201
|
Gessert S, Maurus D, Rössner A, Kühl M. Pescadillo is required for Xenopus laevis eye development and neural crest migration. Dev Biol 2007; 310:99-112. [PMID: 17727835 DOI: 10.1016/j.ydbio.2007.07.037] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2007] [Revised: 07/08/2007] [Accepted: 07/23/2007] [Indexed: 10/23/2022]
Abstract
Pescadillo is a multifunctional, nuclear protein involved in rRNA precursor processing, ribosomal assembly, and transcriptional regulation. Pescadillo has been assigned important functions in embryonic development and tumor formation. We previously identified pescadillo as a potential downstream target of non-canonical Wnt-4 signaling. Here we have investigated for the first time the function of the Xenopus laevis homolog of pescadillo during early embryogenesis on a molecular level. Loss of function analysis indicates that pescadillo is required for eye development and neural crest migration. BrdU incorporation and TUNEL assays indicate that a loss of pescadillo function affects proliferation and triggers apoptosis through a p53-mediated mechanism. Furthermore, pescadillo affects the expression of early eye-specific marker genes, likely independent of its function in regulating proliferation and apoptosis, and in addition migration of cranial neural crest cells. Our data indicate that pescadillo has multiple important functions during X. laevis development and that its function is highly conserved among different species.
Collapse
Affiliation(s)
- Susanne Gessert
- Department of Biochemistry and Molecular Biology, Ulm University, Albert-Einstein-Allee 11, D-89081 Ulm, Germany
| | | | | | | |
Collapse
|
202
|
Brugmann SA, Goodnough LH, Gregorieff A, Leucht P, ten Berge D, Fuerer C, Clevers H, Nusse R, Helms JA. Wnt signaling mediates regional specification in the vertebrate face. Development 2007; 134:3283-95. [PMID: 17699607 DOI: 10.1242/dev.005132] [Citation(s) in RCA: 171] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
At early stages of development, the faces of vertebrate embryos look remarkably similar, yet within a very short timeframe they adopt species-specific facial characteristics. What are the mechanisms underlying this regional specification of the vertebrate face? Using transgenic Wnt reporter embryos we found a highly conserved pattern of Wnt responsiveness in the developing mouse face that later corresponded to derivatives of the frontonasal and maxillary prominences. We explored the consequences of disrupting Wnt signaling, first using a genetic approach. Mice carrying compound null mutations in the nuclear mediators Lef1 and Tcf4 exhibited radically altered facial features that culminated in a hyperteloric appearance and a foreshortened midface. We also used a biochemical approach to perturb Wnt signaling and found that in utero delivery of a Wnt antagonist, Dkk1,produced similar midfacial malformations. We tested the hypothesis that Wnt signaling is an evolutionarily conserved mechanism controlling facial morphogenesis by determining the pattern of Wnt responsiveness in avian faces,and then by evaluating the consequences of Wnt inhibition in the chick face. Collectively, these data elucidate a new role for Wnt signaling in regional specification of the vertebrate face, and suggest possible mechanisms whereby species-specific facial features are generated.
Collapse
Affiliation(s)
- Samantha A Brugmann
- Department of Plastic and Reconstructive Surgery, Stanford University, Stanford, CA 94305, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
203
|
Endo Y, Rubin JS. Wnt signaling and neurite outgrowth: insights and questions. Cancer Sci 2007; 98:1311-7. [PMID: 17627619 PMCID: PMC11159174 DOI: 10.1111/j.1349-7006.2007.00536.x] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2007] [Revised: 04/20/2007] [Accepted: 04/27/2007] [Indexed: 11/30/2022] Open
Abstract
Wnt signaling consists of a highly conserved set of biochemical pathways that have a multitude of functions during embryonic development and in the adult. The Wnt proteins are extracellular agents that often act as gradient morphogens, indicating that their distribution in tissues is tightly controlled. This attribute is also characteristic of factors that regulate neurite outgrowth and guide axons precisely to their specific destinations. Several studies in various species now have established that Wnts and their receptors have an important role in axonal guidance. Different ligand/receptor combinations have been identified that mediate this activity in many of the experimental models. Clues about downstream effector molecules have come from in vitro systems. In this article, the authors review the results from many of these models, evaluate what is known about the associated signaling pathways and speculate about the direction of future research.
Collapse
Affiliation(s)
- Yoshimi Endo
- National Cancer Institute, 37 Convent Drive, Bethesda, MD 20892-4256, USA
| | | |
Collapse
|
204
|
de Pontual L, Pelet A, Clement-Ziza M, Trochet D, Antonarakis SE, Attie-Bitach T, Beales PL, Blouin JL, Dastot-Le Moal F, Dollfus H, Goossens M, Katsanis N, Touraine R, Feingold J, Munnich A, Lyonnet S, Amiel J. Epistatic interactions with a common hypomorphic RET allele in syndromic Hirschsprung disease. Hum Mutat 2007; 28:790-6. [PMID: 17397038 DOI: 10.1002/humu.20517] [Citation(s) in RCA: 67] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Hirschsprung disease (HSCR) stands as a model for genetic dissection of complex diseases. In this model, a major gene, RET, is involved in most if not all cases of isolated (i.e., nonsyndromic) HSCR, in conjunction with other autosomal susceptibility loci under a multiplicative model. HSCR susceptibility alleles can harbor either heterozygous coding sequence mutations or, more frequently, a polymorphism within intron 1, leading to a hypomorphic RET allele. On the other hand, about 30% of HSCR are syndromic. Hitherto, the disease causing gene has been identified for eight Mendelian syndromes with HSCR: congenital central hypoventilation (CCHS), Mowat-Wilson (MWS), Bardet-Biedl (BBS), Shah-Waardenburg (WS4), cartilage-hair-hypoplasia (CHH), Smith-Lemli-Opitz (SLO), Goldberg-Sprintzsen (GSS), and hydrocephalus due to congenital stenosis of the aqueduct of sylvius (HSAS). According to the HSCR syndrome, the penetrance of HSCR trait varies from 5 to 70%. Trisomy 21 (T21) also predisposes to HSCR. We were able to collect a series of 393 patients affected by CCHS (n = 173), WS4 (n = 24), BBS (n = 51), MWS (n = 71), T21 (n = 46), and mental retardation (MR) with HSCR (n = 28). For each syndrome, we studied the RET locus in two subgroups of patients; i.e., with or without HSCR. We genotyped the RET locus in 393 patients among whom 195 had HSCR, and compared the distribution of alleles and genotypes within the two groups for each syndrome. RET acts as a modifier gene for the HSCR phenotype in patients with CCHS, BBS, and Down syndrome, but not in patients with MWS and WS4. The frequent, low penetrant, predisposing allele of the RET gene can be regarded as a risk factor for the HSCR phenotype in CCHS, BBS, and Down syndrome, while its role is not significant in MWS and WS4. These data highlight the pivotal role of the RET gene in both isolated and syndromic HSCR.
