201
|
Márquez MG, Dotson R, Pias S, Frolova LV, Tartis MS. Phospholipid prodrug conjugates of insoluble chemotherapeutic agents for ultrasound targeted drug delivery. Nanotheranostics 2020; 4:40-56. [PMID: 31911893 PMCID: PMC6940203 DOI: 10.7150/ntno.37738] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2019] [Accepted: 12/01/2019] [Indexed: 12/19/2022] Open
Abstract
The hydrophobicity and high potency of many therapeutic agents makes them difficult to use effectively in clinical practice. This work focuses on conjugating phospholipid tails (2T) onto podophyllotoxin (P) and its analogue (N) using a linker and characterizing the effects of their incorporation into lipid-based drug delivery vehicles for triggered ultrasound delivery. Differential Scanning Calorimetry results show that successfully synthesized lipophilic prodrugs, 2T-P (~28 % yield) and 2T-N(~26 % yield), incorporate within the lipid membranes of liposomes. As a result of this, increased stability and incorporation are observed in 2T-P and 2T-N in comparison to the parent compounds P and N. Molecular dynamic simulation results support that prodrugs remain within the lipid membrane over a relevant range of concentrations. 2T-N's (IC50: 20 nM) biological activity was retained in HeLa cells (cervical cancer), whereas 2T-P's (IC50: ~4 µM) suffered, presumably due to steric hindrance. Proof-of-concept studies using ultrasound in vitro microbubble and nanodroplet delivery vehicles establish that these prodrugs are capable of localized drug delivery. This study provides useful information about the synthesis of double tail analogues of insoluble chemotherapeutic agents to facilitate incorporation into drug delivery vehicles. The phospholipid attachment strategy presented here could be applied to other well suited drugs such as gemcitabine, commonly known for its treatment of pancreatic cancer.
Collapse
Affiliation(s)
- Mendi G Márquez
- Materials Engineering, New Mexico Institute of Mining and Technology, 801 Leroy Place, Socorro, NM 87801, USA.,Chemical Engineering, New Mexico Institute of Mining and Technology, 801 Leroy Place, Socorro, NM 87801, USA
| | - Rachel Dotson
- Departments of Chemistry, New Mexico Institute of Mining and Technology, 801 Leroy Place, Socorro, NM 87801, USA
| | - Sally Pias
- Departments of Chemistry, New Mexico Institute of Mining and Technology, 801 Leroy Place, Socorro, NM 87801, USA
| | - Liliya V Frolova
- Departments of Chemistry, New Mexico Institute of Mining and Technology, 801 Leroy Place, Socorro, NM 87801, USA
| | - Michaelann S Tartis
- Materials Engineering, New Mexico Institute of Mining and Technology, 801 Leroy Place, Socorro, NM 87801, USA.,Chemical Engineering, New Mexico Institute of Mining and Technology, 801 Leroy Place, Socorro, NM 87801, USA
| |
Collapse
|
202
|
Zhang Q, Pang Y, Schiffbauer J, Jemcov A, Chang HC, Lee E, Luo T. Light-Guided Surface Plasmonic Bubble Movement via Contact Line De-Pinning by In-Situ Deposited Plasmonic Nanoparticle Heating. ACS APPLIED MATERIALS & INTERFACES 2019; 11:48525-48532. [PMID: 31794181 DOI: 10.1021/acsami.9b16067] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/12/2023]
Abstract
Precise spatiotemporal control of surface bubble movement can benefit a wide range of applications like high-throughput drug screening, combinatorial material development, microfluidic logic, colloidal and molecular assembly, and so forth. In this work, we demonstrate that surface bubbles on a solid surface are directed by a laser to move at high speeds (>1.8 mm/s), and we elucidate the mechanism to be the depinning of the three-phase contact line (TPCL) by rapid plasmonic heating of nanoparticles (NPs) deposited in situ during bubble movement. On the basis of our observations, we deduce a stick-slip mechanism based on asymmetric fore-aft plasmonic heating: local evaporation at the front TPCL due to plasmonic heating depins and extends the front TPCL, followed by the advancement of the trailing TPCL to resume a spherical bubble shape to minimize surface energy. The continuous TPCL drying during bubble movement also enables well-defined contact line deposition of NP clusters along the moving path. Our finding is beneficial to various microfluidics and pattern writing applications.
Collapse
Affiliation(s)
- Qiushi Zhang
- Department of Aerospace and Mechanical Engineering , University of Notre Dame , Notre Dame , Indiana 46556 , United States
| | - Yunsong Pang
- Department of Aerospace and Mechanical Engineering , University of Notre Dame , Notre Dame , Indiana 46556 , United States
| | - Jarrod Schiffbauer
- Department of Aerospace and Mechanical Engineering , University of Notre Dame , Notre Dame , Indiana 46556 , United States
- Department of Physics , Colorado Mesa University , Grand Junction , Colorado 81501 , United States
| | - Aleksandar Jemcov
- Department of Aerospace and Mechanical Engineering , University of Notre Dame , Notre Dame , Indiana 46556 , United States
| | - Hsueh-Chia Chang
- Department of Aerospace and Mechanical Engineering , University of Notre Dame , Notre Dame , Indiana 46556 , United States
- Department of Chemical and Biomolecular Engineering , University of Notre Dame , Notre Dame , Indiana 46556 , United States
| | - Eungkyu Lee
- Department of Aerospace and Mechanical Engineering , University of Notre Dame , Notre Dame , Indiana 46556 , United States
| | - Tengfei Luo
- Department of Aerospace and Mechanical Engineering , University of Notre Dame , Notre Dame , Indiana 46556 , United States
- Department of Chemical and Biomolecular Engineering , University of Notre Dame , Notre Dame , Indiana 46556 , United States
- Center for Sustainable Energy of Notre Dame (ND Energy) , University of Notre Dame , Notre Dame , Indiana 46556 , United States
| |
Collapse
|
203
|
Ji R, Smith M, Niimi Y, Karakatsani ME, Murillo MF, Jackson-Lewis V, Przedborski S, Konofagou EE. Focused ultrasound enhanced intranasal delivery of brain derived neurotrophic factor produces neurorestorative effects in a Parkinson's disease mouse model. Sci Rep 2019; 9:19402. [PMID: 31852909 PMCID: PMC6920380 DOI: 10.1038/s41598-019-55294-5] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2019] [Accepted: 11/26/2019] [Indexed: 01/11/2023] Open
Abstract
Focused ultrasound-enhanced intranasal (IN + FUS) delivery is a noninvasive approach that utilizes the olfactory pathway to administer pharmacological agents directly to the brain, allowing for a more homogenous distribution in targeted locations compared to IN delivery alone. However, whether such a strategy has therapeutic values, especially in neurodegenerative disorders such as Parkinson’s disease (PD), remains to be established. Herein, we evaluated whether the expression of tyrosine hydroxylase (TH), the rate limiting enzyme in dopamine catalysis, could be enhanced by IN + FUS delivery of brain-derived neurotrophic factor (BDNF) in a toxin-based PD mouse model. Mice were put on the subacute dosing regimen of 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP), producing bilateral degeneration of the nigrostriatal pathway consistent with early-stage PD. MPTP mice then received BDNF intranasally followed by multiple unilateral FUS-induced blood-brain barrier (BBB) openings in the left basal ganglia for three consecutive weeks. Subsequently, mice were survived for two months and were evaluated morphologically and behaviorally to determine the integrity of their nigrostriatal dopaminergic pathways. Mice receiving IN + FUS had significantly increased TH immunoreactivity in the treated hemisphere compared to the untreated hemisphere while mice receiving only FUS-induced BBB opening or no treatment at all did not show any differences. Additionally, behavioral changes were only observed in the IN + FUS treated mice, indicating improved motor control function in the treated hemisphere. These findings demonstrate the robustness of the method and potential of IN + FUS for the delivery of bioactive factors for treatment of neurodegenerative disorder.
Collapse
Affiliation(s)
- Robin Ji
- Department of Biomedical Engineering, Columbia University, New York, New York, USA
| | - Morgan Smith
- Department of Biomedical Engineering, Columbia University, New York, New York, USA
| | - Yusuke Niimi
- Department of Biomedical Engineering, Columbia University, New York, New York, USA
| | - Maria E Karakatsani
- Department of Biomedical Engineering, Columbia University, New York, New York, USA
| | - Maria F Murillo
- Department of Biomedical Engineering, Columbia University, New York, New York, USA
| | - Vernice Jackson-Lewis
- Department of Pathology & Cell Biology, Columbia University, New York, New York, USA.,Department of the Center for Motor Neuron Biology and Disease, Columbia University, New York, New York, USA.,Department of the Columbia Translational Neuroscience Initiative, Columbia University, New York, New York, USA
| | - Serge Przedborski
- Department of Pathology & Cell Biology, Columbia University, New York, New York, USA.,Department of Neurology, Columbia University, New York, New York, USA.,Department of the Center for Motor Neuron Biology and Disease, Columbia University, New York, New York, USA.,Department of the Columbia Translational Neuroscience Initiative, Columbia University, New York, New York, USA
| | - Elisa E Konofagou
- Department of Biomedical Engineering, Columbia University, New York, New York, USA. .,Department of Radiology, Columbia University, New York, New York, USA.
| |
Collapse
|
204
|
Hameed S, Zhang M, Bhattarai P, Mustafa G, Dai Z. Enhancing cancer therapeutic efficacy through ultrasound‐mediated micro‐to‐nano conversion. WILEY INTERDISCIPLINARY REVIEWS-NANOMEDICINE AND NANOBIOTECHNOLOGY 2019; 12:e1604. [DOI: 10.1002/wnan.1604] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/06/2019] [Revised: 10/15/2019] [Accepted: 11/04/2019] [Indexed: 12/18/2022]
Affiliation(s)
- Sadaf Hameed
- Department of Biomedical Engineering, College of Engineering Peking University Beijing China
| | - Miaomiao Zhang
- Department of Biomedical Engineering, College of Engineering Peking University Beijing China
| | - Pravin Bhattarai
- Department of Biomedical Engineering, College of Engineering Peking University Beijing China
- Phutung Research Institute Kathmandu Nepal
| | - Ghulam Mustafa
- Department of Sciences Bahria University Lahore Lahore Pakistan
| | - Zhifei Dai
- Department of Biomedical Engineering, College of Engineering Peking University Beijing China
| |
Collapse
|
205
|
Fekri F, Abousawan J, Bautista S, Orofiamma L, Dayam RM, Antonescu CN, Karshafian R. Targeted enhancement of flotillin-dependent endocytosis augments cellular uptake and impact of cytotoxic drugs. Sci Rep 2019; 9:17768. [PMID: 31780775 PMCID: PMC6882852 DOI: 10.1038/s41598-019-54062-9] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2019] [Accepted: 11/07/2019] [Indexed: 12/23/2022] Open
Abstract
Cellular uptake is limiting for the efficacy of many cytotoxic drugs used to treat cancer. Identifying endocytic mechanisms that can be modulated with targeted, clinically-relevant interventions is important to enhance the efficacy of various cancer drugs. We identify that flotillin-dependent endocytosis can be targeted and upregulated by ultrasound and microbubble (USMB) treatments to enhance uptake and efficacy of cancer drugs such as cisplatin. USMB involves targeted ultrasound following administration of encapsulated microbubbles, used clinically for enhanced ultrasound image contrast. USMB treatments robustly enhanced internalization of the molecular scaffold protein flotillin, as well as flotillin-dependent fluid-phase internalization, a phenomenon dependent on the protein palmitoyltransferase DHHC5 and the Src-family kinase Fyn. USMB treatment enhanced DNA damage and cell killing elicited by the cytotoxic agent cisplatin in a flotillin-dependent manner. Thus, flotillin-dependent endocytosis can be modulated by clinically-relevant USMB treatments to enhance drug uptake and efficacy, revealing an important new strategy for targeted drug delivery for cancer treatment.
Collapse
Affiliation(s)
- Farnaz Fekri
- Department of Chemistry and Biology, Ryerson University, Toronto, Canada
- Graduate Program in Molecular Science, Ryerson University, Toronto, Ontario, M5B 2K3, Canada
| | - John Abousawan
- Department of Chemistry and Biology, Ryerson University, Toronto, Canada
- Graduate Program in Molecular Science, Ryerson University, Toronto, Ontario, M5B 2K3, Canada
| | - Stephen Bautista
- Department of Chemistry and Biology, Ryerson University, Toronto, Canada
- Graduate Program in Molecular Science, Ryerson University, Toronto, Ontario, M5B 2K3, Canada
| | - Laura Orofiamma
- Department of Chemistry and Biology, Ryerson University, Toronto, Canada
- Graduate Program in Molecular Science, Ryerson University, Toronto, Ontario, M5B 2K3, Canada
| | - Roya M Dayam
- Department of Chemistry and Biology, Ryerson University, Toronto, Canada
- Graduate Program in Molecular Science, Ryerson University, Toronto, Ontario, M5B 2K3, Canada
| | - Costin N Antonescu
- Department of Chemistry and Biology, Ryerson University, Toronto, Canada.
- Graduate Program in Molecular Science, Ryerson University, Toronto, Ontario, M5B 2K3, Canada.
- Keenan Research Centre for Biomedical Science of St. Michael's Hospital, Toronto, Ontario, Canada.
| | - Raffi Karshafian
- Graduate Program in Molecular Science, Ryerson University, Toronto, Ontario, M5B 2K3, Canada.
- Department of Physics, Ryerson University, Toronto, Ontario, M5B 2K3, Canada.
- Institute for Biomedical Engineering, Science and Technology (iBEST), a partnership between Ryerson University and St. Michael's Hospital, Toronto, Ontario, Canada.
