201
|
Improved development by melatonin treatment after vitrification of mouse metaphase II oocytes. Cryobiology 2016; 73:335-342. [PMID: 27725165 DOI: 10.1016/j.cryobiol.2016.09.171] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2016] [Revised: 09/24/2016] [Accepted: 09/26/2016] [Indexed: 12/16/2022]
Abstract
The study was aimed to investigate the effect of melatonin on the development potential of mouse MII oocytes after cryopreservation. Mouse MII oocytes were subjected first to vitrification/warming and 2 h of in vitro culture (phase 1), then to parthenogenetic activation (PA) followed by in vitro culture of parthenogenetic embryos (phase 2). Different concentrations of melatonin (0, 10-9, 10-6 mol/L) were added to the medium during either phase 1, phase 2 or both phases. The fresh oocytes were used as control. When melatonin was used during both phases, 10-9 mol/L melatonin-treated group showed similar rates of cleavage and 4-cell embryo development compared with control, which were significantly higher than those of melatonin-free group, while the rates in either 10-6 mol/L melatonin-treated or melatonin-free groups were significantly lower than that in control. When 10-9 mol/L melatonin was added during either phase 1 or phase 2, both cleavage and 4-cell embryo development rates of either group were significantly lower than those of control. After oocyte vitrification/warming and PA, the ROS levels increased significantly and maternal-to-zygotic transition (MZT) related genes (Dcp1a, Dcp2, Hspa1a, Eif1ax, Pou5f1, Sox2) expression were disorganized. However, after 10-9 mol/L melatonin supplementation, the ROS levels decreased significantly compared with melatonin-free group, and the gene expressions were almost recovered to normal level of control group. These results demonstrated that 10-9 mol/L melatonin supplementation could increase the developmental potential of vitrified-warmed mouse MII oocytes, which may result from ROS scavenging activities and recovery of normal levels of the expressions of MZT-related genes.
Collapse
|
202
|
Demond H, Trapphoff T, Dankert D, Heiligentag M, Grümmer R, Horsthemke B, Eichenlaub-Ritter U. Preovulatory Aging In Vivo and In Vitro Affects Maturation Rates, Abundance of Selected Proteins, Histone Methylation Pattern and Spindle Integrity in Murine Oocytes. PLoS One 2016; 11:e0162722. [PMID: 27611906 PMCID: PMC5017692 DOI: 10.1371/journal.pone.0162722] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2016] [Accepted: 08/26/2016] [Indexed: 11/18/2022] Open
Abstract
Delayed ovulation and delayed fertilization can lead to reduced developmental competence of the oocyte. In contrast to the consequences of postovulatory aging of the oocyte, hardly anything is known about the molecular processes occurring during oocyte maturation if ovulation is delayed (preovulatory aging). We investigated several aspects of oocyte maturation in two models of preovulatory aging: an in vitro follicle culture and an in vivo mouse model in which ovulation was postponed using the GnRH antagonist cetrorelix. Both models showed significantly reduced oocyte maturation rates after aging. Furthermore, in vitro preovulatory aging deregulated the protein abundance of the maternal effect genes Smarca4 and Nlrp5, decreased the levels of histone H3K9 trimethylation and caused major deterioration of chromosome alignment and spindle conformation. Protein abundance of YBX2, an important regulator of mRNA stability, storage and recruitment in the oocyte, was not affected by in vitro aging. In contrast, in vivo preovulatory aging led to reduction in Ybx2 transcript and YBX2 protein abundance. Taken together, preovulatory aging seems to affect various processes in the oocyte, which could explain the low maturation rates and the previously described failures in fertilization and embryonic development.
Collapse
Affiliation(s)
- Hannah Demond
- Institute of Human Genetics, University Hospital Essen, University Duisburg-Essen, Essen, Germany
| | - Tom Trapphoff
- Institute of Gene Technology/Microbiology, University of Bielefeld, Bielefeld, Germany
| | - Deborah Dankert
- Institute of Anatomy, University Hospital Essen, University Duisburg-Essen, Essen, Germany
| | - Martyna Heiligentag
- Institute of Gene Technology/Microbiology, University of Bielefeld, Bielefeld, Germany
| | - Ruth Grümmer
- Institute of Anatomy, University Hospital Essen, University Duisburg-Essen, Essen, Germany
| | - Bernhard Horsthemke
- Institute of Human Genetics, University Hospital Essen, University Duisburg-Essen, Essen, Germany
- * E-mail:
| | | |
Collapse
|
203
|
Fraser R, Lin CJ. Epigenetic reprogramming of the zygote in mice and men: on your marks, get set, go! Reproduction 2016; 152:R211-R222. [PMID: 27601712 PMCID: PMC5097126 DOI: 10.1530/rep-16-0376] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2016] [Accepted: 09/02/2016] [Indexed: 12/19/2022]
Abstract
Gametogenesis (spermatogenesis and oogenesis) is accompanied by the acquisition of gender-specific epigenetic marks, such as DNA methylation, histone modifications and regulation by small RNAs, to form highly differentiated, but transcriptionally silent cell-types in preparation for fertilisation. Upon fertilisation, extensive global epigenetic reprogramming takes place to remove the previously acquired epigenetic marks and produce totipotent zygotic states. It is the aim of this review to delineate the cellular and molecular events involved in maternal, paternal and zygotic epigenetic reprogramming from the time of gametogenesis, through fertilisation, to the initiation of zygotic genome activation for preimplantation embryonic development. Recent studies have begun to uncover the indispensable functions of epigenetic players during gametogenesis, fertilisation and preimplantation embryo development, and a more comprehensive understanding of these early events will be informative for increasing pregnancy success rates, adding particular value to assisted fertility programmes.
Collapse
Affiliation(s)
- Rupsha Fraser
- The University of EdinburghMRC Centre for Reproductive Health, Queen's Medical Research Institute, 47 Little France Crescent, Edinburgh, EH16 4TJ, Scotland, UK
| | - Chih-Jen Lin
- The University of EdinburghMRC Centre for Reproductive Health, Queen's Medical Research Institute, 47 Little France Crescent, Edinburgh, EH16 4TJ, Scotland, UK
| |
Collapse
|
204
|
Xu Y, Shi Y, Fu J, Yu M, Feng R, Sang Q, Liang B, Chen B, Qu R, Li B, Yan Z, Mao X, Kuang Y, Jin L, He L, Sun X, Wang L. Mutations in PADI6 Cause Female Infertility Characterized by Early Embryonic Arrest. Am J Hum Genet 2016; 99:744-752. [PMID: 27545678 DOI: 10.1016/j.ajhg.2016.06.024] [Citation(s) in RCA: 164] [Impact Index Per Article: 18.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2016] [Accepted: 06/27/2016] [Indexed: 11/15/2022] Open
Abstract
Early embryonic arrest is one of the major causes of female infertility. However, because of difficulties in phenotypic evaluation, genetic determinants of human early embryonic arrest are largely unknown. With the development of assisted reproductive technology, the phenotype of early human embryonic arrest can now be carefully evaluated. Here, we describe a consanguineous family with a recessive inheritance pattern of female infertility characterized by recurrent early embryonic arrest in cycles of in vitro fertilization (IVF) and intracytoplasmic sperm injection (ICSI). We have identified a homozygous PADI6 nonsense mutation (c.1141C>T [p.Gln381(∗)]) that is responsible for the phenotype. Mutational analysis of PADI6 in a cohort of 36 individuals whose embryos displayed developmental arrest identified two affected individuals with compound-heterozygous mutations (c.2009_2010del [p.Glu670Glyfs(∗)48] and c.633T>A [p.His211Gln]; c.1618G>A [p.Gly540Arg] and c.970C>T [p.Gln324(∗)]). Immunostaining indicated a lack of PADI6 in affected individuals' oocytes. In addition, the amount of phosphorylated RNA polymerase II and expression levels of seven genes involved in zygotic genome activation were reduced in the affected individuals' embryos. This phenotype is consistent with Padi6 knockout mice. These findings deepen our understanding of the genetic basis of human early embryonic arrest, which has been a largely ignored Mendelian phenotype. Our findings lay the foundation for uncovering other genetic causes of infertility resulting from early embryonic arrest.
Collapse
Affiliation(s)
- Yao Xu
- Obstetrics and Gynecology Hospital, Fudan University, Shanghai 200011, China; State Key Laboratory of Genetic Engineering and Ministry of Education Key Laboratory of Contemporary Anthropology, School of Life Sciences, Fudan University, Shanghai 200438, China; Institutes of Biomedical Sciences, Fudan University, Shanghai 200032, China
| | - Yingli Shi
- Obstetrics and Gynecology Hospital, Fudan University, Shanghai Ji Ai Genetics and IVF Institute, Shanghai 200011, China
| | - Jing Fu
- Obstetrics and Gynecology Hospital, Fudan University, Shanghai Ji Ai Genetics and IVF Institute, Shanghai 200011, China
| | - Min Yu
- Obstetrics and Gynecology Hospital, Fudan University, Shanghai Ji Ai Genetics and IVF Institute, Shanghai 200011, China
| | - Ruizhi Feng
- Obstetrics and Gynecology Hospital, Fudan University, Shanghai 200011, China; State Key Laboratory of Genetic Engineering and Ministry of Education Key Laboratory of Contemporary Anthropology, School of Life Sciences, Fudan University, Shanghai 200438, China; Institutes of Biomedical Sciences, Fudan University, Shanghai 200032, China
| | - Qing Sang
- Obstetrics and Gynecology Hospital, Fudan University, Shanghai 200011, China; State Key Laboratory of Genetic Engineering and Ministry of Education Key Laboratory of Contemporary Anthropology, School of Life Sciences, Fudan University, Shanghai 200438, China; Institutes of Biomedical Sciences, Fudan University, Shanghai 200032, China
| | - Bo Liang
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic and Developmental Sciences, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Biaobang Chen
- Obstetrics and Gynecology Hospital, Fudan University, Shanghai 200011, China; State Key Laboratory of Genetic Engineering and Ministry of Education Key Laboratory of Contemporary Anthropology, School of Life Sciences, Fudan University, Shanghai 200438, China; Institutes of Biomedical Sciences, Fudan University, Shanghai 200032, China
| | - Ronggui Qu
- Obstetrics and Gynecology Hospital, Fudan University, Shanghai 200011, China; State Key Laboratory of Genetic Engineering and Ministry of Education Key Laboratory of Contemporary Anthropology, School of Life Sciences, Fudan University, Shanghai 200438, China; Institutes of Biomedical Sciences, Fudan University, Shanghai 200032, China
| | - Bin Li
- Reproductive Medicine Center, Shanghai Ninth Hospital, Shanghai Jiao Tong University, Shanghai 200011, China
| | - Zheng Yan
- Reproductive Medicine Center, Shanghai Ninth Hospital, Shanghai Jiao Tong University, Shanghai 200011, China
| | - Xiaoyan Mao
- Reproductive Medicine Center, Shanghai Ninth Hospital, Shanghai Jiao Tong University, Shanghai 200011, China
| | - Yanping Kuang
- Reproductive Medicine Center, Shanghai Ninth Hospital, Shanghai Jiao Tong University, Shanghai 200011, China
| | - Li Jin
- State Key Laboratory of Genetic Engineering and Ministry of Education Key Laboratory of Contemporary Anthropology, School of Life Sciences, Fudan University, Shanghai 200438, China
| | - Lin He
- Institutes of Biomedical Sciences, Fudan University, Shanghai 200032, China; Bio-X Center, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders, Ministry of Education, Shanghai Jiao Tong University, Shanghai 200030, China
| | - Xiaoxi Sun
- Obstetrics and Gynecology Hospital, Fudan University, Shanghai Ji Ai Genetics and IVF Institute, Shanghai 200011, China.
| | - Lei Wang
- Obstetrics and Gynecology Hospital, Fudan University, Shanghai 200011, China; State Key Laboratory of Genetic Engineering and Ministry of Education Key Laboratory of Contemporary Anthropology, School of Life Sciences, Fudan University, Shanghai 200438, China; Institutes of Biomedical Sciences, Fudan University, Shanghai 200032, China.
| |
Collapse
|
205
|
Shapiro B. Pathways to de‐extinction: how close can we get to resurrection of an extinct species? Funct Ecol 2016. [DOI: 10.1111/1365-2435.12705] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Beth Shapiro
- Department of Ecology and Evolutionary Biology and UCSC Genomics Institute University of California Santa Cruz 1156 High Street Santa Cruz CA95064 USA
| |
Collapse
|
206
|
Yang Y, Wang J, Zhao C, Chen X, Chen L, Zhang J, Huo R, Liu C, Tong H, Ling X. The interferon α-responsive gene, Ifrg15, plays vital roles during mouse early embryonic development. Cell Mol Life Sci 2016; 73:2969-84. [PMID: 26911731 PMCID: PMC11108498 DOI: 10.1007/s00018-016-2150-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2015] [Revised: 01/09/2016] [Accepted: 01/26/2016] [Indexed: 10/22/2022]
Abstract
The interferon alpha-responsive gene (Ifrg15) mRNA is highly expressed in various stages during preimplantation mammalian embryo development. Unfortunately, few studies have investigated the effect of Ifrg15 in this process. In mammals, the fusion of male and female pronuclei generates a diploid zygote, and is an important step for subsequent cleavage and blastocyst formation. Here, by using RNA interference, rescue experiments, immunofluorescence staining and live cell observations, we found that preimplantation embryo development was arrested at the 1-cell stage after knocking down Ifrg15 expression. This induced DNA damage and prevented the cleavage of embryos. Furthermore, the effect of Ifrg15 deficiency in arresting preimplantation embryo development produced by specific short interfering RNA microinjection was concentration-dependent. Using transcriptome expression profiles, gene ontogeny functional annotation and enrichment analysis, we gained 197 enriched pathways based on 1445 differentially expressed genes (DEGs). Of these, 12 pathways and about one third of the DEGs were involved in DNA damage, DNA repair, cell cycle, and developmental processes. Thus, the IFRG15 protein might be an important molecule for maintaining genomic integrity and stability through upregulating or downregulating a cascade of genes to permit normal preimplantation embryo development.
Collapse
Affiliation(s)
- Ye Yang
- State Key Laboratory of Reproductive Medicine, Department of Reproduction, Nanjing Maternity and Child Health Care Hospital Affiliated to Nanjing Medical University, Nanjing Medical University, Nanjing, 210004, Jiangsu, China
| | - Jiayi Wang
- State Key Laboratory of Reproductive Medicine, Department of Reproduction, Nanjing Maternity and Child Health Care Hospital Affiliated to Nanjing Medical University, Nanjing Medical University, Nanjing, 210004, Jiangsu, China
| | - Chun Zhao
- State Key Laboratory of Reproductive Medicine, Department of Reproduction, Nanjing Maternity and Child Health Care Hospital Affiliated to Nanjing Medical University, Nanjing Medical University, Nanjing, 210004, Jiangsu, China
| | - Xiaojiao Chen
- State Key Laboratory of Reproductive Medicine, Department of Reproduction, Nanjing Maternity and Child Health Care Hospital Affiliated to Nanjing Medical University, Nanjing Medical University, Nanjing, 210004, Jiangsu, China
| | - Li Chen
- Department of Reproduction, Changzhou Maternity and Child Health Care Hospital Affiliated to Nanjing Medical University, Nanjing Medical University, Changzhou, 213003, Jiangsu, China
| | - Junqiang Zhang
- State Key Laboratory of Reproductive Medicine, Department of Reproduction, Nanjing Maternity and Child Health Care Hospital Affiliated to Nanjing Medical University, Nanjing Medical University, Nanjing, 210004, Jiangsu, China
| | - Ran Huo
- State Key Laboratory of Reproductive Medicine, Department of Histology and Embryology, Nanjing Medical University, Nanjing, 210004, Jiangsu, China
| | - Chang Liu
- Jiangsu Key Laboratory for Molecular and Medical Biotechnology and College of Life Sciences, Nanjing Normal University, Nanjing, Jiangsu, China
| | - Hua Tong
- State Key Laboratory of Reproductive Medicine, Department of Reproduction, Nanjing Maternity and Child Health Care Hospital Affiliated to Nanjing Medical University, Nanjing Medical University, Nanjing, 210004, Jiangsu, China.
| | - Xiufeng Ling
- State Key Laboratory of Reproductive Medicine, Department of Reproduction, Nanjing Maternity and Child Health Care Hospital Affiliated to Nanjing Medical University, Nanjing Medical University, Nanjing, 210004, Jiangsu, China.
| |
Collapse
|
207
|
Zygote arrest 1, nucleoplasmin 2, and developmentally associated protein 3 mRNA profiles throughout porcine embryo development in vitro. Theriogenology 2016; 86:2254-2262. [PMID: 27566850 DOI: 10.1016/j.theriogenology.2016.07.013] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2016] [Revised: 07/15/2016] [Accepted: 07/15/2016] [Indexed: 11/23/2022]
Abstract
Maternal effect genes (MEGs) are expressed in oocytes and embryos and play an important role in activation of the embryonic genome. An abnormality in the expression of these genes may lead to arrest of embryonic cleavage or to altered transcription of factors responsible for further embryonic development. In vitro-produced porcine embryos have a lower developmental potential than embryos produced in vivo. We hypothesized that in vitro embryo culture conditions have an effect on the expression of MEGs at various developmental stages, which may affect their developmental potential. Here, using real-time polymerase chain reaction, we examined mRNA profiles of the MEGs, zygote arrest 1 (ZAR-1), nucleoplasmin 2 (NPM2), and developmentally associated pluripotency protein 3 (DPPA3), in porcine oocytes and embryos produced in vitro and in vivo. Further, we evaluated the effect of the combined addition of EGF, interleukin 1β, and leukemia inhibitory factor to the porcine in vitro embryo production system on mRNA profiles of selected MEGs. Finally, we studied localization of the MEG protein products in in vitro-obtained oocytes and embryos using confocal microscopy. We found that the ZAR-1 mRNA profile differed throughout in vitro and in vivo embryo development. In the embryos produced in vitro, the decrease in ZAR-1 mRNA levels was observed at the 2-cell stage, whereas in in vivo embryos, ZAR-1 mRNA levels declined significantly starting at the 4-cell stage (P < 0.05). In vitro culture conditions affected transiently also DPPA3 mRNA levels at the 4-cell stage (P < 0.05). There was no difference in the NPM2 mRNA profile during in vitro and in vivo embryo development. The ZAR-1 and DPPA3 proteins were localized in the cytoplasm of the oocytes and embryos, whereas the NPM2 protein was found both in the cytoplasm and in the nucleus. All proteins were expressed until blastocyst stage. The addition of EGF and cytokines to the culture medium decreased DPPA3 mRNA levels in 8-cell embryos (P < 0.05). This study indicated that IVC conditions affect ZAR-1 mRNA levels before the 4-cell stage, which may disturb the activation of the embryonic genome in pigs. The expression of the proteins after the 4-cell to 8-cell transition indicates that these factors play a role beyond activation of the embryonic genome. Supplementation of the culture media with EGF and cytokines affects DPPA3 mRNA levels after maternal to embryonic transition.
