201
|
Wang G, Zhang Z, Xu Z, Yin H, Bai L, Ma Z, DeCoster MA, Qian G, Wu G. Activation of the sonic hedgehog signaling controls human pulmonary arterial smooth muscle cell proliferation in response to hypoxia. BIOCHIMICA ET BIOPHYSICA ACTA 2010; 1803:1359-67. [PMID: 20840857 PMCID: PMC2956789 DOI: 10.1016/j.bbamcr.2010.09.002] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 03/14/2010] [Revised: 08/27/2010] [Accepted: 09/01/2010] [Indexed: 12/16/2022]
Abstract
The hedgehog signal pathway plays a crucial role in the angiogenesis and vascular remodeling. However, the function of this pathway in the pulmonary vascular smooth cell proliferation in response to hypoxia remains unknown. In this study, we have demonstrated that the main components of the hedgehog pathway, including sonic hedgehog (SHH), patched1 (PTCH1), smoothened (SMO), GLI and hypoxia-inducible factor 1 (HIF1) are expressed in the human pulmonary arterial smooth muscle cells (HPASMCs). Interestingly, hypoxia significantly enhanced the expression of SHH and HIF1, facilitated the translocation of GLI1 into the nuclei, and promoted the proliferation of HPASMCs. Furthermore, direct activation of the SHH pathway through incubation with the purified recombinant human SHH or with purmorphamine and SAG, two Smo agonists, also enhanced the proliferation of HPASMCs. Importantly, the treatment with anti-SHH and anti-HIF1 antibodies or cyclopamine, a specific SMO inhibitor, markedly inhibited the nuclear translocation of GLI1 and cell proliferation in the HPASMCs induced by hypoxia and activation of the SHH pathway. Moreover, the treatment with cyclopamine increased apoptosis in the hypoxic HPASMCs. These data strongly demonstrate for the first time that the SHH signaling plays a crucial role in the regulation of HPASMC growth in response to hypoxia.
Collapse
Affiliation(s)
- Guansong Wang
- Institute of Respiratory Diseases, Xinqiao Hospital of the Third Military Medical University, Chongqing 400037, P. R. China
- Department of Pharmacology and Experimental Therapeutics, Louisiana State University Health Sciences Center, New Orleans, Louisiana 70112, USA
| | - Zhiyuan Zhang
- Institute of Respiratory Diseases, Xinqiao Hospital of the Third Military Medical University, Chongqing 400037, P. R. China
- Department of Respiratory Diseases, General Hospital of Shenyang, Shenyan 110016, P. R. China
| | - Zhi Xu
- Institute of Respiratory Diseases, Xinqiao Hospital of the Third Military Medical University, Chongqing 400037, P. R. China
| | - Hongjin Yin
- Institute of Respiratory Diseases, Xinqiao Hospital of the Third Military Medical University, Chongqing 400037, P. R. China
| | - Li Bai
- Institute of Respiratory Diseases, Xinqiao Hospital of the Third Military Medical University, Chongqing 400037, P. R. China
| | - Zhuang Ma
- Department of Respiratory Diseases, General Hospital of Shenyang, Shenyan 110016, P. R. China
| | - Mark A. DeCoster
- Biomedical Engineering and Institute for Micromanufacturing, Louisiana Tech University, Ruston, LA 71272, USA
| | - Guisheng Qian
- Institute of Respiratory Diseases, Xinqiao Hospital of the Third Military Medical University, Chongqing 400037, P. R. China
| | - Guangyu Wu
- Department of Pharmacology and Experimental Therapeutics, Louisiana State University Health Sciences Center, New Orleans, Louisiana 70112, USA
| |
Collapse
|
202
|
Charles N, Holland EC. The perivascular niche microenvironment in brain tumor progression. Cell Cycle 2010; 9:3012-21. [PMID: 20714216 DOI: 10.4161/cc.9.15.12710] [Citation(s) in RCA: 139] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Glioblastoma, the most frequent and aggressive malignant brain tumor, has a very poor prognosis of approximately 1-year. The associated aggressive phenotype and therapeutic resistance of glioblastoma is postulated to be due to putative brain tumor stem-like cells (BTSC). The best hope for improved therapy lies in the ability to understand the molecular biology that controls BTSC behavior. The tumor vascular microenvironment of brain tumors has emerged as important regulators of BTSC behavior. Emerging data have identified the vascular microenvironment as home to a multitude of cell types engaged in various signaling that work collectively to foster a supportive environment for BTSCs. Characterization of the signaling pathways and intercellular communication between resident cell types in the microvascular niche of brain tumors is critical to the identification of potential BTSC-specific targets for therapy.
