201
|
Yadava RS, Mandal M, Giese JM, Rigo F, Bennett CF, Mahadevan MS. Modeling muscle regeneration in RNA toxicity mice. Hum Mol Genet 2021; 30:1111-1130. [PMID: 33864373 PMCID: PMC8188403 DOI: 10.1093/hmg/ddab108] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2021] [Revised: 04/08/2021] [Accepted: 04/09/2021] [Indexed: 01/04/2023] Open
Abstract
RNA toxicity underlies the pathogenesis of disorders such as myotonic dystrophy type 1 (DM1). Muscular dystrophy is a key element of the pathology of DM1. The means by which RNA toxicity causes muscular dystrophy in DM1 is unclear. Here, we have used the DM200 mouse model of RNA toxicity due to the expression of a mutant DMPK 3′UTR mRNA to model the effects of RNA toxicity on muscle regeneration. Using a BaCl2-induced damage model, we find that RNA toxicity leads to decreased expression of PAX7, and decreased numbers of satellite cells, the stem cells of adult skeletal muscle (also known as MuSCs). This is associated with a delay in regenerative response, a lack of muscle fiber maturation and an inability to maintain a normal number of satellite cells. Repeated muscle damage also elicited key aspects of muscular dystrophy, including fat droplet deposition and increased fibrosis, and the results represent one of the first times to model these classic markers of dystrophic changes in the skeletal muscles of a mouse model of RNA toxicity. Using a ligand-conjugated antisense (LICA) oligonucleotide ASO targeting DMPK sequences for the first time in a mouse model of RNA toxicity in DM1, we find that treatment with IONIS 877864, which targets the DMPK 3′UTR mRNA, is efficacious in correcting the defects in regenerative response and the reductions in satellite cell numbers caused by RNA toxicity. These results demonstrate the possibilities for therapeutic interventions to mitigate the muscular dystrophy associated with RNA toxicity in DM1.
Collapse
Affiliation(s)
- Ramesh S Yadava
- Department of Pathology, University of Virginia, Charlottesville, VA 22908, USA
| | - Mahua Mandal
- Department of Pathology, University of Virginia, Charlottesville, VA 22908, USA
| | - Jack M Giese
- Department of Pathology, University of Virginia, Charlottesville, VA 22908, USA
| | - Frank Rigo
- Ionis Pharmaceuticals Inc., Carlsbad, CA 90210, USA
| | | | - Mani S Mahadevan
- Department of Pathology, University of Virginia, Charlottesville, VA 22908, USA
| |
Collapse
|
202
|
Kindler V, Paccaud J, Hannouche D, Laumonier T. Human myoblasts differentiate in various mesenchymal lineages and inhibit allogeneic T cell proliferation through an indolamine 2,3 dioxygenase dependent pathway. Exp Cell Res 2021; 403:112586. [PMID: 33839146 DOI: 10.1016/j.yexcr.2021.112586] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2020] [Revised: 03/16/2021] [Accepted: 03/28/2021] [Indexed: 12/12/2022]
Abstract
Muscle stem cells (MuSC) are considered as a reliable source of therapeutic cells to restore diseased muscles. However in most cases, injected MuSC-derived myoblasts are rapidly destroyed by the host immune response, which impairs the beneficial effect. By contrast, human mesenchymal stromal cells (MSC), have been reported to exhibit potent immune regulatory functions. Thus, we investigated, in vitro, the multipotent differentiation- and immunosuppressive capacities of human myoblasts and compared these features with those of human MSC. Myoblasts shared numerous cell surface markers with MSC, including CD73, CD90, CD105 and CD146. Both cell type were negative for HLA-DR and CD45, CD34 and CD31. CD56, a myogenic marker, was expressed by myoblasts exclusively. Myoblasts displayed multipotent potential capabilities with differentiation in chondrocytes, adipocytes and osteoblasts in vitro. Myoblasts also inhibited allogenic T cell proliferation in vitro in a dose dependent manner, very similarly to MSC. This effect was partly mediated via the activation of indolamine 2,3 dioxygenase enzyme (IDO) after IFNγ exposure. Altogether, these data demonstrate that human myoblasts can differentiate in various mesenchymal linages and exhibit powerful immunosuppressive properties in vitro. Such features may open new therapeutic strategies for MuSC-derived myoblasts.
Collapse
Affiliation(s)
- Vincent Kindler
- Department of Orthopedic Surgery, Geneva University Hospitals & Faculty of Medicine, Geneva, Switzerland
| | - Joris Paccaud
- Department of Orthopedic Surgery, Geneva University Hospitals & Faculty of Medicine, Geneva, Switzerland
| | - Didier Hannouche
- Department of Orthopedic Surgery, Geneva University Hospitals & Faculty of Medicine, Geneva, Switzerland; Department of Cell Physiology and Metabolism, Faculty of Medicine, Geneva, Switzerland
| | - Thomas Laumonier
- Department of Orthopedic Surgery, Geneva University Hospitals & Faculty of Medicine, Geneva, Switzerland; Department of Cell Physiology and Metabolism, Faculty of Medicine, Geneva, Switzerland.
| |
Collapse
|
203
|
Starosta A, Konieczny P. Therapeutic aspects of cell signaling and communication in Duchenne muscular dystrophy. Cell Mol Life Sci 2021; 78:4867-4891. [PMID: 33825942 PMCID: PMC8233280 DOI: 10.1007/s00018-021-03821-x] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2020] [Revised: 02/26/2021] [Accepted: 03/23/2021] [Indexed: 12/11/2022]
Abstract
Duchenne muscular dystrophy (DMD) is a devastating chromosome X-linked disease that manifests predominantly in progressive skeletal muscle wasting and dysfunctions in the heart and diaphragm. Approximately 1/5000 boys and 1/50,000,000 girls suffer from DMD, and to date, the disease is incurable and leads to premature death. This phenotypic severity is due to mutations in the DMD gene, which result in the absence of functional dystrophin protein. Initially, dystrophin was thought to be a force transducer; however, it is now considered an essential component of the dystrophin-associated protein complex (DAPC), viewed as a multicomponent mechanical scaffold and a signal transduction hub. Modulating signal pathway activation or gene expression through epigenetic modifications has emerged at the forefront of therapeutic approaches as either an adjunct or stand-alone strategy. In this review, we propose a broader perspective by considering DMD to be a disease that affects myofibers and muscle stem (satellite) cells, as well as a disorder in which abrogated communication between different cell types occurs. We believe that by taking this systemic view, we can achieve safe and holistic treatments that can restore correct signal transmission and gene expression in diseased DMD tissues.
Collapse
Affiliation(s)
- Alicja Starosta
- Faculty of Biology, Institute of Human Biology and Evolution, Adam Mickiewicz University, ul. Uniwersytetu Poznańskiego 6, 61-614, Poznań, Poland
| | - Patryk Konieczny
- Faculty of Biology, Institute of Human Biology and Evolution, Adam Mickiewicz University, ul. Uniwersytetu Poznańskiego 6, 61-614, Poznań, Poland.
| |
Collapse
|
204
|
Nalbandian M, Zhao M, Sasaki-Honda M, Jonouchi T, Lucena-Cacace A, Mizusawa T, Yasuda M, Yoshida Y, Hotta A, Sakurai H. Characterization of hiPSC-Derived Muscle Progenitors Reveals Distinctive Markers for Myogenic Cell Purification Toward Cell Therapy. Stem Cell Reports 2021; 16:883-898. [PMID: 33798449 PMCID: PMC8072070 DOI: 10.1016/j.stemcr.2021.03.004] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2020] [Revised: 03/02/2021] [Accepted: 03/02/2021] [Indexed: 01/14/2023] Open
Abstract
The transplantation of muscle progenitor cells (MuPCs) differentiated from human induced pluripotent stem cells (hiPSCs) is a promising approach for treating skeletal muscle diseases such as Duchenne muscular dystrophy (DMD). However, proper purification of the MuPCs before transplantation is essential for clinical application. Here, by using MYF5 hiPSC reporter lines, we identified two markers for myogenic cell purification: CDH13, which purified most of the myogenic cells, and FGFR4, which purified a subset of MuPCs. Cells purified with each of the markers showed high efficiency for regeneration after transplantation and contributed to the restoration of dystrophin expression in DMD-immunodeficient model mice. Moreover, we found that MYF5 regulates CDH13 expression by binding to the promoter regions. These findings suggest that FGFR4 and CDH13 are strong candidates for the purification of hiPSC-derived MuPCs for therapeutical application. MYF5 and PAX7 mark different populations of hiPSC-MuPCs RNA-seq of MYF5+ cells reveals CDH13 and FGFR4 as hiPSC-MuPC markers CDH13+ and FGFR4+ hiPSC-MuPCs contribute to regeneration in mdx mice MYF5 regulates CDH13 expression by binding to its promoter region
Collapse
Affiliation(s)
- Minas Nalbandian
- Department of Clinical Application, Center for iPS Cell Research and Application (CiRA), Kyoto University, 53 Shogoin-Kawahara-cho, Sakyo-ku, Kyoto 606-8507, Japan
| | - Mingming Zhao
- Department of Clinical Application, Center for iPS Cell Research and Application (CiRA), Kyoto University, 53 Shogoin-Kawahara-cho, Sakyo-ku, Kyoto 606-8507, Japan.
| | - Mitsuru Sasaki-Honda
- Department of Clinical Application, Center for iPS Cell Research and Application (CiRA), Kyoto University, 53 Shogoin-Kawahara-cho, Sakyo-ku, Kyoto 606-8507, Japan
| | - Tatsuya Jonouchi
- Department of Clinical Application, Center for iPS Cell Research and Application (CiRA), Kyoto University, 53 Shogoin-Kawahara-cho, Sakyo-ku, Kyoto 606-8507, Japan
| | - Antonio Lucena-Cacace
- Department of Cell Growth and Differentiation, Center for iPS Cell Research and Application (CiRA), Kyoto University, 53 Shogoin-Kawahara-cho, Sakyo-ku, Kyoto 606-8507, Japan
| | - Takuma Mizusawa
- Central Institute for Experimental Animals, 3-25-12 Tonomachi, Kawasaki-ku, Kawasaki 210-0821, Japan
| | - Masahiko Yasuda
- Central Institute for Experimental Animals, 3-25-12 Tonomachi, Kawasaki-ku, Kawasaki 210-0821, Japan
| | - Yoshinori Yoshida
- Department of Cell Growth and Differentiation, Center for iPS Cell Research and Application (CiRA), Kyoto University, 53 Shogoin-Kawahara-cho, Sakyo-ku, Kyoto 606-8507, Japan
| | - Akitsu Hotta
- Department of Clinical Application, Center for iPS Cell Research and Application (CiRA), Kyoto University, 53 Shogoin-Kawahara-cho, Sakyo-ku, Kyoto 606-8507, Japan
| | - Hidetoshi Sakurai
- Department of Clinical Application, Center for iPS Cell Research and Application (CiRA), Kyoto University, 53 Shogoin-Kawahara-cho, Sakyo-ku, Kyoto 606-8507, Japan.
| |
Collapse
|
205
|
Moriscot A, Miyabara EH, Langeani B, Belli A, Egginton S, Bowen TS. Firearms-related skeletal muscle trauma: pathophysiology and novel approaches for regeneration. NPJ Regen Med 2021; 6:17. [PMID: 33772028 PMCID: PMC7997931 DOI: 10.1038/s41536-021-00127-1] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2020] [Accepted: 02/24/2021] [Indexed: 02/07/2023] Open
Abstract
One major cause of traumatic injury is firearm-related wounds (i.e., ballistic trauma), common in both civilian and military populations, which is increasing in prevalence and has serious long-term health and socioeconomic consequences worldwide. Common primary injuries of ballistic trauma include soft-tissue damage and loss, haemorrhage, bone fracture, and pain. The majority of injuries are of musculoskeletal origin and located in the extremities, such that skeletal muscle offers a major therapeutic target to aid recovery and return to normal daily activities. However, the underlying pathophysiology of skeletal muscle ballistic trauma remains poorly understood, with limited evidence-based treatment options. As such, this review will address the topic of firearm-related skeletal muscle injury and regeneration. We first introduce trauma ballistics and the immediate injury of skeletal muscle, followed by detailed coverage of the underlying biological mechanisms involved in regulating skeletal muscle dysfunction following injury, with a specific focus on the processes of muscle regeneration, muscle wasting and vascular impairments. Finally, we evaluate novel approaches for minimising muscle damage and enhancing muscle regeneration after ballistic trauma, which may have important relevance for primary care in victims of violence.
Collapse
Affiliation(s)
- Anselmo Moriscot
- Department of Anatomy, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
| | - Elen H Miyabara
- Department of Anatomy, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
| | | | - Antonio Belli
- NIHR Surgical Reconstruction and Microbiology Research Centre, University of Birmingham, Birmingham, UK
| | - Stuart Egginton
- School of Biomedical Sciences, Faculty of Biological Sciences, University of Leeds, Leeds, UK
| | - T Scott Bowen
- School of Biomedical Sciences, Faculty of Biological Sciences, University of Leeds, Leeds, UK.
| |
Collapse
|
206
|
Carraro U, Yablonka-Reuveni Z. Translational research on Myology and Mobility Medicine: 2021 semi-virtual PDM3 from Thermae of Euganean Hills, May 26 - 29, 2021. Eur J Transl Myol 2021; 31:9743. [PMID: 33733717 PMCID: PMC8056169 DOI: 10.4081/ejtm.2021.9743] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2021] [Accepted: 03/17/2021] [Indexed: 02/08/2023] Open
Abstract
On 19-21 November 2020, the meeting of the 30 years of the Padova Muscle Days was virtually held while the SARS-CoV-2 epidemic was hitting the world after a seemingly quiet summer. During the 2020-2021 winter, the epidemic is still active, despite the start of vaccinations. The organizers hope to hold the 2021 Padua Days on Myology and Mobility Medicine in a semi-virtual form (2021 S-V PDM3) from May 26 to May 29 at the Thermae of Euganean Hills, Padova, Italy. Here the program and the Collection of Abstracts are presented. Despite numerous world problems, the number of submitted/selected presentations (lectures and oral presentations) has increased, prompting the organizers to extend the program to four dense days.
Collapse
Affiliation(s)
- Ugo Carraro
- Department of Biomedical Sciences of the University of Padova, Italy; CIR-Myo - Myology Centre, University of Padova, Italy; A-C Mioni-Carraro Foundation for Translational Myology, Padova.
| | - Zipora Yablonka-Reuveni
- Department of Biological Structure, University of Washington School of Medicine, Seattle, WA.
| |
Collapse
|
207
|
Benedetti A, Cera G, De Meo D, Villani C, Bouche M, Lozanoska-Ochser B. A novel approach for the isolation and long-term expansion of pure satellite cells based on ice-cold treatment. Skelet Muscle 2021; 11:7. [PMID: 33731194 PMCID: PMC7968259 DOI: 10.1186/s13395-021-00261-w] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2020] [Accepted: 02/18/2021] [Indexed: 01/07/2023] Open
Abstract
Satellite cells (SCs) are muscle stem cells capable of regenerating injured muscle. The study of their functional potential depends on the availability of methods for the isolation and expansion of pure SCs with preserved myogenic properties after serial passages in vitro. Here, we describe the ice-cold treatment (ICT) method, which is a simple, economical, and efficient method for the isolation and in vitro expansion of highly pure mouse and human SCs. It involves a brief (15-30 min) incubation on ice (0 °C) of a dish containing a heterogeneous mix of adherent muscle mononuclear cells, which leads to the detachment of only the SCs, and gives rise to cultures of superior purity compared to other commonly used isolation methods. The ICT method doubles up as a gentle passaging technique, allowing SC expansion over extended periods of time without compromising their proliferation and differentiation potential. Moreover, SCs isolated and expanded using the ICT method are capable of regenerating injured muscle in vivo. The ICT method involves minimal cell manipulation, does not require any expertise or expensive reagents, it is fast, and highly reproducible, and greatly reduces the number of animals or human biopsies required in order to obtain sufficient number of SCs. The cost-effectiveness, accessibility, and technical simplicity of this method, as well as its remarkable efficiency, will no doubt accelerate SC basic and translational research bringing their therapeutic use closer to the clinic.
Collapse
Affiliation(s)
- Anna Benedetti
- Department of Anatomical, Histological, Forensic and Orthopedic Sciences, Section of Histology and Embryology, Sapienza University of Rome, Rome, Italy
| | - Gianluca Cera
- Department of Anatomical, Histological, Forensic and Orthopedic Sciences, Section of Orthopedics, Sapienza University of Rome, Rome, Italy
- Department of Orthopaedics and Traumatology, Policlinico Umberto I, Rome, Italy
| | - Daniele De Meo
- Department of Anatomical, Histological, Forensic and Orthopedic Sciences, Section of Orthopedics, Sapienza University of Rome, Rome, Italy
- Department of Orthopaedics and Traumatology, Policlinico Umberto I, Rome, Italy
| | - Ciro Villani
- Department of Anatomical, Histological, Forensic and Orthopedic Sciences, Section of Orthopedics, Sapienza University of Rome, Rome, Italy
- Department of Orthopaedics and Traumatology, Policlinico Umberto I, Rome, Italy
| | - Marina Bouche
- Department of Anatomical, Histological, Forensic and Orthopedic Sciences, Section of Histology and Embryology, Sapienza University of Rome, Rome, Italy
| | - Biliana Lozanoska-Ochser
- Department of Anatomical, Histological, Forensic and Orthopedic Sciences, Section of Histology and Embryology, Sapienza University of Rome, Rome, Italy.
| |
Collapse
|
208
|
Straughn AR, Kelm NQ, Kakar SS. Withaferin A and Ovarian Cancer Antagonistically Regulate Skeletal Muscle Mass. Front Cell Dev Biol 2021; 9:636498. [PMID: 33718372 PMCID: PMC7947350 DOI: 10.3389/fcell.2021.636498] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2020] [Accepted: 02/05/2021] [Indexed: 01/06/2023] Open
Abstract
Cachexia is a complex wasting syndrome that overwhelmingly affects the majority of late-stage cancer patients. Additionally, there are currently no efficacious therapeutic agents to treat the muscle atrophy induced by the cancer. While several preclinical studies have investigated the molecular signals orchestrating cachexia, very little information exists pertaining to ovarian cancer and the associated cachexia. Work from our lab has recently demonstrated that the steroidal lactone Withaferin A (WFA) is capable of attenuating the atrophying effects of ovarian cancer in a preclinical mouse model. However, it remained to be determined whether WFA's effect was in response to its anti-tumorigenic properties, or if it was capable of targeting skeletal muscle directly. The purpose of this study was to uncover whether WFA was capable of regulating muscle mass under tumor-free and tumor-bearing conditions. Treatment with WFA led to an improvement in functional muscle strength and mass under tumor-bearing and naïve conditions. WFA and ovarian cancer were observed to act antagonistically upon critical skeletal muscle regulatory systems, notably myogenic progenitors and proteolytic degradation pathways. Our results demonstrated for the first time that, while WFA has anti-tumorigenic properties, it also exerts hypertrophying effects on skeletal muscle mass, suggesting that it could be an anti-cachectic agent in the settings of ovarian cancer.
