201
|
Breau MA, Wilson D, Wilkinson DG, Xu Q. Chemokine and Fgf signalling act as opposing guidance cues in formation of the lateral line primordium. Development 2012; 139:2246-53. [PMID: 22619392 DOI: 10.1242/dev.080275] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
The directional migration of many cell populations occurs as a coherent group. An amenable model is provided by the posterior lateral line in zebrafish, which is formed by a cohesive primordium that migrates from head to tail and deposits future neuromasts at intervals. We found that prior to the onset of migration, the compact state of the primordium is not fully established, as isolated cells with lateral line identity are present caudal to the main primordium. These isolated cells are retained in position such that they fuse with the migrating primordium as it advances, and later contribute to the leading zone and terminal neuromasts. We found that the isolated lateral line cells are positioned by two antagonistic cues: Fgf signalling attracts them towards the primordium, which counteracts Sdf1α/Cxcr4b-mediated caudal attraction. These findings reveal a novel chemotactic role for Fgf signalling in which it enables the coalescence of the lateral line primordium from an initial fuzzy pattern into a compact group of migrating cells.
Collapse
Affiliation(s)
- Marie A Breau
- Division of Developmental Neurobiology, MRC National Institute for Medical Research, London NW7 1AA, UK
| | | | | | | |
Collapse
|
202
|
Andoniadou CL, Gaston-Massuet C, Reddy R, Schneider RP, Blasco MA, Le Tissier P, Jacques TS, Pevny LH, Dattani MT, Martinez-Barbera JP. Identification of novel pathways involved in the pathogenesis of human adamantinomatous craniopharyngioma. Acta Neuropathol 2012; 124:259-71. [PMID: 22349813 PMCID: PMC3400760 DOI: 10.1007/s00401-012-0957-9] [Citation(s) in RCA: 124] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2012] [Revised: 02/02/2012] [Accepted: 02/04/2012] [Indexed: 01/22/2023]
Abstract
Activating mutations in the gene encoding β-catenin have been identified in the paediatric form of human craniopharyngioma (adamantinomatous craniopharyngioma, ACP), a histologically benign but aggressive pituitary tumour accounting for up to 10% of paediatric intracranial tumours. Recently, we generated an ACP mouse model and revealed that, as in human ACP, nucleocytoplasmic accumulation of β-catenin (β-cat(nc)) and over-activation of the Wnt/β-catenin pathway occurs only in a very small proportion of cells, which form clusters. Here, combining mouse genetics, fluorescence labelling and flow-sorting techniques, we have isolated these cells from tumorigenic mouse pituitaries and shown that the β-cat(nc) cells are enriched for colony-forming cells when cultured in stem cell-promoting media, and have longer telomeres, indicating shared properties with normal pituitary progenitors/stem cells (PSCs). Global gene profiling analysis has revealed that these β-cat(nc) cells express high levels of secreted mitogenic signals, such as members of the SHH, BMP and FGF family, in addition to several chemokines and their receptors, suggesting an important autocrine/paracrine role of these cells in the pathogenesis of ACP and a reciprocal communication with their environment. Finally, we highlight the clinical relevance of these findings by showing that these pathways are also up-regulated in the β-cat(nc) cell clusters identified in human ACP. As well as providing further support to the concept that pituitary stem cells may play an important role in the oncogenesis of human ACP, our data reveal novel disease biomarkers and potential pharmacological targets for the treatment of these devastating childhood tumours.