Collapse
Affiliation(s)
- Nikki Charles
- Department of Cancer Biology and Genetics, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | | |
Collapse
|
203
|
Himmelstein DS, Bi C, Clark BS, Bai B, Kohtz JD. Balanced Shh signaling is required for proper formation and maintenance of dorsal telencephalic midline structures. BMC DEVELOPMENTAL BIOLOGY 2010; 10:118. [PMID: 21114856 PMCID: PMC3018372 DOI: 10.1186/1471-213x-10-118] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/28/2010] [Accepted: 11/29/2010] [Indexed: 12/21/2022]
Abstract
BACKGROUND The rostral telencephalic dorsal midline is an organizing center critical for the formation of the future cortex and hippocampus. While the intersection of WNTs, BMPs, and FGFs establishes boundaries within this critical center, a direct role of Shh signaling in this region remains controversial. In this paper we show that both increased and decreased Shh signaling directly affects boundary formation within the telencephalic dorsal midline. RESULTS Viral over-expression of Shh in the embryonic telencephalon prevents formation of the cortical hem and choroid plexus, while expanding the roof plate. In a transgenic model where cholesterol-lacking ShhN is expressed from one allele (ShhN/+), genes expressed in all three domains, cortical hem, choroid plexus and roof plate expand. In Gli1/2 -/- mutant brains, where Shh signaling is reduced, the roof plate expands, again at the expense of cortical hem and plexus. Cell autonomous activation of Shh signaling in the dorsal midline through Gdf7-driven activated Smoothened expression results in expansion of the Wnt3a-expressing cortical hem into the plexus domain. In addition, developmental stage determines dorsal midline responsiveness to Shh. CONCLUSIONS Together, these data demonstrate that balanced Shh signaling is critical for maintaining regional boundaries within the dorsal midline telencephalic organizing center.
Collapse
Affiliation(s)
- Diana S Himmelstein
- Developmental Biology and Department of Pediatrics, Children's Memorial Research Center and Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
| | | | | | | | | |
Collapse
|
204
|
Jagani Z, Mora-Blanco EL, Sansam CG, McKenna ES, Wilson B, Chen D, Klekota J, Tamayo P, Nguyen PTL, Tolstorukov M, Park PJ, Cho YJ, Hsiao K, Buonamici S, Pomeroy SL, Mesirov JP, Ruffner H, Bouwmeester T, Luchansky SJ, Murtie J, Kelleher JF, Warmuth M, Sellers WR, Roberts CWM, Dorsch M. Loss of the tumor suppressor Snf5 leads to aberrant activation of the Hedgehog-Gli pathway. Nat Med 2010; 16:1429-33. [PMID: 21076395 DOI: 10.1038/nm.2251] [Citation(s) in RCA: 198] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2010] [Accepted: 09/30/2010] [Indexed: 01/18/2023]
Abstract
Aberrant activation of the Hedgehog (Hh) pathway can drive tumorigenesis. To investigate the mechanism by which glioma-associated oncogene family zinc finger-1 (GLI1), a crucial effector of Hh signaling, regulates Hh pathway activation, we searched for GLI1-interacting proteins. We report that the chromatin remodeling protein SNF5 (encoded by SMARCB1, hereafter called SNF5), which is inactivated in human malignant rhabdoid tumors (MRTs), interacts with GLI1. We show that Snf5 localizes to Gli1-regulated promoters and that loss of Snf5 leads to activation of the Hh-Gli pathway. Conversely, re-expression of SNF5 in MRT cells represses GLI1. Consistent with this, we show the presence of a Hh-Gli-activated gene expression profile in primary MRTs and show that GLI1 drives the growth of SNF5-deficient MRT cells in vitro and in vivo. Therefore, our studies reveal that SNF5 is a key mediator of Hh signaling and that aberrant activation of GLI1 is a previously undescribed targetable mechanism contributing to the growth of MRT cells.
