201
|
Xiao Y, Li C, Gu M, Wang H, Chen W, Luo G, Yang G, Zhang Z, Zhang Y, Xian G, Li Z, Sheng P. Protein Disulfide Isomerase Silence Inhibits Inflammatory Functions of Macrophages by Suppressing Reactive Oxygen Species and NF-κB Pathway. Inflammation 2018; 41:614-625. [DOI: 10.1007/s10753-017-0717-z] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
202
|
Janaszewska A, Gorzkiewicz M, Ficker M, Petersen JF, Paolucci V, Christensen JB, Klajnert-Maculewicz B. Pyrrolidone Modification Prevents PAMAM Dendrimers from Activation of Pro-Inflammatory Signaling Pathways in Human Monocytes. Mol Pharm 2017; 15:12-20. [DOI: 10.1021/acs.molpharmaceut.7b00515] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Affiliation(s)
- Anna Janaszewska
- Department
of General Biophysics, Faculty of Biology and Environmental Protection, University of Lodz, 141/143 Pomorska St., 90-236 Lodz, Poland
| | - Michał Gorzkiewicz
- Department
of General Biophysics, Faculty of Biology and Environmental Protection, University of Lodz, 141/143 Pomorska St., 90-236 Lodz, Poland
| | - Mario Ficker
- Department
of Chemistry, University of Copenhagen, Thorvaldsensvej 40, DK-1871 Frederiksberg, Denmark
| | | | - Valentina Paolucci
- Department
of Chemistry, University of Copenhagen, Thorvaldsensvej 40, DK-1871 Frederiksberg, Denmark
| | - Jørn Bolstad Christensen
- Department
of Chemistry, University of Copenhagen, Thorvaldsensvej 40, DK-1871 Frederiksberg, Denmark
| | - Barbara Klajnert-Maculewicz
- Department
of General Biophysics, Faculty of Biology and Environmental Protection, University of Lodz, 141/143 Pomorska St., 90-236 Lodz, Poland
- Leibniz-Institut für Polymerforschung Dresden e.V., Hohe Strasse 6, 01069 Dresden, Germany
| |
Collapse
|
203
|
Regulation of the maturation of human monocytes into immunosuppressive macrophages. Blood Adv 2017; 1:2510-2519. [PMID: 29296902 DOI: 10.1182/bloodadvances.2017011221] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2017] [Accepted: 10/27/2017] [Indexed: 12/22/2022] Open
Abstract
Human monocytes differentiate into either proinflammatory or immunosuppressive macrophages in response to distinct stimuli. Results show that the Toll-like receptor 2/1 agonist PAM3 replicates the ability of macrophage colony-stimulating factor (M-CSF) to induce the preferential generation of immunosuppressive macrophages in vitro, an activity confirmed by in vivo studies of rhesus macaques. By comparing the gene expression pattern of monocytes treated with M-CSF vs PAM3, the pathways regulating macrophage maturation were identified. NF-κB and Akt were found to play a central role in the overall process of monocyte into macrophage differentiation. Pathways regulated by p38 MAPK and PTGS2 biased this process toward the generation of immunosuppressive rather than proinflammatory macrophages. ERK and JNK contribute to PAM3- but not M-CSF-driven monocyte maturation. These findings clarify the mechanisms underlying the generation of immunosuppressive macrophages and support the use of PAM3 in the treatment of autoimmune and inflammatory diseases.
Collapse
|
204
|
McCoy AM, Herington JL, Stouch AN, Mukherjee AB, Lakhdari O, Blackwell TS, Prince LS. IKKβ Activation in the Fetal Lung Mesenchyme Alters Lung Vascular Development but Not Airway Morphogenesis. THE AMERICAN JOURNAL OF PATHOLOGY 2017; 187:2635-2644. [PMID: 28923684 PMCID: PMC5718091 DOI: 10.1016/j.ajpath.2017.08.013] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/23/2017] [Revised: 07/05/2017] [Accepted: 08/08/2017] [Indexed: 01/29/2023]
Abstract
In the immature lung, inflammation and injury disrupt the epithelial-mesenchymal interactions required for normal development. Innate immune signaling and NF-κB activation disrupt the normal expression of multiple mesenchymal genes that play a key role in airway branching and alveolar formation. To test the role of the NF-κB pathway specifically in lung mesenchyme, we utilized the mesenchymal Twist2-Cre to drive expression of a constitutively active inhibitor of NF-κB kinase subunit β (IKKβca) mutant in developing mice. Embryonic Twist2-IKKβca mice were generated in expected numbers and appeared grossly normal. Airway branching also appeared normal in Twist2-IKKβca embryos, with airway morphometry, elastin staining, and saccular branching similar to those in control littermates. While Twist2-IKKβca lungs did not contain increased levels of Il1b, we did measure an increased expression of the chemokine-encoding gene Ccl2. Twist2-IKKβca lungs had increased staining for the vascular marker platelet endothelial cell adhesion molecule 1. In addition, type I alveolar epithelial differentiation appeared to be diminished in Twist2-IKKβca lungs. The normal airway branching and lack of Il1b expression may have been due to the inability of the Twist2-IKKβca transgene to induce inflammasome activity. While Twist2-IKKβca lungs had an increased number of macrophages, inflammasome expression remained restricted to macrophages without evidence of spontaneous inflammasome activity. These results emphasize the importance of cellular niche in considering how inflammatory signaling influences fetal lung development.
Collapse
Affiliation(s)
- Alyssa M McCoy
- Department of Pediatrics, University of California, San Diego, La Jolla, California; Rady Children's Hospital, San Diego, San Diego, California; Department of Neuroscience and Pharmacology, Meharry Medical College, Nashville, Tennessee
| | - Jennifer L Herington
- Departments of Pediatrics, Medicine, Cancer Biology, and Cell and Developmental Biology, Vanderbilt University, Nashville, Tennessee
| | - Ashley N Stouch
- Department of Pediatrics, University of California, San Diego, La Jolla, California; Rady Children's Hospital, San Diego, San Diego, California; Departments of Pediatrics, Medicine, Cancer Biology, and Cell and Developmental Biology, Vanderbilt University, Nashville, Tennessee
| | - Anamika B Mukherjee
- Departments of Pediatrics, Medicine, Cancer Biology, and Cell and Developmental Biology, Vanderbilt University, Nashville, Tennessee
| | - Omar Lakhdari
- Department of Pediatrics, University of California, San Diego, La Jolla, California; Rady Children's Hospital, San Diego, San Diego, California
| | - Timothy S Blackwell
- Departments of Pediatrics, Medicine, Cancer Biology, and Cell and Developmental Biology, Vanderbilt University, Nashville, Tennessee
| | - Lawrence S Prince
- Department of Pediatrics, University of California, San Diego, La Jolla, California; Rady Children's Hospital, San Diego, San Diego, California.
| |
Collapse
|
205
|
Antilipotoxicity Activity of Osmanthus fragrans and Chrysanthemum morifolium Flower Extracts in Hepatocytes and Renal Glomerular Mesangial Cells. Mediators Inflamm 2017; 2017:4856095. [PMID: 29358848 PMCID: PMC5735667 DOI: 10.1155/2017/4856095] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2017] [Accepted: 10/10/2017] [Indexed: 01/18/2023] Open
Abstract
The excess influx of free fatty acids (FFAs) into nonadipose tissues, such as those of liver and kidney, induces lipotoxicity leading to hepatic steatosis and renal dysfunction. The aim of this study was to investigate the protective effects of methanolic flower extracts of Osmanthus fragrans (OF) and Chrysanthemum morifolium (CM) against FFA-induced lipotoxicity in hepatocytes (human HepG2 cells) and renal glomerular mesangial cells (mouse SV40-Mes13 cells). The results showed that OF and CM significantly suppressed FFA-induced intracellular triacylglycerol accumulation via partially inhibiting the gene expression of sterol regulatory element-binding protein-1c (SREBP-1c) and glycerol-3-phosphate acyltransferase (GPAT) in HepG2 cells. Both extracts inhibited reactive oxygen species (ROS) generation by FFA-stimulated HepG2 cells. OF and CM also suppressed the mRNA expression of interleukin- (IL-) 1β, IL-6, IL-8, tumor necrosis factor- (TNF-) α, and transforming growth factor- (TGF-) β by HepG2 cells treated with conditioned medium derived from lipopolysaccharide-treated THP-1 monocytes. Furthermore, OF and CM effectively inhibited oleate-induced cellular lipid accumulation, TGF-β secretion, and overexpression of fibronectin in mesangial cells. In conclusion, OF and CM possess hepatoprotective activity by inhibiting hepatic fat load and inflammation and renal protection by preventing FFA-induced mesangial extracellular matrix formation.
Collapse
|
206
|
Sugimoto MA, de Jesus Amazonas da Silva M, Froede Brito L, Dos Santos Borges R, Amaral FA, de Araujo Boleti AP, Ordoñez ME, Carlos Tavares J, Pires Sousa L, Lima ES. Anti-Inflammatory Potential of 1-Nitro-2-Phenylethylene. Molecules 2017; 22:molecules22111977. [PMID: 29140265 PMCID: PMC6150367 DOI: 10.3390/molecules22111977] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2017] [Revised: 11/06/2017] [Accepted: 11/10/2017] [Indexed: 11/16/2022] Open
Abstract
Inflammation is a reaction of the host to infectious or sterile stimuli and has the physiological purpose of restoring tissue homeostasis. However, uncontrolled or unresolved inflammation can lead to tissue damage, giving rise to a plethora of chronic inflammatory diseases, including metabolic syndrome and autoimmunity pathologies with eventual loss of organ function. Beta-nitrostyrene and its derivatives are known to have several biological activities, including anti-edema, vasorelaxant, antiplatelet, anti-inflammatory, and anticancer. However, few studies have been carried out regarding the anti-inflammatory effects of this class of compounds. Thereby, the aim of this study was to evaluate the anti-inflammatory activity of 1-nitro-2-phenylethene (NPe) using in vitro and in vivo assays. Firstly, the potential anti-inflammatory activity of NPe was evaluated by measuring TNF-α produced by human macrophages stimulated with lipopolysaccharide (LPS). NPe at non-toxic doses opposed the inflammatory effects induced by LPS stimulation, namely production of the inflammatory cytokine TNF-α and activation of NF-κB and ERK pathways (evaluated by phosphorylation of inhibitor of kappa B-alpha [IκB-α] and extracellular signal-regulated kinase 1/2 [ERK1/2], respectively). In a well-established model of acute pleurisy, pretreatment of LPS-challenged mice with NPe reduced neutrophil accumulation in the pleural cavity. This anti-inflammatory effect was associated with reduced activation of NF-κB and ERK1/2 pathways in NPe treated mice as compared to untreated animals. Notably, NPe was as effective as dexamethasone in both, reducing neutrophil accumulation and inhibiting ERK1/2 and IκB-α phosphorylation. Taken together, the results suggest a potential anti-inflammatory activity for NPe via inhibition of ERK1/2 and NF-κB pathways on leukocytes.
Collapse
Affiliation(s)
- Michelle A Sugimoto
- Laboratory of Inflammation Signaling, Department of Clinical Analysis, Faculty of Pharmacy, Federal University of Minas Gerais, Belo Horizonte 31270-901, MG, Brazil.
| | - Márcia de Jesus Amazonas da Silva
- Laboratory of Biological Activity, Faculty of Pharmaceutical Sciences, Federal University of Amazonas, Manaus 69067-005, AM, Brazil.
| | - Larissa Froede Brito
- Laboratory of Inflammation Signaling, Department of Clinical Analysis, Faculty of Pharmacy, Federal University of Minas Gerais, Belo Horizonte 31270-901, MG, Brazil.
| | - Rosivaldo Dos Santos Borges
- Nucleus of Studies and Selection of Bioactive Molecules, Institute of Health Sciences, Federal University of Pará, Belém 66075-110, PA, Brazil.
| | - Flávio Almeida Amaral
- Department of Physiology and Biophysics, Institute of Biological Sciences, Federal University of Minas Gerais, Belo Horizonte 31270-901, MG, Brazil.
| | - Ana Paula de Araujo Boleti
- Nucleus of Studies and Selection of Bioactive Molecules, Institute of Health Sciences, Federal University of Pará, Belém 66075-110, PA, Brazil.
| | - Maritza Echevarria Ordoñez
- Nucleus of Studies and Selection of Bioactive Molecules, Institute of Health Sciences, Federal University of Pará, Belém 66075-110, PA, Brazil.
| | - Jose Carlos Tavares
- Laboratory of Research in Drugs, Department of Biological Sciences and Health, Federal University of Amapá, Macapá 68903-419, AP, Brazil.
| | - Lirlandia Pires Sousa
- Laboratory of Inflammation Signaling, Department of Clinical Analysis, Faculty of Pharmacy, Federal University of Minas Gerais, Belo Horizonte 31270-901, MG, Brazil.
| | - Emerson Silva Lima
- Laboratory of Biological Activity, Faculty of Pharmaceutical Sciences, Federal University of Amazonas, Manaus 69067-005, AM, Brazil.
| |
Collapse
|
207
|
van der Spek AH, Surovtseva OV, Aan S, Tool ATJ, van de Geer A, Demir K, van Gucht ALM, van Trotsenburg ASP, van den Berg TK, Fliers E, Boelen A. Increased circulating interleukin-8 in patients with resistance to thyroid hormone receptor α. Endocr Connect 2017; 6:731-740. [PMID: 29101248 PMCID: PMC5670275 DOI: 10.1530/ec-17-0213] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/21/2017] [Accepted: 09/28/2017] [Indexed: 12/20/2022]
Abstract
Innate immune cells have recently been identified as novel thyroid hormone (TH) target cells in which intracellular TH levels appear to play an important functional role. The possible involvement of TH receptor alpha (TRα), which is the predominant TR in these cells, has not been studied to date. Studies in TRα0/0 mice suggest a role for this receptor in innate immune function. The aim of this study was to determine whether TRα affects the human innate immune response. We assessed circulating interleukin-8 concentrations in a cohort of 8 patients with resistance to TH due to a mutation of TRα (RTHα) and compared these results to healthy controls. In addition, we measured neutrophil and macrophage function in one of these RTHα patients (mutation D211G). Circulating interleukin-8 levels were elevated in 7 out of 8 RTHα patients compared to controls. These patients harbor different mutations, suggesting that this is a general feature of the syndrome of RTHα. Neutrophil spontaneous apoptosis, bacterial killing, NAPDH oxidase activity and chemotaxis were unaltered in cells derived from the RTHαD211G patient. RTHα macrophage phagocytosis and cytokine induction after LPS treatment were similar to results from control cells. The D211G mutation did not result in clinically relevant impairment of neutrophil or pro-inflammatory macrophage function. As elevated circulating IL-8 is also observed in hyperthyroidism, this observation could be due to the high-normal to high levels of circulating T3 found in patients with RTHα.