Collapse
Affiliation(s)
- Cynthia L. Andoniadou
- Neural Development Unit, UCL Institute of Child Health, 30 Guilford Street, London, WC1N 1EH UK
| | - Carles Gaston-Massuet
- Neural Development Unit, UCL Institute of Child Health, 30 Guilford Street, London, WC1N 1EH UK
| | - Rukmini Reddy
- Neural Development Unit, UCL Institute of Child Health, 30 Guilford Street, London, WC1N 1EH UK
| | - Ralph P. Schneider
- Telomeres and Telomerase Group, Molecular Oncology Program, Spanish National Cancer Research Centre, 28029 Madrid, Spain
| | - Maria A. Blasco
- Telomeres and Telomerase Group, Molecular Oncology Program, Spanish National Cancer Research Centre, 28029 Madrid, Spain
| | - Paul Le Tissier
- Neural Development Unit, UCL Institute of Child Health, 30 Guilford Street, London, WC1N 1EH UK
| | - Thomas S. Jacques
- Neural Development Unit, UCL Institute of Child Health, 30 Guilford Street, London, WC1N 1EH UK
- Department of Histopathology, Great Ormond Street Hospital for Children, London, WC1N 3JH UK
| | - Larysa H. Pevny
- Department of Cell and Developmental Biology, Neuroscience Center, University of North Carolina, Chapel Hill, NC USA
| | - Mehul T. Dattani
- Developmental Endocrinology Research Group, UCL Institute of Child Health, London, WC1N 1EH UK
| | | |
Collapse
|
203
|
Hotowy A, Sawosz E, Pineda L, Sawosz F, Grodzik M, Chwalibog A. Silver nanoparticles administered to chicken affect VEGFA and FGF2 gene expression in breast muscle and heart. NANOSCALE RESEARCH LETTERS 2012; 7:418. [PMID: 22827927 PMCID: PMC3507702 DOI: 10.1186/1556-276x-7-418] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/25/2012] [Accepted: 07/14/2012] [Indexed: 05/25/2023]
Abstract
Nanoparticles of colloidal silver (AgNano) can influence gene expression. Concerning trials of AgNano application in poultry nutrition, it is useful to reveal whether they affect the expression of genes crucial for bird development. AgNano were administered to broiler chickens as a water solution in two concentrations (10 and 20 ppm). After dissection of the birds, breast muscles and hearts were collected. Gene expression of FGF2 and VEGFA on the mRNA and protein levels were evaluated using quantitative polymerase chain reaction and enzyme-linked immunosorbent assay methods. The results for gene expression in the breast muscle revealed changes on the mRNA level (FGF2 was up-regulated, P < 0.05) but not on the protein level. In the heart, 20 ppm of silver nanoparticles in drinking water increased the expression of VEGFA (P < 0.05), at the same time decreasing FGF2 expression both on the transcriptional and translational levels. Changes in the expression of these genes may lead to histological changes, but this needs to be proven using histological and immunohistochemical examination of tissues. In general, we showed that AgNano application in poultry feeding influences the expression of FGF2 and VEGFA genes on the mRNA and protein levels in growing chicken.
Collapse
Affiliation(s)
- Anna Hotowy
- Department of Basic Animal and Veterinary Sciences, University of Copenhagen, Groennegaardsvej 3, Frederiksberg, 1870, Denmark
| | - Ewa Sawosz
- Nanobiotechnology Laboratory, Warsaw University of Life Sciences, Warsaw, 02-786, Poland
| | - Lane Pineda
- Department of Basic Animal and Veterinary Sciences, University of Copenhagen, Groennegaardsvej 3, Frederiksberg, 1870, Denmark
| | - Filip Sawosz
- Department of Basic Animal and Veterinary Sciences, University of Copenhagen, Groennegaardsvej 3, Frederiksberg, 1870, Denmark
| | - Marta Grodzik
- Nanobiotechnology Laboratory, Warsaw University of Life Sciences, Warsaw, 02-786, Poland
| | - André Chwalibog
- Department of Basic Animal and Veterinary Sciences, University of Copenhagen, Groennegaardsvej 3, Frederiksberg, 1870, Denmark
| |
Collapse
|
204
|
Kirov A, Al-Hashimi H, Solomon P, Mazur C, Thorpe PE, Sims PJ, Tarantini F, Kumar TKS, Prudovsky I. Phosphatidylserine externalization and membrane blebbing are involved in the nonclassical export of FGF1. J Cell Biochem 2012; 113:956-66. [PMID: 22034063 DOI: 10.1002/jcb.23425] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
The mechanisms of nonclassical export of signal peptide-less proteins remain insufficiently understood. Here, we demonstrate that stress-induced unconventional export of FGF1, a potent and ubiquitously expressed mitogenic and proangiogenic protein, is associated with and dependent on the formation of membrane blebs and localized cell surface exposure of phosphatidylserine (PS). In addition, we found that the differentiation of promonocytic cells results in massive FGF1 release, which also correlates with membrane blebbing and exposure of PS. These findings indicate that the externalization of acidic phospholipids could be used as a pharmacological target to regulate the availability of FGF1 in the organism.
Collapse
Affiliation(s)
- Aleksandr Kirov
- Maine Medical Center Research Institute, Scarborough, Maine Medical Center, ME 04074, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
205
|
Le Bouffant R, Wang JH, Futel M, Buisson I, Umbhauer M, Riou JF. Retinoic acid-dependent control of MAP kinase phosphatase-3 is necessary for early kidney development in Xenopus. Biol Cell 2012; 104:516-32. [DOI: 10.1111/boc.201200005] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2012] [Accepted: 04/20/2012] [Indexed: 11/28/2022]
|
206
|
Reim I, Hollfelder D, Ismat A, Frasch M. The FGF8-related signals Pyramus and Thisbe promote pathfinding, substrate adhesion, and survival of migrating longitudinal gut muscle founder cells. Dev Biol 2012; 368:28-43. [PMID: 22609944 DOI: 10.1016/j.ydbio.2012.05.010] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2012] [Revised: 04/17/2012] [Accepted: 05/04/2012] [Indexed: 01/04/2023]
Abstract
Fibroblast growth factors (FGFs) frequently fulfill prominent roles in the regulation of cell migration in various contexts. In Drosophila, the FGF8-like ligands Pyramus (Pyr) and Thisbe (Ths), which signal through their receptor Heartless (Htl), are known to regulate early mesodermal cell migration after gastrulation as well as glial cell migration during eye development. Herein, we show that Pyr and Ths also exert key roles during the long-distance migration of a specific sub-population of mesodermal cells that migrate from the caudal visceral mesoderm within stereotypic bilateral paths along the trunk visceral mesoderm toward the anterior. These cells constitute the founder myoblasts of the longitudinal midgut muscles. In a forward genetic screen for regulators of this morphogenetic process we identified loss of function alleles for pyr. We show that pyr and ths are expressed along the paths of migration in the trunk visceral mesoderm and endoderm and act largely redundantly to help guide the founder myoblasts reliably onto and along their substrate of migration. Ectopically-provided Pyr and Ths signals can efficiently re-rout the migrating cells, both in the presence and absence of endogenous signals. Our data indicate that the guidance functions of these FGFs must act in concert with other important attractive or adhesive activities of the trunk visceral mesoderm. Apart from their guidance functions, the Pyr and Ths signals play an obligatory role for the survival of the migrating cells. Without these signals, essentially all of these cells enter cell death and detach from the migration substrate during early migration. We present experiments that allowed us to dissect the roles of these FGFs as guidance cues versus trophic activities during the migration of the longitudinal visceral muscle founders.
Collapse
Affiliation(s)
- Ingolf Reim
- University of Erlangen-Nuremberg, Department of Biology, Division of Developmental Biology, Staudtstr. 5, 91058 Erlangen, Germany
| | | | | | | |
Collapse
|
207
|
Wang Y, Zhou X, Oberoi K, Phelps R, Couwenhoven R, Sun M, Rezza A, Holmes G, Percival CJ, Friedenthal J, Krejci P, Richtsmeier JT, Huso DL, Rendl M, Jabs EW. p38 Inhibition ameliorates skin and skull abnormalities in Fgfr2 Beare-Stevenson mice. J Clin Invest 2012; 122:2153-64. [PMID: 22585574 DOI: 10.1172/jci62644] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2011] [Accepted: 04/04/2012] [Indexed: 12/21/2022] Open
Abstract
Beare-Stevenson cutis gyrata syndrome (BSS) is a human genetic disorder characterized by skin and skull abnormalities. BSS is caused by mutations in the FGF receptor 2 (FGFR2), but the molecular mechanisms that induce skin and skull abnormalities are unclear. We developed a mouse model of BSS harboring a FGFR2 Y394C mutation and identified p38 MAPK as an important signaling pathway mediating these abnormalities. Fgfr2+/Y394C mice exhibited epidermal hyperplasia and premature closure of cranial sutures (craniosynostosis) due to abnormal cell proliferation and differentiation. We found ligand-independent phosphorylation of FGFR2 and activation of p38 signaling in mutant skin and calvarial tissues. Treating Fgfr2+/Y394C mice with a p38 kinase inhibitor attenuated skin abnormalities by reversing cell proliferation and differentiation to near normal levels. This study reveals the pleiotropic effects of the FGFR2 Y394C mutation evidenced by cutis gyrata, acanthosis nigricans, and craniosynostosis and provides a useful model for investigating the molecular mechanisms of skin and skull development. The demonstration of a pathogenic role for p38 activation may lead to the development of therapeutic strategies for BSS and related conditions, such as acanthosis nigricans or craniosynostosis.
Collapse
Affiliation(s)
- Yingli Wang
- Department of Genetics and Genomic Sciences, Mount Sinai School of Medicine, New York, New York 10029, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
208
|
Kirov A, Duarte M, Guay J, Karolak M, Yan C, Oxburgh L, Prudovsky I. Transgenic expression of nonclassically secreted FGF suppresses kidney repair. PLoS One 2012; 7:e36485. [PMID: 22606265 PMCID: PMC3351418 DOI: 10.1371/journal.pone.0036485] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2011] [Accepted: 04/06/2012] [Indexed: 11/22/2022] Open
Abstract
FGF1 is a signal peptide-less nonclassically released growth factor that is involved in angiogenesis, tissue repair, inflammation, and carcinogenesis. The effects of nonclassical FGF export in vivo are not sufficiently studied. We produced transgenic mice expressing FGF1 in endothelial cells (EC), which allowed the detection of FGF1 export to the vasculature, and studied the efficiency of postischemic kidney repair in these animals. Although FGF1 transgenic mice had a normal phenotype with unperturbed kidney structure, they showed a severely inhibited kidney repair after unilateral ischemia/reperfusion. This was manifested by a strong decrease of postischemic kidney size and weight, whereas the undamaged contralateral kidney exhibited an enhanced compensatory size increase. In addition, the postischemic kidneys of transgenic mice were characterized by hyperplasia of interstitial cells, paucity of epithelial tubular structures, increase of the areas occupied by connective tissue, and neutrophil and macrophage infiltration. The continuous treatment of transgenic mice with the cell membrane stabilizer, taurine, inhibited nonclassical FGF1 export and significantly rescued postischemic kidney repair. It was also found that similar to EC, the transgenic expression of FGF1 in monocytes and macrophages suppresses kidney repair. We suggest that nonclassical export may be used as a target for the treatment of pathologies involving signal peptide-less FGFs.