Collapse
Affiliation(s)
- Zainab Jagani
- Novartis Institutes for BioMedical Research, Cambridge, Massachusetts, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
205
|
Desch P, Asslaber D, Kern D, Schnidar H, Mangelberger D, Alinger B, Stoecher M, Hofbauer SW, Neureiter D, Tinhofer I, Aberger F, Hartmann TN, Greil R. Inhibition of GLI, but not Smoothened, induces apoptosis in chronic lymphocytic leukemia cells. Oncogene 2010; 29:4885-95. [PMID: 20603613 DOI: 10.1038/onc.2010.243] [Citation(s) in RCA: 58] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2009] [Revised: 04/20/2010] [Accepted: 05/20/2010] [Indexed: 12/14/2022]
Abstract
The Hedgehog (Hh) pathway regulates cell proliferation and survival and contributes to tumorigenesis. We investigated the expression and function of this pathway in B-cell chronic lymphocytic leukemia (CLL) cells and in healthy B lymphocytes. Profiling of cognate Hh pathway members revealed reduced expression of two key Hh signaling effectors, Smoothened (SMOH) and GLI, in CLL cells, whereas transcription levels of other investigated members resembled normal B-lymphocyte levels. Examining the functional role of SMOH and GLI in cell survival, we found that CLL cells were hardly sensitive toward specific SMOH inhibition, but showed an unspecific decline in cell viability in response to high concentrations of the SMOH antagonist cyclopamine. In contrast, treatment with the novel GLI antagonist GANT61 reduced expression of the target gene Patched and preferentially decreased the viability of malignant cells. Specific RNA interference knockdown experiments in a CLL-derived cell line confirmed the autonomous role of GLI in malignant cell survival. GANT61-induced apoptosis in primary leukemic cells was partly attenuated by protective stromal cells, but not soluble sonic hedgehog ligand. In summary, our data show a downregulation of the classical Hh pathway in CLL and suggest an intrinsic SMOH-independent role of GLI in the ex vivo survival of CLL cells.
Collapse
MESH Headings
- Animals
- Apoptosis/drug effects
- B-Lymphocytes/cytology
- B-Lymphocytes/drug effects
- B-Lymphocytes/metabolism
- B-Lymphocytes/pathology
- Cell Line, Tumor
- Cell Survival/drug effects
- Gene Expression Regulation, Neoplastic/drug effects
- Genetic Predisposition to Disease
- Hedgehog Proteins/metabolism
- Humans
- Leukemia, Lymphocytic, Chronic, B-Cell/genetics
- Leukemia, Lymphocytic, Chronic, B-Cell/metabolism
- Leukemia, Lymphocytic, Chronic, B-Cell/pathology
- Oncogene Proteins/antagonists & inhibitors
- Oncogene Proteins/genetics
- Pyridines/pharmacology
- Pyrimidines/pharmacology
- RNA, Messenger/genetics
- RNA, Messenger/metabolism
- Receptors, G-Protein-Coupled/antagonists & inhibitors
- Receptors, G-Protein-Coupled/genetics
- Smoothened Receptor
- Trans-Activators/antagonists & inhibitors
- Trans-Activators/genetics
- Veratrum Alkaloids/pharmacology
- Zinc Finger Protein GLI1
Collapse
Affiliation(s)
- P Desch
- Laboratory for Immunological and Molecular Cancer Research, IIIrd Medical Department with Hematology, Medical Oncology, Hemostaseology, Rheumatology and Infectiology, Paracelsus Medical University, Salzburg, Austria