- Keenan Research Centre for Biomedical Science of St. Michael's Hospital, Toronto, Ontario, Canada.
| |
Collapse
|
206
|
Shi D, Nguyen DV, Maaloum M, Gallani JL, Felder-Flesch D, Krafft MP. Interfacial Behavior of Oligo(Ethylene Glycol) Dendrons Spread Alone and in Combination with a Phospholipid as Langmuir Monolayers at the Air/Water Interface. Molecules 2019; 24:E4114. [PMID: 31739495 PMCID: PMC6891365 DOI: 10.3390/molecules24224114] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2019] [Revised: 11/09/2019] [Accepted: 11/11/2019] [Indexed: 01/11/2023] Open
Abstract
Dendrons consisting of two phosphonate functions and three oligo(ethylene glycol) (OEG) chains grafted on a central phenoxyethylcarbamoylphenoxy group were synthesized and investigated as Langmuir monolayers at the surface of water. The OEG chain in the para position was grafted with a t-Bu end-group, a hydrocarbon chain, or a partially fluorinated chain. These dendrons are models of structurally related OEG dendrons that were found to significantly improve the stability of aqueous dispersions of iron oxide nanoparticles when grafted on their surface. Compression isotherms showed that all OEG dendrons formed liquid-expanded Langmuir monolayers at large molecular areas. Further compression led to a transition ascribed to the solubilization of the OEG chains in the aqueous phase. Brewster angle microscopy (BAM) provided evidence that the dendrons fitted with hydrocarbon chains formed liquid-expanded monolayers throughout compression, whilst those fitted with fluorinated end-groups formed crystalline-like domains, even at large molecular areas. Dimyristoylphosphatidylcholine and dendron molecules were partially miscible in monolayers. The deviations to ideality were larger for the dendrons fitted with a fluorocarbon end-group chain than for those fitted with a hydrocarbon chain. Brewster angle microscopy and atomic force microscopy supported the view that the dendrons were ejected from the phospholipid monolayer during the OEG conformational transition and formed crystalline domains on the surface of the monolayer.
Collapse
Affiliation(s)
- Da Shi
- Institut Charles Sadron (CNRS), University of Strasbourg, 23 rue du Loess, 67034 Strasbourg CEDEX 2, France; (D.S.); (M.M.)
| | - Dinh-Vu Nguyen
- Institut de Physique et Chimie des Matériaux de Strasbourg (IPCMS, CNRS), University of Strasbourg, 23 rue du Loess. 67034 Strasbourg CEDEX 2, France; (D.-V.N.); (J.-L.G.); (D.F.-F.)
| | - Mounir Maaloum
- Institut Charles Sadron (CNRS), University of Strasbourg, 23 rue du Loess, 67034 Strasbourg CEDEX 2, France; (D.S.); (M.M.)
| | - Jean-Louis Gallani
- Institut de Physique et Chimie des Matériaux de Strasbourg (IPCMS, CNRS), University of Strasbourg, 23 rue du Loess. 67034 Strasbourg CEDEX 2, France; (D.-V.N.); (J.-L.G.); (D.F.-F.)
| | - Delphine Felder-Flesch
- Institut de Physique et Chimie des Matériaux de Strasbourg (IPCMS, CNRS), University of Strasbourg, 23 rue du Loess. 67034 Strasbourg CEDEX 2, France; (D.-V.N.); (J.-L.G.); (D.F.-F.)
| | - Marie Pierre Krafft
- Institut Charles Sadron (CNRS), University of Strasbourg, 23 rue du Loess, 67034 Strasbourg CEDEX 2, France; (D.S.); (M.M.)
| |
Collapse
|
207
|
Magnetic microbubble mediated chemo-sonodynamic therapy using a combined magnetic-acoustic device. J Control Release 2019; 317:23-33. [PMID: 31733295 DOI: 10.1016/j.jconrel.2019.11.013] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2019] [Revised: 11/10/2019] [Accepted: 11/12/2019] [Indexed: 12/28/2022]
Abstract
Recent pre-clinical studies have demonstrated the potential of combining chemotherapy and sonodynamic therapy for the treatment of pancreatic cancer. Oxygen-loaded magnetic microbubbles have been explored as a targeted delivery vehicle for this application. Despite preliminary positive results, a previous study identified a significant practical challenge regarding the co-alignment of the magnetic and ultrasound fields. The aim of this study was to determine whether this challenge could be addressed through the use of a magnetic-acoustic device (MAD) combining a magnetic array and ultrasound transducer in a single unit, to simultaneously concentrate and activate the microbubbles at the target site. in vitro experiments were performed in tissue phantoms and followed by in vivo treatment of xenograft pancreatic cancer (BxPC-3) tumours in a murine model. In vitro, a 1.4-fold (p < .01) increase in the deposition of a model therapeutic payload within the phantom was achieved using the MAD compared to separate magnetic and ultrasound devices. In vivo, tumours treated with the MAD had a 9% smaller mean volume 8 days after treatment, while tumours treated with separate devices or microbubbles alone were respectively 45% and 112% larger. This substantial and sustained decrease in tumour volume suggests that the proposed drug delivery approach has the potential to be an effective neoadjuvant therapy for pancreatic cancer patients.
Collapse
|
208
|
Aron M, Vince O, Gray M, Mannaris C, Stride E. Investigating the Role of Lipid Transfer in Microbubble-Mediated Drug Delivery. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2019; 35:13205-13215. [PMID: 31517490 DOI: 10.1021/acs.langmuir.9b02404] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Sonoporation, the permeabilization of cell membranes following exposure to microbubbles and ultrasound, has considerable potential for therapeutic delivery. To date, engineering of microbubbles for these applications has focused primarily upon optimizing microbubble size and stability, or attachment of targeting species and/or drug molecules. In this work, it is demonstrated that the microbubble coating can also be tailored to directly influence cell permeabilization. Specifically, lipid exchange mechanisms between phospholipid microbubbles and cells can be exploited to significantly increase sonoporation efficiency in vitro. A theoretical analysis of the energy required for pore formation was carried out. From this, it was hypothesized that sonoporation could be promoted by the transfer of lipid molecules with appropriate carbon chain length and/or shape (cylindrical or conical). Spectral imaging with a hydration-sensitive membrane probe (C-Laurdan) was used to measure changes in the membrane lipid order of A-549 cancer cells following exposure to suspensions of different phospholipids. Two candidate lipids were identified, a short-chain-length phospholipid (1,2-dilauroyl-sn-glycero-3-phosphocholine (DLPC)) and a medium-chain-length lysolipid (1-palmitoyl-2-hydroxy-sn-glycero-3-phosphocholine (16:0 lyso-PC)). Microbubbles were prepared with matched concentrations, size distributions, and acoustic responses. Confocal microscopy was used to measure cell uptake of a model drug (propidium iodide) with and without ultrasound exposure (1 MHz, 250 kPa peak negative pressure, 1 kHz pulse repetition frequency, 10% duty cycle, 15 s exposure). Despite significantly decreasing the cell membrane lipid order, DLPC did not increase sonoporation. Microbubbles containing 16:0 lyso-PC, however, produced a ∼5-fold increase in sonoporation compared to control microbubbles. Importantly, the lyso-PC molecules were incorporated into the microbubble coating and did not affect cell permeability prior to ultrasound exposure. These findings indicate that microbubbles can be engineered to exploit lipid exchange between microbubble shells and cell membranes to enhance drug delivery, a new optimization route that may lead to enhanced therapeutic efficacy of ultrasound-mediated treatments.
Collapse
Affiliation(s)
- Miles Aron
- Institute of Biomedical Engineering , University of Oxford , Old Road Campus Research Building , Oxford OX3 7DQ , U.K
| | - Oliver Vince
- Institute of Biomedical Engineering , University of Oxford , Old Road Campus Research Building , Oxford OX3 7DQ , U.K
| | - Michael Gray
- Institute of Biomedical Engineering , University of Oxford , Old Road Campus Research Building , Oxford OX3 7DQ , U.K
| | - Christophoros Mannaris
- Institute of Biomedical Engineering , University of Oxford , Old Road Campus Research Building , Oxford OX3 7DQ , U.K
| | - Eleanor Stride
- Institute of Biomedical Engineering , University of Oxford , Old Road Campus Research Building , Oxford OX3 7DQ , U.K
| |
Collapse
|
209
|
Scheetz L, Park KS, Li Q, Lowenstein PR, Castro MG, Schwendeman A, Moon JJ. Engineering patient-specific cancer immunotherapies. Nat Biomed Eng 2019; 3:768-782. [PMID: 31406259 PMCID: PMC6783331 DOI: 10.1038/s41551-019-0436-x] [Citation(s) in RCA: 138] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2018] [Accepted: 07/03/2019] [Indexed: 02/06/2023]
Abstract
Research into the immunological processes implicated in cancer has yielded a basis for the range of immunotherapies that are now considered the fourth pillar of cancer treatment (alongside surgery, radiotherapy and chemotherapy). For some aggressive cancers, such as advanced non-small-cell lung carcinoma, combination immunotherapies have resulted in unprecedented treatment efficacy for responding patients, and have become frontline therapies. Individualized immunotherapy, enabled by the identification of patient-specific mutations, neoantigens and biomarkers, and facilitated by advances in genomics and proteomics, promises to broaden the responder patient population. In this Perspective, we give an overview of immunotherapies leveraging engineering approaches, including the design of biomaterials, delivery strategies and nanotechnology solutions, for the realization of individualized cancer treatments such as nanoparticle vaccines customized with neoantigens, cell therapies based on patient-derived dendritic cells and T cells, and combinations of theranostic strategies. Developments in precision cancer immunotherapy will increasingly rely on the adoption of engineering principles.
Collapse
Affiliation(s)
- Lindsay Scheetz
- Department of Pharmaceutical Sciences, University of Michigan, Ann Arbor, MI, USA
- Biointerfaces Institute, University of Michigan, Ann Arbor, MI, USA
| | - Kyung Soo Park
- Biointerfaces Institute, University of Michigan, Ann Arbor, MI, USA
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI, USA
| | - Qiao Li
- Department of Surgery, University of Michigan, Ann Arbor, MI, USA
| | - Pedro R Lowenstein
- Department of Neurosurgery, University of Michigan, Ann Arbor, MI, USA
- Department of Cell and Developmental Biology, University of Michigan, Ann Arbor, MI, USA
| | - Maria G Castro
- Department of Neurosurgery, University of Michigan, Ann Arbor, MI, USA
- Department of Cell and Developmental Biology, University of Michigan, Ann Arbor, MI, USA
| | - Anna Schwendeman
- Department of Pharmaceutical Sciences, University of Michigan, Ann Arbor, MI, USA
- Biointerfaces Institute, University of Michigan, Ann Arbor, MI, USA
| | - James J Moon
- Department of Pharmaceutical Sciences, University of Michigan, Ann Arbor, MI, USA.
- Biointerfaces Institute, University of Michigan, Ann Arbor, MI, USA.
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI, USA.
| |
Collapse
|
210
|
Khairalseed M, Oezdemir I, Hoyt K. Contrast-enhanced ultrasound imaging using pulse inversion spectral deconvolution. THE JOURNAL OF THE ACOUSTICAL SOCIETY OF AMERICA 2019; 146:2466. [PMID: 31671995 PMCID: PMC6794155 DOI: 10.1121/1.5129115] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/29/2019] [Revised: 09/20/2019] [Accepted: 09/24/2019] [Indexed: 06/01/2023]
Abstract
A contrast-enhanced ultrasound (CEUS) imaging approach, termed pulse inversion spectral deconvolution (PISD), is introduced. The approach uses two Gaussian-weighted Hermite polynomials to form two inverted pulse sequences. The two inversed pulses are then used to filter ultrasound (US) backscattered data and discrimination of the linear and nonlinear signal components. A research US scanner equipped with a linear array transducer was used for data acquisition. The receive data from all channels are shaped using plane wave imaging beamforming with angular compounding (from one to nine angles). In vitro data was collected with a tissue mimicking flow phantom perfused with an US contrast agent using PISD and traditional nonlinear (NLI) US imaging as comparison. The role of imaging frequency (between 4.5 and 6.25 MHz) and mechanical index (from 0.1 to 0.3) were evaluated. Preliminary in vivo data was collected in the hindlimb of three healthy mice. Preliminary experimental findings indicate that the PISD contrast-to-tissue ratio was improved nearly ten times compared to the NLI US imaging approach. Also, the spatial resolution was improved due to the effect of deconvolution and spatial angular compounding. Overall, PISD is a promising postprocessing technique for real-time CEUS imaging.