Collapse
Affiliation(s)
- L de Pontual
- Université Paris-René Descartes, Faculté de Médecine, INSERM U-781, AP-HP, Hôpital Necker-Enfant Malades, Paris, France
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
205
|
Henderson DJ, Phillips HM, Chaudhry B. Vang-like 2 and noncanonical Wnt signaling in outflow tract development. Trends Cardiovasc Med 2007; 16:38-45. [PMID: 16473760 DOI: 10.1016/j.tcm.2005.11.005] [Citation(s) in RCA: 51] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/26/2005] [Revised: 11/07/2005] [Accepted: 11/10/2005] [Indexed: 10/25/2022]
Abstract
Despite rapid advances in cardiovascular developmental genetics, the precise morphogenetic processes that coordinate heart development, and the genes and signaling pathways that regulate them remain unclear. In this review, we describe a highly conserved signaling pathway, the noncanonical Wnt (planar cell polarity) pathway, and its relationship to cardiovascular development and congenital heart defects. This pathway regulates cell polarity and polarized cell movements in a variety of contexts. Mutations in several genes in this pathway and specifically in the Vang-like 2 (Vangl2) (strabismus) gene, result in abnormalities in the remodeling of the outflow tract and, ultimately, in the cardiac alignment defect double-outlet right ventricle. Polarized cell migration of cardiomyocytes into the outflow tract cushions is inhibited when Vangl2 function is disturbed, suggesting that the noncanonical Wnt pathway may regulate this aspect of outflow tract remodeling. These studies suggest that mutations in Vangl2 and other components of the noncanonical Wnt pathway, may be candidates for causing congenital outflow tract defects in humans.
Collapse
Affiliation(s)
- Deborah J Henderson
- Institute of Human Genetics, University of Newcastle upon Tyne, International Centre for Life, Newcastle upon Tyne NE1 3BZ, UK.
| | | | | |
Collapse
|
206
|
Etchevers HC, Amiel J, Lyonnet S. Molecular bases of human neurocristopathies. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2007; 589:213-34. [PMID: 17076285 DOI: 10.1007/978-0-387-46954-6_14] [Citation(s) in RCA: 64] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Affiliation(s)
- Heather C Etchevers
- Département de Génétique Médicale, INSERM U393, Hôpital Necker - Enfants Malades, 149 rue de Sèvres, 75743 Paris 15, France.
| | | | | |
Collapse
|
207
|
Bastock R, Strutt D. The planar polarity pathway promotes coordinated cell migration during Drosophila oogenesis. Development 2007; 134:3055-64. [PMID: 17652348 PMCID: PMC1991286 DOI: 10.1242/dev.010447] [Citation(s) in RCA: 69] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Cell migration is fundamental in both animal morphogenesis and disease. The migration of individual cells is relatively well-studied; however, in vivo, cells often remain joined by cell-cell junctions and migrate in cohesive groups. How such groups of cells coordinate their migration is poorly understood. The planar polarity pathway coordinates the polarity of non-migrating cells in epithelial sheets and is required for cell rearrangements during vertebrate morphogenesis. It is therefore a good candidate to play a role in the collective migration of groups of cells. Drosophila border cell migration is a well-characterised and genetically tractable model of collective cell migration, during which a group of about six to ten epithelial cells detaches from the anterior end of the developing egg chamber and migrates invasively towards the oocyte. We find that the planar polarity pathway promotes this invasive migration, acting both in the migrating cells themselves and in the non-migratory polar follicle cells that they carry along. Disruption of planar polarity signalling causes abnormalities in actin-rich processes on the cell surface and leads to less-efficient migration. This is apparently due, in part, to a loss of regulation of Rho GTPase activity by the planar polarity receptor Frizzled, which itself becomes localised to the migratory edge of the border cells. We conclude that, during collective cell migration, the planar polarity pathway can mediate communication between motile and non-motile cells, which enhances the efficiency of migration via the modulation of actin dynamics.
Collapse
Affiliation(s)
| | - David Strutt
- Corresponding author, , Tel. +44 114 222 2372, Fax. +44 114 276 5413
| |
Collapse
|
208
|
Schlessinger K, McManus EJ, Hall A. Cdc42 and noncanonical Wnt signal transduction pathways cooperate to promote cell polarity. ACTA ACUST UNITED AC 2007; 178:355-61. [PMID: 17646398 PMCID: PMC2064837 DOI: 10.1083/jcb.200701083] [Citation(s) in RCA: 158] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Scratch-induced disruption of cultured monolayers induces polarity in front row cells that can be visualized by spatially localized polymerization of actin at the front of the cell and reorientation of the centrosome/Golgi to face the leading edge. We previously reported that centrosomal reorientation and microtubule polarization depend on a Cdc42-regulated signal transduction pathway involving activation of the Par6/aPKC complex followed by inhibition of GSK-3β and accumulation of the adenomatous polyposis coli (APC) protein at the plus ends of leading-edge microtubules. Using monolayers of primary rodent embryo fibroblasts, we show here that dishevelled (Dvl) and axin, two major components of the Wnt signaling pathway are required for centrosome reorientation and that Wnt5a is required for activation of this pathway. We conclude that disruption of cell–cell contacts leads to the activation of a noncanonical Wnt/dishevelled signal transduction pathway that cooperates with Cdc42/Par6/aPKC to promote polarized reorganization of the microtubule cytoskeleton.