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
206
|
Chen Y, Peng C, Sullivan C, Li D, Li S. Critical molecular pathways in cancer stem cells of chronic myeloid leukemia. Leukemia 2010; 24:1545-54. [PMID: 20574455 PMCID: PMC3130198 DOI: 10.1038/leu.2010.143] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2010] [Revised: 04/27/2010] [Accepted: 05/26/2010] [Indexed: 01/17/2023]
Abstract
Inhibition of BCR-ABL with kinase inhibitors in the treatment of Philadelphia-positive (Ph(+)) chronic myeloid leukemia (CML) is highly effective in controlling but not curing the disease. This is largely due to the inability of these kinase inhibitors to kill leukemia stem cells (LSCs) responsible for disease relapse. This stem cell resistance is not associated with the BCR-ABL kinase domain mutations resistant to kinase inhibitors. Development of curative therapies for CML requires the identification of crucial molecular pathways responsible for the survival and self-renewal of LSCs. In this review, we will discuss our current understanding of these crucial molecular pathways in LSCs and the available therapeutic strategies for targeting these stem cells in CML.
Collapse
Affiliation(s)
- Yaoyu Chen
- Division of Hematology/Oncology, Department of Medicine, University of Massachusetts Medical School, 364 Plantation Street, Worcester, MA 01605, USA
| | - Cong Peng
- Division of Hematology/Oncology, Department of Medicine, University of Massachusetts Medical School, 364 Plantation Street, Worcester, MA 01605, USA
| | - Con Sullivan
- Department of Cancer Research, Maine Institute for Human Genetics and Health, 246 Sylvan Road, Bangor, ME 04401, USA
| | - Dongguang Li
- School of Computer and Security Science, Edith Cowan University, 2 Bradford Street, Mount Lawley, WA 6050, Australia
| | - Shaoguang Li
- Division of Hematology/Oncology, Department of Medicine, University of Massachusetts Medical School, 364 Plantation Street, Worcester, MA 01605, USA
| |
Collapse
|
207
|
Affiliation(s)
- A. Ruiz i Altaba
- Department of Genetic Medicine and Development, University of Geneva Medical School, Geneva, Switzerland
| | - F. Varnat
- Department of Genetic Medicine and Development, University of Geneva Medical School, Geneva, Switzerland
| |
Collapse
|
208
|
Wilson CW, Chuang PT. Mechanism and evolution of cytosolic Hedgehog signal transduction. Development 2010; 137:2079-94. [PMID: 20530542 DOI: 10.1242/dev.045021] [Citation(s) in RCA: 142] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Hedgehog (Hh) signaling is required for embryonic patterning and postnatal physiology in invertebrates and vertebrates. With the revelation that the primary cilium is crucial for mammalian Hh signaling, the prevailing view that Hh signal transduction mechanisms are conserved across species has been challenged. However, more recent progress on elucidating the function of core Hh pathway cytosolic regulators in Drosophila, zebrafish and mice has confirmed that the essential logic of Hh transduction is similar between species. Here, we review Hh signaling events at the membrane and in the cytosol, and focus on parallel and divergent functions of cytosolic Hh regulators in Drosophila and mammals.
