201
|
Yates LL, Schnatwinkel C, Murdoch JN, Bogani D, Formstone CJ, Townsend S, Greenfield A, Niswander LA, Dean CH. The PCP genes Celsr1 and Vangl2 are required for normal lung branching morphogenesis. Hum Mol Genet 2010; 19:2251-67. [PMID: 20223754 PMCID: PMC2865378 DOI: 10.1093/hmg/ddq104] [Citation(s) in RCA: 127] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2010] [Accepted: 03/08/2010] [Indexed: 12/24/2022] Open
Abstract
The lungs are generated by branching morphogenesis as a result of reciprocal signalling interactions between the epithelium and mesenchyme during development. Mutations that disrupt formation of either the correct number or shape of epithelial branches affect lung function. This, in turn, can lead to congenital abnormalities such as cystadenomatoid malformations, pulmonary hypertension or lung hypoplasia. Defects in lung architecture are also associated with adult lung disease, particularly in cases of idiopathic lung fibrosis. Identifying the signalling pathways which drive epithelial tube formation will likely shed light on both congenital and adult lung disease. Here we show that mutations in the planar cell polarity (PCP) genes Celsr1 and Vangl2 lead to disrupted lung development and defects in lung architecture. Lungs from Celsr1(Crsh) and Vangl2(Lp) mouse mutants are small and misshapen with fewer branches, and by late gestation exhibit thickened interstitial mesenchyme and defective saccular formation. We observe a recapitulation of these branching defects following inhibition of Rho kinase, an important downstream effector of the PCP signalling pathway. Moreover, epithelial integrity is disrupted, cytoskeletal remodelling perturbed and mutant endoderm does not branch normally in response to the chemoattractant FGF10. We further show that Celsr1 and Vangl2 proteins are present in restricted spatial domains within lung epithelium. Our data show that the PCP genes Celsr1 and Vangl2 are required for foetal lung development thereby revealing a novel signalling pathway critical for this process that will enhance our understanding of congenital and adult lung diseases and may in future lead to novel therapeutic strategies.
Collapse
Affiliation(s)
- Laura L. Yates
- Medical Research Council, Harwell, Oxfordshire OX11 0RD, UK
| | - Carsten Schnatwinkel
- Howard Hughes Medical Institute, Department of Pediatrics, Section of Developmental Biology, University of Colorado Denver School of Medicine, Aurora, CO, USA and
| | | | - Debora Bogani
- Medical Research Council, Harwell, Oxfordshire OX11 0RD, UK
| | - Caroline J. Formstone
- MRC Centre for Developmental Neurobiology, Kings College London, New Hunts House, London SE1 1UL, UK
| | | | | | - Lee A. Niswander
- Howard Hughes Medical Institute, Department of Pediatrics, Section of Developmental Biology, University of Colorado Denver School of Medicine, Aurora, CO, USA and
| | | |
Collapse
|
202
|
Hashimoto M, Hamada H. Translation of anterior-posterior polarity into left-right polarity in the mouse embryo. Curr Opin Genet Dev 2010; 20:433-7. [PMID: 20439159 DOI: 10.1016/j.gde.2010.04.002] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2010] [Revised: 03/31/2010] [Accepted: 04/04/2010] [Indexed: 01/19/2023]
Abstract
The breaking of left-right symmetry in the mouse involves unidirectional fluid flow. Rotational movement of the node cilia generates leftward flow because the cilia are posteriorly tilted. However, it is unknown how anterior-posterior (A-P) information is translated into the posterior tilt of the node cilia. The tilt is determined by the position of the basal body of node cilia. Some of the planar cell polarity (PCP) core proteins such as Dvl are asymmetrically distributed in the node cells, and positioning of the basal body is impaired in mutant mice lacking Dvl genes. Therefore, posterior positioning of the basal body is determined by planar polarization involving noncanonical Wnt signaling. However, the identity of initial A-P information remains unknown.
Collapse
Affiliation(s)
- Masakazu Hashimoto
- Developmental Genetics Group, Graduate School of Frontier Biosciences, Osaka University, and CREST, Japan Science and Technology Corporation (JST), Suita, Osaka, Japan
| | | |
Collapse
|
203
|
|
204
|
Basal enrichment within neuroepithelia suggests novel function(s) for Celsr1 protein. Mol Cell Neurosci 2010; 44:210-22. [PMID: 20353824 DOI: 10.1016/j.mcn.2010.03.008] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2009] [Revised: 03/11/2010] [Accepted: 03/17/2010] [Indexed: 11/29/2022] Open
Abstract
A characteristic of the 7TM-cadherins, Flamingo and Celsr1, is their asymmetric protein distribution and polarized activity at neighboring epithelial cell interfaces along defined axes of planar cell polarity. Here, we describe a novel distribution of Celsr1 protein to the basal surface of neuroepithelial cells within both the early neural tube and a less well-defined group of ventricular zone cells at the midline of the developing spinal cord. Importantly, this basal enrichment is lost in embryos homozygous for a mutant Celsr1 allele. We also demonstrate an intimate association between basal enrichment of Celsr1 protein and dorsal sensory tract morphogenesis, an intriguing spatio-temporal organization of Celsr1 protein along the apico-basal neuroepithelial axis suggestive of multiple Celsr1 protein isoforms and the existence of distinct cell surface Celsr1 protein species with direct signaling potential. Together, these data raise compelling new questions concerning the role of Celsr1 during neural development.
Collapse
|
205
|
Wen J, Chiang YJ, Gao C, Xue H, Xu J, Ning Y, Hodes RJ, Gao X, Chen YG. Loss of Dact1 disrupts planar cell polarity signaling by altering dishevelled activity and leads to posterior malformation in mice. J Biol Chem 2010; 285:11023-30. [PMID: 20145239 DOI: 10.1074/jbc.m109.085381] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Wnt signaling plays a key role in embryogenesis and cancer development. Dvl (Dishevelled) is a central mediator for both the canonical and noncanonical Wnt pathways. Dact1 (Dapper1, Dpr1), a Dvl interactor, has been shown to negatively modulate Wnt signaling by promoting lysosomal degradation of Dvl. Here we report that Dact1-deficient mice have multiple physiological defects that resemble the human neonate disease congenital caudal regression syndrome, including caudal vertebrae agenesis, anorectal malformation, renal agenesis/dysplasia, fused kidneys, and loss of bladder. These urogenital defects can be traced to impaired hindgut formation starting at embryonic day 8.25. Examination of morphological changes and Wnt target gene expression revealed that the planar cell polarity (PCP) signaling is deregulated, whereas the canonical Wnt/beta-catenin pathway is largely unaffected in mutant embryos. Consistently, the activity of the PCP signal mediators Rho GTPase and c-Jun N-terminal kinase is altered in Dact1(-/-) mouse embryonic fibroblasts. We further observed alterations in the protein level and the cellular distribution of Dvl in the primitive streak of mutant embryos. An increased amount of Dvl2 tends to be accumulated in the cortical regions of the cells, especially at the primitive streak ectoderm close to the posterior endoderm that lately forms the hindgut diverticulum. Together, these data suggest that Dact1 may regulate vertebrate PCP by controlling the level and the cellular localization of Dvl protein.
Collapse
Affiliation(s)
- Jun Wen
- State Key Laboratory of Biomembrane and Membrane Biotechnology, College of Life Sciences, Tsinghua University, Beijing 100084, China
| | | | | | | | | | | | | | | | | |
Collapse
|
206
|
Gnad T, Feoktistova M, Leverkus M, Lendeckel U, Naumann M. Helicobacter pylori-induced activation of beta-catenin involves low density lipoprotein receptor-related protein 6 and Dishevelled. Mol Cancer 2010; 9:31. [PMID: 20137080 PMCID: PMC2825249 DOI: 10.1186/1476-4598-9-31] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2009] [Accepted: 02/05/2010] [Indexed: 01/12/2023] Open
Abstract
Background The human microbial pathogen Helicobacter pylori resides in the stomach of about fifty percent of the world's population and represents a risk factor for chronic gastritis, peptic ulcers and, in rare cases, gastric cancer. Alterations of the Wnt/β-catenin signaling pathway have been described in almost every human cancer disease, due to the regulation of target genes being involved in cell cycle control, differentiation, cell migration or stem cell control. Our study aimed to elucidate the role of proximal Wnt signaling components low density lipoprotein receptor-related protein 6 (LRP6) and Dishevelled (Dvl) in the activation of β-catenin early after infection of gastric epithelial cells with H. pylori. Results Infection of gastric epithelial NCI-N87 cells with H. pylori induces rapid phosphorylation of the Wnt/β-catenin pathway co-receptor LRP6 independent of the cytotoxin-associated gene A (CagA) or vacuolating cytotoxin A (VacA). However, bacteria lacking a functional type 4 secretion system (T4SS) failed to induce LRP6 phosphorylation. Further, we identified proteins of the Dvl family, namely Dvl2 and Dvl3, which are involved in LRP6 phosphorylation. H. pylori-induced nuclear accumulation of β-catenin and its transcriptional activation, and expression of Wnt target genes are strongly reduced in stable knockdown cell lines deficient for LRP6, Dvl2 or Dvl3. Conclusion We analysed the H. pylori-induced activation of Wnt-signaling factors and demonstrate for the first time that the canonical Wnt-signaling proteins LRP6 and Dvl2 and Dvl3 are involved in the regulation of β-catenin.
Collapse
Affiliation(s)
- Thorsten Gnad
- Institute of Experimental Internal Medicine, Otto von Guericke University, Magdeburg, Germany
| | | | | | | | | |
Collapse
|
207
|
Planar cell polarity enables posterior localization of nodal cilia and left-right axis determination during mouse and Xenopus embryogenesis. PLoS One 2010; 5:e8999. [PMID: 20126399 PMCID: PMC2814853 DOI: 10.1371/journal.pone.0008999] [Citation(s) in RCA: 142] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2009] [Accepted: 01/05/2010] [Indexed: 11/19/2022] Open
Abstract
Left-right asymmetry in vertebrates is initiated in an early embryonic structure called the ventral node in human and mouse, and the gastrocoel roof plate (GRP) in the frog. Within these structures, each epithelial cell bears a single motile cilium, and the concerted beating of these cilia produces a leftward fluid flow that is required to initiate left-right asymmetric gene expression. The leftward fluid flow is thought to result from the posterior tilt of the cilia, which protrude from near the posterior portion of each cell's apical surface. The cells, therefore, display a morphological planar polarization. Planar cell polarity (PCP) is manifested as the coordinated, polarized orientation of cells within epithelial sheets, or as directional cell migration and intercalation during convergent extension. A set of evolutionarily conserved proteins regulates PCP. Here, we provide evidence that vertebrate PCP proteins regulate planar polarity in the mouse ventral node and in the Xenopus gastrocoel roof plate. Asymmetric anterior localization of VANGL1 and PRICKLE2 (PK2) in mouse ventral node cells indicates that these cells are planar polarized by a conserved molecular mechanism. A weakly penetrant Vangl1 mutant phenotype suggests that compromised Vangl1 function may be associated with left-right laterality defects. Stronger functional evidence comes from the Xenopus GRP, where we show that perturbation of VANGL2 protein function disrupts the posterior localization of motile cilia that is required for leftward fluid flow, and causes aberrant expression of the left side-specific gene Nodal. The observation of anterior-posterior PCP in the mouse and in Xenopus embryonic organizers reflects a strong evolutionary conservation of this mechanism that is important for body plan determination.
Collapse
|
208
|
Abstract
Morphogenesis of sensory hair cells, in particular their mechanotransduction organelle, the stereociliary bundle, requires highly organized remodeling of the actin cytoskeleton. The roles of Rho family small GTPases during this process remain unknown. Here we show that deletion of Rac1 in the otic epithelium resulted in severe defects in cochlear epithelial morphogenesis. The mutant cochlea was severely shortened with a reduced number of auditory hair cells and cellular organization of the auditory sensory epithelium was abnormal. Rac1 mutant hair cells also displayed defects in planar cell polarity and morphogenesis of the stereociliary bundle, including bundle fragmentation or deformation, and mispositioning or absence of the kinocilium. We further demonstrate that a Rac-PAK (p21-activated kinase) signaling pathway mediates kinocilium-stereocilia interactions and is required for cohesion of the stereociliary bundle. Together, these results reveal a critical function of Rac1 in morphogenesis of the auditory sensory epithelium and stereociliary bundle.
Collapse
|
209
|
Abstract
Epithelial tubes are crucial to the function of organ systems including the cardiovascular system, pulmonary system, gastrointestinal tract, reproductive organ systems, excretory system, and auditory system. Using a variety of animal model systems, recent studies have substantiated the role of Wnt signaling via the canonical/beta-catenin-mediated trajectory, the non-canonical Wnt trajectories, or both, in forming epithelial tubular tissues. This review focuses on the involvement of the Wnt pathways in the induction, specification, proliferation, and morphogenesis involved in tubulogenesis within tissues including the lungs, kidneys, ears, mammary glands, gut, and heart. The ultimate goal is to describe the developmental processes forming the various tubulogenic organ systems to determine the relationships between these processes.
Collapse
Affiliation(s)
- Rachel K Miller
- Department of Biochemistry and Molecular Biology, The University of Texas M.D. Anderson Cancer Center, Houston, Texas 77030, USA.
| | | |
Collapse
|
210
|
Formstone CJ. 7TM-Cadherins: developmental roles and future challenges. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2010; 706:14-36. [PMID: 21618823 DOI: 10.1007/978-1-4419-7913-1_2] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
The 7TM-Cadherins, Celsr/Flamingo/Starry night, represent a unique subgroup of adhesion-GPCRs containing atypical cadherin repeats, capable of homophilic interaction, linked to the archetypal adhesion-GPCR seven-transmembrane domain. Studies in Drosophila provided a first glimpse of their functional properties, most notably in the regulation of planar cell polarity (PCP) and in the formation of neural architecture. Many of the developmental functions identified in flies are conserved in vertebrates with PCP predicted to influence the development of multiple organ systems. Details of the molecular and cellular functions of 7TM-Cadherins are slowly emerging but many questions remain unanswered. Here the developmental roles of 7TM-Cadherins are discussed and future challenges in understanding their molecular and cellular roles are explored.
Collapse
Affiliation(s)
- Caroline J Formstone
- MRC Centre for Developmental Neurobiology, New Hunt's House, Guy's Campus, King's College London, SE1 1UL, UK.
| |
Collapse
|
211
|
Dishevelled: The hub of Wnt signaling. Cell Signal 2009; 22:717-27. [PMID: 20006983 DOI: 10.1016/j.cellsig.2009.11.021] [Citation(s) in RCA: 576] [Impact Index Per Article: 36.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2009] [Accepted: 11/28/2009] [Indexed: 12/24/2022]
Abstract
Wnt signaling controls a variety of developmental and homeostatic events. As a key component of Wnt signaling, Dishevelled (Dvl/Dsh) protein relays Wnt signals from receptors to downstream effectors. In the canonical Wnt pathway that depends on the nuclear translocation of beta-catenin, Dvl is recruited by the receptor Frizzled and prevents the constitutive destruction of cytosolic beta-catenin. In the non-canonical Wnt pathways such as Wnt-Frizzled/PCP (planar cell polarity) signaling, Dvl signals via the Daam1-RhoA axis and the Rac1 axis. In addition, Dvl plays important roles in Wnt-GSK3beta-microtubule signaling, Wnt-calcium signaling, Wnt-RYK signaling, Wnt-atypical PKC signaling, etc. Dvl also functions to mediate receptor endocytosis. To fulfill its multifaceted functions, it is not surprising that Dvl associates with various kinds of proteins. Its activity is also modulated dynamically by phosphorylation, ubiquitination and degradation. In this review, we summarize the current understanding of Dvl functions in Wnt signal transduction and its biological functions in mouse development, and also discuss the molecular mechanisms of its actions.
Collapse
|
212
|
Abstract
Neural tube defects (NTDs) are common, severe congenital malformations whose causation involves multiple genes and environmental factors. Although more than 200 genes are known to cause NTDs in mice, there has been rather limited progress in delineating the molecular basis underlying most human NTDs. Numerous genetic studies have been carried out to investigate candidate genes in cohorts of patients, with particular reference to those that participate in folate one-carbon metabolism. Although the homocysteine remethylation gene MTHFR has emerged as a risk factor in some human populations, few other consistent findings have resulted from this approach. Similarly, attention focused on the human homologues of mouse NTD genes has contributed only limited positive findings to date, although an emerging association between genes of the non-canonical Wnt (planar cell polarity) pathway and NTDs provides candidates for future studies. Priorities for the next phase of this research include: (i) larger studies that are sufficiently powered to detect significant associations with relatively minor risk factors; (ii) analysis of multiple candidate genes in groups of well-genotyped individuals to detect possible gene-gene interactions; (iii) use of high throughput genomic technology to evaluate the role of copy number variants and to detect 'private' and regulatory mutations, neither of which have been studied to date; (iv) detailed analysis of patient samples stratified by phenotype to enable, for example, hypothesis-driven testing of candidates genes in groups of NTDs with specific defects of folate metabolism, or in groups of fetuses with well-defined phenotypes such as craniorachischisis.
Collapse
|
213
|
New directions in craniofacial morphogenesis. Dev Biol 2009; 341:84-94. [PMID: 19941846 DOI: 10.1016/j.ydbio.2009.11.021] [Citation(s) in RCA: 104] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2009] [Revised: 10/29/2009] [Accepted: 11/17/2009] [Indexed: 01/15/2023]
Abstract
The vertebrate head is an extremely complicated structure: development of the head requires tissue-tissue interactions between derivates of all the germ layers and coordinated morphogenetic movements in three dimensions. In this review, we highlight a number of recent embryological studies, using chicken, frog, zebrafish and mouse, which have identified crucial signaling centers in the embryonic face. These studies demonstrate how small variations in growth factor signaling can lead to a diversity of phenotypic outcomes. We also discuss novel genetic studies, in human, mouse and zebrafish, which describe cell biological mechanisms fundamental to the growth and morphogenesis of the craniofacial skeleton. Together, these findings underscore the complex interactions leading to species-specific morphology. These and future studies will improve our understanding of the genetic and environmental influences underlying human craniofacial anomalies.
Collapse
|
214
|
Maisonneuve C, Guilleret I, Vick P, Weber T, Andre P, Beyer T, Blum M, Constam DB. Bicaudal C, a novel regulator of Dvl signaling abutting RNA-processing bodies, controls cilia orientation and leftward flow. Development 2009; 136:3019-30. [PMID: 19666828 DOI: 10.1242/dev.038174] [Citation(s) in RCA: 104] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Polycystic diseases and left-right (LR) axis malformations are frequently linked to cilia defects. Renal cysts also arise in mice and frogs lacking Bicaudal C (BicC), a conserved RNA-binding protein containing K-homology (KH) domains and a sterile alpha motif (SAM). However, a role for BicC in cilia function has not been demonstrated. Here, we report that targeted inactivation of BicC randomizes left-right (LR) asymmetry by disrupting the planar alignment of motile cilia required for cilia-driven fluid flow. Furthermore, depending on its SAM domain, BicC can uncouple Dvl2 signaling from the canonical Wnt pathway, which has been implicated in antagonizing planar cell polarity (PCP). The SAM domain concentrates BicC in cytoplasmic structures harboring RNA-processing bodies (P-bodies) and Dvl2. These results suggest a model whereby BicC links the orientation of cilia with PCP, possibly by regulating RNA silencing in P-bodies.
Collapse
|
215
|
Misra K, Matise MP. A critical role for sFRP proteins in maintaining caudal neural tube closure in mice via inhibition of BMP signaling. Dev Biol 2009; 337:74-83. [PMID: 19850029 DOI: 10.1016/j.ydbio.2009.10.015] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2009] [Revised: 10/08/2009] [Accepted: 10/08/2009] [Indexed: 10/20/2022]
Abstract
Both the BMP and Wnt pathways have been implicated in directing aspects of dorsal neural tube closure and cell fate specification. However, the mechanisms that control the diverse responses to these signals are poorly understood. In this study, we provide genetic and functional evidence that the secreted sFRP1 and sFRP2 proteins, which have been primarily implicated as negative regulators of Wnt signaling, can also antagonize BMP signaling in the caudal neural tube and that this function is critical to maintain proper neural tube closure and dorsal cell fate segregation. Our studies thus reveal a novel role for specific sFRP proteins in balancing the response of cells to two critical extracellular signaling pathways.
Collapse
Affiliation(s)
- Kamana Misra
- Department of Neuroscience & Cell Biology, Robert Wood Johnson Medical School, University of Medicine & Dentistry of New Jersey, 675 Hoes Lane, Piscataway, NJ 08854, USA.
| | | |
Collapse
|
216
|
Planar cell polarity and cilia. Semin Cell Dev Biol 2009; 20:998-1005. [PMID: 19815086 DOI: 10.1016/j.semcdb.2009.09.016] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2009] [Revised: 09/24/2009] [Accepted: 09/25/2009] [Indexed: 11/22/2022]
Abstract
In the last few years, evidence has come to light suggesting that planar cell polarity signaling in vertebrates may be controlled and modulated by primary cilia, subcellular organelles that emerge from the plasma membrane of most cell types. This characteristic distinguishes vertebrate planar cell polarity signaling from that in insects. We review here some of the experimental evidence contributing to this finding. These observations have begun to suggest molecular and cellular mechanisms of the so-called ciliopathies, important human diseases characterized by defective ciliary functions.
Collapse
|
217
|
van Amerongen R, Nawijn MC, Lambooij JP, Proost N, Jonkers J, Berns A. Frat oncoproteins act at the crossroad of canonical and noncanonical Wnt-signaling pathways. Oncogene 2009; 29:93-104. [PMID: 19802005 DOI: 10.1038/onc.2009.310] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Wnt-signal transduction is critical for development and tissue homeostasis in a wide range of animal species and is frequently deregulated in human cancers. Members of the Frat/GBP family of glycogen synthase kinase 3beta (Gsk3b)-binding oncoproteins are recognized as potent activators of the Wnt/beta-catenin pathway in vertebrates. Here, we reveal a novel, Gsk3b-independent function of Frat converging on the activation of JNK and AP-1. Both these have been used as readouts for the noncanonical Frizzled/PCP pathway, which controls polarized cell movements and the establishment of tissue polarity. We find that Frat synergizes with Diversin, the mammalian homolog of the Drosophila PCP protein diego, in the activation of JNK/AP-1 signaling. Importantly, Frat mutants deficient for binding to Gsk3b retain oncogenic activity in vivo, suggesting that Wnt/beta-catenin-independent events contribute to Frat-induced malignant transformation. The observed activities of Frat are reminiscent of the dual function of Dishevelled in the Wnt/beta-catenin and Frizzled/PCP pathways and suggest that Frat may also function to bridge canonical and noncanonical Wnt pathways.
Collapse
Affiliation(s)
- R van Amerongen
- Division of Molecular Genetics, Netherlands Cancer Institute, Amsterdam, The Netherlands
| | | | | | | | | | | |
Collapse
|
218
|
Rida PCG, Chen P. Line up and listen: Planar cell polarity regulation in the mammalian inner ear. Semin Cell Dev Biol 2009; 20:978-85. [PMID: 19508855 PMCID: PMC2796270 DOI: 10.1016/j.semcdb.2009.02.007] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2008] [Accepted: 02/13/2009] [Indexed: 11/21/2022]
Abstract
The inner ear sensory organs possess extraordinary structural features necessary to conduct mechanosensory transduction for hearing and balance. Their structural beauty has fascinated scientists since the dawn of modern science and ensured a rigorous pursuit of the understanding of mechanotransduction. Sensory cells of the inner ear display unique structural features that underlie their mechanosensitivity and resolution, and represent perhaps the most distinctive form of a type of cellular polarity, known as planar cell polarity (PCP). Until recently, however, it was not known how the precise PCP of the inner ear sensory organs was achieved during development. Here, we review the PCP of the inner ear and recent advances in the quest for an understanding of its formation.
Collapse
Affiliation(s)
- Padmashree C G Rida
- Department of Cell Biology, Emory University School of Medicine, 615 Michael Street, Atlanta, GA 30322, USA
| | | |
Collapse
|
219
|
Kelley MW, Driver EC, Puligilla C. Regulation of cell fate and patterning in the developing mammalian cochlea. Curr Opin Otolaryngol Head Neck Surg 2009; 17:381-7. [PMID: 19623076 PMCID: PMC2894618 DOI: 10.1097/moo.0b013e3283303347] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
PURPOSE OF REVIEW A significant proportion of hearing loss and deafness is caused by defects in the structure or function of cells within the organ of Corti. Identification of the molecular factors that regulate the development of this structure should provide valuable insights regarding inner ear formation and the signaling pathways that underlie congenital auditory deficits. In addition, targeted modulation of these same factors could be developed as therapies for hair cell regeneration. RECENT FINDINGS Results from experiments using transgenic and mutant mice, as well as in-vitro techniques, have identified genes and signaling pathways that are required to either specify unique auditory cell types, such as hair cells or supporting cells, or to generate the highly ordered cellular pattern that is characteristic for the organ of Corti. In particular, the hedgehog and fibroblast growth factor signaling pathways modulate the formation of the progenitor cells that will give rise to the organ of Corti. SRY-box containing gene 2, a transcription factor that is required for the formation of the cochlear progenitor cell population, has paradoxically been shown to also act as an inhibitor of hair cell development. Finally, the motor protein myosin II regulates extension of the organ of Corti and the alignment of hair cells and supporting cells into ordered rows. SUMMARY A better understanding of the signaling pathways that direct different aspects of cochlear development, such as specific of cell fates or cellular patterning, offers the potential to identify new pathways or molecules that could be targeted for therapeutic interventions.
Collapse
Affiliation(s)
- Matthew W Kelley
- Section on Developmental Neuroscience, National Institute on Deafness and other Communication Disorders, National Institutes of Health, Bethesda, Maryland, USA.
| | | | | |
Collapse
|
220
|
Andrew DJ, Ewald AJ. Morphogenesis of epithelial tubes: Insights into tube formation, elongation, and elaboration. Dev Biol 2009; 341:34-55. [PMID: 19778532 DOI: 10.1016/j.ydbio.2009.09.024] [Citation(s) in RCA: 255] [Impact Index Per Article: 15.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2009] [Revised: 09/16/2009] [Accepted: 09/16/2009] [Indexed: 12/17/2022]
Abstract
Epithelial tubes are a fundamental tissue across the metazoan phyla and provide an essential functional component of many of the major organs. Recent work in flies and mammals has begun to elucidate the cellular mechanisms driving the formation, elongation, and branching morphogenesis of epithelial tubes during development. Both forward and reverse genetic techniques have begun to identify critical molecular regulators for these processes and have revealed the conserved role of key pathways in regulating the growth and elaboration of tubular networks. In this review, we discuss the developmental programs driving the formation of branched epithelial networks, with specific emphasis on the trachea and salivary gland of Drosophila melanogaster and the mammalian lung, mammary gland, kidney, and salivary gland. We both highlight similarities in the development of these organs and attempt to identify tissue and organism specific strategies. Finally, we briefly consider how our understanding of the regulation of proliferation, apicobasal polarity, and epithelial motility during branching morphogenesis can be applied to understand the pathologic dysregulation of these same processes during metastatic cancer progression.
Collapse
Affiliation(s)
- Deborah J Andrew
- Department of Cell Biology and Center for Cell Dynamics, Johns Hopkins University School of Medicine, 725 North Wolfe Street, Baltimore, MD 21205, USA
| | | |
Collapse
|
221
|
Roszko I, Sawada A, Solnica-Krezel L. Regulation of convergence and extension movements during vertebrate gastrulation by the Wnt/PCP pathway. Semin Cell Dev Biol 2009; 20:986-97. [PMID: 19761865 DOI: 10.1016/j.semcdb.2009.09.004] [Citation(s) in RCA: 192] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2009] [Revised: 09/05/2009] [Accepted: 09/08/2009] [Indexed: 12/18/2022]
Abstract
Vertebrate gastrulation entails massive cell movements that establish and shape the germ layers. During gastrulation, the individual cell behaviors are strictly coordinated in time and space by various signaling pathways. These pathways instruct the cells about proliferation, shape, fate and migration into proper location. Convergence and extension (C&E) movements during vertebrate gastrulation play a major role in the shaping of the embryonic body. In vertebrates, the Wnt/Planar Cell Polarity (Wnt/PCP) pathway is a key regulator of C&E movements, essential for several polarized cell behaviors, including directed cell migration, and mediolateral and radial cell intercalation. However, the molecular mechanisms underlying the acquisition of Planar Cell Polarity by highly dynamic mesenchymal cells engaged in C&E are still not well understood. Here we review new evidence implicating the Wnt/PCP pathway in specific cell behaviors required for C&E during zebrafish gastrulation, in comparison to other vertebrates. We also discuss findings on the molecular regulation and the interaction of the Wnt/PCP pathway with other signaling pathways during gastrulation movements.
Collapse
Affiliation(s)
- Isabelle Roszko
- Vanderbilt University, Department of Biological Sciences, VU Station B #351634, Nashville, TN 37235-1634, USA
| | | | | |
Collapse
|
222
|
Suriben R, Kivimäe S, Fisher DAC, Moon RT, Cheyette BNR. Posterior malformations in Dact1 mutant mice arise through misregulated Vangl2 at the primitive streak. Nat Genet 2009; 41:977-85. [PMID: 19701191 PMCID: PMC2733921 DOI: 10.1038/ng.435] [Citation(s) in RCA: 70] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2009] [Accepted: 07/15/2009] [Indexed: 12/13/2022]
Abstract
Mice homozygous for mutations in Dact1 (also called Dapper or Frodo) phenocopy human malformations involving the spine, genitourinary system and distal digestive tract. We traced this phenotype to disrupted germ-layer morphogenesis at the primitive streak. Notably, heterozygous mutation of Vangl2, a transmembrane component of the planar cell polarity (PCP) pathway, rescued recessive Dact1 phenotypes, whereas loss of Dact1 reciprocally rescued semidominant Vangl2 phenotypes. We show that Dact1, an intracellular protein, forms a complex with Vangl2. In Dact1 mutants, Vangl2 was increased at the primitive streak, where cells ordinarily undergo an epithelial-mesenchymal transition. This is associated with abnormal E-cadherin distribution and changes in biochemical measures of the PCP pathway. We conclude that Dact1 contributes to morphogenesis at the primitive streak by regulating Vangl2 upstream of cell adhesion and the PCP pathway.
Collapse
Affiliation(s)
- Rowena Suriben
- Department of Psychiatry, University of California, San Francisco, San Francisco, California, USA
| | | | | | | | | |
Collapse
|
223
|
Abstract
During development, epithelial cells in some tissues acquire a polarity orthogonal to their apical-basal axis. This polarity, referred to as planar cell polarity (PCP), or tissue polarity, is essential for the normal physiological function of many epithelia. Early studies of PCP focused on insect epithelia (Lawrence, 1966 [1]), and the earliest genetic analyses were carried out in Drosophila (Held et al., 1986; Gubb and Garcia-Bellido, 1982 [2,3]). Indeed, most of our mechanistic understanding of PCP derives from the ongoing use of Drosophila as a model system. However, a range of medically important developmental defects and physiological processes are under the control of PCP mechanisms that appear to be at least partially conserved, driving considerable interest in studying PCP both in Drosophila and in vertebrate model systems. Here, I present a model of the PCP signaling mechanism based on studies in Drosophila. I highlight two areas in which our understanding is deficient, and which lead to current confusion in the literature. Future studies that shed light on these areas will substantially enhance our understanding of the fascinating yet challenging problem of understanding the mechanisms that generate PCP.
Collapse
Affiliation(s)
- Jeffrey D Axelrod
- Department of Pathology, Stanford University School of Medicine, Room R226a, 300 Pasteur Drive, Stanford, CA 94305, USA.
| |
Collapse
|
224
|
Harrington MJ, Hong E, Brewster R. Comparative analysis of neurulation: First impressions do not count. Mol Reprod Dev 2009; 76:954-65. [DOI: 10.1002/mrd.21085] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
225
|
Gray RS, Bayly RD, Green SA, Agarwala S, Lowe CJ, Wallingford JB. Diversification of the expression patterns and developmental functions of the dishevelled gene family during chordate evolution. Dev Dyn 2009; 238:2044-57. [PMID: 19618470 PMCID: PMC2782374 DOI: 10.1002/dvdy.22028] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
Dishevelled (Dvl) proteins are key transducers of Wnt signaling encoded by members of a multi-gene family in vertebrates. We report here the divergent, tissue-specific expression patterns for all three Dvl genes in Xenopus embryos, which contrast dramatically with their expression patterns in mice. Moreover, we find that the expression patterns of Dvl genes in the chick diverge significantly from those of Xenopus. In addition, in hemichordates, an outgroup to chordates, we find that the one Dvl gene is dynamically expressed in a tissue-specific manner. Using knockdowns, we find that Dvl1 and Dvl2 are required for early neural crest specification and for somite segmentation in Xenopus. Most strikingly, we report a novel role for Dvl3 in the maintenance of gene expression in muscle and in the development of the Xenopus sclerotome. These data demonstrate that the expression patterns and developmental functions of specific Dvl genes have diverged significantly during chordate evolution.
Collapse
Affiliation(s)
- Ryan S. Gray
- Section of Molecular Cell and Developmental Biology, University of Texas, Austin, Texas 78712
| | - Robbie D. Bayly
- Section of Neurobiology, University of Texas, Austin, Texas 78712
| | - Stephen A. Green
- Department of Organismal Biology and Anatomy, University of Chicago, Chicago, IL 60637
| | - Seema Agarwala
- Section of Neurobiology, University of Texas, Austin, Texas 78712
- Institute for Cellular and Molecular Biology, University of Texas, Austin, Texas 78712
- Institute for Neuroscience, University of Texas, Austin, Texas 78712
| | - Christopher J. Lowe
- Department of Organismal Biology and Anatomy, University of Chicago, Chicago, IL 60637
| | - John B. Wallingford
- Section of Molecular Cell and Developmental Biology, University of Texas, Austin, Texas 78712
- Institute for Cellular and Molecular Biology, University of Texas, Austin, Texas 78712
- Institute for Neuroscience, University of Texas, Austin, Texas 78712
| |
Collapse
|
226
|
Vandenberg AL, Sassoon DA. Non-canonical Wnt signaling regulates cell polarity in female reproductive tract development via van gogh-like 2. Development 2009; 136:1559-70. [PMID: 19363157 DOI: 10.1242/dev.034066] [Citation(s) in RCA: 63] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Wnt signaling effectors direct the development and adult remodeling of the female reproductive tract (FRT); however, the role of non-canonical Wnt signaling has not been explored in this tissue. The non-canonical Wnt signaling protein van gogh-like 2 is mutated in loop-tail (Lp) mutant mice (Vangl2(Lp)), which display defects in multiple tissues. We find that Vangl2(Lp) mutant uterine epithelium displays altered cell polarity, concommitant with changes in cytoskeletal actin and scribble (scribbled, Scrb1) localization. The postnatal mutant phenotype is an exacerbation of that seen at birth, exhibiting more smooth muscle and reduced stromal mesenchyme. These data suggest that early changes in cell polarity have lasting consequences for FRT development. Furthermore, Vangl2 is required to restrict Scrb1 protein to the basolateral epithelial membrane in the neonatal uterus, and an accumulation of fibrillar-like structures observed by electron microscopy in Vangl2(Lp) mutant epithelium suggests that mislocalization of Scrb1 in mutants alters the composition of the apical face of the epithelium. Heterozygous and homozygous Vangl2(Lp) mutant postnatal tissues exhibit similar phenotypes and polarity defects and display a 50% reduction in Wnt7a levels, suggesting that the Vangl2(Lp) mutation acts dominantly in the FRT. These studies demonstrate that the establishment and maintenance of cell polarity through non-canonical Wnt signaling are required for FRT development.
Collapse
|
227
|
Wu J, Mlodzik M. A quest for the mechanism regulating global planar cell polarity of tissues. Trends Cell Biol 2009; 19:295-305. [PMID: 19560358 DOI: 10.1016/j.tcb.2009.04.003] [Citation(s) in RCA: 113] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2009] [Revised: 04/20/2009] [Accepted: 04/20/2009] [Indexed: 11/17/2022]
Abstract
Most epithelial cells, besides their ubiquitous apical-basal polarity, are polarized within the plane of the epithelium, which is called planar cell polarity (PCP). Using Drosophila as a model, meaningful progress has been made in the identification of key PCP factors and the dissection of their intracellular molecular interactions. The long-range, global aspects of coordinated polarization and the overlying regulatory mechanisms that create the initial polarity direction have, however, remained elusive. Several recent publications have outlined potential mechanisms of how the global regulation of PCP might be controlled and how the distinct core factor groups might interact via frizzled, Van Gogh or flamingo. This review focuses on these exciting features and attempts to provide an integrated picture of these recent and novel insights.
Collapse
Affiliation(s)
- Jun Wu
- Department of Developmental and Regenerative Biology, Mount Sinai School of Medicine, Annenberg Building A18-92, New York, NY 10029, USA
| | | |
Collapse
|
228
|
Nyholm MK, Abdelilah-Seyfried S, Grinblat Y. A novel genetic mechanism regulates dorsolateral hinge-point formation during zebrafish cranial neurulation. J Cell Sci 2009; 122:2137-48. [PMID: 19470582 DOI: 10.1242/jcs.043471] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
During neurulation, vertebrate embryos form a neural tube (NT), the rudiment of the central nervous system. In mammals and birds, a key step in cranial NT morphogenesis is dorsolateral hinge-point (DLHP) bending, which requires an apical actomyosin network. The mechanism of DLHP formation is poorly understood, although several essential genes have been identified, among them Zic2, which encodes a zinc-finger transcription factor. We found that DLHP formation in the zebrafish midbrain also requires actomyosin and Zic function. Given this conservation, we used the zebrafish to study how genes encoding Zic proteins regulate DLHP formation. We demonstrate that the ventral zic2a expression border predicts DLHP position. Using morpholino (MO) knockdown, we show zic2a and zic5 are required for apical F-actin and active myosin II localization and junction integrity. Furthermore, myosin II activity can function upstream of junction integrity during DLHP formation, and canonical Wnt signaling, an activator of zic gene transcription, is necessary for apical active myosin II localization, junction integrity and DLHP formation. We conclude that zic genes act downstream of Wnt signaling to control cytoskeletal organization, and possibly adhesion, during neurulation. This study identifies zic2a and zic5 as crucial players in the genetic network linking patterned gene expression to morphogenetic changes during neurulation, and strengthens the utility of the zebrafish midbrain as a NT morphogenesis model.
Collapse
Affiliation(s)
- Molly K Nyholm
- Department of Anatomy, University of Wisconsin, Madison, WI 53706, USA
| | | | | |
Collapse
|
229
|
Yamamoto N, Okano T, Ma X, Adelstein RS, Kelley MW. Myosin II regulates extension, growth and patterning in the mammalian cochlear duct. Development 2009; 136:1977-86. [PMID: 19439495 DOI: 10.1242/dev.030718] [Citation(s) in RCA: 92] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The sensory epithelium of the mammalian cochlea comprises mechanosensory hair cells that are arranged into four ordered rows extending along the length of the cochlear spiral. The factors that regulate the alignment of these rows are unknown. Results presented here demonstrate that cellular patterning within the cochlea, including the formation of ordered rows of hair cells, arises through morphological remodeling that is consistent with the mediolateral component of convergent extension. Non-muscle myosin II is shown to be expressed in a pattern that is consistent with an active role in cellular remodeling within the cochlea, and genetic or pharmacological inhibition of myosin II results in defects in cellular patterning that are consistent with a disruption in convergence and extension. These results identify the first molecule, myosin II, which directly regulates cellular patterning and alignment within the cochlear sensory epithelium. Our results also provide insights into the cellular mechanisms that are required for the formation of highly ordered cellular patterns.
Collapse
Affiliation(s)
- Norio Yamamoto
- Section on Developmental Neuroscience, National Institute on Deafness and other Communication Disorders, Bethesda, MD 20892, USA
| | | | | | | | | |
Collapse
|
230
|
Yen WW, Williams M, Periasamy A, Conaway M, Burdsal C, Keller R, Lu X, Sutherland A. PTK7 is essential for polarized cell motility and convergent extension during mouse gastrulation. Development 2009; 136:2039-48. [PMID: 19439496 DOI: 10.1242/dev.030601] [Citation(s) in RCA: 105] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Despite being implicated as a mechanism driving gastrulation and body axis elongation in mouse embryos, the cellular mechanisms underlying mammalian convergent extension (CE) are unknown. Here we show, with high-resolution time-lapse imaging of living mouse embryos, that mesodermal CE occurs by mediolateral cell intercalation, driven by mediolaterally polarized cell behavior. The initial events in the onset of CE are mediolateral elongation, alignment and orientation of mesoderm cells as they exit the primitive streak. This cell shape change occurs prior to, and is required for, the subsequent onset of mediolaterally polarized protrusive activity. In embryos mutant for PTK7, a novel cell polarity protein, the normal cell elongation and alignment upon leaving the primitive streak, the subsequent polarized protrusive activity, and CE and axial elongation all failed. The mesoderm normally thickens and extends, but on failure of convergence movements in Ptk7 mutants, the mesoderm underwent radial intercalation and excessive thinning, which suggests that a cryptic radial cell intercalation behavior resists excessive convergence-driven mesodermal thickening in normal embryos. When unimpeded by convergence forces in Ptk7 mutants, this unopposed radial intercalation resulted in excessive thinning of the mesoderm. These results show for the first time the polarized cell behaviors underlying CE in the mouse, demonstrate unique aspects of these behaviors compared with those of other vertebrates, and clearly define specific roles for planar polarity and for the novel planar cell polarity gene, Ptk7, as essential regulators of mediolateral cell intercalation during mammalian CE.
Collapse
Affiliation(s)
- Wei Wei Yen
- Department of Cell Biology, University of Virginia Health System, Charlottesville, VA 22908, USA
| | | | | | | | | | | | | | | |
Collapse
|
231
|
Mlodzik M. Ubiquitin connects with planar cell polarity. Cell 2009; 137:209-11. [PMID: 19379687 DOI: 10.1016/j.cell.2009.04.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
Planar cell polarity (PCP) regulates the orientation of cells in epithelia and of mesenchymal cells during gastrulation. In this issue, Narimatsu et al. (2009) report that the Smurf E3 ubiquitin ligases are required for localized protein degradation of a core PCP factor to generate cellular asymmetry.
Collapse
Affiliation(s)
- Marek Mlodzik
- Department of Developmental and Regenerative Biology, Mount Sinai School of Medicine, New York, NY 10029, USA.
| |
Collapse
|
232
|
Regulation of planar cell polarity by Smurf ubiquitin ligases. Cell 2009; 137:295-307. [PMID: 19379695 DOI: 10.1016/j.cell.2009.02.025] [Citation(s) in RCA: 274] [Impact Index Per Article: 17.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2008] [Revised: 12/03/2008] [Accepted: 02/10/2009] [Indexed: 11/21/2022]
Abstract
Planar cell polarity (PCP) is critical for morphogenesis in metazoans. PCP in vertebrates regulates stereocilia alignment in neurosensory cells of the cochlea and closure of the neural tube through convergence and extension movements (CE). Noncanonical Wnt morphogens regulate PCP and CE in vertebrates, but the molecular mechanisms remain unclear. Smurfs are ubiquitin ligases that regulate signaling, cell polarity and motility through spatiotemporally restricted ubiquitination of diverse substrates. Here, we report an unexpected role for Smurfs in controlling PCP and CE. Mice mutant for Smurf1 and Smurf2 display PCP defects in the cochlea and CE defects that include a failure to close the neural tube. Further, we show that Smurfs engage in a noncanonical Wnt signaling pathway that targets the core PCP protein Prickle1 for ubiquitin-mediated degradation. Our work thus uncovers ubiquitin ligases in a mechanistic link between noncanonical Wnt signaling and PCP/CE.
Collapse
|
233
|
Joó JG. Recent perspectives on the genetic background of neural tube defects with special regard to iniencephaly. Expert Rev Mol Diagn 2009; 9:281-93. [PMID: 19379086 DOI: 10.1586/erm.09.4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Iniencephaly is a rare and mostly lethal type of neural tube defect. The pattern of inheritance of this group of malformations is multifactorial, rendering the identification of the underlying causes. Numerous studies have been conducted to elucidate the genetic basis of human neurulation. Essential signaling pathways of the development of the CNS include the planar cell polarity pathway, which is important for the initiation of neural tube closure, as well as the sonic hedgehog pathway, which regulates the neural plate bending. Genes influencing the different stages of neurulation have been investigated for their eventual role in the development of these malformations. Among the environmental factors, folic acid seems to be the most important modifier of the risk of human neural tube defects. Genes of the folate metabolism pathways have also been investigated to identify mutations resulting in increased risk of neural tube defects. In this review we have attempted to summarize the knowledge on iniencephaly and neural tube defects, with special regard to genetic factors of the etiology.
Collapse
Affiliation(s)
- József Gábor Joó
- 1st Department of Obstetrics and Gynecology, Faculty of General Medicine, Semmelweis University, 1088 Budapest, Baross utca 27, Hungary.
| |
Collapse
|
234
|
Greene NDE, Copp AJ. Development of the vertebrate central nervous system: formation of the neural tube. Prenat Diagn 2009; 29:303-11. [PMID: 19206138 DOI: 10.1002/pd.2206] [Citation(s) in RCA: 119] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
The developmental process of neurulation involves a series of coordinated morphological events, which result in conversion of the flat neural plate into the neural tube, the primordium of the entire central nervous system (CNS). Failure of neurulation results in neural tube defects (NTDs), severe abnormalities of the CNS, which are among the commonest of congenital malformations in humans. In order to gain insight into the embryological basis of NTDs, such as spina bifida and anencephaly, it is necessary to understand the morphogenetic processes and molecular mechanisms underlying neural tube closure. The mouse is the most extensively studied mammalian experimental model for studies of neurulation, while considerable insight into underlying developmental mechanisms has also arisen from studies in other model systems, particularly birds and amphibians. We describe the process of neural tube formation, discuss the cellular mechanisms involved and highlight recent findings that provide links between molecular signaling pathways and morphogenetic tissue movements.
Collapse
|
235
|
Gray JD, Ross ME. Mechanistic insights into folate supplementation from Crooked tail and other NTD-prone mutant mice. BIRTH DEFECTS RESEARCH. PART A, CLINICAL AND MOLECULAR TERATOLOGY 2009; 85:314-21. [PMID: 19067399 PMCID: PMC2811164 DOI: 10.1002/bdra.20542] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Despite two decades of research since Smithells and colleagues began exploring its benefits, the mechanisms through which folic acid supplementation supports neural tube closure and early embryonic development are still unclear. The greatest progress toward a molecular-genetic understanding of folate effects on neural tube defect (NTD) pathogenesis has come from animal models. The number of NTD-associated mouse mutants accumulated and studied over the past decade has illuminated the complexity of both genetic factors contributing to NTDs and also NTD-gene interactions with folate metabolism. This article discusses insights gained from mouse models into how folate supplementation impacts neurulation. A case is made for renewed efforts to systematically screen the folate responsiveness of the scores of NTD-associated mouse mutations now identified. Designed after Crooked tail, supplementation studies of additional mouse mutants could build the molecular network maps that will ultimately enable tailoring of therapeutic regimens to individual families.
Collapse
Affiliation(s)
- Jason D Gray
- Laboratory of Neurogenetics and Development, Weill Medical College of Cornell University, New York, NY, USA
| | | |
Collapse
|
236
|
Matsuyama M, Aizawa S, Shimono A. Sfrp controls apicobasal polarity and oriented cell division in developing gut epithelium. PLoS Genet 2009; 5:e1000427. [PMID: 19300477 PMCID: PMC2649445 DOI: 10.1371/journal.pgen.1000427] [Citation(s) in RCA: 89] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2008] [Accepted: 02/17/2009] [Indexed: 01/22/2023] Open
Abstract
Epithelial tubular morphogenesis leading to alteration of organ shape has important physiological consequences. However, little is known regarding the mechanisms that govern epithelial tube morphogenesis. Here, we show that inactivation of Sfrp1 and Sfrp2 leads to reduction in fore-stomach length in mouse embryos, which is enhanced in the presence of the Sfrp5 mutation. In the mono-cell layer of fore-stomach epithelium, cell division is normally oriented along the cephalocaudal axis; in contrast, orientation diverges in the Sfrps-deficient fore-stomach. Cell growth and apoptosis are not affected in the Sfrps-deficient fore-stomach epithelium. Similarly, cell division orientation in fore-stomach epithelium diverges as a result of inactivation of either Stbm/Vangl2, an Fz/PCP component, or Wnt5a. These observations indicate that the oriented cell division, which is controlled by the Fz/PCP pathway, is one of essential components in fore-stomach morphogenesis. Additionally, the small intestine epithelium of Sfrps compound mutants fails to maintain proper apicobasal polarity; the defect was also observed in Wnt5a-inactivated small intestine. In relation to these findings, Sfrp1 physically interacts with Wnt5a and inhibits Wnt5a signaling. We propose that Sfrp regulation of Wnt5a signaling controls oriented cell division and apicobasal polarity in the epithelium of developing gut. The gastrointestinal tract is generated from the primitive gut tube during embryogenesis. The primitive gut differentiates regionally along the cephalocaudal axis. Individual regions simultaneously acquire specific morphologies through morphogenetic mechanisms. The regional specification of the gut tube is controlled by cross-talk between the mesenchyme and epithelium. However, the morphogenetic mechanisms governing gut formation remain poorly understood. Secreted Frizzled-related protein (Sfrp) is an inhibitor of the Wnt pathway, members of which are expressed in the developing gut. A deficiency of Sfrp genes (Sfrp1, Sfrp2, and Sfrp5) results in reduction of fore-stomach length in mice. During normal fore-stomach formation, cell division is oriented along the cephalocaudal axis; in contrast, reduced fore-stomach length in Sfrps-deficient mice is associated with the divergence of oriented cell division in tubular epithelial cells. Thus, oriented cell division is one of the essential components in fore-stomach morphogenesis. In addition, Sfrps-deficient small intestine epithelium fails to maintain proper apicobasal polarity. We also found that Wnt5a-inactivation leads to a phenotype similar to that induced by Sfrps-deficiency in the developing gut, and that Sfrp1 inhibits Wnt5a signaling. We propose that Sfrp regulation of Wnt5a signaling is required for oriented cell division and that it modulates apicobasal polarity in gut epithelium during organ elongation.
Collapse
Affiliation(s)
- Makoto Matsuyama
- Vertebrate Body Plan, Center for Developmental Biology, RIKEN Kobe, Minatojima-Minami, Chuou-ku, Kobe, Japan
| | - Shinichi Aizawa
- Vertebrate Body Plan, Center for Developmental Biology, RIKEN Kobe, Minatojima-Minami, Chuou-ku, Kobe, Japan
| | - Akihiko Shimono
- Cancer Science Institute of Singapore, National University of Singapore, Centre for Life Sciences #02-07, Singapore, Singapore
- * E-mail:
| |
Collapse
|
237
|
Abstract
Neural tube defects (NTDs) are among the most common structural birth defects observed in humans. Mouse models provide an excellent experimental system to study the underlying causes of NTDs. These models not only allow for identification of the genes required for neurulation, they provide tractable systems for uncovering the developmental, pathological and molecular mechanisms underlying NTDs. In addition, mouse models are essential for elucidating the mechanisms of gene-environment and gene-gene interactions that contribute to the multifactorial inheritance of NTDs. In some cases these studies have led to development of approaches to prevent NTDs and provide an understanding of the underlying molecular mechanism of these therapies prevent NTDs.
Collapse
Affiliation(s)
- Irene E Zohn
- Children's Research Institute, Children's National Medical Center, Washington, DC, USA
| | | |
Collapse
|
238
|
Abstract
The branch of the Wnt pathway, related to planar cell polarity signaling in Drosophila, is fundamental not only to the establishment of tissue polarity but also to a variety of morphogenetic processes in vertebrates. The genetic pathway has been noted for its similarity as well as divergence of between vertebrates and Drosophila. This review focuses on issues related to the complexity of the output of the planar cell polarity pathway during gastrulation in zebrafish and Xenopus and, to a lesser extent, during gastrulation/neurulation in mice.
Collapse
Affiliation(s)
- Masazumi Tada
- Department of Cell and Developmental Biology, University College London, London, United Kingdom.
| | | |
Collapse
|
239
|
Inhibition of Wnt signaling by Dishevelled PDZ peptides. Nat Chem Biol 2009; 5:217-9. [DOI: 10.1038/nchembio.152] [Citation(s) in RCA: 135] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2008] [Accepted: 02/04/2009] [Indexed: 01/21/2023]
|
240
|
Mouse models for dissecting vertebrate planar cell polarity signaling in the inner ear. Brain Res 2009; 1277:130-40. [PMID: 19232327 DOI: 10.1016/j.brainres.2009.02.004] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2009] [Revised: 01/30/2009] [Accepted: 02/02/2009] [Indexed: 02/05/2023]
Abstract
Planar cell polarity (PCP) refers to coordinated polarization of cells in the plane of a cell sheet. In Drosophila, the stereotypical arrangement of the eight photoreceptor cells in each of the ommatidia of the fly compound eye and the uniform orientation of the hairs in all the wing cells are two representative forms of PCP. Using these powerful Drosophila model systems, a set of genes was identified to constitute the invertebrate PCP signaling pathway. In vertebrates, the inner ear sensory organs display distinctive forms of PCP. In particular, the auditory sensory organ in the cochlea, adorned with precisely patterned sensory hair cell arrays and uniformly oriented hair bundles, has served as an excellent model system to complement other vertebrate PCP models and has illustrated a genetic pathway that consists of genes conserved from the Drosophila model as well as genes uniquely required for vertebrate PCP regulation. This review will focus on the mouse models that have made valuable contributions to our current understanding of PCP signaling in the vertebrates.
Collapse
|
241
|
de Jesus Perez VA, Alastalo TP, Wu JC, Axelrod JD, Cooke JP, Amieva M, Rabinovitch M. Bone morphogenetic protein 2 induces pulmonary angiogenesis via Wnt-beta-catenin and Wnt-RhoA-Rac1 pathways. ACTA ACUST UNITED AC 2009; 184:83-99. [PMID: 19139264 PMCID: PMC2615088 DOI: 10.1083/jcb.200806049] [Citation(s) in RCA: 157] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Mutations in bone morphogenetic protein (BMP) receptor II (BMPRII) are associated with pulmonary artery endothelial cell (PAEC) apoptosis and the loss of small vessels seen in idiopathic pulmonary arterial hypertension. Given the low penetrance of BMPRII mutations, abnormalities in other converging signaling pathways may be necessary for disease development. We hypothesized that BMPRII supports normal PAEC function by recruiting Wingless (Wnt) signaling pathways to promote proliferation, survival, and motility. In this study, we report that BMP-2, via BMPRII-mediated inhibition of GSK3-beta, induces beta-catenin (beta-C) accumulation and transcriptional activity necessary for PAEC survival and proliferation. At the same time, BMP-2 mediates phosphorylated Smad1 (pSmad1) or, with loss of BMPRII, pSmad3-dependent recruitment of Disheveled (Dvl) to promote RhoA-Rac1 signaling necessary for motility. Finally, using an angiogenesis assay in severe combined immunodeficient mice, we demonstrate that both beta-C- and Dvl-mediated RhoA-Rac1 activation are necessary for vascular growth in vivo. These findings suggest that the recruitment of both canonical and noncanonical Wnt pathways is required in BMP-2-mediated angiogenesis.
Collapse
|
242
|
Petit AC, Nicolas JF. Large-scale clonal analysis reveals unexpected complexity in surface ectoderm morphogenesis. PLoS One 2009; 4:e4353. [PMID: 19197371 PMCID: PMC2633038 DOI: 10.1371/journal.pone.0004353] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2008] [Accepted: 12/26/2008] [Indexed: 12/14/2022] Open
Abstract
BACKGROUND Understanding the series of morphogenetic processes that underlie the making of embryo structures is a highly topical issue in developmental biology, essential for interpreting the massive molecular data currently available. In mouse embryo, long-term in vivo analysis of cell behaviours and movements is difficult because of the development in utero and the impossibility of long-term culture. METHODOLOGY/PRINCIPAL FINDINGS We improved and combined two genetic methods of clonal analysis that together make practicable large-scale production of labelled clones. Using these methods we performed a clonal analysis of surface ectoderm (SE), a poorly understood structure, for a period that includes gastrulation and the establishment of the body plan. We show that SE formation starts with the definition at early gastrulation of a pool of founder cells that is already dorso-ventrally organized. This pool is then regionalized antero-posteriorly into three pools giving rise to head, trunk and tail. Each pool uses its own combination of cell rearrangements and mode of proliferation for elongation, despite a common clonal strategy that consists in disposing along the antero-posterior axis precursors of dorso-ventrally-oriented stripes of cells. CONCLUSIONS/SIGNIFICANCE We propose that these series of morphogenetic processes are organized temporally and spatially in a posterior zone of the embryo crucial for elongation. The variety of cell behaviours used by SE precursor cells indicates that these precursors are not equivalent, regardless of a common clonal origin and a common clonal strategy. Another major result is the finding that there are founder cells that contribute only to the head and tail. This surprising observation together with others can be integrated with ideas about the origin of axial tissues in bilaterians.
Collapse
Affiliation(s)
- Anne-Cécile Petit
- Unité de Biologie moléculaire du Développement, Institut Pasteur, Paris, France
| | - Jean-François Nicolas
- Unité de Biologie moléculaire du Développement, Institut Pasteur, Paris, France
- * E-mail:
| |
Collapse
|
243
|
Yin C, Ciruna B, Solnica-Krezel L. Chapter 7 Convergence and Extension Movements During Vertebrate Gastrulation. Curr Top Dev Biol 2009; 89:163-92. [DOI: 10.1016/s0070-2153(09)89007-8] [Citation(s) in RCA: 56] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
244
|
Bryja V, Andersson ER, Schambony A, Esner M, Bryjová L, Biris KK, Hall AC, Kraft B, Cajanek L, Yamaguchi TP, Buckingham M, Arenas E. The extracellular domain of Lrp5/6 inhibits noncanonical Wnt signaling in vivo. Mol Biol Cell 2008; 20:924-36. [PMID: 19056682 DOI: 10.1091/mbc.e08-07-0711] [Citation(s) in RCA: 88] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Lrp5/6 are crucial coreceptors for Wnt/beta-catenin signaling, a pathway biochemically distinct from noncanonical Wnt signaling pathways. Here, we examined the possible participation of Lrp5/6 in noncanonical Wnt signaling. We found that Lrp6 physically interacts with Wnt5a, but that this does not lead to phosphorylation of Lrp6 or activation of the Wnt/beta-catenin pathway. Overexpression of Lrp6 blocks activation of the Wnt5a downstream target Rac1, and this effect is dependent on intact Lrp6 extracellular domains. These results suggested that the extracellular domain of Lrp6 inhibits noncanonical Wnt signaling in vitro. In vivo, Lrp6-/- mice exhibited exencephaly and a heart phenotype. Surprisingly, these defects were rescued by deletion of Wnt5a, indicating that the phenotypes resulted from noncanonical Wnt gain-of-function. Similarly, Lrp5 and Lrp6 antisense morpholino-treated Xenopus embryos exhibited convergent extension and heart phenotypes that were rescued by knockdown of noncanonical XWnt5a and XWnt11. Thus, we provide evidence that the extracellular domains of Lrp5/6 behave as physiologically relevant inhibitors of noncanonical Wnt signaling during Xenopus and mouse development in vivo.
Collapse
Affiliation(s)
- Vitezslav Bryja
- Laboratory of Molecular Neurobiology, Department of Medical Biochemistry and Biophysics, Center for Developmental Biology and Regenerative Medicine, Karolinska Institute, SE-171 77 Stockholm, Sweden.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
245
|
Nichols DH, Pauley S, Jahan I, Beisel KW, Millen KJ, Fritzsch B. Lmx1a is required for segregation of sensory epithelia and normal ear histogenesis and morphogenesis. Cell Tissue Res 2008; 334:339-58. [PMID: 18985389 PMCID: PMC2654344 DOI: 10.1007/s00441-008-0709-2] [Citation(s) in RCA: 107] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2008] [Accepted: 09/22/2008] [Indexed: 12/31/2022]
Abstract
At embryonic day 8.5, the LIM-homeodomain factor Lmx1a is expressed throughout the otic placode but becomes developmentally restricted to non-sensory epithelia of the ear (endolymphatic duct, ductus reuniens, cochlea lateral wall). We confirm here that the ears of newborn dreher (Lmx1a (dr)) mutants are dysmorphic. Hair cell markers such as Atoh1 and Myo7 reveal, for the first time, that newborn Lmx1a mutants have only three sensory epithelia: two enlarged canal cristae and one fused epithelium comprising an amalgamation of the cochlea, saccule, and utricle (a "cochlear-gravistatic" endorgan). The enlarged anterior canal crista develops by fusion of horizontal and anterior crista, whereas the posterior crista fuses with an enlarged papilla neglecta that may extend into the cochlear lateral wall. In the fused endorgan, the cochlear region is distinguished from the vestibular region by markers such as Gata3, the presence of a tectorial membrane, and cochlea-specific innervation. The cochlea-like apex displays minor disorganization of the hair and supporting cells. This contrasts with the basal half of the cochlear region, which shows a vestibular epithelium-like organization of hair cells and supporting cells. The dismorphic features of the cochlea are also reflected in altered gene expression patterns. Fgf8 expression expands from inner hair cells in the apex to most hair cells in the base. Two supporting cell marker proteins, Sox2 and Prox1, also differ in their cellular distribution between the base and the apex. Sox2 expression expands in mutant canal cristae prior to their enlargement and fusion and displays a more diffuse and widespread expression in the base of the cochlear region, whereas Prox1 is not detected in the base. These changes in Sox2 and Prox1 expression suggest that Lmx1a expression restricts and sharpens Sox2 expression, thereby defining non-sensory and sensory epithelium. The adult Lmx1a mutant organ of Corti shows a loss of cochlear hair cells, suggesting that the long-term maintenance of hair cells is also disrupted in these mutants.
Collapse
Affiliation(s)
- David H. Nichols
- Department of Biomedical Sciences, Creighton University, Omaha, Nebraska
| | - Sarah Pauley
- Department of Biomedical Sciences, Creighton University, Omaha, Nebraska
| | - Israt Jahan
- Department of Biology, University of Iowa, Iowa City, Iowa
| | - Kirk W. Beisel
- Department of Biomedical Sciences, Creighton University, Omaha, Nebraska
| | - Kathleen J. Millen
- Departments of Human Genetics and Neurology, University of Chicago, Chicago, Illinois
| | - Bernd Fritzsch
- Department of Biology, University of Iowa, Iowa City, Iowa
| |
Collapse
|
246
|
Etheridge SL, Ray S, Li S, Hamblet NS, Lijam N, Tsang M, Greer J, Kardos N, Wang J, Sussman DJ, Chen P, Wynshaw-Boris A. Murine dishevelled 3 functions in redundant pathways with dishevelled 1 and 2 in normal cardiac outflow tract, cochlea, and neural tube development. PLoS Genet 2008; 4:e1000259. [PMID: 19008950 PMCID: PMC2576453 DOI: 10.1371/journal.pgen.1000259] [Citation(s) in RCA: 252] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2008] [Accepted: 10/14/2008] [Indexed: 12/05/2022] Open
Abstract
Dishevelled (Dvl) proteins are important signaling components of both the canonical β-catenin/Wnt pathway, which controls cell proliferation and patterning, and the planar cell polarity (PCP) pathway, which coordinates cell polarity within a sheet of cells and also directs convergent extension cell (CE) movements that produce narrowing and elongation of the tissue. Three mammalian Dvl genes have been identified and the developmental roles of Dvl1 and Dvl2 were previously determined. Here, we identify the functions of Dvl3 in development and provide evidence of functional redundancy among the three murine Dvls. Dvl3−/− mice died perinatally with cardiac outflow tract abnormalities, including double outlet right ventricle and persistent truncus arteriosis. These mutants also displayed a misorientated stereocilia in the organ of Corti, a phenotype that was enhanced with the additional loss of a single allele of the PCP component Vangl2/Ltap (LtapLp/+). Although neurulation appeared normal in both Dvl3−/− and LtapLp/+ mutants, Dvl3+/−;LtapLp/+ combined mutants displayed incomplete neural tube closure. Importantly, we show that many of the roles of Dvl3 are also shared by Dvl1 and Dvl2. More severe phenotypes were observed in Dvl3 mutants with the deficiency of another Dvl, and increasing Dvl dosage genetically with Dvl transgenes demonstrated the ability of Dvls to compensate for each other to enable normal development. Interestingly, global canonical Wnt signaling appeared largely unaffected in the double Dvl mutants, suggesting that low Dvl levels are sufficient for functional canonical Wnt signals. In summary, we demonstrate that Dvl3 is required for cardiac outflow tract development and describe its importance in the PCP pathway during neurulation and cochlea development. Finally, we establish several developmental processes in which the three Dvls are functionally redundant. Multi-gene families, comprising a set of very similar genes with shared nucleotide sequences, are common in mammals. Individual family members may be expressed in different places and perform separate functions. Alternatively, the genes may have redundant functions, but distinct dosage requirements. Mammals share three Dishevelled (Dvl) family members and while the roles of Dvl1 and Dvl2 have been described previously, the functions of Dvl3 have remained elusive. Here, we show that the lack of Dvl3 in mice affects the formation of the heart, neural tube, and inner ear. We further show that the defects in these tissues are much more severe when the mice are deficient in more than one Dvl family member, indicating redundant functions for these genes. Congenital heart disease affects approximately 75 in every 1,000 live human births, and approximately 30% of these diseases are due to disruptions in the outflow tract, the region affected in mice lacking Dvl genes. Neural tube defects, similar to those observed in the Dvl mutants, are also common in humans. The animal models described here provide useful tools to elucidate the genetic mechanisms that underlie these abnormalities and may provide novel ways of treating these disorders in the future.
Collapse
Affiliation(s)
- S. Leah Etheridge
- Department of Pediatrics, School of Medicine, University of California San Diego, La Jolla, California, United States of America
| | - Saugata Ray
- Department of Pediatrics, School of Medicine, University of California San Diego, La Jolla, California, United States of America
| | - Shuangding Li
- Emory University School of Medicine, Atlanta, Georgia, United States of America
| | - Natasha S. Hamblet
- Department of Pediatrics, School of Medicine, University of California San Diego, La Jolla, California, United States of America
| | - Nardos Lijam
- Columbus State Community College, Columbus, Ohio, United States of America
| | - Michael Tsang
- Department of Microbiology and Molecular Genetics, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, United States of America
| | - Joy Greer
- Department of Pediatrics, School of Medicine, University of California San Diego, La Jolla, California, United States of America
| | - Natalie Kardos
- Department of Pediatrics, School of Medicine, University of California San Diego, La Jolla, California, United States of America
| | - Jianbo Wang
- Department of Pediatrics, School of Medicine, University of California San Diego, La Jolla, California, United States of America
| | - Daniel J. Sussman
- New Horizons Diagnostics, Columbia, Maryland, United States of America
| | - Ping Chen
- Emory University School of Medicine, Atlanta, Georgia, United States of America
| | - Anthony Wynshaw-Boris
- Department of Pediatrics, School of Medicine, University of California San Diego, La Jolla, California, United States of America
- Department of Pediatrics and Institute for Human Genetics, University of California San Francisco School of Medicine, San Francisco, California, United States of America
- * E-mail:
| |
Collapse
|
247
|
Abstract
PTK7 regulates planar cell polarity (PCP) signaling during vertebrate neural tube closure and establishment of inner ear hair cell polarity; however, its signaling mechanism is unknown. Here, we demonstrate a new function for PTK7 in Xenopus neural crest migration and use this system in combination with in vitro assays to define the intersection of PTK7 with the non-canonical Wnt signaling pathway that regulates PCP. In vitro, using Xenopus ectodermal explants, we show that PTK7 recruits dishevelled (dsh) to the plasma membrane, a function that is dependent on the PDZ domain of dsh, as well as on the conserved kinase domain of PTK7. Furthermore, endogenous PTK7 is required for frizzled7-mediated dsh localization. Immunoprecipitation experiments confirm that PTK7 can be found in a complex with dsh and frizzled7, suggesting that it cooperates with frizzled to localize dsh. To evaluate the in vivo relevance of the PTK7-mediated dsh localization, we analyzed Xenopus neural crest migration, as loss-of-function of PTK7 inhibits neural crest migration in whole embryos as well as in transplanted neural crest cells. Supporting the in vivo role of PTK7 in the localization of dsh, a PTK7 deletion construct deficient in dsh binding inhibits neural crest migration. Furthermore, the PTK7-mediated membrane localization of a dsh deletion mutant lacking PCP activity inhibits neural crest migration. Thus, PTK7 regulates neural crest migration by recruiting dsh, providing molecular evidence of how PTK7 intersects with the PCP signaling pathway to regulate vertebrate cell movements.
Collapse
Affiliation(s)
- Iryna Shnitsar
- Department of Developmental Biochemistry, Center for Molecular Physiology of the Brain (CMPB 37077 Goettingen, Germany
| | | |
Collapse
|
248
|
WNT11 acts as a directional cue to organize the elongation of early muscle fibres. Nature 2008; 457:589-93. [PMID: 18987628 DOI: 10.1038/nature07564] [Citation(s) in RCA: 159] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2008] [Accepted: 10/15/2008] [Indexed: 01/06/2023]
Abstract
The early vertebrate skeletal muscle is a well-organized tissue in which the primitive muscle fibres, the myocytes, are all parallel and aligned along the antero-posterior axis of the embryo. How myofibres acquire their orientation during development is unknown. Here we show that during early chick myogenesis WNT11 has an essential role in the oriented elongation of the myocytes. We find that the neural tube, known to drive WNT11 expression in the medial border of somites, is necessary and sufficient to orient myocyte elongation. We then show that the specific inhibition of WNT11 function in somites leads to the disorganization of myocytes. We establish that WNT11 mediates this effect through the evolutionary conserved planar cell polarity (PCP) pathway, downstream of the WNT/beta-catenin-dependent pathway, required to initiate the myogenic program of myocytes and WNT11 expression. Finally, we demonstrate that a localized ectopic source of WNT11 can markedly change the orientation of myocytes, indicating that WNT11 acts as a directional cue in this process. All together, these data show that the sequential action of the WNT/PCP and the WNT/beta-catenin pathways is necessary for the formation of fully functional embryonic muscle fibres. This study also provides evidence that WNTs can act as instructive cues to regulate the PCP pathway in vertebrates.
Collapse
|
249
|
Li Y, Rankin SA, Sinner D, Kenny AP, Krieg PA, Zorn AM. Sfrp5 coordinates foregut specification and morphogenesis by antagonizing both canonical and noncanonical Wnt11 signaling. Genes Dev 2008; 22:3050-63. [PMID: 18981481 PMCID: PMC2577796 DOI: 10.1101/gad.1687308] [Citation(s) in RCA: 134] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2008] [Accepted: 09/04/2008] [Indexed: 01/03/2023]
Abstract
Cell identity and tissue morphogenesis are tightly orchestrated during organogenesis, but the mechanisms regulating this are poorly understood. We show that interactions between Wnt11 and the secreted Wnt antagonist secreted frizzled-related protein 5 (Sfrp5) coordinate cell fate and morphogenesis during Xenopus foregut development. sfrp5 is expressed in the surface cells of the foregut epithelium, whereas wnt11 is expressed in the underlying deep endoderm. Depletion of Sfrp5 results in reduced foregut gene expression and hypoplastic liver and ventral pancreatic buds. In addition, the ventral foregut cells lose adhesion and fail to form a polarized epithelium. We show that the cell fate and epithelial defects are due to inappropriate Wnt/beta-catenin and Wnt/PCP signaling, respectively, both mediated by Wnt11. We provide evidence that Sfrp5 locally inhibits Wnt11 to maintain early foregut identity and to allow an epithelium to form over a mass of tissue undergoing Wnt-mediated cell movements. This novel mechanism coordinating canonical and noncanonical Wnt signaling may have broad implications for organogenesis and cancer.
Collapse
Affiliation(s)
- Yan Li
- Cincinnati Children’s Research Foundation and Department of Pediatrics, College of Medicine, University of Cincinnati, Cincinnati, Ohio 45229, USA
| | - Scott A. Rankin
- Cincinnati Children’s Research Foundation and Department of Pediatrics, College of Medicine, University of Cincinnati, Cincinnati, Ohio 45229, USA
| | - Débora Sinner
- Cincinnati Children’s Research Foundation and Department of Pediatrics, College of Medicine, University of Cincinnati, Cincinnati, Ohio 45229, USA
| | - Alan P. Kenny
- Cincinnati Children’s Research Foundation and Department of Pediatrics, College of Medicine, University of Cincinnati, Cincinnati, Ohio 45229, USA
| | - Paul A. Krieg
- Department of Cell Biology and Anatomy, University of Arizona Health Sciences Center, Tuscon, Arizona 85724, USA
| | - Aaron M. Zorn
- Cincinnati Children’s Research Foundation and Department of Pediatrics, College of Medicine, University of Cincinnati, Cincinnati, Ohio 45229, USA
| |
Collapse
|
250
|
Devenport D, Fuchs E. Planar polarization in embryonic epidermis orchestrates global asymmetric morphogenesis of hair follicles. Nat Cell Biol 2008; 10:1257-68. [PMID: 18849982 PMCID: PMC2607065 DOI: 10.1038/ncb1784] [Citation(s) in RCA: 281] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2008] [Accepted: 09/02/2008] [Indexed: 12/30/2022]
Abstract
Mammalian body hairs align along the anterior-posterior (A-P) axis and offer a striking but poorly understood example of global cell polarization, a phenomenon known as planar cell polarity (PCP). We have discovered that during embryogenesis, marked changes in cell shape and cytoskeletal polarization occur as nascent hair follicles become anteriorly angled, morphologically polarized and molecularly compartmentalized along the A-P axis. Hair follicle initiation coincides with asymmetric redistribution of Vangl2, Celsr1 and Fzd6 within the embryonic epidermal basal layer. Moreover, loss-of-function mutations in Vangl2 and Celsr1 show that they have an essential role in hair follicle polarization and orientation, which develop in part through non-autonomous mechanisms. Vangl2 and Celsr1 are both required for their planar localization in vivo, and physically associate in a complex in vitro. Finally, we provide in vitro evidence that homotypic intracellular interactions of Celsr1 are required to recruit Vangl2 and Fzd6 to sites of cell-cell contact.
Collapse
Affiliation(s)
- Danelle Devenport
- Howard Hughes Medical Institute, Laboratory of Mammalian Cell Biology & Development, The Rockefeller University, New York, NY 10065
| | - Elaine Fuchs
- Howard Hughes Medical Institute, Laboratory of Mammalian Cell Biology & Development, The Rockefeller University, New York, NY 10065
| |
Collapse
|