10). Group 1 was the control group fed with chow diet (Carbohydrates 63%, fat 13% and protein 24%), the Group 2 rats were fed with whole grains and the Group 3 rats were fed with refined grains. After 12 weeks, we measured the hippocampal and prefrontal cortical brain derived neurotrophic factor (BDNF), neurotrophin-3 (NT-3), 5-hydroxytryptamine, dopamine, norepinephrine, malondialdehyde (MDA) and reduced glutathione (GSH) levels. Also, we evaluated the rat behavior by forced swimming test (FST) and elevated plus maze (EPM) test. Additionally, we measured serum level of glucose, lipid profile, insulin and cortisol. Weight gain at the end of the study was measured in each group. The rats on a diet of whole and refined grains had low BDNF, NT-3, norepinephrine, dopamine and serotonin significantly (p < .01) in both the hippocampus and prefrontal cortex as compared to control rats. Moreover, the MDA increased significantly with significant reduction in GSH versus the control rats. Moreover, in response to grain consumption, the performance in FST showed a significant (p < .01) shortage in the latency of the attempts to escape as well as a significant prolongation (p < .01) in behavioral immobility as compared to control rats with significant (p < .05) prolongation in time spent in closed arm in EPM. An exclusive diet of either whole or refined grain in a rat model induced anxiety and depressive behaviors and negatively affected the BDNF and NT-3 and modulated the level of the neurotransmitters with significant shift in their behavior. PRACTICAL APPLICATIONS: Grains are considered the major caloric source all over the world that may predispose to the development of chronic diseases. In this research, we evaluated the role of grains in modulating the rate of production of neurogenic factors in rats.
Collapse
Affiliation(s)
- Basem H Elesawy
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, Taif University, Taif, Saudi Arabia
| | - Walaa F Alsanie
- Addiction and Neuroscience Research Unit, Taif University, Taif, Saudi Arabia
- Department of Clinical Laboratories Sciences, Faculty of Applied Medical Sciences, Taif University, Taif, Saudi Arabia
| | - Mubarak Ali Algahtany
- Division of Neurosurgery, Department of Surgery, College of Medicine, King Khalid University, Abha, Saudi Arabia
| | - Jawaher M Al-Ashkhari
- Department of Physiology, College of Medicine and Health Sciences, Sultan Qaboos University, Muscat, Oman
| | - Aya K Alyarobi
- Department of Physiology, College of Medicine and Health Sciences, Sultan Qaboos University, Muscat, Oman
| | - Hussein F Sakr
- Department of Physiology, College of Medicine and Health Sciences, Sultan Qaboos University, Muscat, Oman
- Medical Physiology Department, Faculty of Medicine, Mansoura, University, Mansoura, Egypt
| |
Collapse
|
217
|
Reading CL, Ahlem CN, Murphy MF. NM101 Phase III study of NE3107 in Alzheimer's disease: rationale, design and therapeutic modulation of neuroinflammation and insulin resistance. Neurodegener Dis Manag 2021; 11:289-298. [PMID: 34251287 DOI: 10.2217/nmt-2021-0022] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Recently, the roles of inflammation and insulin resistance in neurodegeneration have become better appreciated. NE3107, an oral small molecule, blood-brain permeable anti-inflammatory insulin sensitizer that binds extracellular signal-regulated kinase, has been shown to selectively inhibit inflammation-driven ERK- and NF-κB-stimulated inflammatory mediators, including TNF-α, without inhibiting their homeostatic functions. We describe the rationale and design of NM101, the first randomized, multicenter Phase III clinical study to examine the safety and efficacy of 30 week treatment with NE3107 versus placebo in elderly adults with mild-to-moderate Alzheimer's disease. Patients (316) will be randomized in a 1:1 ratio. The co-primary end points measure cognitive function (ADAS Cog12), and functional and behavioral characteristics (ADCS CGIC). Trial registration number: NCT04669028 (Clinicaltrials.gov).
Collapse
|
218
|
Querfurth H, Lee HK. Mammalian/mechanistic target of rapamycin (mTOR) complexes in neurodegeneration. Mol Neurodegener 2021; 16:44. [PMID: 34215308 PMCID: PMC8252260 DOI: 10.1186/s13024-021-00428-5] [Citation(s) in RCA: 154] [Impact Index Per Article: 38.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2020] [Accepted: 02/01/2021] [Indexed: 12/12/2022] Open
Abstract
Novel targets to arrest neurodegeneration in several dementing conditions involving misfolded protein accumulations may be found in the diverse signaling pathways of the Mammalian/mechanistic target of rapamycin (mTOR). As a nutrient sensor, mTOR has important homeostatic functions to regulate energy metabolism and support neuronal growth and plasticity. However, in Alzheimer's disease (AD), mTOR alternately plays important pathogenic roles by inhibiting both insulin signaling and autophagic removal of β-amyloid (Aβ) and phospho-tau (ptau) aggregates. It also plays a role in the cerebrovascular dysfunction of AD. mTOR is a serine/threonine kinase residing at the core in either of two multiprotein complexes termed mTORC1 and mTORC2. Recent data suggest that their balanced actions also have implications for Parkinson's disease (PD) and Huntington's disease (HD), Frontotemporal dementia (FTD) and Amyotrophic Lateral Sclerosis (ALS). Beyond rapamycin; an mTOR inhibitor, there are rapalogs having greater tolerability and micro delivery modes, that hold promise in arresting these age dependent conditions.
Collapse
Affiliation(s)
- Henry Querfurth
- Department of Neurology, Tufts Medical Center, Boston, Massachusetts, USA.
| | - Han-Kyu Lee
- Department of Neurology, Tufts Medical Center, Boston, Massachusetts, USA
| |
Collapse
|
219
|
Agrawal R, Reno CM, Sharma S, Christensen C, Huang Y, Fisher SJ. Insulin action in the brain regulates both central and peripheral functions. Am J Physiol Endocrinol Metab 2021; 321:E156-E163. [PMID: 34056920 PMCID: PMC8321819 DOI: 10.1152/ajpendo.00642.2020] [Citation(s) in RCA: 62] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
The brain has been traditionally thought to be insensitive to insulin, primarily because insulin does not stimulate glucose uptake/metabolism in the brain (as it does in classic insulin-sensitive tissues such as muscle, liver, and fat). However, over the past 20 years, research in this field has identified unique actions of insulin in the brain. There is accumulating evidence that insulin crosses into the brain and regulates central nervous system functions such as feeding, depression, and cognitive behavior. In addition, insulin acts in the brain to regulate systemic functions such as hepatic glucose production, lipolysis, lipogenesis, reproductive competence, and the sympathoadrenal response to hypoglycemia. Decrements in brain insulin action (or brain insulin resistance) can be observed in obesity, type 2 diabetes (T2DM), aging, and Alzheimer's disease (AD), indicating a possible link between metabolic and cognitive health. Here, we describe recent findings on the pleiotropic actions of insulin in the brain and highlight the precise sites, specific neuronal population, and roles for supportive astrocytic cells through which insulin acts in the brain. In addition, we also discuss how boosting brain insulin action could be a therapeutic option for people at an increased risk of developing metabolic and cognitive diseases such as AD and T2DM. Overall, this perspective article serves to highlight some of these key scientific findings, identify unresolved issues, and indicate future directions of research in this field that would serve to improve the lives of people with metabolic and cognitive dysfunctions.
Collapse
Affiliation(s)
- Rahul Agrawal
- Division of Endocrinology, Metabolism and Diabetes, Department of Internal Medicine, University of Utah School of Medicine, Salt Lake City, Utah
| | - Candace M Reno
- Division of Endocrinology, Metabolism and Diabetes, Department of Internal Medicine, University of Utah School of Medicine, Salt Lake City, Utah
| | - Sunny Sharma
- Division of Endocrinology, Metabolism and Diabetes, Department of Internal Medicine, University of Utah School of Medicine, Salt Lake City, Utah
| | - Camille Christensen
- Division of Endocrinology, Metabolism and Diabetes, Department of Internal Medicine, University of Utah School of Medicine, Salt Lake City, Utah
| | - Yiqing Huang
- Division of Endocrinology, Metabolism and Diabetes, Department of Internal Medicine, University of Utah School of Medicine, Salt Lake City, Utah
| | - Simon J Fisher
- Division of Endocrinology, Metabolism and Diabetes, Department of Internal Medicine, University of Utah School of Medicine, Salt Lake City, Utah
- Department of Biochemistry, University of Utah School of Medicine, Salt Lake City, Utah
| |
Collapse
|
220
|
Choi A, Hallett M, Ehrlich D. Nutritional Ketosis in Parkinson's Disease - a Review of Remaining Questions and Insights. Neurotherapeutics 2021; 18:1637-1649. [PMID: 34235637 PMCID: PMC8608995 DOI: 10.1007/s13311-021-01067-w] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/28/2021] [Indexed: 02/04/2023] Open
Abstract
Nutritional ketosis has promise for treating Parkinson's disease. Three previous studies explored the use of a ketogenic diet in cohorts with Parkinson's disease, and, while not conclusive, the data suggest non-motor symptom benefit. Before the ketogenic diet can be considered as a therapeutic option, it is important to establish with greater certainty that there is a reliable symptomatic benefit: which symptoms or groups of symptoms are impacted (if non-motor symptoms, which ones, and by which mechanism), what timescale is needed to obtain benefit, and how large an effect size can be achieved? To accomplish this, further investigation into the disease mechanisms based on pre-clinical data and hints from the clinical outcomes to date is useful to understand target engagement and gauge which mechanism could lead to a testable hypothesis. We review research pertaining to ketogenic diet, exogenous ketones, fasting, clinical studies, and theoretical review papers regarding therapeutic mechanisms from direct ketone body signaling and indirect metabolic effects. Through discussion of these findings and consideration of whether the ketogenic diet can be regarded as therapeutically useful for adjunctive therapy for Parkinson's disease, we identify remaining questions for the clinician to consider prior to recommending this diet.
Collapse
Affiliation(s)
- Alexander Choi
- Human Motor Control Section, Medical Neurology Branch, National Institute of Neurological Disorders and Stroke, Bethesda, USA.
| | - Mark Hallett
- Human Motor Control Section, Medical Neurology Branch, National Institute of Neurological Disorders and Stroke, Bethesda, USA
| | - Debra Ehrlich
- Office of the Clinical Director, Parkinson Disease Clinic, National Institute of Neurological Disorders and Stroke, Bethesda, USA
| |
Collapse
|
221
|
Medina-Vera D, Navarro JA, Tovar R, Rosell-Valle C, Gutiérrez-Adan A, Ledesma JC, Sanjuan C, Pavón FJ, Baixeras E, Rodríguez de Fonseca F, Decara J. Activation of PI3K/Akt Signaling Pathway in Rat Hypothalamus Induced by an Acute Oral Administration of D-Pinitol. Nutrients 2021; 13:2268. [PMID: 34209137 PMCID: PMC8308282 DOI: 10.3390/nu13072268] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2021] [Revised: 06/23/2021] [Accepted: 06/25/2021] [Indexed: 12/12/2022] Open
Abstract
D-Pinitol (DPIN) is a natural occurring inositol capable of activating the insulin pathway in peripheral tissues, whereas this has not been thoroughly studied in the central nervous system. The present study assessed the potential regulatory effects of DPIN on the hypothalamic insulin signaling pathway. To this end we investigated the Phosphatidylinositol-3-kinase (PI3K)/Protein Kinase B (Akt) signaling cascade in a rat model following oral administration of DPIN. The PI3K/Akt-associated proteins were quantified by Western blot in terms of phosphorylation and total expression. Results indicate that the acute administration of DPIN induced time-dependent phosphorylation of PI3K/Akt and its related substrates within the hypothalamus, indicating an activation of the insulin signaling pathway. This profile is consistent with DPIN as an insulin sensitizer since we also found a decrease in the circulating concentration of this hormone. Overall, the present study shows the pharmacological action of DPIN in the hypothalamus through the PI3K/Akt pathway when giving in fasted animals. These findings suggest that DPIN might be a candidate to treat brain insulin-resistance associated disorders by activating insulin response beyond the insulin receptor.