Collapse
Affiliation(s)
- Christopher W Wilson
- Cardiovascular Research Institute, University of California, San Francisco, CA 94158, USA
| | | |
Collapse
|
209
|
Mao J, Kim BM, Rajurkar M, Shivdasani RA, McMahon AP. Hedgehog signaling controls mesenchymal growth in the developing mammalian digestive tract. Development 2010; 137:1721-9. [PMID: 20430747 DOI: 10.1242/dev.044586] [Citation(s) in RCA: 139] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Homeostasis of the vertebrate digestive tract requires interactions between an endodermal epithelium and mesenchymal cells derived from the splanchnic mesoderm. Signaling between these two tissue layers is also crucial for patterning and growth of the developing gut. From early developmental stages, sonic hedgehog (Shh) and indian hedgehog (Ihh) are secreted by the endoderm of the mammalian gut, indicative of a developmental role. Further, misregulated hedgehog (Hh) signaling is implicated in both congenital defects and cancers arising from the gastrointestinal tract. In the mouse, only limited gastrointestinal anomalies arise following removal of either Shh or Ihh. However, given the considerable overlap in their endodermal expression domains, a functional redundancy between these signals might mask a more extensive role for Hh signaling in development of the mammalian gut. To address this possibility, we adopted a conditional approach to remove both Shh and Ihh functions from early mouse gut endoderm. Analysis of compound mutants indicates that continuous Hh signaling is dispensable for regional patterning of the gut tube, but is essential for growth of the underlying mesenchyme. Additional in vitro analysis, together with genetic gain-of-function studies, further demonstrate that Hh proteins act as paracrine mitogens to promote the expansion of adjacent mesenchymal progenitors, including those of the smooth muscle compartment. Together, these studies provide new insights into tissue interactions underlying mammalian gastrointestinal organogenesis and disease.
Collapse
Affiliation(s)
- Junhao Mao
- Department of Cancer Biology, University of Massachusetts Medical School, LRB 405, Worcester, MA 01605, USA.
| | | | | | | | | |
Collapse
|
210
|
Ribes V, Balaskas N, Sasai N, Cruz C, Dessaud E, Cayuso J, Tozer S, Yang LL, Novitch B, Marti E, Briscoe J. Distinct Sonic Hedgehog signaling dynamics specify floor plate and ventral neuronal progenitors in the vertebrate neural tube. Genes Dev 2010; 24:1186-200. [PMID: 20516201 PMCID: PMC2878655 DOI: 10.1101/gad.559910] [Citation(s) in RCA: 149] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2009] [Accepted: 04/07/2010] [Indexed: 12/14/2022]
Abstract
The secreted ligand Sonic Hedgehog (Shh) organizes the pattern of cellular differentiation in the ventral neural tube. For the five neuronal subtypes, increasing levels and durations of Shh signaling direct progenitors to progressively more ventral identities. Here we demonstrate that this mode of action is not applicable to the generation of the most ventral cell type, the nonneuronal floor plate (FP). In chick and mouse embryos, FP specification involves a biphasic response to Shh signaling that controls the dynamic expression of key transcription factors. During gastrulation and early somitogenesis, FP induction depends on high levels of Shh signaling. Subsequently, however, prospective FP cells become refractory to Shh signaling, and this is a prerequisite for the elaboration of their identity. This prompts a revision to the model of graded Shh signaling in the neural tube, and provides insight into how the dynamics of morphogen signaling are deployed to extend the patterning capacity of a single ligand. In addition, we provide evidence supporting a common scheme for FP specification by Shh signaling that reconciles mechanisms of FP development in teleosts and amniotes.