Collapse
Affiliation(s)
- Mawia Khairalseed
- Department of Bioengineering, University of Texas at Dallas, Richardson, Texas 75080, USA
| | - Ipek Oezdemir
- Department of Bioengineering, University of Texas at Dallas, Richardson, Texas 75080, USA
| | - Kenneth Hoyt
- Department of Bioengineering, University of Texas at Dallas, Richardson, Texas 75080, USA
| |
Collapse
|
211
|
Roovers S, Lajoinie G, De Cock I, Brans T, Dewitte H, Braeckmans K, Versluis M, De Smedt SC, Lentacker I. Sonoprinting of nanoparticle-loaded microbubbles: Unraveling the multi-timescale mechanism. Biomaterials 2019; 217:119250. [DOI: 10.1016/j.biomaterials.2019.119250] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2018] [Revised: 05/20/2019] [Accepted: 06/05/2019] [Indexed: 12/12/2022]
|
212
|
Ghosh D, Peng J, Brown K, Sirsi S, Mineo C, Shaul PW, Hoyt K. Super-Resolution Ultrasound Imaging of Skeletal Muscle Microvascular Dysfunction in an Animal Model of Type 2 Diabetes. JOURNAL OF ULTRASOUND IN MEDICINE : OFFICIAL JOURNAL OF THE AMERICAN INSTITUTE OF ULTRASOUND IN MEDICINE 2019; 38:2589-2599. [PMID: 30706511 PMCID: PMC6669112 DOI: 10.1002/jum.14956] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/23/2018] [Revised: 12/26/2018] [Accepted: 01/06/2019] [Indexed: 05/03/2023]
Abstract
OBJECTIVES To evaluate the use of super-resolution ultrasound (SR-US) imaging for quantifying microvascular changes in skeletal muscle using a mouse model of type 2 diabetes. METHODS Study groups were young, standard chow-fed male C57BL/6J mice (lean group) and high fat diet-fed older mice (obese group). After an overnight fast, dynamic contrast-enhanced US imaging was performed on the proximal hind limb adductor muscle group for 10 minutes at baseline and again at 1 and 2 hours during administration of a hyperinsulinemic-euglycemic clamp. Dynamic contrast-enhanced US images were collected on a clinical US scanner (Acuson Sequoia 512; Siemens Healthcare, Mountain View, CA) equipped with a 15L8 linear array transducer. Dynamic contrast-enhanced US images were processed with a spatiotemporal filter to remove tissue clutter. Individual microbubbles were localized and counted to create an SR-US image. A frame-by-frame analysis of the microbubble count was generated (ie, time-microbubble count curve [TMC]) to estimate tissue perfusion and microvascular blood flow. The conventional time-intensity curve (TIC) was also generated for comparison. RESULTS In vivo SR-US imaging could delineate microvascular structures in the mouse hind limb. Compared with lean animals, insulin-induced microvascular recruitment was attenuated in the obese group. The SR-US-based TMC analysis revealed differences between lean and obese animal data for select microvascular parameters (P < .04), which was not true for TIC-based measurements. Whereas the TMC and TIC microvascular parameters yielded similar temporal trends, there was less variance associated with the TMC-derived values. CONCLUSIONS Super-resolution US imaging is a new modality for measuring the microvascular properties of skeletal muscle and dysfunction from type 2 diabetes.
Collapse
Affiliation(s)
- Debabrata Ghosh
- Department of Electronics and Communication Engineering, Thapar Institute of Engineering and Technology, Patiala, India
- Department of Bioengineering, University of Texas at Dallas, Richardson, Texas, USA
| | - Jun Peng
- Center for Pulmonary and Vascular Biology, Department of Pediatrics, University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | - Katherine Brown
- Department of Bioengineering, University of Texas at Dallas, Richardson, Texas, USA
| | - Shashank Sirsi
- Department of Bioengineering, University of Texas at Dallas, Richardson, Texas, USA
- Center for Pulmonary and Vascular Biology, Department of Pediatrics, University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | - Chieko Mineo
- Center for Pulmonary and Vascular Biology, Department of Pediatrics, University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | - Philip W Shaul
- Center for Pulmonary and Vascular Biology, Department of Pediatrics, University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | - Kenneth Hoyt
- Department of Bioengineering, University of Texas at Dallas, Richardson, Texas, USA
- Department of Radiology, University of Texas Southwestern Medical Center, Dallas, Texas, USA
| |
Collapse
|
213
|
Khan MS, Hwang J, Lee K, Choi Y, Seo Y, Jeon H, Hong JW, Choi J. Anti-Tumor Drug-Loaded Oxygen Nanobubbles for the Degradation of HIF-1α and the Upregulation of Reactive Oxygen Species in Tumor Cells. Cancers (Basel) 2019; 11:cancers11101464. [PMID: 31569523 PMCID: PMC6826834 DOI: 10.3390/cancers11101464] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2019] [Revised: 09/17/2019] [Accepted: 09/27/2019] [Indexed: 12/14/2022] Open
Abstract
Hypoxia is a key concern during the treatment of tumors, and hypoxia-inducible factor 1 alpha (HIF-1α) has been associated with increased tumor resistance to therapeutic modalities. In this study, doxorubicin-loaded oxygen nanobubbles (Dox/ONBs) were synthesized, and the effectiveness of drug delivery to MDA-MB-231 breast cancer and HeLa cells was evaluated. Dox/ONBs were characterized using optical and fluorescence microscopy, and size measurements were performed through nanoparticle tracking analysis (NTA). The working mechanism of Dox was evaluated using reactive oxygen species (ROS) assays, and cellular penetration was assessed with confocal microscopy. Hypoxic conditions were established to assess the effect of Dox/ONBs under hypoxic conditions compared with normoxic conditions. Our results indicate that Dox/ONBs are effective for drug delivery, enhancing oxygen levels, and ROS generation in tumor-derived cell lines.
Collapse
Affiliation(s)
- Muhammad Saad Khan
- School of Integrative Engineering, Chung-Ang University, Seoul 06974, Korea.
| | - Jangsun Hwang
- School of Integrative Engineering, Chung-Ang University, Seoul 06974, Korea.
| | - Kyungwoo Lee
- School of Integrative Engineering, Chung-Ang University, Seoul 06974, Korea.
- Center for Biomaterials, Korea Institute of Science and Technology, Seoul 02792, Korea.
| | - Yonghyun Choi
- School of Integrative Engineering, Chung-Ang University, Seoul 06974, Korea.
| | - Youngmin Seo
- Center for Biomaterials, Korea Institute of Science and Technology, Seoul 02792, Korea.
| | - Hojeong Jeon
- Center for Biomaterials, Korea Institute of Science and Technology, Seoul 02792, Korea.
| | - Jong Wook Hong
- Department of Bionano Technology, Hanyang University, Seoul 426-791, Korea.
- Department of Bionano Engineering, Hanyang University, Ansan 426-791, Korea.
| | - Jonghoon Choi
- School of Integrative Engineering, Chung-Ang University, Seoul 06974, Korea.
| |
Collapse
|
214
|
Sandra F, Khaliq NU, Sunna A, Care A. Developing Protein-Based Nanoparticles as Versatile Delivery Systems for Cancer Therapy and Imaging. NANOMATERIALS (BASEL, SWITZERLAND) 2019; 9:E1329. [PMID: 31527483 PMCID: PMC6781024 DOI: 10.3390/nano9091329] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/19/2019] [Revised: 09/04/2019] [Accepted: 09/12/2019] [Indexed: 02/06/2023]
Abstract
In recent years, it has become apparent that cancer nanomedicine's reliance on synthetic nanoparticles as drug delivery systems has resulted in limited clinical outcomes. This is mostly due to a poor understanding of their "bio-nano" interactions. Protein-based nanoparticles (PNPs) are rapidly emerging as versatile vehicles for the delivery of therapeutic and diagnostic agents, offering a potential alternative to synthetic nanoparticles. PNPs are abundant in nature, genetically and chemically modifiable, monodisperse, biocompatible, and biodegradable. To harness their full clinical potential, it is important for PNPs to be accurately designed and engineered. In this review, we outline the recent advancements and applications of PNPs in cancer nanomedicine. We also discuss the future directions for PNP research and what challenges must be overcome to ensure their translation into the clinic.
Collapse
Affiliation(s)
- Febrina Sandra
- Department of Molecular Sciences, Macquarie University, Sydney 2109, Australia.
| | - Nisar Ul Khaliq
- College of Pharmacy, Korea University, 2511 Sejong-ro, Sejong 30019, Korea.
| | - Anwar Sunna
- Department of Molecular Sciences, Macquarie University, Sydney 2109, Australia.
- Australian Research Council Centre of Excellence for Nanoscale BioPhotonics, Macquarie University, Sydney, NSW 2109, Australia.
| | - Andrew Care
- Department of Molecular Sciences, Macquarie University, Sydney 2109, Australia.
- Australian Research Council Centre of Excellence for Nanoscale BioPhotonics, Macquarie University, Sydney, NSW 2109, Australia.
| |
Collapse
|
215
|
Hall RL, Juan-Sing ZD, Hoyt K, Sirsi SR. Formulation and Characterization of Chemically Cross-linked Microbubble Clusters. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2019; 35:10977-10986. [PMID: 31310715 PMCID: PMC7061884 DOI: 10.1021/acs.langmuir.9b00475] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
The purpose of this study is to introduce a new concept of chemically cross-linked microbubble clusters (CCMCs), which are individual microbubble ultrasound contrast agents (UCAs) physically tethered together. We demonstrate a facile means of their production, characterize their size and stability, and describe how they can potentially be used in biomedical applications. By tethering UCAs together into CCMCs, we propose that novel methods of ultrasound mediated imaging and therapy can be developed through unique interbubble interactions in an ultrasound field. One of the major challenges in generating CCMCs is controlling aggregate sizes and maintaining stability against Ostwald ripening and coalescence. In this study, we demonstrate that chemically cross-linked microbubble clusters can produce small (<10 μm) quasi-stable complexes that slowly fuse into bubbles with individual gas cores. Furthermore, we demonstrate that this process can be driven with low-intensity ultrasound pulses, enabling a rapid fusion of clusters which could potentially be used to develop novel ultrasound contrast imaging and drug delivery strategies in future studies. The development of novel microbubble clusters presents a simple yet robust process for generating novel UCAs with a design that could allow for more versatility in contrast-enhanced ultrasound (CEUS), molecular imaging, and drug delivery applications. Additionally, microbubble clustering is a unique way to control size, shell, and gas compositions that can be used to study bubble ripening and coalescence in a highly controlled environment or study the behavior of mixed-microbubble populations.
Collapse
Affiliation(s)
- Ronald L. Hall
- University of Texas at Dallas, Richardson, Texas, 75080, United States
| | | | - Kenneth Hoyt
- University of Texas at Dallas, Richardson, Texas, 75080, United States
- University of Texas Southwestern, Dallas, Texas, 75390, United States
| | - Shashank R. Sirsi
- University of Texas at Dallas, Richardson, Texas, 75080, United States
- University of Texas Southwestern, Dallas, Texas, 75390, United States
| |
Collapse
|
216
|
Huang CH, Wang J, Yang J, Oviedo JP, Nam S, Trogler WC, Blair SL, Kim MJ, Kummel AC. Thickness and Sphericity Control of Hollow Hard Silica Shells through Iron (III) Doping: Low Threshold Ultrasound Contrast Agents. ADVANCED FUNCTIONAL MATERIALS 2019; 29:1900893. [PMID: 34326713 PMCID: PMC8318338 DOI: 10.1002/adfm.201900893] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/28/2019] [Indexed: 05/08/2023]
Abstract
Silica particles are convenient ultrasound imaging contrast agents because of their long imaging time and ease of modification; however, they require a relatively high insonation power for imaging and have low biodegradability. In this study, 2 μm ultrathin asymmetric hollow silica particles doped with iron (III) (Fe(III)-SiO2) are synthesized to produce biodegradable hard shelled particles with a low acoustic power threshold comparable with commercial soft microbubble contrast agents (Definity) yet with much longer in vivo ultrasound imaging time. Furthermore, high intensity focused ultrasound ablation enhancement with these particles shows a 2.5-fold higher temperature elevation than with Definity at the same applied power. The low power visualization improves utilization of the silica shells as an adjuvant in localized immunotherapy. The data are consistent with asymmetric engineering of hard particle properties that improve functionality of hard versus soft particles.
Collapse
Affiliation(s)
- Ching-Hsin Huang
- Department of Chemistry and Biochemistry, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA 92093, USA
| | - James Wang
- Department of Chemistry and Biochemistry, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA 92093, USA
| | - Jian Yang
- Department of Chemistry and Biochemistry, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA 92093, USA
| | - Juan Pablo Oviedo
- Department of Materials Science and Engineering, University of Texas at Dallas, Richardson, 800 W Campbell Rd, Richardson, TX 75080, USA
| | - Seungjin Nam
- Department of Materials Science and Engineering, University of Texas at Dallas, Richardson, 800 W Campbell Rd, Richardson, TX 75080, USA
| | - William C Trogler
- Department of Chemistry and Biochemistry, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA 92093, USA
| | - Sarah L Blair
- Moores Cancer Center, 3855 Health Sciences Drive, La Jolla, CA 92093, USA
| | - Moon J Kim
- Department of Materials Science and Engineering, University of Texas at Dallas, Richardson, 800 W Campbell Rd, Richardson, TX 75080, USA
| | - Andrew C Kummel
- Department of Chemistry and Biochemistry, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA 92093, USA
| |
Collapse
|
217
|
Abstract
Early researchers focussed on developing stimuli-responsive liposomes in order to manipulate drug release at the site of action or under certain conditions. In recent times, a great deal of efforts has been made to modify the surface of liposomes with ligands for the purpose of achieving targeted drug delivery. Due to the morphology of liposomes, their surfaces can be engineered by attaching molecules such as oligosaccharides, peptides, antibodies, antigens and oligonucleotides to the bilayer structure. Over the years, a number of techniques including the use of covalent and non-covalent linkages have been utilised in designing ligand-liposome conjugates. In this review, various strategies for the functionalisation of liposomes as well as the different types of ligand-liposome conjugates have been discussed. Finally, the pros and cons of conjugation in liposomes are concisely summarised.