Collapse
Affiliation(s)
- Dina Medina-Vera
- Instituto de Investigación Biomédica de Málaga (IBIMA), Hospital Universitario Regional de Málaga, UGC Salud Mental, Avda. Carlos Haya 82, Pabellón de Gobierno, 29010 Málaga, Spain; (D.M.-V.); (J.A.N.); (R.T.); (C.R.-V.); (J.C.L.); (F.J.P.)
- Facultad de Ciencias, Universidad de Málaga, 29010 Málaga, Spain
- Facultad de Medicina, Universidad de Málaga, 29010 Málaga, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Cardiovasculares (CIBERCV), UGC del Corazón, Instituto de Investigación Biomédica de Málaga (IBIMA), Hospital Universitario Virgen de la Victoria, Universidad de Málaga, 29010 Málaga, Spain
| | - Juan Antonio Navarro
- Instituto de Investigación Biomédica de Málaga (IBIMA), Hospital Universitario Regional de Málaga, UGC Salud Mental, Avda. Carlos Haya 82, Pabellón de Gobierno, 29010 Málaga, Spain; (D.M.-V.); (J.A.N.); (R.T.); (C.R.-V.); (J.C.L.); (F.J.P.)
- Facultad de Medicina, Universidad de Málaga, 29010 Málaga, Spain
| | - Rubén Tovar
- Instituto de Investigación Biomédica de Málaga (IBIMA), Hospital Universitario Regional de Málaga, UGC Salud Mental, Avda. Carlos Haya 82, Pabellón de Gobierno, 29010 Málaga, Spain; (D.M.-V.); (J.A.N.); (R.T.); (C.R.-V.); (J.C.L.); (F.J.P.)
- Facultad de Medicina, Universidad de Málaga, 29010 Málaga, Spain
| | - Cristina Rosell-Valle
- Instituto de Investigación Biomédica de Málaga (IBIMA), Hospital Universitario Regional de Málaga, UGC Salud Mental, Avda. Carlos Haya 82, Pabellón de Gobierno, 29010 Málaga, Spain; (D.M.-V.); (J.A.N.); (R.T.); (C.R.-V.); (J.C.L.); (F.J.P.)
| | - Alfonso Gutiérrez-Adan
- Departamento de Reproducción Animal, Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria, 28040 Madrid, Spain;
| | - Juan Carlos Ledesma
- Instituto de Investigación Biomédica de Málaga (IBIMA), Hospital Universitario Regional de Málaga, UGC Salud Mental, Avda. Carlos Haya 82, Pabellón de Gobierno, 29010 Málaga, Spain; (D.M.-V.); (J.A.N.); (R.T.); (C.R.-V.); (J.C.L.); (F.J.P.)
| | - Carlos Sanjuan
- Euronutra S.L. Calle Johannes Kepler, 3, 29590 Málaga, Spain;
| | - Francisco Javier Pavón
- Instituto de Investigación Biomédica de Málaga (IBIMA), Hospital Universitario Regional de Málaga, UGC Salud Mental, Avda. Carlos Haya 82, Pabellón de Gobierno, 29010 Málaga, Spain; (D.M.-V.); (J.A.N.); (R.T.); (C.R.-V.); (J.C.L.); (F.J.P.)
- Centro de Investigación Biomédica en Red de Enfermedades Cardiovasculares (CIBERCV), UGC del Corazón, Instituto de Investigación Biomédica de Málaga (IBIMA), Hospital Universitario Virgen de la Victoria, Universidad de Málaga, 29010 Málaga, Spain
| | - Elena Baixeras
- Departamento de Bioquímica y Biología Molecular, Facultad de Medicina, Universidad de Málaga, 29010 Málaga, Spain;
| | - Fernando Rodríguez de Fonseca
- Instituto de Investigación Biomédica de Málaga (IBIMA), Hospital Universitario Regional de Málaga, UGC Salud Mental, Avda. Carlos Haya 82, Pabellón de Gobierno, 29010 Málaga, Spain; (D.M.-V.); (J.A.N.); (R.T.); (C.R.-V.); (J.C.L.); (F.J.P.)
| | - Juan Decara
- Instituto de Investigación Biomédica de Málaga (IBIMA), Hospital Universitario Regional de Málaga, UGC Salud Mental, Avda. Carlos Haya 82, Pabellón de Gobierno, 29010 Málaga, Spain; (D.M.-V.); (J.A.N.); (R.T.); (C.R.-V.); (J.C.L.); (F.J.P.)
| |
Collapse
|
222
|
Nutraceutical and Probiotic Approaches to Examine Molecular Interactions of the Amyloid Precursor Protein APP in Drosophila Models of Alzheimer's Disease. Int J Mol Sci 2021; 22:ijms22137022. [PMID: 34209883 PMCID: PMC8269328 DOI: 10.3390/ijms22137022] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2021] [Revised: 06/24/2021] [Accepted: 06/24/2021] [Indexed: 12/12/2022] Open
Abstract
Studies using animal models have shed light into the molecular and cellular basis for the neuropathology observed in patients with Alzheimer’s disease (AD). In particular, the role of the amyloid precursor protein (APP) plays a crucial role in the formation of senile plaques and aging-dependent degeneration. Here, we focus our review on recent findings using the Drosophila AD model to expand our understanding of APP molecular function and interactions, including insights gained from the fly homolog APP-like (APPL). Finally, as there is still no cure for AD, we review some approaches that have shown promising results in ameliorating AD-associated phenotypes, with special attention on the use of nutraceuticals and their molecular effects, as well as interactions with the gut microbiome. Overall, the phenomena described here are of fundamental significance for understanding network development and degeneration. Given the highly conserved nature of fundamental signaling pathways, the insight gained from animal models such as Drosophila melanogaster will likely advance the understanding of the mammalian brain, and thus be relevant to human health.
Collapse
|
223
|
Lee TH, Christie BR, Lin K, Siu PMF, Zhang L, Yuan TF, Komal P, Xu A, So KF, Yau SY. Chronic AdipoRon Treatment Mimics the Effects of Physical Exercise on Restoring Hippocampal Neuroplasticity in Diabetic Mice. Mol Neurobiol 2021; 58:4666-4681. [PMID: 34164760 PMCID: PMC8487422 DOI: 10.1007/s12035-021-02441-7] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2021] [Accepted: 05/25/2021] [Indexed: 02/07/2023]
Abstract
Administration of exercise mimetic drugs could be a novel therapeutic approach to combat comorbid neurodegeneration and metabolic syndromes. Adiponectin is an adipocyte-secreted hormone. In addition to its antidiabetic effect, adiponectin mediates the antidepressant effect of physical exercise associated with adult hippocampal neurogenesis. The antidiabetic effect of the adiponectin receptor agonist AdipoRon has been demonstrated, but its potential pro-cognitive and neurotrophic effects in the hippocampus under diabetic condition are still unclear. This study reported that chronic AdipoRon treatment for 2 weeks improved hippocampal-dependent spatial recognition memory in streptozotocin-induced diabetic mice. Besides, AdipoRon treatment increased progenitor cell proliferation and neuronal differentiation in the hippocampal dentate gyrus (DG) of diabetic mice. Furthermore, AdipoRon treatment significantly increased dendritic complexity, spine density, and N-methyl-D-aspartate receptor-dependent long-term potentiation (LTP) in the dentate region, and increased BDNF levels in the DG of diabetic mice. AdipoRon treatment activated AMPK/PGC-1α signalling in the DG, whereas increases in cell proliferation and LTP were not observed when PGC-1α signalling was pharmacologically inhibited. In sum, chronic AdipoRon treatment partially mimics the benefits of physical exercise for learning and memory and hippocampal neuroplasticity in the diabetic brain. The results suggested that AdipoRon could be a potential physical exercise mimetic to improve hippocampal plasticity and hence rescue learning and memory impairment typically associated with diabetes.
Collapse
Affiliation(s)
- Thomas H Lee
- Department of Rehabilitation Sciences, Faculty of Health and Social Sciences, The Hong Kong Polytechnic University, 11 Yuk Choi Road, Hung Hom, Hong Kong SAR
| | - Brian R Christie
- Division of Medical Sciences, University of Victoria, Victoria, British Columbia, Canada
| | - Kangguang Lin
- Department of Affective Disorder, Guangzhou Brain Hospital, The Affiliated Brain Hospital of Guangzhou Medical University, Guangzhou, China
| | - Parco Ming-Fai Siu
- School of Public Health, LKS Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong SAR
| | - Li Zhang
- Key Laboratory of CNS Regeneration (Ministry of Education), Guangdong-Hong Kong-Macau Institute of CNS Regeneration, Jinan University, Guangzhou, China
| | - Ti-Fei Yuan
- Shanghai Mental Health Center, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Pragya Komal
- Department of Biological Sciences, Birla Institute of Technology and Sciences (BITS-Pilani Hyderabad), Hyderabad, India
| | - Aimin Xu
- Department of Pharmacology and Pharmacy, LKS Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong SAR
- State Key Laboratory of Pharmaceutical Biotechnology, The University of Hong Kong, Pokfulam, Hong Kong SAR
| | - Kwok-Fai So
- Key Laboratory of CNS Regeneration (Ministry of Education), Guangdong-Hong Kong-Macau Institute of CNS Regeneration, Jinan University, Guangzhou, China
- State Key Laboratory of Brain and Cognitive Science, The University of Hong Kong, Pokfulam, Hong Kong SAR
| | - Suk-Yu Yau
- Department of Rehabilitation Sciences, Faculty of Health and Social Sciences, The Hong Kong Polytechnic University, 11 Yuk Choi Road, Hung Hom, Hong Kong SAR.
- University Research Facility in Behavioral and Systems Neuroscience, The Hong Kong Polytechnic University, Hung Hom, Hong Kong SAR.
| |
Collapse
|
224
|
Tampio J, Markowicz-Piasecka M, Huttunen KM. Hemocompatible L-Type amino acid transporter 1 (LAT1)-Utilizing prodrugs of perforin inhibitors can accumulate into the pancreas and alleviate inflammation-induced apoptosis. Chem Biol Interact 2021; 345:109560. [PMID: 34153225 DOI: 10.1016/j.cbi.2021.109560] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2021] [Revised: 05/20/2021] [Accepted: 06/15/2021] [Indexed: 11/26/2022]
Abstract
Cytolytic pore-forming protein, perforin, has been associated with autoimmune destruction of pancreatic β-cells in type 1 diabetes mellitus (T1DM) once released from CD8+ T cells. Curiously, perforinopathy has also been implicated in numerous brain diseases. Therefore, inhibitors of perforin have been in demand with targeted delivery in mind. l-Type amino acid transporter 1 (LAT1) is known to be expressed in both the above-mentioned target tissues, in the pancreas as well as in the brain. Thus, in the present study, the distribution of two LAT1-utilizing prodrugs of investigational perforin inhibitors into the pancreas was explored after intraperitoneal (i.p., 30 μmol/kg) bolus injection to mice. The effects of prodrug 1 were also studied in lipopolysaccharide (LPS)-induced in vitro (50 μg/mL) and in vivo (250 μg/kg x 3 days) apoptosis and pancreatitis models by determining the cellular apoptotic levels with human umbilical vein endothelial cells (HUVEC) and pancreatic caspase-3/-7 activity in mice. Furthermore, the biocompatibility of prodrug 1 was explored in human plasma and towards red blood cells. According to the results, both prodrugs were accumulated more effectively into the pancreas than their parent drugs (in addition to the brain that has been previously reported). Prodrug 1 (30 μmol/kg) also decreased the pancreatic caspase-3/-7 activity (52%) and with 2.5 μM concentration, the number of early and late apoptotic cells (32-53%). Since prodrug 1 was also found to be hemocompatible and not affecting human plasma hemostasis or inducing hemolysis of erythrocytes at the concentration <50 μM, it can be considered biocompatible in systemic circulation and ready to be studied in the future as a dual-acting drug candidate (in the pancreas and brain) in diseases like T1DM with neurodegenerative comorbidities.
Collapse
Affiliation(s)
- Janne Tampio
- School of Pharmacy, Faculty of Health Sciences, University of Eastern Finland, P.O. Box 1627, FI-70211, Kuopio, Finland
| | - Magdalena Markowicz-Piasecka
- Laboratory of Bioanalysis, Department of Pharmaceutical Chemistry, Drug Analysis and Radiopharmacy, Medical University of Lodz, Ul. Muszyńskiego 1, 90-151, Lodz, Poland
| | - Kristiina M Huttunen
- School of Pharmacy, Faculty of Health Sciences, University of Eastern Finland, P.O. Box 1627, FI-70211, Kuopio, Finland.
| |
Collapse
|
225
|
Byeon SK, Madugundu AK, Jain AP, Bhat FA, Jung JH, Renuse S, Darrow J, Bakker A, Albert M, Moghekar A, Pandey A. Cerebrospinal fluid lipidomics for biomarkers of Alzheimer's disease. Mol Omics 2021; 17:454-463. [PMID: 34125126 PMCID: PMC8210464 DOI: 10.1039/d0mo00186d] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Alzheimer's disease (AD) is the most common cause of dementia and is associated with serious neurologic sequelae resulting from neurodegenerative changes. Identification of markers of early-stage AD could be important for designing strategies to arrest the progression of the disease. The brain is rich in lipids because they are crucial for signal transduction and anchoring of membrane proteins. Cerebrospinal fluid (CSF) is an excellent specimen for studying the metabolism of lipids in AD because it can reflect changes occurring in the brain. We aimed to identify CSF lipidomic alterations associated with AD, using untargeted lipidomics, carried out in positive and negative ion modes. We found CSF lipids that were significantly altered in AD cases. In addition, comparison of CSF lipid profiles between persons with mild cognitive impairment (MCI) and AD showed a strong positive correlation between the lipidomes of the MCI and AD groups. The novel lipid biomarkers identified in this study are excellent candidates for validation in a larger set of patient samples and as predictive biomarkers of AD through future longitudinal studies. Once validated, the lipid biomarkers could lead to early detection, disease monitoring and the ability to measure the efficacy of potential therapeutic interventions in AD.
Collapse
Affiliation(s)
- Seul Kee Byeon
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, MN, 55902, USA.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
226
|
Siddiqui N, Ali J, Parvez S, Zameer S, Najmi AK, Akhtar M. Linagliptin, a DPP-4 inhibitor, ameliorates Aβ (1-42) peptides induced neurodegeneration and brain insulin resistance (BIR) via insulin receptor substrate-1 (IRS-1) in rat model of Alzheimer's disease. Neuropharmacology 2021; 195:108662. [PMID: 34119519 DOI: 10.1016/j.neuropharm.2021.108662] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2021] [Revised: 06/07/2021] [Accepted: 06/08/2021] [Indexed: 12/31/2022]
Abstract
Alzheimer's disease (AD) is the most devastating neurodegenerative disorder, accounting over 46 million cases of dementia globally. Evidence supports that Brain Insulin Resistance (BIR) due to serine phosphorylation of Insulin Receptor Substrate-1 (IRS-1) has an association with AD. GLP-1 an incretin hormone, rapidly degraded by Dipeptidyl Peptidase-4 (DPP-4) has also confirmed its efficacious role in AD. Linagliptin, a DPP-4 inhibitor is hypothesized to increase GLP-1 level, which then crosses Blood Brain Barrier (BBB), decreases Amyloid-beta (Aβ) and insulin resistance in hippocampus. Thus, the present study was designed to evaluate Linagliptin in Aβ (1-42) peptides induced rat model of AD. Following 1 week of induction, rats were administered with Linagliptin (0.513 mg/kg, 3 mg/kg, and 5 mg/kg) orally for 8 weeks and donepezil (5 mg/kg) as a reference standard. At the end of scheduled treatment neurobehavioral parameters were assessed. After this, rats were sacrificed, hippocampus was isolated from the whole brain for histopathological analysis and biochemical parameters estimation. Linagliptin dose-dependently and significantly reversed motor and cognitive impairment, assessed through locomotor activity (LA) and Morris water maze (MWM) test respectively. Moreover, Linagliptin augmented GLP-1 level and attenuated soluble Aβ (1-42), IRS-1 (s307), GSK-3β, TNF-α, IL-1β, IL-6, AchE and oxidative/nitrosative stress level in hippocampus. H&E and Congo red staining also exhibited neuroprotective and anti-amylodogenic effect respectively. Our study findings implies the significant effect of Linagliptin in reversing the behavioural and biochemical deficits by altering Aβ (1-42) and BIR via IRS-1 confirming one of the mechanism underlying the pathophysiology of AD.
Collapse
Affiliation(s)
- Nazia Siddiqui
- Pharmaceutical Medicine, Department of Pharmacology, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi, 110062, India
| | - Javed Ali
- Department of Pharmaceutics, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi, 110062, India
| | - Suhel Parvez
- Department of Toxicology, School of Chemical and Life Sciences, Jamia Hamdard, New Delhi, 110062, India
| | - Saima Zameer
- Department of Pharmacology, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi, 110062, India
| | - Abul Kalam Najmi
- Department of Pharmacology, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi, 110062, India
| | - Mohd Akhtar
- Department of Pharmacology, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi, 110062, India.
| |
Collapse
|
227
|
Saleh RA, Eissa TF, Abdallah DM, Saad MA, El-Abhar HS. Peganum harmala enhanced GLP-1 and restored insulin signaling to alleviate AlCl 3-induced Alzheimer-like pathology model. Sci Rep 2021; 11:12040. [PMID: 34103557 PMCID: PMC8187628 DOI: 10.1038/s41598-021-90545-4] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2021] [Accepted: 04/22/2021] [Indexed: 02/05/2023] Open
Abstract
Peganum harmala (P. harmala) is a folk medicinal herb used in the Sinai Peninsula (Egypt) as a remedy for central disorders. The main constituents, harmine and harmaline, have displayed therapeutic efficacy against Alzheimer's disease (AD); however, the P. harmala potential on sensitizing central insulin to combat AD remains to be clarified. An AD-like rat model was induced by aluminum chloride (AlCl3; 50 mg/kg/day for six consecutive weeks; i.p), whereas a methanolic standardized P. harmala seed extract (187.5 mg/kg; p.o) was given to AD rats starting 2 weeks post AlCl3 exposure. Two additional groups of rats were administered either the vehicle to serve as the normal control or the vehicle + P. harmala seed extract to serve as the P. harmala control group. P. harmala enhanced cognition appraised by Y-maze and Morris water maze tests and improved histopathological structures altered by AlCl3. Additionally, it heightened the hippocampal contents of glucagon-like peptide (GLP)-1 and insulin, but abated insulin receptor substrate-1 phosphorylation at serine 307 (pS307-IRS-1). Besides, P. harmala increased phosphorylated Akt at serine 473 (pS473-Akt) and glucose transporter type (GLUT)4. The extract also curtailed the hippocampal content of beta amyloid (Aβ)42, glycogen synthase (GSK)-3β and phosphorylated tau. It also enhanced Nrf2, while reduced lipid peroxides and replenished glutathione. In conclusion, combating insulin resistance by P. harmala is a novel machinery in attenuating the insidious progression of AD by enhancing both insulin and GLP-1 trajectories in the hippocampus favoring GLUT4 production.
Collapse
Affiliation(s)
- Rofida A Saleh
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Cairo University, Cairo, Egypt
| | - Tarek F Eissa
- Faculty of Biotechnology, October University for Modern Sciences and Arts (MSA), Giza, Egypt
| | - Dalaal M Abdallah
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Cairo University, Cairo, Egypt.
| | - Muhammed A Saad
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Cairo University, Cairo, Egypt
- Department of Pharmacology and Toxicology, School of Pharmacy, Newgiza University, Cairo, Egypt
| | - Hanan S El-Abhar
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Cairo University, Cairo, Egypt
- Department of Pharmacology, Toxicology & Biochemistry, Faculty of Pharmaceutical Sciences and Pharmaceutical Industries, Future University in Egypt, Cairo, Egypt
| |
Collapse
|
228
|
Paul KC, Haan M, Yu Y, Inoue K, Mayeda ER, Dang K, Wu J, Jerrett M, Ritz B. Traffic-Related Air Pollution and Incident Dementia: Direct and Indirect Pathways Through Metabolic Dysfunction. J Alzheimers Dis 2021; 76:1477-1491. [PMID: 32651321 DOI: 10.3233/jad-200320] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
BACKGROUND Ambient air pollution exposure has been associated with dementia. Additionally, epidemiologic evidence supports associations between air pollution and diabetes as well as diabetes and dementia. Thus, an indirect pathway between air pollution and dementia may exist through metabolic dysfunction. OBJECTIVE To investigate whether local traffic-related air pollution (TRAP) influences incident dementia and cognitive impairment, non-dementia (CIND) in a cohort of older Mexican Americans. We also assess how much of this estimated effect might be mediated through type 2 diabetes (T2DM). METHODS In a 10-year, prospective study of Latinos (n = 1,564), we generated TRAP-NOx as a surrogate for pollution from local traffic sources at participants' residences during the year prior to enrollment. We used Cox proportional hazards modeling and mediation analysis to estimate the effects of TRAP-NOx on dementia and/or CIND and indirect pathways operating through T2DM. RESULTS Higher TRAP-NOx was associated with incident dementia (HR = 1.55 for the highest versus lower tertiles, 95% CI = 1.04, 2.55). Higher TRAP-NOx was also associated with T2DM (OR = 1.62, 95% CI = 1.27, 2.05); furthermore, T2DM was associated with dementia (HR = 1.94, 95% CI = 1.42, 2.66). Mediation analysis indicated that 20% of the estimated effect of TRAP-NOx on dementia/CIND was mediated through T2DM. CONCLUSION Our results suggest that exposure to local traffic-related air pollution is associated with incident dementia. We also estimated that 20% of this effect is mediated through T2DM. Thus, ambient air pollution might affect brain health via direct damage as well as through indirect pathways related to diabetes and metabolic dysfunction.
Collapse
Affiliation(s)
- Kimberly C Paul
- Department of Epidemiology, UCLA Fielding School of Public Health, Los Angeles, CA, USA
| | - Mary Haan
- Department of Epidemiology & Biostatistics, UCSF, San Francisco, CA, USA
| | - Yu Yu
- Department of Epidemiology, UCLA Fielding School of Public Health, Los Angeles, CA, USA
| | - Kosuke Inoue
- Department of Epidemiology, UCLA Fielding School of Public Health, Los Angeles, CA, USA
| | - Elizabeth Rose Mayeda
- Department of Epidemiology, UCLA Fielding School of Public Health, Los Angeles, CA, USA
| | - Kristina Dang
- Department of Epidemiology & Biostatistics, UCSF, San Francisco, CA, USA
| | - Jun Wu
- Program in Public Health, Susan and Henry Samueli College of Health Sciences, University of California, Irvine, Irvine, CA, USA
| | - Michael Jerrett
- Department of Environmental Sciences, UCLA Fielding School of Public Health, Los Angeles, CA, USA
| | - Beate Ritz
- Department of Epidemiology, UCLA Fielding School of Public Health, Los Angeles, CA, USA.,Department of Environmental Sciences, UCLA Fielding School of Public Health, Los Angeles, CA, USA
| |
Collapse
|
229
|
Dietary prospects of coconut oil for the prevention and treatment of Alzheimer's disease (AD): A review of recent evidences. Trends Food Sci Technol 2021. [DOI: 10.1016/j.tifs.2021.03.046] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
230
|
Sharma S, Advani D, Das A, Malhotra N, Khosla A, Arora V, Jha A, Yadav M, Ambasta RK, Kumar P. Pharmacological intervention in oxidative stress as a therapeutic target in neurological disorders. J Pharm Pharmacol 2021; 74:461-484. [PMID: 34050648 DOI: 10.1093/jpp/rgab064] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2020] [Accepted: 04/01/2021] [Indexed: 12/18/2022]
Abstract
OBJECTIVES Oxidative stress is a major cellular burden that triggers reactive oxygen species (ROS) and antioxidants that modulate signalling mechanisms. Byproducts generated from this process govern the brain pathology and functions in various neurological diseases. As oxidative stress remains the key therapeutic target in neurological disease, it is necessary to explore the multiple routes that can significantly repair the damage caused due to ROS and consequently, neurodegenerative disorders (NDDs). Nicotinamide adenine dinucleotide phosphate (NADPH) oxidase is the critical player of oxidative stress that can also be used as a therapeutic target to combat NDDs. KEY FINDINGS Several antioxidants signalling pathways are found to be associated with oxidative stress and show a protective effect against stressors by increasing the release of various cytoprotective enzymes and also exert anti-inflammatory response against this oxidative damage. These pathways along with antioxidants and reactive species can be the defined targets to eliminate or reduce the harmful effects of neurological diseases. SUMMARY Herein, we discussed the underlying mechanism and crucial role of antioxidants in therapeutics together with natural compounds as a pharmacological tool to combat the cellular deformities cascades caused due to oxidative stress.
Collapse
Affiliation(s)
- Sudhanshu Sharma
- Molecular Neuroscience and Functional Genomics Laboratory, Department of Biotechnology, Delhi Technological University (Formerly DCE), Delhi, India
| | - Dia Advani
- Molecular Neuroscience and Functional Genomics Laboratory, Department of Biotechnology, Delhi Technological University (Formerly DCE), Delhi, India
| | - Ankita Das
- Molecular Neuroscience and Functional Genomics Laboratory, Department of Biotechnology, Delhi Technological University (Formerly DCE), Delhi, India
| | - Nishtha Malhotra
- Molecular Neuroscience and Functional Genomics Laboratory, Department of Biotechnology, Delhi Technological University (Formerly DCE), Delhi, India
| | - Akanksha Khosla
- Molecular Neuroscience and Functional Genomics Laboratory, Department of Biotechnology, Delhi Technological University (Formerly DCE), Delhi, India
| | - Vanshika Arora
- Molecular Neuroscience and Functional Genomics Laboratory, Department of Biotechnology, Delhi Technological University (Formerly DCE), Delhi, India
| | - Ankita Jha
- Molecular Neuroscience and Functional Genomics Laboratory, Department of Biotechnology, Delhi Technological University (Formerly DCE), Delhi, India
| | - Megha Yadav
- Molecular Neuroscience and Functional Genomics Laboratory, Department of Biotechnology, Delhi Technological University (Formerly DCE), Delhi, India
| | - Rashmi K Ambasta
- Molecular Neuroscience and Functional Genomics Laboratory, Department of Biotechnology, Delhi Technological University (Formerly DCE), Delhi, India
| | - Pravir Kumar
- Molecular Neuroscience and Functional Genomics Laboratory, Department of Biotechnology, Delhi Technological University (Formerly DCE), Delhi, India
| |
Collapse
|
231
|
El Massry M, Alaeddine LM, Ali L, Saad C, Eid AA. Metformin: A Growing Journey from Glycemic Control to the Treatment of Alzheimer's Disease and Depression. Curr Med Chem 2021; 28:2328-2345. [PMID: 32900343 DOI: 10.2174/0929867327666200908114902] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2020] [Revised: 06/30/2020] [Accepted: 07/07/2020] [Indexed: 11/22/2022]
Abstract
Metabolic stress, transduced as an altered cellular redox and energy status, presents as the main culprit in many diseases, including diabetes. However, its role in the pathology of neurological disorders is still not fully elucidated. Metformin, a biguanide compound, is an FDA approved antidiabetic drug generally used for the treatment of type 2 diabetes. The recently described wide spectrum of action executed by this drug suggests a potential therapeutic benefit in a panoply of disorders. Current studies imply that metformin could play a neuroprotective role by reversing hallmarks of brain injury (metabolic dysfunction, neuronal dystrophy and cellular loss), in addition to cognitive and behavioral alterations that accompany the onset of certain brain diseases such as Alzheimer's disease (AD) and depression. However, the mechanisms by which metformin exerts its protective effect in neurodegenerative disorders are not yet fully elucidated. The aim of this review is to reexamine the mechanisms through which metformin performs its function while concentrating on its effect on reestablishing homeostasis in a metabolically disturbed milieu. We will also highlight the importance of metabolic stress, not only as a component of many neurological disorders, but also as a primary driving force for neural insult. Of interest, we will explore the involvement of metabolic stress in the pathobiology of AD and depression. The derangement in major metabolic pathways, including AMPK, insulin and glucose transporters, will be explored and the potential therapeutic effects of metformin administration on the reversal of brain injury in such metabolism dependent diseases will be exposed.
Collapse
Affiliation(s)
- Mohamed El Massry
- Department of Anatomy, Cell Biology and Physiological Sciences, Faculty of Medicine and Medical Center, American University of Beirut, Bliss Street, 11-0236, Riad El-Solh 1107-2020, Beirut, Lebanon
| | - Lynn M Alaeddine
- Department of Anatomy, Cell Biology and Physiological Sciences, Faculty of Medicine and Medical Center, American University of Beirut, Bliss Street, 11-0236, Riad El-Solh 1107-2020, Beirut, Lebanon
| | - Leen Ali
- Department of Anatomy, Cell Biology and Physiological Sciences, Faculty of Medicine and Medical Center, American University of Beirut, Bliss Street, 11-0236, Riad El-Solh 1107-2020, Beirut, Lebanon
| | - Celine Saad
- Department of Anatomy, Cell Biology and Physiological Sciences, Faculty of Medicine and Medical Center, American University of Beirut, Bliss Street, 11-0236, Riad El-Solh 1107-2020, Beirut, Lebanon
| | - Assaad A Eid
- Department of Anatomy, Cell Biology and Physiological Sciences, Faculty of Medicine and Medical Center, American University of Beirut, Bliss Street, 11-0236, Riad El-Solh 1107-2020, Beirut, Lebanon
| |
Collapse
|
232
|
Inflammasome NLRP3 Potentially Links Obesity-Associated Low-Grade Systemic Inflammation and Insulin Resistance with Alzheimer's Disease. Int J Mol Sci 2021; 22:ijms22115603. [PMID: 34070553 PMCID: PMC8198882 DOI: 10.3390/ijms22115603] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Revised: 05/16/2021] [Accepted: 05/21/2021] [Indexed: 02/07/2023] Open
Abstract
Alzheimer’s disease (AD) is the most common form of neurodegenerative dementia. Metabolic disorders including obesity and type 2 diabetes mellitus (T2DM) may stimulate amyloid β (Aβ) aggregate formation. AD, obesity, and T2DM share similar features such as chronic inflammation, increased oxidative stress, insulin resistance, and impaired energy metabolism. Adiposity is associated with the pro-inflammatory phenotype. Adiposity-related inflammatory factors lead to the formation of inflammasome complexes, which are responsible for the activation, maturation, and release of the pro-inflammatory cytokines including interleukin-1β (IL-1β) and interleukin-18 (IL-18). Activation of the inflammasome complex, particularly NLRP3, has a crucial role in obesity-induced inflammation, insulin resistance, and T2DM. The abnormal activation of the NLRP3 signaling pathway influences neuroinflammatory processes. NLRP3/IL-1β signaling could underlie the association between adiposity and cognitive impairment in humans. The review includes a broadened approach to the role of obesity-related diseases (obesity, low-grade chronic inflammation, type 2 diabetes, insulin resistance, and enhanced NLRP3 activity) in AD. Moreover, we also discuss the mechanisms by which the NLRP3 activation potentially links inflammation, peripheral and central insulin resistance, and metabolic changes with AD.
Collapse
|
233
|
Serina JJC, Castilho PCMF. Using polyphenols as a relevant therapy to diabetes and its complications, a review. Crit Rev Food Sci Nutr 2021; 62:8355-8387. [PMID: 34028316 DOI: 10.1080/10408398.2021.1927977] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Diabetes is currently a worldwide health concern. Hyperglycemia, hypertension, obesity, and oxidative stress are the major risk factors that inevitably lead to all the complications from diabetes. These complications severely impact the quality of life of patients, and they can be managed, reduced, or even reverted by several polyphenols, plant extracts and foods rich in these compounds. The goal of this review is to approach diabetes not as a single condition but rather an interconnected combination of risk factors and complications. This work shows that polyphenols have multi target action and effects and they have been systematically proven to be relevant in the reduction of each risk factor and improvement of associated complication.
Collapse
|
234
|
Kubis-Kubiak A, Wiatrak B, Piwowar A. The Impact of High Glucose or Insulin Exposure on S100B Protein Levels, Oxidative and Nitrosative Stress and DNA Damage in Neuron-Like Cells. Int J Mol Sci 2021; 22:ijms22115526. [PMID: 34073816 PMCID: PMC8197274 DOI: 10.3390/ijms22115526] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2021] [Revised: 05/20/2021] [Accepted: 05/21/2021] [Indexed: 12/25/2022] Open
Abstract
Alzheimer’s disease (AD) is attracting considerable interest due to its increasing number of cases as a consequence of the aging of the global population. The mainstream concept of AD neuropathology based on pathological changes of amyloid β metabolism and the formation of neurofibrillary tangles is under criticism due to the failure of Aβ-targeting drug trials. Recent findings have shown that AD is a highly complex disease involving a broad range of clinical manifestations as well as cellular and biochemical disturbances. The past decade has seen a renewed importance of metabolic disturbances in disease-relevant early pathology with challenging areas in establishing the role of local micro-fluctuations in glucose concentrations and the impact of insulin on neuronal function. The role of the S100 protein family in this interplay remains unclear and is the aim of this research. Intracellularly the S100B protein has a protective effect on neurons against the toxic effects of glutamate and stimulates neurites outgrowth and neuronal survival. At high concentrations, it can induce apoptosis. The aim of our study was to extend current knowledge of the possible impact of hyper-glycemia and -insulinemia directly on neuronal S100B secretion and comparison to oxidative stress markers such as ROS, NO and DBSs levels. In this paper, we have shown that S100B secretion decreases in neurons cultured in a high-glucose or high-insulin medium, while levels in cell lysates are increased with statistical significance. Our findings demonstrate the strong toxic impact of energetic disturbances on neuronal metabolism and the potential neuroprotective role of S100B protein.
Collapse
Affiliation(s)
- Adriana Kubis-Kubiak
- Department of Toxicology, Faculty of Pharmacy, Wroclaw Medical University, Borowska 211, 50-556 Wroclaw, Poland;
- Correspondence:
| | - Benita Wiatrak
- Department of Pharmacology, Faculty of Medicine, Wroclaw Medical University, Mikulicza-Radeckiego 2, 50-345 Wroclaw, Poland;
| | - Agnieszka Piwowar
- Department of Toxicology, Faculty of Pharmacy, Wroclaw Medical University, Borowska 211, 50-556 Wroclaw, Poland;
| |
Collapse
|
235
|
A Negative Energy Balance Is Associated with Metabolic Dysfunctions in the Hypothalamus of a Humanized Preclinical Model of Alzheimer's Disease, the 5XFAD Mouse. Int J Mol Sci 2021; 22:ijms22105365. [PMID: 34065168 PMCID: PMC8161294 DOI: 10.3390/ijms22105365] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Revised: 05/15/2021] [Accepted: 05/16/2021] [Indexed: 12/19/2022] Open
Abstract
Increasing evidence links metabolic disorders with neurodegenerative processes including Alzheimer’s disease (AD). Late AD is associated with amyloid (Aβ) plaque accumulation, neuroinflammation, and central insulin resistance. Here, a humanized AD model, the 5xFAD mouse model, was used to further explore food intake, energy expenditure, neuroinflammation, and neuroendocrine signaling in the hypothalamus. Experiments were performed on 6-month-old male and female full transgenic (Tg5xFAD/5xFAD), heterozygous (Tg5xFAD/-), and non-transgenic (Non-Tg) littermates. Although histological analysis showed absence of Aβ plaques in the hypothalamus of 5xFAD mice, this brain region displayed increased protein levels of GFAP and IBA1 in both Tg5xFAD/- and Tg5xFAD/5xFAD mice and increased expression of IL-1β in Tg5xFAD/5xFAD mice, suggesting neuroinflammation. This condition was accompanied by decreased body weight, food intake, and energy expenditure in both Tg5xFAD/- and Tg5xFAD/5xFAD mice. Negative energy balance was associated with altered circulating levels of insulin, GLP-1, GIP, ghrelin, and resistin; decreased insulin and leptin hypothalamic signaling; dysregulation in main metabolic sensors (phosphorylated IRS1, STAT5, AMPK, mTOR, ERK2); and neuropeptides controlling energy balance (NPY, AgRP, orexin, MCH). These results suggest that glial activation and metabolic dysfunctions in the hypothalamus of a mouse model of AD likely result in negative energy balance, which may contribute to AD pathogenesis development.
Collapse
|
236
|
Baranowski BJ, Hayward GC, Marko DM, MacPherson REK. Examination of BDNF Treatment on BACE1 Activity and Acute Exercise on Brain BDNF Signaling. Front Cell Neurosci 2021; 15:665867. [PMID: 34017238 PMCID: PMC8129185 DOI: 10.3389/fncel.2021.665867] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2021] [Accepted: 04/09/2021] [Indexed: 11/23/2022] Open
Abstract
Perturbations in metabolism results in the accumulation of beta-amyloid peptides, which is a pathological feature of Alzheimer’s disease. Beta-site amyloid precursor protein cleaving enzyme 1 (BACE1) is the rate limiting enzyme responsible for beta-amyloid production. Obesogenic diets increase BACE1 while exercise reduces BACE1 activity, although the mechanisms are unknown. Brain-derived neurotropic factor (BDNF) is an exercise inducible neurotrophic factor, however, it is unknown if BDNF is related to the effects of exercise on BACE1. The purpose of this study was to determine the direct effect of BDNF on BACE1 activity and to examine neuronal pathways induced by exercise. C57BL/6J male mice were assigned to either a low (n = 36) or high fat diet (n = 36) for 10 weeks. To determine the direct effect of BDNF on BACE1, a subset of mice (low fat diet = 12 and high fat diet n = 12) were used for an explant experiment where the brain tissue was directly treated with BDNF (100 ng/ml) for 30 min. To examine neuronal pathways activated with exercise, mice remained sedentary (n = 12) or underwent an acute bout of treadmill running at 15 m/min with a 5% incline for 120 min (n = 12). The prefrontal cortex and hippocampus were collected 2-h post-exercise. Direct treatment with BDNF resulted in reductions in BACE1 activity in the prefrontal cortex (p < 0.05), but not the hippocampus. The high fat diet reduced BDNF content in the hippocampus; however, the acute bout of exercise increased BDNF in the prefrontal cortex (p < 0.05). These novel findings demonstrate the region specific differences in exercise induced BDNF in lean and obese mice and show that BDNF can reduce BACE1 activity, independent of other exercise-induced alterations. This work demonstrates a previously unknown link between BDNF and BACE1 regulation.
Collapse
Affiliation(s)
| | - Grant C Hayward
- Department of Health Sciences, Brock University, St. Catharines, ON, Canada
| | - Daniel M Marko
- Department of Health Sciences, Brock University, St. Catharines, ON, Canada
| | - Rebecca E K MacPherson
- Department of Health Sciences, Brock University, St. Catharines, ON, Canada.,Centre for Neuroscience, Brock University, St. Catharines, ON, Canada
| |
Collapse
|
237
|
Arrona Cardoza P, Spillane MB, Morales Marroquin E. Alzheimer's disease and gut microbiota: does trimethylamine N-oxide (TMAO) play a role? Nutr Rev 2021; 80:271-281. [PMID: 33942080 DOI: 10.1093/nutrit/nuab022] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Alzheimer's disease (AD) is a neurodegenerative disease that affects memory and cognitive function. Clinical evidence has put into question our current understanding of AD development, propelling researchers to look into further avenues. Gut microbiota has emerged as a potential player in AD pathophysiology. Lifestyle factors, such as diet, can have negative effects on the gut microbiota and thus host health. A Western-type diet has been highlighted as a risk factor for both gut microbiota alteration as well as AD development. The gut-derived trimethylamine N-oxide (TMAO) has been previously implied in the development of cardiovascular diseases with recent evidence suggesting a plausible role of TMAO in AD development. Therefore, the main goal of the present review is to provide the reader with potential mechanisms of action through which consumption of a Western-type diet could increase AD risk, by acting through microbiota-produced TMAO. Although a link between TMAO and AD is far from definitive, this review will serve as a call for research into this new area of research.
Collapse
Affiliation(s)
- Pablo Arrona Cardoza
- P. Arrona Cardoza is with the Tecnológico de Monterrey, School of Medicine and Health Science, Monterrey, Nuevo Leon, Mexico. M.B Spillane is with the H.C. Drew School of Health and Human Performance, McNeese State University, Lake Charles, Louisiana, USA. E. Morales Marroquin is with the School of Public Health, University of Texas Health Science Center at Houston, Houston, Texas, USA. E. Morales Marroquin is with the Center for Pediatric Population Health, UTHealth School of Public Health and Children's Health System of Texas, Dallas, Texas, USA
| | - Micheil B Spillane
- P. Arrona Cardoza is with the Tecnológico de Monterrey, School of Medicine and Health Science, Monterrey, Nuevo Leon, Mexico. M.B Spillane is with the H.C. Drew School of Health and Human Performance, McNeese State University, Lake Charles, Louisiana, USA. E. Morales Marroquin is with the School of Public Health, University of Texas Health Science Center at Houston, Houston, Texas, USA. E. Morales Marroquin is with the Center for Pediatric Population Health, UTHealth School of Public Health and Children's Health System of Texas, Dallas, Texas, USA
| | - Elisa Morales Marroquin
- P. Arrona Cardoza is with the Tecnológico de Monterrey, School of Medicine and Health Science, Monterrey, Nuevo Leon, Mexico. M.B Spillane is with the H.C. Drew School of Health and Human Performance, McNeese State University, Lake Charles, Louisiana, USA. E. Morales Marroquin is with the School of Public Health, University of Texas Health Science Center at Houston, Houston, Texas, USA. E. Morales Marroquin is with the Center for Pediatric Population Health, UTHealth School of Public Health and Children's Health System of Texas, Dallas, Texas, USA
| |
Collapse
|
238
|
Siino V, Jensen P, James P, Vasto S, Amato A, Mulè F, Accardi G, Larsen MR. Obesogenic Diets Cause Alterations on Proteins and Theirs Post-Translational Modifications in Mouse Brains. Nutr Metab Insights 2021; 14:11786388211012405. [PMID: 34017182 PMCID: PMC8114309 DOI: 10.1177/11786388211012405] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2020] [Accepted: 03/13/2021] [Indexed: 11/17/2022] Open
Abstract
Obesity constitutes a major global health threat and is associated with a variety of diseases ranging from metabolic and cardiovascular disease, cancer to neurodegeneration. The hallmarks of neurodegeneration include oxidative stress, proteasome impairment, mitochondrial dysfunction and accumulation of abnormal protein aggregates as well as metabolic alterations. As an example, in post-mortem brain of patients with Alzheimer’s disease (AD), several studies have reported reduction of insulin, insulin-like growth factor 1 and insulin receptor and an increase in tau protein and glycogen-synthase kinase-3β compared to healthy controls suggesting an impairment of metabolism in the AD patient’s brain. Given these lines of evidence, in the present study we investigated brains of mice treated with 2 obesogenic diets, high-fat diet (HFD) and high-glycaemic diet (HGD), compared to mice fed with a standard diet (SD) employing a quantitative mass spectrometry-based approach. Moreover, post-translational modified proteins (phosphorylated and N-linked glycosylated) were studied. The aim of the study was to identify proteins present in the brain that are changing their expression based on the diet given to the mice. We believed that some of these changes would highlight pathways and molecular mechanisms that could link obesity to brain impairment. The results showed in this study suggest that, together with cytoskeletal proteins, mitochondria and metabolic proteins are changing their post-translational status in brains of obese mice. Specifically, proteins involved in metabolic pathways and in mitochondrial functions are mainly downregulated in mice fed with obesogenic diets compared to SD. These changes suggest a reduced metabolism and a lower activity of mitochondria in obese mice. Some of these proteins, such as PGM1 and MCT1 have been shown to be involved in brain impairment as well. These results might shed light on the well-studied correlation between obesity and brain damage. The results presented here are in agreement with previous findings and aim to open new perspectives on the connection between diet-induced obesity and brain impairment.
Collapse
Affiliation(s)
| | - Pia Jensen
- Department of Biochemistry and Molecular Biology, PR Group, University of Southern Denmark, Odense, Denmark
| | - Peter James
- Department of Immunotechnology, Lund University, Sweden.,Turku Centre for Biotechnology and Åbo Academy University, Turku, Finland
| | - Sonya Vasto
- Department of Biological Chemical and Pharmaceutical Sciences and Technologies (STEBICEF), University of Palermo, Palermo, Italy.,Institute of Biomedicine and Molecular Immunology 'Alberto Monroy' CNR, Palermo, Italy
| | - Antonella Amato
- Department of Biological Chemical and Pharmaceutical Sciences and Technologies (STEBICEF), University of Palermo, Palermo, Italy
| | - Flavia Mulè
- Department of Biological Chemical and Pharmaceutical Sciences and Technologies (STEBICEF), University of Palermo, Palermo, Italy
| | - Giulia Accardi
- Department of Biopathology and Medical biotechnologies Pathobiology and Medical Biotechnologies, University of Palermo, Palermo, Italy
| | - Martin Røssel Larsen
- Department of Biochemistry and Molecular Biology, PR Group, University of Southern Denmark, Odense, Denmark
| |
Collapse
|
239
|
Zhang X, Alshakhshir N, Zhao L. Glycolytic Metabolism, Brain Resilience, and Alzheimer's Disease. Front Neurosci 2021; 15:662242. [PMID: 33994936 PMCID: PMC8113697 DOI: 10.3389/fnins.2021.662242] [Citation(s) in RCA: 54] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2021] [Accepted: 04/06/2021] [Indexed: 12/12/2022] Open
Abstract
Alzheimer's disease (AD) is the most common form of age-related dementia. Despite decades of research, the etiology and pathogenesis of AD are not well understood. Brain glucose hypometabolism has long been recognized as a prominent anomaly that occurs in the preclinical stage of AD. Recent studies suggest that glycolytic metabolism, the cytoplasmic pathway of the breakdown of glucose, may play a critical role in the development of AD. Glycolysis is essential for a variety of neural activities in the brain, including energy production, synaptic transmission, and redox homeostasis. Decreased glycolytic flux has been shown to correlate with the severity of amyloid and tau pathology in both preclinical and clinical AD patients. Moreover, increased glucose accumulation found in the brains of AD patients supports the hypothesis that glycolytic deficit may be a contributor to the development of this phenotype. Brain hyperglycemia also provides a plausible explanation for the well-documented link between AD and diabetes. Humans possess three primary variants of the apolipoprotein E (ApoE) gene - ApoE∗ϵ2, ApoE∗ϵ3, and ApoE∗ϵ4 - that confer differential susceptibility to AD. Recent findings indicate that neuronal glycolysis is significantly affected by human ApoE isoforms and glycolytic robustness may serve as a major mechanism that renders an ApoE2-bearing brain more resistant against the neurodegenerative risks for AD. In addition to AD, glycolytic dysfunction has been observed in other neurodegenerative diseases, including Parkinson's disease, Huntington's disease, and amyotrophic lateral sclerosis, strengthening the concept of glycolytic dysfunction as a common pathway leading to neurodegeneration. Taken together, these advances highlight a promising translational opportunity that involves targeting glycolysis to bolster brain metabolic resilience and by such to alter the course of brain aging or disease development to prevent or reduce the risks for not only AD but also other neurodegenerative diseases.
Collapse
Affiliation(s)
- Xin Zhang
- Department of Pharmacology and Toxicology, School of Pharmacy, University of Kansas, Lawrence, KS, United States
| | - Nadine Alshakhshir
- Department of Pharmacology and Toxicology, School of Pharmacy, University of Kansas, Lawrence, KS, United States
| | - Liqin Zhao
- Department of Pharmacology and Toxicology, School of Pharmacy, University of Kansas, Lawrence, KS, United States
- Neuroscience Graduate Program, University of Kansas, Lawrence, KS, United States
| |
Collapse
|
240
|
Investigation of extracellular matrix genes associated with Alzheimer’s disease in the hippocampus of experimental diabetic model rats. Int J Diabetes Dev Ctries 2021. [DOI: 10.1007/s13410-021-00951-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/21/2022] Open
|
241
|
Frohlich J, Chaldakov GN, Vinciguerra M. Cardio- and Neurometabolic Adipobiology: Consequences and Implications for Therapy. Int J Mol Sci 2021; 22:ijms22084137. [PMID: 33923652 PMCID: PMC8072708 DOI: 10.3390/ijms22084137] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Revised: 04/08/2021] [Accepted: 04/13/2021] [Indexed: 12/12/2022] Open
Abstract
Studies over the past 30 years have revealed that adipose tissue is the major endocrine and paracrine organ of the human body. Arguably, adiopobiology has taken its reasonable place in studying obesity and related cardiometabolic diseases (CMDs), including Alzheimer's disease (AD), which is viewed herein as a neurometabolic disorder. The pathogenesis and therapy of these diseases are multiplex at basic, clinical and translational levels. Our present goal is to describe new developments in cardiometabolic and neurometabolic adipobiology. Accordingly, we focus on adipose- and/or skeletal muscle-derived signaling proteins (adipsin, adiponectin, nerve growth factor, brain-derived neuroptrophic factor, neurotrophin-3, irisin, sirtuins, Klotho, neprilysin, follistatin-like protein-1, meteorin-like (metrnl), as well as growth differentiation factor 11) as examples of metabotrophic factors (MTFs) implicated in the pathogenesis and therapy of obesity and related CMDs. We argue that these pathologies are MTF-deficient diseases. In 1993 the "vascular hypothesis of AD" was published and in the present review we propose the "vasculometabolic hypothesis of AD." We discuss how MTFs could bridge CMDs and neurodegenerative diseases, such as AD. Greater insights on how to manage the MTF network would provide benefits to the quality of human life.
Collapse
Affiliation(s)
- Jan Frohlich
- International Clinical Research Center, St. Anne’s University Hospital, 656 91 Brno, Czech Republic;
| | - George N. Chaldakov
- Department of Anatomy and Cell Biology and Research Institute of the Medical University, 9002 Varna, Bulgaria;
- Department of Translational Stem Cell Biology, Research Institute of the Medical University, 9002 Varna, Bulgaria
| | - Manlio Vinciguerra
- International Clinical Research Center, St. Anne’s University Hospital, 656 91 Brno, Czech Republic;
- Department of Translational Stem Cell Biology, Research Institute of the Medical University, 9002 Varna, Bulgaria
- Correspondence: or
| |
Collapse
|
242
|
Roy M, Pal I, Dey C, Dey A, Dey SG. Electronic structure and reactivity of heme bound insulin. J PORPHYR PHTHALOCYA 2021. [DOI: 10.1142/s1088424621500346] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Insulin resistance as well as insulin deficiency are said to be principal to the development of type 2 diabetes mellitus (T2Dm). Heme has also been suggested to play an important role in the disease etiology since many of the heme deficiency symptoms constitute the common pathological features of T2Dm. Besides, iron overload, higher heme iron intake and transfusion requiring diseases are associated with a higher risk of T2Dm development. In this study the interaction between these two key components i.e. heme and insulin has been studied spectroscopically under different conditions which include the effect of excess peptide as well as increasing pH. The resultant heme-insulin complexes in their reduced state are found to produce very little partially reduced oxygen species (PROS) on getting oxidized by molecular oxygen. The interaction between insulin and previously reported T2Dm relevant heme-amylin complex were also examined using absorption and resonance Raman spectroscopy. The corresponding data suggest that insulin sequesters heme from heme-amylin to form the much less cytotoxic heme-insulin.
Collapse
Affiliation(s)
- Madhuparna Roy
- School of Chemical Sciences, Indian Association for the Cultivation of Science, 2A & 2B, Raja S. C. Mullick Road, Jadavpur, Kolkata 700032, India
| | - Ishita Pal
- School of Chemical Sciences, Indian Association for the Cultivation of Science, 2A & 2B, Raja S. C. Mullick Road, Jadavpur, Kolkata 700032, India
| | - Chinmay Dey
- School of Chemical Sciences, Indian Association for the Cultivation of Science, 2A & 2B, Raja S. C. Mullick Road, Jadavpur, Kolkata 700032, India
| | - Abhishek Dey
- School of Chemical Sciences, Indian Association for the Cultivation of Science, 2A & 2B, Raja S. C. Mullick Road, Jadavpur, Kolkata 700032, India
| | - Somdatta Ghosh Dey
- School of Chemical Sciences, Indian Association for the Cultivation of Science, 2A & 2B, Raja S. C. Mullick Road, Jadavpur, Kolkata 700032, India
| |
Collapse
|
243
|
Key Disease Mechanisms Linked to Alzheimer's Disease in the Entorhinal Cortex. Int J Mol Sci 2021; 22:ijms22083915. [PMID: 33920138 PMCID: PMC8069371 DOI: 10.3390/ijms22083915] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2021] [Revised: 04/05/2021] [Accepted: 04/07/2021] [Indexed: 02/06/2023] Open
Abstract
Alzheimer’s disease (AD) is a chronic, neurodegenerative brain disorder affecting millions of Americans that is expected to increase in incidence with the expanding aging population. Symptomatic AD patients show cognitive decline and often develop neuropsychiatric symptoms due to the accumulation of insoluble proteins that produce plaques and tangles seen in the brain at autopsy. Unexpectedly, some clinically normal individuals also show AD pathology in the brain at autopsy (asymptomatic AD, AsymAD). In this study, SWItchMiner software was used to identify key switch genes in the brain’s entorhinal cortex that lead to the development of AD or disease resilience. Seventy-two switch genes were identified that are differentially expressed in AD patients compared to healthy controls. These genes are involved in inflammation, platelet activation, and phospholipase D and estrogen signaling. Peroxisome proliferator-activated receptor γ (PPARG), zinc-finger transcription factor (YY1), sterol regulatory element-binding transcription factor 2 (SREBF2), and early growth response 1 (EGR1) were identified as transcription factors that potentially regulate switch genes in AD. Comparing AD patients to AsymAD individuals revealed 51 switch genes; PPARG as a potential regulator of these genes, and platelet activation and phospholipase D as critical signaling pathways. Chemical–protein interaction analysis revealed that valproic acid is a therapeutic agent that could prevent AD from progressing.
Collapse
|
244
|
Bansal S, Agrawal M, Mahendiratta S, Kumar S, Arora S, Joshi R, Prajapat M, Sarma P, Prakash A, Chopra K, Medhi B. Everolimus: A potential therapeutic agent targeting PI3K/Akt pathway in brain insulin system dysfunction and associated neurobehavioral deficits. Fundam Clin Pharmacol 2021; 35:1018-1031. [PMID: 33783880 DOI: 10.1111/fcp.12677] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2020] [Revised: 03/19/2021] [Accepted: 03/26/2021] [Indexed: 11/26/2022]
Abstract
BACKGROUND It is well accepted that PI3k/Akt signaling pathway is a potential therapeutic window which regulates metabolism and energy homeostasis within the brain, and is an important mediator of normal neuronal physiological functions. Dysregulation of this pathway results in impaired insulin signaling, learning and memory and neuronal survival. OBJECTIVES Elucidating the role of everolimus in intracerebroventricular (ICV) streptozotocin induced Insulin/IGF-1 dependent PI3K/Akt/mTOR pathway dysregulation and associated neurobehavioral deficits. METHODS Rats were administered with streptozotocin (3 mg/kg) intracerebroventricular, followed by administration of everolimus (1 mg/kg) orally for 21 days. After that, Morris water maze and passive avoidance tests were performed for assessment of memory. Animals were sacrificed to evaluate brain insulin pathway dysfunction, neurotrophic, apoptotic, inflammatory, and biochemical markers in rat brain. To elucidate the mechanism of action of everolimus, PI3K inhibitor, wortmannin was administered in the presence of everolimus in one group. RESULTS Streptozotocin administration resulted in a significant decrease of brain insulin, insulin growth factor-1 levels, and alterations in behavioral, neurotrophic (BDNF), inflammatory (TNF-α), apoptotic (NF-κB, Bcl2 and Bax) and biochemical (AChE and ChAT assay) parameters in comparison to sham group rats. Everolimus significantly mitigated the deleterious behavioral, biochemical, and molecular changes in rats having central insulin dysfunction. However, the protective effect of everolimus was completely abolished when it was administered in the presence of wortmannin. CONCLUSION Findings from the study reveal that mTOR inhibitors can be an important treatment strategy for neurobehavioral deficits occurring due to central insulin pathway dysfunction. Protective effect of drugs is via modulation of PI3K/Akt pathway.
Collapse
Affiliation(s)
- Seema Bansal
- Department of Pharmacology, Post Graduate Institute of Medical Education and Research, Chandigarh, India
| | - Madhunika Agrawal
- Department of Pharmacology, University Institute of Pharmaceutical Sciences, Panjab University, Chandigarh, India
| | - Saniya Mahendiratta
- Department of Pharmacology, Post Graduate Institute of Medical Education and Research, Chandigarh, India
| | - Subodh Kumar
- Department of Pharmacology, Post Graduate Institute of Medical Education and Research, Chandigarh, India
| | - Shiyana Arora
- Department of Pharmacology, University Institute of Pharmaceutical Sciences, Panjab University, Chandigarh, India
| | - Rupa Joshi
- Department of Pharmacology, Post Graduate Institute of Medical Education and Research, Chandigarh, India
| | - Manisha Prajapat
- Department of Pharmacology, Post Graduate Institute of Medical Education and Research, Chandigarh, India
| | - Phulen Sarma
- Department of Pharmacology, Post Graduate Institute of Medical Education and Research, Chandigarh, India
| | - Ajay Prakash
- Department of Pharmacology, Post Graduate Institute of Medical Education and Research, Chandigarh, India
| | - Kanwaljit Chopra
- Department of Pharmacology, University Institute of Pharmaceutical Sciences, Panjab University, Chandigarh, India
| | - Bikash Medhi
- Department of Pharmacology, Post Graduate Institute of Medical Education and Research, Chandigarh, India
| |
Collapse
|
245
|
Governa P, Caroleo MC, Carullo G, Aiello F, Cione E, Manetti F. FFAR1/GPR40: One target, different binding sites, many agonists, no drugs, but a continuous and unprofitable tug-of-war between ligand lipophilicity, activity, and toxicity. Bioorg Med Chem Lett 2021; 41:127969. [PMID: 33771587 DOI: 10.1016/j.bmcl.2021.127969] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2021] [Revised: 03/09/2021] [Accepted: 03/12/2021] [Indexed: 12/31/2022]
Abstract
The progress made so far in the elucidation of the structure of free fatty acid receptor 1 (FFAR1) and its secondary and ternary complexes with partial and full allosteric ligands led to the discovery of various putative binding regions on the FFAR1 surface. Attempts to develop FFAR1 agonists culminated with the identification of TAK-875 (1), whose phase 3 clinical trials were terminated due to potential liver toxicity. In the search of safer agonists, numerous classes of new compounds were designed, synthesized, and tested. Chemical decoration of the scaffolds was rationalized to reach a good balance between lipophilicity, activity, and toxicity. Today, targeting FFAR1 with positive modulators represents an attractive pharmacological tool for the treatment of type 2 diabetes mellitus (T2DM), mainly because of the lack of hypoglycaemic side effects associated with several antidiabetic drugs currently available. Moreover, considering the involvement of FFAR1 in many physio-pathological processes, its agonists are also emerging as possible therapeutic tools for alleviating organ inflammation and fibrosis, as well as for the treatment of CNS disorders, such as Alzheimer's disease and dementia.
Collapse
Affiliation(s)
- Paolo Governa
- Department of Biotechnology, Chemistry and Pharmacy-Department of Excellence 2018-2022, University of Siena, via Aldo Moro 2, I-53100 Siena, Italy
| | - Maria Cristina Caroleo
- Department of Pharmacy, Health and Nutritional Sciences-Department of Excellence 2018-2022, University of Calabria, Ed. Polifunzionale, I-87036 Arcavacata di Rende, CS, Italy
| | - Gabriele Carullo
- Department of Biotechnology, Chemistry and Pharmacy-Department of Excellence 2018-2022, University of Siena, via Aldo Moro 2, I-53100 Siena, Italy
| | - Francesca Aiello
- Department of Pharmacy, Health and Nutritional Sciences-Department of Excellence 2018-2022, University of Calabria, Ed. Polifunzionale, I-87036 Arcavacata di Rende, CS, Italy.
| | - Erika Cione
- Department of Pharmacy, Health and Nutritional Sciences-Department of Excellence 2018-2022, University of Calabria, Ed. Polifunzionale, I-87036 Arcavacata di Rende, CS, Italy.
| | - Fabrizio Manetti
- Department of Biotechnology, Chemistry and Pharmacy-Department of Excellence 2018-2022, University of Siena, via Aldo Moro 2, I-53100 Siena, Italy.
| |
Collapse
|
246
|
Liu J, Ting JP, Al-Azzam S, Ding Y, Afshar S. Therapeutic Advances in Diabetes, Autoimmune, and Neurological Diseases. Int J Mol Sci 2021; 22:ijms22062805. [PMID: 33802091 PMCID: PMC8001105 DOI: 10.3390/ijms22062805] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2021] [Revised: 03/02/2021] [Accepted: 03/06/2021] [Indexed: 02/08/2023] Open
Abstract
Since 2015, 170 small molecules, 60 antibody-based entities, 12 peptides, and 15 gene- or cell-therapies have been approved by FDA for diverse disease indications. Recent advancement in medicine is facilitated by identification of new targets and mechanisms of actions, advancement in discovery and development platforms, and the emergence of novel technologies. Early disease detection, precision intervention, and personalized treatments have revolutionized patient care in the last decade. In this review, we provide a comprehensive overview of current and emerging therapeutic modalities developed in the recent years. We focus on nine diseases in three major therapeutics areas, diabetes, autoimmune, and neurological disorders. The pathogenesis of each disease at physiological and molecular levels is discussed and recently approved drugs as well as drugs in the clinic are presented.
Collapse
Affiliation(s)
- Jinsha Liu
- Protein Engineering, Lilly Biotechnology Center, Eli Lilly and Company, San Diego, CA 92121, USA; (J.L.); (J.P.T.); (Y.D.)
| | - Joey Paolo Ting
- Protein Engineering, Lilly Biotechnology Center, Eli Lilly and Company, San Diego, CA 92121, USA; (J.L.); (J.P.T.); (Y.D.)
| | - Shams Al-Azzam
- Professional Scientific Services, Eurofins Lancaster Laboratories, Lancaster, PA 17605, USA;
| | - Yun Ding
- Protein Engineering, Lilly Biotechnology Center, Eli Lilly and Company, San Diego, CA 92121, USA; (J.L.); (J.P.T.); (Y.D.)
| | - Sepideh Afshar
- Protein Engineering, Lilly Biotechnology Center, Eli Lilly and Company, San Diego, CA 92121, USA; (J.L.); (J.P.T.); (Y.D.)
- Correspondence:
| |
Collapse
|
247
|
Bansal S, Mahendiratta S, Agrawal M, Kumar S, Sharma AR, Garg N, Joshi R, Sarma P, Prakash A, Chopra K, Medhi B. Role of protein tyrosine phosphatase 1B inhibitor in central insulin resistance and associated cognitive deficits. Brain Res Bull 2021; 171:113-125. [PMID: 33684458 DOI: 10.1016/j.brainresbull.2021.02.026] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2020] [Revised: 02/17/2021] [Accepted: 02/23/2021] [Indexed: 10/22/2022]
Abstract
BACKGROUND Protein tyrosine phosphatase 1B (PTP1B) inhibitors are potential candidates for the treatment of peripheral insulin resistance and diabetes mellitus. Similar to peripheral action within the brain also, PTP1B activation impairs insulin signaling pathways. Activation of PTP1B in brain also accentuates neuroinflammation, oxidative stress and decreases neurotrophic factors in various brain dysfunctions including cognitive decline. OBJECTIVES The main objective of our study was to elucidate the role of alendronate, a potent PTP1B inhibitor (blood brain barrier crossing bisphosphonate) in central insulin resistance and associated memory deficits. METHODOLOGY To induce central insulin resistance, streptozotocin (3 mg/kg) intracerebroventricular (ICV) was administered in two alternate days (1st and 3rd). After 21 days, memory was assessed via using the passive avoidance and Morris water maze paradigm. At the end of behavioral studies, animals were sacrificed to assess a variety of biochemical and molecular parameters in the hippocampus and cerebral cortex region of the brain. Treatment drug alendronate (3 mg/kg/day, p.o) and standard drug donepezil (3 mg/kg/i.p.) were administered from the 3rd day of STZ administration till the end of the study. Inhibition of PTP1B activates phosphoinsotide-3 kinase (PI3 K) (down-stream regulator of insulin signaling pathway).Thus, to illuminate the mechanism of action of alendronate, PI3 K inhibitor, wortmannin was administered in presence of alendronate in one group. RESULTS Administration of alendronate to ICV streprozotocin treated rats resulted in modulation of the insulin signaling pathway and associated behavioral, biochemical and molecular changes in central insulin resistance. However, the protective effect of alendronate was entirely vanished when it was administered in the presence of wortmannin. CONCLUSION Alendronate can be an important treatment strategy in central insulin signaling pathway dysfunction and associated cognitive deficits. Protective effect of alendronate is via modulation of PI3-K/Akt signaling pathway.