Collapse
Affiliation(s)
- Vanessa Ribes
- Developmental Neurobiology, Medical Research Council-National Institute for Medical Research, London NW7 1AA, United Kingdom
| | - Nikolaos Balaskas
- Developmental Neurobiology, Medical Research Council-National Institute for Medical Research, London NW7 1AA, United Kingdom
| | - Noriaki Sasai
- Developmental Neurobiology, Medical Research Council-National Institute for Medical Research, London NW7 1AA, United Kingdom
| | - Catarina Cruz
- Developmental Neurobiology, Medical Research Council-National Institute for Medical Research, London NW7 1AA, United Kingdom
| | - Eric Dessaud
- Developmental Neurobiology, Medical Research Council-National Institute for Medical Research, London NW7 1AA, United Kingdom
| | - Jordi Cayuso
- Instituto de Biología Molecular de Barcelona, Consejo Superior de Investigaciones Científicas (CSIC), Barcelona 08028, Spain
| | - Samuel Tozer
- Developmental Neurobiology, Medical Research Council-National Institute for Medical Research, London NW7 1AA, United Kingdom
| | - Lin Lin Yang
- Department of Neurobiology, Broad Center of Regenerative Medicine and Stem Cell Research, David Geffen School of Medicine at University of California at Los Angeles, Los Angeles, California 90095, USA
| | - Ben Novitch
- Department of Neurobiology, Broad Center of Regenerative Medicine and Stem Cell Research, David Geffen School of Medicine at University of California at Los Angeles, Los Angeles, California 90095, USA
| | - Elisa Marti
- Instituto de Biología Molecular de Barcelona, Consejo Superior de Investigaciones Científicas (CSIC), Barcelona 08028, Spain
| | - James Briscoe
- Developmental Neurobiology, Medical Research Council-National Institute for Medical Research, London NW7 1AA, United Kingdom
| |
Collapse
|
211
|
Dessaud E, Ribes V, Balaskas N, Yang LL, Pierani A, Kicheva A, Novitch BG, Briscoe J, Sasai N. Dynamic assignment and maintenance of positional identity in the ventral neural tube by the morphogen sonic hedgehog. PLoS Biol 2010; 8:e1000382. [PMID: 20532235 PMCID: PMC2879390 DOI: 10.1371/journal.pbio.1000382] [Citation(s) in RCA: 141] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2009] [Accepted: 04/20/2010] [Indexed: 12/31/2022] Open
Abstract
Morphogens are secreted signalling molecules that act in a graded manner to control the pattern of cellular differentiation in developing tissues. An example is Sonic hedgehog (Shh), which acts in several developing vertebrate tissues, including the central nervous system, to provide positional information during embryonic patterning. Here we address how Shh signalling assigns the positional identities of distinct neuronal subtype progenitors throughout the ventral neural tube. Assays of intracellular signal transduction and gene expression indicate that the duration as well as level of signalling is critical for morphogen interpretation. Progenitors of the ventral neuronal subtypes are established sequentially, with progressively more ventral identities requiring correspondingly higher levels and longer periods of Shh signalling. Moreover, cells remain sensitive to changes in Shh signalling for an extended time, reverting to antecedent identities if signalling levels fall below a threshold. Thus, the duration of signalling is important not only for the assignment but also for the refinement and maintenance of positional identity. Together the data suggest a dynamic model for ventral neural tube patterning in which positional information corresponds to the time integral of Shh signalling. This suggests an alternative to conventional models of morphogen action that rely solely on the level of signalling.
Collapse
Affiliation(s)
- Eric Dessaud
- Developmental Neurobiology, MRC-National Institute for Medical Research, London, United Kingdom
| | - Vanessa Ribes
- Developmental Neurobiology, MRC-National Institute for Medical Research, London, United Kingdom
| | - Nikolaos Balaskas
- Developmental Neurobiology, MRC-National Institute for Medical Research, London, United Kingdom
| | - Lin Lin Yang
- Department of Neurobiology, Broad Center of Regenerative Medicine and Stem Cell Research, David Geffen School of Medicine at UCLA, Los Angeles, California, United States of America
| | - Alessandra Pierani
- Institut Jacques Monod, Université Paris Diderot, Program of Development and Neurobiology, Paris, France
| | - Anna Kicheva
- Developmental Neurobiology, MRC-National Institute for Medical Research, London, United Kingdom
| | - Bennett G. Novitch
- Department of Neurobiology, Broad Center of Regenerative Medicine and Stem Cell Research, David Geffen School of Medicine at UCLA, Los Angeles, California, United States of America
| | - James Briscoe
- