201
|
Pastore A, Piemonte F. Protein glutathionylation in cardiovascular diseases. Int J Mol Sci 2013; 14:20845-76. [PMID: 24141185 PMCID: PMC3821647 DOI: 10.3390/ijms141020845] [Citation(s) in RCA: 69] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2013] [Revised: 10/02/2013] [Accepted: 10/08/2013] [Indexed: 02/07/2023] Open
Abstract
The perturbation of thiol-disulfide homeostasis is an important consequence of many diseases, with redox signals implicated in several physio-pathological processes. A prevalent form of cysteine modification is the reversible formation of protein mixed disulfides with glutathione (S-glutathionylation). The abundance of glutathione in cells and the ready conversion of sulfenic acids to S-glutathione mixed disulfides supports the reversible protein S-glutathionylation as a common feature of redox signal transduction, able to regulate the activities of several redox sensitive proteins. In particular, protein S-glutathionylation is emerging as a critical signaling mechanism in cardiovascular diseases, because it regulates numerous physiological processes involved in cardiovascular homeostasis, including myocyte contraction, oxidative phosphorylation, protein synthesis, vasodilation, glycolytic metabolism and response to insulin. Thus, perturbations in protein glutathionylation status may contribute to the etiology of many cardiovascular diseases, such as myocardial infarction, cardiac hypertrophy and atherosclerosis. Various reports show the importance of oxidative cysteine modifications in modulating cardiovascular function. In this review, we illustrate tools and strategies to monitor protein S-glutathionylation and describe the proteins so far identified as glutathionylated in myocardial contraction, hypertrophy and inflammation.
Collapse
Affiliation(s)
- Anna Pastore
- Laboratory of Biochemistry, Bambino Gesù Children’s Hospital, IRCCS, 00165 Rome, Italy; E-Mail:
| | - Fiorella Piemonte
- Unit of Neuromuscular and Neurodegenerative Diseases, Bambino Gesù Children’s Hospital, IRCCS, 00165 Rome, Italy
| |
Collapse
|
202
|
Chatzopoulou M, Pegklidou K, Papastavrou N, Demopoulos VJ. Development of aldose reductase inhibitors for the treatment of inflammatory disorders. Expert Opin Drug Discov 2013; 8:1365-80. [PMID: 24090200 DOI: 10.1517/17460441.2013.843524] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
INTRODUCTION Accumulating evidence attributes a significant role to aldose reductase (ALR2) in the pathogenesis of several inflammatory pathologies. Aldose reductase inhibitors (ARIs) were found to attenuate reactive oxygen species (ROS) production both in vitro and in vivo. Thus, they disrupt signaling cascades that lead to the production of cytokines/chemokines, which induce and exacerbate inflammation. As a result, ARIs might hold a significant therapeutic potential as alternate anti-inflammatory drugs. AREAS COVERED The authors present a comprehensive review of the current data that support the central role of ALR2 in several inflammatory pathologies (i.e., diabetes, cancer, sepsis, asthma and ocular inflammation). Further, the authors describe the potential underlying molecular mechanisms and provide a commentary on the status of ARIs in this field. EXPERT OPINION It is important that future efforts focus on delineating all the steps of the molecular mechanism that implicates ALR2 in inflammatory pathologies. At the same time, utilizing the previous efforts in the field of ARIs, several candidates that have been proven safe in the clinic may be evaluated for their clinical significance as anti-inflammatory medication. Finally, structurally novel ARIs, designed to target specifically the proinflammatory subpocket of ALR2, should be pursued.
Collapse
Affiliation(s)
- Maria Chatzopoulou
- Aristotle University of Thessaloniki, School of Pharmacy, Department of Pharmaceutical Chemistry , 54124 Thessaloniki , Greece ;
| | | | | | | |
Collapse
|
203
|
Shoeb M, Ramana KV, Srivastava SK. Aldose reductase inhibition enhances TRAIL-induced human colon cancer cell apoptosis through AKT/FOXO3a-dependent upregulation of death receptors. Free Radic Biol Med 2013; 63:280-90. [PMID: 23732517 PMCID: PMC3729926 DOI: 10.1016/j.freeradbiomed.2013.05.039] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/30/2012] [Revised: 05/10/2013] [Accepted: 05/24/2013] [Indexed: 12/26/2022]
Abstract
One of the major problems associated with the chemotherapy of tumor necrosis factor (TNF)-related apoptosis-inducing ligand (TRAIL) that selectively kills tumor cells is decreased drug resistance. This warranted the development of safe novel pharmacological agents that could sensitize the tumor cells to TRAIL. Herein, we examined the role of aldose reductase (AR) in sensitizing cancer cells to TRAIL and potentiating TRAIL-induced apoptosis of human colon cancer cells. We demonstrate that AR inhibition potentiates TRAIL-induced cytotoxicity in cancer cells by upregulation of both death receptor (DR)-5 and DR4. Knockdown of DR5 and DR4 significantly (>85%) reduced the sensitizing effect of the AR inhibitor fidarestat on TRAIL-induced apoptosis. Further, AR inhibition also downregulates cell survival proteins (Bcl-xL, Bcl-2, survivin, XIAP, and FLIP) and upregulates the expression of proapoptotic proteins such as Bax and alters mitochondrial membrane potential, leading to cytochrome c release, caspases-3 activation, and PARP cleavage. We found that AR inhibition regulates AKT/PI3K-dependent activation of forkhead transcription factor FOXO3a. Knockdown of FOXO3a significantly (>80%) abolished AR inhibition-induced upregulation of DR5 and DR4 and apoptosis in colon cancer cells. Overall, our results show that fidarestat potentiates TRAIL-induced apoptosis through downregulation of cell survival proteins and upregulation of death receptors via activation of the AKT/FOXO3a pathway.
Collapse
Affiliation(s)
- Mohammad Shoeb
- Department of Biochemistry and Molecular Biology, University of Texas Medical Branch, Galveston, Texas, 77555
| | - Kota V Ramana
- Department of Biochemistry and Molecular Biology, University of Texas Medical Branch, Galveston, Texas, 77555
| | - Satish K Srivastava
- Department of Biochemistry and Molecular Biology, University of Texas Medical Branch, Galveston, Texas, 77555
| |
Collapse
|
204
|
Del-Corso A, Balestri F, Di Bugno E, Moschini R, Cappiello M, Sartini S, La-Motta C, Da-Settimo F, Mura U. A new approach to control the enigmatic activity of aldose reductase. PLoS One 2013; 8:e74076. [PMID: 24019949 PMCID: PMC3760808 DOI: 10.1371/journal.pone.0074076] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2013] [Accepted: 07/26/2013] [Indexed: 11/19/2022] Open
Abstract
Aldose reductase (AR) is an NADPH-dependent reductase, which acts on a variety of hydrophilic as well as hydrophobic aldehydes. It is currently defined as the first enzyme in the so-called polyol pathway, in which glucose is transformed into sorbitol by AR and then to fructose by an NAD(+)-dependent dehydrogenase. An exaggerated flux of glucose through the polyol pathway (as can occur in diabetes) with the subsequent accumulation of sorbitol, was originally proposed as the basic event in the aethiology of secondary diabetic complications. For decades this has meant targeting the enzyme for a specific and strong inhibition. However, the ability of AR to reduce toxic alkenals and alkanals, which are products of oxidative stress, poses the question of whether AR might be better classified as a detoxifying enzyme, thus raising doubts as to the unequivocal advantages of inhibiting the enzyme. This paper provides evidence of the possibility for an effective intervention on AR activity through an intra-site differential inhibition. Examples of a new generation of aldose reductase "differential" inhibitors (ARDIs) are presented, which can preferentially inhibit the reduction of either hydrophilic or hydrophobic substrates. Some selected inhibitors are shown to preferentially inhibit enzyme activity on glucose or glyceraldehyde and 3-glutathionyl-4-hydroxy-nonanal, but are less effective in reducing 4-hydroxy-2-nonenal. We question the efficacy of D, L-glyceraldehyde, the substrate commonly used in in vitro inhibition AR studies, as an in vitro reference AR substrate when the aim of the investigation is to impair glucose reduction.
Collapse
Affiliation(s)
- Antonella Del-Corso
- Biochemistry Unit at the Department of Biology, University of Pisa, Pisa, Italy
| | - Francesco Balestri
- Biochemistry Unit at the Department of Biology, University of Pisa, Pisa, Italy
| | - Elisa Di Bugno
- Biochemistry Unit at the Department of Biology, University of Pisa, Pisa, Italy
| | - Roberta Moschini
- Biochemistry Unit at the Department of Biology, University of Pisa, Pisa, Italy
| | - Mario Cappiello
- Biochemistry Unit at the Department of Biology, University of Pisa, Pisa, Italy
| | - Stefania Sartini
- Department of Pharmaceutical Sciences, University of Pisa, Pisa, Italy
| | | | | | - Umberto Mura
- Biochemistry Unit at the Department of Biology, University of Pisa, Pisa, Italy
| |
Collapse
|
205
|
Lu Q, Yang T, Zhang M, Du L, Liu L, Zhang N, Guo H, Zhang F, Hu G, Yin X. Preventative Effects ofGinkgo bilobaExtract (EGb761) on High Glucose-Cultured Opacity of Rat Lens. Phytother Res 2013; 28:767-73. [DOI: 10.1002/ptr.5060] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2013] [Revised: 07/09/2013] [Accepted: 07/29/2013] [Indexed: 11/07/2022]
Affiliation(s)
- Qian Lu
- Jiangsu Key Laboratory of Neurodegeneration, Department of Pharmacology; Nanjing Medical University; Nanjing 210029 China
- Laboratory of New Drugs and Clinical Application; Xuzhou Medical College; Xuzhou 221004 China
| | - Tingting Yang
- Laboratory of New Drugs and Clinical Application; Xuzhou Medical College; Xuzhou 221004 China
| | - Mingzhu Zhang
- Laboratory of New Drugs and Clinical Application; Xuzhou Medical College; Xuzhou 221004 China
| | - Lei Du
- Laboratory of New Drugs and Clinical Application; Xuzhou Medical College; Xuzhou 221004 China
| | - Ling Liu
- Laboratory of New Drugs and Clinical Application; Xuzhou Medical College; Xuzhou 221004 China
| | - Nan Zhang
- Laboratory of New Drugs and Clinical Application; Xuzhou Medical College; Xuzhou 221004 China
| | - Hao Guo
- Laboratory of New Drugs and Clinical Application; Xuzhou Medical College; Xuzhou 221004 China
| | - Fan Zhang
- Laboratory of New Drugs and Clinical Application; Xuzhou Medical College; Xuzhou 221004 China
| | - Gang Hu
- Jiangsu Key Laboratory of Neurodegeneration, Department of Pharmacology; Nanjing Medical University; Nanjing 210029 China
| | - Xiaoxing Yin
- Jiangsu Key Laboratory of Neurodegeneration, Department of Pharmacology; Nanjing Medical University; Nanjing 210029 China
- Laboratory of New Drugs and Clinical Application; Xuzhou Medical College; Xuzhou 221004 China
| |
Collapse
|
206
|
1-Hydroxypyrazole as a bioisostere of the acetic acid moiety in a series of aldose reductase inhibitors. Bioorg Med Chem 2013; 21:4951-7. [DOI: 10.1016/j.bmc.2013.06.062] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2013] [Revised: 06/22/2013] [Accepted: 06/26/2013] [Indexed: 12/13/2022]
|
207
|
Sankeshi V, Kumar PA, Naik RR, Sridhar G, Kumar MP, Gopal VVH, Raju TN. Inhibition of aldose reductase by Aegle marmelos and its protective role in diabetic cataract. JOURNAL OF ETHNOPHARMACOLOGY 2013; 149:215-221. [PMID: 23827758 DOI: 10.1016/j.jep.2013.06.025] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/09/2012] [Revised: 05/30/2013] [Accepted: 06/14/2013] [Indexed: 06/02/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Aegle marmelos (L.) Corr. Serr. (Aegle marmelos) leaves were extensively used in the Ayurvedic, Unani and Siddha systems of Indian medicine as an anti-diabetic agent, which serves as hypoglycemic agent. However, the significance of this plant on secondary complications of diabetes such as cataract remained unknown. The aim of the study was to investigate the possible anti-cataractous activity of Aegle marmelos against streptozotocin (STZ) induced diabetic cataract in rats. MATERIALS AND METHODS Aegle marmelos leaf extract was prepared using three different solvents (petroleum ether, ethyl acetate and methanol) and tested for inhibition against rat lens aldose reductase (AR), a key enzyme of polyol pathway. Furthermore, the pharmacological potential of Aegle marmelos extract was investigated against osmotic stress induced opacification of lens in ex vivo organ culture and streptozotocin (STZ) induced diabetic cataract in rats. RESULTS Ethyl acetate extract of Aegle marmelos inhibited rat lens AR in vitro with an IC50 value of ≈ 15 µg/ml. This extract also prevented the hyperglycemia induced increase in AR activity, sorbitol accumulation and opacification of rat lens in ex vivo lens organ culture. Supplementation of ethyl acetate extract of Aegle marmelos to STZ-induced diabetic rats decreased the blood glucose levels due to hyperglycemia and inhibited the AR activity and delayed cataract progression in dose dependent manner. α-crystallin isolated from diabetic rats fed with Aegle marmelos showed improved chaperone activity than that of isolated from rats naïve to Aegle marmelos. CONCLUSION This study indicates that ethyl acetate extract of Aegle marmelos has pharmacologically active components with a potential to inhibit rat lens AR and consequential decrease in osmotic stress. Besides this, the present study also demonstrates that the extract prevented loss of antioxidants contributing to the integrity of α-crystallin's chaperone activity and thereby delaying cataract.