Collapse
|
208
|
Cao Y, Du J, Chen D, Wang Q, Zhang N, Liu X, Liu X, Weng J, Liang Y, Ma W. RNA- binding protein Stau2 is important for spindle integrity and meiosis progression in mouse oocytes. Cell Cycle 2016; 15:2608-2618. [PMID: 27433972 DOI: 10.1080/15384101.2016.1208869] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
Staufen2 (Stau2) is a double-stranded RNA-binding protein involved in cell fate decision by regulating mRNA transport, mRNA stability, translation, and ribonucleoprotein assembly. Little is known about Stau2 expression and function in mammalian oocytes during meiosis. Herein we report the sub-cellular distribution and function of Stau2 in mouse oocyte meiosis. Western blot analysis revealed high and stable expression of Stau2 in oocytes from germinal vesicle (GV) to metaphase II (MII). Immunofluorescence showed that Stau2 was evenly distributed in oocytes at GV stage, and assembled as filaments after germinal vesicle breakdown (GVBD), particularly, colocalized with spindle at MI and MII. Stau2 was disassembled when microtubules were disrupted with nocodazole, on the other hand, when MTs were stabilized with taxol, Stau2 was not colocalized with the stabilized microtubules, but aggregated around the chromosomes array, indicating Stau2 assembly and colocalization with microtubules require both microtubule integrity and its normal dynamics. During interphase and mitosis of BHK and MEF cells, Stau2 was not distributed on microtubules, but colocalized with cis-Golgi marker GM130, implying its association with Golgi complex but not the spindle in fully differentiated somatic cells. Specific morpholino oligo-mediated Stau2 knockdown disrupted spindle formation, chromosome alignment and microtubule-kinetochore attachment in oocytes. The majority oocytes were arrested at MI stage, with bright MAD1 at kinetochores, indicating activation of spindle assembly checkpoint (SAC). Some oocytes were stranded at telophase I (TI), implying suppressed first polar body extrution. Together these data demonstrate that Stau2 is required for spindle formation and timely meiotic progression in mouse oocytes.
Collapse
Affiliation(s)
- Yan Cao
- a Department of Histology and Embryology , School of Basic Medical Sciences, Capital Medical University , Beijing , China
| | - Juan Du
- a Department of Histology and Embryology , School of Basic Medical Sciences, Capital Medical University , Beijing , China
| | - Dandan Chen
- a Department of Histology and Embryology , School of Basic Medical Sciences, Capital Medical University , Beijing , China
| | - Qian Wang
- a Department of Histology and Embryology , School of Basic Medical Sciences, Capital Medical University , Beijing , China
| | - Nana Zhang
- a Department of Histology and Embryology , School of Basic Medical Sciences, Capital Medical University , Beijing , China
| | - Xiaoyun Liu
- a Department of Histology and Embryology , School of Basic Medical Sciences, Capital Medical University , Beijing , China
| | - Xiaoyu Liu
- a Department of Histology and Embryology , School of Basic Medical Sciences, Capital Medical University , Beijing , China
| | - Jing Weng
- b Experimental Center for Basic Medical Teaching, School of Basic Medical Sciences, Capital Medical University , Beijing , China
| | - Yuanjing Liang
- a Department of Histology and Embryology , School of Basic Medical Sciences, Capital Medical University , Beijing , China
| | - Wei Ma
- a Department of Histology and Embryology , School of Basic Medical Sciences, Capital Medical University , Beijing , China
| |
Collapse
|
209
|
Wang B, Pfeiffer MJ, Drexler HCA, Fuellen G, Boiani M. Proteomic Analysis of Mouse Oocytes Identifies PRMT7 as a Reprogramming Factor that Replaces SOX2 in the Induction of Pluripotent Stem Cells. J Proteome Res 2016; 15:2407-21. [PMID: 27225728 DOI: 10.1021/acs.jproteome.5b01083] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
The reprogramming process that leads to induced pluripotent stem cells (iPSCs) may benefit from adding oocyte factors to Yamanaka's reprogramming cocktail (OCT4, SOX2, KLF4, with or without MYC; OSK(M)). We previously searched for such facilitators of reprogramming (the reprogrammome) by applying label-free LC-MS/MS analysis to mouse oocytes, producing a catalog of 28 candidates that are (i) able to robustly access the cell nucleus and (ii) shared between mature mouse oocytes and pluripotent embryonic stem cells. In the present study, we hypothesized that our 28 reprogrammome candidates would also be (iii) abundant in mature oocytes, (iv) depleted after the oocyte-to-embryo transition, and (v) able to potentiate or replace the OSKM factors. Using LC-MS/MS and isotopic labeling methods, we found that the abundance profiles of the 28 proteins were below those of known oocyte-specific and housekeeping proteins. Of the 28 proteins, only arginine methyltransferase 7 (PRMT7) changed substantially during mouse embryogenesis and promoted the conversion of mouse fibroblasts into iPSCs. Specifically, PRMT7 replaced SOX2 in a factor-substitution assay, yielding iPSCs. These findings exemplify how proteomics can be used to prioritize the functional analysis of reprogrammome candidates. The LC-MS/MS data are available via ProteomeXchange with identifier PXD003093.
Collapse
Affiliation(s)
- Bingyuan Wang
- Key Laboratory of Farm Animal Genetic Resources and Germplasm Innovation of Ministry of Agriculture, Institute of Animal Science, Chinese Academy of Agricultural Sciences , Beijing 100193, China
| | - Martin J Pfeiffer
- Max Planck Institute for Molecular Biomedicine , Röntgenstraße 20, 48149 Münster, Germany
| | - Hannes C A Drexler
- Max Planck Institute for Molecular Biomedicine , Bioanalytical Mass Spectrometry Facility, Röntgenstraße 20, 48149 Münster, Germany
| | - Georg Fuellen
- Institute for Biostatistics and Informatics in Medicine and Ageing Research, Rostock University Medical Center, 18057 Rostock, Germany
| | - Michele Boiani
- Max Planck Institute for Molecular Biomedicine , Röntgenstraße 20, 48149 Münster, Germany
| |
Collapse
|
210
|
Yang L, Song LS, Liu XF, Xia Q, Bai LG, Gao L, Gao GQ, Wang Y, Wei ZY, Bai CL, Li GP. The Maternal Effect Genes UTX and JMJD3 Play Contrasting Roles in Mus musculus Preimplantation Embryo Development. Sci Rep 2016; 6:26711. [PMID: 27384759 PMCID: PMC4935995 DOI: 10.1038/srep26711] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2016] [Accepted: 05/09/2016] [Indexed: 11/30/2022] Open
Abstract
During the process of embryonic development in mammals, epigenetic modifications must be erased and reconstructed. In particular, the trimethylation of histone 3 lysine 27 (H3K27me3) is associated with gene-specific transcriptional repression and contributes to the maintenance of the pluripotent embryos. In this study, we determined that the global levels of the H3K27me3 marker were elevated in MII oocyte chromatin and decrease to minimal levels at the 8-cell and morula stages. When the blastocyst hatched, H3K27me3 was re-established in the inner cell mass. We also determined that H3K27me3-specific demethylases, UTX and JMJD3, were observed at high transcript and protein levels in mouse preimplantation embryos. In the activated oocytes, when the H3K27me3 disappeared at the 8-cell stage, the UTX (but not JMJD3) protein levels were undetectable. Using RNA interference, we suppressed UTX and JMJD3 gene expression in the embryos and determined that the functions of UTX and JMJD3 were complementary. When JMJD3 levels were decreased by RNA interference, the embryo development rate and quality were improved, but the knockdown of UTX produced the opposite results. Understanding the epigenetic mechanisms controlling preimplantation development is critical to comprehending the basis of embryonic development and to devise methods and approaches to treat infertility.
Collapse
Affiliation(s)
- Lei Yang
- The Key Laboratory of the National Education Ministry for Mammalian Reproductive Biology and Biotechnology, Inner Mongolia University, Hohhot, People's Republic of China
| | - Li-Shuang Song
- The Key Laboratory of the National Education Ministry for Mammalian Reproductive Biology and Biotechnology, Inner Mongolia University, Hohhot, People's Republic of China
| | - Xue-Fei Liu
- The Key Laboratory of the National Education Ministry for Mammalian Reproductive Biology and Biotechnology, Inner Mongolia University, Hohhot, People's Republic of China
| | - Qing Xia
- State Key Laboratory of Natural and Biomimetic Drugs, Department of Chemical Biology, School of Pharmaceutical Sciences, Peking University, Beijing, People's Republic of China
| | - Li-Ge Bai
- The Key Laboratory of the National Education Ministry for Mammalian Reproductive Biology and Biotechnology, Inner Mongolia University, Hohhot, People's Republic of China
| | - Li Gao
- The Key Laboratory of the National Education Ministry for Mammalian Reproductive Biology and Biotechnology, Inner Mongolia University, Hohhot, People's Republic of China
| | - Guang-Qi Gao
- The Key Laboratory of the National Education Ministry for Mammalian Reproductive Biology and Biotechnology, Inner Mongolia University, Hohhot, People's Republic of China
| | - Yu Wang
- Department of Gynecology and Obstetrics, Inner Mongolia Medical University Affiliated Hospital, Hohhot, People's Republic of China
| | - Zhu-Ying Wei
- The Key Laboratory of the National Education Ministry for Mammalian Reproductive Biology and Biotechnology, Inner Mongolia University, Hohhot, People's Republic of China
| | - Chun-Ling Bai
- The Key Laboratory of the National Education Ministry for Mammalian Reproductive Biology and Biotechnology, Inner Mongolia University, Hohhot, People's Republic of China
| | - Guang-Peng Li
- The Key Laboratory of the National Education Ministry for Mammalian Reproductive Biology and Biotechnology, Inner Mongolia University, Hohhot, People's Republic of China
| |
Collapse
|
211
|
Dallaire A, Simard MJ. The implication of microRNAs and endo-siRNAs in animal germline and early development. Dev Biol 2016; 416:18-25. [PMID: 27287880 DOI: 10.1016/j.ydbio.2016.06.007] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2016] [Revised: 05/31/2016] [Accepted: 06/06/2016] [Indexed: 01/13/2023]
Abstract
Germ cells provide maternal mRNAs that are stored in the oocyte, and later translated at a specific time of development. In this context, gene regulation depends mainly on post-transcriptional mechanisms that contribute to keep maternal transcripts in a stable and translationally silent state. In recent years, small non-coding RNAs, such as microRNAs have emerged as key post-transcriptional regulators of gene expression. microRNAs control the translation efficiency and/or stability of targeted mRNAs. microRNAs are present in animal germ cells and maternally inherited microRNAs are abundant in early embryos. However, it is not known how microRNAs control the stability and translation of maternal transcripts. In this review, we will discuss the implication of germline microRNAs in regulating animal oogenesis and early embryogenesis as well as compare their roles with endo-siRNAs, small RNA species that share key molecular components with the microRNA pathway.
Collapse
Affiliation(s)
- Alexandra Dallaire
- St-Patrick Research Group in Basic Oncology, Centre Hospitalier Universitaire de Québec-Université Laval Research Centre (Hôtel-Dieu de Québec), Quebec City, Québec, Canada G1R 2J6; Laval University Cancer Research Centre, Quebec City, Québec, Canada G1R 2J6
| | - Martin J Simard
- St-Patrick Research Group in Basic Oncology, Centre Hospitalier Universitaire de Québec-Université Laval Research Centre (Hôtel-Dieu de Québec), Quebec City, Québec, Canada G1R 2J6; Laval University Cancer Research Centre, Quebec City, Québec, Canada G1R 2J6.
| |
Collapse
|
212
|
Gao L, Zhao M, Ye W, Huang J, Chu J, Yan S, Wang C, Zeng R. Inhibition of glycogen synthase kinase-3 (GSK3) promotes the neural differentiation of full-term amniotic fluid-derived stem cells towards neural progenitor cells. Tissue Cell 2016; 48:312-20. [PMID: 27346451 DOI: 10.1016/j.tice.2016.06.001] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2016] [Revised: 05/10/2016] [Accepted: 06/01/2016] [Indexed: 01/28/2023]
Abstract
The amniotic fluid has a heterogeneous population of cells. Some human amniotic fluid-derived stem (hAFS) cells have been shown to harbor the potential to differentiate into neural cells. However, the neural differentiation efficiency of hAFS cells remains low. In this study, we isolated CD117-positive hAFS cells from amniotic fluid and then examined the pluripotency of these cells through the formation of embryoid bodies (EBs). Additionally, we induced the neural differentiation of these cells using neuroectodermal medium. This study revealed that the GSK3-beta inhibitor SB216763 was able to stimulate the proliferation of CD117-positive hAFS cells without influencing their undifferentiated state. Moreover, SB216763 can efficiently promote the neural differentiation of CD117-positive hAFS cells towards neural progenitor cells in the presence of DMEM/F12 and N2 supplement. These findings provide an easy and low-cost method to maintain the proliferation of hAFS cells, as well as induce an efficacious generation of neural progenitor cells from hAFS cells. Such induction of the neural commitment of hAFS cells may provide an option for the treatment of neurodegenerative diseases by hAFS cells-based therapies.
Collapse
Affiliation(s)
- Liyang Gao
- Stem Cell Research Center, Affiliated Hospital of Guangdong Medical University, Zhanjiang, China.
| | - Mingyan Zhao
- Stem Cell Research Center, Affiliated Hospital of Guangdong Medical University, Zhanjiang, China
| | - Wei Ye
- Obstetrics and Gynecology, Affiliated Hospital of Guangdong Medical University, Zhanjiang, China
| | - Jinzhi Huang
- Obstetrics and Gynecology, Affiliated Hospital of Guangdong Medical University, Zhanjiang, China
| | - Jiaqi Chu
- Stem Cell Research Center, Affiliated Hospital of Guangdong Medical University, Zhanjiang, China
| | - Shouquan Yan
- Stem Cell Research Center, Affiliated Hospital of Guangdong Medical University, Zhanjiang, China
| | - Chaojun Wang
- Department of Spinal Surgery, Affiliated Hospital of Guangdong Medical University, Zhanjiang, China
| | - Rong Zeng
- Department of Spinal Surgery, Affiliated Hospital of Guangdong Medical University, Zhanjiang, China.
| |
Collapse
|
213
|
Kim J, Zhao H, Dan J, Kim S, Hardikar S, Hollowell D, Lin K, Lu Y, Takata Y, Shen J, Chen T. Maternal Setdb1 Is Required for Meiotic Progression and Preimplantation Development in Mouse. PLoS Genet 2016; 12:e1005970. [PMID: 27070551 PMCID: PMC4829257 DOI: 10.1371/journal.pgen.1005970] [Citation(s) in RCA: 62] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2015] [Accepted: 03/10/2016] [Indexed: 11/18/2022] Open
Abstract
Oocyte meiotic progression and maternal-to-zygote transition are accompanied by dynamic epigenetic changes. The functional significance of these changes and the key epigenetic regulators involved are largely unknown. Here we show that Setdb1, a lysine methyltransferase, controls the global level of histone H3 lysine 9 di-methyl (H3K9me2) mark in growing oocytes. Conditional deletion of Setdb1 in developing oocytes leads to meiotic arrest at the germinal vesicle and meiosis I stages, resulting in substantially fewer mature eggs. Embryos derived from these eggs exhibit severe defects in cell cycle progression, progressive delays in preimplantation development, and degeneration before reaching the blastocyst stage. Rescue experiments by expressing wild-type or inactive Setdb1 in Setdb1-deficient oocytes suggest that the catalytic activity of Setdb1 is essential for meiotic progression and early embryogenesis. Mechanistically, up-regulation of Cdc14b, a dual-specificity phosphatase that inhibits meiotic progression, greatly contributes to the meiotic arrest phenotype. Setdb1 deficiency also leads to derepression of transposons and increased DNA damage in oocytes, which likely also contribute to meiotic defects. Thus, Setdb1 is a maternal-effect gene that controls meiotic progression and is essential for early embryogenesis. Our results uncover an important link between the epigenetic machinery and the major signaling pathway governing meiotic progression.
Collapse
Affiliation(s)
- Jeesun Kim
- Department of Epigenetics and Molecular Carcinogenesis, The University of Texas MD Anderson Cancer Center, Smithville, Texas, United States of America
- Center for Cancer Epigenetics, The University of Texas MD Anderson Cancer Center, Smithville, Texas, United States of America
| | - Hongbo Zhao
- Department of Epigenetics and Molecular Carcinogenesis, The University of Texas MD Anderson Cancer Center, Smithville, Texas, United States of America
- Shanghai Key Laboratory of Female Reproductive Endocrine Related Diseases, Hospital and Institute of Obstetrics and Gynecology, Fudan University, Shanghai, People’s Republic of China
| | - Jiameng Dan
- Department of Epigenetics and Molecular Carcinogenesis, The University of Texas MD Anderson Cancer Center, Smithville, Texas, United States of America
- Center for Cancer Epigenetics, The University of Texas MD Anderson Cancer Center, Smithville, Texas, United States of America
| | - Soojin Kim
- Department of Epigenetics and Molecular Carcinogenesis, The University of Texas MD Anderson Cancer Center, Smithville, Texas, United States of America
- Center for Cancer Epigenetics, The University of Texas MD Anderson Cancer Center, Smithville, Texas, United States of America
| | - Swanand Hardikar
- Department of Epigenetics and Molecular Carcinogenesis, The University of Texas MD Anderson Cancer Center, Smithville, Texas, United States of America
- Center for Cancer Epigenetics, The University of Texas MD Anderson Cancer Center, Smithville, Texas, United States of America
| | - Debra Hollowell
- Department of Epigenetics and Molecular Carcinogenesis, The University of Texas MD Anderson Cancer Center, Smithville, Texas, United States of America
| | - Kevin Lin
- Department of Epigenetics and Molecular Carcinogenesis, The University of Texas MD Anderson Cancer Center, Smithville, Texas, United States of America
| | - Yue Lu
- Department of Epigenetics and Molecular Carcinogenesis, The University of Texas MD Anderson Cancer Center, Smithville, Texas, United States of America
- Center for Cancer Epigenetics, The University of Texas MD Anderson Cancer Center, Smithville, Texas, United States of America
| | - Yoko Takata
- Department of Epigenetics and Molecular Carcinogenesis, The University of Texas MD Anderson Cancer Center, Smithville, Texas, United States of America
| | - Jianjun Shen
- Department of Epigenetics and Molecular Carcinogenesis, The University of Texas MD Anderson Cancer Center, Smithville, Texas, United States of America
- The University of Texas Graduate School of Biomedical Sciences at Houston, Houston, Texas, United States of America
| | - Taiping Chen
- Department of Epigenetics and Molecular Carcinogenesis, The University of Texas MD Anderson Cancer Center, Smithville, Texas, United States of America
- Center for Cancer Epigenetics, The University of Texas MD Anderson Cancer Center, Smithville, Texas, United States of America
- The University of Texas Graduate School of Biomedical Sciences at Houston, Houston, Texas, United States of America
- * E-mail:
| |
Collapse
|
214
|
Xie B, Qin Z, Liu S, Nong S, Ma Q, Chen B, Liu M, Pan T, Liao DJ. Cloning of Porcine Pituitary Tumor Transforming Gene 1 and Its Expression in Porcine Oocytes and Embryos. PLoS One 2016; 11:e0153189. [PMID: 27058238 PMCID: PMC4825983 DOI: 10.1371/journal.pone.0153189] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2015] [Accepted: 03/24/2016] [Indexed: 11/30/2022] Open
Abstract
The maternal-to-embryonic transition (MET) is a complex process that occurs during early mammalian embryogenesis and is characterized by activation of the zygotic genome, initiation of embryonic transcription, and replacement of maternal mRNA with embryonic mRNA. The objective of this study was to reveal the temporal expression and localization patterns of PTTG1 during early porcine embryonic development and to establish a relationship between PTTG1 and the MET. To achieve this goal, reverse transcription-polymerase chain reaction (RT-PCR) was performed to clone porcine PTTG1. Subsequently, germinal vesicle (GV)- and metaphase II (MII)-stage oocytes, zygotes, 2-, 4-, and 8-cell-stage embryos, morulas, and blastocysts were produced in vitro and their gene expression was analyzed. The results revealed that the coding sequence of porcine PTTG1 is 609-bp in length and that it encodes a 202-aa polypeptide. Using qRT-PCR, PTTG1 mRNA expression was observed to be maintained at high levels in GV- and MII-stage oocytes. The transcript levels in oocytes were also significantly higher than those in embryos from the zygote to blastocyst stages. Immunohistochemical analyses revealed that porcine PTTG1 was primarily localized to the cytoplasm and partially localized to the nucleus. Furthermore, the PTTG1 protein levels in MII-stage oocytes and zygotes were significantly higher than those in embryos from the 2-cell to blastocyst stage. After fertilization, the level of this protein began to decrease gradually until the blastocyst stage. The results of our study suggest that porcine PTTG1 is a new candidate maternal effect gene (MEG) that may participate in the processes of oocyte maturation and zygotic genome activation during porcine embryogenesis.
Collapse
Affiliation(s)
- Bingkun Xie
- Guangxi Key Laboratory of Livestock Genetic Improvement, Guangxi Institute of Animal Sciences, Nanning, Guangxi, P. R. China
- * E-mail:
| | - Zhaoxian Qin
- Guangxi Key Laboratory of Livestock Genetic Improvement, Guangxi Institute of Animal Sciences, Nanning, Guangxi, P. R. China
| | - Shuai Liu
- Hebei Research Institute for Family Planning, Shijiazhang, Hebei, P. R. China
| | - Suqun Nong
- Guangxi Key Laboratory of Livestock Genetic Improvement, Guangxi Institute of Animal Sciences, Nanning, Guangxi, P. R. China
| | - Qingyan Ma
- Guangxi Key Laboratory of Livestock Genetic Improvement, Guangxi Institute of Animal Sciences, Nanning, Guangxi, P. R. China
| | - Baojian Chen
- Guangxi Key Laboratory of Livestock Genetic Improvement, Guangxi Institute of Animal Sciences, Nanning, Guangxi, P. R. China
| | - Mingjun Liu
- Guangxi Key Laboratory of Livestock Genetic Improvement, Guangxi Institute of Animal Sciences, Nanning, Guangxi, P. R. China
| | - Tianbiao Pan
- Guangxi Key Laboratory of Livestock Genetic Improvement, Guangxi Institute of Animal Sciences, Nanning, Guangxi, P. R. China
| | - D. Joshua Liao
- Hormel Institute, University of Minnesota, Austin, Minnesota, United States of America
| |
Collapse
|
215
|
Xie F, Anderson CL, Timme KR, Kurz SG, Fernando SC, Wood JR. Obesity-Dependent Increases in Oocyte mRNAs Are Associated With Increases in Proinflammatory Signaling and Gut Microbial Abundance of Lachnospiraceae in Female Mice. Endocrinology 2016; 157:1630-43. [PMID: 26881311 PMCID: PMC4816731 DOI: 10.1210/en.2015-1851] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
RNAs stored in the metaphase II-arrested oocyte play important roles in successful embryonic development. Their abundance is defined by transcriptional activity during oocyte growth and selective degradation of transcripts during LH-induced oocyte maturation. Our previous studies demonstrated that mRNA abundance is increased in mature ovulated oocytes collected from obese humans and mice and therefore may contribute to reduced oocyte developmental competence associated with metabolic dysfunction. In the current study mouse models of diet-induced obesity were used to determine whether obesity-dependent increases in proinflammatory signaling regulate ovarian abundance of oocyte-specific mRNAs. The abundance of oocyte-specific Bnc1, Dppa3, and Pou5f1 mRNAs as well as markers of proinflammatory signaling were significantly increased in ovaries of obese compared with lean mice which were depleted of fully grown preovulatory follicles. Chromatin-immunoprecipitation analyses also demonstrated increased association of phosphorylated signal transducer and activator of transcription 3 with the Pou5f1 promoter in ovaries of obese mice suggesting that proinflammatory signaling regulates transcription of this gene in the oocyte. The cecum microbial content of lean and obese female mice was subsequently examined to identify potential relationships between microbial composition and proinflammatory signaling in the ovary. Multivariate Association with Linear Models identified significant positive correlations between cecum abundance of the bacterial family Lachnospiraceae and ovarian abundance of Tnfa as well as Dppa3, Bnc1, and Pou5f1 mRNAs. Together, these data suggest that diet-induced changes in gut microbial composition may be contributing to ovarian inflammation which in turn alters ovarian gene expression and ultimately contributes to obesity-dependent reduction in oocyte quality and development of infertility in obese patients.
Collapse
Affiliation(s)
- Fang Xie
- Department of Animal Science (F.X., K.R.T., S.G.K., S.C.F., J.R.W.), University of Nebraska-Lincoln, Lincoln, Nebraska 68583-0908; School of Biological Sciences (C.L.A., S.C.F.), University of Nebraska-Lincoln, Lincoln, Nebraska 68588-0118; and Food Science and Technology Department (S.C.F.), University of Nebraska-Lincoln, Lincoln, Nebraska 68583-0919
| | - Christopher L Anderson
- Department of Animal Science (F.X., K.R.T., S.G.K., S.C.F., J.R.W.), University of Nebraska-Lincoln, Lincoln, Nebraska 68583-0908; School of Biological Sciences (C.L.A., S.C.F.), University of Nebraska-Lincoln, Lincoln, Nebraska 68588-0118; and Food Science and Technology Department (S.C.F.), University of Nebraska-Lincoln, Lincoln, Nebraska 68583-0919
| | - Kelsey R Timme
- Department of Animal Science (F.X., K.R.T., S.G.K., S.C.F., J.R.W.), University of Nebraska-Lincoln, Lincoln, Nebraska 68583-0908; School of Biological Sciences (C.L.A., S.C.F.), University of Nebraska-Lincoln, Lincoln, Nebraska 68588-0118; and Food Science and Technology Department (S.C.F.), University of Nebraska-Lincoln, Lincoln, Nebraska 68583-0919
| | - Scott G Kurz
- Department of Animal Science (F.X., K.R.T., S.G.K., S.C.F., J.R.W.), University of Nebraska-Lincoln, Lincoln, Nebraska 68583-0908; School of Biological Sciences (C.L.A., S.C.F.), University of Nebraska-Lincoln, Lincoln, Nebraska 68588-0118; and Food Science and Technology Department (S.C.F.), University of Nebraska-Lincoln, Lincoln, Nebraska 68583-0919
| | - Samodha C Fernando
- Department of Animal Science (F.X., K.R.T., S.G.K., S.C.F., J.R.W.), University of Nebraska-Lincoln, Lincoln, Nebraska 68583-0908; School of Biological Sciences (C.L.A., S.C.F.), University of Nebraska-Lincoln, Lincoln, Nebraska 68588-0118; and Food Science and Technology Department (S.C.F.), University of Nebraska-Lincoln, Lincoln, Nebraska 68583-0919
| | - Jennifer R Wood
- Department of Animal Science (F.X., K.R.T., S.G.K., S.C.F., J.R.W.), University of Nebraska-Lincoln, Lincoln, Nebraska 68583-0908; School of Biological Sciences (C.L.A., S.C.F.), University of Nebraska-Lincoln, Lincoln, Nebraska 68588-0118; and Food Science and Technology Department (S.C.F.), University of Nebraska-Lincoln, Lincoln, Nebraska 68583-0919
| |
Collapse
|
216
|
Lucio AC, Alves BG, Alves KA, Martins MC, Braga LS, Miglio L, Alves BG, Silva TH, Jacomini JO, Beletti ME. Selected sperm traits are simultaneously altered after scrotal heat stress and play specific roles in in vitro fertilization and embryonic development. Theriogenology 2016; 86:924-933. [PMID: 27087533 DOI: 10.1016/j.theriogenology.2016.03.015] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2015] [Revised: 03/10/2016] [Accepted: 03/10/2016] [Indexed: 12/18/2022]
Abstract
Improvements in the estimation of male fertility indicators require advances in laboratory tests for sperm assessment. The aims of the present work were (1) to apply a multivariate analysis to examine sperm set of alterations and interactions and (2) to evaluate the importance of sperm parameters on the outcome of standard IVF and embryonic development. Bulls (n = 3) were subjected to scrotal insulation, and ejaculates were collected before (preinsulation = Day 0) and through 56 days (Days 7, 14, 21, 28, 35, 42, 49, and 56) of the experimental period. Sperm head morphometry and chromatin variables were assessed by a computational image analysis, and IVF was performed. Scrotal heat stress induced alterations in all evaluated sperm head features, as well as cleavage and blastocyst rates. A principal component analysis revealed three main components (factors) that represented almost 89% of the cumulative variance. In addition, an association of factor scores with cleavage (factor 1) and blastocyst (factor 3) rates was observed. In conclusion, several sperm traits were simultaneously altered as a result of a thermal insult. These sperm traits likely play specific roles in IVF and embryonic development.
Collapse
Affiliation(s)
- Aline C Lucio
- Laboratory of Biology of Reproduction, Institute of Biomedical Sciences, Federal University of Uberlândia, Uberlândia, MG, Brazil
| | - Benner G Alves
- Laboratory of Biology of Reproduction, Institute of Biomedical Sciences, Federal University of Uberlândia, Uberlândia, MG, Brazil
| | - Kele A Alves
- Laboratory of Biology of Reproduction, Institute of Biomedical Sciences, Federal University of Uberlândia, Uberlândia, MG, Brazil
| | - Muller C Martins
- Laboratory of Biology of Reproduction, Institute of Biomedical Sciences, Federal University of Uberlândia, Uberlândia, MG, Brazil
| | - Lucas S Braga
- Laboratory of Biology of Reproduction, Institute of Biomedical Sciences, Federal University of Uberlândia, Uberlândia, MG, Brazil
| | - Luisa Miglio
- Laboratory of Biology of Reproduction, Institute of Biomedical Sciences, Federal University of Uberlândia, Uberlândia, MG, Brazil
| | - Bruna G Alves
- Laboratory of Biology of Reproduction, Institute of Biomedical Sciences, Federal University of Uberlândia, Uberlândia, MG, Brazil
| | - Thiago H Silva
- Laboratory of Biology of Reproduction, Institute of Biomedical Sciences, Federal University of Uberlândia, Uberlândia, MG, Brazil
| | - José O Jacomini
- Laboratory of Biology of Reproduction, Institute of Biomedical Sciences, Federal University of Uberlândia, Uberlândia, MG, Brazil
| | - Marcelo E Beletti
- Laboratory of Biology of Reproduction, Institute of Biomedical Sciences, Federal University of Uberlândia, Uberlândia, MG, Brazil.
| |
Collapse
|
217
|
Boiani M, Cibelli JB. What we can learn from single-cell analysis in development. Mol Hum Reprod 2016; 22:160-71. [DOI: 10.1093/molehr/gaw014] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
|
218
|
Human oocyte developmental potential is predicted by mechanical properties within hours after fertilization. Nat Commun 2016; 7:10809. [PMID: 26904963 PMCID: PMC4770082 DOI: 10.1038/ncomms10809] [Citation(s) in RCA: 138] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2015] [Accepted: 01/22/2016] [Indexed: 12/23/2022] Open
Abstract
The causes of embryonic arrest during pre-implantation development are poorly understood. Attempts to correlate patterns of oocyte gene expression with successful embryo development have been hampered by the lack of reliable and nondestructive predictors of viability at such an early stage. Here we report that zygote viscoelastic properties can predict blastocyst formation in humans and mice within hours after fertilization, with >90% precision, 95% specificity and 75% sensitivity. We demonstrate that there are significant differences between the transcriptomes of viable and non-viable zygotes, especially in expression of genes important for oocyte maturation. In addition, we show that low-quality oocytes may undergo insufficient cortical granule release and zona-hardening, causing altered mechanics after fertilization. Our results suggest that embryo potential is largely determined by the quality and maturation of the oocyte before fertilization, and can be predicted through a minimally invasive mechanical measurement at the zygote stage. Reliable assessments of oocyte developmental potential are lacking, making it difficult to select the best quality embryos for transfer after in vitro fertilization. Here, the authors show that a non-invasive measurement of viscoelastic properties predicts developmental potential in both humans and mice.
Collapse
|
219
|
Ancelin K, Syx L, Borensztein M, Ranisavljevic N, Vassilev I, Briseño-Roa L, Liu T, Metzger E, Servant N, Barillot E, Chen CJ, Schüle R, Heard E. Maternal LSD1/KDM1A is an essential regulator of chromatin and transcription landscapes during zygotic genome activation. eLife 2016; 5. [PMID: 26836306 PMCID: PMC4829419 DOI: 10.7554/elife.08851] [Citation(s) in RCA: 86] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2015] [Accepted: 01/25/2016] [Indexed: 12/29/2022] Open
Abstract
Upon fertilization, the highly specialised sperm and oocyte genomes are remodelled to confer totipotency. The mechanisms of the dramatic reprogramming events that occur have remained unknown, and presumed roles of histone modifying enzymes are just starting to be elucidated. Here, we explore the function of the oocyte-inherited pool of a histone H3K4 and K9 demethylase, LSD1/KDM1A during early mouse development. KDM1A deficiency results in developmental arrest by the two-cell stage, accompanied by dramatic and stepwise alterations in H3K9 and H3K4 methylation patterns. At the transcriptional level, the switch of the maternal-to-zygotic transition fails to be induced properly and LINE-1 retrotransposons are not properly silenced. We propose that KDM1A plays critical roles in establishing the correct epigenetic landscape of the zygote upon fertilization, in preserving genome integrity and in initiating new patterns of genome expression that drive early mouse development. DOI:http://dx.doi.org/10.7554/eLife.08851.001 During fertilization, an egg cell and a sperm cell combine to make a cell called a zygote that then divides many times to form an embryo. Many of the characteristics of the embryo are determined by the genes it inherits from its parents. However, not all of these genes should be “expressed” to produce their products all of the time. One way of controlling gene expression is to add a chemical group called a methyl tag to the DNA near the gene, or to one of the histone proteins that DNA wraps around. Soon after fertilization, a process called reprogramming occurs that begins with the rearrangement of most of the methyl tags a zygote inherited from the egg and sperm cells. This dynamic process is thought to help to activate a new pattern of gene expression. Reprogramming is assisted by “maternal factors” that are inherited from the egg cell. KDM1A is a histone demethylase enzyme that can remove specific methyl tags from certain histone proteins, but how this affects the zygote is not well understood. Now, Ancelin et al. (and independently Wasson et al.) have investigated the role that KDM1A plays in mouse development. Ancelin et al. genetically engineered mouse eggs to lack KDM1A and used them to create zygotes, which die before or shortly after they have divided for the first time. The zygotes display severe reprogramming faults (because methyl tags accumulate at particular histones) and improper gene expression patterns, preventing a correct maternal-to-zygotic transition. Further experiments then showed that KDM1A also regulates the expression level of specific mobile elements, which indicates its importance in maintaining the integrity of the genome. These findings provide important insights on the crucial role of KDM1A in establishing the proper expression patterns in zygotes that are required for early mouse development. These findings might help us to understand how KDM1A enzymes, and histone demethylases more generally, perform similar roles in human development and diseases such as cancer. DOI:http://dx.doi.org/10.7554/eLife.08851.002
Collapse
Affiliation(s)
- Katia Ancelin
- Institut Curie, Paris, France.,Genetics and Developmental Biology Unit, INSERM, Paris, France
| | - Laurène Syx
- Institut Curie, Paris, France.,Bioinformatics and Computational Systems Biology of Cancer, INSERM, Paris, France.,Mines ParisTech, Fontainebleau, France
| | - Maud Borensztein
- Institut Curie, Paris, France.,Genetics and Developmental Biology Unit, INSERM, Paris, France
| | - Noémie Ranisavljevic
- Institut Curie, Paris, France.,Genetics and Developmental Biology Unit, INSERM, Paris, France
| | - Ivaylo Vassilev
- Institut Curie, Paris, France.,Bioinformatics and Computational Systems Biology of Cancer, INSERM, Paris, France.,Mines ParisTech, Fontainebleau, France
| | | | - Tao Liu
- Annoroad Gene Technology Co., Ltd, Beijing, China
| | - Eric Metzger
- Urologische Klinik und Zentrale Klinische Forschung, Freiburg, Germany
| | - Nicolas Servant
- Institut Curie, Paris, France.,Bioinformatics and Computational Systems Biology of Cancer, INSERM, Paris, France.,Mines ParisTech, Fontainebleau, France
| | - Emmanuel Barillot
- Institut Curie, Paris, France.,Bioinformatics and Computational Systems Biology of Cancer, INSERM, Paris, France.,Mines ParisTech, Fontainebleau, France
| | | | - Roland Schüle
- Urologische Klinik und Zentrale Klinische Forschung, Freiburg, Germany
| | - Edith Heard
- Institut Curie, Paris, France.,Genetics and Developmental Biology Unit, INSERM, Paris, France
| |
Collapse
|
220
|
CPEB and miR-15/16 Co-Regulate Translation of Cyclin E1 mRNA during Xenopus Oocyte Maturation. PLoS One 2016; 11:e0146792. [PMID: 26829217 PMCID: PMC4734764 DOI: 10.1371/journal.pone.0146792] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2015] [Accepted: 12/22/2015] [Indexed: 01/07/2023] Open
Abstract
Cell cycle transitions spanning meiotic maturation of the Xenopus oocyte and early embryogenesis are tightly regulated at the level of stored inactive maternal mRNA. We investigated here the translational control of cyclin E1, required for metaphase II arrest of the unfertilised egg and the initiation of S phase in the early embryo. We show that the cyclin E1 mRNA is regulated by both cytoplasmic polyadenylation elements (CPEs) and two miR-15/16 target sites within its 3’UTR. Moreover, we provide evidence that maternal miR-15/16 microRNAs co-immunoprecipitate with CPE-binding protein (CPEB), and that CPEB interacts with the RISC component Ago2. Experiments using competitor RNA and mutated cyclin E1 3’UTRs suggest cooperation of the regulatory elements to sustain repression of the cyclin E1 mRNA during early stages of maturation when CPEB becomes limiting and cytoplasmic polyadenylation of repressed mRNAs begins. Importantly, injection of anti-miR-15/16 LNA results in the early polyadenylation of endogenous cyclin E1 mRNA during meiotic maturation, and an acceleration of GVBD, altogether strongly suggesting that the proximal CPEB and miRNP complexes act to mutually stabilise each other. We conclude that miR-15/16 and CPEB co-regulate cyclin E1 mRNA. This is the first demonstration of the co-operation of these two pathways.
Collapse
|
221
|
Abstract
After a spermatozoon enters an oocyte, maternal factors accumulated in the oocyte reprogram the genomes of the terminally differentiated oocyte and spermatozoon epigenetically and turn the zygote into a totipotent cell, with the capacity to differentiate into all types of somatic cells in a highly organized manner and generate the entire organism, a feature referred to as totipotency. Differentiation of the first lineage begins after three cleavages, when the early embryo compacts and becomes polarized, followed by segregation of the first lineages--the inner cell mass (ICM) and the trophectoderm (TE). To date, a full understanding of the molecular mechanisms that underlie the establishment of totipotency and the ICM/TE lineage segregation remains unclear. In this review, we discuss recent findings in the mechanism of transcriptional regulation networks and signaling pathways in the first lineage separation in the totipotent mouse embryo.
Collapse
Affiliation(s)
- Guangming Wu
- Department of Cell and Developmental Biology, Max Planck Institute for Molecular Biomedicine, Münster, Germany
| | - Hans R Schöler
- Department of Cell and Developmental Biology, Max Planck Institute for Molecular Biomedicine, Münster, Germany.
| |
Collapse
|
222
|
Daughtry BL, Chavez SL. Chromosomal instability in mammalian pre-implantation embryos: potential causes, detection methods, and clinical consequences. Cell Tissue Res 2016; 363:201-225. [PMID: 26590822 PMCID: PMC5621482 DOI: 10.1007/s00441-015-2305-6] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2015] [Accepted: 09/24/2015] [Indexed: 01/08/2023]
Abstract
Formation of a totipotent blastocyst capable of implantation is one of the first major milestones in early mammalian embryogenesis, but less than half of in vitro fertilized embryos from most mammals will progress to this stage of development. Whole chromosomal abnormalities, or aneuploidy, are key determinants of whether human embryos will arrest or reach the blastocyst stage. Depending on the type of chromosomal abnormality, however, certain embryos still form blastocysts and may be morphologically indistinguishable from chromosomally normal embryos. Despite the implementation of pre-implantation genetic screening and other advanced in vitro fertilization (IVF) techniques, the identification of aneuploid embryos remains complicated by high rates of mosaicism, atypical cell division, cellular fragmentation, sub-chromosomal instability, and micro-/multi-nucleation. Moreover, several of these processes occur in vivo following natural human conception, suggesting that they are not simply a consequence of culture conditions. Recent technological achievements in genetic, epigenetic, chromosomal, and non-invasive imaging have provided additional embryo assessment approaches, particularly at the single-cell level, and clinical trials investigating their efficacy are continuing to emerge. In this review, we summarize the potential mechanisms by which aneuploidy may arise, the various detection methods, and the technical advances (such as time-lapse imaging, "-omic" profiling, and next-generation sequencing) that have assisted in obtaining this data. We also discuss the possibility of aneuploidy resolution in embryos via various corrective mechanisms, including multi-polar divisions, fragment resorption, endoreduplication, and blastomere exclusion, and conclude by examining the potential implications of these findings for IVF success and human fecundity.
Collapse
Affiliation(s)
- Brittany L Daughtry
- Department of Cell, Developmental & Cancer Biology, Graduate Program in Molecular & Cellular Biosciences, Oregon Health & Science University School of Medicine, Portland, Ore., USA
- Division of Reproductive & Developmental Sciences, Oregon National Primate Research Center, 505 NW 185th Avenue, Beaverton, OR 97006, USA
| | - Shawn L Chavez
- Division of Reproductive & Developmental Sciences, Oregon National Primate Research Center, 505 NW 185th Avenue, Beaverton, OR 97006, USA.
- Physiology & Pharmacology, Oregon Health & Science University School of Medicine, Portland, Ore., USA.
- Department of Obstetrics & Gynecology, Oregon Health & Science University School of Medicine, Portland, Ore., USA.
| |
Collapse
|
223
|
Trapphoff T, Heiligentag M, Dankert D, Demond H, Deutsch D, Fröhlich T, Arnold GJ, Grümmer R, Horsthemke B, Eichenlaub-Ritter U. Postovulatory aging affects dynamics of mRNA, expression and localization of maternal effect proteins, spindle integrity and pericentromeric proteins in mouse oocytes. Hum Reprod 2016; 31:133-49. [PMID: 26577303 PMCID: PMC5853592 DOI: 10.1093/humrep/dev279] [Citation(s) in RCA: 49] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2015] [Revised: 10/06/2015] [Accepted: 10/13/2015] [Indexed: 12/20/2022] Open
Abstract
STUDY QUESTION Is the postovulatory aging-dependent differential decrease of mRNAs and polyadenylation of mRNAs coded by maternal effect genes associated with altered abundance and distribution of maternal effect and RNA-binding proteins (MSY2)? SUMMARY ANSWER Postovulatory aging results in differential reduction in abundance of maternal effect proteins, loss of RNA-binding proteins from specific cytoplasmic domains and critical alterations of pericentromeric proteins without globally affecting protein abundance. WHAT IS KNOWN ALREADY Oocyte postovulatory aging is associated with differential alteration in polyadenylation and reduction in abundance of mRNAs coded by selected maternal effect genes. RNA-binding and -processing proteins are involved in storage, polyadenylation and degradation of mRNAs thus regulating stage-specific recruitment of maternal mRNAs, while chromosomal proteins that are stage-specifically expressed at pericentromeres, contribute to control of chromosome segregation and regulation of gene expression in the zygote. STUDY DESIGN, SIZE, DURATION Germinal vesicle (GV) and metaphase II (MII) oocytes from sexually mature C57B1/6J female mice were investigated. Denuded in vivo or in vitro matured MII oocytes were postovulatory aged and analyzed by semiquantitative confocal microscopy for abundance and localization of polyadenylated RNAs, proteins of maternal effect genes (transcription activator BRG1 also known as ATP-dependent helicase SWI/SNF related, matrix associated, actin dependent regulator of chromatin, subfamily a, member 4 (SMARCA4) and NOD-like receptor family pyrin domain containing 5 (NLRP5) also known as MATER), RNA-binding proteins (MSY2 also known as germ cell-specific Y-box-binding protein, YBX2), and post-transcriptionally modified histones (trimethylated histone H3K9 and acetylated histone H4K12), as well as pericentromeric ATRX (alpha thalassemia/mental retardation syndrome X-linked, also termed ATP-dependent helicase ATRX or X-linked nuclear protein (XNP)). For proteome analysis five replicates of 30 mouse oocytes were analyzed by selected reaction monitoring (SRM). MATERIAL AND METHODS GV and MII oocytes were obtained from large antral follicles or ampullae of sexually mature mice, respectively. Denuded MII oocytes were aged for 24 h post ovulation. For analysis of distribution and abundance of polyadenylated RNAs fixed oocytes were in situ hybridized to Cy5 labeled oligo(dT)20 nucleotides. Absolute quantification of protein concentration per oocyte of selected proteins was done by SRM proteome analysis. Relative abundance of ATRX was assessed by confocal laser scanning microscopy (CLSM) of whole mount formaldehyde fixed oocytes or after removal of zona and spreading. MSY2 protein distribution and abundance was studied in MII oocytes prior to, during and after exposure to nocodazole, or after aging for 2 h in presence of H2O2 or for 24 h in presence of a glutathione donor, glutathione ethylester (GEE). MAIN RESULTS AND ROLE OF CHANCE The significant reduction in abundance of proteins (P < 0.001) translated from maternal mRNAs was independent of polyadenylation status, while their protein localization was not significantly changed by aging. Most of other proteins quantified by SRM analysis did not significantly change in abundance upon aging except MSY2 and GTSF1. MSY2 was enriched in the subcortical RNP domain (SCRD) and in the spindle chromosome complex (SCC) in a distinct pattern, right and left to the chromosomes. There was a significant loss of MSY2 from the SCRD (P < 0.001) and the spindle after postovulatory aging. Microtubule de- and repolymerization caused reversible loss of MSY2 spindle-association whereas H2O2 stress did not significantly decrease MSY2 abundance. Aging in presence of GEE decreased significantly (P < 0.05) the aging-related overall and cytoplasmic loss of MSY2. Postovulatory aging increased significantly spindle abnormalities, unaligned chromosomes, and abundance of acetylated histone H4K12, and decreased pericentromeric trimethylated histone H3K9 (all P < 0.001). Spreading revealed a highly significant increase in pericentromeric ATRX (P < 0.001) upon ageing. Thus, the significantly reduced abundance of MSY2 protein, especially at the SCRD and the spindle may disturb the spatial control and timely recruitment, deadenylation and degradation of developmentally important RNAs. An autonomous program of degradation appears to exist which transiently and specifically induces the loss and displacement of transcripts and specific maternal proteins independent of fertilization in aging oocytes and thereby can critically affect chromosome segregation and gene expression in the embryo after fertilization. LIMITATION, REASONS FOR CAUTION We used the mouse oocyte to study processes associated with postovulatory aging, which may not entirely reflect processes in aging human oocytes. However, increases in spindle abnormalities, unaligned chromosomes and H4K12 acetylated histones, as well as in mRNA abundance and polyadenylation have been observed also in aged human oocytes suggesting conserved processes in aging. WIDER IMPLICATIONS OF THE FINDINGS Postovulatory aging precociously induces alterations in expression and epigenetic modifications of chromatin by ATRX and in histone pattern in MII oocytes that normally occur after fertilization, possibly contributing to disturbances in the oocyte-to-embryo transition (OET) and the zygotic gene activation (ZGA). These observations in mouse oocytes are also relevant to explain disturbances and reduced developmental potential of aged human oocytes and caution to prevent oocyte aging in vivo and in vitro. STUDY FUNDING/COMPETING INTERESTS The study has been supported by the German Research Foundation (DFG) (EI 199/7-1 | GR 1138/12-1 | HO 949/21-1 and FOR 1041). There is no competing interest.
Collapse
Affiliation(s)
- T Trapphoff
- Institute of Gene Technology/Microbiology, University of Bielefeld, Bielefeld, Germany
| | - M Heiligentag
- Institute of Gene Technology/Microbiology, University of Bielefeld, Bielefeld, Germany
| | - D Dankert
- Institute of Anatomy, University Hospital, University Duisburg-Essen, Essen, Germany
| | - H Demond
- Institute of Human Genetics, University Hospital, University Duisburg-Essen, Essen, Germany
| | - D Deutsch
- Laboratory for Functional Genome Analysis, Gene Center, Ludwig-Maximilians-Universität München, Munich, Germany
| | - T Fröhlich
- Laboratory for Functional Genome Analysis, Gene Center, Ludwig-Maximilians-Universität München, Munich, Germany
| | - G J Arnold
- Laboratory for Functional Genome Analysis, Gene Center, Ludwig-Maximilians-Universität München, Munich, Germany
| | - R Grümmer
- Institute of Anatomy, University Hospital, University Duisburg-Essen, Essen, Germany
| | - B Horsthemke
- Institute of Human Genetics, University Hospital, University Duisburg-Essen, Essen, Germany
| | - U Eichenlaub-Ritter
- Institute of Gene Technology/Microbiology, University of Bielefeld, Bielefeld, Germany
| |
Collapse
|
224
|
|
225
|
Bock I, Raveh-Amit H, Losonczi E, Carstea AC, Feher A, Mashayekhi K, Matyas S, Dinnyes A, Pribenszky C. Controlled hydrostatic pressure stress downregulates the expression of ribosomal genes in preimplantation embryos: a possible protection mechanism? Reprod Fertil Dev 2016; 28:776-84. [DOI: 10.1071/rd14346] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2014] [Accepted: 09/25/2014] [Indexed: 12/18/2022] Open
Abstract
The efficiency of various assisted reproductive techniques can be improved by preconditioning the gametes and embryos with sublethal hydrostatic pressure treatment. However, the underlying molecular mechanism responsible for this protective effect remains unknown and requires further investigation. Here, we studied the effect of optimised hydrostatic pressure treatment on the global gene expression of mouse oocytes after embryonic genome activation. Based on a gene expression microarray analysis, a significant effect of treatment was observed in 4-cell embryos derived from treated oocytes, revealing a transcriptional footprint of hydrostatic pressure-affected genes. Functional analysis identified numerous genes involved in protein synthesis that were downregulated in 4-cell embryos in response to hydrostatic pressure treatment, suggesting that regulation of translation has a major role in optimised hydrostatic pressure-induced stress tolerance. We present a comprehensive microarray analysis and further delineate a potential mechanism responsible for the protective effect of hydrostatic pressure treatment.
Collapse
|
226
|
Alazami AM, Awad SM, Coskun S, Al-Hassan S, Hijazi H, Abdulwahab FM, Poizat C, Alkuraya FS. TLE6 mutation causes the earliest known human embryonic lethality. Genome Biol 2015; 16:240. [PMID: 26537248 PMCID: PMC4634911 DOI: 10.1186/s13059-015-0792-0] [Citation(s) in RCA: 147] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2015] [Accepted: 09/28/2015] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Embryonic lethality is a recognized phenotypic expression of individual gene mutations in model organisms. However, identifying embryonic lethal genes in humans is challenging, especially when the phenotype is manifested at the preimplantation stage. RESULTS In an ongoing effort to exploit the highly consanguineous nature of the Saudi population to catalog recessively acting embryonic lethal genes in humans, we have identified two families with a female-limited infertility phenotype. Using autozygosity mapping and whole exome sequencing, we map this phenotype to a single mutation in TLE6, a maternal effect gene that encodes a member of the subcortical maternal complex in mammalian oocytes. Consistent with the published phenotype of mouse Tle6 mutants, embryos from female patients who are homozygous for the TLE6 mutation fail to undergo early cleavage, with resulting sterility. The human mutation abrogates TLE6 phosphorylation, a step that is reported to be critical for the PKA-mediated progression of oocyte meiosis II. Furthermore, the TLE6 mutation impairs its binding to components of the subcortical maternal complex. CONCLUSION In this first report of a human defect in a member of the subcortical maternal subcritical maternal complex, we show that the TLE6 mutation is gender-specific and leads to the earliest known human embryonic lethality phenotype.
Collapse
Affiliation(s)
- Anas M Alazami
- Department of Genetics, King Faisal Specialist Hospital and Research Center, Riyadh, Saudi Arabia
| | - Salma M Awad
- Cardiovascular Research Program, King Faisal Specialist Hospital and Research Center, Riyadh, Saudi Arabia
| | - Serdar Coskun
- Department of Pathology and Laboratory Medicine, King Faisal Specialist Hospital and Research Center, Alfaisal University, Riyadh, Saudi Arabia
| | - Saad Al-Hassan
- Department of Obstetrics and Gynecology, King Faisal Specialist Hospital and Research Center, Riyadh, Saudi Arabia
| | - Hadia Hijazi
- Cardiovascular Research Program, King Faisal Specialist Hospital and Research Center, Riyadh, Saudi Arabia
| | - Firdous M Abdulwahab
- Department of Genetics, King Faisal Specialist Hospital and Research Center, Riyadh, Saudi Arabia
| | - Coralie Poizat
- Cardiovascular Research Program, King Faisal Specialist Hospital and Research Center, Riyadh, Saudi Arabia.
| | - Fowzan S Alkuraya
- Department of Genetics, King Faisal Specialist Hospital and Research Center, Riyadh, Saudi Arabia. .,Department of Anatomy and Cell Biology, College of Medicine, Alfaisal University, Riyadh, Saudi Arabia.
| |
Collapse
|
227
|
Eckert JJ, Velazquez MA, Fleming TP. Cell signalling during blastocyst morphogenesis. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2015; 843:1-21. [PMID: 25956293 DOI: 10.1007/978-1-4939-2480-6_1] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Blastocyst morphogenesis is prepared for even before fertilisation. Information stored within parental gametes can influence both maternal and embryonic gene expression programmes after egg activation at fertilisation. A complex network of intrinsic, cell-cell mediated and extrinsic, embryo-environment signalling mechanisms operates throughout cleavage, compaction and cavitation. These signalling events not only ensure developmental progression, cell differentiation and lineage allocation to inner cell mass (embryo proper) and trophectoderm (future extraembryonic lineages) but also provide a degree of developmental plasticity ensuring survival in prevailing conditions by adaptive responses. Indeed, many cellular functions including differentiation, metabolism, gene expression and gene expression regulation are subject to plasticity with short- or long-term consequences even into adult life. The interplay between intrinsic and extrinsic signals impacting on blastocyst morphogenesis is becoming clearer. This has been best studied in the mouse which will be the focus of this chapter but translational significance to human and domestic animal embryology will be a focus in future years.
Collapse
Affiliation(s)
- Judith J Eckert
- Human Development and Health, Faculty of Medicine, University of Southampton, SO16 6YD, Southampton, UK
| | | | | |
Collapse
|
228
|
Xu Q, Wang F, Xiang Y, Zhang X, Zhao ZA, Gao Z, Liu W, Lu X, Liu Y, Yu XJ, Wang H, Huang J, Yi Z, Gao S, Li L. Maternal BCAS2 protects genomic integrity in mouse early embryonic development. Development 2015; 142:3943-53. [PMID: 26428007 DOI: 10.1242/dev.129841] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2015] [Accepted: 09/24/2015] [Indexed: 11/20/2022]
Abstract
Mammalian early embryos maintain accurate genome integrity for proper development within a programmed timeline despite constant assaults on their DNA by replication, DNA demethylation and genetic defects transmitted from germ cells. However, how genome integrity is safeguarded during mammalian early embryonic development remains unclear. BCAS2 (breast carcinoma amplified sequence 2), a core component of the PRP19 complex involved in pre-mRNA splicing, plays an important role in the DNA damage response through the RPA complex, a key regulator in the maintenance of genome integrity. Currently, the physiological role of BCAS2 in mammals is unknown. We now report that BCAS2 responds to endogenous and exogenous DNA damage in mouse zygotes. Maternal depletion of BCAS2 compromises the DNA damage response in early embryos, leading to developmental arrest at the two- to four-cell stage accompanied by the accumulation of damaged DNA and micronuclei. Furthermore, BCAS2 mutants that are unable to bind RPA1 fail in DNA repair during the zygotic stage. In addition, phosphorylated RPA2 cannot localise to the DNA damage sites in mouse zygotes with disrupted maternal BCAS2. These data suggest that BCAS2 might function through the RPA complex during DNA repair in zygotes. Together, our results reveal that maternal BCAS2 maintains the genome integrity of early embryos and is essential for female mouse fertility.
Collapse
Affiliation(s)
- Qianhua Xu
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China University of Chinese Academy of Sciences, Beijing 100049, China
| | - Fengchao Wang
- National Institute of Biological Sciences, Beijing 102206, China
| | - Yunlong Xiang
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
| | - Xiaoxin Zhang
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
| | - Zhen-Ao Zhao
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
| | - Zheng Gao
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China University of Chinese Academy of Sciences, Beijing 100049, China
| | - Wenbo Liu
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
| | - Xukun Lu
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yusheng Liu
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
| | - Xing-Jiang Yu
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
| | - Haibin Wang
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
| | - Jun Huang
- Life Sciences Institute and Innovation Center for Cell Signaling Network, Zhejiang University, Hangzhou, Zhenjiang 310058, China
| | - Zhaohong Yi
- College of Biological Science and Engineering, Beijing University of Agriculture, Beijing 102206, China
| | - Shaorong Gao
- School of Life Sciences and Technology, Tongji University, Shanghai 200092, China
| | - Lei Li
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
| |
Collapse
|
229
|
Dynamic expression of chromatin modifiers during developmental transitions in mouse preimplantation embryos. Sci Rep 2015; 5:14347. [PMID: 26403153 PMCID: PMC4585904 DOI: 10.1038/srep14347] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2015] [Accepted: 08/17/2015] [Indexed: 12/31/2022] Open
Abstract
During mouse preimplantation development, major changes in cell fate are accompanied by extensive alterations of gene expression programs. Embryos first transition from a maternal to zygotic program and subsequently specify the pluripotent and the trophectodermal cell lineages. These processes are regulated by key transcription factors, likely in cooperation with chromatin modifiers that control histone and DNA methylation. To characterize the spatiotemporal expression of chromatin modifiers in relation to developmental transitions, we performed gene expression profiling of 156 genes in individual oocytes and single blastomeres of developing mouse embryos until the blastocyst stage. More than half of the chromatin modifiers displayed either maternal or zygotic expression. We also detected lineage-specific expression of several modifiers, including Ezh1, Prdm14, Scmh1 and Tet1 underscoring possible roles in cell fate decisions. Members of the SET-domain containing SMYD family showed differential gene expression during preimplantation development. We further observed co-expression of genes with opposing biochemical activities, such as histone methyltransferases and demethylases, suggesting the existence of a dynamic chromatin steady-state during preimplantation development.
Collapse
|
230
|
Carbone L, Chavez SL. Mammalian pre-implantation chromosomal instability: species comparison, evolutionary considerations, and pathological correlations. Syst Biol Reprod Med 2015; 61:321-35. [PMID: 26366555 DOI: 10.3109/19396368.2015.1073406] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Pre-implantation embryo development in mammals begins at fertilization with the migration and fusion of the maternal and paternal pro-nuclei, followed by the degradation of inherited factors involved in germ cell specification and the activation of embryonic genes required for subsequent cell divisions, compaction, and blastulation. The majority of studies on early embryogenesis have been conducted in the mouse or non-mammalian species, often requiring extrapolation of the findings to human development. Given both conserved similarities and species-specific differences, however, even comparison between closely related mammalian species may be challenging as certain aspects, including susceptibility to chromosomal aberrations, varies considerably across mammals. Moreover, most human embryo studies are limited to patient samples obtained from in vitro fertilization (IVF) clinics and donated for research, which are generally of poorer quality and produced with germ cells that may be sub-optimal. Recent technical advances in genetic, epigenetic, chromosomal, and time-lapse imaging analyses of high quality whole human embryos have greatly improved our understanding of early human embryogenesis, particularly at the single embryo and cell level. This review summarizes the major characteristics of mammalian pre-implantation development from a chromosomal perspective, in addition to discussing the technological achievements that have recently been developed to obtain this data. We also discuss potential translation to clinical applications in reproductive medicine and conclude by examining the broader implications of these findings for the evolution of mammalian species and cancer pathology in somatic cells.
Collapse
Affiliation(s)
- Lucia Carbone
- a Division of Neuroscience , Oregon National Primate Research Center .,b Department of Behavioral Neuroscience .,c Department of Molecular & Medical Genetics .,d Bioinformatics & Computational Biology, Oregon Health & Science University
| | - Shawn L Chavez
- e Division of Reproductive & Developmental Sciences , Oregon National Primate Research Center .,f Department of Obstetrics & Gynecology , and.,g Department of Physiology & Pharmacology , Oregon Health & Science University , Portland , Oregon , USA
| |
Collapse
|
231
|
Translation in the mammalian oocyte in space and time. Cell Tissue Res 2015; 363:69-84. [PMID: 26340983 DOI: 10.1007/s00441-015-2269-6] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2015] [Accepted: 08/03/2015] [Indexed: 02/07/2023]
Abstract
A hallmark of oocyte development in mammals is the dependence on the translation and utilization of stored RNA and proteins rather than the de novo transcription of genes in order to sustain meiotic progression and early embryo development. In the absence of transcription, the completion of meiosis and early embryo development in mammals relies significantly on maternally synthesized RNAs. Post-transcriptional control of gene expression at the translational level has emerged as an important cellular function in normal development. Therefore, the regulation of gene expression in oocytes is controlled almost exclusively at the level of mRNA and protein stabilization and protein synthesis. This current review is focused on the recently emerged findings on RNA distribution related to the temporal and spatial translational control of the meiotic progression of the mammalian oocyte.
Collapse
|
232
|
Shi Z, Zhao C, Yang Y, Teng H, Guo Y, Ma M, Guo X, Zhou Z, Huo R, Zhou Q. Maternal PCBP1 determines the normal timing of pronucleus formation in mouse eggs. Cell Mol Life Sci 2015; 72:3575-86. [PMID: 25894693 PMCID: PMC11113936 DOI: 10.1007/s00018-015-1905-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2014] [Revised: 03/12/2015] [Accepted: 04/07/2015] [Indexed: 11/26/2022]
Abstract
In mammals, pronucleus formation, a landmark event for egg activation and fertilization, is critical for embryonic development. However, the mechanisms underlying pronucleus formation remain unclear. Increasing evidence has shown that the transition from a mature egg to a developing embryo and the early steps of development are driven by the control of maternal cytoplasmic factors. Herein, a two-dimensional-electrophoresis-based proteomic approach was used in metaphase II and parthenogenetically activated mouse eggs to search for maternal proteins involved in egg activation, one of which was poly(rC)-binding protein 1 (PCBP1). Phosphoprotein staining indicated that PCBP1 displayed dephosphorylation in parthenogenetically activated egg, which possibly boosts its ability to bind to mRNAs. We identified 75 mRNAs expressed in mouse eggs that contained the characteristic PCBP1-binding CU-rich sequence in the 3'-UTR. Among them, we focused on H2a.x mRNA, as it was closely related to pronucleus formation in Xenopus oocytes. Further studies suggested that PCBP1 could bind to H2a.x mRNA and enhance its stability, thus promoting mouse pronucleus formation during parthenogenetic activation of murine eggs, while the inhibition of PCBP1 evidently retarded pronucleus formation. In summary, these data propose that PCBP1 may serve as a novel maternal factor that is required for determining the normal timing of pronucleus formation.