Collapse
Affiliation(s)
- Anne H van der Spek
- Department of Endocrinology and MetabolismAcademic Medical Center, Amsterdam, The Netherlands
| | - Olga V Surovtseva
- Department of Endocrinology and MetabolismAcademic Medical Center, Amsterdam, The Netherlands
| | - Saskia Aan
- Department of Endocrinology and MetabolismAcademic Medical Center, Amsterdam, The Netherlands
| | - Anton T J Tool
- Sanquin Research and Landsteiner LaboratoryAcademic Medical Center, Amsterdam, The Netherlands
| | - Annemarie van de Geer
- Sanquin Research and Landsteiner LaboratoryAcademic Medical Center, Amsterdam, The Netherlands
| | - Korcan Demir
- Division of Pediatric EndocrinologyDokuz Eylül University, Izmir, Turkey
| | - Anja L M van Gucht
- Department of EndocrinologyErasmus Medical Center, Rotterdam, The Netherlands
| | | | - Timo K van den Berg
- Sanquin Research and Landsteiner LaboratoryAcademic Medical Center, Amsterdam, The Netherlands
| | - Eric Fliers
- Department of Endocrinology and MetabolismAcademic Medical Center, Amsterdam, The Netherlands
| | - Anita Boelen
- Department of Endocrinology and MetabolismAcademic Medical Center, Amsterdam, The Netherlands
| |
Collapse
|
208
|
Besson B, Sonthonnax F, Duchateau M, Ben Khalifa Y, Larrous F, Eun H, Hourdel V, Matondo M, Chamot-Rooke J, Grailhe R, Bourhy H. Regulation of NF-κB by the p105-ABIN2-TPL2 complex and RelAp43 during rabies virus infection. PLoS Pathog 2017; 13:e1006697. [PMID: 29084252 PMCID: PMC5679641 DOI: 10.1371/journal.ppat.1006697] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2017] [Revised: 11/09/2017] [Accepted: 10/16/2017] [Indexed: 12/21/2022] Open
Abstract
At the crossroad between the NF-κB and the MAPK pathways, the ternary complex composed of p105, ABIN2 and TPL2 is essential for the host cell response to pathogens. The matrix protein (M) of field isolates of rabies virus was previously shown to disturb the signaling induced by RelAp43, a NF-κB protein close to RelA/p65. Here, we investigated how the M protein disturbs the NF-κB pathway in a RelAp43-dependant manner and the potential involvement of the ternary complex in this mechanism. Using a tandem affinity purification coupled with mass spectrometry approach, we show that RelAp43 interacts with the p105-ABIN2-TPL2 complex and we observe a strong perturbation of this complex in presence of M protein. M protein interaction with RelAp43 is associated with a wide disturbance of NF-κB signaling, involving a modulation of IκBα-, IκBβ-, and IκBε-RelAp43 interaction and a favored interaction of RelAp43 with the non-canonical pathway (RelB and p100/p52). Monitoring the interactions between host and viral proteins using protein-fragment complementation assay and bioluminescent resonance energy transfer, we further show that RelAp43 is associated to the p105-ABIN2-TPL2 complex as RelAp43-p105 interaction stabilizes the formation of a complex with ABIN2 and TPL2. Interestingly, the M protein interacts not only with RelAp43 but also with TPL2 and ABIN2. Upon interaction with this complex, M protein promotes the release of ABIN2, which ultimately favors the production of RelAp43-p50 NF-κB dimers. The use of recombinant rabies viruses further indicates that this mechanism leads to the control of IFNβ, TNF and CXCL2 expression during the infection and a high pathogenicity profile in rabies virus infected mice. All together, our results demonstrate the important role of RelAp43 and M protein in the regulation of NF-κB signaling. Rabies virus is a recurring zoonosis responsible for about 60,000 deaths per year. A key feature of rabies virus is its stealth, allowing it to spread within the host and escape the immune response. To do so, rabies virus developed several mechanisms, including a thorough interference with cell signaling pathways. Here, we focused our attention on the molecular aspects of rabies virus escape to the NF-κB pathway through the interaction between the M protein and the NF-κB protein RelAp43. Monitoring close range interactions, we found that RelAp43 plays an important role in the stabilization of the p105-ABIN2-TPL2 complex, which is essential in the regulation of both NF-κB and MAPK pathways, and we brought a new insight on the dynamics within the host protein complex. These results were confirmed in living cells and in mice. Overall, our data suggest that rabies virus interference with the p105-ABIN2-TPL2 complex is a cornerstone of its stealth strategy to escape the immune response.
Collapse
Affiliation(s)
- Benoit Besson
- Unité Dynamique des Lyssavirus et Adaptation à l'Hôte, Paris, France.,Université Paris Diderot, Sorbonne Paris Cité, Cellule Pasteur, Paris, France
| | - Florian Sonthonnax
- Unité Dynamique des Lyssavirus et Adaptation à l'Hôte, Paris, France.,Université Paris Diderot, Sorbonne Paris Cité, Cellule Pasteur, Paris, France
| | - Magalie Duchateau
- Unité de Spectrométrie de Masse Structurale et Protéomique, Plateforme Protéomique, CNRS USR 2000 Spectrométrie de masse pour la biologie, Paris, France
| | | | - Florence Larrous
- Unité Dynamique des Lyssavirus et Adaptation à l'Hôte, Paris, France
| | - Hyeju Eun
- Technology Development Platform, 16, Daewangpangyo-ro 712 beon-gil, Bundang-gu, Seongnam-si, Gyeonggi-do, Rep. of Korea
| | - Véronique Hourdel
- Unité de Spectrométrie de Masse Structurale et Protéomique, Plateforme Protéomique, CNRS USR 2000 Spectrométrie de masse pour la biologie, Paris, France
| | - Mariette Matondo
- Unité de Spectrométrie de Masse Structurale et Protéomique, Plateforme Protéomique, CNRS USR 2000 Spectrométrie de masse pour la biologie, Paris, France
| | - Julia Chamot-Rooke
- Unité de Spectrométrie de Masse Structurale et Protéomique, Plateforme Protéomique, CNRS USR 2000 Spectrométrie de masse pour la biologie, Paris, France
| | - Regis Grailhe
- Technology Development Platform, 16, Daewangpangyo-ro 712 beon-gil, Bundang-gu, Seongnam-si, Gyeonggi-do, Rep. of Korea
| | - Hervé Bourhy
- Unité Dynamique des Lyssavirus et Adaptation à l'Hôte, Paris, France
| |
Collapse
|
209
|
Tóth EJ, Boros É, Hoffmann A, Szebenyi C, Homa M, Nagy G, Vágvölgyi C, Nagy I, Papp T. Interaction of THP-1 Monocytes with Conidia and Hyphae of Different Curvularia Strains. Front Immunol 2017; 8:1369. [PMID: 29093719 PMCID: PMC5651265 DOI: 10.3389/fimmu.2017.01369] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2017] [Accepted: 10/05/2017] [Indexed: 01/02/2023] Open
Abstract
Interaction of the human monocytic cell line, THP-1 with clinical isolates of three Curvularia species were examined. Members of this filamentous fungal genus can cause deep mycoses emerging in both immunocompromised and immunocompetent patients. It was found that monocytes reacted only to the hyphal form of Curvularia lunata. Cells attached to the germ tubes and hyphae and production of elevated levels of interleukin (IL)-8 and IL-10 and a low level of TNF-α were measured. At the same time, monocytes failed to produce IL-6. This monocytic response, especially with the induction of the anti-inflammatory IL-10, correlates well to the observation that C. lunata frequently cause chronic infections even in immunocompetent persons. Despite the attachment to the hyphae, monocytes could not reduce the viability of the fungus and the significant decrease in the relative transcript level of HLA-DRA assumes the lack of antigen presentation of the fungus by this cell type. C. spicifera and C. hawaiiensis failed to induce the gathering of the cells or the production of any analyzed cytokines. Monocytes did not recognize conidia of Curvularia species, even when melanin was lacking in their cell wall.
Collapse
Affiliation(s)
- Eszter Judit Tóth
- MTA-SZTE Fungal Pathogenicity Mechanisms Research Group, Hungarian Academy of Sciences, University of Szeged, Szeged, Hungary.,Faculty of Science and Informatics, Department of Microbiology, University of Szeged, Szeged, Hungary
| | - Éva Boros
- Hungarian Academy of Sciences, Biological Research Centre, Szeged, Hungary
| | - Alexandra Hoffmann
- Faculty of Science and Informatics, Department of Microbiology, University of Szeged, Szeged, Hungary
| | - Csilla Szebenyi
- MTA-SZTE Fungal Pathogenicity Mechanisms Research Group, Hungarian Academy of Sciences, University of Szeged, Szeged, Hungary.,Faculty of Science and Informatics, Department of Microbiology, University of Szeged, Szeged, Hungary
| | - Mónika Homa
- MTA-SZTE Fungal Pathogenicity Mechanisms Research Group, Hungarian Academy of Sciences, University of Szeged, Szeged, Hungary.,Faculty of Science and Informatics, Department of Microbiology, University of Szeged, Szeged, Hungary
| | - Gábor Nagy
- MTA-SZTE Fungal Pathogenicity Mechanisms Research Group, Hungarian Academy of Sciences, University of Szeged, Szeged, Hungary
| | - Csaba Vágvölgyi
- Faculty of Science and Informatics, Department of Microbiology, University of Szeged, Szeged, Hungary
| | - István Nagy
- Hungarian Academy of Sciences, Biological Research Centre, Szeged, Hungary
| | - Tamás Papp
- MTA-SZTE Fungal Pathogenicity Mechanisms Research Group, Hungarian Academy of Sciences, University of Szeged, Szeged, Hungary.,Faculty of Science and Informatics, Department of Microbiology, University of Szeged, Szeged, Hungary
| |
Collapse
|
210
|
Rudick CP, Miyamoto T, Lang MS, Agrawal DK. Triggering receptor expressed on myeloid cells in the pathogenesis of periodontitis: potential novel treatment strategies. Expert Rev Clin Immunol 2017; 13:1189-1197. [PMID: 29027827 DOI: 10.1080/1744666x.2017.1392855] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
INTRODUCTION Periodontal diseases are polymicrobial inflammatory disorders of the tissue, ligament, and bone structures supporting teeth. Periodontitis (inflammation with corresponding loss of attachment) affects 40-50% of adults. Recently, members of the Triggering Receptor on Myeloid Cell (TREM) family have been studied to determine their relationship to these diseases. Areas covered: TREM-1 is a receptor expressed on the surface of PMNs, monocytes, macrophages, dendritic cells, vascular smooth muscle cells, and keratinocytes upregulated in the presence of periodontal inflammation. TREM-1 expression can be upregulated by oral bacterium Porphyromonas gingivalis that can be abrogated by a sub-antimicrobial dose of doxycycline. When cleaved from the cell surface, a soluble form of TREM-1 (sTREM-1) can be used as a biomarker of inflammation and might also provide a link between oral and systemic inflammation. While less understood, TREM-2 has a role in osteoclastogenesis which could contribute to the alveolar bone destruction seen in more advanced periodontitis. Expert commentary: Additional studies to simulate biofilm microenvironment in TREM research are warranted. Longitudinal studies determining TREM-1, sTREM-1, and TREM-2 levels in tissues over time and progression of periodontal diseases would provide valuable information in the role of TREM receptors as indicators of or contributors to the disease process.
Collapse
Affiliation(s)
- Courtney P Rudick
- a Department of Clinical & Translational Science , Creighton University School of Medicine , Omaha , NE , USA
| | - Takanari Miyamoto
- b Department of Periodontology , Creighton University School of Medicine , Omaha , NE , USA
| | - Melissa S Lang
- b Department of Periodontology , Creighton University School of Medicine , Omaha , NE , USA
| | - Devendra K Agrawal
- a Department of Clinical & Translational Science , Creighton University School of Medicine , Omaha , NE , USA
| |
Collapse
|
211
|
Li H, Guo S, Yan L, Meng C, Hu Y, He K, Shi Z. Expression and Purification of a Functional Porcine Soluble Triggering Receptor Expressed on Myeloid Cells 1. Anim Biotechnol 2017. [PMID: 28631997 DOI: 10.1080/10495398.2016.1267016] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Triggering receptor expressed on myeloid cells 1 (TREM-1) plays a vital role in the pathogen-triggered amplification loop required for proinflammatory responses. Blockade of TREM-1 signaling may inhibit expansion of sepsis and prolong survival of animals. In the present study, the gene of porcine soluble TREM-1 was cloned and expressed in E. coli. After purification, the bioactivity of recombinant porcine soluble TREM-1 was tested in vitro on porcine alveolar macrophages. The results showed that supplementation with the recombinant porcine sTREM-1 protein rapidly and dose-dependently attenuated the upregulation of cytokines (IL-1β, IL-2, IL-4, IL-8, IL-10, IL-12, IL-16, IL-18, and TNF-α) caused by LPS stimulation in the cultured porcine alveolar macrophages. These results indicate that the recombinant porcine sTREM-1 protein can prevent TREM-1-mediated hyperinflammatory responses after exposure to LPS.
Collapse
Affiliation(s)
- Hui Li
- a Key Laboratory of Animal Breeding and Reproduction , Institute of Animal Science, Jiangsu Academy of Agricultural Science , Nanjing , China
| | - Shuangshuang Guo
- b College of Animal Science and Veterinary Medicine , Shandong Agricultural University , Taian , China
| | - Leyan Yan
- a Key Laboratory of Animal Breeding and Reproduction , Institute of Animal Science, Jiangsu Academy of Agricultural Science , Nanjing , China
| | - Chunhua Meng
- a Key Laboratory of Animal Breeding and Reproduction , Institute of Animal Science, Jiangsu Academy of Agricultural Science , Nanjing , China
| | - Yiyi Hu
- c Institute of Veterinary Medicine, Jiangsu Academy of Agricultural Science , Nanjing , China
| | - Kongwang He
- c Institute of Veterinary Medicine, Jiangsu Academy of Agricultural Science , Nanjing , China
| | - Zhendan Shi
- a Key Laboratory of Animal Breeding and Reproduction , Institute of Animal Science, Jiangsu Academy of Agricultural Science , Nanjing , China
| |
Collapse
|
212
|
Pippione AC, Federico A, Ducime A, Sainas S, Boschi D, Barge A, Lupino E, Piccinini M, Kubbutat M, Contreras JM, Morice C, Al-Karadaghi S, Lolli ML. 4-Hydroxy- N-[3,5-bis(trifluoromethyl)phenyl]-1,2,5-thiadiazole-3-carboxamide: a novel inhibitor of the canonical NF-κB cascade. MEDCHEMCOMM 2017; 8:1850-1855. [PMID: 30108896 DOI: 10.1039/c7md00278e] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/30/2017] [Accepted: 08/22/2017] [Indexed: 12/21/2022]
Abstract
The NF-κB signaling pathway is a validated oncological target. Here, we applied scaffold hopping to IMD-0354, a presumed IKKβ inhibitor, and identified 4-hydroxy-N-[3,5-bis(trifluoromethyl)phenyl]-1,2,5-thiadiazole-3-carboxamide (4) as a nM-inhibitor of the NF-κB pathway. However, both 4 and IMD-0354, being potent inhibitors of the canonical NF-κB pathway, were found to be inactive in human IKKβ enzyme assays.