Collapse
Affiliation(s)
- Venu Sankeshi
- Department of Zoology, Osmania University, Hyderabad 500007, India.
| | | | | | | | | | | | | |
Collapse
|
208
|
Li ZY, Gu J, Yan J, Wang JJ, Huang WH, Tan ZR, Zhou G, Chen Y, Zhou HH, Ouyang DS. Hypertensive Cardiac Remodeling Effects of Lignan Extracts from Eucommia ulmoides Oliv. Bark — A Famous Traditional Chinese Medicine. THE AMERICAN JOURNAL OF CHINESE MEDICINE 2013; 41:801-15. [PMID: 23895153 DOI: 10.1142/s0192415x13500547] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
The lignan extracts from the tree bark of Eucommia ulmoides Oliv., a famous traditional Chinese medicine, have been demonstrated to have inhibitory effects on aldose reductase activity in spontaneously hypertensive rat myocardium. This study was aimed to investigate the hypertensive cardiac remodeling effects of the lignan extracts together with epalrestat. Ten-week-old male spontaneously hypertensive rats were randomly divided into three groups (n = 12, each) and administered 100 mg/kg/d of captopril (angiotensin converting enzyme inhibitor), 100 mg/kg/d of epalrestat (aldose reductase inhibitor) or 300 mg/kg/d of lignan extracts by gavage for 16 weeks. Sex-, age-, and number-matched normotensive Wistar Kyoto rats with spontaneously hypertensive rats were treated with distilled water (vehicle) as controls. Systolic blood pressures were measured periodically. Echocardiography examination was taken when rats were 24 weeks old. We found that both captopril and lignan extracts lowered blood pressure, and inhibited aldose reductase activity similarly to epalrestat. Echocardiography examination and histomorphometry indices were improved in all treated groups (p < 0.05). Therefore, lignan extracts could prevent hypertensive cardiac remodeling, which is likely related to aldose reductase inhibition.
Collapse
Affiliation(s)
- Zhen-Yu Li
- Institute of Clinical Pharmacology, Central South University, Changsha, Hunan, China
- Department of Cardiology, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Juan Gu
- 521 Hospital, Research Institute of China Weapons Industry, Xi'an, Shanxi, China
| | - Jin Yan
- The Third Affiliated Teaching Hospital, Central South University, Changsha, Hunan, China
| | - Jun-Jie Wang
- Department of Pharmacology, Xiangnan University, Chenzhou, Hunan, China
| | - Wei-Hua Huang
- Institute of Clinical Pharmacology, Central South University, Changsha, Hunan, China
| | - Zhi-Rong Tan
- Institute of Clinical Pharmacology, Central South University, Changsha, Hunan, China
| | - Gan Zhou
- Institute of Clinical Pharmacology, Central South University, Changsha, Hunan, China
| | - Yao Chen
- Institute of Clinical Pharmacology, Central South University, Changsha, Hunan, China
| | - Hong-Hao Zhou
- Institute of Clinical Pharmacology, Central South University, Changsha, Hunan, China
| | - Dong-Sheng Ouyang
- Institute of Clinical Pharmacology, Central South University, Changsha, Hunan, China
| |
Collapse
|
209
|
Saxena A, Shoeb M, Ramana KV, Srivastava SK. Aldose reductase inhibition suppresses colon cancer cell viability by modulating microRNA-21 mediated programmed cell death 4 (PDCD4) expression. Eur J Cancer 2013; 49:3311-9. [PMID: 23827854 DOI: 10.1016/j.ejca.2013.05.031] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2013] [Revised: 05/02/2013] [Accepted: 05/30/2013] [Indexed: 12/11/2022]
Abstract
Inhibition of polyol pathway enzyme aldose reductase (AR) has been shown to prevent colon cancer cells growth in culture and in nude mice xenografts. However, the role of AR in the mediation of growth factor-induced colon cancer cells growth is not well understood. In this study, we have investigated how AR inhibition prevents tumour growth via regulation of microRNA (miR)-21-mediated programmed cell death 4 (PDCD4) expression in colon cancer cells in in vitro and in vivo. Treatment of colon cancer cells (HT29, SW480 and Caco-2) with epidermal growth factor (EGF) caused increased expression of miR-21 and inhibition of AR prevented it. Further, AR inhibition also increased PDCD4, a putative target of miR-21 in human colon cancer cells. Inhibition of AR also prevented EGF-induced phosphorylation of PDCD4. Treatment of HT29 cells with AR inhibitor, fidarestat, prevented the EGF-induced phosphorylation of mammalian target of rapamycin (mTOR), regulatory associated protein of mTOR (Raptor), eukaryotic initiation factor 4E (eIF4E), p70 S6 kinase (S6K) and eukaryotic initiation factor 4E (eIF4E)-binding protein 1 (4E-BP1) and increased the phosphorylation of 5' adenosine monophosphate-activated protein kinase (AMPK). Similarly, in nude mice xenograft tissues, PDCD4 and 4E-BP1 levels were significantly higher in AR inhibitor-treated mice compared to controls. Collectively, these results indicate that AR inhibition prevents growth factor-induced colon cancer growth by down-regulating miR-21 expression and increasing PDCD4 levels through the reactive oxygen species (ROS)/AMPK/mTOR/AP1/4E-BP1 pathway.
Collapse
Affiliation(s)
- Ashish Saxena
- Department of Biochemistry and Molecular Biology, University of Texas Medical Branch, Galveston, TX 77555, United States
| | | | | | | |
Collapse
|
210
|
Horáková L, Strosova MK, Spickett CM, Blaskovic D. Impairment of calcium ATPases by high glucose and potential pharmacological protection. Free Radic Res 2013; 47 Suppl 1:81-92. [PMID: 23710650 DOI: 10.3109/10715762.2013.807923] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
The review deals with impairment of Ca(2+)-ATPases by high glucose or its derivatives in vitro, as well as in human diabetes and experimental animal models. Acute increases in glucose level strongly correlate with oxidative stress. Dysfunction of Ca(2+)-ATPases in diabetic and in some cases even in nondiabetic conditions may result in nitration of and in irreversible modification of cysteine-674. Nonenyzmatic protein glycation might lead to alteration of Ca(2+)-ATPase structure and function contributing to Ca(2+) imbalance and thus may be involved in development of chronic complications of diabetes. The susceptibility to glycation is probably due to the relatively high percentage of lysine and arginine residues at the ATP binding and phosphorylation domains. Reversible glycation may develop into irreversible modifications (advanced glycation end products, AGEs). Sites of SERCA AGEs are depicted in this review. Finally, several mechanisms of prevention of Ca(2+)-pump glycation, and their advantages and disadvantages are discussed.
Collapse
Affiliation(s)
- L Horáková
- Institute of Experimental Pharmacology and Toxicology, SAS, Bratislava, Slovakia.
| | | | | | | |
Collapse
|
211
|
Chapple SJ, Cheng X, Mann GE. Effects of 4-hydroxynonenal on vascular endothelial and smooth muscle cell redox signaling and function in health and disease. Redox Biol 2013; 1:319-31. [PMID: 24024167 PMCID: PMC3757694 DOI: 10.1016/j.redox.2013.04.001] [Citation(s) in RCA: 329] [Impact Index Per Article: 27.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2013] [Accepted: 04/21/2013] [Indexed: 12/04/2022] Open
Abstract
4-hydroxynonenal (HNE) is a lipid hydroperoxide end product formed from the oxidation of n-6 polyunsaturated fatty acids. The relative abundance of HNE within the vasculature is dependent not only on the rate of lipid peroxidation and HNE synthesis but also on the removal of HNE adducts by phase II metabolic pathways such as glutathione-S-transferases. Depending on its relative concentration, HNE can induce a range of hormetic effects in vascular endothelial and smooth muscle cells, including kinase activation, proliferation, induction of phase II enzymes and in high doses inactivation of enzymatic processes and apoptosis. HNE also plays an important role in the pathogenesis of vascular diseases such as atherosclerosis, diabetes, neurodegenerative disorders and in utero diseases such as pre-eclampsia. This review examines the known production, metabolism and consequences of HNE synthesis within vascular endothelial and smooth muscle cells, highlighting alterations in mitochondrial and endoplasmic reticulum function and their association with various vascular pathologies. HNE is a lipid peroxidation endproduct regulating vascular redox signaling. HNE detoxification is tightly regulated in vascular and other cell types. Elevated HNE levels are associated with various vascular diseases.