Collapse
Affiliation(s)
- Alex R. Straughn
- James Graham Brown Cancer Center, University of Louisville, Louisville, KY, United States
| | - Natia Q. Kelm
- James Graham Brown Cancer Center, University of Louisville, Louisville, KY, United States
| | - Sham S. Kakar
- James Graham Brown Cancer Center, University of Louisville, Louisville, KY, United States
- Department of Physiology, University of Louisville, Louisville, KY, United States
| |
Collapse
|
209
|
Filgueira TO, Castoldi A, Santos LER, de Amorim GJ, de Sousa Fernandes MS, Anastácio WDLDN, Campos EZ, Santos TM, Souto FO. The Relevance of a Physical Active Lifestyle and Physical Fitness on Immune Defense: Mitigating Disease Burden, With Focus on COVID-19 Consequences. Front Immunol 2021; 12:587146. [PMID: 33613573 PMCID: PMC7892446 DOI: 10.3389/fimmu.2021.587146] [Citation(s) in RCA: 67] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2020] [Accepted: 01/13/2021] [Indexed: 12/15/2022] Open
Abstract
The Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) is a fast spreading virus leading to the development of Coronavirus Disease-2019 (COVID-19). Severe and critical cases are characterized by damage to the respiratory system, endothelial inflammation, and multiple organ failure triggered by an excessive production of proinflammatory cytokines, culminating in the high number of deaths all over the world. Sedentarism induces worse, continuous, and progressive consequences to health. On the other hand, physical activity provides benefits to health and improves low-grade systemic inflammation. The aim of this review is to elucidate the effects of physical activity in physical fitness, immune defense, and its contribution to mitigate the severe inflammatory response mediated by SARS-CoV-2. Physical exercise is an effective therapeutic strategy to mitigate the consequences of SARS-CoV-2 infection. In this sense, studies have shown that acute physical exercise induces the production of myokines that are secreted in tissues and into the bloodstream, supporting its systemic modulatory effect. Therefore, maintaining physical activity influence balance the immune system and increases immune vigilance, and also might promote potent effects against the consequences of infectious diseases and chronic diseases associated with the development of severe forms of COVID-19. Protocols to maintain exercise practice are suggested and have been strongly established, such as home-based exercise (HBE) and outdoor-based exercise (OBE). In this regard, HBE might help to reduce levels of physical inactivity, bed rest, and sitting time, impacting on adherence to physical activity, promoting all the benefits related to exercise, and attracting patients in different stages of treatment for COVID-19. In parallel, OBE must improve health, but also prevent and mitigate COVID-19 severe outcomes in all populations. In conclusion, HBE or OBE models can be a potent strategy to mitigate the progress of infection, and a coadjutant therapy for COVID-19 at all ages and different chronic conditions.
Collapse
Affiliation(s)
| | - Angela Castoldi
- Keizo Asami Immunopathology Laboratory, Universidade Federal de Pernambuco, Recife, Brazil
| | - Lucas Eduardo R. Santos
- Pós Graduação em Educação Física, Universidade Federal de Pernambuco, Recife, Brazil
- Pós Graduação em Neuropsiquiatria e Ciências do Comportamento, Universidade Federal de Pernambuco, Recife, Brazil
| | - Geraldo José de Amorim
- Keizo Asami Immunopathology Laboratory, Universidade Federal de Pernambuco, Recife, Brazil
- Serviço de Nefrologia do Hospital das Clínicas, Universidade Federal de Pernambuco, Recife, Brazil
| | - Matheus Santos de Sousa Fernandes
- Pós Graduação em Educação Física, Universidade Federal de Pernambuco, Recife, Brazil
- Pós Graduação em Neuropsiquiatria e Ciências do Comportamento, Universidade Federal de Pernambuco, Recife, Brazil
| | | | | | - Tony Meireles Santos
- Pós Graduação em Educação Física, Universidade Federal de Pernambuco, Recife, Brazil
| | - Fabrício Oliveira Souto
- Keizo Asami Immunopathology Laboratory, Universidade Federal de Pernambuco, Recife, Brazil
- Núcleo de Ciências da Vida, Centro Acadêmico do Agreste, Universidade Federal de Pernambuco, Caruaru, Brazil
| |
Collapse
|
210
|
Kim JH, Park I, Shin HR, Rhee J, Seo JY, Jo YW, Yoo K, Hann SH, Kang JS, Park J, Kim YL, Moon JY, Choi MH, Kong YY. The hypothalamic-pituitary-gonadal axis controls muscle stem cell senescence through autophagosome clearance. J Cachexia Sarcopenia Muscle 2021; 12:177-191. [PMID: 33244887 PMCID: PMC7890269 DOI: 10.1002/jcsm.12653] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/23/2020] [Revised: 10/13/2020] [Accepted: 10/21/2020] [Indexed: 12/15/2022] Open
Abstract
BACKGROUND With organismal aging, the hypothalamic-pituitary-gonadal (HPG) activity gradually decreases, resulting in the systemic functional declines of the target tissues including skeletal muscles. Although the HPG axis plays an important role in health span, how the HPG axis systemically prevents functional aging is largely unknown. METHODS We generated muscle stem cell (MuSC)-specific androgen receptor (Ar) and oestrogen receptor 2 (Esr2) double knockout (dKO) mice and pharmacologically inhibited (Antide) the HPG axis to mimic decreased serum levels of sex steroid hormones in aged mice. After short-term and long-term sex hormone signalling ablation, the MuSCs were functionally analysed, and their aging phenotypes were compared with those of geriatric mice (30-month-old). To investigate pathways associated with sex hormone signalling disruption, RNA sequencing and bioinformatic analyses were performed. RESULTS Disrupting the HPG axis results in impaired muscle regeneration [wild-type (WT) vs. dKO, P < 0.0001; Veh vs. Antide, P = 0.004]. The expression of DNA damage marker (in WT = 7.0 ± 1.6%, dKO = 32.5 ± 2.6%, P < 0.01; in Veh = 13.4 ± 4.5%, Antide = 29.7 ± 5.5%, P = 0.028) and senescence-associated β-galactosidase activity (in WT = 3.8 ± 1.2%, dKO = 10.3 ± 1.6%, P < 0.01; in Veh = 2.1 ± 0.4%, Antide = 9.6 ± 0.8%, P = 0.005), as well as the expression levels of senescence-associated genes, p16Ink4a and p21Cip1 , was significantly increased in the MuSCs, indicating that genetic and pharmacological inhibition of the HPG axis recapitulates the progressive aging process of MuSCs. Mechanistically, the ablation of sex hormone signalling reduced the expression of transcription factor EB (Tfeb) and Tfeb target gene in MuSCs, suggesting that sex hormones directly induce the expression of Tfeb, a master regulator of the autophagy-lysosome pathway, and consequently autophagosome clearance. Transduction of the Tfeb in naturally aged MuSCs increased muscle mass [control geriatric MuSC transplanted tibialis anterior (TA) muscle = 34.3 ± 2.9 mg, Tfeb-transducing geriatric MuSC transplanted TA muscle = 44.7 ± 6.7 mg, P = 0.015] and regenerating myofibre size [eMyHC+ tdTomato+ myofibre cross-section area (CSA) in control vs. Tfeb, P = 0.002] after muscle injury. CONCLUSIONS Our data show that the HPG axis systemically controls autophagosome clearance in MuSCs through Tfeb and prevents MuSCs from senescence, suggesting that sustained HPG activity throughout life regulates autophagosome clearance to maintain the quiescence of MuSCs by preventing senescence until advanced age.
Collapse
Affiliation(s)
- Ji-Hoon Kim
- School of Biological Sciences, Seoul National University, Seoul, South Korea
| | - Inkuk Park
- School of Biological Sciences, Seoul National University, Seoul, South Korea
| | - Hijai R Shin
- Department of Molecular and Cell Biology, University of California, Berkeley, CA, USA.,The Paul F. Glenn Center for Aging Research, University of California, Berkeley, CA, USA
| | - Joonwoo Rhee
- School of Biological Sciences, Seoul National University, Seoul, South Korea
| | - Ji-Yun Seo
- School of Biological Sciences, Seoul National University, Seoul, South Korea
| | - Young-Woo Jo
- School of Biological Sciences, Seoul National University, Seoul, South Korea
| | - Kyusang Yoo
- School of Biological Sciences, Seoul National University, Seoul, South Korea
| | - Sang-Hyeon Hann
- School of Biological Sciences, Seoul National University, Seoul, South Korea
| | - Jong-Seol Kang
- School of Biological Sciences, Seoul National University, Seoul, South Korea
| | - Jieon Park
- School of Biological Sciences, Seoul National University, Seoul, South Korea
| | - Ye Lynne Kim
- School of Biological Sciences, Seoul National University, Seoul, South Korea
| | - Ju-Yeon Moon
- College of Pharmacy, The Catholic University of Korea, Gyeonggi-do, South Korea
| | - Man Ho Choi
- Molecular Recognition Research Center, KIST, Seoul, South Korea
| | - Young-Yun Kong
- School of Biological Sciences, Seoul National University, Seoul, South Korea
| |
Collapse
|
211
|
Shirasawa H, Matsumura N, Yoda M, Okubo K, Shimoda M, Uezumi A, Matsumoto M, Nakamura M, Horiuchi K. Retinoic Acid Receptor Agonists Suppress Muscle Fatty Infiltration in Mice. Am J Sports Med 2021; 49:332-339. [PMID: 33428447 DOI: 10.1177/0363546520984122] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
BACKGROUND The infiltration of fat tissue into skeletal muscle, a condition referred to as muscle fatty infiltration or fatty degeneration, is regarded as an irreversible event that significantly compromises the motor function of skeletal muscle. PURPOSE To investigate the effect of retinoic acid receptor (RAR) agonists in suppressing the adipogenic differentiation of fibroadipogenic progenitors (FAPs) in vitro and fatty infiltration after rotator cuff tear in mice. STUDY DESIGN Controlled laboratory study. METHODS FAPs isolated from mouse skeletal muscle were cultured in adipogenic differentiation medium in the presence or absence of an RAR agonist. At the end of cell culture, adipogenic differentiation was evaluated by gene expression analysis and oil red O staining. A mouse model of fatty infiltration-which includes the resection of the rotator cuff, removal of the humeral head, and denervation the supraspinatus muscle-was used to induce fatty infiltration in the supraspinatus muscle. The mice were orally or intramuscularly administered with an RAR agonist after the surgery. Muscle fatty infiltration was evaluated by histology and gene expression analysis. RESULTS RAR agonists effectively inhibited the adipogenic differentiation of FAPs in vitro. Oral and intramuscular administration of RAR agonists suppressed the development of muscle fatty infiltration in the mice after rotator cuff tear. In accordance, we found a significant decrease in the number of intramuscular fat cells and suppressed expression in adipogenic markers. RAR agonists also increased the expression of the transcripts for collagens; however, an accumulation of collagenous tissues was not histologically evident in the present model. CONCLUSION Muscle fatty infiltration can be alleviated by RAR agonists through suppressing the adipogenic differentiation of FAPs. The results also suggest that RAR agonists are potential therapeutic agents for treating patients who are at risk of developing muscle fatty infiltration. The consequence of the increased expression of collagen transcripts by RAR agonists needs to be clarified. CLINICAL RELEVANCE RAR agonists can be used to prevent the development of muscle fatty infiltration after rotator cuff tear. Nevertheless, further studies are mandatory in a large animal model to examine the safety and efficacy of intramuscular injection of RAR agonists.
Collapse
Affiliation(s)
- Hideyuki Shirasawa
- Department of Orthopedic Surgery, School of Medicine, Keio University, Tokyo, Japan
| | - Noboru Matsumura
- Department of Orthopedic Surgery, School of Medicine, Keio University, Tokyo, Japan
| | - Masaki Yoda
- Laboratory of Cell and Tissue Biology, School of Medicine, Keio University, Tokyo, Japan
| | - Kazumasa Okubo
- Pharmacology, Pharmaceutical Research Department, Sato Pharmaceutical Co, Ltd, Tokyo, Japan
| | - Masayuki Shimoda
- Department of Pathology, School of Medicine, Keio University, Tokyo, Japan
| | - Akiyoshi Uezumi
- Department of Geriatric Medicine, Tokyo Metropolitan Institute of Gerontology, Tokyo, Japan
| | - Morio Matsumoto
- Department of Orthopedic Surgery, School of Medicine, Keio University, Tokyo, Japan
| | - Masaya Nakamura
- Department of Orthopedic Surgery, School of Medicine, Keio University, Tokyo, Japan
| | - Keisuke Horiuchi
- Department of Orthopedic Surgery, School of Medicine, Keio University, Tokyo, Japan.,Department of Orthopedic Surgery, National Defense Medical College, Saitama, Japan
| |
Collapse
|
212
|
Pavis GF, Jameson TSO, Dirks ML, Lee BP, Abdelrahman DR, Murton AJ, Porter C, Alamdari N, Mikus CR, Wall BT, Stephens FB. Improved recovery from skeletal muscle damage is largely unexplained by myofibrillar protein synthesis or inflammatory and regenerative gene expression pathways. Am J Physiol Endocrinol Metab 2021; 320:E291-E305. [PMID: 33284089 PMCID: PMC8260377 DOI: 10.1152/ajpendo.00454.2020] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
The contribution of myofibrillar protein synthesis (MyoPS) to recovery from skeletal muscle damage in humans is unknown. Recreationally active men and women consumed a daily protein-polyphenol beverage targeted at increasing amino acid availability and reducing inflammation (PPB; n = 9), both known to affect MyoPS, or an isocaloric placebo (PLA; n = 9) during 168 h of recovery from 300 maximal unilateral eccentric contractions (EE). Muscle function was assessed daily. Muscle biopsies were collected for 24, 27, 36, 72, and 168 h for MyoPS measurements using 2H2O and expression of 224 genes using RT-qPCR and pathway analysis. PPB improved recovery of muscle function, which was impaired for 5 days after EE in PLA (interaction P < 0.05). Acute postprandial MyoPS rates were unaffected by nutritional intervention (24-27 h). EE increased overnight (27-36 h) MyoPS versus the control leg (PLA: 33 ± 19%; PPB: 79 ± 25%; leg P < 0.01), and PPB tended to increase this further (interaction P = 0.06). Daily MyoPS rates were greater with PPB between 72 and 168 h after EE, albeit after function had recovered. Inflammatory and regenerative signaling pathways were dramatically upregulated and clustered after EE but were unaffected by nutritional intervention. These results suggest that accelerated recovery from EE is not explained by elevated MyoPS or suppression of inflammation.NEW & NOTEWORTHY The present study investigated the contribution of myofibrillar protein synthesis (MyoPS) and associated gene signaling to recovery from 300 muscle-damaging, eccentric contractions. Measured with 2H2O, MyoPS rates were elevated during recovery and observed alongside expression of inflammatory and regenerative signaling pathways. A nutritional intervention accelerated recovery; however, MyoPS and gene signaling were unchanged compared with placebo. These data indicate that MyoPS and associated signaling do not explain accelerated recovery from muscle damage.
Collapse
Affiliation(s)
- George F Pavis
- Nutritional Physiology Group, Department of Sport and Health Sciences, College of Life and Environmental Sciences, University of Exeter, Exeter, United Kingdom
| | - Tom S O Jameson
- Nutritional Physiology Group, Department of Sport and Health Sciences, College of Life and Environmental Sciences, University of Exeter, Exeter, United Kingdom
| | - Marlou L Dirks
- Nutritional Physiology Group, Department of Sport and Health Sciences, College of Life and Environmental Sciences, University of Exeter, Exeter, United Kingdom
| | - Benjamin P Lee
- Institute of Biomedical and Clinical Sciences, University of Exeter Medical School, University of Exeter, Exeter, United Kingdom
| | - Doaa R Abdelrahman
- Department of Surgery, University of Texas Medical Branch, Galveston, Texas
| | - Andrew J Murton
- Department of Surgery, University of Texas Medical Branch, Galveston, Texas
| | - Craig Porter
- Department of Surgery, University of Texas Medical Branch, Galveston, Texas
| | | | | | - Benjamin T Wall
- Nutritional Physiology Group, Department of Sport and Health Sciences, College of Life and Environmental Sciences, University of Exeter, Exeter, United Kingdom
| | - Francis B Stephens
- Nutritional Physiology Group, Department of Sport and Health Sciences, College of Life and Environmental Sciences, University of Exeter, Exeter, United Kingdom
| |
Collapse
|
213
|
Kopinke D, Norris AM, Mukhopadhyay S. Developmental and regenerative paradigms of cilia regulated hedgehog signaling. Semin Cell Dev Biol 2021; 110:89-103. [PMID: 32540122 PMCID: PMC7736055 DOI: 10.1016/j.semcdb.2020.05.029] [Citation(s) in RCA: 64] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2020] [Revised: 05/25/2020] [Accepted: 05/29/2020] [Indexed: 01/08/2023]
Abstract
Primary cilia are immotile appendages that have evolved to receive and interpret a variety of different extracellular cues. Cilia play crucial roles in intercellular communication during development and defects in cilia affect multiple tissues accounting for a heterogeneous group of human diseases called ciliopathies. The Hedgehog (Hh) signaling pathway is one of these cues and displays a unique and symbiotic relationship with cilia. Not only does Hh signaling require cilia for its function but the majority of the Hh signaling machinery is physically located within the cilium-centrosome complex. More specifically, cilia are required for both repressing and activating Hh signaling by modifying bifunctional Gli transcription factors into repressors or activators. Defects in balancing, interpreting or establishing these repressor/activator gradients in Hh signaling either require cilia or phenocopy disruption of cilia. Here, we will summarize the current knowledge on how spatiotemporal control of the molecular machinery of the cilium allows for a tight control of basal repression and activation states of the Hh pathway. We will then discuss several paradigms on how cilia influence Hh pathway activity in tissue morphogenesis during development. Last, we will touch on how cilia and Hh signaling are being reactivated and repurposed during adult tissue regeneration. More specifically, we will focus on mesenchymal stem cells within the connective tissue and discuss the similarities and differences of how cilia and ciliary Hh signaling control the formation of fibrotic scar and adipose tissue during fatty fibrosis of several tissues.