Collapse
Affiliation(s)
- Agnese C Pippione
- Department of Science and Drug Technology , University of Torino , via Pietro Giuria 9 , 10125 Torino , Italy
| | - Antonella Federico
- Department of Science and Drug Technology , University of Torino , via Pietro Giuria 9 , 10125 Torino , Italy
| | - Alex Ducime
- Department of Science and Drug Technology , University of Torino , via Pietro Giuria 9 , 10125 Torino , Italy
| | - Stefano Sainas
- Department of Science and Drug Technology , University of Torino , via Pietro Giuria 9 , 10125 Torino , Italy
| | - Donatella Boschi
- Department of Science and Drug Technology , University of Torino , via Pietro Giuria 9 , 10125 Torino , Italy
| | - Alessandro Barge
- Department of Science and Drug Technology , University of Torino , via Pietro Giuria 9 , 10125 Torino , Italy
| | - Elisa Lupino
- Department of Oncology , University of Torino , via Michelangelo 27/B , 10126 Torino , Italy
| | - Marco Piccinini
- Department of Oncology , University of Torino , via Michelangelo 27/B , 10126 Torino , Italy
| | | | - Jean-Marie Contreras
- Prestwick Chemical , 220 Boulevard Gonthier d'Andernach , 67400 Illkirch , France
| | - Christophe Morice
- Prestwick Chemical , 220 Boulevard Gonthier d'Andernach , 67400 Illkirch , France
| | - Salam Al-Karadaghi
- SARomics Biostructures and Department of Biochemistry & Structural Biology , Lund University , Lund , Sweden
| | - Marco L Lolli
- Department of Science and Drug Technology , University of Torino , via Pietro Giuria 9 , 10125 Torino , Italy
| |
Collapse
|
213
|
Behdani E, Bakhtiarizadeh MR. Construction of an integrated gene regulatory network link to stress-related immune system in cattle. Genetica 2017; 145:441-454. [PMID: 28825201 DOI: 10.1007/s10709-017-9980-z] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2017] [Accepted: 08/14/2017] [Indexed: 01/01/2023]
Abstract
The immune system is an important biological system that is negatively impacted by stress. This study constructed an integrated regulatory network to enhance our understanding of the regulatory gene network used in the stress-related immune system. Module inference was used to construct modules of co-expressed genes with bovine leukocyte RNA-Seq data. Transcription factors (TFs) were then assigned to these modules using Lemon-Tree algorithms. In addition, the TFs assigned to each module were confirmed using the promoter analysis and protein-protein interactions data. Therefore, our integrated method identified three TFs which include one TF that is previously known to be involved in immune response (MYBL2) and two TFs (E2F8 and FOXS1) that had not been recognized previously and were identified for the first time in this study as novel regulatory candidates in immune response. This study provides valuable insights on the regulatory programs of genes involved in the stress-related immune system.
Collapse
Affiliation(s)
- Elham Behdani
- Department of Animal Sciences, College of Agriculture and Natural Resources, Ramin University, Khozestan, Iran
| | | |
Collapse
|
214
|
Beavers WN, Rose KL, Galligan JJ, Mitchener MM, Rouzer CA, Tallman KA, Lamberson CR, Wang X, Hill S, Ivanova PT, Alex Brown H, Zhang B, Porter NA, Marnett LJ. Protein Modification by Endogenously Generated Lipid Electrophiles: Mitochondria as the Source and Target. ACS Chem Biol 2017; 12:2062-2069. [PMID: 28613820 PMCID: PMC6174696 DOI: 10.1021/acschembio.7b00480] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Determining the impact of lipid electrophile-mediated protein damage that occurs during oxidative stress requires a comprehensive analysis of electrophile targets adducted under pathophysiological conditions. Incorporation of ω-alkynyl linoleic acid into the phospholipids of macrophages prior to activation by Kdo2-lipid A, followed by protein extraction, click chemistry, and streptavidin affinity capture, enabled a systems-level survey of proteins adducted by lipid electrophiles generated endogenously during the inflammatory response. Results revealed a dramatic enrichment for membrane and mitochondrial proteins as targets for adduction. A marked decrease in adduction in the presence of MitoTEMPO demonstrated a primary role for mitochondrial superoxide in electrophile generation and indicated an important role for mitochondria as both a source and target of lipid electrophiles, a finding that has not been revealed by prior studies using exogenously provided electrophiles.
Collapse
Affiliation(s)
- William N. Beavers
- Departments of Chemistry, AB. Hancock Memorial Laboratory for Cancer Research, Vanderbilt Ingram Cancer Center, Vanderbilt University, Nashville, Tennessee 37232, United States
| | - Kristie L. Rose
- Departments of Biochemistry, Vanderbilt Ingram Cancer Center, Vanderbilt University, Nashville, Tennessee 37232, United States
- Departments of Vanderbilt Mass Spectrometry Research Center, Vanderbilt Institute for Chemical Biology, Vanderbilt Center in Molecular Toxicology, Vanderbilt Ingram Cancer Center, Vanderbilt University, Nashville, Tennessee 37232, United States
| | - James J. Galligan
- Departments of Biochemistry, Vanderbilt Ingram Cancer Center, Vanderbilt University, Nashville, Tennessee 37232, United States
| | - Michelle M. Mitchener
- Departments of Chemistry, AB. Hancock Memorial Laboratory for Cancer Research, Vanderbilt Ingram Cancer Center, Vanderbilt University, Nashville, Tennessee 37232, United States
| | - Carol A. Rouzer
- Departments of Biochemistry, Vanderbilt Ingram Cancer Center, Vanderbilt University, Nashville, Tennessee 37232, United States
| | - Keri A. Tallman
- Departments of Chemistry, AB. Hancock Memorial Laboratory for Cancer Research, Vanderbilt Ingram Cancer Center, Vanderbilt University, Nashville, Tennessee 37232, United States
| | - Connor R. Lamberson
- Departments of Chemistry, AB. Hancock Memorial Laboratory for Cancer Research, Vanderbilt Ingram Cancer Center, Vanderbilt University, Nashville, Tennessee 37232, United States
| | - Xiaojing Wang
- Departments of Biomedical Informatics, Vanderbilt Ingram Cancer Center, Vanderbilt University, Nashville, Tennessee 37232, United States
| | - Salisha Hill
- Departments of Vanderbilt Mass Spectrometry Research Center, Vanderbilt Institute for Chemical Biology, Vanderbilt Center in Molecular Toxicology, Vanderbilt Ingram Cancer Center, Vanderbilt University, Nashville, Tennessee 37232, United States
| | - Pavlina T. Ivanova
- Departments of Pharmacology, Vanderbilt Ingram Cancer Center, Vanderbilt University, Nashville, Tennessee 37232, United States
| | - H. Alex Brown
- Departments of Biochemistry, Vanderbilt Ingram Cancer Center, Vanderbilt University, Nashville, Tennessee 37232, United States
- Departments of Pharmacology, Vanderbilt Ingram Cancer Center, Vanderbilt University, Nashville, Tennessee 37232, United States
| | - Bing Zhang
- Departments of Biomedical Informatics, Vanderbilt Ingram Cancer Center, Vanderbilt University, Nashville, Tennessee 37232, United States
| | - Ned A. Porter
- Departments of Chemistry, AB. Hancock Memorial Laboratory for Cancer Research, Vanderbilt Ingram Cancer Center, Vanderbilt University, Nashville, Tennessee 37232, United States
| | - Lawrence J. Marnett
- Departments of Chemistry, AB. Hancock Memorial Laboratory for Cancer Research, Vanderbilt Ingram Cancer Center, Vanderbilt University, Nashville, Tennessee 37232, United States
- Departments of Biochemistry, Vanderbilt Ingram Cancer Center, Vanderbilt University, Nashville, Tennessee 37232, United States
- Departments of Pharmacology, Vanderbilt Ingram Cancer Center, Vanderbilt University, Nashville, Tennessee 37232, United States
| |
Collapse
|
215
|
Campbell RA, Vieira-de-Abreu A, Rowley JW, Franks ZG, Manne BK, Rondina MT, Kraiss LW, Majersik JJ, Zimmerman GA, Weyrich AS. Clots Are Potent Triggers of Inflammatory Cell Gene Expression: Indications for Timely Fibrinolysis. Arterioscler Thromb Vasc Biol 2017; 37:1819-1827. [PMID: 28775073 DOI: 10.1161/atvbaha.117.309794] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2016] [Accepted: 07/21/2017] [Indexed: 11/16/2022]
Abstract
OBJECTIVE Blood vessel wall damage often results in the formation of a fibrin clot that traps inflammatory cells, including monocytes. The effect of clot formation and subsequent lysis on the expression of monocyte-derived genes involved in the development and progression of ischemic stroke and other vascular diseases, however, is unknown. Determine whether clot formation and lysis regulates the expression of human monocyte-derived genes that modulate vascular diseases. APPROACH AND RESULTS We performed next-generation RNA sequencing on monocytes extracted from whole blood clots and using a purified plasma clot system. Numerous mRNAs were differentially expressed by monocytes embedded in clots compared with unclotted controls, and IL-8 (interleukin 8) and MCP-1 (monocyte chemoattractant protein-1) were among the upregulated transcripts in both models. Clotted plasma also increased expression of IL-8 and MCP-1, which far exceeded responses observed in lipopolysaccharide-stimulated monocytes. Upregulation of IL-8 and MCP-1 occurred in a thrombin-independent but fibrin-dependent manner. Fibrinolysis initiated shortly after plasma clot formation (ie, 1-2 hours) reduced the synthesis of IL-8 and MCP-1, whereas delayed fibrinolysis was far less effective. Consistent with these in vitro models, monocytes embedded in unresolved thrombi from patients undergoing thrombectomy stained positively for IL-8 and MCP-1. CONCLUSIONS These findings demonstrate that clots are potent inducers of monocyte gene expression and that timely fibrinolysis attenuates inflammatory responses, specifically IL-8 and MCP-1. Dampening of inflammatory gene expression by timely clot lysis may contribute to the clinically proven efficacy of fibrinolytic drug treatment within hours of stroke onset.
Collapse
Affiliation(s)
- Robert A Campbell
- From the Program in Molecular Medicine (R.A.C., J.W.R., Z.G.F., B.K.M., M.T.R., L.W.K., A.S.W.) and Departments of Internal Medicine (R.A.C., A.V.-d.-A., J.W.R., M.T.R., G.A.Z., A.S.W.), Surgery (L.W.K.), and Neurology (J.J.M.), University of Utah, Salt Lake City.
| | - Adriana Vieira-de-Abreu
- From the Program in Molecular Medicine (R.A.C., J.W.R., Z.G.F., B.K.M., M.T.R., L.W.K., A.S.W.) and Departments of Internal Medicine (R.A.C., A.V.-d.-A., J.W.R., M.T.R., G.A.Z., A.S.W.), Surgery (L.W.K.), and Neurology (J.J.M.), University of Utah, Salt Lake City
| | - Jesse W Rowley
- From the Program in Molecular Medicine (R.A.C., J.W.R., Z.G.F., B.K.M., M.T.R., L.W.K., A.S.W.) and Departments of Internal Medicine (R.A.C., A.V.-d.-A., J.W.R., M.T.R., G.A.Z., A.S.W.), Surgery (L.W.K.), and Neurology (J.J.M.), University of Utah, Salt Lake City
| | - Zechariah G Franks
- From the Program in Molecular Medicine (R.A.C., J.W.R., Z.G.F., B.K.M., M.T.R., L.W.K., A.S.W.) and Departments of Internal Medicine (R.A.C., A.V.-d.-A., J.W.R., M.T.R., G.A.Z., A.S.W.), Surgery (L.W.K.), and Neurology (J.J.M.), University of Utah, Salt Lake City
| | - Bhanu Kanth Manne
- From the Program in Molecular Medicine (R.A.C., J.W.R., Z.G.F., B.K.M., M.T.R., L.W.K., A.S.W.) and Departments of Internal Medicine (R.A.C., A.V.-d.-A., J.W.R., M.T.R., G.A.Z., A.S.W.), Surgery (L.W.K.), and Neurology (J.J.M.), University of Utah, Salt Lake City
| | - Matthew T Rondina
- From the Program in Molecular Medicine (R.A.C., J.W.R., Z.G.F., B.K.M., M.T.R., L.W.K., A.S.W.) and Departments of Internal Medicine (R.A.C., A.V.-d.-A., J.W.R., M.T.R., G.A.Z., A.S.W.), Surgery (L.W.K.), and Neurology (J.J.M.), University of Utah, Salt Lake City
| | - Larry W Kraiss
- From the Program in Molecular Medicine (R.A.C., J.W.R., Z.G.F., B.K.M., M.T.R., L.W.K., A.S.W.) and Departments of Internal Medicine (R.A.C., A.V.-d.-A., J.W.R., M.T.R., G.A.Z., A.S.W.), Surgery (L.W.K.), and Neurology (J.J.M.), University of Utah, Salt Lake City
| | - Jennifer J Majersik
- From the Program in Molecular Medicine (R.A.C., J.W.R., Z.G.F., B.K.M., M.T.R., L.W.K., A.S.W.) and Departments of Internal Medicine (R.A.C., A.V.-d.-A., J.W.R., M.T.R., G.A.Z., A.S.W.), Surgery (L.W.K.), and Neurology (J.J.M.), University of Utah, Salt Lake City
| | - Guy A Zimmerman
- From the Program in Molecular Medicine (R.A.C., J.W.R., Z.G.F., B.K.M., M.T.R., L.W.K., A.S.W.) and Departments of Internal Medicine (R.A.C., A.V.-d.-A., J.W.R., M.T.R., G.A.Z., A.S.W.), Surgery (L.W.K.), and Neurology (J.J.M.), University of Utah, Salt Lake City
| | - Andrew S Weyrich
- From the Program in Molecular Medicine (R.A.C., J.W.R., Z.G.F., B.K.M., M.T.R., L.W.K., A.S.W.) and Departments of Internal Medicine (R.A.C., A.V.-d.-A., J.W.R., M.T.R., G.A.Z., A.S.W.), Surgery (L.W.K.), and Neurology (J.J.M.), University of Utah, Salt Lake City
| |
Collapse
|
216
|
Fu L, Li C, Lillico DME, Phillips NAI, Gamal El-Din M, Belosevic M, Stafford JL. Comparison of the Acute Immunotoxicity of Nonfractionated and Fractionated Oil Sands Process-Affected Water Using Mammalian Macrophages. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2017; 51:8624-8634. [PMID: 28682603 DOI: 10.1021/acs.est.7b02120] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
OSPW is a complex mixture of inorganic and organic substances and its principal toxic components have yet to be fully characterized. Previously, we showed in vitro that the oil sands process-affected water (OSPW) organic fraction (OF) caused a concentration-dependent immunotoxicity in mammals. In the present study we further explore the immunotoxicological properties of OSPW in mammals using a series of in vitro bioassays. Specifically, using the RAW 264.7 mouse macrophage cell line we show that whole OSPW containing naphthenic acid (NA) concentrations ranging from 12 to 18 mg/L, significantly inhibited cell proliferation, reduced cell viability, and was directly cytotoxic, whereas the exposure of cells to equivalent doses of the OSPW-OF had no measurable effects. Whole OSPW exposures also caused morphological changes in RAW 264.7 cells, and at sublethal doses (i.e., 10 mg/L) it induced the early expression of the stress genes hmox1 and gadd45. In addition, at NA concentrations of 10 mg/L, whole OSPW but not the OSPW-OF had significant effects on pro-inflammatory cytokine mRNA levels and cytokine protein secretion activities. Finally, whole OSPW also impaired the ability of RAW 264.7 cells to perform phagocytosis. Overall, we demonstrate that exposure to whole OSPW (at NA doses ranging from 10 to 20 mg/L), but not the OSPW-OF caused both cytotoxic and immunomodulatory changes in mouse macrophages. This suggests that the complex mixture of inorganic and organic components found in whole OSPW are acutely toxic at much lower doses than we previously reported for the OSPW-OF (i.e., 50 mg/L) due to unknown additive and/or synergistic interactions that likely occur between the various components present in whole OSPW.