Collapse
Affiliation(s)
- Karni Schlessinger
- Medical Research Council Laboratory for Molecular Cell Biology, Cancer Research UK Oncogene and Signal Transduction Group and Department of Biochemistry and Molecular Biology, University College London, London, England, UK
| | | | | |
Collapse
|
209
|
Vincan E, Brabletz T, Faux MC, Ramsay RG. A human three-dimensional cell line model allows the study of dynamic and reversible epithelial-mesenchymal and mesenchymal-epithelial transition that underpins colorectal carcinogenesis. Cells Tissues Organs 2007; 185:20-8. [PMID: 17587804 DOI: 10.1159/000101299] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
Developmental morphogenesis relies on cell transitions between epithelial and mesenchymal states. Colorectal cancer (CRC) progression can also be described as 'morphogenesis' as it involves epithelial-mesenchymal transition (EMT), whereby tumour cells become more invasive and metastatic. Subsequently, the disseminated tumour cells must undergo a reverse transition (MET), as the pathology of most primary tumours is re-capitulated by their established metastases. Disseminated tumour cells can remain 'dormant' for many years. Consequently, tumour initiation at the secondary site is the rate-limiting step in metastasis. Metastasis is governed by cell intrinsic and extrinsic (microenvironment) factors, thus much of what we know about metastasis is drawn from in vivo model systems. However, the molecular mechanisms controlling release from 'dormancy' are still largely unknown due to the complexity this presents for the in vivo situation. An in vitro morphogenesis culture system would present a great advantage. To this end, we have established a unique model of CRC morphogenesis, using a variant of the human cell line LIM1863 (LIM1863-Mph). In this model system LIM1863-Mph cells show plasticity between epithelial and mesenchymal states. The transitions are reversible and bear the phenotypic hallmarks of CRC morphogenesis. Importantly, we have demonstrated a pivotal role for FZD7 in these phenotype transitions, implicating Wnt signalling in orchestrating CRC morphogenesis.
Collapse
Affiliation(s)
- Elizabeth Vincan
- Research Division, Peter MacCallum Cancer Centre, Melbourne, Australia.
| | | | | | | |
Collapse
|
210
|
Carmona-Fontaine C, Acuña G, Ellwanger K, Niehrs C, Mayor R. Neural crests are actively precluded from the anterior neural fold by a novel inhibitory mechanism dependent on Dickkopf1 secreted by the prechordal mesoderm. Dev Biol 2007; 309:208-21. [PMID: 17669393 DOI: 10.1016/j.ydbio.2007.07.006] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2007] [Revised: 06/13/2007] [Accepted: 07/06/2007] [Indexed: 12/13/2022]
Abstract
It is known the interactions between the neural plate and epidermis generate neural crest (NC), but it is unknown why the NC develops only at the lateral border of the neural plate and not in the anterior fold. Using grafting experiments we show that there is a previously unidentified mechanism that precludes NC from the anterior region. We identify prechordal mesoderm as the tissue that inhibits NC in the anterior territory and show that the Wnt/beta-catenin antagonist Dkk1, secreted by this tissue, is sufficient to mimic this NC inhibition. We show that Dkk1 is required for preventing the formation of NC in the anterior neural folds as loss-of-function experiments using a Dkk1 blocking antibody in Xenopus as well as the analysis of Dkk1-null mouse embryos transform the anterior neural fold into NC. This can be mimicked by Wnt/beta-catenin signaling activation without affecting the anterior posterior patterning of the neural plate, or placodal specification. Finally, we show that the NC cells induced at the anterior neural fold are able to migrate and differentiate as normal NC. These results demonstrate that anterior regions of the embryo lack NC because of a mechanism, conserved from fish to mammals, that suppresses Wnt/beta-catenin signaling via Dkk1.
Collapse
|
211
|
Snider P, Olaopa M, Firulli AB, Conway SJ. Cardiovascular development and the colonizing cardiac neural crest lineage. ScientificWorldJournal 2007; 7:1090-113. [PMID: 17619792 PMCID: PMC2613651 DOI: 10.1100/tsw.2007.189] [Citation(s) in RCA: 87] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
Although it is well established that transgenic manipulation of mammalian neural crest-related gene expression and microsurgical removal of premigratory chicken and Xenopus embryonic cardiac neural crest progenitors results in a wide spectrum of both structural and functional congenital heart defects, the actual functional mechanism of the cardiac neural crest cells within the heart is poorly understood. Neural crest cell migration and appropriate colonization of the pharyngeal arches and outflow tract septum is thought to be highly dependent on genes that regulate cell-autonomous polarized movement (i.e., gap junctions, cadherins, and noncanonical Wnt1 pathway regulators). Once the migratory cardiac neural crest subpopulation finally reaches the heart, they have traditionally been thought to participate in septation of the common outflow tract into separate aortic and pulmonary arteries. However, several studies have suggested these colonizing neural crest cells may also play additional unexpected roles during cardiovascular development and may even contribute to a crest-derived stem cell population. Studies in both mice and chick suggest they can also enter the heart from the venous inflow as well as the usual arterial outflow region, and may contribute to the adult semilunar and atrioventricular valves as well as part of the cardiac conduction system. Furthermore, although they are not usually thought to give rise to the cardiomyocyte lineage, neural crest cells in the zebrafish (Danio rerio) can contribute to the myocardium and may have different functions in a species-dependent context. Intriguingly, both ablation of chick and Xenopus premigratory neural crest cells, and a transgenic deletion of mouse neural crest cell migration or disruption of the normal mammalian neural crest gene expression profiles, disrupts ventral myocardial function and/or cardiomyocyte proliferation. Combined, this suggests that either the cardiac neural crest secrete factor/s that regulate myocardial proliferation, can signal to the epicardium to subsequently secrete a growth factor/s, or may even contribute directly to the heart. Although there are species differences between mouse, chick, and Xenopus during cardiac neural crest cell morphogenesis, recent data suggest mouse and chick are more similar to each other than to the zebrafish neural crest cell lineage. Several groups have used the genetically defined Pax3 (splotch) mutant mice model to address the role of the cardiac neural crest lineage. Here we review the current literature, the neural crest-related role of the Pax3 transcription factor, and discuss potential function/s of cardiac neural crest-derived cells during cardiovascular developmental remodeling.