Collapse
Affiliation(s)
- Zhonghua Shi
- State Key Laboratory of Reproductive Medicine, Department of Histology and Embryology, Nanjing Medical University, Nanjing, 210029 People’s Republic of China
- State Key Laboratory of Reproductive Medicine, Nanjing Maternity and Child Health Hospital, Nanjing Medical University, Nanjing, 210011 People’s Republic of China
| | - Chun Zhao
- State Key Laboratory of Reproductive Medicine, Department of Histology and Embryology, Nanjing Medical University, Nanjing, 210029 People’s Republic of China
- State Key Laboratory of Reproductive Medicine, Nanjing Maternity and Child Health Hospital, Nanjing Medical University, Nanjing, 210011 People’s Republic of China
| | - Ye Yang
- State Key Laboratory of Reproductive Medicine, Department of Histology and Embryology, Nanjing Medical University, Nanjing, 210029 People’s Republic of China
- State Key Laboratory of Reproductive Medicine, Nanjing Maternity and Child Health Hospital, Nanjing Medical University, Nanjing, 210011 People’s Republic of China
| | - Hui Teng
- State Key Laboratory of Reproductive Medicine, Department of Histology and Embryology, Nanjing Medical University, Nanjing, 210029 People’s Republic of China
| | - Ying Guo
- State Key Laboratory of Reproductive Medicine, Department of Histology and Embryology, Nanjing Medical University, Nanjing, 210029 People’s Republic of China
| | - Minyue Ma
- State Key Laboratory of Reproductive Medicine, Department of Histology and Embryology, Nanjing Medical University, Nanjing, 210029 People’s Republic of China
- State Key Laboratory of Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101 People’s Republic of China
| | - Xuejiang Guo
- State Key Laboratory of Reproductive Medicine, Department of Histology and Embryology, Nanjing Medical University, Nanjing, 210029 People’s Republic of China
| | - Zuomin Zhou
- State Key Laboratory of Reproductive Medicine, Department of Histology and Embryology, Nanjing Medical University, Nanjing, 210029 People’s Republic of China
| | - Ran Huo
- State Key Laboratory of Reproductive Medicine, Department of Histology and Embryology, Nanjing Medical University, Nanjing, 210029 People’s Republic of China
| | - Qi Zhou
- State Key Laboratory of Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101 People’s Republic of China
| |
Collapse
|
233
|
Zhang K, Rajput SK, Lee KB, Wang D, Huang J, Folger JK, Knott JG, Zhang J, Smith GW. Evidence supporting a role for SMAD2/3 in bovine early embryonic development: potential implications for embryotropic actions of follistatin. Biol Reprod 2015; 93:86. [PMID: 26289443 DOI: 10.1095/biolreprod.115.130278] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2015] [Accepted: 08/13/2015] [Indexed: 01/10/2023] Open
Abstract
The TGF-beta-SMAD signaling pathway is involved in regulation of various aspects of female reproduction. However, the intrinsic functional role of SMADs in early embryogenesis remains poorly understood. Previously, we demonstrated that treatment with follistatin, an activin (TGF-beta superfamily ligand)-binding protein, is beneficial for bovine early embryogenesis and specific embryotropic actions of follistatin are dependent on SMAD4. Because SMAD4 is a common SMAD that can bind both SMAD2/3 and SMAD1/5, the objective of this study was to further determine the intrinsic role of SMAD2/3 in the control of early embryogenesis and delineate if embryotropic actions of follistatin in early embryos are SMAD2/3 dependent. By using a combination of pharmacological and small interfering RNA-mediated inhibition of SMAD2/3 signaling in the presence or absence of follistatin treatment, our results indicate that SMAD2 and SMAD3 are both required for bovine early embryonic development and stimulatory actions of follistatin on 8- to 16-cell and that blastocyst rates, but not early cleavage, are muted when SMAD2/3 signaling is inhibited. SMAD2 deficiency also results in reduced expression of the bovine trophectoderm cell-specific gene CTGF. In conclusion, the present work provides evidence supporting a functional role of SMAD2/3 in bovine early embryogenesis and that specific stimulatory actions of follistatin are not observed in the absence of SMAD2/3 signaling.
Collapse
Affiliation(s)
- Kun Zhang
- Laboratory of Mammalian Reproductive Biology and Genomics, Michigan State University, East Lansing, Michigan Department of Animal Science, Michigan State University, East Lansing, Michigan
| | - Sandeep K Rajput
- Laboratory of Mammalian Reproductive Biology and Genomics, Michigan State University, East Lansing, Michigan Department of Animal Science, Michigan State University, East Lansing, Michigan
| | - Kyung-Bon Lee
- Laboratory of Mammalian Reproductive Biology and Genomics, Michigan State University, East Lansing, Michigan Department of Animal Science, Michigan State University, East Lansing, Michigan Department of Biology Education, College of Education, Chonnam National University, Gwangju, Korea
| | - Dongliang Wang
- Laboratory of Mammalian Reproductive Biology and Genomics, Michigan State University, East Lansing, Michigan Department of Animal Science, Michigan State University, East Lansing, Michigan Shuozhou Vocational and Technical College, Shuozhou, Shanxi, China
| | - Juncheng Huang
- Laboratory of Mammalian Reproductive Biology and Genomics, Michigan State University, East Lansing, Michigan Department of Animal Science, Michigan State University, East Lansing, Michigan
| | - Joseph K Folger
- Laboratory of Mammalian Reproductive Biology and Genomics, Michigan State University, East Lansing, Michigan Department of Animal Science, Michigan State University, East Lansing, Michigan
| | - Jason G Knott
- Department of Animal Science, Michigan State University, East Lansing, Michigan Developmental Epigenetics Laboratory, Michigan State University, East Lansing, Michigan
| | - Jiuzhen Zhang
- Shuozhou Vocational and Technical College, Shuozhou, Shanxi, China
| | - George W Smith
- Laboratory of Mammalian Reproductive Biology and Genomics, Michigan State University, East Lansing, Michigan Department of Animal Science, Michigan State University, East Lansing, Michigan Department of Physiology, Michigan State University, East Lansing, Michigan
| |
Collapse
|
234
|
Abstract
In mature gametes and during the oocyte-to-embryo transition, transcription is generally silenced and gene expression is post-transcriptionally regulated. However, we recently discovered that major transcription can occur immediately after fertilization, prior to pronuclear fusion, and in the first cell division of the oocyte-to-embryo transition in the nematode Ascaris suum. We postulate that the balance between transcriptional and post-transcriptional regulation during the oocyte-to-embryo transition may largely be determined by cell cycle length and thus the time available for the genome to be transcribed.
Collapse
Affiliation(s)
- Jianbin Wang
- a Department of Biochemistry and Molecular Genetics ; University of Colorado School of Medicine ; Aurora , CO USA
| | | |
Collapse
|
235
|
Kong BY, Duncan FE, Que EL, Xu Y, Vogt S, O'Halloran TV, Woodruff TK. The inorganic anatomy of the mammalian preimplantation embryo and the requirement of zinc during the first mitotic divisions. Dev Dyn 2015; 244:935-47. [PMID: 25903945 DOI: 10.1002/dvdy.24285] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2015] [Revised: 04/13/2015] [Accepted: 04/17/2015] [Indexed: 12/27/2022] Open
Abstract
BACKGROUND Zinc is the most abundant transition metal in the mammalian oocyte, and dynamic fluxes in intracellular concentration are essential for regulating both meiotic progression and fertilization. Whether the defined pathways of zinc utilization in female meiosis directly translate to mitotic cells, including the mammalian preimplantation embryo, has not been studied previously. RESULTS We determined that zinc is the most abundant transition metal in the preimplantation embryo, with levels an order of magnitude higher than those of iron or copper. Using a zinc-specific fluorescent probe, we demonstrated that labile zinc is distributed in vesicle-like structures in the cortex of cells at all stages of preimplantation embryo development. To test the importance of zinc during this period, we induced zinc insufficiency using the heavy metal chelator N,N,N',N'-tetrakis-(2-pyridylmethyl)-ethylenediamine (TPEN). Incubation of embryos in media containing TPEN resulted in a developmental arrest that was specific to zinc chelation and associated with compromised mitotic parameters. The developmental arrest due to zinc insufficiency was associated with altered chromatin structure in the blastomere nuclei and decreased global transcription. CONCLUSIONS These results demonstrate for the first time that the preimplantation embryo requires tight zinc regulation and homeostasis for the initial mitotic divisions of life.
Collapse
Affiliation(s)
- Betty Y Kong
- Department of Obstetrics and Gynecology, Northwestern University, Feinberg School of Medicine, Chicago, Illinois
| | - Francesca E Duncan
- Department of Obstetrics and Gynecology, Northwestern University, Feinberg School of Medicine, Chicago, Illinois
| | - Emily L Que
- Department of Chemistry, Northwestern University, Evanston, Illinois
| | - Yuanming Xu
- Department of Obstetrics and Gynecology, Northwestern University, Feinberg School of Medicine, Chicago, Illinois
| | - Stefan Vogt
- X-ray Science Division, Argonne National Laboratory, Argonne, Illinois
| | - Thomas V O'Halloran
- Department of Chemistry, Northwestern University, Evanston, Illinois.,Department of Molecular Biosciences, Evanston, Illinois
| | - Teresa K Woodruff
- Department of Obstetrics and Gynecology, Northwestern University, Feinberg School of Medicine, Chicago, Illinois.,Department of Molecular Biosciences, Evanston, Illinois
| |
Collapse
|
236
|
Armstrong AF, Lessios HA. The evolution of larval developmental mode: insights from hybrids between species with obligately and facultatively planktotrophic larvae. Evol Dev 2015; 17:278-88. [PMID: 26172861 DOI: 10.1111/ede.12133] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Life history characteristics play a pervasive role in the ecology and evolution of species. Transitions between feeding and non-feeding larval development have occurred many times in both terrestrial and marine phyla, however we lack a comprehensive understanding of how such shifts occur. The sea biscuits Clypeaster rosaceus and Clypeaster subdepressus employ different life history strategies (facultatively feeding larvae and obligately feeding larvae, respectively) but can hybridize. In this study, we examined the development of hybrid larvae between these two species in order to investigate the inheritance of larval developmental mode. Our results show that both reciprocal hybrid crosses developed via the feeding mode of their maternal species. However, as feeding larvae can obtain both energy and hormones from algal food, we tested how hormones alone affected development by setting up a treatment where we added exogenous thyroid hormone, but no food. In this treatment the offspring of all four crosses (two homospecific and two heterospecific crosses) were able to metamorphose without algal food. Therefore we hypothesize that although hybrid developmental mode was inherited from the maternal species, this result was not solely due to energetic constraints of egg size.
Collapse
Affiliation(s)
- Anne Frances Armstrong
- University of California, Davis Center for Population Biology, One Shields Avenue, Davis, CA 95616, USA
| | | |
Collapse
|
237
|
Desvignes T, Nguyen T, Chesnel F, Bouleau A, Fauvel C, Bobe J. X-Linked Retinitis Pigmentosa 2 Is a Novel Maternal-Effect Gene Required for Left-Right Asymmetry in Zebrafish. Biol Reprod 2015; 93:42. [PMID: 26134862 DOI: 10.1095/biolreprod.115.130575] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2015] [Accepted: 06/10/2015] [Indexed: 01/05/2023] Open
Abstract
Retinitis pigmentosa 2 (RP2) gene is responsible for up to 20% of X-linked retinitis pigmentosa, a severe heterogeneous genetic disorder resulting in progressive retinal degeneration in humans. In vertebrates, several bodies of evidence have clearly established the role of Rp2 protein in cilia genesis and/or function. Unexpectedly, some observations in zebrafish have suggested the oocyte-predominant expression of the rp2 gene, a typical feature of maternal-effect genes. In the present study, we investigate the maternal inheritance of rp2 gene products in zebrafish eggs in order to address whether rp2 could be a novel maternal-effect gene required for normal development. Although both rp2 mRNA and corresponding protein are expressed during oogenesis, rp2 mRNA is maternally inherited, in contrast to Rp2 protein. A knockdown of the protein transcribed from both rp2 maternal and zygotic mRNA results in delayed epiboly and severe developmental defects, including eye malformations, that were not observed when only the protein from zygotic origin was knocked down. Moreover, the knockdown of maternal and zygotic Rp2 revealed a high incidence of left-right asymmetry establishment defects compared to only zygotic knockdown. Here we show that rp2 is a novel maternal-effect gene exclusively expressed in oocytes within the zebrafish ovary and demonstrate that maternal rp2 mRNA is essential for successful embryonic development and thus contributes to egg developmental competence. Our observations also reveal that Rp2 protein translated from maternal mRNA is important to allow normal heart loop formation, thus providing evidence of a direct maternal contribution to left-right asymmetry establishment.
Collapse
Affiliation(s)
- Thomas Desvignes
- INRA, UR1037 Fish Physiology and Genomics, Campus de Beaulieu, Rennes, France IFREMER, LALR, Palavas Les Flots, France
| | - Thaovi Nguyen
- INRA, UR1037 Fish Physiology and Genomics, Campus de Beaulieu, Rennes, France
| | | | - Aurélien Bouleau
- INRA, UR1037 Fish Physiology and Genomics, Campus de Beaulieu, Rennes, France IFREMER, LALR, Palavas Les Flots, France
| | | | - Julien Bobe
- INRA, UR1037 Fish Physiology and Genomics, Campus de Beaulieu, Rennes, France
| |
Collapse
|
238
|
Parfitt DE, Shen MM. From blastocyst to gastrula: gene regulatory networks of embryonic stem cells and early mouse embryogenesis. Philos Trans R Soc Lond B Biol Sci 2015; 369:rstb.2013.0542. [PMID: 25349451 DOI: 10.1098/rstb.2013.0542] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
To date, many regulatory genes and signalling events coordinating mammalian development from blastocyst to gastrulation stages have been identified by mutational analyses and reverse-genetic approaches, typically on a gene-by-gene basis. More recent studies have applied bioinformatic approaches to generate regulatory network models of gene interactions on a genome-wide scale. Such models have provided insights into the gene networks regulating pluripotency in embryonic and epiblast stem cells, as well as cell-lineage determination in vivo. Here, we review how regulatory networks constructed for different stem cell types relate to corresponding networks in vivo and provide insights into understanding the molecular regulation of the blastocyst-gastrula transition.
Collapse
Affiliation(s)
- David-Emlyn Parfitt
- Department of Medicine, Columbia University College of Physicians and Surgeons, New York, NY 10032, USA Department of Genetics and Development, Columbia University College of Physicians and Surgeons, New York, NY 10032, USA Department of Urology, Columbia University College of Physicians and Surgeons, New York, NY 10032, USA Department of Systems Biology, Herbert Irving Comprehensive Cancer Center, Columbia University College of Physicians and Surgeons, New York, NY 10032, USA
| | - Michael M Shen
- Department of Medicine, Columbia University College of Physicians and Surgeons, New York, NY 10032, USA Department of Genetics and Development, Columbia University College of Physicians and Surgeons, New York, NY 10032, USA Department of Urology, Columbia University College of Physicians and Surgeons, New York, NY 10032, USA Department of Systems Biology, Herbert Irving Comprehensive Cancer Center, Columbia University College of Physicians and Surgeons, New York, NY 10032, USA
| |
Collapse
|
239
|
Suzuki S, Nozawa Y, Tsukamoto S, Kaneko T, Manabe I, Imai H, Minami N. CHD1 acts via the Hmgpi pathway to regulate mouse early embryogenesis. Development 2015; 142:2375-84. [PMID: 26092847 DOI: 10.1242/dev.120493] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2014] [Accepted: 05/14/2015] [Indexed: 11/20/2022]
Abstract
The protein CHD1 is a member of the family of ATPase-dependent chromatin remodeling factors. CHD1, which recognizes trimethylated histone H3 lysine 4, has been implicated in transcriptional activation in organisms ranging from yeast to humans. It is required for pre-mRNA maturation, maintenance of mouse embryonic stem cell pluripotency and rapid growth of the mouse epiblast. However, the function(s) of CHD1 in mouse preimplantation embryos has not yet been examined. Here, we show that loss of CHD1 function led to embryonic lethality after implantation. In mouse embryos in which Chd1 was targeted by siRNA microinjection, the expression of the key regulators of cell fate specification Pou5f1 (also known as Oct4), Nanog and Cdx2 was dramatically decreased, starting at mid-preimplantation gene activation (MGA). Moreover, expression of Hmgpi and Klf5, which regulate Pou5f1, Nanog and Cdx2, was also significantly suppressed at zygotic gene activation (ZGA). Suppression of Hmgpi expression in Chd1-knockdown embryos continued until the blastocyst stage, whereas suppression of Klf5 expression was relieved by the morula stage. Next, we rescued HMGPI expression via Hmgpi mRNA microinjection in Chd1-knockdown embryos. Consequently, Pou5f1, Nanog and Cdx2 expression was restored at MGA and live offspring were recovered. These findings indicate that CHD1 plays important roles in mouse early embryogenesis via activation of Hmgpi at ZGA.
Collapse
Affiliation(s)
- Shinnosuke Suzuki
- Laboratory of Reproductive Biology, Graduate School of Agriculture, Kyoto University, Kyoto 606-8502, Japan
| | - Yusuke Nozawa
- Laboratory of Reproductive Biology, Graduate School of Agriculture, Kyoto University, Kyoto 606-8502, Japan
| | - Satoshi Tsukamoto
- Laboratory of Animal and Genome Sciences Section, National Institute of Radiological Sciences, Chiba 263-8555, Japan
| | - Takehito Kaneko
- Institute of Laboratory Animals, Graduate School of Medicine, Kyoto University, Kyoto 606-8501, Japan
| | - Ichiro Manabe
- Department of Cardiovascular Medicine, Graduate School of Medicine, The University of Tokyo, Tokyo 113-8655, Japan
| | - Hiroshi Imai
- Laboratory of Reproductive Biology, Graduate School of Agriculture, Kyoto University, Kyoto 606-8502, Japan
| | - Naojiro Minami
- Laboratory of Reproductive Biology, Graduate School of Agriculture, Kyoto University, Kyoto 606-8502, Japan
| |
Collapse
|
240
|
Frum T, Ralston A. Cell signaling and transcription factors regulating cell fate during formation of the mouse blastocyst. Trends Genet 2015; 31:402-10. [PMID: 25999217 DOI: 10.1016/j.tig.2015.04.002] [Citation(s) in RCA: 73] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2015] [Revised: 04/05/2015] [Accepted: 04/07/2015] [Indexed: 11/17/2022]
Abstract
The first cell fate decisions during mammalian development establish tissues essential for healthy pregnancy. The mouse has served as a valuable model for discovering pathways regulating the first cell fate decisions because of the ease with which early embryos can be recovered and the availability of an arsenal of classical and emerging methods for manipulating gene expression. We summarize the major pathways that govern the first cell fate decisions in mouse development. This knowledge serves as a paradigm for exploring how emergent properties of a self-organizing system can dynamically regulate gene expression and cell fate plasticity. Moreover, it brings to light the processes that establish healthy pregnancy and ES cells. We also describe unsolved mysteries and new technologies that could help to overcome experimental challenges in the field.
Collapse
Affiliation(s)
- Tristan Frum
- Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, MI 48824, USA
| | - Amy Ralston
- Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, MI 48824, USA.
| |
Collapse
|
241
|
Suzuki S, Nozawa Y, Tsukamoto S, Kaneko T, Imai H, Minami N. Histone methyltransferase Smyd3 regulates early embryonic lineage commitment in mice. Reproduction 2015; 150:21-30. [PMID: 25918436 DOI: 10.1530/rep-15-0019] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2015] [Accepted: 04/24/2015] [Indexed: 01/21/2023]
Abstract
SET and MYND domain-containing protein 3 (Smyd3) is a histone H3 lysine 4 (H3K4) di- and tri-methyltransferase that forms a transcriptional complex with RNA polymerase II and activates the transcription of oncogenes and cell cycle genes in human cancer cells. However, the study of Smyd3 in mammalian early embryonic development has not yet been addressed. In the present study, we investigated the expression pattern of Smyd3 in mouse preimplantation embryos and the effects of RNA interference (RNAi)-mediated Smyd3 repression on the development of mouse embryos. We showed that Smyd3 mRNA levels increased after the two-cell stage, peaked at the four-cell stage, and gradually decreased thereafter. Moreover, in two-cell to eight-cell embryos, SMYD3 staining was more intense in the nuclei than it was in the cytoplasm. In Smyd3-knockdown embryos, the percentage of inner cell mass (ICM)-derived colony formation and trophectoderm (TE)-derived cell attachment were significantly decreased, which resulted in a reduction in the number of viable offspring. Furthermore, the expression of Oct4 and Cdx2 during mid-preimplantation gene activation was significantly decreased in Smyd3-knockdown embryos. In addition, the transcription levels of ICM and epiblast markers, such as Oct4, Nanog, and Sox2, the transcription levels of primitive endoderm markers, such as Gata6, and the transcription levels of TE markers, such as Cdx2 and Eomes, were significantly decreased in Smyd3-knockdown blastocysts. These findings indicate that SMYD3 plays an important role in early embryonic lineage commitment and peri-implantation development through the activation of lineage-specific genes.
Collapse
Affiliation(s)
- Shinnosuke Suzuki
- Laboratory of Reproductive BiologyGraduate School of Agriculture, Kyoto University, Kyoto 606-8052, JapanLaboratory of Animal and Genome Sciences SectionNational Institute of Radiological Sciences, Chiba 263-8555, JapanGraduate School of MedicineInstitute of Laboratory Animals, Kyoto University, Kyoto 606-8501, Japan
| | - Yusuke Nozawa
- Laboratory of Reproductive BiologyGraduate School of Agriculture, Kyoto University, Kyoto 606-8052, JapanLaboratory of Animal and Genome Sciences SectionNational Institute of Radiological Sciences, Chiba 263-8555, JapanGraduate School of MedicineInstitute of Laboratory Animals, Kyoto University, Kyoto 606-8501, Japan
| | - Satoshi Tsukamoto
- Laboratory of Reproductive BiologyGraduate School of Agriculture, Kyoto University, Kyoto 606-8052, JapanLaboratory of Animal and Genome Sciences SectionNational Institute of Radiological Sciences, Chiba 263-8555, JapanGraduate School of MedicineInstitute of Laboratory Animals, Kyoto University, Kyoto 606-8501, Japan
| | - Takehito Kaneko
- Laboratory of Reproductive BiologyGraduate School of Agriculture, Kyoto University, Kyoto 606-8052, JapanLaboratory of Animal and Genome Sciences SectionNational Institute of Radiological Sciences, Chiba 263-8555, JapanGraduate School of MedicineInstitute of Laboratory Animals, Kyoto University, Kyoto 606-8501, Japan
| | - Hiroshi Imai
- Laboratory of Reproductive BiologyGraduate School of Agriculture, Kyoto University, Kyoto 606-8052, JapanLaboratory of Animal and Genome Sciences SectionNational Institute of Radiological Sciences, Chiba 263-8555, JapanGraduate School of MedicineInstitute of Laboratory Animals, Kyoto University, Kyoto 606-8501, Japan
| | - Naojiro Minami
- Laboratory of Reproductive BiologyGraduate School of Agriculture, Kyoto University, Kyoto 606-8052, JapanLaboratory of Animal and Genome Sciences SectionNational Institute of Radiological Sciences, Chiba 263-8555, JapanGraduate School of MedicineInstitute of Laboratory Animals, Kyoto University, Kyoto 606-8501, Japan
| |
Collapse
|
242
|
Hisano Y, Inoue A, Okudaira M, Taimatsu K, Matsumoto H, Kotani H, Ohga R, Aoki J, Kawahara A. Maternal and Zygotic Sphingosine Kinase 2 Are Indispensable for Cardiac Development in Zebrafish. J Biol Chem 2015; 290:14841-51. [PMID: 25907554 DOI: 10.1074/jbc.m114.634717] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2014] [Indexed: 01/14/2023] Open
Abstract
Sphingosine 1-phosphate (S1P) is synthesized from sphingosine by sphingosine kinases (SPHK1 and SPHK2) in invertebrates and vertebrates, whereas specific receptors for S1P (S1PRs) selectively appear in vertebrates, suggesting that S1P acquires novel functions in vertebrates. Because the developmental functions of SPHK1 and SPHK2 remain obscure in vertebrates, we generated sphk1 or sphk2 gene-disrupted zebrafish by introducing premature stop codons in their coding regions using transcription activator-like effector nucleases. Both zygotic sphk1 and sphk2 zebrafish mutants exhibited no obvious developmental defects and grew to adults. The maternal-zygotic sphk2 mutant (MZsphk2), but not the maternal-zygotic sphk1 mutant and maternal sphk2 mutant, had a defect in the cardiac progenitor migration and a concomitant decrease in S1P level, leading to a two-heart phenotype (cardia bifida). Cardia bifida in MZsphk2, which was rescued by injecting sphk2 mRNA, was a phenotype identical to that of zygotic mutants of the S1P transporter spns2 and S1P receptor s1pr2, indicating that the Sphk2-Spns2-S1pr2 axis regulates the cardiac progenitor migration in zebrafish. The contribution of maternally supplied lipid mediators during vertebrate organogenesis presents as a requirement for maternal-zygotic Sphk2.
Collapse
Affiliation(s)
- Yu Hisano
- From the Laboratory for Developmental Gene Regulation, Brain Science Institute, RIKEN, 2-1 Hirosawa, Wako, Saitama 351-0198,
| | - Asuka Inoue
- the Graduate School of Pharmaceutical Sciences, Tohoku University, 6-3 Aoba, Aramaki, Aoba-ku, Sendai, Miyagi 980-8578, PRESTO and
| | - Michiyo Okudaira
- the Graduate School of Pharmaceutical Sciences, Tohoku University, 6-3 Aoba, Aramaki, Aoba-ku, Sendai, Miyagi 980-8578
| | - Kiyohito Taimatsu
- Laboratory for Developmental Biology, Center for Medical Education and Sciences, Graduate School of Medical Science, University of Yamanashi, 1110 Shimokato, Chuo, Yamanashi 409-3898, Japan
| | - Hirotaka Matsumoto
- the Graduate School of Pharmaceutical Sciences, Tohoku University, 6-3 Aoba, Aramaki, Aoba-ku, Sendai, Miyagi 980-8578
| | - Hirohito Kotani
- Laboratory for Developmental Biology, Center for Medical Education and Sciences, Graduate School of Medical Science, University of Yamanashi, 1110 Shimokato, Chuo, Yamanashi 409-3898, Japan
| | - Rie Ohga
- Laboratory for Developmental Biology, Center for Medical Education and Sciences, Graduate School of Medical Science, University of Yamanashi, 1110 Shimokato, Chuo, Yamanashi 409-3898, Japan
| | - Junken Aoki
- the Graduate School of Pharmaceutical Sciences, Tohoku University, 6-3 Aoba, Aramaki, Aoba-ku, Sendai, Miyagi 980-8578, CREST, Japan Science and Technology Agency and
| | - Atsuo Kawahara
- Laboratory for Developmental Biology, Center for Medical Education and Sciences, Graduate School of Medical Science, University of Yamanashi, 1110 Shimokato, Chuo, Yamanashi 409-3898, Japan
| |
Collapse
|
243
|
Coticchio G, Dal Canto M, Mignini Renzini M, Guglielmo MC, Brambillasca F, Turchi D, Novara PV, Fadini R. Oocyte maturation: gamete-somatic cells interactions, meiotic resumption, cytoskeletal dynamics and cytoplasmic reorganization. Hum Reprod Update 2015; 21:427-54. [PMID: 25744083 DOI: 10.1093/humupd/dmv011] [Citation(s) in RCA: 348] [Impact Index Per Article: 34.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2014] [Accepted: 02/11/2015] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND In a growth phase occurring during most of folliculogenesis, the oocyte produces and accumulates molecules and organelles that are fundamental for the development of the preimplantation embryo. At ovulation, growth is followed by a phase of maturation that, although confined within a short temporal window, encompasses modifications of the oocyte chromosome complement and rearrangements of cytoplasmic components that are crucial for the achievement of developmental competence. Cumulus cells (CCs) are central to the process of maturation, providing the oocyte with metabolic support and regulatory cues. METHODS PubMed was used to search the MEDLINE database for peer-reviewed original articles and reviews concerning oocyte maturation in mammals. Searches were performed adopting 'oocyte' and 'maturation' as main terms, in association with other keywords expressing concepts relevant to the subject. The most relevant publications, i.e. those concerning major phenomena occurring during oocyte maturation in established experimental models and the human species, were assessed and discussed critically to offer a comprehensive description of the process of oocyte maturation. RESULTS By applying the above described search criteria, 6165 publications were identified, of which 543 were review articles. The number of publications increased steadily from 1974 (n = 7) to 2013 (n = 293). In 2014, from January to the time of submission of this manuscript, 140 original manuscripts and reviews were published. The studies selected for this review extend previous knowledge and shed new and astounding knowledge on oocyte maturation. It has long been known that resumption of meiosis and progression to the metaphase II stage is intrinsic to oocyte maturation, but novel findings have revealed that specific chromatin configurations are indicative of a propensity of the oocyte to resume the meiotic process and acquire developmental competence. Recently, genetic integrity has also been characterized as a factor with important implications for oocyte maturation and quality. Changes occurring in the cytoplasmic compartment are equally fundamental. Microtubules, actin filaments and chromatin not only interact to finalize chromosome segregation, but also crucially co-operate to establish cell asymmetry. This allows polar body extrusion to be accomplished with minimal loss of cytoplasm. The cytoskeleton also orchestrates the rearrangement of organelles in preparation for fertilization. For example, during maturation the distribution of the endoplasmic reticulum undergoes major modifications guided by microtubules and microfilaments to make the oocyte more competent in the generation of intracellular Ca(2+) oscillations that are pivotal for triggering egg activation. Cumulus cells are inherent to the process of oocyte maturation, emitting regulatory signals via direct cell-to-cell contacts and paracrine factors. In addition to nurturing the oocyte with key metabolites, CCs regulate meiotic resumption and modulate the function of the oocyte cytoskeleton. CONCLUSIONS Although the importance of oocyte maturation for the achievement of female meiosis has long been recognized, until recently much less was known of the significance of this process in relation to other fundamental developmental events. Studies on chromatin dynamics and integrity have extended our understanding of female meiosis. Concomitantly, cytoskeletal and organelle changes and the ancillary role of CCs have been better appreciated. This is expected to inspire novel concepts and advances in assisted reproduction technologies, such as the development of novel in vitro maturation systems and the identification of biomarkers of oocyte quality.
Collapse
Affiliation(s)
- Giovanni Coticchio
- Biogenesi Reproductive Medicine Centre, Istituti Clinici Zucchi, Via Zucchi 24, 20900 Monza, Italy
| | - Mariabeatrice Dal Canto
- Biogenesi Reproductive Medicine Centre, Istituti Clinici Zucchi, Via Zucchi 24, 20900 Monza, Italy
| | - Mario Mignini Renzini
- Biogenesi Reproductive Medicine Centre, Istituti Clinici Zucchi, Via Zucchi 24, 20900 Monza, Italy
| | - Maria Cristina Guglielmo
- Biogenesi Reproductive Medicine Centre, Istituti Clinici Zucchi, Via Zucchi 24, 20900 Monza, Italy
| | - Fausta Brambillasca
- Biogenesi Reproductive Medicine Centre, Istituti Clinici Zucchi, Via Zucchi 24, 20900 Monza, Italy
| | - Diana Turchi
- Biogenesi Reproductive Medicine Centre, Istituti Clinici Zucchi, Via Zucchi 24, 20900 Monza, Italy
| | - Paola Vittoria Novara
- Biogenesi Reproductive Medicine Centre, Istituti Clinici Zucchi, Via Zucchi 24, 20900 Monza, Italy
| | - Rubens Fadini
- Biogenesi Reproductive Medicine Centre, Istituti Clinici Zucchi, Via Zucchi 24, 20900 Monza, Italy
| |
Collapse
|
244
|
Angulo L, Guyader-Joly C, Auclair S, Hennequet-Antier C, Papillier P, Boussaha M, Fritz S, Hugot K, Moreews F, Ponsart C, Humblot P, Dalbies-Tran R. An integrated approach to bovine oocyte quality: from phenotype to genes. Reprod Fertil Dev 2015; 28:RD14353. [PMID: 25689671 DOI: 10.1071/rd14353] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2014] [Accepted: 01/07/2015] [Indexed: 11/23/2022] Open
Abstract
In cattle, early embryonic failure plays a major role in the limitation of reproductive performance and is influenced by genetic effects. Suboptimal oocyte quality, including an inadequate store of maternal factors, is suspected to contribute to this phenomenon. In the present study, 13 Montbeliarde cows were phenotyped on oocyte quality, based on their ability to produce viable embryos after in vitro maturation, fertilisation and culture for 7 days. This discriminated two groups of animals, exhibiting developmental rates below 18.8% or above 40.9% (relative to cleaved embryos). Using microarrays, transcriptomic profiles were compared between oocytes collected in vivo from these two groups of animals. The difference in oocyte development potential was associated with changes in transcripts from 60 genes in immature oocytes and 135 genes in mature oocytes (following Bonferroni 5% correction). Of these, 16 and 32 genes were located in previously identified fertility quantitative trait loci. A subset of differential genes was investigated on distinct samples by reverse transcription-quantitative polymerase chain reaction. For SLC25A16, PPP1R14C, ROBO1, AMDHD1 and MEAF6 transcripts, differential expression was confirmed between high and low oocyte potential animals. Further sequencing and searches for polymorphisms will pave the way for implementing their use in genomic selection.
Collapse
|
245
|
Park MW, Kim KH, Kim EY, Lee SY, Ko JJ, Lee KA. Associations among Sebox and other MEGs and its effects on early embryogenesis. PLoS One 2015; 10:e0115050. [PMID: 25679966 PMCID: PMC4331730 DOI: 10.1371/journal.pone.0115050] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2014] [Accepted: 11/18/2014] [Indexed: 11/19/2022] Open
Abstract
In a previous report, we identified Sebox as a new candidate maternal effect gene that is essential for embryonic development and primarily impacts the two-cell (2C) stage. The present study was conducted to determine the mechanism of action for Sebox in this capacity, as shown by changes in the expression levels of other known MEG mRNAs after Sebox RNA interference (RNAi) in oocytes. Sebox-knockdown metaphase II (Mll) oocytes displayed normal morphology, but among the 23 MEGs monitored, 8 genes were upregulated, and 15 genes were unchanged. We hypothesized that the perturbed gene expression of these MEGs may cause the arrest of embryo development at the 2C stage and examined the expression of several marker genes for the degradation of maternal factors and zygotic genome activation. We found that some maternal mRNAs, c-mos, Gbx2, and Gdf9, were not fully degraded in Sebox-knockdown 2C embryos, and that several zygotic genome activation markers, Mt1a, Rpl23, Ube2a and Wee1, were not fully expressed in conjunction with diminished embryonic transcriptional activity. In addition, Sebox may be involved in the formation of the subcortical maternal complex through its regulation of the upstream regulator, Figla. Therefore, we concluded that Sebox is important in preparing oocytes for embryonic development by orchestrating the expression of other important MEGs.