Collapse
Key Words
- 15d-PGJ2, 15-deoxy-Delta (12,14) prostaglandin-J2
- 4-hydroxynonenal
- AP-1, Activator protein-1
- AR, Aldose reductase
- ARE, Antioxidant response element
- ATF6, Activating transcription factor 6
- Akt, Protein kinase B
- BAEC, Bovine aortic endothelial cells
- BH4, Tetrahydrobiopterin
- BLMVEC, Bovine lung microvascular vein endothelial cells
- BPAEC, Bovine pulmonary arterial endothelial cells
- BTB, Broad complex Tramtrack and Bric–brac domain
- CHOP, C/EBP-homologous protein
- CREB, cAMP response element-binding protein
- EGFR, Epidermal growth factor receptor
- ER, Endoplasmic reticulum
- ERAD, Endoplasmic reticulum assisted degradation
- ERK1/2, Extracellular signal-regulated kinase 1/2
- Elk1, ETS domain-containing protein
- Endothelial cells
- EpRE, Electrophile response element
- FAK, Focal adhesion kinase
- FAP, Familial amyloidotic polyneuropathy
- GCLC, Glutamate cysteine ligase catalytic subunit
- GCLM, Glutamate cysteine ligase modifier subunit
- GS-DHN, Glutathionyl-1,4 dihydroxynonene
- GS-HNE, HNE-conjugates
- GSH, Glutathione
- GST, Glutathione-S-transferase
- GTPCH, Guanosine triphosphate cyclohydrolase I
- HASMC, Human aortic smooth muscle cells
- HCSMC, Human coronary smooth muscle cells
- HERP, Homocysteine inducible ER protein
- HMEC, Human microvascular endothelial cells
- HNE, 4-hydroxynonenal
- HO-1, Heme oxygenase-1
- HUVEC, Human umbilical vein endothelial cells
- Hsp-70/72/90, Heat shock proteins-70/ -72/ -90
- IRE1, Inositol requiring enzyme 1 IRE1
- IVR, Central intervening region
- JNK, c-jun N-terminal kinase
- Keap1, Kelch-like ECH-associated protein 1
- MASMC, Mouse aortic smooth muscle cells
- MEK1/2, Mitogen activated protein kinase kinase 1/2
- MMP-1/2, Matrix metalloproteinase-1/ -2
- MPEC, Mouse pancreatic islet endothelial cells
- NAC, N-acetylcysteine
- NFκB, Nuclear factor kappa B
- NO, Nitric oxide
- NQO1, NAD(P)H quinone oxidoreductase
- Nrf2
- Nrf2, Nuclear factor-E2-related factor 2
- PCEC, Porcine cerebral endothelial cells
- PDGF, Platelet-derived growth factor
- PDI, Protein disulfide isomerases
- PERK, Protein kinase-like endoplasmic reticulum kinase
- PKC, Protein kinase C
- PUFAs, Polyunsaturated fatty acids
- RASMC, Rat aortic smooth muscle cells
- ROS, Reactive oxygen species
- RVSMC, Rat vascular smooth muscle cells
- Redox signaling
- SMC, Smooth muscle cell
- TKR, Tyrosine kinase receptor
- UPR, Unfolded protein response
- Vascular biology
- Vascular smooth muscle cells
- eNOS, Endothelial nitric oxide synthase
- elF2α, Eukaryotic translation initiation factor 2α
- iNOS, Inducible nitric oxide synthase
- oxLDL, Oxidized low density lipoprotein
- tBHP, Tert-butylhydroperoxide
- xCT, cystine/glutamate amino acid transporter
Collapse
Affiliation(s)
- Sarah J Chapple
- Cardiovascular Division, British Heart Foundation Centre of Research Excellence, School of Medicine, King's College London, 150 Stamford Street, London SE1 9NH, U.K
| | | | | |
Collapse
|
212
|
Pathania S, Randhawa V, Bagler G. Prospecting for novel plant-derived molecules of Rauvolfia serpentina as inhibitors of Aldose Reductase, a potent drug target for diabetes and its complications. PLoS One 2013; 8:e61327. [PMID: 23613832 PMCID: PMC3629236 DOI: 10.1371/journal.pone.0061327] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2012] [Accepted: 03/07/2013] [Indexed: 12/23/2022] Open
Abstract
Aldose Reductase (AR) is implicated in the development of secondary complications of diabetes, providing an interesting target for therapeutic intervention. Extracts of Rauvolfia serpentina, a medicinal plant endemic to the Himalayan mountain range, have been known to be effective in alleviating diabetes and its complications. In this study, we aim to prospect for novel plant-derived inhibitors from R. serpentina and to understand structural basis of their interactions. An extensive library of R. serpentina molecules was compiled and computationally screened for inhibitory action against AR. The stability of complexes, with docked leads, was verified using molecular dynamics simulations. Two structurally distinct plant-derived leads were identified as inhibitors: indobine and indobinine. Further, using these two leads as templates, 16 more leads were identified through ligand-based screening of their structural analogs, from a small molecules database. Thus, we obtained plant-derived indole alkaloids, and their structural analogs, as potential AR inhibitors from a manually curated dataset of R. serpentina molecules. Indole alkaloids reported herein, as a novel structural class unreported hitherto, may provide better insights for designing potential AR inhibitors with improved efficacy and fewer side effects.
Collapse
Affiliation(s)
- Shivalika Pathania
- Biotechnology Division, Institute of Himalayan Bioresource Technology, Council of Scientific and Industrial Research, Palampur, Himachal Pradesh, India
| | - Vinay Randhawa
- Biotechnology Division, Institute of Himalayan Bioresource Technology, Council of Scientific and Industrial Research, Palampur, Himachal Pradesh, India
| | - Ganesh Bagler
- Biotechnology Division, Institute of Himalayan Bioresource Technology, Council of Scientific and Industrial Research, Palampur, Himachal Pradesh, India
| |
Collapse
|
213
|
Regulation of NF-κB-induced inflammatory signaling by lipid peroxidation-derived aldehydes. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2013; 2013:690545. [PMID: 23710287 PMCID: PMC3654319 DOI: 10.1155/2013/690545] [Citation(s) in RCA: 139] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/21/2013] [Accepted: 03/22/2013] [Indexed: 12/28/2022]
Abstract
Oxidative stress plays a critical role in the pathophysiology of a wide range of diseases including cancer. This view has broadened significantly with the recent discoveries that reactive oxygen species initiated lipid peroxidation leads to the formation of potentially toxic lipid aldehyde species such as 4-hydroxy-trans-2-nonenal (HNE), acrolein, and malondialdehyde which activate various signaling intermediates that regulate cellular activity and dysfunction via a process called redox signaling. The lipid aldehyde species formed during synchronized enzymatic pathways result in the posttranslational modification of proteins and DNA leading to cytotoxicity and genotoxicty. Among the lipid aldehyde species, HNE has been widely accepted as a most toxic and abundant lipid aldehyde generated during lipid peroxidation. HNE and its glutathione conjugates have been shown to regulate redox-sensitive transcription factors such as NF-κB and AP-1 via signaling through various protein kinase cascades. Activation of redox-sensitive transcription factors and their nuclear localization leads to transcriptional induction of several genes responsible for cell survival, differentiation, and death. In this review, we describe the mechanisms by which the lipid aldehydes transduce activation of NF-κB signaling pathways that may help to develop therapeutic strategies for the prevention of a number of inflammatory diseases.
Collapse
|
214
|
Saxena A, Tammali R, Ramana KV, Srivastava SK. Aldose reductase inhibition prevents colon cancer growth by restoring phosphatase and tensin homolog through modulation of miR-21 and FOXO3a. Antioxid Redox Signal 2013; 18:1249-62. [PMID: 22978663 PMCID: PMC3584509 DOI: 10.1089/ars.2012.4643] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
AIMS We have shown earlier that inhibition of aldose reductase (AR), an oxidative stress-response protein, prevents colon cancer cell growth in vitro and in vivo. Changes in microribonucleic acid (miR) expression can contribute to cancer by modulating the functional expression of critical genes involved in cancer growth and metastasis. However, the molecular mechanisms by which AR regulates miR expression and their dependent mitogenic effects in cancer cells are not known. Therefore, we investigated how AR regulates growth factor-induced expression of miRs and growth of colon cancer cells. RESULTS Inhibition of AR significantly downregulated growth factor-induced miR-21 expression in human colon cancer cells, HT29, SW480, and Caco-2. Further, AR inhibition also increased phosphatase and tensin homolog (PTEN) (a direct target of miR-21) and forkhead box O3A (FOXO3a) in colon cancer cells. Our results obtained with HT29 cells ablated with FOXO3a siRNA showed increased activator protein-1 (AP-1) activation and miR-21 expression, indicating that FOXO3a represses miR-21 via AP-1 inactivation. Inhibition of AR also prevented the epidermal growth factor-induced phosphorylation of phosphatidylinositol 3-kinase (PI3K), serine/threonine kinase (AKT), c-Jun, c-Fos, PTEN, and FOXO3a, and deoxyribonucleic acid (DNA)-binding activity of AP-1. More importantly, in human colon adenocarcinoma xenograft tissues, miR-21 expression was lower, and PTEN and FOXO3a levels were significantly higher in AR inhibitor-treated mice compared to controls. INNOVATION These findings demonstrate a novel role of AR in the regulation of miR-21 and its target PTEN in growth factor-induced colon cancer cell growth. CONCLUSIONS Collectively, these results show a novel role of AR in mediation of growth factor-induced colon cancer growth by modulating miR-21, PTEN, and FOXO3a expression through reactive oxygen species (ROS)/PI3K/AKT/AP-1.
Collapse
Affiliation(s)
- Ashish Saxena
- Department of Biochemistry and Molecular Biology, University of Texas Medical Branch, Galveston, Texas 77555, USA
| | | | | | | |
Collapse
|
215
|
Kaur A, Singh B, Jaggi AS. Synthesis and evaluation of novel 2,3,5-triaryl-4H,2,3,3a,5,6,6a-hexahydropyrrolo[3,4-d]isoxazole-4,6-diones for advanced glycation end product formation inhibitory activity. Bioorg Med Chem Lett 2013; 23:797-801. [DOI: 10.1016/j.bmcl.2012.11.080] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2012] [Revised: 11/19/2012] [Accepted: 11/20/2012] [Indexed: 01/03/2023]
|
216
|
Ge SL, Wang H, Wang ZF, Cheng S, Wang QJ, He PG, Fang YZ. Sensitive measurement of polyols in urine by capillary zone electrophoresis coupled with amperometric detection using on-column complexation with borate. J Chromatogr B Analyt Technol Biomed Life Sci 2012; 915-916:39-45. [PMID: 23328250 DOI: 10.1016/j.jchromb.2012.12.017] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2012] [Revised: 12/11/2012] [Accepted: 12/18/2012] [Indexed: 01/08/2023]
Abstract
Little is known about human polyol metabolism, but recent studies indicate that abnormal polyol concentrations in body fluids are related to several diseases. In this study, a rapid and sensitive method for the determination of seven major polyols in urine including two groups of polyol isomers, C5-polyols (Rib+Arb+Xyl) and C6-polyols (Sor+Gal+Man), was developed using capillary zone electrophoresis coupled with amperometric detection (CZE-AD). The effects of the working electrode potential, pH, running buffer components and concentrations, separation voltage and injection times were investigated. Under the optimised conditions, seven types of polyols could be perfectly separated via the formation of anionic polyol-borate complexes in a borate buffer solution. Highly linear current responses to the polyol concentrations were obtained with good correlation (0.9984<R(2)<0.9997), and the limits of detection (LODs) ranged from 1.33×10(-6) to 5.8×10(-7) mol L(-1) (S/N=3). The proposed method has been successfully used to detect polyols in urinary samples from healthy subjects and diabetes patients, demonstrating accurate and reliable results. This method has potential applications in the recognition of inborn errors affecting polyol metabolism.