Collapse
Affiliation(s)
- İpek Eroğlu
- Faculty of Pharmacy, Department of Basic Pharmaceutical Sciences, Hacettepe University, Ankara, Turkey
| | - Mamudu İbrahim
- Faculty of Pharmacy, Department of Basic Pharmaceutical Sciences, Hacettepe University, Ankara, Turkey
| |
Collapse
|
218
|
Xie Y, Wang J, Wang J, Hu Z, Hariri A, Tu N, Krug KA, Burkart MD, Gianneschi NC, Jokerst JV, Rinehart JD. Tuning the ultrasonic and photoacoustic response of polydopamine-stabilized perfluorocarbon contrast agents. J Mater Chem B 2019; 7:4833-4842. [PMID: 31389967 PMCID: PMC6690494 DOI: 10.1039/c9tb00928k] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Contrast-enhanced ultrasound (CEUS) offers the exciting prospect of retaining the ease of ultrasound imaging while enhancing imaging clarity, diagnostic specificity, and theranostic capability. To advance the capabilities of CEUS, the synthesis and understanding of new ultrasound contrast agents (UCAs) is a necessity. Many UCAs are nano- or micro-scale materials composed of a perfluorocarbon (PFC) and stabilizer that synergistically induce an ultrasound response that is both information-rich and easily differentiated from natural tissue. In this work, we probe the extent to which CEUS is modulated through variation in a PFC stabilized with fluorine-modified polydopamine nanoparticles (PDA NPs). The high level of synthetic tunability in this system allows us to study signal as a function of particle aggregation and PFC volatility in a systematic manner. Separation of aggregated and non-aggregated nanoparticles lead to a fundamentally different signal response, and for this system, PFC volatility has little effect on CEUS intensity despite a range of over 50 °C in boiling point. To further explore the imaging tunability and multimodality, Fe3+-chelation was employed to generate an enhanced photoacoustic (PA) signal in addition to the US signal. In vitro and in vivo results demonstrate that PFC-loaded PDA NPs show stronger PA signal than the non-PFC ones, indicating that the PA signal can be used for in situ differentiation between PFC-loading levels. In sum, these data evince the rich role synthetic chemistry can play in guiding new directions of development for UCAs.
Collapse
Affiliation(s)
- Yijun Xie
- Department of Chemistry and Biochemistry, University of California, San Diego, La Jolla, CA 92093, USA.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
219
|
Unga J, Kageyama S, Suzuki R, Omata D, Maruyama K. Scale-up production, characterization and toxicity of a freeze-dried lipid-stabilized microbubble formulation for ultrasound imaging and therapy. J Liposome Res 2019; 30:297-304. [DOI: 10.1080/08982104.2019.1649282] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Affiliation(s)
- Johan Unga
- Laboratory of Drug and Gene Delivery Research, Faculty of Pharma-Science, Teikyo University, Tokyo, Japan
| | - Saori Kageyama
- Laboratory of Drug and Gene Delivery Research, Faculty of Pharma-Science, Teikyo University, Tokyo, Japan
| | - Ryo Suzuki
- Laboratory of Drug and Gene Delivery Research, Faculty of Pharma-Science, Teikyo University, Tokyo, Japan
| | - Daiki Omata
- Laboratory of Drug and Gene Delivery Research, Faculty of Pharma-Science, Teikyo University, Tokyo, Japan
| | - Kazuo Maruyama
- Laboratory of Drug and Gene Delivery Research, Faculty of Pharma-Science, Teikyo University, Tokyo, Japan
| |
Collapse
|
220
|
Roovers S, Segers T, Lajoinie G, Deprez J, Versluis M, De Smedt SC, Lentacker I. The Role of Ultrasound-Driven Microbubble Dynamics in Drug Delivery: From Microbubble Fundamentals to Clinical Translation. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2019; 35:10173-10191. [PMID: 30653325 DOI: 10.1021/acs.langmuir.8b03779] [Citation(s) in RCA: 128] [Impact Index Per Article: 21.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2023]
Abstract
In the last couple of decades, ultrasound-driven microbubbles have proven excellent candidates for local drug delivery applications. Besides being useful drug carriers, microbubbles have demonstrated the ability to enhance cell and tissue permeability and, as a consequence, drug uptake herein. Notwithstanding the large amount of evidence for their therapeutic efficacy, open issues remain. Because of the vast number of ultrasound- and microbubble-related parameters that can be altered and the variability in different models, the translation from basic research to (pre)clinical studies has been hindered. This review aims at connecting the knowledge gained from fundamental microbubble studies to the therapeutic efficacy seen in in vitro and in vivo studies, with an emphasis on a better understanding of the response of a microbubble upon exposure to ultrasound and its interaction with cells and tissues. More specifically, we address the acoustic settings and microbubble-related parameters (i.e., bubble size and physicochemistry of the bubble shell) that play a key role in microbubble-cell interactions and in the associated therapeutic outcome. Additionally, new techniques that may provide additional control over the treatment, such as monodisperse microbubble formulations, tunable ultrasound scanners, and cavitation detection techniques, are discussed. An in-depth understanding of the aspects presented in this work could eventually lead the way to more efficient and tailored microbubble-assisted ultrasound therapy in the future.
Collapse
Affiliation(s)
- Silke Roovers
- Laboratory of General Biochemistry and Physical Pharmacy, Ghent Research Group on Nanomedicine, Faculty of Pharmaceutical Sciences , Ghent University , Ottergemsesteenweg 460 , Ghent , Belgium
| | - Tim Segers
- Physics of Fluids Group, MESA+ Institute for Nanotechnology and Technical Medical (TechMed) Center , University of Twente , P.O. Box 217, 7500 AE Enschede , The Netherlands
| | - Guillaume Lajoinie
- Physics of Fluids Group, MESA+ Institute for Nanotechnology and Technical Medical (TechMed) Center , University of Twente , P.O. Box 217, 7500 AE Enschede , The Netherlands
| | - Joke Deprez
- Laboratory of General Biochemistry and Physical Pharmacy, Ghent Research Group on Nanomedicine, Faculty of Pharmaceutical Sciences , Ghent University , Ottergemsesteenweg 460 , Ghent , Belgium
| | - Michel Versluis
- Physics of Fluids Group, MESA+ Institute for Nanotechnology and Technical Medical (TechMed) Center , University of Twente , P.O. Box 217, 7500 AE Enschede , The Netherlands
| | - Stefaan C De Smedt
- Laboratory of General Biochemistry and Physical Pharmacy, Ghent Research Group on Nanomedicine, Faculty of Pharmaceutical Sciences , Ghent University , Ottergemsesteenweg 460 , Ghent , Belgium
| | - Ine Lentacker
- Laboratory of General Biochemistry and Physical Pharmacy, Ghent Research Group on Nanomedicine, Faculty of Pharmaceutical Sciences , Ghent University , Ottergemsesteenweg 460 , Ghent , Belgium
| |
Collapse
|
221
|
Gormley CA, Keenan BJ, Buczek-Thomas JA, Pessoa ACSN, Xu J, Monti F, Tabeling P, Holt RG, Nagy JO, Wong JY. Fibrin-Targeted Polymerized Shell Microbubbles as Potential Theranostic Agents for Surgical Adhesions. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2019; 35:10061-10067. [PMID: 30681875 PMCID: PMC6767917 DOI: 10.1021/acs.langmuir.8b03692] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/09/2023]
Abstract
The development of new therapies for surgical adhesions has proven to be difficult as there is no consistently effective way to assess treatment efficacy in clinical trials without performing a second surgery, which can result in additional adhesions. We have developed lipid microbubble formulations that use a short peptide sequence, CREKA, to target fibrin, the molecule that forms nascent adhesions. These targeted polymerized shell microbubbles (PSMs) are designed to allow ultrasound imaging of early adhesions for diagnostic purposes and for evaluating the success of potential treatments in clinical trials while acting as a possible treatment. In this study, we show that CREKA-targeted microbubbles preferentially bind fibrin over fibrinogen and are stable for long periods of time (∼48 h), that these bound microbubbles can be visualized by ultrasound, and that neither these lipid-based bubbles nor their diagnostic-ultrasound-induced vibrations damage mesothelial cells in vitro. Moreover, these bubbles show the potential to identify adhesionlike fibrin formations and may hold promise in blocking or breaking up fibrin formations in vivo.
Collapse
Affiliation(s)
- Catherine A. Gormley
- Department of Biomedical Engineering, Boston University, 44 Cummington Mall, Boston, Massachusetts 02215, United States
| | - Benjamin J. Keenan
- Department of Biomedical Engineering, Boston University, 44 Cummington Mall, Boston, Massachusetts 02215, United States
| | - Jo Ann Buczek-Thomas
- Department of Biomedical Engineering, Boston University, 44 Cummington Mall, Boston, Massachusetts 02215, United States
| | - Amanda C. S. N. Pessoa
- Laboratoire de Microfluidique, MEMS et Nanostructures, ESPCI Paris, PSL Research University, Institut Pierre Gilles de Gennes (IPGG), CNRS (CBI), 6 rue Jean Calvin, 75005 Paris, France
- School of Chemical Engineering, University of Campinas, UNICAMP, 500 Av Albert Einstein, 13083-852, Campinas, SP, Brazil
| | - Jiang Xu
- Laboratoire de Microfluidique, MEMS et Nanostructures, ESPCI Paris, PSL Research University, Institut Pierre Gilles de Gennes (IPGG), CNRS (CBI), 6 rue Jean Calvin, 75005 Paris, France
| | - Fabrice Monti
- Laboratoire de Microfluidique, MEMS et Nanostructures, ESPCI Paris, PSL Research University, Institut Pierre Gilles de Gennes (IPGG), CNRS (CBI), 6 rue Jean Calvin, 75005 Paris, France
| | - Patrick Tabeling
- Laboratoire de Microfluidique, MEMS et Nanostructures, ESPCI Paris, PSL Research University, Institut Pierre Gilles de Gennes (IPGG), CNRS (CBI), 6 rue Jean Calvin, 75005 Paris, France
| | - R. Glynn Holt
- Department of Mechanical Engineering, Boston University, 110 Cummington Mall, Boston, Massachusetts 02215, United States
| | - Jon O. Nagy
- NanoValent Pharmaceuticals Inc., 351-B Evergreen Drive, Bozeman, Montana 59715, United States
| | - Joyce Y. Wong
- Department of Biomedical Engineering, Boston University, 44 Cummington Mall, Boston, Massachusetts 02215, United States
- Division of Materials Science and Engineering, Boston University, 15 St. Mary’s Street, Boston, Massachusetts 02215, United States
- Corresponding Author:
| |
Collapse
|
222
|
Juang EK, De Cock I, Keravnou C, Gallagher MK, Keller SB, Zheng Y, Averkiou M. Engineered 3D Microvascular Networks for the Study of Ultrasound-Microbubble-Mediated Drug Delivery. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2019; 35:10128-10138. [PMID: 30540481 DOI: 10.1021/acs.langmuir.8b03288] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Localized and targeted drug delivery can be achieved by the combined action of ultrasound and microbubbles on the tumor microenvironment, likely through sonoporation and other therapeutic mechanisms that are not well understood. Here, we present a perfusable in vitro model with a realistic 3D geometry to study the interactions between microbubbles and the vascular endothelium in the presence of ultrasound. Specifically, a three-dimensional, endothelial-cell-seeded in vitro microvascular model was perfused with cell culture medium and microbubbles while being sonicated by a single-element 1 MHz focused transducer. This setup mimics the in vivo scenario in which ultrasound induces a therapeutic effect in the tumor vasculature in the presence of flow. Fluorescence and bright-field microscopy were employed to assess the microbubble-vessel interactions and the extent of drug delivery and cell death both in real time during treatment as well as after treatment. Propidium iodide was used as the model drug while calcein AM was used to evaluate cell viability. There were two acoustic parameter sets chosen for this work: (1) acoustic pressure: 1.4 MPa, pulse length: 500 cycles, duty cycle: 5% and (2) acoustic pressure: 0.4 MPa, pulse length: 1000 cycles, duty cycle: 20%. Enhanced drug delivery and cell death were observed in both cases while the higher pressure setting had a more pronounced effect. By introducing physiological flow to the in vitro microvascular model and examining the PECAM-1 expression of the endothelial cells within it, we demonstrated that our model is a good mimic of the in vivo vasculature and is therefore a viable platform to provide mechanistic insights into ultrasound-mediated drug delivery.
Collapse
Affiliation(s)
- Eric K Juang
- Department of Bioengineering , University of Washington , Seattle , Washington 98195 , United States
| | - Ine De Cock
- Department of Bioengineering , University of Washington , Seattle , Washington 98195 , United States
| | - Christina Keravnou
- Department of Bioengineering , University of Washington , Seattle , Washington 98195 , United States
| | - Madison K Gallagher
- Department of Bioengineering , University of Washington , Seattle , Washington 98195 , United States
| | - Sara B Keller
- Department of Bioengineering , University of Washington , Seattle , Washington 98195 , United States
| | - Ying Zheng
- Department of Bioengineering , University of Washington , Seattle , Washington 98195 , United States
| | - Michalakis Averkiou
- Department of Bioengineering , University of Washington , Seattle , Washington 98195 , United States
| |
Collapse
|
223
|
Toumia Y, Cerroni B, Domenici F, Lange H, Bianchi L, Cociorb M, Brasili F, Chiessi E, D'Agostino E, Van Den Abeele K, Heymans SV, D'Hooge J, Paradossi G. Phase Change Ultrasound Contrast Agents with a Photopolymerized Diacetylene Shell. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2019; 35:10116-10127. [PMID: 31042396 DOI: 10.1021/acs.langmuir.9b01160] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
Phase change contrast agents for ultrasound (US) imaging consist of nanodroplets (NDs) with a perfluorocarbon (PFC) liquid core stabilized with a lipid or a polymer shell. Liquid ↔ gas transition, occurring in the core, can be triggered by US to produce acoustically active microbubbles (MBs) in a process named acoustic droplet vaporization (ADV). MB shells containing polymerized diacetylene moiety were considered as a good trade off between the lipid MBs, showing optimal attenuation, and the polymeric ones, displaying enhanced stability. This work reports on novel perfluoropentane and perfluorobutane NDs stabilized with a monolayer of an amphiphilic fatty acid, i.e. 10,12-pentacosadiynoic acid (PCDA), cured with ultraviolet (UV) irradiation. The photopolymerization of the diacetylene groups, evidenced by the appearance of a blue color due to the conjugation of ene-yne sequences, exhibits a chromatic transition from the nonfluorescent blue color to a fluorescent red color when the NDs are heated or the pH of the suspension is basic. An estimate of the molecular weights reached by the polymerized PCDA in the shell, poly(PCDA), has been obtained using gel permeation chromatography and MALDI-TOF mass spectrometry. The poly(PCDA)/PFC NDs show good biocompatibility with fibroblast cells. ADV efficiency and acoustic properties before and after the transition were tested using a 1 MHz probe, revealing a resonance frequency between 1 and 2 MHz similar to other lipidic MBs. The surface of PCDA shelled NDs can be easily modified without influencing the stability and the acoustic performances of droplets. As a proof of concept we report on the conjugation of cyclic RGD and PEG chains of the particles to support targeting ability toward endothelial cells.
Collapse
Affiliation(s)
- Yosra Toumia
- Department of Chemical Sciences and Technologies , University of Rome Tor Vergata , Via della Ricerca Scientifica 1 , 00133 , Rome , Italy
| | - Barbara Cerroni
- Department of Chemical Sciences and Technologies , University of Rome Tor Vergata , Via della Ricerca Scientifica 1 , 00133 , Rome , Italy
| | - Fabio Domenici
- Department of Chemical Sciences and Technologies , University of Rome Tor Vergata , Via della Ricerca Scientifica 1 , 00133 , Rome , Italy
| | - Heiko Lange
- Department of Chemical Sciences and Technologies , University of Rome Tor Vergata , Via della Ricerca Scientifica 1 , 00133 , Rome , Italy
| | - Livia Bianchi
- Department of Chemical Sciences and Technologies , University of Rome Tor Vergata , Via della Ricerca Scientifica 1 , 00133 , Rome , Italy
| | - Madalina Cociorb
- Department of Chemical Sciences and Technologies , University of Rome Tor Vergata , Via della Ricerca Scientifica 1 , 00133 , Rome , Italy
| | - Francesco Brasili
- Department of Chemical Sciences and Technologies , University of Rome Tor Vergata , Via della Ricerca Scientifica 1 , 00133 , Rome , Italy
| | - Ester Chiessi
- Department of Chemical Sciences and Technologies , University of Rome Tor Vergata , Via della Ricerca Scientifica 1 , 00133 , Rome , Italy
| | - Emiliano D'Agostino
- DoseVue NV , Philips Open Manufacturing Campus , Slachthuisstraat 96 , B-2300 Turnhout , Belgium
| | | | - Sophie V Heymans
- Department of Physics , KU Leuven , Kulak, 8500 Kortrijk , Belgium
| | - Jan D'Hooge
- Medical Center , KU Leuven , 3000 Leuven , Belgium
| | - Gaio Paradossi
- Department of Chemical Sciences and Technologies , University of Rome Tor Vergata , Via della Ricerca Scientifica 1 , 00133 , Rome , Italy
| |
Collapse
|
224
|
Abenojar EC, Nittayacharn P, de Leon AC, Perera R, Wang Y, Bederman I, Exner AA. Effect of Bubble Concentration on the in Vitro and in Vivo Performance of Highly Stable Lipid Shell-Stabilized Micro- and Nanoscale Ultrasound Contrast Agents. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2019; 35:10192-10202. [PMID: 30913884 DOI: 10.1021/acs.langmuir.9b00462] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
Ultrasound (US) is a widely used diagnostic imaging tool because it is inexpensive, safe, portable, and broadly accessible. Ultrasound contrast agents (UCAs) are employed to enhance backscatter echo and improve imaging contrast. The most frequently utilized UCAs are echogenic bubbles made with a phospholipid or protein-stabilized hydrophobic gas core. While clinically utilized, applications of UCAs are often limited by rapid signal decay (<5 min) in vivo under typical ultrasound imaging protocols. Here, we report on a formulation of lipid shell-stabilized perfluoropropane (C3F8) microbubbles and nanobubbles with a significantly prolonged in vivo stability. Microbubbles (875 ± 280 nm) of the target size were prepared by utilizing a multiple-step centrifugation cycle, while nanobubbles (299 ± 189 nm) were isolated from the activated vial using a single centrifugation step. To provide in-depth acoustic characterization of the new construct we evaluated the effect of size and concentration on their in vitro and in vivo performance. In vitro and in vivo characterization were carried out for a range of bubble concentrations normalized by total gas volume quantified via headspace gas chromatography/mass spectrometry (GC/MS). In vitro characterization revealed that nanobubbles at different concentrations are more consistently stable over time with the highest and lowest dilutions (50-fold decrease) only differing in US signal after 8 min exposure by 10.34%, while for microbubbles the difference was 86.46%. As expected, due to the difference in hydrodynamic diameter and scattering cross section difference, nanobubbles showed lower overall initial signal intensity. In vivo experiments showed that both microbubbles and nanobubbles with similar initial peak signal intensity are comparably stable over time with 66.8% and 60.6% remaining signal after 30 min, respectively. This study demonstrates that bubble concentration has significant effects on the persistence of both microbubbles and nanobubbles in vitro and in vivo, but the effects are more pronounced in larger bubbles. These effects should be taken into account when selecting the appropriate bubble parameters for future imaging applications.
Collapse
Affiliation(s)
- Eric C Abenojar
- Department of Radiology , Case Western Reserve University , 10900 Euclid Avenue , Cleveland , Ohio 44106 , United States
| | - Pinunta Nittayacharn
- Department of Biomedical Engineering , Case Western Reserve University , 10900 Euclid Avenue , Cleveland , Ohio 44106 , United States
| | - Al Christopher de Leon
- Department of Radiology , Case Western Reserve University , 10900 Euclid Avenue , Cleveland , Ohio 44106 , United States
| | - Reshani Perera
- Department of Radiology , Case Western Reserve University , 10900 Euclid Avenue , Cleveland , Ohio 44106 , United States
| | - Yu Wang
- Department of Radiology , Case Western Reserve University , 10900 Euclid Avenue , Cleveland , Ohio 44106 , United States
| | - Ilya Bederman
- Department of Pediatrics, School of Medicine , Case Western Reserve University , 10900 Euclid Avenue , Cleveland , Ohio 44106 , United States
| | - Agata A Exner
- Department of Radiology , Case Western Reserve University , 10900 Euclid Avenue , Cleveland , Ohio 44106 , United States
- Department of Biomedical Engineering , Case Western Reserve University , 10900 Euclid Avenue , Cleveland , Ohio 44106 , United States
| |
Collapse
|
225
|
Lee L, Cavalieri F, Ashokkumar M. Exploring New Applications of Lysozyme-Shelled Microbubbles. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2019; 35:9997-10006. [PMID: 31088060 DOI: 10.1021/acs.langmuir.9b00896] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2023]
Abstract
This feature article provides a review of recent work on the synthesis of biopolymer-shelled microbubbles using various techniques with a particular focus on ultrasonic methodology that offers advantages over other conventional methods for tuning their physical and functional properties. A detailed discussion on the role of surface chemistry in fabricating functional lysozyme-shelled microbubbles has also been presented. Highlights on the applications of lysozyme-shelled microbubbles, particularly recent findings on their use for potential theranostic applications in lung diseases, have also been presented.
Collapse
Affiliation(s)
- Lillian Lee
- School of Engineering , RMIT University , Melbourne , VIC 3000 , Australia
| | | | | |
Collapse
|
226
|
Cheng B, Bing C, Xi Y, Shah B, Exner AA, Chopra R. Influence of Nanobubble Concentration on Blood-Brain Barrier Opening Using Focused Ultrasound Under Real-Time Acoustic Feedback Control. ULTRASOUND IN MEDICINE & BIOLOGY 2019; 45:2174-2187. [PMID: 31072657 DOI: 10.1016/j.ultrasmedbio.2019.03.016] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/26/2018] [Revised: 03/18/2019] [Accepted: 03/24/2019] [Indexed: 06/09/2023]
Abstract
Real-time acoustic feedback control based on harmonic emissions of stimulated microbubbles may serve as a way to achieve reliable blood-brain barrier (BBB) opening with focused ultrasound in the brain. Previously, we demonstrated BBB opening was possible using sub-micron bubbles (aka nanobubbles) and produced comparable results to commercially available microbubbles (Optison, Definity, etc.). The harmonic emissions and acoustic control were observed to be more consistent using nanobubbles, which warrants further study of BBB opening using these agents. This study examined the stimulated acoustic emissions of nanobubbles at different concentrations both in vitro and in vivo and evaluated BBB opening under real-time acoustic feedback control across concentrations. Original nanobubbles (1011 bubbles/mL) have long in vitro persistence (7.3 ± 3.3 min) and circulation time in rats (approximately 10 min) under exposures in this study, and both degraded with dilutions. With all three tested dilutions (1:1, 1:10 and 1:100), successful BBB opening was reliably achieved under real-time feedback control.
Collapse
Affiliation(s)
- Bingbing Cheng
- Department of Radiology, UT Southwestern Medical Center, Dallas, TX, USA.
| | - Chenchen Bing
- Department of Radiology, UT Southwestern Medical Center, Dallas, TX, USA
| | - Yin Xi
- Department of Radiology, UT Southwestern Medical Center, Dallas, TX, USA; Department of Clinical Science, UT Southwestern Medical Center, Dallas, TX, USA
| | - Bhavya Shah
- Department of Radiology, UT Southwestern Medical Center, Dallas, TX, USA; Advanced Imaging Research Center, UT Southwestern Medical Center, Dallas, TX, USA
| | - Agata A Exner
- Department of Radiology, Case Western Reserve University, Cleveland, OH, USA
| | - Rajiv Chopra
- Department of Radiology, UT Southwestern Medical Center, Dallas, TX, USA; Advanced Imaging Research Center, UT Southwestern Medical Center, Dallas, TX, USA
| |
Collapse
|
227
|
Karakatsani ME, Kugelman T, Ji R, Murillo M, Wang S, Niimi Y, Small SA, Duff KE, Konofagou EE. Unilateral Focused Ultrasound-Induced Blood-Brain Barrier Opening Reduces Phosphorylated Tau from The rTg4510 Mouse Model. Am J Cancer Res 2019; 9:5396-5411. [PMID: 31410223 PMCID: PMC6691580 DOI: 10.7150/thno.28717] [Citation(s) in RCA: 52] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2018] [Accepted: 06/21/2019] [Indexed: 11/21/2022] Open
Abstract
The neuropathological hallmarks of Alzheimer's disease include amyloid plaques and neurofibrillary tangles. Tau pathology correlates well with impaired neuronal activity and dementia. Focused ultrasound coupled with systemic administration of microbubbles has previously been shown to open the blood-brain barrier and induce an immune response, which, in an amyloid AD mouse model, resulted in the reduction of the amyloid brain load. Methods: In this study, we investigated the effect of focused ultrasound at the early stages of tau pathology (pre-tangle) in the rTg4510 mouse model. Results: Reduction of phosphorylated tau from the hippocampal formation processes, and particularly the pyramidal CA1 neurons, was noted in the ultrasound-treated brains without an associated increase in the phosphorylated tau-affected cell somas, typically associated with disease progression. Attenuation of the pathology was found to correlate well with the ultrasound-initiated immune response without compromising neuronal integrity. Unilateral ultrasound application resulted in a bilateral effect indicating a broader reduction of the phosphorylated tau. Conclusion: Findings presented herein reinforce the premise of ultrasound in reducing tau pathology and thus curbing the progression of Alzheimer's disease.
Collapse
|
228
|
Fu JW, Lin YS, Gan SL, Li YR, Wang Y, Feng ST, Li H, Zhou GF. Multifunctionalized Microscale Ultrasound Contrast Agents for Precise Theranostics of Malignant Tumors. CONTRAST MEDIA & MOLECULAR IMAGING 2019; 2019:3145647. [PMID: 31360144 PMCID: PMC6642784 DOI: 10.1155/2019/3145647] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/15/2019] [Revised: 04/26/2019] [Accepted: 06/10/2019] [Indexed: 11/17/2022]
Abstract
In ultrasonography, ultrasound contrast agents (UCAs) that possess high acoustic impedance mismatch with the bulk medium are frequently employed to highlight the borders between tissues by enhanced ultrasound scattering in a clinic. Typically, the most common UCA, microbubble, is generally close in size to a red blood cell (<∼10 μm). These microscale UCAs cannot be directly entrapped into the target cells but generate several orders of magnitude stronger echo signals than the nanoscale ones. And their large containment and high ultrasound responsiveness also greatly facilitate to perform combined treatments, e.g., drug delivery and other imaging techniques. So multifunctionalized microscale UCAs appear on this scene and keep growing toward a promising direction for precise theranostics. In this review, we systematically summarize the new advances in the principles and preparations of multifunctionalized microscale UCAs and their medical applications for malignant tumors.