Collapse
Affiliation(s)
- Min-Woo Park
- Department of Biomedical Science, College of Life Science, CHA University, Pangyo-Ro 335, Bundang-gu, Seongnam-si, Gyeonggi-do, 463–400, Korea
| | - Kyeoung-Hwa Kim
- Department of Biomedical Science, College of Life Science, CHA University, Pangyo-Ro 335, Bundang-gu, Seongnam-si, Gyeonggi-do, 463–400, Korea
| | - Eun-Young Kim
- Department of Biomedical Science, College of Life Science, CHA University, Pangyo-Ro 335, Bundang-gu, Seongnam-si, Gyeonggi-do, 463–400, Korea
| | - Su-Yeon Lee
- Department of Biomedical Science, College of Life Science, CHA University, Pangyo-Ro 335, Bundang-gu, Seongnam-si, Gyeonggi-do, 463–400, Korea
| | - Jung-Jae Ko
- Department of Biomedical Science, College of Life Science, CHA University, Pangyo-Ro 335, Bundang-gu, Seongnam-si, Gyeonggi-do, 463–400, Korea
- * E-mail: (JJK); (KAL)
| | - Kyung-Ah Lee
- Department of Biomedical Science, College of Life Science, CHA University, Pangyo-Ro 335, Bundang-gu, Seongnam-si, Gyeonggi-do, 463–400, Korea
- * E-mail: (JJK); (KAL)
| |
Collapse
|
246
|
Zhou LQ, Dean J. Reprogramming the genome to totipotency in mouse embryos. Trends Cell Biol 2015; 25:82-91. [PMID: 25448353 PMCID: PMC4312727 DOI: 10.1016/j.tcb.2014.09.006] [Citation(s) in RCA: 81] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2014] [Revised: 09/17/2014] [Accepted: 09/23/2014] [Indexed: 02/03/2023]
Abstract
Despite investigative interest, the artificial derivation of pluripotent stem cells remains inefficient and incomplete reprogramming hinders its potential as a reliable tool in regenerative medicine. By contrast, fusion of terminally differentiated gametes at fertilization activates efficient epigenetic reprogramming to ensure totipotency of early embryos. Understanding the epigenetic mechanisms required for the transition from the fertilized egg to the embryo can improve efforts to reprogram differentiated cells to pluripotent/totipotent cells for therapeutic use. We review recent discoveries that are providing insight into the molecular mechanisms required for epigenetic reprogramming to totipotency in vivo.
Collapse
Affiliation(s)
- Li-quan Zhou
- Laboratory of Cellular and Developmental Biology, NIDDK, National Institutes of Health, Bethesda, MD 20892, USA
| | - Jurrien Dean
- Laboratory of Cellular and Developmental Biology, NIDDK, National Institutes of Health, Bethesda, MD 20892, USA.
| |
Collapse
|
247
|
Shinagawa T, Takagi T, Tsukamoto D, Tomaru C, Huynh LM, Sivaraman P, Kumarevel T, Inoue K, Nakato R, Katou Y, Sado T, Takahashi S, Ogura A, Shirahige K, Ishii S. Histone variants enriched in oocytes enhance reprogramming to induced pluripotent stem cells. Cell Stem Cell 2015; 14:217-27. [PMID: 24506885 DOI: 10.1016/j.stem.2013.12.015] [Citation(s) in RCA: 102] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2013] [Revised: 10/01/2013] [Accepted: 12/22/2013] [Indexed: 10/25/2022]
Abstract
Expression of Oct3/4, Sox2, Klf4, and c-Myc (OSKM) can reprogram somatic cells into induced pluripotent stem cells (iPSCs). Somatic cell nuclear transfer (SCNT) can also be used for reprogramming, suggesting that factors present in oocytes could potentially augment OSKM-mediated induction of pluripotency. Here, we report that two histone variants, TH2A and TH2B, which are highly expressed in oocytes and contribute to activation of the paternal genome after fertilization, enhance OSKM-dependent generation of iPSCs and can induce reprogramming with Klf4 and Oct3/4 alone. TH2A and TH2B are enriched on the X chromosome during the reprogramming process, and their expression in somatic cells increases the DNase I sensitivity of chromatin. In addition, Xist deficiency, which was reported to enhance SCNT reprogramming efficiency, stimulates iPSC generation using TH2A/TH2B in conjunction with OSKM, but not OSKM alone. Thus, TH2A/TH2B may enhance reprogramming by introducing processes that normally operate in zygotes and during SCNT.
Collapse
Affiliation(s)
- Toshie Shinagawa
- Laboratory of Molecular Genetics, CREST Research Project of JST (Japan Science and Technology Agency), RIKEN Tsukuba Institute, 3-1-1 Koyadai, Tsukuba, Ibaraki 305-0074, Japan; Department of Functional Genomics, Institute of Basic Medical Sciences, Graduate School of Comprehensive Human Sciences, University of Tsukuba, Tsukuba, Ibaraki 305-8575, Japan.
| | - Tsuyoshi Takagi
- Laboratory of Molecular Genetics, CREST Research Project of JST (Japan Science and Technology Agency), RIKEN Tsukuba Institute, 3-1-1 Koyadai, Tsukuba, Ibaraki 305-0074, Japan
| | - Daisuke Tsukamoto
- Laboratory of Molecular Genetics, CREST Research Project of JST (Japan Science and Technology Agency), RIKEN Tsukuba Institute, 3-1-1 Koyadai, Tsukuba, Ibaraki 305-0074, Japan
| | - Chinatsu Tomaru
- Laboratory of Molecular Genetics, CREST Research Project of JST (Japan Science and Technology Agency), RIKEN Tsukuba Institute, 3-1-1 Koyadai, Tsukuba, Ibaraki 305-0074, Japan; Department of Functional Genomics, Institute of Basic Medical Sciences, Graduate School of Comprehensive Human Sciences, University of Tsukuba, Tsukuba, Ibaraki 305-8575, Japan
| | - Linh My Huynh
- Laboratory of Molecular Genetics, CREST Research Project of JST (Japan Science and Technology Agency), RIKEN Tsukuba Institute, 3-1-1 Koyadai, Tsukuba, Ibaraki 305-0074, Japan; Department of Functional Genomics, Institute of Basic Medical Sciences, Graduate School of Comprehensive Human Sciences, University of Tsukuba, Tsukuba, Ibaraki 305-8575, Japan
| | - Padavattan Sivaraman
- RIKEN SPring-8 Center, Harima Institute, 1-1-1 Kouto, Sayo, Hyogo 679-5148, Japan
| | | | - Kimiko Inoue
- RIKEN BioResource Center, Tsukuba 305-0074, Japan
| | - Ryuichiro Nakato
- Research Center for Epigenetic Disease, Institute of Molecular and Cellular Biosciences, The University of Tokyo, Tokyo 113-0032, Japan; CREST, JST, K's Gobancho, 7 Gobancho, Chiyoda-ku, Tokyo 102-0076, Japan
| | - Yuki Katou
- Research Center for Epigenetic Disease, Institute of Molecular and Cellular Biosciences, The University of Tokyo, Tokyo 113-0032, Japan; CREST, JST, K's Gobancho, 7 Gobancho, Chiyoda-ku, Tokyo 102-0076, Japan
| | - Takashi Sado
- Medical Institute of Bioregulation, Kyushu University, 812-8582 Fukuoka, Japan
| | - Satoru Takahashi
- Department of Anatomy and Embryology, Institute of Basic Medical Sciences, Graduate School of Comprehensive Human Sciences, University of Tsukuba, Tsukuba, Ibaraki 305-8575, Japan
| | - Atsuo Ogura
- RIKEN BioResource Center, Tsukuba 305-0074, Japan
| | - Katsuhiko Shirahige
- Research Center for Epigenetic Disease, Institute of Molecular and Cellular Biosciences, The University of Tokyo, Tokyo 113-0032, Japan; CREST, JST, K's Gobancho, 7 Gobancho, Chiyoda-ku, Tokyo 102-0076, Japan
| | - Shunsuke Ishii
- Laboratory of Molecular Genetics, CREST Research Project of JST (Japan Science and Technology Agency), RIKEN Tsukuba Institute, 3-1-1 Koyadai, Tsukuba, Ibaraki 305-0074, Japan; Department of Functional Genomics, Institute of Basic Medical Sciences, Graduate School of Comprehensive Human Sciences, University of Tsukuba, Tsukuba, Ibaraki 305-8575, Japan.
| |
Collapse
|
248
|
Pfeiffer MJ, Taher L, Drexler H, Suzuki Y, Makałowski W, Schwarzer C, Wang B, Fuellen G, Boiani M. Differences in embryo quality are associated with differences in oocyte composition: a proteomic study in inbred mice. Proteomics 2015; 15:675-87. [PMID: 25367296 DOI: 10.1002/pmic.201400334] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2014] [Revised: 10/10/2014] [Accepted: 10/29/2014] [Indexed: 12/18/2022]
Abstract
Current models of early mouse development assign roles to stochastic processes and epigenetic regulation, which are considered to be as influential as the genetic differences that exist between strains of the species Mus musculus. The aim of this study was to test whether mouse oocytes vary from each other in the abundance of gene products that could influence, prime, or even predetermine developmental trajectories and features of derivative embryos. Using the paradigm of inbred mouse strains, we quantified 2010 protein groups (SILAC LC-MS/MS) and 15205 transcripts (RNA deep sequencing) present simultaneously in oocytes of four strains tested (129/Sv, C57Bl/6J, C3H/HeN, DBA/2J). Oocytes differed according to donor strain in the abundance of catalytic and regulatory proteins, as confirmed for a subset (bromodomain adjacent to zinc finger domain, 1B [BAZ1B], heme oxygenase 1 [HMOX1], estrogen related receptor, beta [ESRRB]) via immunofluorescence in situ. Given a Pearson's r correlation coefficient of 0.18-0.20, the abundance of oocytic proteins could not be predicted from that of cognate mRNAs. Our results document that a prerequisite to generate embryo diversity, namely the different abundances of maternal proteins in oocytes, can be studied in the model of inbred mouse strains. Thus, we highlight the importance of proteomic quantifications in modern embryology. All MS data have been deposited in the ProteomeXchange with identifier PXD001059 (http://proteomecentral.proteomexchange.org/dataset/PXD001059).
Collapse
Affiliation(s)
- Martin J Pfeiffer
- Max Planck Institute for Molecular Biomedicine, Münster, Germany; Institute for Biostatistics and Informatics in Medicine and Ageing Research, Rostock University Medical Center, Rostock, Germany
| | | | | | | | | | | | | | | | | |
Collapse
|
249
|
Zhu K, Yan L, Zhang X, Lu X, Wang T, Yan J, Liu X, Qiao J, Li L. Identification of a human subcortical maternal complex. Mol Hum Reprod 2014; 21:320-9. [PMID: 25542835 DOI: 10.1093/molehr/gau116] [Citation(s) in RCA: 71] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2014] [Accepted: 12/19/2014] [Indexed: 12/18/2022] Open
Abstract
Maternal effect genes play essential roles in early embryonic development. However, the mechanisms by which maternal effect genes regulate mammalian early embryonic development remain largely unknown. Recently, we identified a subcortical maternal complex (SCMC) that is composed of at least four proteins encoded by Mater, Floped, Tle6 and Filia and is critical for mouse preimplantation development. The present study demonstrates that human SCMC homologous genes (NLRP5, OOEP, TLE6 and KHDC3L) are specifically expressed in the oocytes of human fetal ovaries. The proteins of this complex co-localize in the subcortex of human oocytes and early embryos. Furthermore, the SCMC proteins physically interact with each other when they are co-expressed in cell lines. These results indicate that human NLRP5, OOEP, TLE6 and KHDC3L function as a complex in the oocytes and early embryos of Homo sapiens. Considering the important roles of the SCMC in mouse early embryogenesis, the characterization of the human SCMC will provide a basis for investigating human early embryonic development and will have clinical implications in human female infertility or recurrent spontaneous abortion.
Collapse
Affiliation(s)
- Kai Zhu
- State Key Laboratory of Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China University of Chinese Academy of Sciences, Beijing 100049, China
| | - Liying Yan
- Center for Reproductive Medicine, Department of Obstetrics and Gynecology, Peking University Third Hospital, Beijing 100191, People's Republic of China Key Laboratory of Assisted Reproduction, Ministry of Education, Beijing 100191, China
| | - Xiaoxin Zhang
- State Key Laboratory of Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
| | - Xukun Lu
- State Key Laboratory of Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China University of Chinese Academy of Sciences, Beijing 100049, China
| | - Tianren Wang
- Center for Reproductive Medicine, Department of Obstetrics and Gynecology, Peking University Third Hospital, Beijing 100191, People's Republic of China Key Laboratory of Assisted Reproduction, Ministry of Education, Beijing 100191, China
| | - Jie Yan
- Center for Reproductive Medicine, Department of Obstetrics and Gynecology, Peking University Third Hospital, Beijing 100191, People's Republic of China Key Laboratory of Assisted Reproduction, Ministry of Education, Beijing 100191, China
| | - Xinqi Liu
- College of Life Sciences, Nankai University, Tianjin 300071, China
| | - Jie Qiao
- Center for Reproductive Medicine, Department of Obstetrics and Gynecology, Peking University Third Hospital, Beijing 100191, People's Republic of China Key Laboratory of Assisted Reproduction, Ministry of Education, Beijing 100191, China
| | - Lei Li
- State Key Laboratory of Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
| |
Collapse
|
250
|
Spike CA, Coetzee D, Nishi Y, Guven-Ozkan T, Oldenbroek M, Yamamoto I, Lin R, Greenstein D. Translational control of the oogenic program by components of OMA ribonucleoprotein particles in Caenorhabditis elegans. Genetics 2014; 198:1513-33. [PMID: 25261697 PMCID: PMC4256769 DOI: 10.1534/genetics.114.168823] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2014] [Accepted: 08/29/2014] [Indexed: 02/02/2023] Open
Abstract
The oocytes of most sexually reproducing animals arrest in meiotic prophase I. Oocyte growth, which occurs during this period of arrest, enables oocytes to acquire the cytoplasmic components needed to produce healthy progeny and to gain competence to complete meiosis. In the nematode Caenorhabditis elegans, the major sperm protein hormone promotes meiotic resumption (also called meiotic maturation) and the cytoplasmic flows that drive oocyte growth. Prior work established that two related TIS11 zinc-finger RNA-binding proteins, OMA-1 and OMA-2, are redundantly required for normal oocyte growth and meiotic maturation. We affinity purified OMA-1 and identified associated mRNAs and proteins using genome-wide expression data and mass spectrometry, respectively. As a class, mRNAs enriched in OMA-1 ribonucleoprotein particles (OMA RNPs) have reproductive functions. Several of these mRNAs were tested and found to be targets of OMA-1/2-mediated translational repression, dependent on sequences in their 3'-untranslated regions (3'-UTRs). Consistent with a major role for OMA-1 and OMA-2 in regulating translation, OMA-1-associated proteins include translational repressors and activators, and some of these proteins bind directly to OMA-1 in yeast two-hybrid assays, including OMA-2. We show that the highly conserved TRIM-NHL protein LIN-41 is an OMA-1-associated protein, which also represses the translation of several OMA-1/2 target mRNAs. In the accompanying article in this issue, we show that LIN-41 prevents meiotic maturation and promotes oocyte growth in opposition to OMA-1/2. Taken together, these data support a model in which the conserved regulators of mRNA translation LIN-41 and OMA-1/2 coordinately control oocyte growth and the proper spatial and temporal execution of the meiotic maturation decision.
Collapse
Affiliation(s)
- Caroline A Spike
- Department of Genetics, Cell Biology and Development, University of Minnesota Minneapolis, Minnesota 55455
| | - Donna Coetzee
- Department of Genetics, Cell Biology and Development, University of Minnesota Minneapolis, Minnesota 55455
| | - Yuichi Nishi
- Department of Molecular Biology, University of Texas Southwestern Medical Center, Dallas, Texas 75390
| | - Tugba Guven-Ozkan
- Department of Molecular Biology, University of Texas Southwestern Medical Center, Dallas, Texas 75390
| | - Marieke Oldenbroek
- Department of Molecular Biology, University of Texas Southwestern Medical Center, Dallas, Texas 75390
| | - Ikuko Yamamoto
- Department of Cell and Developmental Biology, Vanderbilt University School of Medicine, Nashville, Tennessee 37232
| | - Rueyling Lin
- Department of Molecular Biology, University of Texas Southwestern Medical Center, Dallas, Texas 75390
| | - David Greenstein
- Department of Genetics, Cell Biology and Development, University of Minnesota Minneapolis, Minnesota 55455
| |
Collapse
|