Collapse
Affiliation(s)
- Shu-li Ge
- Department of Chemistry, East China Normal University, 500 Dongchuan Road, Shanghai 200241, PR China
| | | | | | | | | | | | | |
Collapse
|
217
|
Holland RJ, Maciag AE, Kumar V, Shi L, Saavedra JE, Prud'homme RK, Chakrapani H, Keefer LK. Cross-linking protein glutathionylation mediated by O2-arylated bis-diazeniumdiolate "Double JS-K". Chem Res Toxicol 2012; 25:2670-7. [PMID: 23106594 PMCID: PMC3524378 DOI: 10.1021/tx3003142] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Attachment of glutathione (GSH) to cysteine residues in proteins (S-glutathionylation) is a reversible post-translational modification that can profoundly alter protein structure and function. Often serving in a protective role, for example, by temporarily saving protein thiols from irreversible oxidation and inactivation, glutathionylation can be identified and semiquantitatively assessed using anti-GSH antibodies, thought to be specific for recognition of the S-glutathionylation modification. Here, we describe an alternate mechanism of protein glutathionylation in which the sulfur atoms of the GSH and the protein's thiol group are covalently bound via a cross-linking agent, rather than through a disulfide bond. This form of thiol cross-linking has been shown to occur and has been confirmed by mass spectrometry at the solution chemistry level, as well as in experiments documenting the potent antiproliferative activity of the bis-diazeniumdiolate Double JS-K in H1703 cells in vitro and in vivo. The modification is recognized by the anti-GSH antibody as if it were authentic S-glutathionylation, requiring mass spectrometry to distinguish between them.
Collapse
Affiliation(s)
- Ryan J Holland
- Frederick National Laboratory for Cancer Research, Frederick, Maryland 21702, United States.
| | | | | | | | | | | | | | | |
Collapse
|
218
|
Avram SI, Crisan L, Pacureanu LM, Bora A, Seclaman E, Balint M, Kurunczi LG. Challenges in docking 2′-hydroxy and 2′,4′-dihydroxychalcones into the binding site of ALR2. Med Chem Res 2012. [DOI: 10.1007/s00044-012-0367-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
|
219
|
Volat FE, Pointud JC, Pastel E, Morio B, Sion B, Hamard G, Guichardant M, Colas R, Lefrançois-Martinez AM, Martinez A. Depressed levels of prostaglandin F2α in mice lacking Akr1b7 increase basal adiposity and predispose to diet-induced obesity. Diabetes 2012; 61:2796-806. [PMID: 22851578 PMCID: PMC3478517 DOI: 10.2337/db11-1297] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
Negative regulators of white adipose tissue (WAT) expansion are poorly documented in vivo. Prostaglandin F(2α) (PGF(2α)) is a potent antiadipogenic factor in cultured preadipocytes, but evidence for its involvement in physiological context is lacking. We previously reported that Akr1b7, an aldo-keto reductase enriched in adipose stromal vascular fraction but absent from mature adipocytes, has antiadipogenic properties possibly supported by PGF(2α) synthase activity. To test whether lack of Akr1b7 could influence WAT homeostasis in vivo, we generated Akr1b7(-/-) mice in 129/Sv background. Akr1b7(-/-) mice displayed excessive basal adiposity resulting from adipocyte hyperplasia/hypertrophy and exhibited greater sensitivity to diet-induced obesity. Following adipose enlargement and irrespective of the diet, they developed liver steatosis and progressive insulin resistance. Akr1b7 loss was associated with decreased PGF(2α) WAT contents. Cloprostenol (PGF(2α) agonist) administration to Akr1b7(-/-) mice normalized WAT expansion by affecting both de novo adipocyte differentiation and size. Treatment of 3T3-L1 adipocytes and Akr1b7(-/-) mice with cloprostenol suggested that decreased adipocyte size resulted from inhibition of lipogenic gene expression. Hence, Akr1b7 is a major regulator of WAT development through at least two PGF(2α)-dependent mechanisms: inhibition of adipogenesis and lipogenesis. These findings provide molecular rationale to explore the status of aldo-keto reductases in dysregulations of adipose tissue homeostasis.
Collapse
Affiliation(s)
- Fanny E. Volat
- Centre National de la Recherche Scientifique Unité Mixte de Recherche 6293/Institut National de la Santé et de la Recherche Médicale U1103–Génétique, Reproduction et Développement, Clermont Université, Aubière, France
| | - Jean-Christophe Pointud
- Centre National de la Recherche Scientifique Unité Mixte de Recherche 6293/Institut National de la Santé et de la Recherche Médicale U1103–Génétique, Reproduction et Développement, Clermont Université, Aubière, France
| | - Emilie Pastel
- Centre National de la Recherche Scientifique Unité Mixte de Recherche 6293/Institut National de la Santé et de la Recherche Médicale U1103–Génétique, Reproduction et Développement, Clermont Université, Aubière, France
| | - Béatrice Morio
- Institut National de la Recherche Agronomique Unité Mixte de Recherche 1019, Centre de Recherche en Nutrition Humaine Auvergne, Clermont-Ferrand, France
| | - Benoit Sion
- EA975, Biologie de la Reproduction, Faculté de Médecine, Université d’Auvergne, Clermont-Ferrand, France
| | - Ghislaine Hamard
- Plate-Forme de Recombinaison Homologue, Institut Cochin, Paris, France
| | - Michel Guichardant
- Institut National de la Santé et de la Recherche Médicale U870, Institut National de la Recherche Agronomique 1235, INSA-Lyon, RMND/Institut Multidisciplinaire de Biochimie des Lipides, Université de Lyon 1, Villeurbanne, France
| | - Romain Colas
- Institut National de la Santé et de la Recherche Médicale U870, Institut National de la Recherche Agronomique 1235, INSA-Lyon, RMND/Institut Multidisciplinaire de Biochimie des Lipides, Université de Lyon 1, Villeurbanne, France
| | - Anne-Marie Lefrançois-Martinez
- Centre National de la Recherche Scientifique Unité Mixte de Recherche 6293/Institut National de la Santé et de la Recherche Médicale U1103–Génétique, Reproduction et Développement, Clermont Université, Aubière, France
| | - Antoine Martinez
- Centre National de la Recherche Scientifique Unité Mixte de Recherche 6293/Institut National de la Santé et de la Recherche Médicale U1103–Génétique, Reproduction et Développement, Clermont Université, Aubière, France
- Corresponding author: Antoine Martinez,
| |
Collapse
|
220
|
Abstract
Pyridine nucleotides are abundant soluble coenzymes and they undergo reversible oxidation and reduction in several biological electron-transfer reactions. They are comprised of two mononucleotides, adenosine monophosphate and nicotinamide mononucleotide, and are present as oxidized and reduced nicotinamide adenine dinucleotides in their unphosphorylated (NAD(+) and NADH) and phosphorylated (NADP(+) and NADPH) forms. In the past, pyridine nucleotides were considered to be primarily electron-shuttling agents involved in supporting the activity of enzymes that catalyze oxidation-reduction reactions. However, it has recently been demonstrated that pyridine nucleotides and the balance between the oxidized and reduced forms play a wide variety of pivotal roles in cellular functions as important interfaces, beyond their coenzymatic activity. These include maintenance of redox status, cell survival and death, ion channel regulation, and cell signaling under normal and pathological conditions. Furthermore, targeting pyridine nucleotides could potentially provide therapeutically useful avenues for treating cardiovascular diseases. This review series will highlight the functional significance of pyridine nucleotides and underscore their physiological role in cardiovascular function and their clinical relevance to cardiovascular medicine.
Collapse
Affiliation(s)
- Michinari Nakamura
- Cardiovascular Research Institute, UMDNJ, New Jersey Medical School, 185 South Orange Ave, MSB G-609, Newark, NJ 07103, USA
| | | | | |
Collapse
|
221
|
Kawakubo K, Mori A, Sakamoto K, Nakahara T, Ishii K. GP-1447, an inhibitor of aldose reductase, prevents the progression of diabetic cataract in rats. Biol Pharm Bull 2012; 35:866-72. [PMID: 22687477 DOI: 10.1248/bpb.35.866] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
We examined the effects of GP-1447 (3-[(4,5,7-trifluorobenzothiazol-2-yl)methyl]-5-methylphenyl acetic acid) on existing cataracts and sorbitol content in the lens in rats with streptozotocin-induced diabetes. GP-1447 is an inhibitor of aldose reductase, which is the first enzyme in the polyol pathway. Cataracts in the central region of the lens were observed in 7 of 14 eyes (50%) by the fifth week after induction of diabetes, and development of mature cataracts was observed in most lenses by the ninth week. In diabetic rats that received GP-1447 treatment beginning in the fifth week after induction of diabetes, progression of cataracts was observed for 1 week after initiation of treatment. Thereafter, the severity of cataracts did not change substantially. Sorbitol levels in the lens peaked during the first week of diabetes, and this increase was maintained during the 9-week observation period. Elevated sorbitol levels in the lenses of diabetic rats gradually declined after GP-1447 treatment was started on the fifth week after induction of diabetes. Cataracts and sorbitol elevation were not observed in the lenses of controls or diabetic rats treated with GP-1447 immediately after induction of diabetes. These results suggest that the polyol pathway plays an important role in both the appearance and progression of cataracts in diabetic rats. Inhibition of aldose reductase could significantly prevent progression of existing cataracts.
Collapse
Affiliation(s)
- Ken Kawakubo
- Department of Molecular Pharmacology, School of Pharmaceutical Sciences, Kitasato University, Minato-ku, Tokyo, Japan
| | | | | | | | | |
Collapse
|
222
|
Chatzopoulou M, Alexiou P, Kotsampasakou E, Demopoulos VJ. Novel aldose reductase inhibitors: a patent survey (2006--present). Expert Opin Ther Pat 2012; 22:1303-23. [PMID: 22998509 DOI: 10.1517/13543776.2012.726615] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
INTRODUCTION Initially studied for its central role in the pathogenesis of chronic diabetic complications, aldose reductase (ALR2) gains more attention over the years as its implication in inflammatory diseases is being established, along with the therapeutic potential of its inhibitors. AREAS COVERED Reviewing the patents that were published since 2006, it is getting clear that the search for new chemical entities has subsided, giving rise to natural products and plant extracts with ALR2 inhibitory activity. Other aspects that were prominent were the search for proper forms of known inhibitors, in a way to improve their impaired physicochemical profile, as well as potential combination therapies with other compounds of pharmaceutical interest. On the spotlight were patents enhancing the therapeutic usage of aldose reductase inhibitors (ARIs) to various pathological conditions including cancer and inflammation-mediated diseases such as sepsis, asthma, and cancer. EXPERT OPINION Although new chemical entities are scarcely registered and patented after many years of inconclusive clinical trials, the involvement of ALR2 to inflammatory pathologies might renew the interest in the field of ARIs.
Collapse
Affiliation(s)
- Maria Chatzopoulou
- Aristotle University of Thessaloniki, School of Pharmacy, Department of Pharmaceutical Chemistry, 54124 Thessaloniki, Greece
| | | | | | | |
Collapse
|
223
|
Wang F, Tian F, Whitman SA, Zhang DD, Nishinaka T, Zhang N, Jiang T. Regulation of transforming growth factor β1-dependent aldose reductase expression by the Nrf2 signal pathway in human mesangial cells. Eur J Cell Biol 2012; 91:774-81. [PMID: 22951256 DOI: 10.1016/j.ejcb.2012.07.004] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2012] [Revised: 07/13/2012] [Accepted: 07/16/2012] [Indexed: 01/26/2023] Open
Abstract
Aldose reductase (AR) is a key enzyme in the alternative glucose metabolism pathway, the polyol pathway. To date, AR is known to be involved in several secondary complications of diabetes and various kidney diseases. The goal of this study was to elucidate how the Nrf2-anti-oxidant response element (ARE) signal pathway plays a role in TGFβ1's regulation of AR expression in human renal mesangial cells (HRMCs). As an in vitro model system, HRMCs were used to investigate AR mRNA by qPCR, protein by Western blot and enzymatic activity by spectrophotometric assay. The ability of TGFβ1 to induce reactive oxygen species (ROS) in cells was measured by electron-spin resonance (ESR) trapping method. Reporter assays were used to test the activity of the AR promoter region, and ChIP was employed to test the direct binding of Nrf2 with the endogenous AR promoter. Treatment of HRMCs with TGFβ1 up-regulated the expression of AR mRNA, protein, and activity level. Additionally, TGFβ1 rapidly increased cellular ROS levels, which in turn activated the Nrf2-ARE pathway. Either inhibition of ROS production or knockdown of Nrf2 in HRMCs decreased the TGFβ1-induction of AR expression. Nrf2 regulated AR luciferase activity specifically via two AREs within the AR promoter, and bound directly to the endogenous AR promoter. Furthermore, the TGFβ1-mediated expression of AR required Nrf2 and was significantly abrogated in Nrf2-/- cells. These data show the regulation of AR by TGFβ1 is induced by TGFβ1 stimulation of ROS, which activates the Nrf2-ARE pathway allowing Nrf2 to directly increase AR expression in HRMCs.
Collapse
Affiliation(s)
- Fei Wang
- Department of Pathology, Shanghai Medical College, Fudan University, Shanghai, China
| | | | | | | | | | | | | |
Collapse
|
224
|
Zheng X, Zhang L, Chen W, Chen Y, Xie W, Hu X. Partial Inhibition of Aldose Reductase by Nitazoxanide and Its Molecular Basis. ChemMedChem 2012; 7:1921-3. [DOI: 10.1002/cmdc.201200333] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2012] [Indexed: 02/06/2023]
|
225
|
Osmotic stress, not aldose reductase activity, directly induces growth factors and MAPK signaling changes during sugar cataract formation. Exp Eye Res 2012; 101:36-43. [PMID: 22710095 DOI: 10.1016/j.exer.2012.05.007] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2012] [Revised: 05/24/2012] [Accepted: 05/25/2012] [Indexed: 12/31/2022]
Abstract
In sugar cataract formation in rats, aldose reductase (AR) activity is not only linked to lenticular sorbitol (diabetic) or galactitol (galactosemic) formation but also to signal transduction changes, cytotoxic signals and activation of apoptosis. Using both in vitro and in vivo techniques, the interrelationship between AR activity, polyol (sorbitol and galactitol) formation, osmotic stress, growth factor induction, and cell signaling changes have been investigated. For in vitro studies, lenses from Sprague Dawley rats were cultured for up to 48 h in TC-199-bicarbonate media containing either 30 mM fructose (control), or 30 mM glucose or galactose with/without the aldose reductase inhibitors AL1576 or tolrestat, the sorbitol dehydrogenase inhibitor (SDI) CP-470,711, or 15 mM mannitol (osmotic-compensated media). For in vivo studies, lenses were obtained from streptozotocin-induced diabetic Sprague Dawley rats fed diet with/without the ARIs AL1576 or tolrestat for 10 weeks. As expected, lenses cultured in high glucose/galactose media or from untreated diabetic rats all showed a decrease in the GSH pool that was lessened by ARI treatment. Lenses either from diabetic rats or from glucose/galactose culture conditions showed increased expression of basic-FGF, TGF-β, and increased signaling through P-Akt, P-ERK1/2 and P-SAPK/JNK which were also normalized by ARIs to the expression levels observed in non-diabetic controls. Culturing rat lenses in osmotically compensated media containing 30 mM glucose or galactose did not lead to increased growth factor expression or altered signaling. These studies indicate that it is the biophysical response of the lens to osmotic stress that results in an increased intralenticular production of basic-FGF and TGF-β and the altered cytotoxic signaling that is observed during sugar cataract formation.
Collapse
|
226
|
Bresson E, Lacroix-Pépin N, Boucher-Kovalik S, Chapdelaine P, Fortier MA. The Prostaglandin F Synthase Activity of the Human Aldose Reductase AKR1B1 Brings New Lenses to Look at Pathologic Conditions. Front Pharmacol 2012; 3:98. [PMID: 22654757 PMCID: PMC3360414 DOI: 10.3389/fphar.2012.00098] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2012] [Accepted: 05/02/2012] [Indexed: 11/17/2022] Open
Abstract
Prostaglandins are important regulators of female reproductive functions to which aldose reductases exhibiting hydroxysteroid dehydrogenase activity also contribute. Our work on the regulation of reproductive function by prostaglandins (PGs), lead us to the discovery that AKR1B5 and later AKR1B1were highly efficient and physiologically relevant PGF synthases. PGE2 and PGF2α are the main prostanoids produced in the human endometrium and proper balance in their relative production is important for normal menstruation and optimal fertility. Recent evidence suggests that PGE2/EP2 and PGF2α/FP may constitute a functional dyad with physiological relevance comparable to the prostacyclin-thromboxane dyad in the vascular system. We have recently reported that AKR1B1 was expressed and modulated in association with PGF2α production in response to IL-1β in the human endometrium. In the present study, we show that the human AKR1B1 (gene ID: 231) also known as ALDR1 or ALR2 is a functional PGF2α synthase in different models of living cells and tissues. Using human endometrial cells, prostate, and vascular smooth muscle cells, cardiomyocytes and endothelial cells we demonstrate that IL-1β is able to up regulate COX-2 and AKR1B1 proteins as well as PGF2α production under normal glucose concentrations. We show that the promoter activity of AKR1B1 gene is increased by IL-1β particularly around the multiple stress response region containing two putative antioxidant response elements adjacent to TonE and AP1. We also show that AKR1B1 is able to regulate PGE2 production through PGF2α acting on its FP receptor and that aldose reductase inhibitors like alrestatin, Statil (ponalrestat), and EBPC exhibit distinct and characteristic inhibition of PGF2α production in different cell models. The PGF synthase activity of AKR1B1 represents a new and important target to regulate ischemic and inflammatory responses associated with several human pathologies.
Collapse
Affiliation(s)
- Eva Bresson
- Unité de Recherche en Ontogénie et Reproduction, Centre Hospitalier Universitaire de Québec, Centre de Recherche en Biologie de la Reproduction, Département d'Obstétrique et Gynécologie, Université Laval, Ste-Foy QC, Canada
| | | | | | | | | |
Collapse
|
227
|
Wang ZL, Deng CY, Zheng H, Xie CF, Wang XH, Luo YF, Chen ZZ, Cheng P, Chen LJ. (Z)2-(5-(4-methoxybenzylidene)-2, 4-dioxothiazolidin-3-yl) acetic acid protects rats from CCl(4) -induced liver injury. J Gastroenterol Hepatol 2012; 27:966-73. [PMID: 21913985 DOI: 10.1111/j.1440-1746.2011.06913.x] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
BACKGROUND AND AIM (Z)2-(5-(4-methoxybenzylidene)-2, 4-dioxothiazolidin-3-yl) acetic acid (MDA) is an aldose reductase (AR) inhibitor. Recent studies suggest that AR contributes to the pathogenesis of inflammation by affecting the nuclear factor κB (NF-κB)-dependent expression of cytokines and chemokines and therefore could be a novel therapeutic target for inflammatory pathology. The current study evaluated the in vivo role of MDA in protecting the liver against injury and fibrogenesis caused by CCl(4) in rats, and the underlying mechanisms. METHODS A single injection of CCl(4) induced acute hepatitis, and repeated injections were used to induce hepatic fibrosis in rats. Therapeutic efficacy was assessed by comparison of the severity of hepatic injury and fibrosis in MDA-treated rats versus untreated controls. RESULTS MDA significantly protected the liver from injury by reducing the activity of serum alanine aminotransferase, and improving the histological architecture of the liver. MDA modulated NF-κB-dependent activation of inflammatory cytokines by reducing hepatic mRNA levels of tumor necrosis factor-α, interleukin-1β, inducible nitric oxide (NO) synthase and transforming growth factor-β. In addition, MDA attenuated oxidative stress by increasing the content of hepatic glutathione. These favorable changes were associated with suppressed hepatic NF-κB activation by MDA. MDA treatment improved liver fibrosis in rats that received repeated CCl(4) injections. In vitro, MDA attenuated phosphorylation of IκB and activation of NF-κB, and thus prevented biosynthesis of NO in lipopolysaccharide-activated RAW264.7 cells. CONCLUSIONS The present study suggests that AR is a novel therapeutic anti-inflammatory target for the treatment of hepatitis and liver fibrosis.
Collapse
Affiliation(s)
- Zhen-ling Wang
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, West China Medical School, Sichuan University, Chengdu, China
| | | | | | | | | | | | | | | | | |
Collapse
|
228
|
Jiang D, Li Q, Kolosov VP, Zhou X. The inhibition of aldose reductase on mucus production induced by interleukin-13 in the human bronchial epithelial cells. Int Immunopharmacol 2012; 12:588-93. [DOI: 10.1016/j.intimp.2012.02.007] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2011] [Revised: 01/18/2012] [Accepted: 02/13/2012] [Indexed: 12/28/2022]
|
229
|
Ramunno A, Cosconati S, Sartini S, Maglio V, Angiuoli S, La Pietra V, Di Maro S, Giustiniano M, La Motta C, Da Settimo F, Marinelli L, Novellino E. Progresses in the pursuit of aldose reductase inhibitors: the structure-based lead optimization step. Eur J Med Chem 2012; 51:216-26. [PMID: 22436396 DOI: 10.1016/j.ejmech.2012.02.045] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2011] [Revised: 02/20/2012] [Accepted: 02/21/2012] [Indexed: 10/28/2022]
Abstract
Aldose reductase (ALR2) is a crucial enzyme in the development of the major complications of diabetes mellitus. Very recently it has been demonstrated that the ARL2 inhibitor, fidarestat, significantly prevents inflammatory signals (TNF-α, LPS) that cause cancer (colon, breast, prostate and lung), metastasis, asthma, and other inflammatory diseases. Currently, fidarestat is in phase III clinical trial for diabetic neuropathy and was found to be safe. Thus the finding of novel, potent ARL2 inhibitors is today more than in the past in great demand as they can pave the way for a novel therapeutic approach for a number of diseases besides the diabetes. Herein, starting from the virtual screening-derived ALR2 inhibitor S12728 (1), a rational receptor-based lead optimization has been undertaken. The design and synthetic efforts here reported led to the discovery of several new compounds endowed with low micromolar/submicromolar activities.
Collapse
Affiliation(s)
- Anna Ramunno
- Dipartimento di Scienze Farmaceutiche, Università di Salerno, Via Ponte Don Melillo 11c, 84084 Fisciano, Italy
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
230
|
Hyperglycemia and endothelial dysfunction in atherosclerosis: lessons from type 1 diabetes. Int J Vasc Med 2012; 2012:569654. [PMID: 22489274 PMCID: PMC3303762 DOI: 10.1155/2012/569654] [Citation(s) in RCA: 83] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2011] [Accepted: 10/27/2011] [Indexed: 12/18/2022] Open
Abstract
A clear relationship between diabetes and cardiovascular disease has been established for decades. Despite this, the mechanisms by which diabetes contributes to plaque formation remain in question. Some of this confusion derives from studies in type 2 diabetics where multiple components of metabolic syndrome show proatherosclerotic effects independent of underlying diabetes. However, the hyperglycemia that defines the diabetic condition independently affects atherogenesis in cell culture systems, animal models, and human patients. Endothelial cell biology plays a central role in atherosclerotic plaque formation regulating vessel permeability, inflammation, and thrombosis. The current paper highlights the mechanisms by which hyperglycemia affects endothelial cell biology to promote plaque formation.