Collapse
Affiliation(s)
- Aleksandr Kirov
- Maine Medical Center Research Institute, Maine Medical Center, Scarborough, Maine, United States of America
| | - Maria Duarte
- Maine Medical Center Research Institute, Maine Medical Center, Scarborough, Maine, United States of America
| | - Justin Guay
- Maine Medical Center Research Institute, Maine Medical Center, Scarborough, Maine, United States of America
| | - Michele Karolak
- Maine Medical Center Research Institute, Maine Medical Center, Scarborough, Maine, United States of America
| | - Cong Yan
- Department of Pathology, University of Indiana, Indianapolis, Indiana, United States of America
| | - Leif Oxburgh
- Maine Medical Center Research Institute, Maine Medical Center, Scarborough, Maine, United States of America
| | - Igor Prudovsky
- Maine Medical Center Research Institute, Maine Medical Center, Scarborough, Maine, United States of America
- * E-mail:
| |
Collapse
|
209
|
Stuhlmiller TJ, García-Castro MI. Current perspectives of the signaling pathways directing neural crest induction. Cell Mol Life Sci 2012; 69:3715-37. [PMID: 22547091 PMCID: PMC3478512 DOI: 10.1007/s00018-012-0991-8] [Citation(s) in RCA: 167] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2011] [Revised: 03/12/2012] [Accepted: 04/02/2012] [Indexed: 01/05/2023]
Abstract
The neural crest is a migratory population of embryonic cells with a tremendous potential to differentiate and contribute to nearly every organ system in the adult body. Over the past two decades, an incredible amount of research has given us a reasonable understanding of how these cells are generated. Neural crest induction involves the combinatorial input of multiple signaling pathways and transcription factors, and is thought to occur in two phases from gastrulation to neurulation. In the first phase, FGF and Wnt signaling induce NC progenitors at the border of the neural plate, activating the expression of members of the Msx, Pax, and Zic families, among others. In the second phase, BMP, Wnt, and Notch signaling maintain these progenitors and bring about the expression of definitive NC markers including Snail2, FoxD3, and Sox9/10. In recent years, additional signaling molecules and modulators of these pathways have been uncovered, creating an increasingly complex regulatory network. In this work, we provide a comprehensive review of the major signaling pathways that participate in neural crest induction, with a focus on recent developments and current perspectives. We provide a simplified model of early neural crest development and stress similarities and differences between four major model organisms: Xenopus, chick, zebrafish, and mouse.
Collapse
Affiliation(s)
- Timothy J Stuhlmiller
- Department of Molecular, Cellular, and Developmental Biology, Yale University, New Haven, CT 06520-8103, USA
| | | |
Collapse
|
210
|
Elkouby YM, Polevoy H, Gutkovich YE, Michaelov A, Frank D. A hindbrain-repressive Wnt3a/Meis3/Tsh1 circuit promotes neuronal differentiation and coordinates tissue maturation. Development 2012; 139:1487-97. [PMID: 22399680 DOI: 10.1242/dev.072934] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
During development, early inducing programs must later be counterbalanced for coordinated tissue maturation. In Xenopus laevis embryos, activation of the Meis3 transcription factor by a mesodermal Wnt3a signal lies at the core of the hindbrain developmental program. We now identify a hindbrain restricting circuit, surprisingly comprising the hindbrain inducers Wnt3a and Meis3, and Tsh1 protein. Functional and biochemical analyses show that upon Tsh1 induction by strong Wnt3a/Meis3 feedback loop activity, the Meis3-Tsh1 transcription complex represses the Meis3 promoter, allowing cell cycle exit and neuron differentiation. Meis3 protein exhibits a conserved dual-role in hindbrain development, both inducing neural progenitors and maintaining their proliferative state. In this regulatory circuit, the Tsh1 co-repressor controls transcription factor gene expression that modulates cell cycle exit, morphogenesis and differentiation, thus coordinating neural tissue maturation. This newly identified Wnt/Meis/Tsh circuit could play an important role in diverse developmental and disease processes.
Collapse
Affiliation(s)
- Yaniv M Elkouby
- Department of Biochemistry, The Rappaport Family Institute for Research in the Medical Sciences, Faculty of Medicine, Technion-Israel Institute of Technology, Haifa, Israel
| | | | | | | | | |
Collapse
|
211
|
Pei J, Grishin NV. Unexpected diversity in Shisa-like proteins suggests the importance of their roles as transmembrane adaptors. Cell Signal 2012; 24:758-69. [PMID: 22120523 PMCID: PMC3295595 DOI: 10.1016/j.cellsig.2011.11.011] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2011] [Accepted: 11/05/2011] [Indexed: 12/20/2022]
Abstract
The Shisa family of single-transmembrane proteins is characterized by an N-terminal cysteine-rich domain and a proline-rich C-terminal region. Its founding member, Xenopus Shisa, promotes head development by antagonizing Wnt and FGF signaling. Recently, a mouse brain-specific Shisa protein CKAMP44 (Shisa9) was shown to play an important role in AMPA receptor desensitization. We used sequence similarity searches against protein, genome and EST databases to study the evolutionary origin and phylogenetic distribution of Shisa homologs. In addition to nine Shisa subfamilies in vertebrates, we detected distantly related Shisa homologs that possess an N-terminal domain with six conserved cysteines. These Shisa-like proteins include FAM159 and KIAA1644 mainly from vertebrates, and members from various bilaterian invertebrates and Porifera, suggesting their presence in the last common ancestor of Metazoa. Shisa-like genes have undergone large expansions in Branchiostoma floridae and Saccoglossus kowalevskii, and appear to have been lost in certain insects. Pattern-based searches against eukaryotic proteomes also uncovered several other families of predicted single-transmembrane proteins with a similar cysteine-rich domain. We refer to these proteins (Shisa/Shisa-like, WBP1/VOPP1, CX, DUF2650, TMEM92, and CYYR1) as STMC6 proteins (single-transmembrane proteins with conserved 6 cysteines). STMC6 genes are widespread in Metazoa, with the human genome containing 17 members. Frequent occurrences of PY motifs in STMC6 proteins suggest that most of them could interact with WW-domain-containing proteins, such as the NEDD4 family E3 ubiquitin ligases, and could play critical roles in protein degradation and sorting. STMC6 proteins are likely transmembrane adaptors that regulate membrane proteins such as cell surface receptors.
Collapse
Affiliation(s)
- Jimin Pei
- Howard Hughes Medical Institute, University of Texas Southwestern Medical Center, Dallas, TX 75390, United States.
| | | |
Collapse
|
212
|
Purcell P, Jheon A, Vivero MP, Rahimi H, Joo A, Klein OD. Spry1 and spry2 are essential for development of the temporomandibular joint. J Dent Res 2012; 91:387-93. [PMID: 22328578 DOI: 10.1177/0022034512438401] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
The temporomandibular joint (TMJ) is a specialized synovial joint essential for the function of the mammalian jaw. The main components of the TMJ are the mandibular condyle, the glenoid fossa of the temporal bone, and a fibrocartilagenous disc interposed between them. The genetic program for the development of the TMJ remains poorly understood. Here we show the crucial role of sprouty (Spry) genes in TMJ development. Sprouty genes encode intracellular inhibitors of receptor tyrosine kinase (RTK) signaling pathways, including those triggered by fibroblast growth factors (Fgfs). Using in situ hybridization, we show that Spry1 and Spry2 are highly expressed in muscles attached to the TMJ, including the lateral pterygoid and temporalis muscles. The combined inactivation of Spry1 and Spry2 results in overgrowth of these muscles, which disrupts normal development of the glenoid fossa. Remarkably, condyle and disc formation are not affected in these mutants, demonstrating that the glenoid fossa is not required for development of these structures. Our findings demonstrate the importance of regulated RTK signaling during TMJ development and suggest multiple skeletal origins for the fossa. Notably, our work provides the evidence that the TMJ condyle and disc develop independently of the mandibular fossa.
Collapse
Affiliation(s)
- P Purcell
- Department of Plastic and Oral Surgery, Children's Hospital Boston, Harvard Medical School, Boston, MA, USA.
| | | | | | | | | | | |
Collapse
|
213
|
Massé K, Dale N. Purines as potential morphogens during embryonic development. Purinergic Signal 2012; 8:503-21. [PMID: 22270538 PMCID: PMC3360092 DOI: 10.1007/s11302-012-9290-y] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2011] [Accepted: 01/04/2012] [Indexed: 11/17/2022] Open
Abstract
Components of purinergic signalling are expressed in the early embryo raising the possibility that ATP, ADP and adenosine may contribute to the mechanisms of embryonic development. We summarize the available data from four developmental models—mouse, chick, Xenopus and zebrafish. While there are some notable examples where purinergic signalling is indeed important during development, e.g. development of the eye in the frog, it is puzzling that deletion of single components of purinergic signalling often results in rather minor developmental phenotypes. We suggest that a key step in further analysis is to perform combinatorial alterations of expression of purinergic signalling components to uncover their roles in development. We introduce the concept that purinergic signalling could create novel morphogenetic fields to encode spatial location via the concentration of ATP, ADP and adenosine. We show that using minimal assumptions and the known properties of the ectonucleotidases, complex spatial patterns of ATP and adenosine can be set up. These patterns may provide a new way to assess the potential of purinergic signalling in developmental processes.
Collapse
Affiliation(s)
- Karine Massé
- Univ. Bordeaux, CIRID, UMR 5164, F-33000, Bordeaux, France
| | | |
Collapse
|
214
|
Christensen ST, Clement CA, Satir P, Pedersen LB. Primary cilia and coordination of receptor tyrosine kinase (RTK) signalling. J Pathol 2012; 226:172-84. [PMID: 21956154 PMCID: PMC4294548 DOI: 10.1002/path.3004] [Citation(s) in RCA: 141] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2011] [Revised: 09/20/2011] [Accepted: 09/22/2011] [Indexed: 12/14/2022]
Abstract
Primary cilia are microtubule-based sensory organelles that coordinate signalling pathways in cell-cycle control, migration, differentiation and other cellular processes critical during development and for tissue homeostasis. Accordingly, defects in assembly or function of primary cilia lead to a plethora of developmental disorders and pathological conditions now known as ciliopathies. In this review, we summarize the current status of the role of primary cilia in coordinating receptor tyrosine kinase (RTK) signalling pathways. Further, we present potential mechanisms of signalling crosstalk and networking in the primary cilium and discuss how defects in ciliary RTK signalling are linked to human diseases and disorders.
Collapse
|
215
|
Kimelman D, Martin BL. Anterior-posterior patterning in early development: three strategies. WILEY INTERDISCIPLINARY REVIEWS-DEVELOPMENTAL BIOLOGY 2011; 1:253-66. [PMID: 23801439 DOI: 10.1002/wdev.25] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
The anterior-posterior (AP) axis is the most ancient of the embryonic axes and exists in most metazoans. Different animals use a wide variety of mechanisms to create this axis in the early embryo. In this study, we focus on three animals, including two insects (Drosophila and Tribolium) and a vertebrate (zebrafish) to examine different strategies used to form the AP axis. While Drosophila forms the entire axis within a syncytial blastoderm using transcription factors as morphogens, zebrafish uses signaling factors in a cellularized embryo, progressively forming the AP axis over the course of a day. Tribolium uses an intermediate strategy that has commonalities with both Drosophila and zebrafish. We discuss the specific molecular mechanisms used to create the AP axis and identify conserved features.
Collapse
Affiliation(s)
- David Kimelman
- Department of Biochemistry, University of Washington, Seattle, WA, USA.
| | | |
Collapse
|
216
|
Hébert JM. FGFs: Neurodevelopment's Jack-of-all-Trades - How Do They Do it? Front Neurosci 2011; 5:133. [PMID: 22164131 PMCID: PMC3230033 DOI: 10.3389/fnins.2011.00133] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2011] [Accepted: 11/18/2011] [Indexed: 12/02/2022] Open
Abstract
From neurulation to postnatal processes, the requirements for FGF signaling in many aspects of neural precursor cell biology have been well documented. However, identifying a requirement for FGFs in a particular neurogenic process provides only an initial and superficial understanding of what FGF signaling is doing. How FGFs specify cell types in one instance, yet promote cell survival, proliferation, migration, or differentiation in other instances remains largely unknown and is key to understanding how they function. This review describes what we have learned primarily from in vivo vertebrate studies about the roles of FGF signaling in neurulation, anterior–posterior patterning of the neural plate, brain patterning from local signaling centers, and finally neocortex development as an example of continued roles for FGFs within the same brain area. The potential explanations for the diverse functions of FGFs through differential interactions with cell intrinsic and extrinsic factors is then discussed with an emphasis on how little we know about the modulation of FGF signaling in vivo. A clearer picture of the mechanisms involved is nevertheless essential to understand the behavior of neural precursor cells and to potentially guide their fates for therapeutic purposes.