Collapse
Affiliation(s)
- Li Fu
- Department of Biological Sciences, University of Alberta , Edmonton, Alberta Canada T6G 2E1
- Department of Civil and Environmental Engineering, University of Alberta , Edmonton, Alberta Canada , T6G 1H9
| | - Chao Li
- Department of Civil and Environmental Engineering, University of Alberta , Edmonton, Alberta Canada , T6G 1H9
| | - Dustin M E Lillico
- Department of Biological Sciences, University of Alberta , Edmonton, Alberta Canada T6G 2E1
| | - Nicole A I Phillips
- Department of Biological Sciences, University of Alberta , Edmonton, Alberta Canada T6G 2E1
| | - Mohamed Gamal El-Din
- Department of Civil and Environmental Engineering, University of Alberta , Edmonton, Alberta Canada , T6G 1H9
| | - Miodrag Belosevic
- Department of Biological Sciences, University of Alberta , Edmonton, Alberta Canada T6G 2E1
| | - James L Stafford
- Department of Biological Sciences, University of Alberta , Edmonton, Alberta Canada T6G 2E1
| |
Collapse
|
217
|
Kim C, Park JM, Kong T, Lee S, Seo KW, Choi Y, Song YS, Moon J. Double-Injected Human Stem Cells Enhance Rehabilitation in TBI Mice Via Modulation of Survival and Inflammation. Mol Neurobiol 2017; 55:4870-4884. [PMID: 28736792 PMCID: PMC5948256 DOI: 10.1007/s12035-017-0683-3] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2016] [Accepted: 07/07/2017] [Indexed: 12/22/2022]
Abstract
Traumatic brain injury (TBI), a complicated form of brain damage, is a major cause of mortality in adults. Following mechanical and structural primary insults, a battery of secondary insults, including neurotransmitter-mediated cytotoxicity, dysregulation of calcium and macromolecule homeostasis, and increased oxidative stress, exacerbate brain injury and functional deficits. Although stem cell therapy is considered to be an alternative treatment for brain injuries, such as TBI and stroke, many obstacles remain. In particular, the time window for TBI treatment with either drugs or stem cells and their efficacy is still vague. Human placenta-derived mesenchymal stem cells (hpMSCs) have received extensive attention in stem cell therapy because they can be acquired in large numbers without ethical issues and because of their immune-modulating capacity and effectiveness in several diseases, such as Alzheimer’s disease and stroke. Here, we tested the feasibility of hpMSCs for TBI treatment with an animal model and attempted to identify appropriate time points for cell treatments. Double injections at 4 and 24 h post-injury significantly reduced the infarct size and suppressed astrocyte and microglial activation around the injury. With reduced damage, double-injected mice showed enhanced anti-inflammatory- and TNF-α receptor 2 (TNFR2)-associated survival signals and suppressed pro-inflammatory and oxidative responses. In addition, double-treated TBI mice displayed restored sensory motor functions and reduced neurotoxic Aβ42 plaque formation around the damaged areas. In this study, we showed the extended therapeutic potentials of hpMSCs and concluded that treatment within an appropriate time window is critical for TBI recovery.
Collapse
Affiliation(s)
- Chul Kim
- General Research Institute, CHA general Hospital, Seoul, South Korea
| | - Ji-Min Park
- Department of Biotechnology, College of Life Science, CHA University, Pangyo-ro 335 beon-gil, Bundang-gu, Seongnam-si, Gyeonggi-do, Seoul, South Korea.,General Research Institute, CHA general Hospital, Seoul, South Korea
| | - TaeHo Kong
- Department of Biotechnology, College of Life Science, CHA University, Pangyo-ro 335 beon-gil, Bundang-gu, Seongnam-si, Gyeonggi-do, Seoul, South Korea.,General Research Institute, CHA general Hospital, Seoul, South Korea
| | - Seungmin Lee
- General Research Institute, CHA general Hospital, Seoul, South Korea
| | - Ki-Weon Seo
- General Research Institute, CHA general Hospital, Seoul, South Korea.,SK Chemicals, Eco-Hub, 332 Pangyo-ro, Bundang-gu, Seongnam-si, Gyeonggi-do, 13493, South Korea
| | - Yuri Choi
- Department of Biotechnology, College of Life Science, CHA University, Pangyo-ro 335 beon-gil, Bundang-gu, Seongnam-si, Gyeonggi-do, Seoul, South Korea
| | - Young Sook Song
- General Research Institute, CHA general Hospital, Seoul, South Korea
| | - Jisook Moon
- Department of Biotechnology, College of Life Science, CHA University, Pangyo-ro 335 beon-gil, Bundang-gu, Seongnam-si, Gyeonggi-do, Seoul, South Korea. .,General Research Institute, CHA general Hospital, Seoul, South Korea.
| |
Collapse
|
218
|
Zhang H, Zhou L, Yuen J, Birkner N, Leppert V, O'Day PA, Forman HJ. Delayed Nrf2-regulated antioxidant gene induction in response to silica nanoparticles. Free Radic Biol Med 2017; 108:311-319. [PMID: 28389405 PMCID: PMC5480609 DOI: 10.1016/j.freeradbiomed.2017.04.002] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/15/2017] [Revised: 03/29/2017] [Accepted: 04/01/2017] [Indexed: 12/14/2022]
Abstract
Silica nanoparticles with iron on their surface cause the production of oxidants and stimulate an inflammatory response in macrophages. Nuclear factor erythroid-derived 2 - like factor 2 (Nrf2) signaling and its regulated antioxidant genes play critical roles in maintaining redox homeostasis. In this study we investigated the regulation of four representative Nrf2-regulated antioxidant genes; i.e., glutamate cysteine ligase (GCL) catalytic subunit (GCLC), GCL modifier subunit (GCLM), heme oxygenase 1 (HO-1), and NAD(P)H:quinone oxidoreductase-1 (NQO-1), by iron-coated silica nanoparticles (SiO2-Fe) in human THP-1 macrophages. We found that the expression of these four antioxidant genes was modified by SiO2-Fe in a time-dependent manner. At 6h, their expression was unchanged except for GCLC, which was reduced compared with controls. At 18h, the expression of these antioxidant genes was significantly increased compared with controls. In contrast, the Nrf2 activator sulforaphane induced all antioxidant genes at as early as 3h. The nuclear translocation of Nrf2 occurred later than that for NF-κB p65 protein and the induction of proinflammatory cytokines (TNFα and IL-1β). NF-κB inhibitor SN50 prevented the reduction of GCLC at 6h and abolished the induction of antioxidant genes at 18h by SiO2-Fe, but did not affect the basal and sulforaphane-induced expression of antioxidant genes, suggesting that NF-κB signaling plays a key role in the induction of Nrf2-mediated genes in response to SiO2-Fe. Consistently, SN50 inhibited the nuclear translocation of Nrf2 caused by SiO2-Fe. In addition, Nrf2 silencing decreased the basal and SiO2-induced expression of the four reprehensive antioxidant genes. Taken together, these data indicated that SiO2-Fe induced a delayed response of Nrf2-regulated antioxidant genes, likely through NF-κB-Nrf2 interactions.
Collapse
Affiliation(s)
- Hongqiao Zhang
- Leonard Davies School of Gerontology, University of Southern California, Los Angeles, CA 90089, United States.
| | - Lulu Zhou
- Leonard Davies School of Gerontology, University of Southern California, Los Angeles, CA 90089, United States
| | - Jenay Yuen
- Leonard Davies School of Gerontology, University of Southern California, Los Angeles, CA 90089, United States
| | - Nancy Birkner
- School of Natural Sciences and Sierra Nevada Research Institute, University of California at Merced, Merced, CA 95343, United States
| | - Valerie Leppert
- School of Engineering, University of California at Merced, Merced, CA 95343, United States
| | - Peggy A O'Day
- School of Natural Sciences and Sierra Nevada Research Institute, University of California at Merced, Merced, CA 95343, United States
| | - Henry Jay Forman
- Leonard Davies School of Gerontology, University of Southern California, Los Angeles, CA 90089, United States
| |
Collapse
|
219
|
Xu B, Gao Y, Zhan S, Ge W. Quantitative proteomic profiling for clarification of the crucial roles of lysosomes in microbial infections. Mol Immunol 2017; 87:122-131. [PMID: 28433889 DOI: 10.1016/j.molimm.2017.04.002] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2017] [Revised: 03/22/2017] [Accepted: 04/04/2017] [Indexed: 02/05/2023]
Abstract
Lysosomes play vital roles in both innate and adaptive immunity. It is widely accepted that lysosomes do not function exclusively as a digestive organelle. It is also involved in the process of immune cells against pathogens. However, the changes in the lysosomal proteome caused by infection with various microbes are still largely unknown, and our understanding of the proteome of the purified lysosome is another obstacle that needs to be resolved. Here, we performed a proteomic study on lysosomes enriched from THP1 cells after infection with Listeria monocytogenes (L.m), Herpes Simplex Virus 1 (HSV-1) and Vesicular Stomatitis Virus (VSV). In combination with the gene ontology (GO) analysis, we identified 284 lysosomal-related proteins from a total of 4560 proteins. We also constructed the protein-protein interaction networks for the differentially expressed proteins and revealed the core lysosomal proteins, including SRC in the L. m treated group, SRC, GLB1, HEXA and HEXB in the HSV-1 treated group and GLB1, CTSA, CTSB, HEXA and HEXB in the VSV treated group, which are involved in responding to diverse microbial infections. This study not only reveals variable lysosome responses depending on the bacterial or virus infection, but also provides the evidence based on which we propose a novel approach to proteome research for investigation of the function of the enriched organelles.
Collapse
Affiliation(s)
- Benhong Xu
- Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences, National Key Laboratory of Medical Molecular Biology & Department of Immunology, No 5 Dongdan Santiao, Dongcheng District, Beijing 100005, China
| | - Yanpan Gao
- Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences, National Key Laboratory of Medical Molecular Biology & Department of Immunology, No 5 Dongdan Santiao, Dongcheng District, Beijing 100005, China
| | - Shaohua Zhan
- Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences, National Key Laboratory of Medical Molecular Biology & Department of Immunology, No 5 Dongdan Santiao, Dongcheng District, Beijing 100005, China
| | - Wei Ge
- Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences, National Key Laboratory of Medical Molecular Biology & Department of Immunology, No 5 Dongdan Santiao, Dongcheng District, Beijing 100005, China.
| |
Collapse
|
220
|
Shiratori H, Feinweber C, Luckhardt S, Linke B, Resch E, Geisslinger G, Weigert A, Parnham MJ. THP-1 and human peripheral blood mononuclear cell-derived macrophages differ in their capacity to polarize in vitro. Mol Immunol 2017; 88:58-68. [PMID: 28600970 DOI: 10.1016/j.molimm.2017.05.027] [Citation(s) in RCA: 116] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2016] [Revised: 05/12/2017] [Accepted: 05/30/2017] [Indexed: 01/04/2023]
Abstract
Macrophages (Mφ) undergo activation to pro-inflammatory (M1) or anti-inflammatory (M2) phenotypes in response to pathophysiologic stimuli and dysregulation of the M1-M2 balance is often associated with diseases. Therefore, studying mechanisms of macrophage polarization may reveal new drug targets. Human Mφ polarization is generally studied in primary monocyte-derived Mφ (PBMC Mφ) and THP-1-derived Mφ (THP-1 Mφ). We compared the polarization profile of THP-1 Mφ with that of PBMC Mφ to assess the alternative use of THP-1 for polarization studies. Cellular morphology, the expression profiles of 18 genes and 4 cell surface proteins, and phagocytosis capacity for apoptotic cells and S. aureus bioparticles were compared between these Mφ, activated towards M1, M2a, or M2c subsets by stimulation with LPS/IFNγ, IL-4, or IL-10, respectively, for 6h, 24h and 48h. The Mφ types are unique in morphology and basal expression of polarization marker genes, particularly CCL22, in a pre-polarized state, and were differentially sensitive to polarization stimuli. Generally, M1 markers were instantly induced and gradually decreased, while M2 markers were markedly expressed at a later time. Expression profiles of M1 markers were similar between the polarized Mφ types, but M2a cell surface markers demonstrated an IL-4-dependent upregulation only in PBMC Mφ. Polarized THP-1 Mφ but not PBMC Mφ showed distinctive phagocytic capacity for apoptotic cells and bacterial antigens, respectively. In conclusion, our data suggest that THP-1 may be useful for performing studies involving phagocytosis and M1 polarization, rather than M2 polarization.
Collapse
Affiliation(s)
- Hiromi Shiratori
- Fraunhofer Institute for Molecular Biology and Applied Ecology IME, Project Group Translational Medicine and Pharmacology TMP, Theodor-Stern-Kai 7, 60596 Frankfurt am Main, Germany.
| | - Carmen Feinweber
- Fraunhofer Institute for Molecular Biology and Applied Ecology IME, Project Group Translational Medicine and Pharmacology TMP, Theodor-Stern-Kai 7, 60596 Frankfurt am Main, Germany.
| | - Sonja Luckhardt
- Fraunhofer Institute for Molecular Biology and Applied Ecology IME, Project Group Translational Medicine and Pharmacology TMP, Theodor-Stern-Kai 7, 60596 Frankfurt am Main, Germany.
| | - Bona Linke
- Institute of Clinical Pharmacology, Goethe University, Theodor-Stern-Kai 7, 60590 Frankfurt am Main, Germany.
| | - Eduard Resch
- Fraunhofer Institute for Molecular Biology and Applied Ecology IME, Project Group Translational Medicine and Pharmacology TMP, Theodor-Stern-Kai 7, 60596 Frankfurt am Main, Germany.
| | - Gerd Geisslinger
- Fraunhofer Institute for Molecular Biology and Applied Ecology IME, Project Group Translational Medicine and Pharmacology TMP, Theodor-Stern-Kai 7, 60596 Frankfurt am Main, Germany; Institute of Clinical Pharmacology, Goethe University, Theodor-Stern-Kai 7, 60590 Frankfurt am Main, Germany.
| | - Andreas Weigert
- Institute of Biochemistry I, Faculty of Medicine, Goethe University, Theodor-Stern-Kai 7, 60590 Frankfurt am Main, Germany.
| | - Michael J Parnham
- Fraunhofer Institute for Molecular Biology and Applied Ecology IME, Project Group Translational Medicine and Pharmacology TMP, Theodor-Stern-Kai 7, 60596 Frankfurt am Main, Germany.
| |
Collapse
|
221
|
Peters AL, van Hezel ME, Klanderman RB, Tuip-de Boer AM, Wiersinga WJ, van der Spek AH, van Bruggen R, de Korte D, Juffermans NP, Vlaar APJ. Transfusion of 35-day-stored red blood cells does not alter lipopolysaccharide tolerance during human endotoxemia. Transfusion 2017; 57:1359-1368. [PMID: 28375559 DOI: 10.1111/trf.14087] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2016] [Revised: 12/14/2016] [Accepted: 01/19/2017] [Indexed: 01/28/2023]
Abstract
BACKGROUND Transfusion-related immunomodulation (TRIM) encompasses immunosuppressive and proinflammatory effects induced by red blood cell (RBC) transfusion. Changes that occur during storage in the RBC product have been hypothesized to underlie TRIM, mediated by tolerance of toll-like receptors (TLR). We investigated whether transfusion of 35-day-stored autologous RBCs alters cytokine production in response to stimulation with lipopolysaccharide (LPS) or lipotheic acid (LTA), in a clinically relevant model of endotoxemia. STUDY DESIGN AND METHODS Eighteen volunteers received 2 ng/kg LPS intravenously, followed by normal saline or 2- or 35-day-stored autologous RBC transfusion. Before LPS, before transfusion, and 6 hours after transfusion blood was collected to measure cytokine gene expression. Whole blood was used for ex vivo stimulation with LPS and LTA, after which cytokine levels were measured with enzyme-linked immunosorbent assay. RESULTS In vivo LPS induced a biphasic response in cytokine mRNA with peak values 2 hours after LPS infusion. Storage time of RBC transfusion did not influence cytokine mRNA levels. In vivo infusion of LPS resulted in tolerance for ex vivo stimulation with LPS and LTA. However, transfusion of either fresh or stored RBCs did not further affect the capacity to produce cytokines after ex vivo stimulation. CONCLUSION In a clinically relevant model of human endotoxemia, autologous transfusion of 35-day-stored RBCs does not influence cytokine mRNA levels nor does it change the capacity of white blood cells in whole blood to produce cytokines after ex vivo stimulation with LPS or LTA.
Collapse
Affiliation(s)
- Anna L Peters
- Laboratory of Experimental Intensive Care and Anesthesia, Sanquin Blood Supply, Amsterdam, the Netherlands.,Department of Intensive Care, Sanquin Blood Supply, Amsterdam, the Netherlands
| | - Maike E van Hezel
- Laboratory of Experimental Intensive Care and Anesthesia, Sanquin Blood Supply, Amsterdam, the Netherlands.,Department of Intensive Care, Sanquin Blood Supply, Amsterdam, the Netherlands.,Department of Blood Cell Research, Sanquin Research, Amsterdam, the Netherlands
| | - Robert B Klanderman
- Laboratory of Experimental Intensive Care and Anesthesia, Sanquin Blood Supply, Amsterdam, the Netherlands.,Department of Intensive Care, Sanquin Blood Supply, Amsterdam, the Netherlands
| | - Anita M Tuip-de Boer
- Laboratory of Experimental Intensive Care and Anesthesia, Sanquin Blood Supply, Amsterdam, the Netherlands.,Department of Intensive Care, Sanquin Blood Supply, Amsterdam, the Netherlands
| | - W Joost Wiersinga
- Department of Medicine, Division of Infectious Diseases, Sanquin Blood Supply, Amsterdam, the Netherlands
| | - Anne H van der Spek
- Department of Endocrinology and Metabolism, Academic Medical Center, Amsterdam, the Netherlands
| | - Robin van Bruggen
- Department of Blood Cell Research, Sanquin Research, Amsterdam, the Netherlands
| | - Dirk de Korte
- Department of Blood Cell Research, Sanquin Research, Amsterdam, the Netherlands.,Department of Product and Process Development, Sanquin Blood Supply, Amsterdam, the Netherlands
| | - Nicole P Juffermans
- Laboratory of Experimental Intensive Care and Anesthesia, Sanquin Blood Supply, Amsterdam, the Netherlands.,Department of Intensive Care, Sanquin Blood Supply, Amsterdam, the Netherlands
| | - Alexander P J Vlaar
- Laboratory of Experimental Intensive Care and Anesthesia, Sanquin Blood Supply, Amsterdam, the Netherlands.,Department of Intensive Care, Sanquin Blood Supply, Amsterdam, the Netherlands
| |
Collapse
|
222
|
Giacoppo S, Rajan TS, Iori R, Rollin P, Bramanti P, Mazzon E. The α-cyclodextrin complex of the Moringa isothiocyanate suppresses lipopolysaccharide-induced inflammation in RAW 264.7 macrophage cells through Akt and p38 inhibition. Inflamm Res 2017; 66:487-503. [PMID: 28289752 DOI: 10.1007/s00011-017-1033-7] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2016] [Revised: 02/17/2017] [Accepted: 02/27/2017] [Indexed: 12/14/2022] Open
Abstract
In the last decades, a growing need to discover new compounds for the prevention and treatment of inflammatory diseases has led researchers to consider drugs derived from natural products as a valid option in the treatment of inflammation-associated disorders. The purpose of the present study was to investigate the anti-inflammatory effects of a new formulation of Moringa oleifera-derived 4-(α-L-rhamnopyranosyloxy)benzyl isothiocyanate as a complex with alpha-cyclodextrin (moringin + α-CD) on lipopolysaccharide (LPS)-stimulated RAW 264.7 macrophage cells, a common model used for inflammation studies. In buffered/aqueous solution, the moringin + α-CD complex has enhanced the water solubility and stability of this isothiocyanate by forming a stable inclusion system. Our results showed that moringin + α-CD inhibits the production of inflammatory mediators in LPS-stimulated macrophages by down-regulation of pro-inflammatory cytokines (TNF-α and IL-1β), by preventing IκB-α phosphorylation, translocation of the nuclear factor-κB (NF-κB), and also via the suppression of Akt and p38 phosphorylation. In addition, as a consequence of upstream inhibition of the inflammatory pathway following treatment with moringin + α-CD, the modulation of the oxidative stress (results focused on the expression of iNOS and nitrotyrosine) and apoptotic pathway (Bax and Bcl-2) was demonstrated. Therefore, moringin + α-CD appears to be a new relevant helpful tool to use in clinical practice for inflammation-associated disorders.
Collapse
Affiliation(s)
- Sabrina Giacoppo
- IRCCS Centro Neurolesi "Bonino-Pulejo", Via Provinciale Palermo, Contrada Casazza, 98124, Messina, Italy
| | - Thangavelu Soundara Rajan
- IRCCS Centro Neurolesi "Bonino-Pulejo", Via Provinciale Palermo, Contrada Casazza, 98124, Messina, Italy
| | - Renato Iori
- Consiglio per la ricerca in agricoltura e l'analisi dell'economia agraria, Centro di ricerca Agricoltura e Ambiente (CREA-AA), Via di Corticella 133, 40128, Bologna, Italy
| | - Patrick Rollin
- Université d'Orléans et CNRS, ICOA, UMR 7311, BP 6759, 45067, Orléans, France
| | - Placido Bramanti
- IRCCS Centro Neurolesi "Bonino-Pulejo", Via Provinciale Palermo, Contrada Casazza, 98124, Messina, Italy
| | - Emanuela Mazzon
- IRCCS Centro Neurolesi "Bonino-Pulejo", Via Provinciale Palermo, Contrada Casazza, 98124, Messina, Italy.
| |
Collapse
|
223
|
Brunssen C, Giebe S, Hofmann A, Brux M, Morawietz H. Evaluation of Cytotoxic, Oxidative, and Pro-Inflammatory Effects of Aqueous Cigarette Smoke Extract on Human Monocytes: A Potential Model System for Assessment of Next-Generation Tobacco and Nicotine Products. ACTA ACUST UNITED AC 2017. [DOI: 10.1089/aivt.2016.0037] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Affiliation(s)
- Coy Brunssen
- Division of Vascular Endothelium and Microcirculation, Department of Medicine III, Medical Faculty Carl Gustav Carus and University Hospital Carl Gustav Carus Dresden, Technische Universität Dresden, Dresden, Germany
| | - Sindy Giebe
- Division of Vascular Endothelium and Microcirculation, Department of Medicine III, Medical Faculty Carl Gustav Carus and University Hospital Carl Gustav Carus Dresden, Technische Universität Dresden, Dresden, Germany
| | - Anja Hofmann
- Division of Vascular Endothelium and Microcirculation, Department of Medicine III, Medical Faculty Carl Gustav Carus and University Hospital Carl Gustav Carus Dresden, Technische Universität Dresden, Dresden, Germany
| | - Melanie Brux
- Division of Vascular Endothelium and Microcirculation, Department of Medicine III, Medical Faculty Carl Gustav Carus and University Hospital Carl Gustav Carus Dresden, Technische Universität Dresden, Dresden, Germany
| | - Henning Morawietz
- Division of Vascular Endothelium and Microcirculation, Department of Medicine III, Medical Faculty Carl Gustav Carus and University Hospital Carl Gustav Carus Dresden, Technische Universität Dresden, Dresden, Germany
| |
Collapse
|
224
|
Suppression of LPS-induced NF-κB activity in macrophages by the synthetic aurone, (Z)-2-((5-(hydroxymethyl) furan-2-yl) methylene) benzofuran-3(2H)-one. Int Immunopharmacol 2017; 43:116-128. [DOI: 10.1016/j.intimp.2016.12.004] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2016] [Revised: 11/23/2016] [Accepted: 12/03/2016] [Indexed: 11/21/2022]
|
225
|
Vanoni S, Tsai YT, Waddell A, Waggoner L, Klarquist J, Divanovic S, Hoebe K, Steinbrecher KA, Hogan SP. Myeloid-derived NF-κB negative regulation of PU.1 and c/EBP-β-driven pro-inflammatory cytokine production restrains LPS-induced shock. Innate Immun 2017; 23:175-187. [PMID: 27932520 PMCID: PMC5563821 DOI: 10.1177/1753425916681444] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Sepsis is a life-threatening event predominantly caused by Gram-negative bacteria. Bacterial infection causes a pronounced macrophage (MΦ) and dendritic cell activation that leads to excessive pro-inflammatory cytokine IL-1β, IL-6 and TNF-α production (cytokine storm), resulting in endotoxic shock. Previous experimental studies have revealed that inhibiting NF-κB signaling ameliorates disease symptoms; however, the contribution of myeloid p65 in endotoxic shock remains elusive. In this study, we demonstrate increased mortality in mice lacking p65 in the myeloid lineage (p65Δmye) compared with wild type mice upon ultra-pure LPS challenge. We show that increased susceptibility to LPS-induced shock was associated with elevated serum level of IL-1β and IL-6. Mechanistic analyses revealed that LPS-induced pro-inflammatory cytokine production was ameliorated in p65-deficient bone marrow-derived MΦs; however, p65-deficient 'activated' peritoneal MΦs exhibited elevated IL-1β and IL-6. We show that the elevated pro-inflammatory cytokine secretion was due, in part, to increased accumulation of IL-1β mRNA and protein in activated inflammatory MΦs. The increased IL-1β was linked with heightened binding of PU.1 and CCAAT/enhancer binding protein-β to Il1b and Il6 promoters in activated inflammatory MΦs. Our data provide insight into a role for NF-κB in the negative regulation of pro-inflammatory cytokines in myeloid cells.
Collapse
Affiliation(s)
- Simone Vanoni
- Division of Allergy and Immunology, Cincinnati Children’s Hospital Medical Center, 3333 Burnet Ave, Cincinnati, OH, 45229
| | - Yi Ting Tsai
- Division of Allergy and Immunology, Cincinnati Children’s Hospital Medical Center, 3333 Burnet Ave, Cincinnati, OH, 45229
| | - Amanda Waddell
- Division of Allergy and Immunology, Cincinnati Children’s Hospital Medical Center, 3333 Burnet Ave, Cincinnati, OH, 45229
- Division of Gastroenterology, Hepatology and Nutrition, Cincinnati Children’s Hospital Medical Center, 3333 Burnet Ave, Cincinnati, OH, 45229
| | - Lisa Waggoner
- Division of Allergy and Immunology, Cincinnati Children’s Hospital Medical Center, 3333 Burnet Ave, Cincinnati, OH, 45229
| | - Jared Klarquist
- Division of Immunobiology, Cincinnati Children’s Hospital Medical Center, 3333 Burnet Ave, Cincinnati, OH, 45229
| | - Senad Divanovic
- Division of Immunobiology, Cincinnati Children’s Hospital Medical Center, 3333 Burnet Ave, Cincinnati, OH, 45229
| | - Kasper Hoebe
- Division of Immunobiology, Cincinnati Children’s Hospital Medical Center, 3333 Burnet Ave, Cincinnati, OH, 45229
| | - Kris A. Steinbrecher
- Division of Gastroenterology, Hepatology and Nutrition, Cincinnati Children’s Hospital Medical Center, 3333 Burnet Ave, Cincinnati, OH, 45229
| | - Simon P. Hogan
- Division of Allergy and Immunology, Cincinnati Children’s Hospital Medical Center, 3333 Burnet Ave, Cincinnati, OH, 45229
| |
Collapse
|
226
|
Jung HA, Roy A, Abdul QA, Kim HR, Park HJ, Choi JS. Luteolin 5-O-glucoside from Korean Milk Thistle,Cirsium maackii, Exhibits Anti-Inflammatory Activity via Activation of the Nrf2/HO-1 Pathway. ACTA ACUST UNITED AC 2017. [DOI: 10.20307/nps.2017.23.3.183] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Hyun Ah Jung
- Department of Food Science and Human Nutrition, Chonbuk National University, Jeonju 54896, Republic of Korea
| | - Anupom Roy
- Department of Food and Life Science, Pukyong National University, Busan 48513, Republic of Korea
| | - Qudeer Ahmed Abdul
- Department of Food and Life Science, Pukyong National University, Busan 48513, Republic of Korea
| | - Hyeung Rak Kim
- Department of Food and Life Science, Pukyong National University, Busan 48513, Republic of Korea
| | - Hee Juhn Park
- Department of Pharmaceutical Engineering, Sangji University, Wonju 220-702, Republic of Korea
| | - Jae Sue Choi
- Department of Food and Life Science, Pukyong National University, Busan 48513, Republic of Korea
| |
Collapse
|
227
|
Ito M, Maruyama Y, Kitamura K, Kobayashi T, Takahashi H, Yamanaka N, Harabuchi Y, Origasa H, Yoshizaki T. Randomized controlled trial of juzen-taiho-to in children with recurrent acute otitis media. Auris Nasus Larynx 2016; 44:390-397. [PMID: 27810126 DOI: 10.1016/j.anl.2016.10.002] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2016] [Revised: 09/15/2016] [Accepted: 10/06/2016] [Indexed: 11/19/2022]
Abstract
OBJECTIVE Recurrent acute otitis media (AOM) in young children is rapidly increasing worldwide. Repeated antibiotic use leads to antibiotic-resistant pathogen development. Complementary and alternative medicine approaches have been suggested as a supplemental treatment option to conventional antimicrobial medicine. This randomized, parallel-group, open-label, non-herbal medicine controlled trial assessed the efficacy of a traditional Japanese herbal medicine, juzen-taiho-to (JTT) for AOM prevention in otitis-prone children. METHODS Children prone to recurrent AOM aged 6-48 months were recruited from 26 otolaryngology clinics in Japan and received conventional AOM treatment based on Japanese guidelines with or without 2 daily oral doses of JTT (0.10-0.25g/kg/day). The mean number of AOM episodes, coryza episodes, and duration of total antibiotic administration per month were compared during 3-month intervention. RESULTS At least one episode of AOM was diagnosed in 71% of JTT-group and 92% of control participants during follow-up. JTT administration reduced the frequency of AOM episodes by 57% compared with children who received conventional treatment alone (0.61±0.54 vs. 1.07±0.72 AOM instances/month; P=0.005) and also significantly decreased number of coryza episodes (P=0.015) and total antibiotic administration (P=0.024). CONCLUSIONS This is the first report of recurrent AOM prevention by herbal medication. JTT appears to effectively prevent recurrent AOM in children. Subsequent double-blind studies are needed to confirm the beneficial effects of JTT on recurrent AOM and upper respiratory tract infections.
Collapse
Affiliation(s)
- Makoto Ito
- Department of Pediatric Otolaryngology, Tochigi Children's Hospital, Jichi Medical University, Tochigi, Japan
| | - Yumiko Maruyama
- Department of Otolaryngology, Kurobe Civic Hospital, Kurobe, Japan
| | - Ken Kitamura
- Department of Otolaryngology-Head and Neck Surgery, Tokyo Medical & Dental University, Tokyo, Japan
| | - Toshimitsu Kobayashi
- Department of Otolaryngology-Head and Neck Surgery, Tohoku University School of Medicine, Sendai, Japan
| | - Haruo Takahashi
- Department of Otolaryngology-Head and Neck Surgery, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki, Japan
| | - Noboru Yamanaka
- Department of Otolaryngology-Head and Neck Surgery, Wakayama Medical University, Wakayama, Japan
| | - Yasuaki Harabuchi
- Department of Otolaryngology-Head and Neck Surgery, Asahikawa Medical University, Asahikawa, Japan
| | - Hideki Origasa
- Biostatistics and Clinical Epidemiology, University of Toyama Graduate School of Medicine and Pharmaceutical Sciences, Toyama, Japan
| | - Tomokazu Yoshizaki
- Department of Otolaryngology-Head and Neck Surgery, Graduate School of Medical Science, Kanazawa University, Japan.
| |
Collapse
|
228
|
Slawinska A, Hsieh JC, Schmidt CJ, Lamont SJ. Heat Stress and Lipopolysaccharide Stimulation of Chicken Macrophage-Like Cell Line Activates Expression of Distinct Sets of Genes. PLoS One 2016; 11:e0164575. [PMID: 27736938 PMCID: PMC5063343 DOI: 10.1371/journal.pone.0164575] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2016] [Accepted: 09/27/2016] [Indexed: 11/19/2022] Open
Abstract
Acute heat stress requires immediate adjustment of the stressed individual to sudden changes of ambient temperatures. Chickens are particularly sensitive to heat stress due to development of insufficient physiological mechanisms to mitigate its effects. One of the symptoms of heat stress is endotoxemia that results from release of the lipopolysaccharide (LPS) from the guts. Heat-related cytotoxicity is mitigated by the innate immune system, which is comprised mostly of phagocytic cells such as monocytes and macrophages. The objective of this study was to analyze the molecular responses of the chicken macrophage-like HD11 cell line to combined heat stress and lipopolysaccharide treatment in vitro. The cells were heat-stressed and then allowed a temperature-recovery period, during which the gene expression was investigated. LPS was added to the cells to mimic the heat-stress-related endotoxemia. Semi high-throughput gene expression analysis was used to study a gene panel comprised of heat shock proteins, stress-related genes, signaling molecules and immune response genes. HD11 cell line responded to heat stress with increased mRNA abundance of the HSP25, HSPA2 and HSPH1 chaperones as well as DNAJA4 and DNAJB6 co-chaperones. The anti-apoptotic gene BAG3 was also highly up-regulated, providing evidence that the cells expressed pro-survival processes. The immune response of the HD11 cell line to LPS in the heat stress environment (up-regulation of CCL4, CCL5, IL1B, IL8 and iNOS) was higher than in thermoneutral conditions. However, the peak in the transcriptional regulation of the immune genes was after two hours of temperature-recovery. Therefore, we propose the potential influence of the extracellular heat shock proteins not only in mitigating effects of abiotic stress but also in triggering the higher level of the immune responses. Finally, use of correlation networks for the data analysis aided in discovering subtle differences in the gene expression (i.e. the role of the CASP3 and CASP9 genes).
Collapse
Affiliation(s)
- Anna Slawinska
- Department of Animal Science, Iowa State University, Ames, Iowa, United States of America
- Department of Animal Biochemistry and Biotechnology, UTP University of Science and Technology, Bydgoszcz, Poland
| | - John C. Hsieh
- Department of Animal Science, Iowa State University, Ames, Iowa, United States of America
| | - Carl J. Schmidt
- Department of Animal and Food Sciences, University of Delaware, Newark, Delaware, United States of America
| | - Susan J. Lamont
- Department of Animal Science, Iowa State University, Ames, Iowa, United States of America
- * E-mail:
| |
Collapse
|
229
|
González-García J, Martínez-Camarena À, Verdejo B, Clares MP, Soriano C, García-España E, Jiménez HR, Doménech-Carbó A, Tejero R, Calvo E, Briansó-Llort L, Serena C, Trefler S, Garcia-España A. Oxidative stress protection by manganese complexes of tail-tied aza-scorpiand ligands. J Inorg Biochem 2016; 163:230-239. [DOI: 10.1016/j.jinorgbio.2016.04.020] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2015] [Revised: 02/25/2016] [Accepted: 04/12/2016] [Indexed: 11/26/2022]
|
230
|
Cooperation of erythrocytes with leukocytes in immune response of a teleost Oplegnathus fasciatus. Genes Genomics 2016. [DOI: 10.1007/s13258-016-0437-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
231
|
Varanat M, Haase EM, Kay JG, Scannapieco FA. Activation of the TREM-1 pathway in human monocytes by periodontal pathogens and oral commensal bacteria. Mol Oral Microbiol 2016; 32:275-287. [PMID: 27448788 DOI: 10.1111/omi.12169] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/19/2016] [Indexed: 01/21/2023]
Abstract
Periodontitis is a highly prevalent disease caused in part by an aberrant host response to the oral multi-species biofilm. A balance between the oral bacteria and host immunity is essential for oral health. Imbalances in the oral microbiome lead to an uncontrolled host inflammatory response and subsequent periodontal disease (i.e. gingivitis and periodontitis). TREM-1 is a signaling receptor present on myeloid cells capable of acting synergistically with other pattern recognition receptors leading to amplification of inflammatory responses. The aim of this study was to investigate the activation of the TREM-1 pathway in the human monocyte-like cell line THP-1 exposed to both oral pathogens and commensals. The relative expression of the genes encoding TREM-1 and its adapter protein DAP12 were determined by quantitative real-time polymerase chain reaction. The surface expression of TREM-1 was determined by flow cytometry. Soluble TREM-1 and cytokines were measured by enzyme-linked immunosorbent assay. The results demonstrate that both commensal and pathogenic oral bacteria activate the TREM-1 pathway, resulting in a proinflammatory TREM-1 activity-dependent increase in proinflammatory cytokine production.
Collapse
Affiliation(s)
- M Varanat
- Department of Oral Biology, University at Buffalo, School of Dental Medicine, State University of New York, Buffalo, NY, USA
| | - E M Haase
- Department of Oral Biology, University at Buffalo, School of Dental Medicine, State University of New York, Buffalo, NY, USA
| | - J G Kay
- Department of Oral Biology, University at Buffalo, School of Dental Medicine, State University of New York, Buffalo, NY, USA
| | - F A Scannapieco
- Department of Oral Biology, University at Buffalo, School of Dental Medicine, State University of New York, Buffalo, NY, USA
| |
Collapse
|
232
|
Zhao G, Su Z, Song D, Mao Y, Mao X. The long noncoding RNA MALAT1 regulates the lipopolysaccharide-induced inflammatory response through its interaction with NF-κB. FEBS Lett 2016; 590:2884-95. [PMID: 27434861 DOI: 10.1002/1873-3468.12315] [Citation(s) in RCA: 183] [Impact Index Per Article: 20.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2016] [Revised: 06/28/2016] [Accepted: 07/11/2016] [Indexed: 12/14/2022]
Abstract
MALAT1 is a conserved long noncoding RNA whose expression correlates with many human cancers. However, its significance in immunity remains largely unknown. Here, we observe that MALAT1 is upregulated in lipopolysaccharide (LPS)-activated macrophages. Knockdown of MALAT1 increases LPS-induced expression of TNFα and IL-6. Mechanistically, MALAT1 was found to interact with NF-κB in the nucleus, thus inhibiting its DNA binding activity and consequently decreasing the production of inflammatory cytokines. Additionally, abnormal expression of MALAT1 was found to be NF-κB-dependent. These findings suggest that MALAT1 may function as an autonegative feedback regulator of NF-κB to help fine-tune innate immune responses.
Collapse
Affiliation(s)
- Gui Zhao
- Department of Biochemistry, School of Medicine & Key Laboratory of Ministry of Education for Developmental Genes and Human Diseases, Southeast University, Nanjing, China
| | - Zhenyi Su
- Department of Biochemistry, School of Medicine & Key Laboratory of Ministry of Education for Developmental Genes and Human Diseases, Southeast University, Nanjing, China
| | - Dan Song
- Department of Biochemistry, School of Medicine & Key Laboratory of Ministry of Education for Developmental Genes and Human Diseases, Southeast University, Nanjing, China
| | - Yimin Mao
- Department of Biochemistry, School of Medicine & Key Laboratory of Ministry of Education for Developmental Genes and Human Diseases, Southeast University, Nanjing, China.,School of Life Science and Technology, China Pharmaceutical University, Nanjing, China
| | - Xiaohua Mao
- Department of Biochemistry, School of Medicine & Key Laboratory of Ministry of Education for Developmental Genes and Human Diseases, Southeast University, Nanjing, China
| |
Collapse
|
233
|
O'Connor G, Gleeson LE, Fagan-Murphy A, Cryan SA, O'Sullivan MP, Keane J. Sharpening nature's tools for efficient tuberculosis control: A review of the potential role and development of host-directed therapies and strategies for targeted respiratory delivery. Adv Drug Deliv Rev 2016; 102:33-54. [PMID: 27151307 DOI: 10.1016/j.addr.2016.04.024] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2016] [Revised: 04/04/2016] [Accepted: 04/20/2016] [Indexed: 12/18/2022]
Abstract
Centuries since it was first described, tuberculosis (TB) remains a significant global public health issue. Despite ongoing holistic measures implemented by health authorities and a number of new oral treatments reaching the market, there is still a need for an advanced, efficient TB treatment. An adjunctive, host-directed therapy designed to enhance endogenous pathways and hence compliment current regimens could be the answer. The integration of drug repurposing, including synthetic and naturally occurring compounds, with a targeted drug delivery platform is an attractive development option. In order for a new anti-tubercular treatment to be produced in a timely manner, a multidisciplinary approach should be taken from the outset including stakeholders from academia, the pharmaceutical industry, and regulatory bodies keeping the patient as the key focus. Pre-clinical considerations for the development of a targeted host-directed therapy are discussed here.
Collapse
Affiliation(s)
- Gemma O'Connor
- School of Pharmacy, Royal College of Surgeons in Ireland, Dublin 2, Ireland; Department of Clinical Medicine, Institute of Molecular Medicine, Trinity College Dublin and St. James's Hospital, D08 W9RT, Dublin, Ireland.
| | - Laura E Gleeson
- Department of Clinical Medicine, Institute of Molecular Medicine, Trinity College Dublin and St. James's Hospital, D08 W9RT, Dublin, Ireland.
| | - Aidan Fagan-Murphy
- School of Pharmacy, Royal College of Surgeons in Ireland, Dublin 2, Ireland; SFI Centre for Research in Medical Devices (CURAM), Dublin 2, Ireland.
| | - Sally-Ann Cryan
- School of Pharmacy, Royal College of Surgeons in Ireland, Dublin 2, Ireland; Trinity Centre for Bioengineering, Trinity College Dublin, Dublin 2, Ireland; SFI Centre for Research in Medical Devices (CURAM), Dublin 2, Ireland.
| | - Mary P O'Sullivan
- Department of Clinical Medicine, Institute of Molecular Medicine, Trinity College Dublin and St. James's Hospital, D08 W9RT, Dublin, Ireland.
| | - Joseph Keane
- Department of Clinical Medicine, Institute of Molecular Medicine, Trinity College Dublin and St. James's Hospital, D08 W9RT, Dublin, Ireland.
| |
Collapse
|
234
|
Rajan TS, Giacoppo S, Iori R, De Nicola GR, Grassi G, Pollastro F, Bramanti P, Mazzon E. Anti-inflammatory and antioxidant effects of a combination of cannabidiol and moringin in LPS-stimulated macrophages. Fitoterapia 2016; 112:104-15. [DOI: 10.1016/j.fitote.2016.05.008] [Citation(s) in RCA: 81] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2016] [Revised: 05/09/2016] [Accepted: 05/19/2016] [Indexed: 01/10/2023]
|
235
|
Correa LB, Pádua TA, Seito LN, Costa TEMM, Silva MA, Candéa ALP, Rosas EC, Henriques MG. Anti-inflammatory Effect of Methyl Gallate on Experimental Arthritis: Inhibition of Neutrophil Recruitment, Production of Inflammatory Mediators, and Activation of Macrophages. JOURNAL OF NATURAL PRODUCTS 2016; 79:1554-1566. [PMID: 27227459 DOI: 10.1021/acs.jnatprod.5b01115] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
Methyl gallate (MG) is a prevalent phenolic acid in the plant kingdom, and its presence in herbal medicines might be related to its remarkable biological effects, such as its antioxidant, antitumor, and antimicrobial activities. Although some indirect evidence suggests anti-inflammatory activity for MG, there are no studies demonstrating this effect in animal models. Herein, we demonstrated that MG (0.7-70 mg/kg) inhibited zymosan-induced experimental arthritis in a dose-dependent manner. The oral administration of MG (7 mg/kg) attenuates arthritis induced by zymosan, affecting edema formation, leukocyte migration, and the production of inflammatory mediators (IL-1β, IL-6, TNF-α, CXCL-1, LTB4, and PGE2). Pretreatment with MG inhibited in vitro neutrophil chemotaxis elicited by CXCL-1, as well as the adhesion of these cells to TNF-α-primed endothelial cells. MG also impaired zymosan-stimulated macrophages by inhibiting IL-6 and NO production, COX-2 and iNOS expression, and intracellular calcium mobilization. Thus, MG is likely to present an anti-inflammatory effect by targeting multiple cellular events such as the production of various inflammatory mediators, as well as leukocyte activation and migration.
Collapse
Affiliation(s)
- Luana Barbosa Correa
- Laboratory of Applied Pharmacology, Farmanguinhos, and ‡National Institute for Science and Technology on Innovation on Neglected Diseases (INCT/IDN), Center for Technological Development in Health (CDTS), Oswaldo Cruz Foundation (Fiocruz) , Rio de Janeiro, RJ, Brazil
| | - Tatiana Almeida Pádua
- Laboratory of Applied Pharmacology, Farmanguinhos, and ‡National Institute for Science and Technology on Innovation on Neglected Diseases (INCT/IDN), Center for Technological Development in Health (CDTS), Oswaldo Cruz Foundation (Fiocruz) , Rio de Janeiro, RJ, Brazil
| | - Leonardo Noboru Seito
- Laboratory of Applied Pharmacology, Farmanguinhos, and ‡National Institute for Science and Technology on Innovation on Neglected Diseases (INCT/IDN), Center for Technological Development in Health (CDTS), Oswaldo Cruz Foundation (Fiocruz) , Rio de Janeiro, RJ, Brazil
| | - Thadeu Estevam Moreira Maramaldo Costa
- Laboratory of Applied Pharmacology, Farmanguinhos, and ‡National Institute for Science and Technology on Innovation on Neglected Diseases (INCT/IDN), Center for Technological Development in Health (CDTS), Oswaldo Cruz Foundation (Fiocruz) , Rio de Janeiro, RJ, Brazil
| | - Magaiver Andrade Silva
- Laboratory of Applied Pharmacology, Farmanguinhos, and ‡National Institute for Science and Technology on Innovation on Neglected Diseases (INCT/IDN), Center for Technological Development in Health (CDTS), Oswaldo Cruz Foundation (Fiocruz) , Rio de Janeiro, RJ, Brazil
| | - André Luis Peixoto Candéa
- Laboratory of Applied Pharmacology, Farmanguinhos, and ‡National Institute for Science and Technology on Innovation on Neglected Diseases (INCT/IDN), Center for Technological Development in Health (CDTS), Oswaldo Cruz Foundation (Fiocruz) , Rio de Janeiro, RJ, Brazil
| | - Elaine Cruz Rosas
- Laboratory of Applied Pharmacology, Farmanguinhos, and ‡National Institute for Science and Technology on Innovation on Neglected Diseases (INCT/IDN), Center for Technological Development in Health (CDTS), Oswaldo Cruz Foundation (Fiocruz) , Rio de Janeiro, RJ, Brazil
| | - Maria G Henriques
- Laboratory of Applied Pharmacology, Farmanguinhos, and ‡National Institute for Science and Technology on Innovation on Neglected Diseases (INCT/IDN), Center for Technological Development in Health (CDTS), Oswaldo Cruz Foundation (Fiocruz) , Rio de Janeiro, RJ, Brazil
| |
Collapse
|
236
|
Lloyd AF, Miron VE. Cellular and Molecular Mechanisms Underpinning Macrophage Activation during Remyelination. Front Cell Dev Biol 2016; 4:60. [PMID: 27446913 PMCID: PMC4914869 DOI: 10.3389/fcell.2016.00060] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2016] [Accepted: 06/06/2016] [Indexed: 12/13/2022] Open
Abstract
Remyelination is an example of central nervous system (CNS) regeneration, whereby myelin is restored around demyelinated axons, re-establishing saltatory conduction and trophic/metabolic support. In progressive multiple sclerosis, remyelination is limited or fails altogether which is considered to contribute to axonal damage/loss and consequent disability. Macrophages have critical roles in both CNS damage and regeneration, such as remyelination. This diverse range in functions reflects the ability of macrophages to acquire tissue microenvironment-specific activation states. This activation is dynamically regulated during efficient regeneration, with a switch from pro-inflammatory to inflammation-resolution/pro-regenerative phenotypes. Although, some molecules and pathways have been implicated in the dynamic activation of macrophages, such as NFκB, the cellular and molecular mechanisms underpinning plasticity of macrophage activation are unclear. Identifying mechanisms regulating macrophage activation to pro-regenerative phenotypes may lead to novel therapeutic strategies to promote remyelination in multiple sclerosis.
Collapse
Affiliation(s)
- Amy F Lloyd
- MRC Centre for Reproductive Health, Queen's Medical Research Institute, University of Edinburgh Edinburgh, UK
| | - Veronique E Miron
- MRC Centre for Reproductive Health, Queen's Medical Research Institute, University of Edinburgh Edinburgh, UK
| |
Collapse
|
237
|
Olioso D, Marzotto M, Bonafini C, Brizzi M, Bellavite P. Arnica montana effects on gene expression in a human macrophage cell line. Evaluation by quantitative Real-Time PCR. HOMEOPATHY 2016; 105:131-47. [PMID: 27211321 DOI: 10.1016/j.homp.2016.02.001] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2015] [Revised: 01/01/2016] [Accepted: 02/01/2016] [Indexed: 12/14/2022]
Abstract
BACKGROUND Arnica montana is a popular traditional remedy widely used in complementary medicine, also for its wound healing properties. Despite its acknowledged action in clinical settings at various doses, the molecular aspects relating to how A. montana promotes wound healing remain to be elucidated. To fill this gap, we evaluated the whole plant extract, in a wide range of dilutions, in THP-1 human cells, differentiated into mature macrophages and into an alternative IL-4-activated phenotype involved in tissue remodelling and healing. METHODS Real-time quantitative Reverse Transcription Polymerase Chain Reaction (PCR) analysis was used to study the changes in the expression of a customized panel of key genes, mainly cytokines, receptors and transcription factors. RESULTS On macrophages differentiated towards the wound healing phenotype, A. montana affected the expression of several genes. In particular CXC chemokine ligand 1 (CXCL1), coding for an chief chemokine, exhibited the most consistent increase of expression, while also CXC chemokine ligand 2 (CXCL2), Interleukin8 (IL8) and bone morphogenetic protein (BMP2) were slightly up-regulated, suggesting a positive influence of A. montana on neutrophil recruitment and on angiogenesis. MMP1, coding for a metalloproteinase capable of cleaving extracellular matrix substrates, was down-regulated. Most results showed non-linearity of the dose-effect relationship. CONCLUSIONS This exploratory study provides new insights into the cellular and molecular mechanisms of action of A. montana as a promoter of healing, since some of the genes it modifies are key regulators of tissue remodelling, inflammation and chemotaxis.
Collapse
Affiliation(s)
- Debora Olioso
- Department of Medicine, University of Verona, Strada Le Grazie 8, 37134 Verona, Italy
| | - Marta Marzotto
- Department of Medicine, University of Verona, Strada Le Grazie 8, 37134 Verona, Italy
| | - Clara Bonafini
- Department of Medicine, University of Verona, Strada Le Grazie 8, 37134 Verona, Italy
| | - Maurizio Brizzi
- Department of Statistical Sciences, University of Bologna, Via delle Belle Arti 41, 40126 Bologna, Italy
| | - Paolo Bellavite
- Department of Medicine, University of Verona, Strada Le Grazie 8, 37134 Verona, Italy.
| |
Collapse
|
238
|
Foit L, Thaxton CS. Synthetic high-density lipoprotein-like nanoparticles potently inhibit cell signaling and production of inflammatory mediators induced by lipopolysaccharide binding Toll-like receptor 4. Biomaterials 2016; 100:67-75. [PMID: 27244690 DOI: 10.1016/j.biomaterials.2016.05.021] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2016] [Revised: 05/15/2016] [Accepted: 05/19/2016] [Indexed: 12/25/2022]
Abstract
Toll-like receptor 4 (TLR4) plays a critical role in the innate immune system. Stimulation of TLR4 occurs upon binding lipopolysaccharide (LPS), a component of Gram-negative bacterial cell walls. Due to the potency of the induced inflammatory response, there is a growing interest in agents that can most proximally modulate this LPS/TLR4 interaction to prevent downstream cell signaling events and the production of inflammatory mediators. Building on the natural ability of human high-density lipoprotein (HDL) to bind LPS, we synthesized a suite of HDL-like nanoparticles (HDL-like NP). We identified one HDL-like NP that was particularly effective at decreasing TLR4 signaling caused by addition of purified LPS or Gram-negative bacteria to model human cell lines or primary human peripheral blood cells. The HDL-like NP functioned to inhibit TLR4-dependent inflammatory response to LPS derived from multiple bacterial species. Mechanistically, data show that the NP mainly functions by scavenging and neutralizing the LPS toxin. Taken together, HDL-like NPs constitute a powerful endotoxin scavenger with the potential to significantly reduce LPS-mediated inflammation.
Collapse
Affiliation(s)
- Linda Foit
- Feinberg School of Medicine, Department of Urology, Northwestern University, Tarry 16-703, 303 E. Chicago Ave, Chicago, IL 60611, USA; Simpson Querrey Institute for BioNanotechnology, Northwestern University, 303 E. Superior St, Chicago, IL 60611, USA
| | - C Shad Thaxton
- Feinberg School of Medicine, Department of Urology, Northwestern University, Tarry 16-703, 303 E. Chicago Ave, Chicago, IL 60611, USA; Simpson Querrey Institute for BioNanotechnology, Northwestern University, 303 E. Superior St, Chicago, IL 60611, USA; International Institute for Nanotechnology (IIN), 2145 Sheridan Road, Evanston, IL 60208, USA; Robert H Lurie Comprehensive Cancer Center (RHLCCC), Northwestern University, Feinberg School of Medicine, 303 E Superior, Chicago, IL 60611, USA.
| |
Collapse
|
239
|
Ruwona TB, Xu H, Li X, Taylor AN, Shi YC, Cui Z. Toward understanding the mechanism underlying the strong adjuvant activity of aluminum salt nanoparticles. Vaccine 2016; 34:3059-3067. [PMID: 27155490 DOI: 10.1016/j.vaccine.2016.04.081] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2016] [Revised: 04/18/2016] [Accepted: 04/26/2016] [Indexed: 01/13/2023]
Abstract
Aluminum salts such as aluminum oxyhydroxide and aluminum hydroxyphosphate are commonly used human vaccine adjuvants. In an effort to improve the adjuvant activity of aluminum salts, we previously showed that the adjuvant activity of aluminum oxyhydroxide nanoparticles is significantly more potent than that of aluminum oxyhydroxide microparticles. The present study was designed to (i) understand the mechanism underlying the potent adjuvant activity of aluminum oxyhydroxide nanoparticles, relative to microparticles, and (ii) to test whether aluminum hydroxyphosphate nanoparticles have a more potent adjuvant activity than aluminum hydroxyphosphate microparticles as well. In human THP-1 myeloid cells, wild-type and NLRP3-deficient, both aluminum oxyhydroxide nanoparticles and microparticles stimulate the secretion of proinflammatory cytokine IL-1β by activating NLRP3 inflammasome, although aluminum oxyhydroxide nanoparticles are more potent than microparticles, likely related to the higher uptake of the nanoparticles by the THP-1 cells than the microparticles. Aluminum hydroxyphosphate nanoparticles also have a more potent adjuvant activity than microparticles in helping a model antigen lysozyme to stimulate specific antibody response, again likely related to their stronger ability to activate the NLRP3 inflammasome.
Collapse
Affiliation(s)
- Tinashe B Ruwona
- The University of Texas at Austin, College of Pharmacy, Pharmaceutics Division, Austin, TX, United States
| | - Haiyue Xu
- The University of Texas at Austin, College of Pharmacy, Pharmaceutics Division, Austin, TX, United States
| | - Xu Li
- The University of Texas at Austin, College of Pharmacy, Pharmaceutics Division, Austin, TX, United States
| | - Amber N Taylor
- The University of Texas at Austin, College of Pharmacy, Pharmaceutics Division, Austin, TX, United States
| | - Yan-Chun Shi
- Inner Mongolia Key Laboratory of Molecular Biology, Inner Mongolia Medical University, Hohhot, Inner Mongolia, China.
| | - Zhengrong Cui
- The University of Texas at Austin, College of Pharmacy, Pharmaceutics Division, Austin, TX, United States; Inner Mongolia Key Laboratory of Molecular Biology, Inner Mongolia Medical University, Hohhot, Inner Mongolia, China.
| |
Collapse
|
240
|
Combinations of cereal β-glucans and probiotics can enhance the anti-inflammatory activity on host cells by a synergistic effect. J Funct Foods 2016. [DOI: 10.1016/j.jff.2016.02.015] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
|
241
|
Lee S, Mattingly A, Lin A, Sacramento J, Mannent L, Castel MN, Canolle B, Delbary-Gossart S, Ferzaz B, Morganti JM, Rosi S, Ferguson AR, Manley GT, Bresnahan JC, Beattie MS. A novel antagonist of p75NTR reduces peripheral expansion and CNS trafficking of pro-inflammatory monocytes and spares function after traumatic brain injury. J Neuroinflammation 2016; 13:88. [PMID: 27102880 PMCID: PMC4840857 DOI: 10.1186/s12974-016-0544-4] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2015] [Accepted: 04/10/2016] [Indexed: 12/17/2022] Open
Abstract
Background Traumatic brain injury (TBI) results in long-term neurological deficits, which may be mediated in part by pro-inflammatory responses in both the injured brain and the circulation. Inflammation may be involved in the subsequent development of neurodegenerative diseases and post-injury seizures. The p75 neurotrophin receptor (p75NTR) has multiple biological functions, affecting cell survival, apoptotic cell death, axonal growth, and degeneration in pathological conditions. We recently found that EVT901, a novel piperazine derivative that inhibits p75NTR oligomerization, is neuroprotective, reduces microglial activation, and improves outcomes in two models of TBI in rats. Since TBI elicits both CNS and peripheral inflammation, we used a mouse model of TBI to examine whether EVT901 would affect peripheral immune responses and trafficking to the injured brain. Methods Cortical contusion injury (CCI)-TBI of the sensory/motor cortex was induced in C57Bl/6 wild-type mice and CCR2+/RFP heterozygote transgenic mice, followed by treatment with EVT901, a selective antagonist of p75NTR, or vehicle by i.p. injection at 4 h after injury and then daily for 7 days. Brain and blood were collected at 1 and 6 weeks after injury. Flow cytometry and histological analysis were used to determine peripheral immune responses and trafficking of peripheral immune cells into the lesion site at 1 and 6 weeks after TBI. A battery of behavioral tests administered over 6 weeks was used to evaluate neurological outcome, and stereological estimation of brain tissue volume at 6 weeks was used to assess tissue damage. Finally, multivariate principal components analysis (PCA) was used to evaluate the relationships between inflammatory events, EVT901 treatment, and neurological outcomes. Results EVT901 is neuroprotective in mouse CCI-TBI and dramatically reduced the early trafficking of CCR2+ and pro-inflammatory monocytes into the lesion site. EVT901 reduced the number of CD45highCD11b+ and CD45highF4/80+ cells in the injured brain at 6 weeks. TBI produced a significant increase in peripheral pro-inflammatory monocytes (Ly6Cint-high pro-inflammatory monocytes), and this peripheral effect was also blocked by EVT901 treatment. Further, we found that blocking p75NTR with EVT901 reduces the expansion of pro-inflammatory monocytes, and their response to LPS in vitro, supporting the idea that there is a peripheral EVT901 effect that blunts inflammation. Further, 1 week of EVT901 blocks the expansion of pro-inflammatory monocytes in the circulation after TBI, reduces the number of multiple subsets of pro-inflammatory monocytes that enter the injury site at 1 and 6 weeks post-injury, and is neuroprotective, as it was in the rat. Conclusions Together, these findings suggest that p75NTR signaling participates in the production of the peripheral pro-inflammatory response to CNS injury and implicates p75NTR as a part of the pro-inflammatory cascade. Thus, the neuroprotective effects of p75NTR antagonists might be due to a combination of central and peripheral effects, and p75NTR may play a role in the production of peripheral inflammation in addition to its many other biological roles. Thus, p75NTR may be a therapeutic target in human TBI. Electronic supplementary material The online version of this article (doi:10.1186/s12974-016-0544-4) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Sangmi Lee
- Department of Neurological Surgery, Brain and Spinal Injury Center, University of California at San Francisco, Box 0899, 1001 Potrero Ave, Bldg 1, Rm 101, San Francisco, CA, 94143-0899, USA
| | - Aaron Mattingly
- Biomedical Science Graduate Program, University of California at San Francisco, San Francisco, CA, 94143-0899, USA
| | - Amity Lin
- Department of Neurological Surgery, Brain and Spinal Injury Center, University of California at San Francisco, Box 0899, 1001 Potrero Ave, Bldg 1, Rm 101, San Francisco, CA, 94143-0899, USA
| | - Jeffrey Sacramento
- Department of Neurological Surgery, Brain and Spinal Injury Center, University of California at San Francisco, Box 0899, 1001 Potrero Ave, Bldg 1, Rm 101, San Francisco, CA, 94143-0899, USA
| | - Leda Mannent
- Early to Candidate, Sanofi Research, 195 route d'Espagne, Chilly-Mazarin, France
| | - Marie-Noelle Castel
- Early to Candidate, Sanofi Research, 195 route d'Espagne, Chilly-Mazarin, France
| | - Benoit Canolle
- Early to Candidate, Sanofi Research, 195 route d'Espagne, Chilly-Mazarin, France
| | | | - Badia Ferzaz
- Early to Candidate, Sanofi Research, 195 route d'Espagne, Chilly-Mazarin, France
| | - Josh M Morganti
- Department of Neurological Surgery, Brain and Spinal Injury Center, University of California at San Francisco, Box 0899, 1001 Potrero Ave, Bldg 1, Rm 101, San Francisco, CA, 94143-0899, USA
| | - Susanna Rosi
- Department of Neurological Surgery, Brain and Spinal Injury Center, University of California at San Francisco, Box 0899, 1001 Potrero Ave, Bldg 1, Rm 101, San Francisco, CA, 94143-0899, USA.,Biomedical Science Graduate Program, University of California at San Francisco, San Francisco, CA, 94143-0899, USA
| | - Adam R Ferguson
- Department of Neurological Surgery, Brain and Spinal Injury Center, University of California at San Francisco, Box 0899, 1001 Potrero Ave, Bldg 1, Rm 101, San Francisco, CA, 94143-0899, USA.,Biomedical Science Graduate Program, University of California at San Francisco, San Francisco, CA, 94143-0899, USA
| | - Geoffrey T Manley
- Department of Neurological Surgery, Brain and Spinal Injury Center, University of California at San Francisco, Box 0899, 1001 Potrero Ave, Bldg 1, Rm 101, San Francisco, CA, 94143-0899, USA
| | - Jacqueline C Bresnahan
- Department of Neurological Surgery, Brain and Spinal Injury Center, University of California at San Francisco, Box 0899, 1001 Potrero Ave, Bldg 1, Rm 101, San Francisco, CA, 94143-0899, USA
| | - Michael S Beattie
- Department of Neurological Surgery, Brain and Spinal Injury Center, University of California at San Francisco, Box 0899, 1001 Potrero Ave, Bldg 1, Rm 101, San Francisco, CA, 94143-0899, USA. .,Biomedical Science Graduate Program, University of California at San Francisco, San Francisco, CA, 94143-0899, USA.