Collapse
|
231
|
Kolluru GK, Bir SC, Kevil CG. Endothelial dysfunction and diabetes: effects on angiogenesis, vascular remodeling, and wound healing. Int J Vasc Med 2012; 2012:918267. [PMID: 22611498 PMCID: PMC3348526 DOI: 10.1155/2012/918267] [Citation(s) in RCA: 329] [Impact Index Per Article: 25.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2011] [Accepted: 10/18/2011] [Indexed: 02/06/2023] Open
Abstract
Diabetes mellitus (DM) is a chronic metabolic disorder characterized by inappropriate hyperglycemia due to lack of or resistance to insulin. Patients with DM are frequently afflicted with ischemic vascular disease or wound healing defect. It is well known that type 2 DM causes amplification of the atherosclerotic process, endothelial cell dysfunction, glycosylation of extracellular matrix proteins, and vascular denervation. These complications ultimately lead to impairment of neovascularization and diabetic wound healing. Therapeutic angiogenesis remains an attractive treatment modality for chronic ischemic disorders including PAD and/or diabetic wound healing. Many experimental studies have identified better approaches for diabetic cardiovascular complications, however, successful clinical translation has been limited possibly due to the narrow therapeutic targets of these agents or the lack of rigorous evaluation of pathology and therapeutic mechanisms in experimental models of disease. This paper discusses the current body of evidence identifying endothelial dysfunction and impaired angiogenesis during diabetes.
Collapse
Affiliation(s)
| | | | - Christopher G. Kevil
- Department of Pathology, LSU Health Sciences Center-Shreveport, 1501 Kings Highway, Shreveport, LA 71130, USA
| |
Collapse
|
232
|
Pandey S, Srivastava SK, Ramana KV. A potential therapeutic role for aldose reductase inhibitors in the treatment of endotoxin-related inflammatory diseases. Expert Opin Investig Drugs 2012; 21:329-39. [PMID: 22283786 DOI: 10.1517/13543784.2012.656198] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
INTRODUCTION Aldose reductase (AR) was initially thought to be involved in the secondary diabetic complications because of its glucose-reducing potential. However, evidence from recent studies indicates that AR is an excellent reducer of a number of lipid peroxidation-derived aldehydes as well as their glutathione conjugates, which regulate inflammatory signals initiated by oxidants such as cytokines, growth factors and bacterial endotoxins, and revealed the potential use of AR inhibition as an approach to prevent inflammatory complications. AREAS COVERED An extensive Internet and Medline search was performed to retrieve information on understanding the role of AR inhibition in the pathophysiology of endotoxin-mediated inflammatory disorders. Overall, inhibition of AR appears to be a promising strategy for the treatment of endotoxemia, sepsis and other related inflammatory diseases. EXPERT OPINION Current knowledge provides enough evidence to indicate that AR inhibition is a logical therapeutic strategy for the treatment of endotoxin-related inflammatory diseases. Since AR inhibitors have already gone to Phase III clinical studies for diabetic complications and found to be safe for human use, their use in endotoxin-related inflammatory diseases could be expedited. However, one of the major challenges will be the discovery of AR-regulated clinically relevant biomarkers to identify susceptible individuals at risk of developing inflammatory diseases, thereby warranting future research in this area.
Collapse
Affiliation(s)
- Saumya Pandey
- University of Texas Medical Branch, Biochemistry and Molecular Biology, Galveston, TX 77555 , USA
| | | | | |
Collapse
|
233
|
Ellagic acid, a new antiglycating agent: its inhibition of Nϵ-(carboxymethyl)lysine. Biochem J 2012; 442:221-30. [DOI: 10.1042/bj20110846] [Citation(s) in RCA: 57] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Non-enzymatic glycation is a complex series of reactions between reducing sugars and amino groups of proteins. Accumulation of AGEs (advanced glycation end-products) due to non-enzymatic glycation has been related to several diseases associated with aging and diabetes. The formation of AGEs is accelerated in hyperglycaemic conditions, which alters the structure and function of long-lived proteins, thereby contributing to long-term diabetic complications. The present study describes AGE inhibition and the mechanism of action of a new antiglycating agent, EA (ellagic acid), a flavonoid present in many dietary sources. Inhibition of AGE formation by EA was demonstrated with different proteins, namely eye lens TSP (total soluble protein), Hb (haemoglobin), lysozyme and BSA, using different glycating agents such as fructose, ribose and methylglyoxal by a set of complementary methods. These results suggest that the antiglycating action of EA seems to involve, apart from inhibition of a few fluorescent AGEs, predominantly inhibition of CEL [Nϵ-(carboxyethyl)lysine] through scavenging of the dicarbonyl compounds. Furthermore, MALDI–TOF-MS (matrix-assisted laser-desorption ionisation–time-of-flight MS) analysis confirms inhibition of the formation of CEL on lysozyme on in vitro glycation by EA. Prevention of glycation-mediated β-sheet formation in Hb and lysozyme by EA confirm its antiglycating ability. Inhibition of glycosylated Hb formation in human blood under ex vivo high-glucose conditions signifies the physiological antiglycating potential of EA. We have also determined the effectiveness of EA against loss of eye lens transparency through inhibition of AGEs in the lens organ culture system. These findings establish the antiglycating potential of EA and its in vivo utility in controlling AGE-mediated diabetic pathologies.
Collapse
|
234
|
Byrns MC. Role of aldo-keto reductase enzymes in mediating the timing of parturition. Front Pharmacol 2012; 2:92. [PMID: 22291648 PMCID: PMC3253584 DOI: 10.3389/fphar.2011.00092] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2011] [Accepted: 12/20/2011] [Indexed: 01/11/2023] Open
Abstract
A better understanding of the mechanisms underlying parturition would provide an important step toward improving therapies for the prevention of preterm labor. Aldo–keto reductases (AKR) from the 1D, 1C, and 1B subfamilies likely contribute to determining the timing of parturition through metabolism of progesterone and prostaglandins. Placental AKR1D1 (human 5β reductase) likely contributes to the maintenance of pregnancy through the formation of 5β-dihydroprogesterone (DHP). AKR1C1, AKR1C2, and AKR1C3 catalyze the 20-ketosteroid and 3-ketosteroid reduction of progestins. They could therefore eliminate tocolytic progestins at term. Activation of the F prostanoid receptor by its ligands also plays a critical role in initiation of labor. AKR1C3 and AKR1B1 have prostaglandin (PG) F synthase activities that likely contribute to the initiation of labor. AKR1C3 converts PGH2 to PGF2α and PGD2 to 9α,11β-PGF2. AKR1B1 also reduces PGH2 to PGF2α, but does not form 9α,11β-PGF2. Consistent with the potential role for AKR1C3 in the initiation of parturition, indomethacin, which is a potent and isoform selective inhibitor of AKR1C3, has long been used for tocolysis.
Collapse
Affiliation(s)
- Michael C Byrns
- Department of Health Sciences, Illinois State University Normal, IL, USA.
| |
Collapse
|
235
|
Ali S, Saeed A, Abbas N, Shahid M, Bolte M, Iqbal J. Design, synthesis and molecular modelling of novel methyl[4-oxo-2-(aroylimino)-3-(substituted phenyl)thiazolidin-5-ylidene]acetates as potent and selective aldose reductase inhibitors. MEDCHEMCOMM 2012. [DOI: 10.1039/c2md20228j] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
236
|
Osmolarity and glucose differentially regulate aldose reductase activity in cultured mouse podocytes. EXPERIMENTAL DIABETES RESEARCH 2011; 2011:278963. [PMID: 22253613 PMCID: PMC3255165 DOI: 10.1155/2011/278963] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/14/2011] [Revised: 09/05/2011] [Accepted: 09/23/2011] [Indexed: 12/04/2022]
Abstract
Podocyte injury is associated with progression of many renal diseases, including diabetic nephropathy. In this study we examined whether aldose reductase (AR), the enzyme implicated in diabetic complications in different tissues, is modulated by high glucose and osmolarity in podocyte cells. AR mRNA, protein expression, and activity were measured in mouse podocytes cultured in both normal and high glucose and osmolarity for 6 hours to 5 days. Hyperosmolarity acutely stimulated AR expression and activity, with subsequent increase of AR expression but decrease of activity. High glucose also elevated AR protein level; however, this was not accompanied by respective enzyme activation. Furthermore, high glucose appeared to counteract the osmolarity-dependent activation of AR. In conclusion, in podocytes AR is modulated by high glucose and increased osmolarity in a different manner. Posttranslational events may affect AR activity independent of enzyme protein amount. Activation of AR in podocytes may be implicated in diabetic podocytopathy.
Collapse
|
237
|
Zhang Y, Du Y, Le W, Wang K, Kieffer N, Zhang J. Redox control of the survival of healthy and diseased cells. Antioxid Redox Signal 2011; 15:2867-908. [PMID: 21457107 DOI: 10.1089/ars.2010.3685] [Citation(s) in RCA: 122] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Abstract Cellular redox homeostasis is the first line of defense against diverse stimuli and is crucial for various biological processes. Reactive oxygen species (ROS), byproducts of numerous cellular events, may serve in turn as signaling molecules to regulate cellular processes such as proliferation, differentiation, and apoptosis. However, when overproduced ROS fail to be scavenged by the antioxidant system, they may damage cellular components, giving rise to senescent, degenerative, or fatal lesions in cells. Accordingly, this review not only covers general mechanisms of ROS production under different conditions, but also focuses on various types of ROS-involved diseases, including atherosclerosis, ischemia/reperfusion injury, diabetes mellitus, neurodegenerative diseases, and cancer. In addition, potentially therapeutic agents and approaches are reviewed in a relatively comprehensive manner. However, due to the complexity of ROS and their cellular impacts, we believe that the goal to design more effective approaches or agents may require a better understanding of mechanisms of ROS production, particularly their multifaceted impacts in disease at biochemical, molecular, genetic, and epigenetic levels. Thus, it requires additional tools of omics in systems biology to achieve such a goal. Antioxid. Redox Signal. 15, 2867-2908.