Collapse
Affiliation(s)
- Seema Bansal
- Department of Pharmacology, Post Graduate Institute of Medical Education and Research, Chandigarh, 160012, India
| | - Saniya Mahendiratta
- Department of Pharmacology, Post Graduate Institute of Medical Education and Research, Chandigarh, 160012, India
| | - Madhunika Agrawal
- Department of Pharmacology, University Institute of Pharmaceutical Sciences, Panjab University, Chandigarh, 160014, India
| | - Subodh Kumar
- Department of Pharmacology, Post Graduate Institute of Medical Education and Research, Chandigarh, 160012, India
| | - Amit Raj Sharma
- Department of Pharmacology, Post Graduate Institute of Medical Education and Research, Chandigarh, 160012, India
| | - Nitika Garg
- Department of Pharmacology, Post Graduate Institute of Medical Education and Research, Chandigarh, 160012, India
| | - Rupa Joshi
- Department of Pharmacology, Post Graduate Institute of Medical Education and Research, Chandigarh, 160012, India
| | - Phulen Sarma
- Department of Pharmacology, Post Graduate Institute of Medical Education and Research, Chandigarh, 160012, India
| | - Ajay Prakash
- Department of Pharmacology, Post Graduate Institute of Medical Education and Research, Chandigarh, 160012, India
| | - Kanwaljit Chopra
- Department of Pharmacology, University Institute of Pharmaceutical Sciences, Panjab University, Chandigarh, 160014, India
| | - Bikash Medhi
- Department of Pharmacology, Post Graduate Institute of Medical Education and Research, Chandigarh, 160012, India.
| |
Collapse
|
248
|
Hernandez AR, Banerjee A, Carter CS, Buford TW. Angiotensin (1-7) Expressing Probiotic as a Potential Treatment for Dementia. FRONTIERS IN AGING 2021; 2:629164. [PMID: 34901930 PMCID: PMC8663799 DOI: 10.3389/fragi.2021.629164] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/17/2020] [Accepted: 03/05/2021] [Indexed: 12/12/2022]
Abstract
Increasing life expectancies are unfortunately accompanied by increased prevalence of Alzheimer's disease (AD). Regrettably, there are no current therapeutic options capable of preventing or treating AD. We review here data indicating that AD is accompanied by gut dysbiosis and impaired renin angiotensin system (RAS) function. Therefore, we propose the potential utility of an intervention targeting both the gut microbiome and RAS as both are heavily involved in proper CNS function. One potential approach which our group is currently exploring is the use of genetically-modified probiotics (GMPs) to deliver therapeutic compounds. In this review, we specifically highlight the potential utility of utilizing a GMP to deliver Angiotensin (1-7), a beneficial component of the renin-angiotensin system with relevant functions in circulation as well as locally in the gut and brain.
Collapse
Affiliation(s)
- Abbi R. Hernandez
- Division of Gerontology, Geriatrics, and Palliative Care, Department of Medicine, University of Alabama at Birmingham, Birmingham, AL, United States
- UAB Center for Exercise Medicine, University of Alabama at Birmingham, Birmingham, AL, United States
| | - Anisha Banerjee
- Division of Gerontology, Geriatrics, and Palliative Care, Department of Medicine, University of Alabama at Birmingham, Birmingham, AL, United States
| | - Christy S. Carter
- Division of Gerontology, Geriatrics, and Palliative Care, Department of Medicine, University of Alabama at Birmingham, Birmingham, AL, United States
- UAB Center for Exercise Medicine, University of Alabama at Birmingham, Birmingham, AL, United States
- Integrative Center for Aging Research, University of Alabama at Birmingham, Birmingham, AL, United States
- Nathan Shock Center, University of Alabama at Birmingham, Birmingham, AL, United States
| | - Thomas W. Buford
- Division of Gerontology, Geriatrics, and Palliative Care, Department of Medicine, University of Alabama at Birmingham, Birmingham, AL, United States
- UAB Center for Exercise Medicine, University of Alabama at Birmingham, Birmingham, AL, United States
- Integrative Center for Aging Research, University of Alabama at Birmingham, Birmingham, AL, United States
- Nathan Shock Center, University of Alabama at Birmingham, Birmingham, AL, United States
| |
Collapse
|
249
|
Wang BN, Wu CB, Chen ZM, Zheng PP, Liu YQ, Xiong J, Xu JY, Li PF, Mamun AA, Ye LB, Zheng ZL, Wu YQ, Xiao J, Wang J. DL-3-n-butylphthalide ameliorates diabetes-associated cognitive decline by enhancing PI3K/Akt signaling and suppressing oxidative stress. Acta Pharmacol Sin 2021; 42:347-360. [PMID: 33462377 PMCID: PMC8027654 DOI: 10.1038/s41401-020-00583-3] [Citation(s) in RCA: 60] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/01/2020] [Accepted: 11/16/2020] [Indexed: 02/07/2023]
Abstract
DL-3-n-Butylphthalide (DL-NBP), a small molecular compound extracted from the seeds of Apium graveolens Linn (Chinese celery), has been shown to exert neuroprotective effects due to its anti-inflammatory, anti-oxidative and anti-apoptotic activities. DL-NBP not only protects against ischemic cerebral injury, but also ameliorates vascular cognitive impairment in dementia patients including AD and PD. In the current study, we investigated whether and how DL-NBP exerted a neuroprotective effect against diabetes-associated cognitive decline (DACD) in db/db mice, a model of type-2 diabetes. db/db mice were orally administered DL-NBP (20, 60, 120 mg· kg-1· d-1) for 8 weeks. Then the mice were subjected to behavioral test, their brain tissue was collected for morphological and biochemical analyses. We showed that oral administration of DL-NBP significantly ameliorated the cognitive decline with improved learning and memory function in Morris water maze testing. Furthermore, DL-NBP administration attenuated diabetes-induced morphological alterations and increased neuronal survival and restored the levels of synaptic protein PSD95, synaptophysin and synapsin-1 as well as dendritic density in the hippocampus, especially at a dose of 60 mg/kg. Moreover, we revealed that DL-NBP administration suppressed oxidative stress by upregulating Nrf2/HO-1 signaling, and increased brain-derived neurotrophic factor (BDNF) expression by activating PI3K/Akt/CREB signaling in the hippocampus. These beneficial effects of DL-NBP were observed in high glucose-treated PC12 cells. Our results suggest that DL-NBP may be a potential pharmacologic agent for the treatment of DACD.
Collapse
Affiliation(s)
- Bei-Ni Wang
- Department of Hand Surgery and Peripheral Neurosurgery, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325000, China
- School of Pharmaceutical Science, Wenzhou Medical University, Wenzhou, 325000, China
| | - Cheng-Biao Wu
- Research Center, Affiliated Xiangshan Hospital, Wenzhou Medical University, Ningbo, 315700, China
| | - Zi-Miao Chen
- Department of Hand Surgery and Peripheral Neurosurgery, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325000, China
| | - Pei-Pei Zheng
- School of Pharmaceutical Science, Wenzhou Medical University, Wenzhou, 325000, China
| | - Ya-Qian Liu
- School of Pharmaceutical Science, Wenzhou Medical University, Wenzhou, 325000, China
| | - Jun Xiong
- School of Pharmaceutical Science, Wenzhou Medical University, Wenzhou, 325000, China
| | - Jing-Yu Xu
- The Institute of Life Sciences, Engineering Laboratory of Zhejiang province for Pharmaceutical Development of Growth Factors, Biomedical Collaborative Innovation Center of Wenzhou, Wenzhou University, Wenzhou, 325035, China
| | - Pei-Feng Li
- Department of Hand Surgery and Peripheral Neurosurgery, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325000, China
| | - Abdullah Al Mamun
- School of Pharmaceutical Science, Wenzhou Medical University, Wenzhou, 325000, China
| | - Li-Bing Ye
- School of Pharmaceutical Science, Wenzhou Medical University, Wenzhou, 325000, China
| | - Zhi-Long Zheng
- School of Pharmaceutical Science, Wenzhou Medical University, Wenzhou, 325000, China
| | - Yan-Qing Wu
- The Institute of Life Sciences, Engineering Laboratory of Zhejiang province for Pharmaceutical Development of Growth Factors, Biomedical Collaborative Innovation Center of Wenzhou, Wenzhou University, Wenzhou, 325035, China.
| | - Jian Xiao
- Department of Hand Surgery and Peripheral Neurosurgery, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325000, China.
- School of Pharmaceutical Science, Wenzhou Medical University, Wenzhou, 325000, China.
| | - Jian Wang
- Department of Hand Surgery and Peripheral Neurosurgery, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325000, China.
| |
Collapse
|
250
|
A transition to degeneration triggered by oxidative stress in degenerative disorders. Mol Psychiatry 2021; 26:736-746. [PMID: 33159186 PMCID: PMC7914161 DOI: 10.1038/s41380-020-00943-9] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/08/2020] [Revised: 10/15/2020] [Accepted: 10/26/2020] [Indexed: 12/14/2022]
Abstract
Although the activities of many signaling pathways are dysregulated during the progression of neurodegenerative and muscle degeneration disorders, the precise sequence of cellular events leading to degeneration has not been fully elucidated. Two kinases of particular interest, the growth-promoting Tor kinase and the energy sensor AMPK, appear to show reciprocal changes in activity during degeneration, with increased Tor activity and decreased AMPK activity reported. These changes in activity have been predicted to cause degeneration by attenuating autophagy, leading to the accumulation of unfolded protein aggregates and dysfunctional mitochondria, the consequent increased production of reactive oxygen species (ROS), and ultimately oxidative damage. Here we propose that this increased ROS production not only causes oxidative damage but also ultimately induces an oxidative stress response that reactivates the redox-sensitive AMPK and activates the redox-sensitive stress kinase JNK. Activation of these kinases reactivates autophagy. Because at this late stage, cells have become filled with dysfunctional mitochondria and protein aggregates, which are autophagy targets, this autophagy reactivation induces degeneration. The mechanism proposed here emphasizes that the process of degeneration is dynamic, that dysregulated signaling pathways change over time and can transition from deleterious to beneficial and vice versa as degeneration progresses.
Collapse
|