Collapse
Affiliation(s)
- Daniel Kopinke
- Department of Pharmacology and Therapeutics, University of Florida, Gainesville, FL 32610, USA.
| | - Alessandra M Norris
- Department of Pharmacology and Therapeutics, University of Florida, Gainesville, FL 32610, USA
| | - Saikat Mukhopadhyay
- Department of Cell Biology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA.
| |
Collapse
|
214
|
Nuge T, Liu Z, Liu X, Ang BC, Andriyana A, Metselaar HSC, Hoque ME. Recent Advances in Scaffolding from Natural-Based Polymers for Volumetric Muscle Injury. Molecules 2021; 26:699. [PMID: 33572728 PMCID: PMC7865392 DOI: 10.3390/molecules26030699] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2020] [Revised: 01/03/2021] [Accepted: 01/06/2021] [Indexed: 02/07/2023] Open
Abstract
Volumetric Muscle Loss (VML) is associated with muscle loss function and often untreated and considered part of the natural sequelae of trauma. Various types of biomaterials with different physical and properties have been developed to treat VML. However, much work remains yet to be done before the scaffolds can pass from the bench to the bedside. The present review aims to provide a comprehensive summary of the latest developments in the construction and application of natural polymers-based tissue scaffolding for volumetric muscle injury. Here, the tissue engineering approaches for treating volumetric muscle loss injury are highlighted and recent advances in cell-based therapies using various sources of stem cells are elaborated in detail. An overview of different strategies of tissue scaffolding and their efficacy on skeletal muscle cells regeneration and migration are presented. Furthermore, the present paper discusses a wide range of natural polymers with a special focus on proteins and polysaccharides that are major components of the extracellular matrices. The natural polymers are biologically active and excellently promote cell adhesion and growth. These bio-characteristics justify natural polymers as one of the most attractive options for developing scaffolds for muscle cell regeneration.
Collapse
Affiliation(s)
- Tamrin Nuge
- Department of Mechanical, Materials and Manufacturing Engineering, Faculty of Science and Engineering, University of Nottingham Ningbo China, 199 Taikang East Road, Ningbo 315100, China; (T.N.); (Z.L.)
| | - Ziqian Liu
- Department of Mechanical, Materials and Manufacturing Engineering, Faculty of Science and Engineering, University of Nottingham Ningbo China, 199 Taikang East Road, Ningbo 315100, China; (T.N.); (Z.L.)
| | - Xiaoling Liu
- Department of Mechanical, Materials and Manufacturing Engineering, Faculty of Science and Engineering, University of Nottingham Ningbo China, 199 Taikang East Road, Ningbo 315100, China; (T.N.); (Z.L.)
| | - Bee Chin Ang
- Centre of Advanced Materials, Faculty of Engineering, University of Malaya, Kuala Lumpur 50603, Malaysia; (A.A.); (H.S.C.M.)
- Department of Chemical Engineering, Faculty of Engineering, University of Malaya, Kuala Lumpur 50603, Malaysia
| | - Andri Andriyana
- Centre of Advanced Materials, Faculty of Engineering, University of Malaya, Kuala Lumpur 50603, Malaysia; (A.A.); (H.S.C.M.)
- Department of Mechanical Engineering, Faculty of Engineering, University of Malaya, Kuala Lumpur 50603, Malaysia
| | - Hendrik Simon Cornelis Metselaar
- Centre of Advanced Materials, Faculty of Engineering, University of Malaya, Kuala Lumpur 50603, Malaysia; (A.A.); (H.S.C.M.)
- Department of Mechanical Engineering, Faculty of Engineering, University of Malaya, Kuala Lumpur 50603, Malaysia
| | - Md Enamul Hoque
- Department of Biomedical Engineering, Military Institute of Science and Technology (MIST), Dhaka 1216, Bangladesh;
| |
Collapse
|
215
|
Relaix F, Bencze M, Borok MJ, Der Vartanian A, Gattazzo F, Mademtzoglou D, Perez-Diaz S, Prola A, Reyes-Fernandez PC, Rotini A, Taglietti. Perspectives on skeletal muscle stem cells. Nat Commun 2021; 12:692. [PMID: 33514709 PMCID: PMC7846784 DOI: 10.1038/s41467-020-20760-6] [Citation(s) in RCA: 198] [Impact Index Per Article: 49.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2019] [Accepted: 12/17/2020] [Indexed: 01/30/2023] Open
Abstract
Skeletal muscle has remarkable regeneration capabilities, mainly due to its resident muscle stem cells (MuSCs). In this review, we introduce recently developed technologies and the mechanistic insights they provide to the understanding of MuSC biology, including the re-definition of quiescence and Galert states. Additionally, we present recent studies that link MuSC function with cellular heterogeneity, highlighting the complex regulation of self-renewal in regeneration, muscle disorders and aging. Finally, we discuss MuSC metabolism and its role, as well as the multifaceted regulation of MuSCs by their niche. The presented conceptual advances in the MuSC field impact on our general understanding of stem cells and their therapeutic use in regenerative medicine.
Collapse
Affiliation(s)
- F. Relaix
- grid.462410.50000 0004 0386 3258Univ Paris Est Creteil, INSERM, IMRB, 94010 Creteil, France ,EnvA, IMRB, 94700 Maisons-Alfort, France ,grid.462410.50000 0004 0386 3258EFS, IMRB, 94010 Creteil, France ,grid.50550.350000 0001 2175 4109AP-HP, Hopital Mondor, Service d’histologie, 94010 Creteil, France
| | - M. Bencze
- grid.462410.50000 0004 0386 3258Univ Paris Est Creteil, INSERM, IMRB, 94010 Creteil, France
| | - M. J. Borok
- grid.462410.50000 0004 0386 3258Univ Paris Est Creteil, INSERM, IMRB, 94010 Creteil, France
| | - A. Der Vartanian
- grid.462410.50000 0004 0386 3258Univ Paris Est Creteil, INSERM, IMRB, 94010 Creteil, France
| | - F. Gattazzo
- grid.462410.50000 0004 0386 3258Univ Paris Est Creteil, INSERM, IMRB, 94010 Creteil, France ,grid.462410.50000 0004 0386 3258EFS, IMRB, 94010 Creteil, France
| | - D. Mademtzoglou
- grid.462410.50000 0004 0386 3258Univ Paris Est Creteil, INSERM, IMRB, 94010 Creteil, France
| | - S. Perez-Diaz
- grid.462410.50000 0004 0386 3258Univ Paris Est Creteil, INSERM, IMRB, 94010 Creteil, France
| | - A. Prola
- grid.462410.50000 0004 0386 3258Univ Paris Est Creteil, INSERM, IMRB, 94010 Creteil, France ,EnvA, IMRB, 94700 Maisons-Alfort, France
| | - P. C. Reyes-Fernandez
- grid.462410.50000 0004 0386 3258Univ Paris Est Creteil, INSERM, IMRB, 94010 Creteil, France
| | - A. Rotini
- grid.462410.50000 0004 0386 3258Univ Paris Est Creteil, INSERM, IMRB, 94010 Creteil, France
| | - Taglietti
- grid.462410.50000 0004 0386 3258Univ Paris Est Creteil, INSERM, IMRB, 94010 Creteil, France
| |
Collapse
|
216
|
Ban HS, Uto Y, Nakamura H. Hypoxia-inducible factor (HIF) inhibitors: a patent survey (2016-2020). Expert Opin Ther Pat 2021; 31:387-397. [PMID: 33455469 DOI: 10.1080/13543776.2021.1874345] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Abstract
Introduction: Hypoxia-inducible factor (HIF) is a master regulator of oxygen homeostasis. The increased expression of genes targeted by HIF is associated with many human diseases, including ischemic cardiovascular disease, stroke, chronic lung disease, and cancer.Areas covered: This patent survey summarizes the information about patented HIF inhibitors over the last 5 years.Expert opinion: HIF inhibitors have shown promise for the treatment of hypoxic pulmonary hypertension, a circadian rhythm disorder, calcific aortic valve disease, cerebrovascular accident, and heterotopic ossification. In addition, HIF-2α inhibitors can be used for the treatment or prevention of iron overload disorders, Crohn's disease, ulcerative colitis, and thyroid eye disease, or to improve muscle generation and repair. PT2385 completed phase I clinical trials for the treatment of clear cell renal cell carcinoma. It exerted a higher synergistic inhibitory effect on tumor growth in combination with anti-PD-1 antibody, in comparison with each treatment alone, indicating that effective immunotherapy for solid tumors counteracts of the immunosuppression induced by hypoxia. Therefore, considering the effects of hypoxia on cancer cells, stromal cells, and effector immune cells, it is important to develop inhibitors of molecular pathways activated by hypoxia for successful treatments.
Collapse
Affiliation(s)
- Hyun Seung Ban
- Biomedical Translational Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon, Republic of Korea
| | - Yoshikazu Uto
- ASCA Company, Daiichi Sankyo Co., Ltd., Tokyo, Japan
| | - Hiroyuki Nakamura
- cLaboratory for Chemistry and Life Science, Institute of Innovative Research, Tokyo Institute of Technology, Yokohama, Japan
| |
Collapse
|
217
|
Luo H, Lv W, Tong Q, Jin J, Xu Z, Zuo B. Functional Non-coding RNA During Embryonic Myogenesis and Postnatal Muscle Development and Disease. Front Cell Dev Biol 2021; 9:628339. [PMID: 33585483 PMCID: PMC7876409 DOI: 10.3389/fcell.2021.628339] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2020] [Accepted: 01/06/2021] [Indexed: 12/19/2022] Open
Abstract
Skeletal muscle is a highly heterogeneous tissue that plays a crucial role in mammalian metabolism and motion maintenance. Myogenesis is a complex biological process that includes embryonic and postnatal development, which is regulated by specific signaling pathways and transcription factors. Various non-coding RNAs (ncRNAs) account for the majority of total RNA in cells and have an important regulatory role in myogenesis. In this review, we introduced the research progress in miRNAs, circRNAs, and lncRNAs related to embryonic and postnatal muscle development. We mainly focused on ncRNAs that regulate myoblast proliferation, differentiation, and postnatal muscle development through multiple mechanisms. Finally, challenges and future perspectives related to the identification and verification of functional ncRNAs are discussed. The identification and elucidation of ncRNAs related to myogenesis will enrich the myogenic regulatory network, and the effective application of ncRNAs will enhance the function of skeletal muscle.
Collapse
Affiliation(s)
- Hongmei Luo
- Key Laboratory of Swine Genetics and Breeding of the Ministry of Agriculture and Rural Affairs, Huazhong Agricultural University, Wuhan, China.,Key Laboratory of Agriculture Animal Genetics, Breeding and Reproduction of the Ministry of Education, Huazhong Agricultural University, Wuhan, China
| | - Wei Lv
- Key Laboratory of Swine Genetics and Breeding of the Ministry of Agriculture and Rural Affairs, Huazhong Agricultural University, Wuhan, China.,Key Laboratory of Agriculture Animal Genetics, Breeding and Reproduction of the Ministry of Education, Huazhong Agricultural University, Wuhan, China
| | - Qian Tong
- Key Laboratory of Swine Genetics and Breeding of the Ministry of Agriculture and Rural Affairs, Huazhong Agricultural University, Wuhan, China.,Key Laboratory of Agriculture Animal Genetics, Breeding and Reproduction of the Ministry of Education, Huazhong Agricultural University, Wuhan, China
| | - Jianjun Jin
- Key Laboratory of Swine Genetics and Breeding of the Ministry of Agriculture and Rural Affairs, Huazhong Agricultural University, Wuhan, China.,Key Laboratory of Agriculture Animal Genetics, Breeding and Reproduction of the Ministry of Education, Huazhong Agricultural University, Wuhan, China
| | - Zaiyan Xu
- Key Laboratory of Swine Genetics and Breeding of the Ministry of Agriculture and Rural Affairs, Huazhong Agricultural University, Wuhan, China.,Department of Basic Veterinary Medicine, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
| | - Bo Zuo
- Key Laboratory of Swine Genetics and Breeding of the Ministry of Agriculture and Rural Affairs, Huazhong Agricultural University, Wuhan, China.,Key Laboratory of Agriculture Animal Genetics, Breeding and Reproduction of the Ministry of Education, Huazhong Agricultural University, Wuhan, China.,The Cooperative Innovation Center for Sustainable Pig Production, Wuhan, China
| |
Collapse
|
218
|
Barlow J, Sfyri PP, Mitchell R, Verpoorten S, Scully D, Andreou C, Papadopoulos P, Patel K, Matsakas A. Platelet releasate normalises the compromised muscle regeneration in a mouse model of hyperlipidaemia. Exp Physiol 2021; 106:700-713. [PMID: 33450106 DOI: 10.1113/ep088937] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2020] [Accepted: 01/12/2021] [Indexed: 12/19/2022]
Abstract
NEW FINDINGS What is the central question of this study? What is the impact of obesity-independent hyperlipidaemia on skeletal muscle stem cell function of ApoE-deficient (ApoE-/- ) mice? What is the main finding and its importance? Compromised muscle stem cell function accounts for the impaired muscle regeneration in hyperlipidaemic ApoE-/- mice. Importantly, impaired muscle regeneration is normalised by administration of platelet releasate. ABSTRACT Muscle satellite cells are important stem cells for skeletal muscle regeneration and repair after injury. ApoE-deficient mice, an established mouse model of hyperlipidaemia and atherosclerosis, show evidence of oxidative stress-induced lesions and fat infiltration in skeletal muscle followed by impaired repair after injury. However, the mechanisms underpinning attenuated muscle regeneration remain to be fully defined. Key to addressing the latter is to understand the properties of muscle stem cells from ApoE-deficient mice and their myogenic potential. Muscle stem cells from ApoE-deficient mice were cultured both ex vivo (on single fibres) and in vitro (primary myoblasts) and their myogenic capacity was determined. Skeletal muscle regeneration was studied on days 5 and 10 after cardiotoxin injury. ApoE-deficient muscle stem cells showed delayed activation and differentiation on single muscle fibres ex vivo. Impaired proliferation and differentiation profiles were also evident on isolated primary muscle stem cells in culture. ApoE-deficient mice displayed impaired skeletal muscle regeneration after acute injury in vivo. Administration of platelet releasate in ApoE-deficient mice reversed the deficits of muscle regeneration after acute injury to wild-type levels. These findings indicate that muscle stem cell myogenic potential is perturbed in skeletal muscle of a mouse model of hyperlipidaemia. We propose that platelet releasate could be a therapeutic intervention for conditions with associated myopathy such as peripheral arterial disease.
Collapse
Affiliation(s)
- Joseph Barlow
- Molecular Physiology Laboratory, Hull York Medical School, Centre for Atherothrombosis & Metabolic Disease, University of Hull, Hull, UK
| | - Pagona Panagiota Sfyri
- Molecular Physiology Laboratory, Hull York Medical School, Centre for Atherothrombosis & Metabolic Disease, University of Hull, Hull, UK
| | - Rob Mitchell
- School of Biological Sciences, University of Reading, Reading, UK
| | - Sandrine Verpoorten
- Molecular Physiology Laboratory, Hull York Medical School, Centre for Atherothrombosis & Metabolic Disease, University of Hull, Hull, UK
| | - David Scully
- Molecular Physiology Laboratory, Hull York Medical School, Centre for Atherothrombosis & Metabolic Disease, University of Hull, Hull, UK
| | - Charalampos Andreou
- Molecular Physiology Laboratory, Hull York Medical School, Centre for Atherothrombosis & Metabolic Disease, University of Hull, Hull, UK
| | - Petros Papadopoulos
- Department of Hematology, Hospital Clínico San Carlos, Instituto de Investigación Sanitaria San Carlos (IdISSC), Madrid, Spain
| | - Ketan Patel
- School of Biological Sciences, University of Reading, Reading, UK
| | - Antonios Matsakas
- Molecular Physiology Laboratory, Hull York Medical School, Centre for Atherothrombosis & Metabolic Disease, University of Hull, Hull, UK
| |
Collapse
|
219
|
Duchateau J, Stragier S, Baudry S, Carpentier A. Strength Training: In Search of Optimal Strategies to Maximize Neuromuscular Performance. Exerc Sport Sci Rev 2021; 49:2-14. [PMID: 33044332 DOI: 10.1249/jes.0000000000000234] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Training with low-load exercise performed under blood flow restriction can augment muscle hypertrophy and maximal strength to a similar extent as the classical high-load strength training method. However, the blood flow restriction method elicits only minor neural adaptations. In an attempt to maximize training-related gains, we propose using other protocols that combine high voluntary activation, mechanical tension, and metabolic stress.