Collapse
Affiliation(s)
- Yuxing Zhang
- Key Laboratory of Stem Cell Biology, Institute of Health Sciences, Shanghai Institutes for Biological Sciences (SIBS), Chinese Academy of Sciences (CAS), Shanghai Jiao Tong University School of Medicine (SJTU-SM), Shanghai, China
| | | | | | | | | | | |
Collapse
|
238
|
Mataoui-Mazari H, Amirat Z, Khammar F, Martinez A. Identification, cloning and regulation of cDNA encoding aldo-keto reductase 1B7 in the adrenal gland of two Saharan rodents Meriones libycus (Libyan jird) and Gerbillus gerbillus (gerbil). Gen Comp Endocrinol 2011; 174:292-300. [PMID: 21963864 DOI: 10.1016/j.ygcen.2011.09.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/06/2011] [Revised: 09/07/2011] [Accepted: 09/08/2011] [Indexed: 11/21/2022]
Abstract
Aldo-Keto Reductase 1B7 (AKR1B7) is a mouse aldose reductase-like protein with two major sites of expression, the vas deferens and the adrenal cortex. In the adrenal cortex, Akr1b7 is an adrenocorticotropin (ACTH)-responsive-gene whose product scavenges harmful byproducts of steroidogenesis and limits stress response through the biosynthesis of prostaglandin F2α. The purpose of the present study was to explore the possible expression of AKR1B7 in the adrenal glands of two saharan rodents, Libyan jird and Lesser Egyptian gerbil. Western blot analyses demonstrated that a protein related to murine/rat AKR1B7 was highly expressed in adrenals and absent from vas deferens of both saharan species. Based on conserved sequences between mouse and rat, full length cDNA were cloned and sequenced in both species while hormonal regulation and tissue localization were explored in Libyan jird. Both cDNA encoded the expected 316 amino acids protein typical of AKR1B subfamily and contained the highly conserved catalytic tetrad consisting in Asp-44, Tyr-49, Lys-78 and His-111 residues. The deduced proteins shared higher identities with aldose reductase-like, i.e. AKR1B7 (86-94%), AKR1B8 and AKR1B10 (83-86%) than with aldose reductase group, i.e. AKR1B1 and AKR1B3 (70%). Phylogenetic analysis showed that the Libyan jird and gerbil enzymes were more closely related to murine and rat AKR1B7 than to the other AKR1B members. Northern blot analyses of total RNA from Libyan jird adrenals showed a single mRNA transcript of 1.4 kb whose expression was dependent on circulating ACTH levels. In conclusion, we demonstrate here that adrenal glands of Libyan jird and gerbil express both an ortholog of the murine/rat Akr1b7 gene and that ACTH-responsiveness is at least conserved in Libyan jird.
Collapse
Affiliation(s)
- Houria Mataoui-Mazari
- Laboratoire de recherche sur les zones arides, Faculté des Sciences Biologiques, Université des Sciences et de la Technologie Houari Boumediene (USTHB), BP 44, Alger-Gare, 16000 DZ, Algeria.
| | | | | | | |
Collapse
|
239
|
Yadav UCS, Aguilera-Aguirre L, Boldogh I, Ramana KV, Srivastava SK. Aldose reductase deficiency in mice protects from ragweed pollen extract (RWE)-induced allergic asthma. Respir Res 2011; 12:145. [PMID: 22054012 PMCID: PMC3233521 DOI: 10.1186/1465-9921-12-145] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2011] [Accepted: 11/03/2011] [Indexed: 12/29/2022] Open
Abstract
Background Childhood hospitalization related to asthma remains at historically high levels, and its incidence is on the rise world-wide. Previously, we have demonstrated that aldose reductase (AR), a regulatory enzyme of polyol pathway, is a major mediator of allergen-induced asthma pathogenesis in mouse models. Here, using AR null (AR-/-) mice we have investigated the effect of AR deficiency on the pathogenesis of ragweed pollen extract (RWE)-induced allergic asthma in mice and also examined the efficacy of enteral administration of highly specific AR inhibitor, fidarestat. Methods The wild type (WT) and AR-/- mice were sensitized and challenged with RWE to induce allergic asthma. AR inhibitor, fidarestat was administered orally. Airway hyper-responsiveness was measured in unrestrained animals using whole body plethysmography. Mucin levels and Th2 cytokine in broncho-alveolar lavage (BAL) were determined using mouse anti-Muc5A/C ELISA kit and multiplex cytokine array, respectively. Eosinophils infiltration and goblet cells were assessed by H&E and periodic acid Schiff (PAS)-staining of formalin-fixed, paraffin-embedded lung sections. T regulatory cells were assessed in spleen derived CD4+CD25+ T cells population. Results Deficiency of AR in mice led to significantly decreased PENH, a marker of airway hyper-responsiveness, metaplasia of airway epithelial cells and mucus hyper-secretion following RWE-challenge. This was accompanied by a dramatic decrease in infiltration of eosinophils into sub-epithelium of lung as well as in BAL and release of Th2 cytokines in response to RWE-challenge of AR-/- mice. Further, enteral administration of fidarestat significantly prevented eosinophils infiltration, airway hyper-responsiveness and also markedly increased population of T regulatory (CD4+CD25+FoxP3+) cells as compared to RWE-sensitized and challenged mice not treated with fidarestat. Conclusion Our results using AR-/- mice strongly suggest the role of AR in allergic asthma pathogenesis and effectiveness of oral administration of AR inhibitor in RWE-induced asthma in mice supports the use of AR inhibitors in the treatment of allergic asthma.
Collapse
Affiliation(s)
- Umesh C S Yadav
- Department of Biochemistry, 301 University Blvd., The University of Texas Medical Branch, Galveston, TX 77555, USA
| | | | | | | | | |
Collapse
|
240
|
Yadav UCS, Shoeb M, Srivastava SK, Ramana KV. Aldose reductase deficiency protects from autoimmune- and endotoxin-induced uveitis in mice. Invest Ophthalmol Vis Sci 2011; 52:8076-85. [PMID: 21911582 PMCID: PMC3208006 DOI: 10.1167/iovs.11-7830] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2011] [Revised: 08/11/2011] [Accepted: 09/02/2011] [Indexed: 12/19/2022] Open
Abstract
PURPOSE To investigate the effect of aldose reductase (AR) deficiency in protecting the chronic experimental autoimmune (EAU) and acute endotoxin-induced uveitis (EIU) in c57BL/6 mice. METHODS The WT and AR-null (ARKO) mice were immunized with human interphotoreceptor retinoid-binding peptide (hIRPB-1-20), to induce EAU, or were injected subcutaneously with lipopolysaccharide (LPS; 100 μg) to induce EIU. The mice were killed on day 21 for EAU and at 24 hours for EIU, when the disease was at its peak, and the eyes were immediately enucleated for histologic and biochemical studies. Spleen-derived T-lymphocytes were used to study the antigen-specific immune response in vitro and in vivo. RESULTS In WT-EAU mice, severe damage to the retinal wall, especially to the photoreceptor layer was observed, corresponding to a pathologic score of ∼2, which was significantly prevented in the ARKO or AR inhibitor-treated mice. The levels of cytokines and chemokines increased markedly in the whole-eye homogenates of WT-EAU mice, but not in ARKO-EAU mice. Further, expression of inflammatory marker proteins such as inducible nitric oxide synthase (iNOS), cyclooxygenase (COX)-2, tumor necrosis factor (TNF)-α, and vascular cell adhesion molecule (VCAM)-1 was increased in the WT-EIU mouse eyes but not in the ARKO-EIU eyes. The T cells proliferated vigorously when exposed to the hIRPB antigen in vitro and secreted various cytokines and chemokines, which were significantly inhibited in the T cells isolated from the ARKO mice. CONCLUSIONS These findings suggest that AR-deficiency/inhibition protects against acute as well as chronic forms of ocular inflammatory complications such as uveitis.
Collapse
Affiliation(s)
- Umesh C. S. Yadav
- From the Department of Biochemistry and Molecular Biology, University of Texas Medical Branch, Galveston, Texas
| | - Mohammed Shoeb
- From the Department of Biochemistry and Molecular Biology, University of Texas Medical Branch, Galveston, Texas
| | - Satish K. Srivastava
- From the Department of Biochemistry and Molecular Biology, University of Texas Medical Branch, Galveston, Texas
| | - Kota V. Ramana
- From the Department of Biochemistry and Molecular Biology, University of Texas Medical Branch, Galveston, Texas
| |
Collapse
|
241
|
Yadav UCS, Shoeb M, Srivastava SK, Ramana KV. Amelioration of experimental autoimmune uveoretinitis by aldose reductase inhibition in Lewis rats. Invest Ophthalmol Vis Sci 2011; 52:8033-41. [PMID: 21900376 PMCID: PMC3208000 DOI: 10.1167/iovs.11-7485] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2011] [Revised: 07/06/2011] [Accepted: 08/30/2011] [Indexed: 12/20/2022] Open
Abstract
PURPOSE Recently, the authors showed that the inhibition of aldose reductase (AR) prevents bacterial endotoxin-induced uveitis in rats. They have now investigated the efficacy of AR inhibitors in the prevention of experimental autoimmune-induced uveitis (EAU) in rats. METHODS Lewis rats were immunized with bovine interphotoreceptor retinoid-binding peptide (IRBP) to develop EAU. Two or 8 days after immunization, the rats started receiving the AR inhibitor fidarestat (7 mg/kg/d; intraperitoneally). They were killed when the disease was at its peak; aqueous humor (AqH) was collected from one eye, and the other eye of each rat was used for histologic studies. The protein concentration and the levels of inflammatory markers were determined in AqH. Immunohistochemical analysis of eye sections was performed to determine the expression of inflammatory markers. The effect of AR inhibition on immune response was investigated in isolated T lymphocytes. RESULTS Immunization of rats by IRBP peptide resulted in a significant infiltration of leukocytes in the posterior and the anterior chambers of the eye. Further, EAU caused an increase in the concentration of proteins, inflammatory cytokines, and chemokines in AqH, and the expression of inflammatory markers such as inducible-nitric oxide synthase and cycloxygenase-2 in the rat eye ciliary bodies and retina. Treatment with fidarestat significantly prevented the EAU-induced ocular inflammatory changes. AR inhibition also prevented the proliferation of spleen-derived T cells isolated from EAU rats in response to the IRBP antigen. CONCLUSIONS These results suggest that AR could be a novel mediator of bovine IRBP-induced uveitis in rats.
Collapse
Affiliation(s)
- Umesh C. S. Yadav
- From the Department of Biochemistry and Molecular Biology, University of Texas Medical Branch, Galveston, Texas
| | - Mohammad Shoeb
- From the Department of Biochemistry and Molecular Biology, University of Texas Medical Branch, Galveston, Texas
| | - Satish K. Srivastava
- From the Department of Biochemistry and Molecular Biology, University of Texas Medical Branch, Galveston, Texas
| | - Kota V. Ramana
- From the Department of Biochemistry and Molecular Biology, University of Texas Medical Branch, Galveston, Texas
| |
Collapse
|
242
|
Vladykovskaya E, Ozhegov E, Hoetker JD, Xie Z, Ahmed Y, Suttles J, Srivastava S, Bhatnagar A, Barski OA. Reductive metabolism increases the proinflammatory activity of aldehyde phospholipids. J Lipid Res 2011; 52:2209-2225. [PMID: 21957201 DOI: 10.1194/jlr.m013854] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
The generation of oxidized phospholipids in lipoproteins has been linked to vascular inflammation in atherosclerotic lesions. Products of phospholipid oxidation increase endothelial activation; however, their effects on macrophages are poorly understood, and it is unclear whether these effects are regulated by the biochemical pathways that metabolize oxidized phospholipids. We found that incubation of 1-palmitoyl-2-(5'-oxo-valeroyl)-sn-glycero-3-phosphocholine (POVPC) with THP-1-derived macrophages upregulated the expression of cytokine genes, including granulocyte/macrophage colony-stimulating factor (GM-CSF), tumor necrosis factor (TNF)-α, monocyte chemotactic protein 1 (MCP-1), interleukin (IL)-1β, IL-6, and IL-8. In these cells, reagent POVPC was either hydrolyzed to lyso-phosphatidylcholine (lyso-PC) or reduced to 1-palmitoyl-2-(5-hydroxy-valeroyl)-sn-glycero-3-phosphocholine (PHVPC). Treatment with the phospholipase A(2) (PLA(2)) inhibitor, pefabloc, decreased POVPC hydrolysis and increased PHVPC accumulation. Pefabloc also increased the induction of cytokine genes in POVPC-treated cells. In contrast, PHVPC accumulation and cytokine production were decreased upon treatment with the aldose reductase (AR) inhibitor, tolrestat. In comparison with POVPC, lyso-PC led to 2- to 3-fold greater and PHVPC 10- to 100-fold greater induction of cytokine genes. POVPC-induced cytokine gene induction was prevented in bone-marrow derived macrophages from AR-null mice. These results indicate that although hydrolysis is the major pathway of metabolism, reduction further increases the proinflammatory responses to POVPC. Thus, vascular inflammation in atherosclerotic lesions is likely to be regulated by metabolism of phospholipid aldehydes in macrophages.