Collapse
Affiliation(s)
- Jia-Wei Fu
- Guangdong Provincial Key Laboratory of Optical Information Materials and Technology & Institute of Electronic Paper Displays, South China Academy of Advanced Optoelectronics, South China Normal University, Guangzhou 510006, China
- National Center for International Research on Green Optoelectronics, South China Normal University, Guangzhou 510006, China
| | - Yi-Sheng Lin
- Department of Radiology, The First Affiliated Hospital, Guangzhou University of Traditional Chinese Medicine, Guangzhou, Guangdong 510405, China
| | - Sheng-Long Gan
- Guangdong Provincial Key Laboratory of Optical Information Materials and Technology & Institute of Electronic Paper Displays, South China Academy of Advanced Optoelectronics, South China Normal University, Guangzhou 510006, China
- National Center for International Research on Green Optoelectronics, South China Normal University, Guangzhou 510006, China
| | - Yong-Rui Li
- Guangdong Provincial Key Laboratory of Optical Information Materials and Technology & Institute of Electronic Paper Displays, South China Academy of Advanced Optoelectronics, South China Normal University, Guangzhou 510006, China
- National Center for International Research on Green Optoelectronics, South China Normal University, Guangzhou 510006, China
| | - Yao Wang
- Guangdong Provincial Key Laboratory of Optical Information Materials and Technology & Institute of Electronic Paper Displays, South China Academy of Advanced Optoelectronics, South China Normal University, Guangzhou 510006, China
- National Center for International Research on Green Optoelectronics, South China Normal University, Guangzhou 510006, China
| | - Shi-Ting Feng
- Department of Radiology, The First Affiliated Hospital, Sun Yat-Sen University, Guangzhou 510080, China
| | - Hao Li
- Guangdong Provincial Key Laboratory of Optical Information Materials and Technology & Institute of Electronic Paper Displays, South China Academy of Advanced Optoelectronics, South China Normal University, Guangzhou 510006, China
- National Center for International Research on Green Optoelectronics, South China Normal University, Guangzhou 510006, China
| | - Guo-Fu Zhou
- Guangdong Provincial Key Laboratory of Optical Information Materials and Technology & Institute of Electronic Paper Displays, South China Academy of Advanced Optoelectronics, South China Normal University, Guangzhou 510006, China
- National Center for International Research on Green Optoelectronics, South China Normal University, Guangzhou 510006, China
| |
Collapse
|
229
|
Fix SM, Koppolu BP, Novell A, Hopkins J, Kierski TM, Zaharoff DA, Dayton PA, Papadopoulou V. Ultrasound-Stimulated Phase-Change Contrast Agents for Transepithelial Delivery of Macromolecules, Toward Gastrointestinal Drug Delivery. ULTRASOUND IN MEDICINE & BIOLOGY 2019; 45:1762-1776. [PMID: 31003709 PMCID: PMC6701470 DOI: 10.1016/j.ultrasmedbio.2019.02.004] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/18/2018] [Revised: 02/01/2019] [Accepted: 02/06/2019] [Indexed: 05/23/2023]
Abstract
The gastrointestinal (GI) tract presents a notoriously difficult barrier for macromolecular drug delivery, especially for biologics. Herein, we demonstrate that ultrasound-stimulated phase change contrast agents (PCCAs) can transiently disrupt confluent colorectal adenocarcinoma monolayers and improve the transepithelial transport of a macromolecular model drug. With ultrasound treatment in the presence of PCCAs, we achieved a maximum of 44 ± 15% transepithelial delivery of 70-kDa fluorescein isothiocyanate-dextran, compared with negligible delivery through sham control monolayers. Among all tested rarefactional pressures (300-600 kPa), dextran delivery efficiency was consistently greatest at 300 kPa. To explore this unexpected finding, we quantified stable and inertial cavitation energy generated by various ultrasound exposure conditions. In general, lower pressures resulted in more persistent cavitation activity during the 30-s ultrasound exposures, which may explain the enhanced dextran delivery efficiency. Thus, a unique advantage of using low boiling point PCCAs for this application is that the same low-pressure pulses can be used to induce vaporization and provide maximal delivery.
Collapse
Affiliation(s)
- Samantha M Fix
- Eshelman School of Pharmacy, University of North Carolina, Chapel Hill, NC 27599, USA
| | - Bhanu P Koppolu
- Joint Department of Biomedical Engineering, University of North Carolina and North Carolina State University, Chapel Hill, NC 27599, USA
| | - Anthony Novell
- IR4M, Université Paris-Saclay, CNRS UMR 8081, 91401 Orsay, France
| | - Jared Hopkins
- Joint Department of Biomedical Engineering, University of North Carolina and North Carolina State University, Chapel Hill, NC 27599, USA
| | - Thomas M Kierski
- Joint Department of Biomedical Engineering, University of North Carolina and North Carolina State University, Chapel Hill, NC 27599, USA
| | - David A Zaharoff
- Joint Department of Biomedical Engineering, University of North Carolina and North Carolina State University, Chapel Hill, NC 27599, USA
| | - Paul A Dayton
- Eshelman School of Pharmacy, University of North Carolina, Chapel Hill, NC 27599, USA; Joint Department of Biomedical Engineering, University of North Carolina and North Carolina State University, Chapel Hill, NC 27599, USA
| | - Virginie Papadopoulou
- Joint Department of Biomedical Engineering, University of North Carolina and North Carolina State University, Chapel Hill, NC 27599, USA.
| |
Collapse
|
230
|
Başpınar Y, Erel-Akbaba G, Kotmakçı M, Akbaba H. Development and characterization of nanobubbles containing paclitaxel and survivin inhibitor YM155 against lung cancer. Int J Pharm 2019; 566:149-156. [DOI: 10.1016/j.ijpharm.2019.05.039] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2018] [Revised: 04/04/2019] [Accepted: 05/13/2019] [Indexed: 12/21/2022]
|
231
|
Choi KH, Kim JH. Therapeutic Applications of Ultrasound in Neurological Diseases. ACTA ACUST UNITED AC 2019. [DOI: 10.31728/jnn.2019.00046] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
|
232
|
Nisbet RM, Götz J. Amyloid-β and Tau in Alzheimer's Disease: Novel Pathomechanisms and Non-Pharmacological Treatment Strategies. J Alzheimers Dis 2019; 64:S517-S527. [PMID: 29562514 DOI: 10.3233/jad-179907] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Accumulation of the peptide amyloid-β (Aβ) and the protein tau in Alzheimer's disease (AD) brains is a gradual process that involves the post-translational modification and assembly of monomeric forms into larger structures that eventually form fibrillar inclusions. This process is thought to both drive and initiate AD. However, why the axonally enriched tau in the course of AD accumulates in the somatodendritic domain is not fully understood. We discuss new data that provide a possible explanation that involves de novo protein synthesis, induced by Aβ and mediated through the kinase Fyn. We further discuss how in a pathological state, tau, being a scaffolding protein, impairs nuclear and mitochondrial functions and reduces action potential generation at the axon initial segment. Pathological tau can further be packaged into exosomes, released by one neuron and taken up by another, contributing to its pathogenicity. We also present our new work that suggests ultrasound as a new treatment modality to clear pathological Aβ and tau. We put this work into perspective, discussing current vaccination strategies and improved brain delivery methods involving antibody engineering and viral approaches. We propose that rather than reducing post-translational modifications of tau, its levels and de novo synthesis need to be reduced. We anticipate a surge in combinatorial strategies, simultaneously targeting multiple pathologies, and an improved drug delivery to the brain facilitated by emerging technologies such as ultrasound.
Collapse
Affiliation(s)
- Rebecca M Nisbet
- Clem Jones Centre for Ageing Dementia Research, Queensland Brain Institute, The University of Queensland, Brisbane (St Lucia Campus), QLD, Australia
| | - Jürgen Götz
- Clem Jones Centre for Ageing Dementia Research, Queensland Brain Institute, The University of Queensland, Brisbane (St Lucia Campus), QLD, Australia
| |
Collapse
|
233
|
Karakatsani ME, Wang S, Samiotaki G, Kugelman T, Olumolade OO, Acosta C, Sun T, Han Y, Kamimura HAS, Jackson-Lewis V, Przedborski S, Konofagou E. Amelioration of the nigrostriatal pathway facilitated by ultrasound-mediated neurotrophic delivery in early Parkinson's disease. J Control Release 2019; 303:289-301. [PMID: 30953664 PMCID: PMC6618306 DOI: 10.1016/j.jconrel.2019.03.030] [Citation(s) in RCA: 48] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2018] [Revised: 01/30/2019] [Accepted: 03/29/2019] [Indexed: 01/01/2023]
Abstract
The blood-brain barrier (BBB) prevents most drugs from gaining access to the brain parenchyma, which is a recognized impediment to the treatment of neurodegenerative disorders like Parkinson's disease (PD). Focused ultrasound (FUS), in conjunction with systemically administered microbubbles, opens the BBB locally, reversibly and non-invasively. Herein, we show that neither FUS applied over both the striatum and the ventral midbrain, without neurotrophic factors, nor intravenous administration of neurotrophic factors (either through protein or gene delivery) without FUS, ameliorates the damage to the nigrostriatal dopaminergic pathway in the sub-acute MPTP mouse model of early-stage PD. Conversely, the combination of FUS and intravenous neurotrophic (protein or gene) delivery attenuates the damage to the nigrostriatal dopaminergic pathway, by allowing the entry of these agents into the brain parenchyma. Our findings provide evidence that the application of FUS at the early stages of PD facilitates critical neurotrophic delivery that can curb the rapid progression of neurodegeneration while improving the neuronal function, seemingly opening new therapeutic avenues for the early treatment of diseases of the central nervous system.
Collapse
Affiliation(s)
| | - Shutao Wang
- Departments of Biomedical Engineering, Columbia University, New York, NY 10032, USA
| | - Gesthimani Samiotaki
- Departments of Biomedical Engineering, Columbia University, New York, NY 10032, USA
| | - Tara Kugelman
- Departments of Biomedical Engineering, Columbia University, New York, NY 10032, USA
| | - Oluyemi O Olumolade
- Departments of Biomedical Engineering, Columbia University, New York, NY 10032, USA
| | - Camilo Acosta
- Departments of Biomedical Engineering, Columbia University, New York, NY 10032, USA
| | - Tao Sun
- Departments of Biomedical Engineering, Columbia University, New York, NY 10032, USA
| | - Yang Han
- Departments of Biomedical Engineering, Columbia University, New York, NY 10032, USA
| | - Hermes A S Kamimura
- Departments of Biomedical Engineering, Columbia University, New York, NY 10032, USA
| | - Vernice Jackson-Lewis
- Departments of Pathology & Cell Biology, Columbia University, New York, NY 10032, USA; Departments of Neurology, Columbia University, New York, NY 10032, USA; the Center for Motor Neuron Biology and Disease, Columbia University, New York, NY 10032, USA; the Columbia Translational Neuroscience Initiative, Columbia University, New York, NY 10032, USA
| | - Serge Przedborski
- Departments of Pathology & Cell Biology, Columbia University, New York, NY 10032, USA; Departments of Neurology, Columbia University, New York, NY 10032, USA; the Center for Motor Neuron Biology and Disease, Columbia University, New York, NY 10032, USA; the Columbia Translational Neuroscience Initiative, Columbia University, New York, NY 10032, USA.
| | - Elisa Konofagou
- Departments of Biomedical Engineering, Columbia University, New York, NY 10032, USA; Departments of Radiology, Columbia University, New York, NY 10032, USA.
| |
Collapse
|
234
|
Established and Emerging Strategies for Drug Delivery Across the Blood-Brain Barrier in Brain Cancer. Pharmaceutics 2019; 11:pharmaceutics11050245. [PMID: 31137689 PMCID: PMC6572140 DOI: 10.3390/pharmaceutics11050245] [Citation(s) in RCA: 43] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2019] [Revised: 05/05/2019] [Accepted: 05/20/2019] [Indexed: 12/25/2022] Open
Abstract
Brain tumors are characterized by very high mortality and, despite the continuous research on new pharmacological interventions, little therapeutic progress has been made. One of the main obstacles to improve current treatments is represented by the impermeability of the blood vessels residing within nervous tissue as well as of the new vascular net generating from the tumor, commonly referred to as blood-brain barrier (BBB) and blood-brain tumor barrier (BBTB), respectively. In this review, we focused on established and emerging strategies to overcome the blood-brain barrier to increase drug delivery for brain cancer. To date, there are three broad strategies being investigated to cross the brain vascular wall and they are conceived to breach, bypass, and negotiate the access to the nervous tissue. In this paper, we summarized these approaches highlighting their working mechanism and their potential impact on the quality of life of the patients as well as their current status of development.
Collapse
|
235
|
Gong Y, Li S, Zeng W, Yu J, Chen Y, Yu B. Controlled in vivo Bone Formation and Vascularization Using Ultrasound-Triggered Release of Recombinant Vascular Endothelial Growth Factor From Poly(D,L-lactic-co-glycolicacid) Microbubbles. Front Pharmacol 2019; 10:413. [PMID: 31068814 PMCID: PMC6491501 DOI: 10.3389/fphar.2019.00413] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2019] [Accepted: 04/01/2019] [Indexed: 12/22/2022] Open
Abstract
Bone defects are challenging to treat in musculoskeletal system due to the lack of vascularization. Biomaterials with internal vascularization ability and osteoinduction bioactivity are promising strategies for orthopedic applications. Vascular endothelial growth factor (VEGF) has been widely used for angiogenesis and osteogenesis. Here, we developed VEGF-loaded PLGA microbubbles (MBs) for improvement of angiogenesis and osteogenesis in bone defect repair in combination with ultrasound-targeted microbubble destruction (UTMD). Release profile showed UTMD promoted the burst release of VEGF from PLGA MBs. We subsequently investigated the combination of ultrasound application with VEGF MBs for in vitro osteogenesis. The results demonstrated that the expression of osteogenesis-related genes and calcium deposits were increased by VEGF MBs in combination of UTMD. Micro-computed tomography (micro-CT) and histological analysis were conducted 4 and 8 weeks post-surgery. In vivo results show that VEGF MBs in combination of UTMD could significantly enhance new bone formation and vascular ingrowth at the defect site in a rat calvarial defect model. In summary, VEGF MBs in combination of UTMD could augment bone regeneration and vascularization at calvarial bone defects and hold huge potential for clinical translation.
Collapse
Affiliation(s)
- Yong Gong
- Department of Orthopedics, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Songjian Li
- Department of Orthopedics, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Wei Zeng
- Ultrasound Medical Center, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Jianing Yu
- The First School of Clinical Medicine, Southern Medical University, Guangzhou, China
| | - Yan Chen
- Ultrasound Medical Center, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Bo Yu
- Department of Orthopedics, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| |
Collapse
|
236
|
Li FC, Borkar S, Ramachandran A, Kishen A. Novel Activated Microbubbles-based Strategy to Coat Nanoparticles on Root Canal Dentin: Fluid Dynamical Characterization. J Endod 2019; 45:797-802. [PMID: 30948228 DOI: 10.1016/j.joen.2019.02.011] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2018] [Revised: 01/26/2019] [Accepted: 02/05/2019] [Indexed: 12/25/2022]
Abstract
INTRODUCTION Activated microbubbles (MBs) have the potential to deliver nanoparticles in complex microspaces such as root canals. The objective of the study is to determine the fluid dynamical parameters associated with ultrasonic, sonic, and manual activation of MBs in simulated root canals and to assess the effectiveness of surface coating formed by delivering chitosan nanoparticles using activated MBs within root canals in extracted teeth. METHODS In stage 1, polydimethylsiloxane models were fabricated to determine the physical effects of MBs agitated manually (MM), sonically (MS), and ultrasonically (MU). Spherical tracer particles were used to visualize and record the fluid motion using an inverted microscope linked to a high-speed camera. The velocity, wall stress, and penetration depth were analyzed at regions of interest. In stage 2, 35 extracted human incisors were divided into 7 groups to evaluate the effectiveness of chitosan nanoparticle delivery using activated MBs (MM, MS, and MU groups). Field emission scanning electron microscopy and energy-dispersive X-rays were used to characterize the nanoparticle coating on root canal dentin and the degree of dentinal tubule occlusion. RESULTS In stage 1, velocity, wall stress, and penetration depth increased significantly in the MB groups compared with the control (P < .01). In stage 2, 70% of the dentin surface was coated, and 65% of the dentinal tubule was occluded with nanoparticle-based coating in the MM, MU, and water ultrasonic groups. Element analysis displayed the presence of dentin smear on the root canal surface for the MU and water ultrasonic groups. CONCLUSIONS Activated MBs enhanced fluid dynamical parameters when compared with water in simulated root canal models. Manual activation of MBs resulted in uniform and significant nanoparticle-based surface coating and tubule blockage in root canal dentin without dentin smear formation.
Collapse
Affiliation(s)
- Fang-Chi Li
- Faculty of Dentistry, University of Toronto, Toronto, Ontario, Canada
| | - Suraj Borkar
- Department of Chemical Engineering and Applied Chemistry, University of Toronto, Toronto, Ontario, Canada
| | - Arun Ramachandran
- Department of Chemical Engineering and Applied Chemistry, University of Toronto, Toronto, Ontario, Canada
| | - Anil Kishen
- Faculty of Dentistry, University of Toronto, Toronto, Ontario, Canada.
| |
Collapse
|
237
|
Kaviarasi S, Yuba E, Harada A, Krishnan UM. Emerging paradigms in nanotechnology for imaging and treatment of cerebral ischemia. J Control Release 2019; 300:22-45. [DOI: 10.1016/j.jconrel.2019.02.031] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2019] [Revised: 02/20/2019] [Accepted: 02/21/2019] [Indexed: 02/07/2023]
|
238
|
Hirai M, Ajito S, Takahashi K, Iwasa T, Li X, Wen D, Kawai-Hirai R, Ohta N, Igarashi N, Shimizu N. Structure of Ultrafine Bubbles and Their Effects on Protein and Lipid Membrane Structures Studied by Small- and Wide-Angle X-ray Scattering. J Phys Chem B 2019; 123:3421-3429. [DOI: 10.1021/acs.jpcb.9b00837] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Affiliation(s)
- Mitsuhiro Hirai
- Graduate School of Science and Technology, Gunma University, 4-2 Aramaki, Maebashi, Gunma 371-8510, Japan
| | - Satoshi Ajito
- Graduate School of Science and Technology, Gunma University, 4-2 Aramaki, Maebashi, Gunma 371-8510, Japan
| | - Kosuke Takahashi
- Graduate School of Science and Technology, Gunma University, 4-2 Aramaki, Maebashi, Gunma 371-8510, Japan
| | - Tatsuo Iwasa
- Course of Advanced Production Systems Engineering, Muroran Institute of Technology, 27-1 Mizumoto, Muroran, Hokkaido 657-8510, Japan
| | - Xing Li
- Course of Advanced Production Systems Engineering, Muroran Institute of Technology, 27-1 Mizumoto, Muroran, Hokkaido 657-8510, Japan
| | - Durige Wen
- Course of Advanced Production Systems Engineering, Muroran Institute of Technology, 27-1 Mizumoto, Muroran, Hokkaido 657-8510, Japan
| | - Rika Kawai-Hirai
- Institute for Molecular and Cellular Regulation, Gunma University, 3-39-15 Shouwa, Maebashi 371-8512, Japan
| | - Noboru Ohta
- Japan Synchrotron Radiation Research Institute, 1-1-1, Kouto, Sayo-cho, Sayo-gun, Hyogo 679-5198, Japan
| | - Noriyuki Igarashi
- Institute of Materials Structure Science, High Energy Accelerator Research Organization, 1-1 Oho, Tsukuba, Ibaraki 305-0801, Japan
| | - Nobutaka Shimizu
- Institute of Materials Structure Science, High Energy Accelerator Research Organization, 1-1 Oho, Tsukuba, Ibaraki 305-0801, Japan
| |
Collapse
|
239
|
Alheshibri M, Craig VSJ. Armoured nanobubbles; ultrasound contrast agents under pressure. J Colloid Interface Sci 2019; 537:123-131. [PMID: 30423486 DOI: 10.1016/j.jcis.2018.10.108] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2018] [Revised: 10/30/2018] [Accepted: 10/30/2018] [Indexed: 12/21/2022]
Abstract
HYPOTHESIS Robust methods for differentiating long-lived nanobubbles from other nanoparticles are required. Evaluation of the density and compressibility of nanoparticles should enable nanobubbles to be differentiated from other nanoparticles, although the response of nanobubbles to pressure can be strongly influenced by a coating of insoluble surfactant. Here we evaluate the response of nanobubbles armoured with a coating of insoluble surfactants in order to determine if they can be differentiated from other nanoparticles. EXPERIMENTS Dynamic light scattering was used to size candidate nanoparticles under the influence of external pressure and resonant mass measurements were employed to assess the density of candidate nanoparticles. FINDINGS The resonant mass measurement revealed a significant population of lipid-coated gas nanobubbles. These nanobubbles are proven to be gas entities, by their response to application of pressure. The pressure at which the gas within the nanobubbles condenses is shifted to higher pressure due to the mechanical resistance of the lipid shell, which shields the bubble contents from up to ∼0.8 atm. of the external pressure The presence of lipids of low solubility at the nanobubble-solution interface effectively results in a negative Laplace pressure, which stabilizes these nanobubbles against dissolution.
Collapse
Affiliation(s)
- Muidh Alheshibri
- Department of Applied Mathematics, Research School of Physics and Engineering, Australian National University, Canberra ACT2600, Australia; Deanship of Preparatory Year and Supporting Studies, Imam Abdulrahman Bin Faisal University, P.O. Box 1982, Dammam 31441, Saudi Arabia.
| | - Vincent S J Craig
- Department of Applied Mathematics, Research School of Physics and Engineering, Australian National University, Canberra ACT2600, Australia.
| |
Collapse
|
240
|
Paverd C, Lyka E, Elbes D, Coussios C. Passive acoustic mapping of extravasation following ultrasound-enhanced drug delivery. ACTA ACUST UNITED AC 2019; 64:045006. [DOI: 10.1088/1361-6560/aafcc1] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
241
|
Özdemir I, Hoyt K. Morphological image processing for multiscale analysis of super-resolution ultrasound images of tissue microvascular networks. PROCEEDINGS OF SPIE--THE INTERNATIONAL SOCIETY FOR OPTICAL ENGINEERING 2019; 10955:1095505. [PMID: 36275174 PMCID: PMC9584653 DOI: 10.1117/12.2511974] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
Diabetes is a major disease and known to impair microvascular recruitment due to insulin resistance. Previous quantifications of the changes in microvascular networks at the capillary level were being performed with either full or manually selected region-of-interests (ROIs) from super-resolution ultrasound (SR-US) images. However, these approaches were imprecise, time-consuming, and unsuitable for automated processes. Here we provided a custom software solution for automated multiscale analysis of SR-US images of tissue microvascularity patterns. An Acuson Sequoia 512 ultrasound (US) scanner equipped with a 15L8-S linear array transducer was used in a nonlinear imaging mode to collect all data. C57BL/6J male mice fed standard chow and studied at age 13-16 wk comprised the lean group (N = 14), and 24-31 wk-old mice who received a high-fat diet provided the obese group (N = 8). After administration of a microbubble (MB) contrast agent, the proximal hindlimb adductor muscle of each animal was imaged (dynamic contrast-enhanced US, DCE-US) for 10 min at baseline and again at 1 h and towards the end of a 2 h hyperinsulinemic-euglycemic clamp. Vascular structures were enhanced with a multiscale vessel enhancement filter and binary vessel segments were delineated using Otsu's global threshold method. We then computed vessel diameters by employing morphological image processing methods for quantitative analysis. Our custom software enabled automated multiscale image examination by defining a diameter threshold to limit the analysis at the capillary level. Longitudinal changes in AUC, IPK, and MVD were significant for lean group (p < 0.02 using Full-ROI and p < 0.01 using 150 μm-ROI) and for obese group (p < 0.02 using Full-ROI, p < 0.03 using 150 μm-ROI). By eliminating large vessels from the ROI (above 150 μm in diameter), perfusion parameters were more sensitive to changes exhibited by the smaller vessels, that are known to be more impacted by disease and treatment.
Collapse
Affiliation(s)
- Ipek Özdemir
- Dept. of Bioengineering, Univ. of Texas at Dallas, 800 W. Campbell Rd., Richardson, TX 75080
| | - Kenneth Hoyt
- Dept. of Bioengineering, Univ. of Texas at Dallas, 800 W. Campbell Rd., Richardson, TX 75080
- Dept. of Radiology, Univ. of Texas Southwestern Medical Center, 1801 Inwood Rd., Dallas, TX 75235
| |
Collapse
|
242
|
Beguin E, Bau L, Shrivastava S, Stride E. Comparing Strategies for Magnetic Functionalization of Microbubbles. ACS APPLIED MATERIALS & INTERFACES 2019; 11:1829-1840. [PMID: 30574777 DOI: 10.1021/acsami.8b18418] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
The advancement of ultrasound-mediated therapy has stimulated the development of drug-loaded microbubble agents that can be targeted to a region of interest through an applied magnetic field prior to ultrasound activation. However, the need to incorporate therapeutic molecules while optimizing the responsiveness to both magnetic and acoustic fields and maintaining adequate stability poses a considerable challenge for microbubble synthesis. The aim of this study was to evaluate three different methods for incorporating iron oxide nanoparticles (IONPs) into phospholipid-coated microbubbles using (1) hydrophobic IONPs within an oil layer below the microbubble shell, (2) phospholipid-stabilized IONPs within the shell, or (3) hydrophilic IONPs noncovalently bound to the surface of the microbubble. All microbubbles exhibited similar acoustic response at both 1 and 7 MHz. The half-life of the microbubbles was more than doubled by the addition of IONPs by using both surface and phospholipid-mediated loading methods, provided the lipid used to coat the IONPs was the same as that constituting the microbubble shell. The highest loading of IONPs per microbubble was also achieved with the surface loading method, and these microbubbles were the most responsive to an applied magnetic field, showing a 3-fold increase in the number of retained microbubbles compared to other groups. For the purpose of drug delivery, surface loading of IONPs could restrict the attachment of hydrophilic drugs to the microbubble shell, but hydrophobic drugs could still be incorporated. In contrast, although the incorporation of phospholipid IONPs produced more weakly magnetic microbubbles, it would not interfere with hydrophilic drug loading on the surface of the microbubble.
Collapse
Affiliation(s)
- Estelle Beguin
- Department of Engineering Science, Institute of Biomedical Engineering , University of Oxford , Oxford OX3 7DQ , U.K
| | - Luca Bau
- Department of Engineering Science, Institute of Biomedical Engineering , University of Oxford , Oxford OX3 7DQ , U.K
| | - Shamit Shrivastava
- Department of Engineering Science, Institute of Biomedical Engineering , University of Oxford , Oxford OX3 7DQ , U.K
| | - Eleanor Stride
- Department of Engineering Science, Institute of Biomedical Engineering , University of Oxford , Oxford OX3 7DQ , U.K
| |
Collapse
|
243
|
Khan MS, Hwang J, Lee K, Choi Y, Jang J, Kwon Y, Hong JW, Choi J. Surface Composition and Preparation Method for Oxygen Nanobubbles for Drug Delivery and Ultrasound Imaging Applications. NANOMATERIALS (BASEL, SWITZERLAND) 2019; 9:E48. [PMID: 30609703 PMCID: PMC6358755 DOI: 10.3390/nano9010048] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/03/2018] [Revised: 12/22/2018] [Accepted: 12/23/2018] [Indexed: 02/06/2023]
Abstract
Phospholipids have been widely investigated for the preparation of liposomes, and micro and nanobubbles. They comprise biocompatible and biodegradable molecules and offer simple preparation with a variety of functions in diagnostic and therapeutic applications. Phospholipids require emulsifiers and surfactants to assemble in the form of bubbles. These surfactants determine the size, zeta potential, and other characteristics of particles. Polyethylene glycol (PEG) and its various derivatives have been employed by researchers to synthesize micro and nanobubbles. The stability of phospholipid-shelled nanobubbles has been reported by various researchers owing to the reduction of surface tension by surfactants in the shell. Nanobubbles have been employed to deliver oxygen to tissues and hypoxic cells. In this study, we investigated the effects of different ratios of phospholipids to PEG on the size, distribution, and characterization of oxygen nanobubbles (ONBs). ONBs were synthesized using a sonication technique. We analyzed and compared the sizes, numbers of generated particles, and zeta potentials of different compositions of ONBs using dynamic light scattering and nanoparticle tracking analysis. Then, we employed these oxygen nanobubbles to enhance the cellular microenvironment and cell viability. ONBs were also investigated for ultrasound imaging.
Collapse
Affiliation(s)
- Muhammad Saad Khan
- School of Integrative Engineering, Chung-Ang University, Seoul 06974, Korea.
| | - Jangsun Hwang
- School of Integrative Engineering, Chung-Ang University, Seoul 06974, Korea.
| | - Kyungwoo Lee
- School of Integrative Engineering, Chung-Ang University, Seoul 06974, Korea.
| | - Yonghyun Choi
- School of Integrative Engineering, Chung-Ang University, Seoul 06974, Korea.
| | - Jaehee Jang
- School of Integrative Engineering, Chung-Ang University, Seoul 06974, Korea.
| | - Yejin Kwon
- School of Integrative Engineering, Chung-Ang University, Seoul 06974, Korea.
| | - Jong Wook Hong
- Department of Bionano Technology, Hanyang University, Seoul, Korea.
- Department of Bionano Engineering, Hanyang University, Ansan, Korea.
| | - Jonghoon Choi
- School of Integrative Engineering, Chung-Ang University, Seoul 06974, Korea.
| |
Collapse
|
244
|
Patnaik SS, Simionescu DT, Goergen CJ, Hoyt K, Sirsi S, Finol EA. Pentagalloyl Glucose and Its Functional Role in Vascular Health: Biomechanics and Drug-Delivery Characteristics. Ann Biomed Eng 2019; 47:39-59. [PMID: 30298373 PMCID: PMC6318003 DOI: 10.1007/s10439-018-02145-5] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2018] [Accepted: 09/28/2018] [Indexed: 02/08/2023]
Abstract
Pentagalloyl glucose (PGG) is an elastin-stabilizing polyphenolic compound that has significant biomedical benefits, such as being a free radical sink, an anti-inflammatory agent, anti-diabetic agent, enzymatic resistant properties, etc. This review article focuses on the important benefits of PGG on vascular health, including its role in tissue mechanics, the different modes of pharmacological administration (e.g., oral, intravenous and endovascular route, intraperitoneal route, subcutaneous route, and nanoparticle based delivery and microbubble-based delivery), and its potential therapeutic role in vascular diseases such as abdominal aortic aneurysms (AAA). In particular, the use of PGG for AAA suppression and prevention has been demonstrated to be effective only in the calcium chloride rat AAA model. Therefore, in this critical review we address the challenges that lie ahead for the clinical translation of PGG as an AAA growth suppressor.
Collapse
Affiliation(s)
- Sourav S Patnaik
- Vascular Biomechanics and Biofluids Laboratory, Department of Mechanical Engineering, The University of Texas at San Antonio, One UTSA Circle, San Antonio, TX, 78249-0670, USA
| | - Dan T Simionescu
- Department of Bioengineering, Clemson University, Clemson, SC, USA
| | - Craig J Goergen
- Weldon School of Biomedical Engineering, Purdue University, West Lafayette, IN, USA
| | - Kenneth Hoyt
- Department of Bioengineering, University of Texas at Dallas, Richardson, TX, USA
- Department of Radiology, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Shashank Sirsi
- Department of Bioengineering, University of Texas at Dallas, Richardson, TX, USA
- Department of Radiology, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Ender A Finol
- Vascular Biomechanics and Biofluids Laboratory, Department of Mechanical Engineering, The University of Texas at San Antonio, One UTSA Circle, San Antonio, TX, 78249-0670, USA.
| |
Collapse
|
245
|
Image-Guided Drug Delivery. Bioanalysis 2019. [DOI: 10.1007/978-3-030-01775-0_15] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022] Open
|
246
|
Kauscher U, Holme MN, Björnmalm M, Stevens MM. Physical stimuli-responsive vesicles in drug delivery: Beyond liposomes and polymersomes. Adv Drug Deliv Rev 2019; 138:259-275. [PMID: 30947810 PMCID: PMC7180078 DOI: 10.1016/j.addr.2018.10.012] [Citation(s) in RCA: 132] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2018] [Revised: 09/30/2018] [Accepted: 10/22/2018] [Indexed: 12/11/2022]
Abstract
Over the past few decades, a range of vesicle-based drug delivery systems have entered clinical practice and several others are in various stages of clinical translation. While most of these vesicle constructs are lipid-based (liposomes), or polymer-based (polymersomes), recently new classes of vesicles have emerged that defy easy classification. Examples include assemblies with small molecule amphiphiles, biologically derived membranes, hybrid vesicles with two or more classes of amphiphiles, or more complex hierarchical structures such as vesicles incorporating gas bubbles or nanoparticulates in the lumen or membrane. In this review, we explore these recent advances and emerging trends at the edge and just beyond the research fields of conventional liposomes and polymersomes. A focus of this review is the distinct behaviors observed for these classes of vesicles when exposed to physical stimuli - such as ultrasound, heat, light and mechanical triggers - and we discuss the resulting potential for new types of drug delivery, with a special emphasis on current challenges and opportunities.
Collapse
Affiliation(s)
- Ulrike Kauscher
- Department of Materials, Imperial College London, London SW7 2AZ, UK; Department of Bioengineering, Imperial College London, London SW7 2AZ, UK; Institute of Biomedical Engineering, Imperial College London, London SW7 2AZ, UK
| | - Margaret N Holme
- Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm SE-171 77, Sweden
| | - Mattias Björnmalm
- Department of Materials, Imperial College London, London SW7 2AZ, UK; Department of Bioengineering, Imperial College London, London SW7 2AZ, UK; Institute of Biomedical Engineering, Imperial College London, London SW7 2AZ, UK
| | - Molly M Stevens
- Department of Materials, Imperial College London, London SW7 2AZ, UK; Department of Bioengineering, Imperial College London, London SW7 2AZ, UK; Institute of Biomedical Engineering, Imperial College London, London SW7 2AZ, UK; Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm SE-171 77, Sweden.
| |
Collapse
|
247
|
Melich R, Valour JP, Urbaniak S, Padilla F, Charcosset C. Preparation and characterization of perfluorocarbon microbubbles using Shirasu Porous Glass (SPG) membranes. Colloids Surf A Physicochem Eng Asp 2019. [DOI: 10.1016/j.colsurfa.2018.09.058] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
248
|
Man VH, Truong PM, Li MS, Wang J, Van-Oanh NT, Derreumaux P, Nguyen PH. Molecular Mechanism of the Cell Membrane Pore Formation Induced by Bubble Stable Cavitation. J Phys Chem B 2018; 123:71-78. [DOI: 10.1021/acs.jpcb.8b09391] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Viet Hoang Man
- Department of Pharmaceutical Sciences, School of Pharmacy, University of Pittsburgh, Pittsburgh, Pennsylvania 15213, United States
| | - Phan Minh Truong
- Institute for Computational Science and Technology, SBI Building, Quang Trung Software City, Tan Chanh Hiep Ward, District 12, Ho Chi Minh City, Vietnam
| | - Mai Suan Li
- Institute of Physics, Polish Academy of Sciences, Al. Lotnikow 32/46, 02-668 Warsaw, Poland
| | - Junmei Wang
- Department of Pharmaceutical Sciences, School of Pharmacy, University of Pittsburgh, Pittsburgh, Pennsylvania 15213, United States
| | - Nguyen-Thi Van-Oanh
- Laboratoire de Chimie Physique, CNRS, Université Paris Sud, Université Paris-Saclay, 91405 Orsay Cedex, France
| | - Philippe Derreumaux
- Laboratory of Theoretical Chemistry, Ton Duc Thang University, Ho Chi Minh City, Vietnam
- Faculty of Pharmacy, Ton Duc Thang University, Ho Chi Minh City, Vietnam
| | - Phuong H. Nguyen
- Laboratoire de Biochimie Théorique, UPR 9080, CNRS, Université Denis Diderot, Sorbonne Paris Cité, IBPC, 13 rue Pierre et Marie Curie, 75005 Paris, France
| |
Collapse
|
249
|
Kang H, Hu S, Cho MH, Hong SH, Choi Y, Choi HS. Theranostic Nanosystems for Targeted Cancer Therapy. NANO TODAY 2018; 23:59-72. [PMID: 31186672 PMCID: PMC6559746 DOI: 10.1016/j.nantod.2018.11.001] [Citation(s) in RCA: 74] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Nanomaterials have revolutionized cancer imaging, diagnosis, and treatment. Multifunctional nanoparticles in particular have been designed for targeted cancer therapy by modulating their physicochemical properties to be delivered to the target and activated by internal and/or external stimuli. This review will focus on the fundamental "chemical" design considerations of stimuli-responsive nanosystems to achieve favorable tumor targeting beyond biological barriers and, furthermore, enhance targeted cancer therapy. In addition, we will summarize innovative smart nanosystems responsive to external stimuli (e.g., light, magnetic field, ultrasound, and electric field) and internal stimuli in the tumor microenvironment (e.g., pH, enzyme, redox potential, and oxidative stress).
Collapse
Affiliation(s)
- Homan Kang
- Gordon Center for Medical Imaging, Department of Radiology, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114, USA
| | - Shuang Hu
- Gordon Center for Medical Imaging, Department of Radiology, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114, USA
- Department of Nuclear Medicine, West China School of Medicine, West China Hospital, Sichuan University, Chengdu, Sichuan, 601141, China
| | - Mi Hyeon Cho
- Biomarker Branch, National Cancer Center, 323 Ilsan-ro, Goyang, Gyeonggi 10408, South Korea
| | - Suk Ho Hong
- Biomarker Branch, National Cancer Center, 323 Ilsan-ro, Goyang, Gyeonggi 10408, South Korea
| | - Yongdoo Choi
- Biomarker Branch, National Cancer Center, 323 Ilsan-ro, Goyang, Gyeonggi 10408, South Korea
| | - Hak Soo Choi
- Gordon Center for Medical Imaging, Department of Radiology, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114, USA
| |
Collapse
|
250
|
Hadinger KP, Marshalek JP, Sheeran PS, Dayton PA, Matsunaga TO. Optimization of Phase-Change Contrast Agents for Targeting MDA-MB-231 Breast Cancer Cells. ULTRASOUND IN MEDICINE & BIOLOGY 2018; 44:2728-2738. [PMID: 30228045 PMCID: PMC6215505 DOI: 10.1016/j.ultrasmedbio.2018.08.003] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/04/2018] [Revised: 07/02/2018] [Accepted: 08/06/2018] [Indexed: 05/11/2023]
Abstract
Breast cancer remains a leading cause of death for women throughout the world. Recent advances in medical imaging technologies and tumor targeting agents signify vast potential for progress toward improved management of this global problem. Phase-change contrast agents (PCCAs) are dynamic imaging agents with practical applications in both the research and clinical settings. PCCAs possess characteristics that allow for cellular uptake where they can be converted from liquid-phase PCCAs to gaseous microbubbles via ultrasound energy. Previously, we reported successful internalization of folate-targeted PCCAs in MDA-MB-231 breast cancer cells followed by ultrasound-mediated activation to produce internalized microbubbles. This study examines the binding, internalization and activation of folate-receptor targeted PCCAs in MDA-MB-231 breast cancer cells as a function of gaseous core compositions, incubation time and ultrasound exposure period. In vitro results indicate that internalization and ultrasound-mediated activation of PCCAs were significantly greater using a 50:50 mixture of decafluorobutane:dodecafluoropentane compared with other core compositions: 50:50 octafluoropropane:decafluorobutane (p < 0.0001), decafluorobutane (p < 0.04) and dodecafluoropentane (p < 0.0001). Furthermore, it was found that PCCAs composed of perfluorocarbons with higher boiling points responded with greater activation efficiency when exposed to 12 s of ultrasound exposure as opposed to 4 s of ultrasound exposure. When evaluating different incubation times, it was found that incubating the PCCAs with breast cancer cells for 60 min did not produce significantly greater internalization and activation compared with incubation for 10 min; this was concluded after comparing the number of microbubbles present per cell before ultrasound versus post-ultrasound, and finding a ratio of intracellular microbubbles post-ultrasound/pre-ultrasound, 3.46 versus 3.14, respectively. The data collected in this study helps illustrate further optimization of folate-receptor targeted PCCAs for breast cancer targeting and imaging.
Collapse
Affiliation(s)
- Kyle P Hadinger
- Department of Medical Imaging, University of Arizona, Tucson, Arizona, USA
| | - Joseph P Marshalek
- Department of Medical Imaging, University of Arizona, Tucson, Arizona, USA
| | - Paul S Sheeran
- Physical Sciences Department, Sunnybrook Research Institute, Toronto, Ontario, Canada; Department of Medical Biophysics, University of Toronto, Toronto, Ontario, Canada
| | - Paul A Dayton
- Joint Department of Biomedical Engineering, University of North Carolina and North Carolina State University, Chapel Hill, North Carolina, USA
| | - Terry O Matsunaga
- Department of Medical Imaging, University of Arizona, Tucson, Arizona, USA.
| |
Collapse
|