Collapse
Affiliation(s)
| | | | | | - Alain Carpentier
- Laboratory for Biometry and Exercise Nutrition, Université Libre de Bruxelles, Brussels, Belgium
| |
Collapse
|
220
|
Iio H, Kikugawa T, Sawada Y, Sakai H, Yoshida S, Yanagihara Y, Ikedo A, Saeki N, Fukada SI, Saika T, Imai Y. DNA maintenance methylation enzyme Dnmt1 in satellite cells is essential for muscle regeneration. Biochem Biophys Res Commun 2021; 534:79-85. [PMID: 33310192 DOI: 10.1016/j.bbrc.2020.11.116] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2020] [Accepted: 11/27/2020] [Indexed: 01/13/2023]
Abstract
Epigenetic transcriptional regulation is essential for the differentiation of various types of cells, including skeletal muscle cells. DNA methyltransferase 1 (Dnmt1) is responsible for maintenance of DNA methylation patterns via cell division. Here, we investigated the relationship between Dnmt1 and skeletal muscle regeneration. We found that Dnmt1 is upregulated in muscles during regeneration. To assess the role of Dnmt1 in satellite cells during regeneration, we performed conditional knockout (cKO) of Dnmt1 specifically in skeletal muscle satellite cells using Pax7CreERT2 mice and Dnmt1 flox mice. Muscle weight and the cross-sectional area after injury were significantly lower in Dnmt1 cKO mice than in control mice. RNA sequencing analysis revealed upregulation of genes involved in cell adhesion and apoptosis in satellite cells from cKO mice. Moreover, satellite cells cultured from cKO mice exhibited a reduced number of cells. These results suggest that Dnmt1 is an essential factor for muscle regeneration and is involved in positive regulation of satellite cell number.
Collapse
Affiliation(s)
- Hiroyuki Iio
- Department of Urology, Ehime University Graduate School of Medicine, Shitsukawa, Toon Ehime, 791-0295, Japan; Division of Integrative Pathophysiology, Proteo-Science Center, Ehime University, Shitsukawa, Toon Ehime, 791-0295, Japan
| | - Tadahiko Kikugawa
- Department of Urology, Ehime University Graduate School of Medicine, Shitsukawa, Toon Ehime, 791-0295, Japan
| | - Yuichiro Sawada
- Department of Urology, Ehime University Graduate School of Medicine, Shitsukawa, Toon Ehime, 791-0295, Japan; Division of Integrative Pathophysiology, Proteo-Science Center, Ehime University, Shitsukawa, Toon Ehime, 791-0295, Japan
| | - Hiroshi Sakai
- Division of Integrative Pathophysiology, Proteo-Science Center, Ehime University, Shitsukawa, Toon Ehime, 791-0295, Japan; Department of Pathophysiology, Ehime University Graduate School of Medicine, Shitsukawa, Toon Ehime, 791-0295, Japan
| | - Shuhei Yoshida
- Department of Pathophysiology, Ehime University Graduate School of Medicine, Shitsukawa, Toon Ehime, 791-0295, Japan
| | - Yuta Yanagihara
- Division of Integrative Pathophysiology, Proteo-Science Center, Ehime University, Shitsukawa, Toon Ehime, 791-0295, Japan; Division of Laboratory Animal Research, Advanced Research Support Center, Ehime University, Shitsukawa, Toon Ehime, 791-0295, Japan
| | - Aoi Ikedo
- Division of Integrative Pathophysiology, Proteo-Science Center, Ehime University, Shitsukawa, Toon Ehime, 791-0295, Japan
| | - Noritaka Saeki
- Division of Integrative Pathophysiology, Proteo-Science Center, Ehime University, Shitsukawa, Toon Ehime, 791-0295, Japan; Division of Laboratory Animal Research, Advanced Research Support Center, Ehime University, Shitsukawa, Toon Ehime, 791-0295, Japan
| | - So-Ichiro Fukada
- Project for Muscle Stem Cell Biology, Graduate School of Pharmaceutical Sciences, Osaka University, Suita, Osaka, 565-0871, Japan
| | - Takashi Saika
- Department of Urology, Ehime University Graduate School of Medicine, Shitsukawa, Toon Ehime, 791-0295, Japan
| | - Yuuki Imai
- Division of Integrative Pathophysiology, Proteo-Science Center, Ehime University, Shitsukawa, Toon Ehime, 791-0295, Japan; Department of Pathophysiology, Ehime University Graduate School of Medicine, Shitsukawa, Toon Ehime, 791-0295, Japan; Division of Laboratory Animal Research, Advanced Research Support Center, Ehime University, Shitsukawa, Toon Ehime, 791-0295, Japan.
| |
Collapse
|
221
|
Abstract
The resident stem cell for skeletal muscle is the satellite cell. On the 50th anniversary of its discovery in 1961, we described the history of skeletal muscle research and the seminal findings made during the first 20 years in the life of the satellite cell (Scharner and Zammit 2011, doi: 10.1186/2044-5040-1-28). These studies established the satellite cell as the source of myoblasts for growth and regeneration of skeletal muscle. Now on the 60th anniversary, we highlight breakthroughs in the second phase of satellite cell research from 1980 to 2000. These include technical innovations such as isolation of primary satellite cells and viable muscle fibres complete with satellite cells in their niche, together with generation of many useful reagents including genetically modified organisms and antibodies still in use today. New methodologies were combined with description of endogenous satellite cells markers, notably Pax7. Discovery of the muscle regulatory factors Myf5, MyoD, myogenin, and MRF4 in the late 1980s revolutionized understanding of the control of both developmental and regerenative myogenesis. Emergence of genetic lineage markers facilitated identification of satellite cells in situ, and also empowered transplantation studies to examine satellite cell function. Finally, satellite cell heterogeneity and the supportive role of non-satellite cell types in muscle regeneration were described. These major advances in methodology and in understanding satellite cell biology provided further foundations for the dramatic escalation of work on muscle stem cells in the 21st century.
Collapse
Affiliation(s)
- Elise N Engquist
- Randall Centre for Cell and Molecular Biophysics, King's College London, Guy's Campus, London, SE1 1UL, UK
| | - Peter S Zammit
- Randall Centre for Cell and Molecular Biophysics, King's College London, Guy's Campus, London, SE1 1UL, UK
| |
Collapse
|
222
|
Owens DJ, Messéant J, Moog S, Viggars M, Ferry A, Mamchaoui K, Lacène E, Roméro N, Brull A, Bonne G, Butler-Browne G, Coirault C. Lamin-Related Congenital Muscular Dystrophy Alters Mechanical Signaling and Skeletal Muscle Growth. Int J Mol Sci 2020; 22:ijms22010306. [PMID: 33396724 PMCID: PMC7795708 DOI: 10.3390/ijms22010306] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2020] [Revised: 12/19/2020] [Accepted: 12/26/2020] [Indexed: 12/14/2022] Open
Abstract
Laminopathies are a clinically heterogeneous group of disorders caused by mutations in the LMNA gene, which encodes the nuclear envelope proteins lamins A and C. The most frequent diseases associated with LMNA mutations are characterized by skeletal and cardiac involvement, and include autosomal dominant Emery–Dreifuss muscular dystrophy (EDMD), limb-girdle muscular dystrophy type 1B, and LMNA-related congenital muscular dystrophy (LMNA-CMD). Although the exact pathophysiological mechanisms responsible for LMNA-CMD are not yet understood, severe contracture and muscle atrophy suggest that mutations may impair skeletal muscle growth. Using human muscle stem cells (MuSCs) carrying LMNA-CMD mutations, we observe impaired myogenic fusion with disorganized cadherin/β catenin adhesion complexes. We show that skeletal muscle from Lmna-CMD mice is unable to hypertrophy in response to functional overload, due to defective fusion of activated MuSCs, defective protein synthesis and defective remodeling of the neuromuscular junction. Moreover, stretched myotubes and overloaded muscle fibers with LMNA-CMD mutations display aberrant mechanical regulation of the yes-associated protein (YAP). We also observe defects in MuSC activation and YAP signaling in muscle biopsies from LMNA-CMD patients. These phenotypes are not recapitulated in closely related but less severe EDMD models. In conclusion, combining studies in vitro, in vivo, and patient samples, we find that LMNA-CMD mutations interfere with mechanosignaling pathways in skeletal muscle, implicating A-type lamins in the regulation of skeletal muscle growth.
Collapse
Affiliation(s)
- Daniel J. Owens
- Center for Research in Myology, Sorbonne Université, INSERM UMRS_974, 75013 Paris, France; (D.J.O.); (J.M.); (A.F.); (K.M.); (A.B.); (G.B.); (G.B.-B.)
- Research Institute for Sport and Exercise Science, Liverpool John Moores University, Liverpool L3 3AF, UK;
| | - Julien Messéant
- Center for Research in Myology, Sorbonne Université, INSERM UMRS_974, 75013 Paris, France; (D.J.O.); (J.M.); (A.F.); (K.M.); (A.B.); (G.B.); (G.B.-B.)
| | | | - Mark Viggars
- Research Institute for Sport and Exercise Science, Liverpool John Moores University, Liverpool L3 3AF, UK;
| | - Arnaud Ferry
- Center for Research in Myology, Sorbonne Université, INSERM UMRS_974, 75013 Paris, France; (D.J.O.); (J.M.); (A.F.); (K.M.); (A.B.); (G.B.); (G.B.-B.)
- Université de Paris, 75006 Paris, France
| | - Kamel Mamchaoui
- Center for Research in Myology, Sorbonne Université, INSERM UMRS_974, 75013 Paris, France; (D.J.O.); (J.M.); (A.F.); (K.M.); (A.B.); (G.B.); (G.B.-B.)
- Neuromuscular Morphology Unit, Institute of Myology, Pitié-Salpêtrière Hospital, 75013 Paris, France; (E.L.); (N.R.)
| | - Emmanuelle Lacène
- Neuromuscular Morphology Unit, Institute of Myology, Pitié-Salpêtrière Hospital, 75013 Paris, France; (E.L.); (N.R.)
| | - Norma Roméro
- Neuromuscular Morphology Unit, Institute of Myology, Pitié-Salpêtrière Hospital, 75013 Paris, France; (E.L.); (N.R.)
- APHP, Reference Center for Neuromuscular Disorders, Pitié-Salpêtrière Hospital, Institute of Myology, 75013 Paris, France
| | - Astrid Brull
- Center for Research in Myology, Sorbonne Université, INSERM UMRS_974, 75013 Paris, France; (D.J.O.); (J.M.); (A.F.); (K.M.); (A.B.); (G.B.); (G.B.-B.)
| | - Gisèle Bonne
- Center for Research in Myology, Sorbonne Université, INSERM UMRS_974, 75013 Paris, France; (D.J.O.); (J.M.); (A.F.); (K.M.); (A.B.); (G.B.); (G.B.-B.)
| | - Gillian Butler-Browne
- Center for Research in Myology, Sorbonne Université, INSERM UMRS_974, 75013 Paris, France; (D.J.O.); (J.M.); (A.F.); (K.M.); (A.B.); (G.B.); (G.B.-B.)
| | - Catherine Coirault
- Center for Research in Myology, Sorbonne Université, INSERM UMRS_974, 75013 Paris, France; (D.J.O.); (J.M.); (A.F.); (K.M.); (A.B.); (G.B.); (G.B.-B.)
- Correspondence: ; Tel.: +33-1-1-4216-5708
| |
Collapse
|
223
|
Barrett P, Quick TJ, Mudera V, Player DJ. Generating intrafusal skeletal muscle fibres in vitro: Current state of the art and future challenges. J Tissue Eng 2020; 11:2041731420985205. [PMID: 34956586 PMCID: PMC8693220 DOI: 10.1177/2041731420985205] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2020] [Accepted: 12/12/2020] [Indexed: 01/18/2023] Open
Abstract
Intrafusal fibres are a specialised cell population in skeletal muscle, found within the muscle spindle. These fibres have a mechano-sensory capacity, forming part of the monosynaptic stretch-reflex arc, a key component responsible for proprioceptive function. Impairment of proprioception and associated dysfunction of the muscle spindle is linked with many neuromuscular diseases. Research to-date has largely been undertaken in vivo or using ex vivo preparations. These studies have provided a foundation for our understanding of muscle spindle physiology, however, the cellular and molecular mechanisms which underpin physiological changes are yet to be fully elucidated. Therefrom, the use of in vitro models has been proposed, whereby intrafusal fibres can be generated de novo. Although there has been progress, it is predominantly a developing and evolving area of research. This narrative review presents the current state of art in this area and proposes the direction of future work, with the aim of providing novel pre-clinical and clinical applications.
Collapse
Affiliation(s)
- Philip Barrett
- Centre for 3D Models of Health and Disease, Division of Surgery and Interventional Science, Faculty of Medical Sciences, University College London, London, UK
| | - Tom J Quick
- Peripheral Nerve Injury Research Unit, Royal National Orthopaedic Hospital, Stanmore, UK
- UCL Centre for Nerve Engineering, University College London, London, UK
| | - Vivek Mudera
- Centre for 3D Models of Health and Disease, Division of Surgery and Interventional Science, Faculty of Medical Sciences, University College London, London, UK
| | - Darren J Player
- Centre for 3D Models of Health and Disease, Division of Surgery and Interventional Science, Faculty of Medical Sciences, University College London, London, UK
| |
Collapse
|
224
|
Bronisz-Budzyńska I, Kozakowska M, Podkalicka P, Kachamakova-Trojanowska N, Łoboda A, Dulak J. The role of Nrf2 in acute and chronic muscle injury. Skelet Muscle 2020; 10:35. [PMID: 33287890 PMCID: PMC7722332 DOI: 10.1186/s13395-020-00255-0] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2020] [Accepted: 11/24/2020] [Indexed: 12/11/2022] Open
Abstract
The nuclear factor erythroid 2-related factor 2 (Nrf2) is considered as a master cytoprotective factor regulating the expression of genes encoding anti-oxidant, anti-inflammatory, and detoxifying proteins. The role of Nrf2 in the pathophysiology of skeletal muscles has been evaluated in different experimental models, however, due to inconsistent data, we aimed to investigate how Nrf2 transcriptional deficiency (Nrf2tKO) affects muscle functions both in an acute and chronic injury. The acute muscle damage was induced in mice of two genotypes-WT and Nrf2tKO mice by cardiotoxin (CTX) injection. To investigate the role of Nrf2 in chronic muscle pathology, mdx mice that share genetic, biochemical, and histopathological features with Duchenne muscular dystrophy (DMD) were crossed with mice lacking transcriptionally active Nrf2 and double knockouts (mdx/Nrf2tKO) were generated. To worsen the dystrophic phenotype, the analysis of disease pathology was also performed in aggravated conditions, by applying a long-term treadmill test. We have observed slightly increased muscle damage in Nrf2tKO mice after CTX injection. Nevertheless, transcriptional ablation of Nrf2 in mdx mice did not significantly aggravate the most deleterious, pathological hallmarks of DMD related to degeneration, inflammation, fibrotic scar formation, angiogenesis, and the number and proliferation of satellite cells in non-exercised conditions. On the other hand, upon chronic exercises, the degeneration and inflammatory infiltration of the gastrocnemius muscle, but not the diaphragm, turned to be increased in Nrf2tKOmdx in comparison to mdx mice. In conclusion, the lack of transcriptionally active Nrf2 influences moderately muscle pathology in acute CTX-induced muscle injury and chronic DMD mouse model, without affecting muscle functionality. Hence, in general, we demonstrated that the deficiency of Nrf2 transcriptional activity has no profound impact on muscle pathology in various models of muscle injury.
Collapse
Affiliation(s)
- Iwona Bronisz-Budzyńska
- Department of Medical Biotechnology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Gronostajowa 7, 30-387 Kraków, Poland
| | - Magdalena Kozakowska
- Department of Medical Biotechnology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Gronostajowa 7, 30-387 Kraków, Poland
| | - Paulina Podkalicka
- Department of Medical Biotechnology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Gronostajowa 7, 30-387 Kraków, Poland
| | | | - Agnieszka Łoboda
- Department of Medical Biotechnology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Gronostajowa 7, 30-387 Kraków, Poland
| | - Józef Dulak
- Department of Medical Biotechnology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Gronostajowa 7, 30-387 Kraków, Poland
| |
Collapse
|
225
|
Wu Z, Xu H, Xu Y, Fan W, Yao H, Wang Y, Hu W, Lou G, Shi Y, Chen X, Yang L, Wen L, Xiao H, Wang B, Yang Y, Liu W, Meng X, Wang Y. Andrographolide promotes skeletal muscle regeneration after acute injury through epigenetic modulation. Eur J Pharmacol 2020; 888:173470. [PMID: 32822641 DOI: 10.1016/j.ejphar.2020.173470] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2020] [Revised: 08/01/2020] [Accepted: 08/06/2020] [Indexed: 11/17/2022]
Abstract
Myopathy is a muscle disease in which muscle fibers do not function properly, and eventually cause severe diseases, such as muscular dystrophy. The properly regeneration of skeletal muscle plays a pivotal role to maintain the muscle function after muscle injury. The aim of this study is to determine whether andrographolide plays an effect role on regulating skeletal muscle regeneration. Mouse satellite cells, C2C12 cells and Cardiotoxin (CTX) intramuscular injection induced acute skeletal muscle injury model were used to evaluate whether andrographolide is essential for skeletal muscle regeneration. The underling mechanism detected using immunohistochemistry stain, western blot, real time PCR. Andrographolide promotes mouse skeletal muscle regeneration. In cardiotoxin induced skeletal muscle injury model, andrographolide treatment enhanced myotube generation and promoted myotube fusion. Andrographolide treatment dramatically increased expression of myotube differentiation related genes, including Desmin, MyoD, MyoG, Myomaker, Tnni2, Dmd, Myoz1 and Myoz3. For the mechanism studies, we observed that andrographolide treatment significantly promoted histone modification, such as H3K4Me2, H3K4Me3 and H3K36Me2, both in vivo and in vitro. Treatment with DZNep, a Lysine methyltransferase EZH2 inhibitor, significantly attenuated andrographolide-induced expression of Myf5, Myomaker, Skeletal muscle α-actin, MyoD and MyoG. Taken together, our data in this study demonstrate andrographolide epigenetically drives differentiation and fusion of myotube, eventually promotes skeletal muscle regeneration. This should be a therapeutic treatment for skeletal muscle regeneration after muscle damage.