Collapse
Affiliation(s)
- Jean M Hébert
- Department of Neuroscience, Albert Einstein College of Medicine Bronx, NY, USA
| |
Collapse
|
217
|
Cheng YM, Chou CY, Hsu YC, Chen MJ, Wing LYC. The role of human papillomavirus type 16 E6/E7 oncoproteins in cervical epithelial-mesenchymal transition and carcinogenesis. Oncol Lett 2011; 3:667-671. [PMID: 22740973 DOI: 10.3892/ol.2011.512] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2011] [Accepted: 11/29/2011] [Indexed: 11/05/2022] Open
Abstract
Cervical cancer is the most common malignancy in females worldwide. This study investigated the prevalence of the E6/E7 oncoproteins of human papillomavirus (HPV) type 16, which are important in fibroblast growth factor (FGF) 2- and 4-induced epithelial-mesenchymal transition (EMT) and cervical tumorigenesis. We investigated the functional interaction between HPV16 E6/E7-transfected Cx cells (CxWJ cells) and treatment with FGF2 and 4, according to the expression of α-smooth muscle actin (α-SMA), vimentin and E-cadherin protein as well as cell growth and invasive ability. The results showed the upregulation of α-SMA and vimentin and the downregulation of E-cadherin protein expression in CxWJ cells. HPV16 E6/E7 infection partially repressed proliferation, but not the invasive ability of FGF2 or FGF4 stimulation in cervical cancer cells (CxWJ cells). These data provide evidence of a functional interaction between HPV16 E6/E7 and FGFs 2 and 4, suggesting that cooperative stimulation of HPV E6/E7 and FGFs activated in human cervical cancer cells is required to completely overcome the oncogenic function associated with the development of cervical epithelial-mesenchymal transition and tumorigenesis.
Collapse
Affiliation(s)
- Ya-Min Cheng
- Department of Obstetrics and Gynecology, College of Medicine, National Cheng Kung University, Tainan
| | | | | | | | | |
Collapse
|
218
|
Rogers CD, Jayasena CS, Nie S, Bronner ME. Neural crest specification: tissues, signals, and transcription factors. WILEY INTERDISCIPLINARY REVIEWS-DEVELOPMENTAL BIOLOGY 2011; 1:52-68. [PMID: 23801667 DOI: 10.1002/wdev.8] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
The neural crest is a transient population of multipotent and migratory cells unique to vertebrate embryos. Initially derived from the borders of the neural plate, these cells undergo an epithelial to mesenchymal transition to leave the central nervous system, migrate extensively in the periphery, and differentiate into numerous diverse derivatives. These include but are not limited to craniofacial cartilage, pigment cells, and peripheral neurons and glia. Attractive for their similarities to stem cells and metastatic cancer cells, neural crest cells are a popular model system for studying cell/tissue interactions and signaling factors that influence cell fate decisions and lineage transitions. In this review, we discuss the mechanisms required for neural crest formation in various vertebrate species, focusing on the importance of signaling factors from adjacent tissues and conserved gene regulatory interactions, which are required for induction and specification of the ectodermal tissue that will become neural crest.
Collapse
Affiliation(s)
- C D Rogers
- Department of Biology, California Institute of Technology, Pasadena, CA, USA
| | | | | | | |
Collapse
|
219
|
Love NR, Chen Y, Bonev B, Gilchrist MJ, Fairclough L, Lea R, Mohun TJ, Paredes R, Zeef LAH, Amaya E. Genome-wide analysis of gene expression during Xenopus tropicalis tadpole tail regeneration. BMC DEVELOPMENTAL BIOLOGY 2011; 11:70. [PMID: 22085734 PMCID: PMC3247858 DOI: 10.1186/1471-213x-11-70] [Citation(s) in RCA: 65] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/21/2011] [Accepted: 11/15/2011] [Indexed: 01/08/2023]
Abstract
Background The molecular mechanisms governing vertebrate appendage regeneration remain poorly understood. Uncovering these mechanisms may lead to novel therapies aimed at alleviating human disfigurement and visible loss of function following injury. Here, we explore tadpole tail regeneration in Xenopus tropicalis, a diploid frog with a sequenced genome. Results We found that, like the traditionally used Xenopus laevis, the Xenopus tropicalis tadpole has the capacity to regenerate its tail following amputation, including its spinal cord, muscle, and major blood vessels. We examined gene expression using the Xenopus tropicalis Affymetrix genome array during three phases of regeneration, uncovering more than 1,000 genes that are significantly modulated during tail regeneration. Target validation, using RT-qPCR followed by gene ontology (GO) analysis, revealed a dynamic regulation of genes involved in the inflammatory response, intracellular metabolism, and energy regulation. Meta-analyses of the array data and validation by RT-qPCR and in situ hybridization uncovered a subset of genes upregulated during the early and intermediate phases of regeneration that are involved in the generation of NADP/H, suggesting that these pathways may be important for proper tail regeneration. Conclusions The Xenopus tropicalis tadpole is a powerful model to elucidate the genetic mechanisms of vertebrate appendage regeneration. We have produced a novel and substantial microarray data set examining gene expression during vertebrate appendage regeneration.
Collapse
Affiliation(s)
- Nick R Love
- Faculty of Life Sciences, University of Manchester, UK
| | | | | | | | | | | | | | | | | | | |
Collapse
|
220
|
Martínez-Abadías N, Heuzé Y, Wang Y, Jabs EW, Aldridge K, Richtsmeier JT. FGF/FGFR signaling coordinates skull development by modulating magnitude of morphological integration: evidence from Apert syndrome mouse models. PLoS One 2011; 6:e26425. [PMID: 22053191 PMCID: PMC3203899 DOI: 10.1371/journal.pone.0026425] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2011] [Accepted: 09/26/2011] [Indexed: 11/19/2022] Open
Abstract
The fibroblast growth factor and receptor system (FGF/FGFR) mediates cell communication and pattern formation in many tissue types (e.g., osseous, nervous, vascular). In those craniosynostosis syndromes caused by FGFR1-3 mutations, alteration of signaling in the FGF/FGFR system leads to dysmorphology of the skull, brain and limbs, among other organs. Since this molecular pathway is widely expressed throughout head development, we explore whether and how two specific mutations on Fgfr2 causing Apert syndrome in humans affect the pattern and level of integration between the facial skeleton and the neurocranium using inbred Apert syndrome mouse models Fgfr2(+/S252W) and Fgfr2(+/P253R) and their non-mutant littermates at P0. Skull morphological integration (MI), which can reflect developmental interactions among traits by measuring the intensity of statistical associations among them, was assessed using data from microCT images of the skull of Apert syndrome mouse models and 3D geometric morphometric methods. Our results show that mutant Apert syndrome mice share the general pattern of MI with their non-mutant littermates, but the magnitude of integration between and within the facial skeleton and the neurocranium is increased, especially in Fgfr2(+/S252W) mice. This indicates that although Fgfr2 mutations do not disrupt skull MI, FGF/FGFR signaling is a covariance-generating process in skull development that acts as a global factor modulating the intensity of MI. As this pathway evolved early in vertebrate evolution, it may have played a significant role in establishing the patterns of skull MI and coordinating proper skull development.
Collapse
Affiliation(s)
- Neus Martínez-Abadías
- Department of Anthropology, Pennsylvania State University, University Park, Pennsylvania, United States of America
| | - Yann Heuzé
- Department of Anthropology, Pennsylvania State University, University Park, Pennsylvania, United States of America
| | - Yingli Wang
- Department of Genetics and Genomic Sciences, Mount Sinai School of Medicine, New York, New York, United States of America
| | - Ethylin Wang Jabs
- Department of Genetics and Genomic Sciences, Mount Sinai School of Medicine, New York, New York, United States of America
| | - Kristina Aldridge
- Department of Pathology and Anatomical Sciences, University of Missouri-School of Medicine, Columbia, Missouri, United States of America
| | - Joan T. Richtsmeier
- Department of Anthropology, Pennsylvania State University, University Park, Pennsylvania, United States of America
| |
Collapse
|
221
|
Fukui L, Henry JJ. FGF signaling is required for lens regeneration in Xenopus laevis. THE BIOLOGICAL BULLETIN 2011; 221:137-45. [PMID: 21876116 PMCID: PMC3442785 DOI: 10.1086/bblv221n1p137] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/17/2023]
Abstract
In species of the frog genus Xenopus, lens regeneration occurs through a process of transdifferentiation, in which cornea epithelial cells presumably undergo dedifferentiation and subsequently redifferentiate to form a new lens. Experimental studies have shown that the retina provides the key signal required to trigger this process once the original lens is removed. A previous study showed that addition of an exogenous fibroblast growth factor (i.e., FGF1 protein) could initiate transdifferentiation of cornea epithelial cells in culture. To determine the role of FGF signaling in X. laevis lens regeneration, we have examined the presence of specific FGFs and their receptors (FGFRs) during this process and evaluated the necessity of FGFR signaling. Reverse transcriptase-polymerase chain reaction analyses reveal that a number of FGF family members are expressed in cornea epithelium and retinal tissues both before and during the process of lens regeneration. Of these, FGF1, FGF8, and FGF9 are expressed principally in retinal tissue and not in the cornea epithelium. Hence, these ligands could represent key signaling factors originating from the retina that trigger regeneration. The results of experiments using an in vitro eye culture system and an FGFR inhibitor (SU5402) suggest that FGFR signaling is required for lens regeneration in Xenopus.
Collapse
Affiliation(s)
- Lisa Fukui
- University of Illinois, Department of Cell and Developmental Biology, Urbana, Illinois 61801, USA
| | | |
Collapse
|
222
|
Abstract
The way in which cells recognize their position in a gradient of morphogen controls differentiation during embryogenesis. New findings indicate that the rate at which internalized morphogen receptors are trafficked to lysosomes is key to the accurate and precise sensing of morphogen gradients and the appropriate initiation of differentiation programs during development.
Collapse
Affiliation(s)
- Elena Rainero
- Integrin Cell Biology Laboratory, Beatson Institute for Cancer Research, Bearsden, Glasgow G611BD, Scotland, UK
| | | |
Collapse
|