Collapse
Affiliation(s)
- Elena Vladykovskaya
- Diabetes and Obesity Center, School of Medicine, University of Louisville, Louisville, KY 40202
| | - Evgeny Ozhegov
- Diabetes and Obesity Center, School of Medicine, University of Louisville, Louisville, KY 40202
| | - J David Hoetker
- Diabetes and Obesity Center, School of Medicine, University of Louisville, Louisville, KY 40202
| | - Zhengzhi Xie
- Diabetes and Obesity Center, School of Medicine, University of Louisville, Louisville, KY 40202
| | - Yonis Ahmed
- Diabetes and Obesity Center, School of Medicine, University of Louisville, Louisville, KY 40202
| | - Jill Suttles
- Diabetes and Obesity Center, School of Medicine, University of Louisville, Louisville, KY 40202
| | - Sanjay Srivastava
- Diabetes and Obesity Center, School of Medicine, University of Louisville, Louisville, KY 40202
| | - Aruni Bhatnagar
- Diabetes and Obesity Center, School of Medicine, University of Louisville, Louisville, KY 40202
| | - Oleg A Barski
- Diabetes and Obesity Center, School of Medicine, University of Louisville, Louisville, KY 40202.
| |
Collapse
|
243
|
Abstract
Diabetic peripheral neuropathy (DPN) is a debilitating condition that affects about 50% of diabetic patients. The symptoms of DPN include numbness, tingling, or pain in the arms and legs. Patients with numbness may be unaware of foot trauma, which could develop into a foot ulcer. If left untreated, this may ultimately require amputation. Currently, the only method of directly examining peripheral nerves is to conduct skin punch or sural/peroneal nerve biopsies, which are uncomfortable and invasive. Indirect methods include quantitative sensory testing (assessing responses to heat, cold, and vibration) and nerve electrophysiology. Here, I describe research undertaken in my laboratory, investigating the possibility of using a range of ophthalmic markers to assess DPN. Corneal nerve structure and function can be assessed using corneal confocal microscopy and non-contact corneal esthesiometry, respectively. Retinal nerve structure and visual function can be evaluated using optical coherence tomography and perimetry, respectively. These techniques have been used to demonstrate that DPN is associated with morphological degradation of corneal nerves, reduced corneal sensitivity, retinal nerve fiber layer thinning, and peripheral visual field loss. With further validation, these ophthalmic markers could become established as rapid, painless, non-invasive, sensitive, reiterative, cost-effective, and clinically accessible means of screening for early detection, diagnosis, staging severity, and monitoring progression of DPN, as well as assessing the effectiveness of possible therapeutic interventions. Looking to the future, this research may pave the way for an expanded role for the ophthalmic professions in diabetes management.
Collapse
|
244
|
Xu L, Cohen AE, Boxer SG. Electrostatic fields near the active site of human aldose reductase: 2. New inhibitors and complications caused by hydrogen bonds. Biochemistry 2011; 50:8311-22. [PMID: 21859105 DOI: 10.1021/bi200930f] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Vibrational Stark effect spectroscopy was used to measure electrostatic fields in the hydrophobic region of the active site of human aldose reductase (hALR2). A new nitrile-containing inhibitor was designed and synthesized, and the X-ray structure of its complex, along with cofactor NADP(+), with wild-type hALR2 was determined at 1.3 Å resolution. The nitrile is found to be in the proximity of T113, consistent with a hydrogen bond interaction. Two vibrational absorption peaks were observed at room temperature in the nitrile region when the inhibitor binds to wild-type hALR2, indicating that the nitrile probe experiences two different microenvironments, and these could be empirically separated into a hydrogen-bonded and non-hydrogen-bonded population by comparison with the T113A mutant, in which a hydrogen bond to the nitrile is not present. Classical molecular dynamics simulations based on the structure predict a double-peak distribution in protein electric fields projected along the nitrile probe. The interpretation of these two peaks as a hydrogen bond formation-dissociation process between the probe nitrile group and a nearby amino acid side chain is used to explain the observation of two IR bands, and the simulations were used to investigate the molecular details of this conformational change. Hydrogen bonding complicates the simplest analysis of vibrational frequency shifts as being due solely to electrostatic interactions through the vibrational Stark effect, and the consequences of this complication are discussed.
Collapse
Affiliation(s)
- Lin Xu
- Department of Chemistry, Stanford University, Stanford, California 94305-5080, United States
| | | | | |
Collapse
|
245
|
Johnstone ED, Sawicki G, Guilbert L, Winkler-Lowen B, Cadete VJJ, Morrish DW. Differential proteomic analysis of highly purified placental cytotrophoblasts in pre-eclampsia demonstrates a state of increased oxidative stress and reduced cytotrophoblast antioxidant defense. Proteomics 2011; 11:4077-84. [DOI: 10.1002/pmic.201000505] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2010] [Revised: 06/27/2011] [Accepted: 07/11/2011] [Indexed: 12/25/2022]
|
246
|
Abstract
The number of people with diabetic kidney disease continues to increase worldwide despite current treatments. Of the pathophysiologic mechanisms that have been identified in the development and progression of diabetic nephropathy, oxidative stress (more accurately described as increased levels of reactive oxygen species; ROS) is of major importance. The increase in ROS is due to both increased production and to decreased and/or inadequate antioxidant function. To date, human clinical trials with antioxidants have not been shown to be effective. This is likely due, at least in part, to the lack of specificity of current agents. Recent research has determined both major sources of high glucose-induced cellular ROS production as well as high glucose-induced changes in antioxidant function. Treatments targeted at one or more of the specific diabetes-induced alterations in the regulation of ROS levels will likely lead to effective treatments that prevent the development and progression of diabetic kidney disease.
Collapse
Affiliation(s)
- Robert C Stanton
- Harvard Medical School, Joslin Diabetes Center, One Joslin Place, Boston, MA 02215, USA.
| |
Collapse
|
247
|
Wang T, Zhang P, Zhao C, Zhang Y, Liu H, Hu L, Gao X, Zhang D. Prevention effect in selenite-induced cataract in vivo and antioxidative effects in vitro of Crataegus pinnatifida leaves. Biol Trace Elem Res 2011; 142:106-16. [PMID: 20596791 DOI: 10.1007/s12011-010-8752-8] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/02/2010] [Accepted: 06/13/2010] [Indexed: 10/19/2022]
Abstract
Cataract is the leading cause of blindness worldwide. It is a multifactorial disease primarily associated with oxidative stress produced by free radicals. The present study was undertaken to evaluate the anticataract potential of Crataegus pinnatifida (hawthorn tree) leaves extract in selenite-induced cataract in vivo and antioxidant effects in vitro. In vitro antioxidant assay of C. pinnatifida leaves extract on NO production inhibition, aldose reductase inhibition, and O(2)(-) radical scavenging activities gave the IC(50) of 98.3, 89.7, and 5.98 μg/mL, respectively. To characterize some major compounds in C. pinnatifida leaves extract, nine flavonoids were identified via LC-MS/MS qualitative analysis. Based on in vitro screening results, C. pinnatifida leaves extract eye drops in 0.1% hydroxypropyl methyl cellulose solution were prepared to evaluate the anticataract potential in vivo. Administration of C. pinnatifida leaves extract eye drops alternately three times a day in rat pups with selenite-induced oxidative stress significantly increased serum SOD and CAT activities, and tended to reduce MDA level compared with control group. The antioxidant enzyme SOD, CAT, and GSH activities in lens showed a significant increase. These results may be applied in the future for the prevention and treatment of cataracts.
Collapse
Affiliation(s)
- Tao Wang
- Institute of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Nankai District, China
| | | | | | | | | | | | | | | |
Collapse
|
248
|
Ottanà R, Maccari R, Giglio M, Del Corso A, Cappiello M, Mura U, Cosconati S, Marinelli L, Novellino E, Sartini S, La Motta C, Da Settimo F. Identification of 5-arylidene-4-thiazolidinone derivatives endowed with dual activity as aldose reductase inhibitors and antioxidant agents for the treatment of diabetic complications. Eur J Med Chem 2011; 46:2797-806. [DOI: 10.1016/j.ejmech.2011.03.068] [Citation(s) in RCA: 81] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2010] [Revised: 03/20/2011] [Accepted: 03/23/2011] [Indexed: 01/24/2023]
|
249
|
Nayak B, Kondeti VK, Xie P, Lin S, Viswakarma N, Raparia K, Kanwar YS. Transcriptional and post-translational modulation of myo-inositol oxygenase by high glucose and related pathobiological stresses. J Biol Chem 2011; 286:27594-611. [PMID: 21652700 DOI: 10.1074/jbc.m110.217141] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Renal-specific oxidoreductase/myo-inositol oxygenase (RSOR/MIOX) catabolizes myo-inositol and is implicated in the pathogenesis of diabetic nephropathy. How high glucose (HG) ambience up-regulates its expression and enzyme activity was investigated. MIOX up-regulation was associated with an increase in enzyme activity, which was reduced to basal levels with phosphatase treatment. Using phosphothreonine, protein kinase A (PKA), and PKC substrate antibodies, analyses of kidney lysates of diabetic animals and LLC-PK1/HK-2 cells subjected to HG ambience indicated MIOX to be a phosphoprotein. Kinase phosphorylated recombinant RSOR/MIOX proteins had increased activity confined to exons 2-5. Mutants with substituted phosphorylation sites had a minimal increase in activity. Treatment of cells with PKC, PKA, and PDK1 kinase activators increased activity, whereas inhibitors reduced it. Inhibitors also reduced the phosphorylation and activity of MIOX induced by HG. Besides HG, exposure of cells to oxidants H(2)O(2) and methylglyoxal up-regulated MIOX expression and its phosphorylation and activity, whereas antioxidants N-acetylcysteine, β-naphthoflavone, and tertiary butyl hydroquinone reduced MIOX expression. Treatment with HG or oxidants or overexpression of MIOX induced nuclear translocation of redox-sensitive transcription factor Nrf2, which binds to antioxidant response elements of various promoters. Promoter analyses revealed an increase in luciferase activity with HG and oxidants. Analyses of antioxidant response elements and carbohydrate response elements revealed an accentuation of DNA-protein interactions with oxidants and under HG ambience. ChIP-PCR and immunofluorescence studies revealed nuclear translocation of carbohydrate response element-binding protein. These findings suggest that phosphorylation of RSOR/MIOX enhances its activity, which is augmented by HG via transcriptional/translational events that are also modulated by diabetes-related pathobiological stresses.
Collapse
Affiliation(s)
- Baibaswata Nayak
- Department of Pathology, Northwestern University, Chicago, Illinois 60611, USA
| | | | | | | | | | | | | |
Collapse
|
250
|
QSAR and flexible docking studies of some aldose reductase inhibitors obtained from natural origin. Med Chem Res 2011. [DOI: 10.1007/s00044-011-9681-6] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|