Collapse
Affiliation(s)
- Ziqiang Wu
- Chengdu University of Traditional Chinese Medicine, College of Basic Medicine, Chengdu, China; Chengdu University of Traditional Chinese Medicine, College Pharmacy, Chengdu, China
| | - Huan Xu
- Chengdu University of Traditional Chinese Medicine, College of Basic Medicine, Chengdu, China
| | - Yiming Xu
- Guangzhou Medical University, School of Basic Medical Sciences, Guangzhou, China
| | - Weichuan Fan
- Chengdu Tongde Pharmaceutical CO., LTD, Chengdu, China
| | - Huan Yao
- Chengdu University of Traditional Chinese Medicine, College of Basic Medicine, Chengdu, China
| | - Yang Wang
- Chengdu University of Traditional Chinese Medicine, College of Basic Medicine, Chengdu, China
| | - Wangming Hu
- Chengdu University of Traditional Chinese Medicine, College of Basic Medicine, Chengdu, China
| | - Guanhua Lou
- Chengdu University of Traditional Chinese Medicine, College of Basic Medicine, Chengdu, China
| | - Yaping Shi
- Chengdu University of Traditional Chinese Medicine, College of Basic Medicine, Chengdu, China
| | - Xiongbing Chen
- Chengdu University of Traditional Chinese Medicine, College of Basic Medicine, Chengdu, China
| | - Lan Yang
- Chengdu University of Traditional Chinese Medicine, College of Basic Medicine, Chengdu, China
| | - Li Wen
- Chengdu University of Traditional Chinese Medicine, College of Basic Medicine, Chengdu, China
| | - Han Xiao
- Chengdu University of Traditional Chinese Medicine, College of Basic Medicine, Chengdu, China
| | - Baojia Wang
- Chengdu University of Traditional Chinese Medicine, College of Basic Medicine, Chengdu, China
| | - Youjun Yang
- Chengdu University of Traditional Chinese Medicine, College of Basic Medicine, Chengdu, China
| | - Weiming Liu
- China Rehabilitation Research Center, Department of Intensive Care Medicine, Beijing Bo Ai Hospital, Beijing, China
| | - Xianli Meng
- Chengdu University of Traditional Chinese Medicine, College Pharmacy, Chengdu, China.
| | - Yong Wang
- Chengdu University of Traditional Chinese Medicine, College of Basic Medicine, Chengdu, China.
| |
Collapse
|
226
|
Skuk D, Tremblay JP. Human Muscle Precursor Cells Form Human-Derived Myofibers in Skeletal Muscles of Nonhuman Primates: A Potential New Preclinical Setting to Test Myogenic Cells of Human Origin for Cell Therapy of Myopathies. J Neuropathol Exp Neurol 2020; 79:1265-1275. [PMID: 33094339 DOI: 10.1093/jnen/nlaa110] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
This study aimed to verify if human myogenic cells could participate in muscle regeneration in macaques. This experimental setting would grant researchers a model that could better evaluate the effects of cell therapies in myopathies with a better translation to human patients. Human muscle precursor cells (MPCs) were cultured in vitro and transduced with ß-galactosidase. The cells were subsequently injected into 1-cm3 muscle regions of 6 macaques immunosuppressed with tacrolimus and dexamethasone. Allogeneic ß-galactosidase+ MPCs were injected in other regions as positive controls. Some cell-grafted regions were electroporated to induce extensive muscle regeneration. MPC-grafted regions were sampled 1 month later and analyzed by histology. There were ß-galactosidase+ myofibers in both the regions grafted with human and macaque MPCs. Electroporation increased the engraftment of human MPCs in the same way as in macaque allografts. The histological analysis (hematoxylin and eosin, CD8, and CD4 immunodetection) demonstrated an absence of cellular rejection in most MPC-grafted regions, as well as minimal lymphocytic infiltration in the regions transplanted with human MPCs in the individual with the lowest tacrolimus levels. Circulating de novo anti-donor antibodies were not detected. In conclusion, we report the successful engraftment of human myogenic cells in macaques, which was possible using tacrolimus-based immunosuppression.
Collapse
Affiliation(s)
- Daniel Skuk
- From the Axe Neurosciences, Research Center of the CHU de Quebec - CHUL, Quebec, QC, Canada
| | - Jacques P Tremblay
- From the Axe Neurosciences, Research Center of the CHU de Quebec - CHUL, Quebec, QC, Canada
| |
Collapse
|
227
|
Cui Y, Franz AWE. Heterogeneity of midgut cells and their differential responses to blood meal ingestion by the mosquito, Aedes aegypti. INSECT BIOCHEMISTRY AND MOLECULAR BIOLOGY 2020; 127:103496. [PMID: 33188922 PMCID: PMC7739889 DOI: 10.1016/j.ibmb.2020.103496] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/15/2020] [Revised: 10/29/2020] [Accepted: 10/30/2020] [Indexed: 05/11/2023]
Abstract
Mosquitoes are the most notorious hematophagous insects and due to their blood feeding behavior and genetic compatibility, numerous mosquito species are highly efficient vectors for certain human pathogenic parasites and viruses. The mosquito midgut is the principal organ of blood meal digestion and nutrient absorption. It is also the initial site of infection with blood meal acquired parasites and viruses. We conducted an analysis based on single-nucleus RNA sequencing (snRNA-Seq) to assess the cellular diversity of the midgut and how individual cells respond to blood meal ingestion to facilitate its digestion. Our study revealed the presence of 20 distinguishable cell-type clusters in the female midgut of Aedes aegypti. The identified cell types included intestinal stem cells (ISC), enteroblasts (EB), differentiating EB (dEB), enteroendocrine cells (EE), enterocytes (EC), EC-like cells, cardia cells, and visceral muscle (VM) cells. Blood meal ingestion dramatically changed the overall midgut cell type composition, profoundly increasing the proportions of ISC and three EC/EC-like clusters. In addition, transcriptional profiles of all cell types were strongly affected while genes involved in various metabolic processes were significantly upregulated. Our study provides a basis for further physiological and molecular studies on blood digestion, nutrient absorption, and cellular homeostasis in the mosquito midgut.
Collapse
Affiliation(s)
- Yingjun Cui
- Department of Veterinary Pathobiology, University of Missouri, Columbia, MO, 65211, USA.
| | - Alexander W E Franz
- Department of Veterinary Pathobiology, University of Missouri, Columbia, MO, 65211, USA.
| |
Collapse
|
228
|
Lv W, Jin J, Xu Z, Luo H, Guo Y, Wang X, Wang S, Zhang J, Zuo H, Bai W, Peng Y, Tang J, Zhao S, Zuo B. lncMGPF is a novel positive regulator of muscle growth and regeneration. J Cachexia Sarcopenia Muscle 2020; 11:1723-1746. [PMID: 32954689 PMCID: PMC7749533 DOI: 10.1002/jcsm.12623] [Citation(s) in RCA: 50] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/16/2019] [Revised: 07/24/2020] [Accepted: 08/23/2020] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND Long non-coding RNAs (lncRNAs) play critical regulatory roles in diverse biological processes and diseases. While a large number of lncRNAs have been identified in skeletal muscles until now, their function and underlying mechanisms in skeletal myogenesis remain largely unclear. METHODS We characterized a novel functional lncRNA designated lncMGPF (lncRNA muscle growth promoting factor) using RACE, Northern blot, fluorescence in situ hybridization and quantitative real-time PCR. Its function was determined by gene overexpression, interference, and knockout experiments in C2C12 myoblasts, myogenic progenitor cells, and an animal model. The molecular mechanism by which lncMGPF regulates muscle differentiation was mainly examined by cotransfection experiments, luciferase reporter assay, RNA immunoprecipitation, RNA pull-down, and RNA stability analyses. RESULTS We report that lncMGPF, which is highly expressed in muscles and positively regulated by myoblast determination factor (MyoD), promotes myogenic differentiation of muscle cells in vivo and in vitro. lncMGPF knockout in mice substantially decreases growth rate, reduces muscle mass, and impairs muscle regeneration. Overexpression of lncMGPF in muscles can rescue the muscle phenotype of knockout mice and promote muscle growth of wild-type mice. Mechanistically, lncMGPF promotes muscle differentiation by acting as a molecular sponge of miR-135a-5p and thus increasing the expression of myocyte enhancer factor 2C (MEF2C), as well as by enhancing human antigen R-mediated messenger RNA stabilization of myogenic regulatory genes such as MyoD and myogenin (MyoG). We confirm that pig lncRNA AK394747 and human lncRNA MT510647 are homologous to mouse lncMGPF, with conserved function and mechanism during myogenesis. CONCLUSIONS Our data reveal that lncMGPF is a novel positive regulator of myogenic differentiation, muscle growth and regeneration in mice, pigs, and humans.
Collapse
Affiliation(s)
- Wei Lv
- Key Laboratory of Swine Genetics and Breeding of Ministry of Agriculture and Rural Affairs & Key Laboratory of Agriculture Animal Genetics, Breeding and Reproduction of Ministry of Education, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Jianjun Jin
- Key Laboratory of Swine Genetics and Breeding of Ministry of Agriculture and Rural Affairs & Key Laboratory of Agriculture Animal Genetics, Breeding and Reproduction of Ministry of Education, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Zaiyan Xu
- Key Laboratory of Swine Genetics and Breeding of Ministry of Agriculture and Rural Affairs & Key Laboratory of Agriculture Animal Genetics, Breeding and Reproduction of Ministry of Education, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan, China.,Department of Basic Veterinary Medicine, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
| | - Hongmei Luo
- Key Laboratory of Swine Genetics and Breeding of Ministry of Agriculture and Rural Affairs & Key Laboratory of Agriculture Animal Genetics, Breeding and Reproduction of Ministry of Education, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Yubo Guo
- Key Laboratory of Swine Genetics and Breeding of Ministry of Agriculture and Rural Affairs & Key Laboratory of Agriculture Animal Genetics, Breeding and Reproduction of Ministry of Education, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Xiaojing Wang
- Key Laboratory of Swine Genetics and Breeding of Ministry of Agriculture and Rural Affairs & Key Laboratory of Agriculture Animal Genetics, Breeding and Reproduction of Ministry of Education, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Shanshan Wang
- Key Laboratory of Swine Genetics and Breeding of Ministry of Agriculture and Rural Affairs & Key Laboratory of Agriculture Animal Genetics, Breeding and Reproduction of Ministry of Education, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Jiali Zhang
- Key Laboratory of Swine Genetics and Breeding of Ministry of Agriculture and Rural Affairs & Key Laboratory of Agriculture Animal Genetics, Breeding and Reproduction of Ministry of Education, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Hao Zuo
- Key Laboratory of Swine Genetics and Breeding of Ministry of Agriculture and Rural Affairs & Key Laboratory of Agriculture Animal Genetics, Breeding and Reproduction of Ministry of Education, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Wei Bai
- Key Laboratory of Swine Genetics and Breeding of Ministry of Agriculture and Rural Affairs & Key Laboratory of Agriculture Animal Genetics, Breeding and Reproduction of Ministry of Education, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Yaxing Peng
- Key Laboratory of Swine Genetics and Breeding of Ministry of Agriculture and Rural Affairs & Key Laboratory of Agriculture Animal Genetics, Breeding and Reproduction of Ministry of Education, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Junming Tang
- Hubei Key Laboratory of Embryonic Stem Cell Research, School of Basic Medicine Science, Hubei University of Medicine, Shiyan, China
| | - Shuhong Zhao
- Key Laboratory of Swine Genetics and Breeding of Ministry of Agriculture and Rural Affairs & Key Laboratory of Agriculture Animal Genetics, Breeding and Reproduction of Ministry of Education, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan, China.,The Cooperative Innovation Center for Sustainable Pig Production, Wuhan, China
| | - Bo Zuo
- Key Laboratory of Swine Genetics and Breeding of Ministry of Agriculture and Rural Affairs & Key Laboratory of Agriculture Animal Genetics, Breeding and Reproduction of Ministry of Education, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan, China.,The Cooperative Innovation Center for Sustainable Pig Production, Wuhan, China
| |
Collapse
|
229
|
Li J, Su T, Zou C, Luo W, Shi G, Chen L, Fang C, Li C. Long Non-coding RNA H19 Regulates Porcine Satellite Cell Differentiation Through miR-140-5p/ SOX4 and DBN1. Front Cell Dev Biol 2020; 8:518724. [PMID: 33324629 PMCID: PMC7723966 DOI: 10.3389/fcell.2020.518724] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2019] [Accepted: 09/29/2020] [Indexed: 12/14/2022] Open
Abstract
The H19 gene promotes skeletal muscle differentiation in mice, but the regulatory models and mechanisms of myogenesis regulated by H19 are largely unknown in pigs. Therefore, the regulatory modes of H19 in the differentiation of porcine skeletal muscle satellite cells (PSCs) need to be determined. We observed that H19 gene silencing could decrease the expressions of the myogenin (MYOG) gene, myogenic differentiation (MYOD), and myosin heavy chain (MYHC) in PSCs. Therefore, we constructed and sequenced 12 cDNA libraries of PSCs after knockdown of H19 at two differentiation time points to analyze the transcriptome differences. A total of 11,419 differentially expressed genes (DEGs) were identified. Among these DEGs, we found through bioinformatics analysis and protein interaction experiment that SRY-box transcription factor 4 (SOX4) and Drebrin 1 (DBN1) were the key genes in H19-regulated PSC differentiation. Functional analysis shows that SOX4 and DBN1 promote PSC differentiation. Mechanistically, H19 regulates PSC differentiation through two different pathways. On the one hand, H19 functions as a molecular sponge of miR-140-5p, which inhibits the differentiation of PSCs, thereby modulating the derepression of SOX4. On the other hand, H19 regulates PSC differentiation through directly binding with DBN1. Furthermore, MYOD binds to the promoters of H19 and DBN1. The knockdown of MYOD inhibits the expression of H19 and DBN1. We determined the function of H19 and provided a molecular model to elucidate H19’s role in regulating PSC differentiation.
Collapse
Affiliation(s)
- Jingxuan Li
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction of the Ministry of Education, Huazhong Agricultural University, Wuhan, China.,Key Laboratory of Swine Genetics and Breeding of the Ministry of Agriculture, Huazhong Agricultural University, Wuhan, China.,Shandong Provincial Key Laboratory of Animal Disease Control and Breeding, Institute of Animal Science and Veterinary Medicine, Shandong Academy of Agricultural Sciences, Jinan, China
| | - Tao Su
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction of the Ministry of Education, Huazhong Agricultural University, Wuhan, China.,Key Laboratory of Swine Genetics and Breeding of the Ministry of Agriculture, Huazhong Agricultural University, Wuhan, China
| | - Cheng Zou
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction of the Ministry of Education, Huazhong Agricultural University, Wuhan, China.,Key Laboratory of Swine Genetics and Breeding of the Ministry of Agriculture, Huazhong Agricultural University, Wuhan, China
| | - Wenzhe Luo
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction of the Ministry of Education, Huazhong Agricultural University, Wuhan, China.,Key Laboratory of Swine Genetics and Breeding of the Ministry of Agriculture, Huazhong Agricultural University, Wuhan, China
| | - Gaoli Shi
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction of the Ministry of Education, Huazhong Agricultural University, Wuhan, China.,Key Laboratory of Swine Genetics and Breeding of the Ministry of Agriculture, Huazhong Agricultural University, Wuhan, China
| | - Lin Chen
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction of the Ministry of Education, Huazhong Agricultural University, Wuhan, China.,Key Laboratory of Swine Genetics and Breeding of the Ministry of Agriculture, Huazhong Agricultural University, Wuhan, China
| | - Chengchi Fang
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction of the Ministry of Education, Huazhong Agricultural University, Wuhan, China.,Key Laboratory of Swine Genetics and Breeding of the Ministry of Agriculture, Huazhong Agricultural University, Wuhan, China.,The Cooperative Innovation Center for Sustainable Pig Production of Hubei Province, Wuhan, China
| | - Changchun Li
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction of the Ministry of Education, Huazhong Agricultural University, Wuhan, China.,Key Laboratory of Swine Genetics and Breeding of the Ministry of Agriculture, Huazhong Agricultural University, Wuhan, China.,The Cooperative Innovation Center for Sustainable Pig Production of Hubei Province, Wuhan, China
| |
Collapse
|
230
|
Choi S, Ferrari G, Tedesco FS. Cellular dynamics of myogenic cell migration: molecular mechanisms and implications for skeletal muscle cell therapies. EMBO Mol Med 2020; 12:e12357. [PMID: 33210465 PMCID: PMC7721365 DOI: 10.15252/emmm.202012357] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2020] [Revised: 08/02/2020] [Accepted: 08/28/2020] [Indexed: 12/14/2022] Open
Abstract
Directional cell migration is a critical process underlying morphogenesis and post-natal tissue regeneration. During embryonic myogenesis, migration of skeletal myogenic progenitors is essential to generate the anlagen of limbs, diaphragm and tongue, whereas in post-natal skeletal muscles, migration of muscle satellite (stem) cells towards regions of injury is necessary for repair and regeneration of muscle fibres. Additionally, safe and efficient migration of transplanted cells is critical in cell therapies, both allogeneic and autologous. Although various myogenic cell types have been administered intramuscularly or intravascularly, functional restoration has not been achieved yet in patients with degenerative diseases affecting multiple large muscles. One of the key reasons for this negative outcome is the limited migration of donor cells, which hinders the overall cell engraftment potential. Here, we review mechanisms of myogenic stem/progenitor cell migration during skeletal muscle development and post-natal regeneration. Furthermore, strategies utilised to improve migratory capacity of myogenic cells are examined in order to identify potential treatments that may be applied to future transplantation protocols.