| |
Collapse
|
242
|
Kabanov DS, Serov DA, Zubova SV, Grachev SV, Prokhorenko IR. Dynamics of antagonistic potency of Rhodobacter capsulatus PG lipopolysaccharide against endotoxin-induced effects. BIOCHEMISTRY (MOSCOW) 2016; 81:275-83. [DOI: 10.1134/s000629791603010x] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
|
243
|
Asarat M, Apostolopoulos V, Vasiljevic T, Donkor O. Short-Chain Fatty Acids Regulate Cytokines and Th17/Treg Cells in Human Peripheral Blood Mononuclear Cellsin vitro. Immunol Invest 2016; 45:205-22. [DOI: 10.3109/08820139.2015.1122613] [Citation(s) in RCA: 102] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
244
|
GEN-27, a Newly Synthetic Isoflavonoid, Inhibits the Proliferation of Colon Cancer Cells in Inflammation Microenvironment by Suppressing NF-κB Pathway. Mediators Inflamm 2016; 2016:2853040. [PMID: 27057094 PMCID: PMC4781992 DOI: 10.1155/2016/2853040] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2015] [Accepted: 01/14/2016] [Indexed: 12/15/2022] Open
Abstract
Nonresolving inflammation is one of the consistent features of the tumor microenvironment in the intestine and plays a critical role in the initiation and development of colon cancer. Here we reported the inhibitory effects of GEN-27, a new derivative of genistein, on the inflammation-related colon cancer cell proliferation and delineated the mechanism of its action. The results indicated that GEN-27 inhibited the proliferation of human colon tumor HCT116 cells stimulated by culture supernatants of LPS-induced human monocytes THP-1 cells and significantly decreased LPS-induced secretion of proinflammatory cytokines interleukin-6 and interleukin-1β in THP-1 cells. The HCT116 cell proliferation elicited by THP-1-conditioned medium could be blocked by the interleukin-1 receptor antagonist (IL-1RA). Further mechanistic study revealed that GEN-27 remarkably inhibited the nuclear translocation of NF-κB and phosphorylation of IκB and IKKα/β in both HCT116 and THP-1 cells. In addition, GEN-27 markedly suppressed the HCT116 cell proliferation stimulated by IL-1β treatment, which was dependent on the inhibition of NF-κB/p65 nuclear localization, as verified by p65 overexpression and BAY 11-7082, an NF-κB inhibitor. Taken together, our findings established that GEN-27 modulated NF-κB signaling pathway involved in inflammation-induced cancer cells proliferation and therefore could be a potential chemopreventive agent against inflammation-associated colon cancer.
Collapse
|
245
|
Kulkarni-Almeida A, Shah M, Jadhav M, Hegde B, Trivedi J, Mishra PD, Mahajan GB, Dadarkar S, Gupte R, Dagia N. A semi-synthetic natural product blocks collagen induced arthritis by preferentially suppressing the production of IL-6. Int Immunopharmacol 2016; 33:63-9. [PMID: 26869203 DOI: 10.1016/j.intimp.2016.01.001] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2015] [Revised: 12/30/2015] [Accepted: 01/03/2016] [Indexed: 11/16/2022]
Abstract
Rheumatoid arthritis (RA), an autoimmune-inflammatory disease is characterized by dysregulation of signal transduction pathways, increased production of pro-inflammatory cytokines, enhanced leukocyte infiltration into synovial microvascular endothelium, extensive formation of hyper proliferative pannus, degradation of cartilage and bone erosion. Several compounds that abrogate cytokine production demonstrate a therapeutic effect in experimental models of arthritis. In this study, we report that a novel semi-synthetic natural product (Compound A) being a preferential IL-6 inhibitor, is efficacious in a murine model of arthritis. In vitro evaluations of pro-inflammatory cytokine production reveal that Compound A preferentially inhibits induced production of IL-6 and not TNF-α from THP-1 cells and isolated human monocytes. Furthermore, Compound A robustly inhibits the spontaneous production of IL-6 from pathologically relevant synovial tissue cells isolated from patients with active RA. In a physiologically relevant assay, Compound A selectively inhibits the activated T cell contact-mediated production of IL-6 from human monocytes. Compound A, at pharmacologically efficacious concentrations, does not significantly curtail the LPS-induced activation of p38 MAPKs. In the collagen-induced arthritis (CIA) mouse model (i) macroscopic observations demonstrate that Compound A, administered subcutaneously in a therapeutic regimen, significantly and dose-dependently inhibits disease associated increases in articular index and paw thickness; (ii) histological analyses of paw tissues reveal that Compound A prominently diminishes joint destruction, hyperproliferative pannus formation and infiltration of inflammatory cells. Collectively, these results provide direct evidence that Compound A, a novel preferential IL-6 inhibitor, suppresses collagen-induced arthritis, and may be a potential therapeutic for treating patients with active RA.
Collapse
Affiliation(s)
| | - Meet Shah
- Piramal Enterprises Ltd., NCE Research Division, Mumbai, India
| | - Mahesh Jadhav
- Piramal Enterprises Ltd., NCE Research Division, Mumbai, India
| | - Bindu Hegde
- Piramal Enterprises Ltd., NCE Research Division, Mumbai, India
| | | | - Prabhu D Mishra
- Piramal Enterprises Ltd., NCE Research Division, Mumbai, India
| | | | - Shruta Dadarkar
- Piramal Enterprises Ltd., NCE Research Division, Mumbai, India
| | - Ravindra Gupte
- Piramal Enterprises Ltd., NCE Research Division, Mumbai, India
| | - Nilesh Dagia
- Piramal Enterprises Ltd., NCE Research Division, Mumbai, India
| |
Collapse
|
246
|
Schultz HS, Guo L, Keller P, Fleetwood AJ, Sun M, Guo W, Ma C, Hamilton JA, Bjørkdahl O, Berchtold MW, Panina S. OSCAR-collagen signaling in monocytes plays a proinflammatory role and may contribute to the pathogenesis of rheumatoid arthritis. Eur J Immunol 2016; 46:952-63. [PMID: 26786702 DOI: 10.1002/eji.201545986] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2015] [Revised: 12/15/2015] [Accepted: 01/12/2016] [Indexed: 01/26/2023]
Abstract
Osteoclast-associated receptor (OSCAR) is an activating receptor expressed by human myeloid cells. Collagen type I (ColI) and collagen type II (ColII) serve as ligands for OSCAR. OSCAR-collagen interaction stimulates RANK-dependent osteoclastogenesis. We have recently reported that OSCAR promotes functional maturation of monocyte-derived dendritic cells. OSCAR is upregulated on monocytes from rheumatoid arthritis (RA) patients with active disease, and these monocytes show an increased proosteoclastogenic potential. In the current study, we have addressed a functional role for an OSCAR-collagen interaction on monocytes. We show that OSCAR-ColII signaling promoted the survival of monocytes. Moreover, ColII stimulated the release of proinflammatory cytokines by monocytes from healthy donors, which could be completely blocked by an anti-OSCAR monoclonal antibody. Mononuclear cells from the synovial fluid of RA patients plated on ColII secreted TNF-α and IL-8 in an OSCAR-dependent manner. Global RNA profiling showed that components of multiple signaling pathways relevant to RA pathogenesis are regulated at the transcriptional level by OSCAR in monocytes. Thus, OSCAR can play a proinflammatory role in monocyte-derived cells and may contribute crucially on multiple levels to RA pathogenesis.
Collapse
Affiliation(s)
- Heidi S Schultz
- Biopharmaceutical Research Unit, Novo Nordisk A/S, Måløv, Denmark.,Department of Biology, Copenhagen University, Copenhagen, Denmark
| | - Li Guo
- Novo Nordisk Research Centre China CA, Beijing, China
| | - Pernille Keller
- Biopharmaceutical Research Unit, Novo Nordisk A/S, Måløv, Denmark
| | - Andrew J Fleetwood
- Department of Medicine, The Royal Melbourne Hospital, The University of Melbourne, Parkville, Victoria, Australia
| | - Mingyi Sun
- Novo Nordisk Research Centre China CA, Beijing, China
| | - Wei Guo
- Novo Nordisk Research Centre China CA, Beijing, China
| | - Chunyan Ma
- Novo Nordisk Research Centre China CA, Beijing, China
| | - John A Hamilton
- Department of Medicine, The Royal Melbourne Hospital, The University of Melbourne, Parkville, Victoria, Australia
| | - Olle Bjørkdahl
- Biopharmaceutical Research Unit, Novo Nordisk A/S, Måløv, Denmark
| | | | - Svetlana Panina
- Biopharmaceutical Research Unit, Novo Nordisk A/S, Måløv, Denmark
| |
Collapse
|
247
|
Immunomodulatory Effects of Chitotriosidase Enzyme. Enzyme Res 2016; 2016:2682680. [PMID: 26881065 PMCID: PMC4735922 DOI: 10.1155/2016/2682680] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2015] [Accepted: 12/16/2015] [Indexed: 01/14/2023] Open
Abstract
Chitotriosidase enzyme (EC: 3.2.1.14) is the major active chitinase in the human body. It is produced mainly by activated macrophages, in which its expression is regulated by multiple intrinsic and extrinsic signals. Chitotriosidase was confirmed as essential element in the innate immunity against chitin containing organisms such as fungi and protozoa; however, its immunomodulatory effects extend far beyond innate immunity. In the current review, we will try to explore the expanding spectrum of immunological roles played by chitotriosidase enzyme in human health and disease and will discuss its up-to-date clinical value.
Collapse
|
248
|
Shu J, He X, Zhang L, Li H, Wang P, Huang X. Human amnion mesenchymal cells inhibit lipopolysaccharide-induced TNF-α and IL-1β production in THP-1 cells. Biol Res 2015; 48:69. [PMID: 26700004 PMCID: PMC4690291 DOI: 10.1186/s40659-015-0062-3] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2014] [Accepted: 12/15/2015] [Indexed: 01/06/2023] Open
Abstract
Background Human amnion mesenchymal cells (hAMCs), isolated from the amniotic membrane of human placenta, are a unique population of mesenchymal stem cells. Recent studies demonstrated that hAMCs could inhibit the activities and functions of several immune cells. However, their effect on inflammatory macrophages is largely unknown. This study investigated the effect of hAMCs on expression of inflammatory cytokines and mitogen-activated protein kinases (MAPKs)/NF-κB pathway in human THP-1 macrophages induced by lipopolysaccharide (LPS). Results The levels of TNF-α and IL-1β secreted by LPS- stimulated THP-1 cells were increased significantly compared with those in the control group. After co-culture with different numbers of hAMCs, the levels of TNF-α and IL-1β in LPS-stimulated THP-1 cells were significantly reduced compared with the LPS group. The mRNA expression of TNF-α and IL-1β were also markedly inhibited. Moreover, treating LPS-stimulated THP-1 cells with hAMCs supernatants could also suppress TNF-α and IL-1β production in THP-1 cells. Important signaling pathways involved in the production of TNF-α and IL-1β were affected by hAMCs co-culture: hAMCs remarkably suppressed NF-κB activation and down-regulated the phosphorylation of ERK and JNK in LPS- stimulated THP-1 cells. Conclusions Human amnion mesenchymal cells inhibited the production of TNF-α and IL-1β secreted by LPS-stimulated THP-1 cells, partly through the suppression of NF-κB activation and ERK and JNK phosphorylation.
Collapse
Affiliation(s)
- Jun Shu
- Institute of Clinical Medical Science, China-Japan Friendship Hospital, 100029, Beijing, China.
| | - Xiaojuan He
- Institute of Basic Research in Clinical Medicine, China Academy of Chinese Medical Sciences, 100700, Beijing, China.
| | - Lan Zhang
- Institute of Clinical Medical Science, China-Japan Friendship Hospital, 100029, Beijing, China.
| | - Hong Li
- Institute of Clinical Medical Science, China-Japan Friendship Hospital, 100029, Beijing, China.
| | - Ping Wang
- Institute of Clinical Medical Science, China-Japan Friendship Hospital, 100029, Beijing, China.
| | - Xiaojie Huang
- Institute of Clinical Medical Science, China-Japan Friendship Hospital, 100029, Beijing, China.
| |
Collapse
|
249
|
Schultze JL, Schmidt SV. Molecular features of macrophage activation. Semin Immunol 2015; 27:416-23. [DOI: 10.1016/j.smim.2016.03.009] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/07/2015] [Accepted: 03/16/2016] [Indexed: 10/22/2022]
|
250
|
Anti-inflammatory properties of mutolide isolated from the fungus Lepidosphaeria species (PM0651419). SPRINGERPLUS 2015; 4:706. [PMID: 26618095 PMCID: PMC4653127 DOI: 10.1186/s40064-015-1493-6] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/23/2015] [Accepted: 10/30/2015] [Indexed: 02/08/2023]
Abstract
Mutolide an anti-inflammatory compound was isolated from the coprophilous fungus Lepidosphaeria sp. (PM0651419). The compound mitigated LPS-induced secretion of pro-inflammatory cytokines TNF-α and IL-6 from THP-1 cells as well as human peripheral blood mononuclear cells (hPBMCs). Mutolide also inhibited secretion of another pro-inflammatory cytokine IL-17 from anti-hCD3/anti-hCD28 stimulated hPBMCs. NF-κB is the major transcription factor involved in the secretion of pro-inflammatory cytokines including IL-17. Mechanistic evaluations revealed that mutolide inhibited induced NF-κB activation and translocation from cytoplasm into the nucleus. However, mutolide did not significantly affect activity of p38 MAPK enzyme, a serine/threonine kinase involved in cell cycle proliferation and cytokine secretion. These results indicate that mutolide may exert its anti-inflammatory effect via NF-κB inhibition. Oral administration of mutolide at 100 mg/kg showed significant inhibition of LPS-induced release of TNF-α from Balb/c mice in an acute model of inflammation. Our results highlight the anti-inflammatory properties of mutolide and suggest that further evaluation in a chronic model of inflammation is required to confirm the potential of mutolide as a druggable candidate for the treatment of inflammatory diseases.
Collapse
|