Collapse
Affiliation(s)
- Paige Snider
- Cardiovascular Development Group,
Herman B. Wells Center for Pediatric Research,
Indiana University School of Medicine,
Indianapolis, IN 46202,
USA
| | - Michael Olaopa
- Cardiovascular Development Group,
Herman B. Wells Center for Pediatric Research,
Indiana University School of Medicine,
Indianapolis, IN 46202,
USA
| | - Anthony B. Firulli
- Cardiovascular Development Group,
Herman B. Wells Center for Pediatric Research,
Indiana University School of Medicine,
Indianapolis, IN 46202,
USA
| | - Simon J. Conway
- Cardiovascular Development Group,
Herman B. Wells Center for Pediatric Research,
Indiana University School of Medicine,
Indianapolis, IN 46202,
USA
- *Simon J. Conway:
| |
Collapse
|
212
|
Chuang YY, Valster A, Coniglio SJ, Backer JM, Symons M. The atypical Rho family GTPase Wrch-1 regulates focal adhesion formation and cell migration. J Cell Sci 2007; 120:1927-34. [PMID: 17504809 DOI: 10.1242/jcs.03456] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Wrch-1 (Wnt-regulated Cdc42 homolog) is a new member of the Rho family that was identified as a gene transcriptionally upregulated by Wnt-1. Wrch-1 has no detectable GTPase activity and displays very high intrinsic guanine nucleotide exchange, implying that it is constitutively GTP-bound. The biological functions of Wrch-1 largely remain to be characterized. Here, we report that Wrch-1 prominently localizes to focal adhesions. Depletion of Wrch-1 by small interfering RNA increases focal adhesion formation, whereas Wrch-1 overexpression disassembles focal adhesions. Wrch-1 depletion inhibits myosin-light-chain phosphorylation, which in turn leads to an increase in the number of focal adhesions and inhibits cell migration in response to wound healing. Depletion of Wrch-1 also inhibits Akt and JNK activation. Although pharmacological inhibitors of Akt and JNK inhibit cell migration, they do not affect focal adhesions. Thus, our data suggest that Wrch-1 regulates cell migration by multiple mechanisms: on the one hand Wrch-1 controls focal adhesions by regulating myosin light chain and on the other hand Wrch-1 stimulates the activation of Akt and JNK.
Collapse
Affiliation(s)
- Ya-yu Chuang
- Center for Oncology and Cell Biology, The Feinstein Institute for Medical Research at North Shore-LIJ, North Shore University Hospital, Manhasset, NY 11030, USA
| | | | | | | | | |
Collapse
|
213
|
Schleiffarth JR, Person AD, Martinsen BJ, Sukovich DJ, Neumann A, Baker CVH, Lohr JL, Cornfield DN, Ekker SC, Petryk A. Wnt5a is required for cardiac outflow tract septation in mice. Pediatr Res 2007; 61:386-91. [PMID: 17515859 DOI: 10.1203/pdr.0b013e3180323810] [Citation(s) in RCA: 86] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Lack of septation of the cardiac outflow tract (OFT) results in persistent truncus arteriosus (PTA), a form of congenital heart disease. The outflow myocardium expands through addition of cells originating from the pharyngeal mesoderm referred to as secondary/anterior heart field, whereas cardiac neural crest (CNC) cell-derived mesenchyme condenses to form an aortopulmonary septum. We show for the first time that a mutation in Wnt5a in mice leads to PTA. We provide evidence that Wnt5a is expressed in the pharyngeal mesoderm adjacent to CNC cells in both mouse and chicken embryos and in the myocardial cell layer of the conotruncus at the time when CNC cells begin to form the aortopulmonary septum in mice. Although expression domains of secondary heart field markers are not altered in Wnt5a mutant embryos, the expression of CNC cell marker PlexinA2 is significantly reduced. Stimulation of CNC cells with Wnt5a protein elicits Ca2+ transients, suggesting that CNC cells are capable of responding to Wnt5a. We propose a novel model in which Wnt5a produced in the OFT by cells originating from the pharyngeal mesoderm signals to adjacent CNC cells during formation of the aortopulmonary septum through a noncanonical pathway via localized intracellular increases in Ca2+.
Collapse
Affiliation(s)
- J Robert Schleiffarth
- Department of Pediatrics, University of Minnesota, Minneapolis, Minnesota 55455, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
214
|
Berti C, Nodari A, Wrabetz L, Feltri ML. Role of integrins in peripheral nerves and hereditary neuropathies. Neuromolecular Med 2007; 8:191-204. [PMID: 16775376 DOI: 10.1385/nmm:8:1-2:191] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2005] [Revised: 11/18/2005] [Accepted: 11/30/2005] [Indexed: 01/11/2023]
Abstract
Interactions between Schwann cells and extracellular matrix on one surface, and axons on the other, are required for correct myelination in the developing peripheral nervous system. Integrins are transmembrane proteins that mediate the former in association with other surface receptors. This review focuses on the role that integrins play in the development of the peripheral nervous system, and in inherited human peripheral neuropathies. Here we describe recent findings on integrin signaling to different intracellular pathways, focusing on cell adhesion, migration, and polarization. Then we use information derived from recent experiments of targeted mutagenesis in mice to show that, consistent with temporally regulated expression, different integrins serve multiple roles in developing nerve.