Collapse
Affiliation(s)
- SungWoo Choi
- Department of Cell and Developmental Biology, University College London, London, UK.,The Francis Crick Institute, London, UK
| | - Giulia Ferrari
- Department of Cell and Developmental Biology, University College London, London, UK
| | - Francesco Saverio Tedesco
- Department of Cell and Developmental Biology, University College London, London, UK.,The Francis Crick Institute, London, UK.,Dubowitz Neuromuscular Centre, Great Ormond Street Institute of Child Health, University College London, London, UK
| |
Collapse
|
231
|
Lee Y, Choi JJ, Ahn SI, Lee NH, Han WM, Mohiuddin M, Shin EJ, Wood L, Park KD, Kim Y, Jang YC. Engineered Heterochronic Parabiosis in 3D Microphysiological System for Identification of Muscle Rejuvenating Factors. ADVANCED FUNCTIONAL MATERIALS 2020; 30:2002924. [PMID: 38053980 PMCID: PMC10697693 DOI: 10.1002/adfm.202002924] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/01/2020] [Indexed: 12/07/2023]
Abstract
Exposure of aged mice to a young systemic milieu revealed remarkable rejuvenation effects on aged tissues, including skeletal muscle. Although some candidate factors have been identified, the exact identity and the underlying mechanisms of putative rejuvenating factors remain elusive, mainly due to the complexity of in vivo parabiosis. Here, we present an in vitro muscle parabiosis system that integrates young- and old-muscle stem cell vascular niche on a three-dimensional microfluidic platform designed to recapitulate key features of native muscle stem cell microenvironment. This innovative system enables mechanistic studies of cellular dynamics and molecular interactions within the muscle stem cell niche, especially in response to conditional extrinsic stimuli of local and systemic factors. We demonstrate that vascular endothelial growth factor (VEGF) signaling from endothelial cells and myotubes synergistically contribute to the rejuvenation of the aged muscle stem cell function. Moreover, with the adjustable on-chip system, we can mimic both blood transfusion and parabiosis and detect the time-varying effects of anti-geronic and pro-geronic factors in a single organ or multi-organ systems. Our unique approach presents a complementary in vitro model to supplement in vivo parabiosis for identifying potential anti-geronic factors responsible for revitalizing aging organs.
Collapse
Affiliation(s)
- Yunki Lee
- George W. Woodruff School of Mechanical Engineering, Georgia Institute of Technology, Atlanta, GA 30332, USA
| | - Jeongmoon J. Choi
- School of Biological Sciences, Georgia Institute of Technology, Atlanta, GA 30332, USA
- Parker H. Petit Institute for Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta, GA 30332, USA
| | - Song Ih Ahn
- George W. Woodruff School of Mechanical Engineering, Georgia Institute of Technology, Atlanta, GA 30332, USA
- Parker H. Petit Institute for Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta, GA 30332, USA
| | - Nan Hee Lee
- School of Biological Sciences, Georgia Institute of Technology, Atlanta, GA 30332, USA
- Parker H. Petit Institute for Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta, GA 30332, USA
| | - Woojin M. Han
- George W. Woodruff School of Mechanical Engineering, Georgia Institute of Technology, Atlanta, GA 30332, USA
- Parker H. Petit Institute for Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta, GA 30332, USA
| | - Mahir Mohiuddin
- School of Biological Sciences, Georgia Institute of Technology, Atlanta, GA 30332, USA
- Parker H. Petit Institute for Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta, GA 30332, USA
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology, Atlanta, GA 30332, USA
| | - Eun Jung Shin
- School of Biological Sciences, Georgia Institute of Technology, Atlanta, GA 30332, USA
- Parker H. Petit Institute for Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta, GA 30332, USA
| | - Levi Wood
- George W. Woodruff School of Mechanical Engineering, Georgia Institute of Technology, Atlanta, GA 30332, USA
- Parker H. Petit Institute for Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta, GA 30332, USA
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology, Atlanta, GA 30332, USA
| | - Ki Dong Park
- Department of Molecular Science and Technology, Ajou University, Suwon 16499, Republic of Korea
| | - YongTae Kim
- George W. Woodruff School of Mechanical Engineering, Georgia Institute of Technology, Atlanta, GA 30332, USA
- Parker H. Petit Institute for Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta, GA 30332, USA
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology, Atlanta, GA 30332, USA
- Institute for Electronics and Nanotechnology, Georgia Institute of Technology, Atlanta, GA 30332, USA
| | - Young C. Jang
- School of Biological Sciences, Georgia Institute of Technology, Atlanta, GA 30332, USA
- Parker H. Petit Institute for Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta, GA 30332, USA
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology, Atlanta, GA 30332, USA
| |
Collapse
|
232
|
Neuromuscular Specializations of the Human Hypopharyngeal Muscles. Dysphagia 2020; 36:769-785. [PMID: 33159539 DOI: 10.1007/s00455-020-10212-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2020] [Accepted: 11/03/2020] [Indexed: 10/23/2022]
Abstract
The hypopharyngeal muscles in humans play a vital role in swallowing, speech, and respiration. Increasing evidence indicates that these muscles are specialized to perform life-sustaining upper aerodigestive functions. This review aims to provide current knowledge regarding the key structural, physiological, and biochemical features of the hypopharyngeal muscles, including innervation, contractile properties, histochemistry, biochemical properties, myosin heavy chain (MyHC) expression and regulation, and age-related alterations. These would clarify the unique neuromuscular specializations of the human hypopharyngeal muscles for a better understanding of the functions and pathological conditions of the pharynx and for the development of novel therapies to treat related upper airway disorders.
Collapse
|
233
|
Stansfield BN, Brown AD, Stewart CE, Burniston JG. Dynamic Profiling of Protein Mole Synthesis Rates during C2C12 Myoblast Differentiation. Proteomics 2020; 21:e2000071. [PMID: 33068326 DOI: 10.1002/pmic.202000071] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2020] [Revised: 09/17/2020] [Indexed: 11/05/2022]
Abstract
Mole (MSR) and fractional (FSR) synthesis rates of proteins during C2C12 myoblast differentiation are investigated. Myoblast cultures supplemented with D2 O during 0-24 h or 72-96 h of differentiation are analyzed by LC-MS/MS to calculate protein FSR and MSR after samples are spiked with yeast alcohol dehydrogenase (ADH1). Profiling of 153 proteins detected 70 significant (p ≤ 0.05, FDR ≤ 1%) differences in abundance between cell states. Early differentiation is enriched by clusters of ribosomal and heat shock proteins, whereas later differentiation is associated with actin filament binding. The median (first-third quartile) FSR (%/h) during early differentiation 4.1 (2.7-5.3) is approximately twofold greater than later differentiation 1.7 (1.0-2.2), equating to MSR of 0.64 (0.38-1.2) and 0.28 (0.1-0.5) fmol h-1 µg-1 total protein, respectively. MSR corresponds more closely with abundance data and highlights proteins associated with glycolytic processes and intermediate filament protein binding that are not evident among FSR data. Similarly, MSR during early differentiation accounts for 78% of the variation in protein abundance during later differentiation, whereas FSR accounts for 4%. Conclusively, the interpretation of protein synthesis data differs when reported in mole or fractional terms, which has consequences when studying the allocation of cellular resources.
Collapse
Affiliation(s)
- Ben N Stansfield
- Research Institute for Sport and Exercise Sciences, Liverpool John Moores University, Tom Reilly Building, Byrom Street, Liverpool, L3 3AF, UK
| | - Alexander D Brown
- Research Institute for Sport and Exercise Sciences, Liverpool John Moores University, Tom Reilly Building, Byrom Street, Liverpool, L3 3AF, UK
| | - Claire E Stewart
- Research Institute for Sport and Exercise Sciences, Liverpool John Moores University, Tom Reilly Building, Byrom Street, Liverpool, L3 3AF, UK
| | - Jatin G Burniston
- Research Institute for Sport and Exercise Sciences, Liverpool John Moores University, Tom Reilly Building, Byrom Street, Liverpool, L3 3AF, UK
| |
Collapse
|
234
|
Bachman JF, Blanc RS, Paris ND, Kallenbach JG, Johnston CJ, Hernady E, Williams JP, Chakkalakal JV. Radiation-Induced Damage to Prepubertal Pax7+ Skeletal Muscle Stem Cells Drives Lifelong Deficits in Myofiber Size and Nuclear Number. iScience 2020; 23:101760. [PMID: 33241204 PMCID: PMC7674517 DOI: 10.1016/j.isci.2020.101760] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2020] [Revised: 09/08/2020] [Accepted: 10/29/2020] [Indexed: 12/24/2022] Open
Abstract
During prepubertal development, muscle stem cells (satellite cells, SCs) actively contribute to myofiber growth. Because some SCs are active during this time, they may be particularly susceptible to damage. Using a Small Animal Radiation Research Platform (SARRP), we investigated the effects of local fractionated radiation treatment on prepubertal SCs. Immediately after this regimen, there was a reduction in SC number. Although surviving SCs had deficiencies in function, some myogenic potential remained. Indeed, some muscle regenerative capacity persisted immediately after irradiation. Lastly, we assessed the long-term consequences of radiation-induced SC loss during prepuberty. We observed a reduction of myofiber size and corresponding loss of nuclei in both fast- and slow-contracting muscles 14 months post-irradiation. Notably, prepubertal SC depletion mimicked these lifelong deficits. This work highlights the susceptibility of prepubertal SCs to radiation exposure. We also reveal the importance of prepubertal SC contribution to the lifelong maintenance of skeletal muscle. Increased sensitivity of satellite cells to irradiation during prepubertal growth Prepubertal irradiation leads to lifelong deficits in skeletal muscle regenerative capacity Lifelong reduction in myofiber size and nuclear number is a consequence of prepubertal irradiation Satellite cell ablation mimics the lifelong effects of prepubertal irradiation on myofiber size and nuclear number
Collapse
Affiliation(s)
- John F Bachman
- Department of Pathology and Laboratory Medicine, Cell Biology of Disease Graduate Program, University of Rochester Medical Center, Rochester, NY, USA.,Department of Pharmacology and Physiology, University of Rochester Medical Center, Rochester, NY, USA
| | - Roméo S Blanc
- Department of Pharmacology and Physiology, University of Rochester Medical Center, Rochester, NY, USA
| | - Nicole D Paris
- Department of Pharmacology and Physiology, University of Rochester Medical Center, Rochester, NY, USA
| | - Jacob G Kallenbach
- Department of Pharmacology and Physiology, University of Rochester Medical Center, Rochester, NY, USA.,Department of Biomedical Engineering, University of Rochester, Rochester, NY, USA
| | - Carl J Johnston
- Department of Pediatrics, University of Rochester Medical Center, Rochester, NY, USA
| | - Eric Hernady
- Department of Environmental Medicine, University of Rochester Medical Center, Rochester, NY, USA
| | - Jacqueline P Williams
- Department of Environmental Medicine, University of Rochester Medical Center, Rochester, NY, USA.,Wilmot Cancer Institute, University of Rochester Medical Center, Rochester, NY, USA
| | - Joe V Chakkalakal
- Department of Pharmacology and Physiology, University of Rochester Medical Center, Rochester, NY, USA.,Department of Biomedical Engineering, University of Rochester, Rochester, NY, USA.,Wilmot Cancer Institute, University of Rochester Medical Center, Rochester, NY, USA.,Stem Cell and Regenerative Medicine Institute, and The Rochester Aging Research Center, University of Rochester Medical Center, Rochester, NY, USA.,Center for Musculoskeletal Research, University of Rochester Medical Center, Rochester, NY, USA
| |
Collapse
|
235
|
Deshpande MV, West AJ, Bernacki SH, Luan K, King MW. Poly(ε-Caprolactone) Resorbable Auxetic Designed Knitted Scaffolds for Craniofacial Skeletal Muscle Regeneration. Bioengineering (Basel) 2020; 7:bioengineering7040134. [PMID: 33114301 PMCID: PMC7712030 DOI: 10.3390/bioengineering7040134] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2020] [Revised: 10/08/2020] [Accepted: 10/22/2020] [Indexed: 11/16/2022] Open
Abstract
Craniofacial microsomia is a congenital deformity caused by asymmetric development of the skull (cranium) and face before birth. Current treatments include corrective surgery and replacement of the deformed structure using autograft tissue, which results in donor site morbidity. An alternative therapy can be achieved by developing a resorbable scaffold for skeletal muscle regeneration which will help restore the symmetry and function of the facial muscles and reduce donor site morbidity. Two resorbable weft knitted scaffolds were fabricated using poly(ε-caprolactone) multifilament yarns with unique auxetic design structures possessing negative Poisson’s ratio (NPR). These scaffolds exhibit their NPR elasticity through an increase in total volume as well as no lateral narrowing when stretched longitudinally, which can provide orientated mechanical supports to the cell growth of skeletal muscle regeneration. These scaffolds were evaluated for the required physical properties, mechanical performance and biocompatibility by culturing them with neonatal human dermal fibroblasts so as to determine their cell metabolic activity, cell attachment and proliferation. This study can facilitate the understanding and engineering of textile-based scaffolds for tissues/organs. The work also paves a pathway to emerge the NPR textiles into tissue engineering, which has an extensive potential for biomedical end-uses.
Collapse
Affiliation(s)
- Monica V. Deshpande
- Wilson College of Textiles, North Carolina State University, Raleigh, NC 27695, USA; (M.V.D.); (A.J.W.); (K.L.)
| | - Andre J. West
- Wilson College of Textiles, North Carolina State University, Raleigh, NC 27695, USA; (M.V.D.); (A.J.W.); (K.L.)
| | - Susan H. Bernacki
- Joint Department of Biomedical Engineering, University of North Carolina, Chapel Hill & North Carolina State University, Raleigh, NC 27599, USA;
| | - Kun Luan
- Wilson College of Textiles, North Carolina State University, Raleigh, NC 27695, USA; (M.V.D.); (A.J.W.); (K.L.)
| | - Martin W. King
- Wilson College of Textiles, North Carolina State University, Raleigh, NC 27695, USA; (M.V.D.); (A.J.W.); (K.L.)
- College of Textiles, Donghua University, Shanghai 201620, China
- Correspondence:
| |
Collapse
|
236
|
Osana S, Kitajima Y, Suzuki N, Xu Y, Murayama K, Nagatomi R. siRNA knockdown of alanine aminopeptidase impairs myoblast proliferation and differentiation. Exp Cell Res 2020; 397:112337. [PMID: 33091420 DOI: 10.1016/j.yexcr.2020.112337] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2020] [Revised: 10/15/2020] [Accepted: 10/18/2020] [Indexed: 12/20/2022]
Abstract
A large number of intracellular proteins are degraded by the ubiquitin-proteasome system, one of the major protein degradation pathways. It produces peptides of several different sizes through protein degradation, and these peptides are rapidly degraded into free amino acids by various intracellular aminopeptidases. Previously, we reported that the activity of proteasomes and aminopeptidases in the proteolysis pathway are necessary for myoblast proliferation and differentiation. However, the detailed function of intracellular aminopeptidases in myoblast proliferation and differentiation has not yet been elucidated. In this study, we focused on alanine aminopeptidase (APN) and investigated the function of APN in C2C12 myoblast proliferation and differentiation. In myoblasts and myotubes, APN was mainly localized in the cell membrane as well as expressed at low levels in the cytoplasm and nucleus. The reduction of the APN enzymatic activity impaired the cell cycle progression in C2C12 myoblasts. In addition, apoptosis was induced after APN-knockdown. Finally, myogenic differentiation was also delayed in the APN-suppressed myoblasts. These findings indicate that APN is required for myoblast proliferation and differentiation.
Collapse
Affiliation(s)
- Shion Osana
- Division of Biomedical Engineering for Health and Welfare, Graduate School of Biomedical Engineering, Tohoku University, Japan.
| | - Yasuo Kitajima
- Division of Developmental Regulation, Institute of Molecular Embryology and Genetics, Kumamoto University, Japan
| | - Naoki Suzuki
- Department of Neurology, Tohoku University Graduate School of Medicine, Japan
| | - Yidan Xu
- Department of Medicine and Science in Sports and Exercise, Tohoku University Graduate School of Medicine, Japan
| | - Kazutaka Murayama
- Division of Biomedical Measurements and Diagnostics, Graduate School of Biomedical Engineering, Tohoku University, Japan
| | - Ryoichi Nagatomi
- Division of Biomedical Engineering for Health and Welfare, Graduate School of Biomedical Engineering, Tohoku University, Japan; Department of Medicine and Science in Sports and Exercise, Tohoku University Graduate School of Medicine, Japan.
| |
Collapse
|
237
|
Kobayashi Y, Tanaka T, Mulati M, Ochi H, Sato S, Kaldis P, Yoshii T, Okawa A, Inose H. Cyclin-Dependent Kinase 1 Is Essential for Muscle Regeneration and Overload Muscle Fiber Hypertrophy. Front Cell Dev Biol 2020; 8:564581. [PMID: 33163487 PMCID: PMC7591635 DOI: 10.3389/fcell.2020.564581] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2020] [Accepted: 09/18/2020] [Indexed: 12/27/2022] Open
Abstract
Satellite cell proliferation is an essential step in proper skeletal muscle development and muscle regeneration. However, the mechanisms regulating satellite cell proliferation are relatively unknown compared to the knowledge associated with the differentiation of satellite cells. Moreover, it is still unclear whether overload muscle fiber hypertrophy is dependent on satellite cell proliferation. In general, cell proliferation is regulated by the activity of cell cycle regulators, such as cyclins and cyclin-dependent kinases (CDKs). Despite recent reports on the function of CDKs and CDK inhibitors in satellite cells, the physiological role of Cdk1 in satellite cell proliferation remains unknown. Herein, we demonstrate that Cdk1 regulates satellite cell proliferation, muscle regeneration, and muscle fiber hypertrophy. Cdk1 is highly expressed in myoblasts and is downregulated upon myoblast differentiation. Inhibition of CDK1 activity inhibits myoblast proliferation. Deletion of Cdk1 in satellite cells leads to inhibition of muscle recovery after muscle injury due to reduced satellite cell proliferation in vivo. Finally, we provide direct evidence that Cdk1 expression in satellite cells is essential for overload muscle fiber hypertrophy in vivo. Collectively, our results demonstrate that Cdk1 is essential for myoblast proliferation, muscle regeneration, and muscle fiber hypertrophy. These findings could help to develop treatments for refractory muscle injuries and muscle atrophy, such as sarcopenia.