Collapse
Affiliation(s)
- Caterina Berti
- San Raffaele Scientific Institute, DIBIT, Via Olgettina 58, 20132 Milano, Italy
| | | | | | | |
Collapse
|
215
|
Goodwin AM, Kitajewski J, D'Amore PA. Wnt1 and Wnt5a affect endothelial proliferation and capillary length; Wnt2 does not. Growth Factors 2007; 25:25-32. [PMID: 17454147 DOI: 10.1080/08977190701272933] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
Blood vessel growth is critical for embryonic development and contributes to pathologies including cancer and diabetic retinopathy. A growing body of evidence suggests that signaling via the Wnt/beta-catenin pathway contributes to angiogenesis, and that paracrine Wnt signaling might alter endothelial cell function. To test the hypothesis that Wnt signaling promotes endothelial cell proliferation and vessel growth, we treated bovine aortic endothelial cells with Wnt1, Wnt2 and Wnt5a derived from coculture with Wnt-expressing fibroblasts. Endothelial cells cultured in the presence of Wnt1 displayed increased Wnt/beta-catenin signaling, proliferation and capillary stability in vitro. Wnt5a, which primarily signals via an alternate Wnt pathway, the Wnt/Ca(++) pathway, decreased both cell number and capillary length. Wnt2, which in other cell types activates the Wnt/beta-catenin pathway, did not activate signaling, affect cell number or increase capillary length. These results suggest that Wnt/beta-catenin and Wnt/Ca(++) signals might have opposing effects on angiogenesis.
Collapse
Affiliation(s)
- Anne M Goodwin
- The Schepens Eye Research Institute and the Department of Ophthalmology, Harvard Medical School, 20 Staniford Street, Boston, MA 02114, USA
| | | | | |
Collapse
|
216
|
Schmidt C, McGonnell IM, Allen S, Otto A, Patel K. Wnt6 controls amniote neural crest induction through the non-canonical signaling pathway. Dev Dyn 2007; 236:2502-11. [PMID: 17685490 DOI: 10.1002/dvdy.21260] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
The neural crest is a multipotent embryonic cell population that arises from neural ectoderm and forms derivatives essential for vertebrate function. Neural crest induction requires an ectodermal signal, thought to be a Wnt ligand, but the identity of the Wnt that performs this function in amniotes is unknown. Here, we demonstrate that Wnt6, derived from the ectoderm, is necessary for chick neural crest induction. Crucially, we also show that Wnt6 acts through the non-canonical pathway and not the beta-catenin-dependant pathway. Surprisingly, we found that canonical Wnt signaling inhibited neural crest production in the chick embryo. In light of studies in anamniotes demonstrating that canonical Wnt signaling induces neural crest, these results indicate a significant and novel change in the mechanism of neural crest induction during vertebrate evolution. These data also highlight a key role for noncanonical Wnt signaling in cell type specification from a stem population during development.
Collapse
Affiliation(s)
- Corina Schmidt
- Department of Veterinary Basic Sciences, Royal Veterinary College, London, United Kingdom
| | | | | | | | | |
Collapse
|
217
|
Kim DJ, Park CS, Yoon JK, Song WK. Differential expression of theWnt andFrizzled genes in Flk1+ cells derived from mouse ES cells. Cell Biochem Funct 2007; 26:24-32. [PMID: 17154359 DOI: 10.1002/cbf.1391] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Embryonic stem (ES) cells have the potential to develop into various cell lineages including hemangioblasts (Flk1+), a common progenitor for hematopoietic and vascular endothelial cells. Previous studies indicate that Flk1+ cells, a marker for hemangioblast, can be derived from ES cell and that Flk1+ can be differentiated into hematopoietic or endothelial cells depending on culture conditions. We developed an improved in vitro system to generate Flk1+-enriched cultures from mouse ES cells and used this in vitro system to study the role of Wnt signalling in early endothelial progenitor cells. We determined the expression of the Wnt and Frizzled genes in Flk1+ cells derived from mouse ES cells. RT-PCR analyses identified significantly higher expression of non-canonical Wnt5a and Wnt11 genes in Flk1+ cells compared to Flk1- cells. In contrast, expression of canonical Wnt3a gene was reduced in Flk1+ cells. In addition, Frizzled2, Frizzled5 and Frizzled7 genes were also expressed at a higher level in Flk1+ cells. The differential expression of Wnt and Frizzled genes in Flk1+ cells provides a novel insight into the role of non-canonical Wnt signalling in vascular endothelial fate determination.
Collapse
Affiliation(s)
- Dae Joong Kim
- Department of Life Science and Molecular Disease Research Center, Gwangju Institute of Science and Technology, Gwangju, Korea
| | | | | | | |
Collapse
|
218
|
Garriock RJ, Krieg PA. Wnt11-R signaling regulates a calcium sensitive EMT event essential for dorsal fin development of Xenopus. Dev Biol 2006; 304:127-40. [PMID: 17240368 PMCID: PMC1905145 DOI: 10.1016/j.ydbio.2006.12.020] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2006] [Revised: 11/23/2006] [Accepted: 12/11/2006] [Indexed: 11/17/2022]
Abstract
In the frog embryo, a sub-population of trunk neural crest (NC) cells undergoes a dorsal route of migration to contribute to the mesenchyme in the core of the dorsal fin. Here we show that a second population of cells, originally located in the dorsomedial region of the somite, also contributes to the fin mesenchyme. We find that the frog orthologue of Wnt11 (Wnt11-R) is expressed in both the NC and somite cell populations that migrate into the fin matrix. Wnt11-R is expressed prior to migration and persists in the mesenchymal cells after they have distributed throughout the fin. Loss of function studies demonstrate that Wnt11-R activity is required for an epithelial to mesenchymal transformation (EMT) event that precedes migration of cells into the fin matrix. In Wnt11-R depleted embryos, the absence of fin core cells leads to defective dorsal fin development and to collapse of the fin structure. Experiments using small molecule inhibitors indicate that dorsal migration of fin core cells depends on calcium signaling through calcium/calmodulin-dependent kinase II (CaMKII). In Wnt11-R depleted embryos, normal migration of NC cells and dorsal somite cells into the fin and normal fin development can be rescued by stimulation of calcium release. These studies are consistent with a model in which Wnt11-R signaling, via a downstream calcium pathway, regulates fin cell migration and, more generally, indicates a role for non-canonical Wnt signaling in regulation of EMT.