Collapse
Affiliation(s)
- Yutaka Kobayashi
- Department of Orthopaedics, Graduate School, Tokyo Medical and Dental University, Tokyo, Japan
| | - Tomoyuki Tanaka
- Department of Orthopaedics, Graduate School, Tokyo Medical and Dental University, Tokyo, Japan
| | - Mieradilli Mulati
- Department of Orthopaedics, Graduate School, Tokyo Medical and Dental University, Tokyo, Japan
| | - Hiroki Ochi
- Department of Rehabilitation for Movement Functions, National Rehabilitation Center for Persons with Disabilities, Research Institute, Tokorozawa, Japan
| | - Shingo Sato
- Center for Innovative Cancer Treatment, Tokyo Medical and Dental University Hospital, Tokyo, Japan
| | - Philipp Kaldis
- Department of Clinical Sciences, Lund University, Clinical Research Centre, Malmö, Sweden
| | - Toshitaka Yoshii
- Department of Orthopaedics, Graduate School, Tokyo Medical and Dental University, Tokyo, Japan
| | - Atsushi Okawa
- Department of Orthopaedics, Graduate School, Tokyo Medical and Dental University, Tokyo, Japan
| | - Hiroyuki Inose
- Department of Orthopedic and Trauma Research, Graduate School, Tokyo Medical and Dental University, Tokyo, Japan
| |
Collapse
|
238
|
Ganassi M, Badodi S, Wanders K, Zammit PS, Hughes SM. Myogenin is an essential regulator of adult myofibre growth and muscle stem cell homeostasis. eLife 2020; 9:e60445. [PMID: 33001028 PMCID: PMC7599067 DOI: 10.7554/elife.60445] [Citation(s) in RCA: 89] [Impact Index Per Article: 17.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2020] [Accepted: 09/30/2020] [Indexed: 02/06/2023] Open
Abstract
Growth and maintenance of skeletal muscle fibres depend on coordinated activation and return to quiescence of resident muscle stem cells (MuSCs). The transcription factor Myogenin (Myog) regulates myocyte fusion during development, but its role in adult myogenesis remains unclear. In contrast to mice, myog-/-zebrafish are viable, but have hypotrophic muscles. By isolating adult myofibres with associated MuSCs, we found that myog-/- myofibres have severely reduced nuclear number, but increased myonuclear domain size. Expression of fusogenic genes is decreased, Pax7 upregulated, MuSCs are fivefold more numerous and mis-positioned throughout the length of myog-/-myofibres instead of localising at myofibre ends as in wild-type. Loss of Myog dysregulates mTORC1 signalling, resulting in an 'alerted' state of MuSCs, which display precocious activation and faster cell cycle entry ex vivo, concomitant with myod upregulation. Thus, beyond controlling myocyte fusion, Myog influences the MuSC:niche relationship, demonstrating a multi-level contribution to muscle homeostasis throughout life.
Collapse
Affiliation(s)
- Massimo Ganassi
- Randall Centre for Cell and Molecular Biophysics, King’s College LondonLondonUnited Kingdom
| | - Sara Badodi
- Blizard Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of LondonLondonUnited Kingdom
| | - Kees Wanders
- Randall Centre for Cell and Molecular Biophysics, King’s College LondonLondonUnited Kingdom
| | - Peter S Zammit
- Randall Centre for Cell and Molecular Biophysics, King’s College LondonLondonUnited Kingdom
| | - Simon M Hughes
- Randall Centre for Cell and Molecular Biophysics, King’s College LondonLondonUnited Kingdom
| |
Collapse
|
239
|
Banerji CRS, Henderson D, Tawil RN, Zammit PS. Skeletal muscle regeneration in facioscapulohumeral muscular dystrophy is correlated with pathological severity. Hum Mol Genet 2020; 29:2746-2760. [PMID: 32744322 PMCID: PMC7530526 DOI: 10.1093/hmg/ddaa164] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2020] [Revised: 06/09/2020] [Accepted: 06/11/2020] [Indexed: 01/08/2023] Open
Abstract
Facioscapulohumeral muscular dystrophy (FSHD) is an autosomal-dominant myopathy characterized by slowly progressive skeletal muscle weakness and wasting. While a regenerative response is often provoked in many muscular dystrophies, little is known about whether a regenerative response is regularly elicited in FSHD muscle, prompting this study. For comparison, we also examined the similarly slowly progressing myotonic dystrophy type 2 (DM2). To first investigate regeneration at the transcriptomic level, we used the 200 human gene Hallmark Myogenesis list. This myogenesis biomarker was elevated in FSHD and control healthy myotubes compared to their myoblast counterparts, so is higher in myogenic differentiation. The myogenesis biomarker was also elevated in muscle biopsies from most independent FSHD, DM2 or Duchenne muscular dystrophy (DMD) studies compared to control biopsies, and on meta-analysis for each condition. In addition, the myogenesis biomarker was a robust binary discriminator of FSHD, DM2 and DMD from controls. We also analysed muscle regeneration at the protein level by immunolabelling muscle biopsies for developmental myosin heavy chain. Such immunolabelling revealed one or more regenerating myofibres in 76% of FSHD muscle biopsies from quadriceps and 91% from tibialis anterior. The mean proportion of regenerating myofibres per quadriceps biopsy was 0.48%, significantly less than 1.72% in the tibialis anterior. All DM2 muscle biopsies contained regenerating myofibres, with a mean of 1.24% per biopsy. Muscle regeneration in FSHD was correlated with the pathological hallmarks of fibre size variation, central nucleation, fibrosis and necrosis/regeneration/inflammation. In summary, the regenerative response in FSHD muscle biopsies correlates with the severity of pathology.
Collapse
MESH Headings
- Adult
- Aged
- Biomarkers/metabolism
- Female
- Humans
- Male
- Middle Aged
- Muscle Development/genetics
- Muscle Fibers, Skeletal/metabolism
- Muscle Fibers, Skeletal/pathology
- Muscle, Skeletal/growth & development
- Muscle, Skeletal/metabolism
- Muscle, Skeletal/pathology
- Muscular Dystrophy, Duchenne/genetics
- Muscular Dystrophy, Duchenne/metabolism
- Muscular Dystrophy, Duchenne/pathology
- Muscular Dystrophy, Facioscapulohumeral/genetics
- Muscular Dystrophy, Facioscapulohumeral/metabolism
- Muscular Dystrophy, Facioscapulohumeral/pathology
- Myoblasts/metabolism
- Myosin Heavy Chains/genetics
- Myotonic Dystrophy/genetics
- Myotonic Dystrophy/metabolism
- Myotonic Dystrophy/pathology
- Regeneration/genetics
- Severity of Illness Index
- Transcriptome/genetics
Collapse
Affiliation(s)
| | - Don Henderson
- Neuromuscular Pathology Laboratory, Department of Neurology, University of Rochester Medical Center, Rochester, NY 14642, USA
| | - Rabi N Tawil
- Neuromuscular Unit, Department of Neurology, University of Rochester Medical Center, Rochester, NY 14642, USA
| | - Peter S Zammit
- Randall Centre for Cell and Molecular Biophysics, King’s College London, London SE1 1UL, UK
| |
Collapse
|
240
|
Zhang G, Chen F, Wu P, Li T, He M, Yin X, Shi H, Duan Y, Zhang T, Wang J, Xie K, Dai G. MicroRNA-7 Targets the KLF4 Gene to Regulate the Proliferation and Differentiation of Chicken Primary Myoblasts. Front Genet 2020; 11:842. [PMID: 33193566 PMCID: PMC7530283 DOI: 10.3389/fgene.2020.00842] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2020] [Accepted: 07/13/2020] [Indexed: 12/17/2022] Open
Abstract
The proliferation and differentiation of chicken primary myoblasts (CPMs) play an important role in the development of skeletal muscle. In our previous research, RNA-seq analysis showed that microRNA-7 (miR-7) was relatively highly expressed in the proliferation phase of CPMs, but its expression level decreased significantly after CPMS-induced differentiation. Meanwhile, the mechanism by which the miR-7 regulates the proliferation and differentiation of CPMs is still unknown. In this study, we found that the expression levels of miR-7 and the Krüppel-like factor 4 (KLF4) gene were negatively correlated during the embryonic phase, and in vitro induced differentiation. A dual-luciferase assay and a rescue experiment show that there is a target relationship between miR-7 and the KLF4 gene. Meanwhile, the results show that overexpression of miR-7 inhibited the proliferation and differentiation of CPMs, while inhibition of miR-7 had the opposite effects. Furthermore, overexpression of the KLF4 gene was found to significantly promote the proliferation and differentiation of CPMs. Conversely, inhibition of the KLF4 gene was able to significantly decrease the proliferation and differentiation of CPMs. Our results demonstrate, for the first time, that miR-7 inhibits the proliferation and differentiation of myoblasts by targeting the KLF4 gene in chicken primary myoblasts.
Collapse
Affiliation(s)
- Genxi Zhang
- College of Animal Science and Technology, Yangzhou University, Yangzhou, China.,Joint International Research Laboratory of Agriculture and Agri-Product Safety, Yangzhou University, Yangzhou, China
| | - Fuxiang Chen
- College of Animal Science and Technology, Yangzhou University, Yangzhou, China.,Joint International Research Laboratory of Agriculture and Agri-Product Safety, Yangzhou University, Yangzhou, China
| | - Pengfei Wu
- College of Animal Science and Technology, Yangzhou University, Yangzhou, China.,Joint International Research Laboratory of Agriculture and Agri-Product Safety, Yangzhou University, Yangzhou, China
| | - TingTing Li
- College of Animal Science and Technology, Yangzhou University, Yangzhou, China.,Joint International Research Laboratory of Agriculture and Agri-Product Safety, Yangzhou University, Yangzhou, China
| | - Mingliang He
- College of Animal Science and Technology, Yangzhou University, Yangzhou, China.,Joint International Research Laboratory of Agriculture and Agri-Product Safety, Yangzhou University, Yangzhou, China
| | - Xuemei Yin
- College of Animal Science and Technology, Yangzhou University, Yangzhou, China.,Joint International Research Laboratory of Agriculture and Agri-Product Safety, Yangzhou University, Yangzhou, China
| | - Huiqiang Shi
- Jiangsu Jinghai Poultry Group Co., Ltd., Nantong, China
| | - Yanjun Duan
- College of Animal Science and Technology, Yangzhou University, Yangzhou, China.,Joint International Research Laboratory of Agriculture and Agri-Product Safety, Yangzhou University, Yangzhou, China
| | - Tao Zhang
- College of Animal Science and Technology, Yangzhou University, Yangzhou, China.,Joint International Research Laboratory of Agriculture and Agri-Product Safety, Yangzhou University, Yangzhou, China
| | - Jinyu Wang
- College of Animal Science and Technology, Yangzhou University, Yangzhou, China.,Joint International Research Laboratory of Agriculture and Agri-Product Safety, Yangzhou University, Yangzhou, China
| | - Kaizhou Xie
- College of Animal Science and Technology, Yangzhou University, Yangzhou, China.,Joint International Research Laboratory of Agriculture and Agri-Product Safety, Yangzhou University, Yangzhou, China
| | - Guojun Dai
- College of Animal Science and Technology, Yangzhou University, Yangzhou, China.,Joint International Research Laboratory of Agriculture and Agri-Product Safety, Yangzhou University, Yangzhou, China
| |
Collapse
|
241
|
Markworth JF, Brown LA, Lim E, Floyd C, Larouche J, Castor-Macias JA, Sugg KB, Sarver DC, Macpherson PC, Davis C, Aguilar CA, Maddipati KR, Brooks SV. Resolvin D1 supports skeletal myofiber regeneration via actions on myeloid and muscle stem cells. JCI Insight 2020; 5:137713. [PMID: 32750044 PMCID: PMC7526543 DOI: 10.1172/jci.insight.137713] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2020] [Accepted: 07/31/2020] [Indexed: 12/16/2022] Open
Abstract
Specialized proresolving mediators (SPMs) actively limit inflammation and expedite its resolution by modulating leukocyte recruitment and function. Here we profiled intramuscular lipid mediators via liquid chromatography-tandem mass spectrometry–based metabolipidomics following myofiber injury and investigated the potential role of SPMs in skeletal muscle inflammation and repair. Both proinflammatory eicosanoids and SPMs increased following myofiber damage induced by either intramuscular injection of barium chloride or synergist ablation–induced functional muscle overload. Daily systemic administration of the SPM resolvin D1 (RvD1) as an immunoresolvent limited the degree and duration of inflammation, enhanced regenerating myofiber growth, and improved recovery of muscle strength. RvD1 suppressed inflammatory cytokine expression, enhanced polymorphonuclear cell clearance, modulated the local muscle stem cell response, and polarized intramuscular macrophages to a more proregenerative subset. RvD1 had minimal direct impact on in vitro myogenesis but directly suppressed myokine production and stimulated macrophage phagocytosis, showing that SPMs can modulate both infiltrating myeloid and resident muscle cell populations. These data reveal the efficacy of immunoresolvents as a novel alternative to classical antiinflammatory interventions in the management of muscle injuries to modulate inflammation while stimulating tissue repair. Systemic administration of the immunoresolvent resolvin D1 enhances skeletal muscle repair via modulatory effects on both resident muscle stem cells and intramuscular macrophages.
Collapse
Affiliation(s)
- James F Markworth
- Department of Molecular & Integrative Physiology.,Department of Orthopaedic Surgery
| | | | - Eunice Lim
- Department of Molecular & Integrative Physiology
| | | | | | | | - Kristoffer B Sugg
- Department of Orthopaedic Surgery.,Department of Surgery, University of Michigan Medical School, Ann Arbor, Michigan, USA
| | - Dylan C Sarver
- Department of Orthopaedic Surgery.,Department of Cellular & Molecular Physiology, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | | | - Carol Davis
- Department of Molecular & Integrative Physiology
| | | | - Krishna Rao Maddipati
- Department of Pathology, Lipidomics Core Facility, Wayne State University, Detroit, Michigan, USA
| | - Susan V Brooks
- Department of Molecular & Integrative Physiology.,Department of Biomedical Engineering, and
| |
Collapse
|
242
|
Li Q, Lin J, Rosen SM, Zhang T, Kazerounian S, Luo S, Agrawal PB. Striated Preferentially Expressed Protein Kinase (SPEG)-Deficient Skeletal Muscles Display Fewer Satellite Cells with Reduced Proliferation and Delayed Differentiation. THE AMERICAN JOURNAL OF PATHOLOGY 2020; 190:2453-2463. [PMID: 32919980 DOI: 10.1016/j.ajpath.2020.08.012] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/06/2020] [Revised: 08/19/2020] [Accepted: 08/27/2020] [Indexed: 12/17/2022]
Abstract
Centronuclear myopathies (CNMs) are a subtype of congenital myopathies characterized by skeletal muscle weakness and an increase in the number of central myonuclei. SPEG (striated preferentially expressed protein kinase) has been identified as the sixth gene associated with CNM, and it has been shown that striated muscle-specific Speg-knockout (KO) mice have defective triad formation, abnormal excitation-contraction coupling, and calcium mishandling. The impact of SPEG deficiency on the survival and function of myogenic cells remains to be deciphered. In this study, the authors examined the overall population, proliferation, and differentiation of myogenic cells obtained from striated muscle-specific Speg-KO mice and compared them with wild-type (WT) controls. SPEG-deficient skeletal muscles contained fewer myogenic cells, which on further study demonstrated reduced proliferation and delayed differentiation compared with those from WT muscles. Regenerative response to skeletal muscle injury in Speg-KO mice was compared with that of WT mice, leading to the identification of similar abnormalities including fewer satellite cells, fewer dividing cells, and an increase in apoptotic cells in KO mice. Overall, these results reveal specific abnormalities in myogenic cell number and behavior associated with SPEG deficiency. Similar satellite cell defects have been reported in mouse models of MTM1- and DNM2-associated CNM, suggestive of shared underlying pathways.
Collapse
Affiliation(s)
- Qifei Li
- Division of Newborn Medicine, Boston Children's Hospital and Harvard Medical School, Boston, Massachusetts; Division of Genetics and Genomics, Boston Children's Hospital and Harvard Medical School, Boston, Massachusetts; The Manton Center for Orphan Disease Research, Boston Children's Hospital and Harvard Medical School, Boston, Massachusetts
| | - Jasmine Lin
- Division of Newborn Medicine, Boston Children's Hospital and Harvard Medical School, Boston, Massachusetts; Division of Genetics and Genomics, Boston Children's Hospital and Harvard Medical School, Boston, Massachusetts; The Manton Center for Orphan Disease Research, Boston Children's Hospital and Harvard Medical School, Boston, Massachusetts
| | - Samantha M Rosen
- Division of Newborn Medicine, Boston Children's Hospital and Harvard Medical School, Boston, Massachusetts; Division of Genetics and Genomics, Boston Children's Hospital and Harvard Medical School, Boston, Massachusetts; The Manton Center for Orphan Disease Research, Boston Children's Hospital and Harvard Medical School, Boston, Massachusetts
| | - Tian Zhang
- Division of Newborn Medicine, Boston Children's Hospital and Harvard Medical School, Boston, Massachusetts; The Manton Center for Orphan Disease Research, Boston Children's Hospital and Harvard Medical School, Boston, Massachusetts
| | - Shideh Kazerounian
- Division of Genetics and Genomics, Boston Children's Hospital and Harvard Medical School, Boston, Massachusetts; The Manton Center for Orphan Disease Research, Boston Children's Hospital and Harvard Medical School, Boston, Massachusetts
| | - Shiyu Luo
- Division of Newborn Medicine, Boston Children's Hospital and Harvard Medical School, Boston, Massachusetts; Division of Genetics and Genomics, Boston Children's Hospital and Harvard Medical School, Boston, Massachusetts; The Manton Center for Orphan Disease Research, Boston Children's Hospital and Harvard Medical School, Boston, Massachusetts
| | - Pankaj B Agrawal
- Division of Newborn Medicine, Boston Children's Hospital and Harvard Medical School, Boston, Massachusetts; Division of Genetics and Genomics, Boston Children's Hospital and Harvard Medical School, Boston, Massachusetts; The Manton Center for Orphan Disease Research, Boston Children's Hospital and Harvard Medical School, Boston, Massachusetts.
| |
Collapse
|
243
|
Zhang M, Han Y, Liu J, Liu L, Zheng L, Chen Y, Xia R, Yao D, Cai X, Xu X. Rbm24 modulates adult skeletal muscle regeneration via regulation of alternative splicing. Am J Cancer Res 2020; 10:11159-11177. [PMID: 33042276 PMCID: PMC7532667 DOI: 10.7150/thno.44389] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2020] [Accepted: 08/12/2020] [Indexed: 12/16/2022] Open
Abstract
Rationale: The adult skeletal muscle can self-repair efficiently following mechanical or pathological damage due to its remarkable regenerative capacity. However, regulatory mechanisms underlying muscle regeneration are complicated and have not been fully elucidated. Alternative splicing (AS) is a major mechanism responsible for post-transcriptional regulation. Many aberrant AS events have been identified in patients with muscular dystrophy which is accompanied by abnormal muscle regeneration. However, little is known about the correlation between AS and muscle regeneration. It has been reported that RNA binding motif protein 24 (Rbm24), a tissue-specific splicing factor, is involved in embryo myogenesis while the role of Rbm24 in adult myogenesis (also called muscle regeneration) is poorly understood. Methods: To investigate the role of Rbm24 in adult skeletal muscle, we generated Rbm24 conditional knockout mice and satellite cell-specific knockout mice. Furthermore, a cardiotoxin (CTX)-induced injury model was utilized to assess the effects of Rbm24 on skeletal muscle regeneration. Genome-wide RNA-Seq was performed to identify the changes in AS following loss of Rbm24. Results: Rbm24 knockout mice displayed abnormal regeneration 4 months after tamoxifen treatment. Using RNA-Seq, we found that Rbm24 regulated a complex network of AS events involved in multiple biological processes, including myogenesis, muscle regeneration and muscle hypertrophy. Moreover, using a CTX-induced injury model, we showed that loss of Rbm24 in skeletal muscle resulted in myogenic fusion and differentiation defects and significantly delayed muscle regeneration. Furthermore, satellite cell-specific Rbm24 knockout mice recapitulated the defects in regeneration seen in the global Rbm24 knockout mice. Importantly, we demonstrated that Rbm24 regulated AS of Mef2d, Naca, Rock2 and Lrrfip1 which are essential for myogenic differentiation and muscle regeneration. Conclusions: The present study demonstrated that Rbm24 regulates dynamic changes in AS and is essential for adult skeletal muscle regeneration.
Collapse
|
244
|
Yablonka-Reuveni Z, Lepper C. New Insight into a Classic Stem Cell: the Satellite Cell may Communicate with the Muscle Fiber via Extracellular Vesicles-A Perspective on "Fusion-Independent Satellite Cell Communication to Muscle Fibers During Load-Induced Hypertrophy". FUNCTION (OXFORD, ENGLAND) 2020; 1:zqaa015. [PMID: 35330641 PMCID: PMC8788824 DOI: 10.1093/function/zqaa015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 08/26/2020] [Accepted: 09/01/2020] [Indexed: 01/06/2023]
Affiliation(s)
- Zipora Yablonka-Reuveni
- Department of Biological Structure, School of Medicine, University of Washington, 1959 NE Pacific Street, Box 357420, Seattle, WA 98195, USA,Address correspondence to Z.Y.-R. (e-mail: ), C.L. (e-mail: )
| | - Christoph Lepper
- Department of Physiology & Cell Biology, College of Medicine, The Ohio State University, 1645 Neil Ave., Columbus, OH 43210, USA,Address correspondence to Z.Y.-R. (e-mail: ), C.L. (e-mail: )
| |
Collapse
|
245
|
Damaged Myofiber-Derived Metabolic Enzymes Act as Activators of Muscle Satellite Cells. Stem Cell Reports 2020; 15:926-940. [PMID: 32888505 PMCID: PMC7561495 DOI: 10.1016/j.stemcr.2020.08.002] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2019] [Revised: 08/05/2020] [Accepted: 08/06/2020] [Indexed: 12/15/2022] Open
Abstract
Muscle satellite cells are normally quiescent but are rapidly activated following muscle damage. Here, we investigated whether damaged myofibers influence the activation of satellite cells. Our findings revealed that satellite cells are directly activated by damaged-myofiber-derived factors (DMDFs). DMDFs induced satellite cells to enter the cell cycle; however, the cells stayed at the G1 phase and did not undergo S phase, and these cells were reversible to the quiescent-like state. Proteome analysis identified metabolic enzymes, including GAPDH, as DMDFs, whose recombinant proteins stimulated the activation of satellite cells. Satellite cells pre-exposed to the DMDFs demonstrated accelerated proliferation ex vivo. Treatment with recombinant GAPDH prior to muscle injury promoted expansion of the satellite cell population in vivo. Thus, our results indicate that DMDFs are not only a set of biomarkers for muscle damage, but also act as moonlighting proteins involved in satellite cell activation at the initial step of muscle regeneration.
Collapse
|
246
|
Park HJ, Lee WY, Lee R, Park JK, Hong KH, Park C, Song H. Expression of paired box protein PAX7 in prepubertal boar testicular gonocytes. Acta Histochem 2020; 122:151595. [PMID: 32778235 DOI: 10.1016/j.acthis.2020.151595] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2020] [Revised: 06/17/2020] [Accepted: 07/07/2020] [Indexed: 11/17/2022]
Abstract
Spermatogenesis involves mitosis, meiosis, growth, and differentiation of spermatogonial stem cells (SSCs), which are capable of self-renewal and differentiation into spermatozoa. Markers of spermatogonia and other spermatogenic cells have been extensively studied in rodents, whereas physiological characteristics and stage-specific markers of germ cells remain largely unknown in large domestic animals. In rodents, paired box protein 7 (PAX7) is known to be a specific marker of a rare spermatogonial subpopulation in adult testes, while being expressed by a large proportion of neonatal testicular germ cells. However, the expression of PAX7 has not yet been investigated in domestic animals. The objective of this study was to characterize PAX7 expression during boar testis development and in in vitro cultured porcine SSCs (pSSCs). Notably, the expression of PAX7 was positively correlated with that of a known boar testis spermatogonial and gonocyte marker, protein gene product 9.5 (PGP9.5), in prepubertal (5-day-old) boar testes but was not observed during or following puberty. Furthermore, the early-stage spermatogonial markers GDNF family receptor alpha-1 (GFRα1) and Sal-like protein 4 (SALL4) were coexpressed in PAX7+ testicular cells from 5-day-old boars. PAX7 expression was also maintained in in vitro cultured undifferentiated porcine spermatogonia, with both PAX7 and PGP9.5 strongly expressed in pSSC colonies but not in feeder cells (testicular somatic cells). These data demonstrated that PAX7 expression only occurred in boar testes during prepuberty and was mainly restricted to very early-stage spermatogonial germ cells, such as gonocytes, which implies that PAX7 can be used as a boar gonocyte marker.
Collapse
Affiliation(s)
- Hyun-Jung Park
- Department of Stem Cell and Regenerative Technology, Konkuk University, Seoul, 05029, Republic of Korea
| | - Won Young Lee
- Department of Beef and Dairy Science, Korea National College of Agriculture and Fisheries, Jeonju, 54874, Republic of Korea
| | - Ran Lee
- Department of Stem Cell and Regenerative Technology, Konkuk University, Seoul, 05029, Republic of Korea
| | - Jin-Ki Park
- Department of Swine & Poultry Science, Korea National College of Agriculture and Fisheries, Jeonju, 54874, Republic of Korea
| | - Kwon-Ho Hong
- Department of Stem Cell and Regenerative Technology, Konkuk University, Seoul, 05029, Republic of Korea
| | - Chankyu Park
- Department of Stem Cell and Regenerative Technology, Konkuk University, Seoul, 05029, Republic of Korea
| | - Hyuk Song
- Department of Stem Cell and Regenerative Technology, Konkuk University, Seoul, 05029, Republic of Korea.
| |
Collapse
|
247
|
Ma SKY, Chan ASF, Rubab A, Chan WCW, Chan D. Extracellular Matrix and Cellular Plasticity in Musculoskeletal Development. Front Cell Dev Biol 2020; 8:781. [PMID: 32984311 PMCID: PMC7477050 DOI: 10.3389/fcell.2020.00781] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2020] [Accepted: 07/27/2020] [Indexed: 12/12/2022] Open
Abstract
Cellular plasticity refers to the ability of cell fates to be reprogrammed given the proper signals, allowing for dedifferentiation or transdifferentiation into different cell fates. In vitro, this can be induced through direct activation of gene expression, however this process does not naturally occur in vivo. Instead, the microenvironment consisting of the extracellular matrix (ECM) and signaling factors, directs the signals presented to cells. Often the ECM is involved in regulating both biochemical and mechanical signals. In stem cell populations, this niche is necessary for maintenance and proper function of the stem cell pool. However, recent studies have demonstrated that differentiated or lineage restricted cells can exit their current state and transform into another state under different situations during development and regeneration. This may be achieved through (1) cells responding to a changing niche; (2) cells migrating and encountering a new niche; and (3) formation of a transitional niche followed by restoration of the homeostatic niche to sequentially guide cells along the regenerative process. This review focuses on examples in musculoskeletal biology, with the concept of ECM regulating cells and stem cells in development and regeneration, extending beyond the conventional concept of small population of progenitor cells, but under the right circumstances even “lineage-restricted” or differentiated cells can be reprogrammed to enter into a different fate.
Collapse
Affiliation(s)
- Sophia Ka Yan Ma
- School of Biomedical Sciences, The University of Hong Kong, Hong Kong, China
| | | | - Aqsa Rubab
- School of Biomedical Sciences, The University of Hong Kong, Hong Kong, China
| | - Wilson Cheuk Wing Chan
- School of Biomedical Sciences, The University of Hong Kong, Hong Kong, China.,Department of Orthopedics Surgery and Traumatology, The University of Hong Kong-Shenzhen Hospital, Shenzhen, China.,The University of Hong Kong Shenzhen Institute of Research and Innovation (HKU-SIRI), Shenzhen, China
| | - Danny Chan
- School of Biomedical Sciences, The University of Hong Kong, Hong Kong, China.,The University of Hong Kong Shenzhen Institute of Research and Innovation (HKU-SIRI), Shenzhen, China
| |
Collapse
|
248
|
Seko D, Fujita R, Kitajima Y, Nakamura K, Imai Y, Ono Y. Estrogen Receptor β Controls Muscle Growth and Regeneration in Young Female Mice. Stem Cell Reports 2020; 15:577-586. [PMID: 32822588 PMCID: PMC7486216 DOI: 10.1016/j.stemcr.2020.07.017] [Citation(s) in RCA: 47] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2019] [Revised: 07/22/2020] [Accepted: 07/22/2020] [Indexed: 12/27/2022] Open
Abstract
Estrogens are female sex hormones that are important for comprehensively maintaining muscle function, and an insufficiency affects muscle strength and regeneration in females. However, it is still unclear whether estrogen signaling is mediated through receptors. To investigate the specific role of estrogen receptor β (ERβ) in skeletal muscle and satellite cells (muscle stem cells), we generated muscle-specific ERβ-knockout (mKO) and satellite cell-specific ERβ-knockout (scKO) mice, respectively. Young female mKO mice displayed a decrease in fast-type dominant muscle mass. Female, but not male, scKO mice exhibited impaired muscle regeneration following acute muscle injury, probably due to reduced proliferation and increased apoptosis of satellite cells. RNA-sequencing analysis revealed that loss of ERβ in satellite cells altered gene expression of extracellular matrix components, including laminin and collagen. The results indicate that the estrogen-ERβ pathway is a sex-specific regulatory mechanism that controls muscle growth and regeneration in female mice. ERβ controls muscle growth in young female mice ERβ is essential for muscle regeneration in female mice Inactivation of ERβ causes an increase in apoptosis ERβ is required for satellite cell population expansion
Collapse
Affiliation(s)
- Daiki Seko
- Department of Muscle Development and Regeneration, Institute of Molecular Embryology and Genetics, Kumamoto University, 2-2-1 Honjo, Kumamoto 860-0811, Japan; Nagasaki University Graduate School of Biomedical Sciences, Nagasaki, Japan
| | - Ryo Fujita
- Nagasaki University Graduate School of Biomedical Sciences, Nagasaki, Japan; Department of Human Genetics, McGill University, Montreal, QC, Canada
| | - Yuriko Kitajima
- Nagasaki University Graduate School of Biomedical Sciences, Nagasaki, Japan
| | - Kodai Nakamura
- Department of Muscle Development and Regeneration, Institute of Molecular Embryology and Genetics, Kumamoto University, 2-2-1 Honjo, Kumamoto 860-0811, Japan
| | - Yuuki Imai
- Division of Integrative Pathophysiology, Proteo-Science Center, Graduate School of Medicine, Ehime University, Ehime, Japan
| | - Yusuke Ono
- Department of Muscle Development and Regeneration, Institute of Molecular Embryology and Genetics, Kumamoto University, 2-2-1 Honjo, Kumamoto 860-0811, Japan; Nagasaki University Graduate School of Biomedical Sciences, Nagasaki, Japan; Center for Metabolic Regulation of Healthy Aging, Kumamoto University Faculty of Life Sciences, Nagasaki, Japan.
| |
Collapse
|
249
|
Blanc RS, Kallenbach JG, Bachman JF, Mitchell A, Paris ND, Chakkalakal JV. Inhibition of inflammatory CCR2 signaling promotes aged muscle regeneration and strength recovery after injury. Nat Commun 2020; 11:4167. [PMID: 32820177 PMCID: PMC7441393 DOI: 10.1038/s41467-020-17620-8] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2020] [Accepted: 07/06/2020] [Indexed: 02/07/2023] Open
Abstract
Muscle regeneration depends on a robust albeit transient inflammatory response. Persistent inflammation is a feature of age-related regenerative deficits, yet the underlying mechanisms are poorly understood. Here, we find inflammatory-related CC-chemokine-receptor 2 (Ccr2) expression in non-hematopoietic myogenic progenitors (MPs) during regeneration. After injury, the expression of Ccr2 in MPs corresponds to the levels of its ligands, the chemokines Ccl2, 7, and 8. We find stimulation of Ccr2-activity inhibits MP fusion and contribution to myofibers. This occurs in association with increases in MAPKp38δ/γ signaling, MyoD phosphorylation, and repression of the terminal myogenic commitment factor Myogenin. High levels of Ccr2-chemokines are a feature of regenerating aged muscle. Correspondingly, deletion of Ccr2 in MPs is necessary for proper fusion into regenerating aged muscle. Finally, opportune Ccr2 inhibition after injury enhances aged regeneration and functional recovery. These results demonstrate that inflammatory-induced activation of Ccr2 signaling in myogenic cells contributes to aged muscle regenerative decline. Chronic inflammation is a feature of age-related regenerative decline in skeletal muscles, but how it directly affects resident muscle stem cell fate and function is unclear. Here, the authors show that Ccr2 signaling in muscle stem cell derived progenitors represses terminal myogenic differentiation, and that targeting Ccr2 on aged myogenic progenitors rejuvenates aged skeletal muscle healing and function.
Collapse
Affiliation(s)
- Roméo S Blanc
- Department of Pharmacology and Physiology, University of Rochester Medical Center, Rochester, NY, USA.,Wilmot Cancer Institute, Stem Cell and Regenerative Medicine Institute, and The Rochester Aging Research Center, University of Rochester Medical Center, Rochester, NY, USA
| | - Jacob G Kallenbach
- Department of Pharmacology and Physiology, University of Rochester Medical Center, Rochester, NY, USA.,Department of Biomedical Engineering, University of Rochester Medical Center, Rochester, NY, USA
| | - John F Bachman
- Department of Pharmacology and Physiology, University of Rochester Medical Center, Rochester, NY, USA.,Department of Pathology and Laboratory Medicine, Cell Biology of Disease Graduate Program, University of Rochester Medical Center, Rochester, NY, USA
| | - Amanda Mitchell
- Department of Pharmacology and Physiology, University of Rochester Medical Center, Rochester, NY, USA
| | - Nicole D Paris
- Department of Pharmacology and Physiology, University of Rochester Medical Center, Rochester, NY, USA.,Wilmot Cancer Institute, Stem Cell and Regenerative Medicine Institute, and The Rochester Aging Research Center, University of Rochester Medical Center, Rochester, NY, USA
| | - Joe V Chakkalakal
- Department of Pharmacology and Physiology, University of Rochester Medical Center, Rochester, NY, USA. .,Wilmot Cancer Institute, Stem Cell and Regenerative Medicine Institute, and The Rochester Aging Research Center, University of Rochester Medical Center, Rochester, NY, USA. .,Department of Biomedical Engineering, University of Rochester Medical Center, Rochester, NY, USA.
| |
Collapse
|
250
|
Yoshioka K, Kitajima Y, Okazaki N, Chiba K, Yonekura A, Ono Y. A Modified Pre-plating Method for High-Yield and High-Purity Muscle Stem Cell Isolation From Human/Mouse Skeletal Muscle Tissues. Front Cell Dev Biol 2020; 8:793. [PMID: 32903486 PMCID: PMC7438441 DOI: 10.3389/fcell.2020.00793] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2020] [Accepted: 07/28/2020] [Indexed: 01/01/2023] Open
Abstract
Primary culture of skeletal muscle stem cells (MuSCs) is indispensable to study the dynamics of muscle regeneration and homeostasis. Here we describe the modified pre-plating method for isolating MuSCs in culture with greatly improved purity, yield, and procedure time. The protocol is based on the distinct adhesion characteristics of MuSCs. We reduced the procedure time to 2.5 days to obtain highly purified MuSCs through a newly employed re-plating step, which repeats incubation and cell-suspension. The re-plating step efficiently traps remaining fibroblastic cells, but not MuSCs, on a collagen-coated dish. Additionally, we confirmed that MuSCs can be isolated from small amounts of human/mouse muscle tissues, enabling us to perform experiments with amount-limited specimens. Thus, our method can be performed with basic laboratory equipment suitable for most facilities and without sophisticated MuSC handling techniques.
Collapse
Affiliation(s)
- Kiyoshi Yoshioka
- Department of Muscle Development and Regeneration, Institute of Molecular Embryology and Genetics, Kumamoto University, Kumamoto, Japan
| | - Yasuo Kitajima
- Department of Muscle Development and Regeneration, Institute of Molecular Embryology and Genetics, Kumamoto University, Kumamoto, Japan
| | - Narihiro Okazaki
- Department of Orthopaedic Surgery, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki, Japan
| | - Ko Chiba
- Department of Orthopaedic Surgery, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki, Japan
| | - Akihiko Yonekura
- Department of Orthopaedic Surgery, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki, Japan
| | - Yusuke Ono
- Department of Muscle Development and Regeneration, Institute of Molecular Embryology and Genetics, Kumamoto University, Kumamoto, Japan
| |
Collapse
|