Collapse
Affiliation(s)
| | - Paul A. Krieg
- *Address correspondence to: Paul A. Krieg, Telephone: 520-626-9370, Fax: 520-626-2097, e-mail:
| |
Collapse
|
219
|
Lange C, Mix E, Rateitschak K, Rolfs A. Wnt signal pathways and neural stem cell differentiation. NEURODEGENER DIS 2006; 3:76-86. [PMID: 16909041 DOI: 10.1159/000092097] [Citation(s) in RCA: 55] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
Abstract
Self-renewal, migration and differentiation of neural progenitor cells are controlled by a variety of pleiotropic signal molecules. Members of the morphogen family of Wnt molecules play a crucial role for developmental and repair mechanisms in the embryonic and adult nervous system. A strategy of disclosure of the role of different canonical (glycogen synthase kinase-3beta/beta-catenin-dependent) and noncanonical (Ca2+- and JNK-dependent) signal pathways for progenitor cell expansion and differentiations is illustrated at the example of the rat striatal progenitor cell line ST14A that is immortalized by stable retroviral transfection with a temperature-sensitive mutant of the SV40 large T antigen. A shift from permissive 33 degrees C to nonpermissive 39 degrees C leads to proliferation stop and start of differentiation into glial and neuronal cells. Investigation of expression of Wnts, Wnt receptors and Wnt-dependent signal pathway assay point to a stage-dependent involvement of canonical and noncanonical signaling in proliferation and differentiation of ST14A cells, whereby a mutual suppression of pathway activities is likely. Canonical Wnt molecules are not detected in proliferating and differentiating ST14A cells except Wnt2. The noncanonical Wnt molecules Wnt4, Wnt5a and Wnt11 are expressed in proliferating cells and increase during differentiation, whereas cellular beta-catenin decreases in the early phase and is restored in the late phase of differentiation. Accumulation of beta-catenin at the membrane in undifferentiated proliferating cells and its nuclear localization in nondividing undifferentiated cells under differentiation conditions argues for a distinct spatially regulated role of the molecule in the proliferation and early differentiation phase. Ca2+-dependent and JNK-dependent noncanonical Wnt signaling is not detected during differentiation of ST14A cells. Complete exploration of the role of Wnt pathways, for differentiation of the neural progenitor cells ST14A will require Wnt overexpression and exposure of ST14A cells to exogenous Wnts either with purified Wnts or by co-cultures with Wnt producers.
Collapse
Affiliation(s)
- Christian Lange
- Department of Neurology, University of Rostock, Rostock, Germany
| | | | | | | |
Collapse
|
220
|
Vincan E, Darcy PK, Farrelly CA, Faux MC, Brabletz T, Ramsay RG. Frizzled-7 dictates three-dimensional organization of colorectal cancer cell carcinoids. Oncogene 2006; 26:2340-52. [PMID: 17016432 DOI: 10.1038/sj.onc.1210026] [Citation(s) in RCA: 58] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Progression of colorectal cancer (CRC) involves spatial and temporal occurrences of epithelial-mesenchymal transition (EMT), whereby tumour cells acquire a more invasive and metastatic phenotype. Subsequently, the disseminated mesenchymal tumour cells must undergo a reverse transition (mesenchymal-epithelial transition, MET) at the site of metastases, as most metastases recapitulate the pathology of their corresponding primary tumours. Importantly, initiation of tumour growth at the secondary site is the rate-limiting step in metastasis. However, investigation of this dynamic reversible EMT and MET that underpins CRC morphogenesis has been hindered by a lack of suitable in vitro models. To this end, we have established a unique in vitro model of CRC morphogenesis, which we term LIM1863-Mph (morphogenetic). LIM1863-Mph cells spontaneously undergo cyclic transitions between two-dimensional monolayer (migratory, mesenchymal) and three-dimensional sphere (carcinoid, epithelial) states. Using RNAi, we demonstrate that FZD7 is necessary for MET of the monolayer cells as loss of FZD7 results in the persistence of a mesenchymal state (increased SNAI2/decreased E-cadherin). Moreover, FZD7 is also required for migration of the LIM1863-Mph monolayer cells. During development, FZD7 orchestrates either migratory or epithelialization events depending on the context. Our findings strongly implicate similar functional diversity for FZD7 during CRC morphogenesis.
Collapse
Affiliation(s)
- E Vincan
- Research Division, Peter MacCallum Cancer Centre, East Melbourne, Victoria, Australia.
| | | | | | | | | | | |
Collapse
|
221
|
Abstract
The Wnt signaling pathway regulates multiple events in development and disease in both vertebrates and invertebrates. Recently, the noncanonical Wnt signaling cascades, those that do not signal through beta-catenin, have gained prominence for their role in the regulation of cellular polarity. It is not surprising that cellular polarization influences a number of different developmental events within the nervous system, including neurulation and neural tube closure, cellular migration, and uniform orientation of cells within an epithelial plane (planar cell polarity). In this review, we describe the differences between the canonical and noncanonical pathways, summarize recent data illustrating the roles of the noncanonical Wnt pathway in different polarizing events during neural development, and discuss the potential molecular mechanisms that underlie the generation of cellular asymmetry and polarity.
Collapse
|
222
|
Sauka-Spengler T, Bronner-Fraser M. Development and evolution of the migratory neural crest: a gene regulatory perspective. Curr Opin Genet Dev 2006; 16:360-6. [PMID: 16793256 DOI: 10.1016/j.gde.2006.06.006] [Citation(s) in RCA: 76] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2006] [Accepted: 06/09/2006] [Indexed: 11/16/2022]
Abstract
The neural crest, a uniquely vertebrate characteristic, gives rise to pigment cells, much of the peripheral nervous system, the craniofacial skeleton, and a plethora of other cell types. Classical embryological studies have revealed important details about the migratory pathways followed by these cells, and their subsequent differentiation into diverse derivatives. More recently, many aspects of the molecular cascade of events involved in neural crest induction and generation of these migratory cells have been revealed. Formation of the neural crest appears to involve a network of interactions whereby signaling molecules initiate the induction and, subsequently, the establishment of the neural plate border, which is marked by expression of a characteristic set of transcription factors designated as neural plate border-specifiers. These in turn regulate other transcription factors termed neural crest-specifiers, which control genes involved in neural crest delamination, the generation of migratory cells and ultimately the acquisition of appropriate fates.
Collapse
|
223
|
Abu-Elmagd M, Garcia-Morales C, Wheeler GN. Frizzled7 mediates canonical Wnt signaling in neural crest induction. Dev Biol 2006; 298:285-98. [PMID: 16928367 DOI: 10.1016/j.ydbio.2006.06.037] [Citation(s) in RCA: 62] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2006] [Revised: 06/21/2006] [Accepted: 06/22/2006] [Indexed: 11/30/2022]
Abstract
The neural crest is a multipotent cell population that migrates from the dorsal edge of the neural tube to various parts of the embryo where it differentiates into a remarkable variety of different cell types. Initial induction of neural crest is mediated by a combination of BMP, Wnt, FGF, Retinoic acid and Notch/Delta signaling. The two-signal model for neural crest induction suggests that BMP signaling induces the competence to become neural crest. The second signal involves Wnt acting through the canonical pathway and leads to expression of neural crest markers such as slug. Wnt signals from the neural plate, non-neural ectoderm and paraxial mesoderm have all been suggested to play a role in neural crest induction. We show that Xenopus frizzled7 (Xfz7) is expressed in the dorsal ectoderm including early neural crest progenitors and is a key mediator of the Wnt inductive signal. We demonstrate that Xfz7 expression is induced in response to a BMP antagonist, noggin, and that Xfz7 can induce neural crest specific genes in noggin-treated ectodermal explants (animal caps). Morpholino-mediated or dominant negative inhibition of Xfz7 inhibits Wnt induced Xslug expression in the animal cap assay and in the whole embryo leading to a loss of neural crest derived pigment cells. Full-length Xfz7 rescues the morpholino-induced phenotype, as does activated beta-catenin, suggesting that Xfz7 is signaling through the canonical pathway. We therefore demonstrate that Xfz7 is regulated by BMP antagonism and is required for neural crest induction by Wnt in the developing vertebrate embryo.
Collapse
Affiliation(s)
- Muhammad Abu-Elmagd
- School of Biological Sciences, University of East Anglia, Norwich NR4 7TJ, UK
| | | | | |
Collapse
|
224
|
Oppenheimer SB. Cellular basis of cancer metastasis: A review of fundamentals and new advances. Acta Histochem 2006; 108:327-34. [PMID: 16730054 DOI: 10.1016/j.acthis.2006.03.008] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2006] [Revised: 03/15/2006] [Accepted: 03/21/2006] [Indexed: 12/12/2022]
Abstract
This review provides an introduction to fundamentals and new advances in cancer metastasis for general readers. The first segment includes topics such as cell adhesion, cell migration, proteases, inflammation, coagulation and site selection in metastasis. Then follows a discussion of an interesting report by Kaplan et al. [VEGFR1-positive haematopoietic bone marrow progenitors initiate the pre-metastatic niche. Nature 2005;438:820-7] that provides evidence for a role of VEGFR1+bone marrow cells in preparing pre-metastatic niches in specific organs that host the arrival and growth of metastatic cancer cells. The therapeutic implications of this study are explored.
Collapse
Affiliation(s)
- Steven B Oppenheimer
- Department of Biology and Center for Cancer Developmental Biology, California State University Northridge, 18111 Nordhoff Street, Northridge, CA 91330-8303, USA.
| |
Collapse
|
225
|
Rangarajan J, Luo T, Sargent TD. PCNS: a novel protocadherin required for cranial neural crest migration and somite morphogenesis in Xenopus. Dev Biol 2006; 295:206-18. [PMID: 16674935 DOI: 10.1016/j.ydbio.2006.03.025] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2005] [Revised: 03/16/2006] [Accepted: 03/20/2006] [Indexed: 12/26/2022]
Abstract
Protocadherins (Pcdhs), a major subfamily of cadherins, play an important role in specific intercellular interactions in development. These molecules are characterized by their unique extracellular domain (EC) with more than 5 cadherin-like repeats, a transmembrane domain (TM) and a variable cytoplasmic domain. PCNS (Protocadherin in Neural crest and Somites), a novel Pcdh in Xenopus, is initially expressed in the mesoderm during gastrulation, followed by expression in the cranial neural crest (CNC) and somites. PCNS has 65% amino acid identity to Xenopus paraxial protocadherin (PAPC) and 42-49% amino acid identity to Pcdh 8 in human, mouse, and zebrafish genomes. Overexpression of PCNS resulted in gastrulation failure but conferred little if any specific adhesion on ectodermal cells. Loss of function accomplished independently with two non-overlapping antisense morpholino oligonucleotides resulted in failure of CNC migration, leading to severe defects in the craniofacial skeleton. Somites and axial muscles also failed to undergo normal morphogenesis in these embryos. Thus, PCNS has essential functions in these two important developmental processes in Xenopus.
Collapse
Affiliation(s)
- Janaki Rangarajan
- Laboratory of Molecular Genetics, NICHD, NIH, Bethesda, MD 20892, USA
| | | | | |
Collapse
|
226
|
Dickinson AJG, Sive H. Development of the primary mouth in Xenopus laevis. Dev Biol 2006; 295:700-13. [PMID: 16678148 DOI: 10.1016/j.ydbio.2006.03.054] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2006] [Revised: 03/30/2006] [Accepted: 03/31/2006] [Indexed: 11/19/2022]
Abstract
The initial opening between the gut and the outside of the deuterostome embryo breaks through at the extreme anterior. This region is unique in that ectoderm and endoderm are directly juxtaposed, without intervening mesoderm. This opening has been called the stomodeum, buccopharyngeal membrane or oral cavity at various stages of its formation, however, in order to clarify its function, we have termed this the "primary mouth". In vertebrates, the neural crest grows around the primary mouth to form the face and a "secondary mouth" forms. The primary mouth then becomes the pharyngeal opening. In order to establish a molecular understanding of primary mouth formation, we have begun to examine this process during Xenopus laevis development. An early step during this process occurs at tailbud and involves dissolution of the basement membrane between the ectoderm and endoderm. This is followed by ectodermal invagination to create the stomodeum. A subsequent step involves localized cell death in the ectoderm, which may lead to ectodermal thinning. Subsequently, ectoderm and endoderm apparently intercalate to generate one to two cell layers. The final step is perforation, where (after hatching) the primary mouth opens. Fate mapping has defined the ectodermal and endodermal regions that will form the primary mouth. Extirpations and transplants of these and adjacent regions indicate that, at tailbud, the oral ectoderm is not specifically required for primary mouth formation. In contrast, underlying endoderm and surrounding regions are crucial, presumably sources of necessary signals. This study indicates the complexity of primary mouth formation, and lays the groundwork for future molecular analyses of this important structure.
Collapse
|
227
|
Lee HS, Bong YS, Moore KB, Soria K, Moody SA, Daar IO. Dishevelled mediates ephrinB1 signalling in the eye field through the planar cell polarity pathway. Nat Cell Biol 2005; 8:55-63. [PMID: 16362052 DOI: 10.1038/ncb1344] [Citation(s) in RCA: 91] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2005] [Accepted: 11/25/2005] [Indexed: 02/01/2023]
Abstract
An important step in retinal development is the positioning of progenitors within the eye field where they receive the local environmental signals that will direct their ultimate fate. Recent evidence indicates that ephrinB1 functions in retinal progenitor movement, but the signalling pathway is unclear. We present evidence that ephrinB1 signals through its intracellular domain to control retinal progenitor movement into the eye field by interacting with Xenopus Dishevelled (Xdsh), and by using the planar cell polarity (PCP) pathway. Blocking Xdsh translation prevents retinal progeny from entering the eye field, similarly to the morpholino-mediated loss of ephrinB1 (ref. 2). Overexpression of Xdsh can rescue the phenotype induced by loss of ephrinB1, and this rescue (as well as a physical association between Xdsh and ephrinB1) is completely dependent on the DEP (Dishevelled, Egl-10, Pleckstrin) domain of Xdsh. Similar gain- and loss-of-function experiments suggest that Xdsh associates with ephrinB1 and mediates ephrinB1 signalling through downstream members of the PCP pathway during eye field formation.
Collapse
Affiliation(s)
- Hyun-Shik Lee
- Laboratory of Protein Dynamics and Signaling, National Cancer Institute-Frederick, Frederick, MD 21702, USA
| | | | | | | | | | | |
Collapse
|
228
|
Wallingford JB, Habas R. The developmental biology of Dishevelled: an enigmatic protein governing cell fate and cell polarity. Development 2005; 132:4421-36. [PMID: 16192308 DOI: 10.1242/dev.02068] [Citation(s) in RCA: 371] [Impact Index Per Article: 18.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
The Dishevelled protein regulates many developmental processes in animals ranging from Hydra to humans. Here, we discuss the various known signaling activities of this enigmatic protein and focus on the biological processes that Dishevelled controls. Through its many signaling activities, Dishevelled plays important roles in the embryo and the adult, ranging from cell-fate specification and cell polarity to social behavior. Dishevelled also has important roles in the governance of polarized cell divisions, in the directed migration of individual cells, and in cardiac development and neuronal structure and function.
Collapse
Affiliation(s)
- John B Wallingford
- Section of Molecular Cell and Developmental Biology, and Institute for Cellular and Molecular Biology, University of Texas, Austin, TX 78712, USA
| | | |
Collapse
|
229
|
Abstract
Kaiso belongs to the zinc finger and broad-complex, tramtrack and bric-a-brac/poxvirus and zinc finger (BTB/POZ) protein family that has been implicated in tumorigenesis. Kaiso was first discovered in a complex with the armadillo-domain protein p120ctn and later shown to function as a transcriptional repressor. As p120ctn seems to relieve Kaiso-mediated repression, its altered intracellular localization in some cancer cells might result in aberrant Kaiso nuclear activity. Intriguingly, Kaiso's target genes include both methylated and sequence-specific recognition sites. The latter include genes that are modulated by the canonical Wnt (beta-catenin-T-cell factor) signalling pathway. Further interest in Kaiso stems from findings that its cytoplasmic versus nuclear localization is modulated by complex cues from the microenvironment.
Collapse
Affiliation(s)
- Frans M van Roy
- Molecular Cell Biology Unit, Department for Molecular Biomedical Research, VIB-Ghent University, Technologiepark 927, B-9052 Ghent, Belgium.
| | | |
Collapse
|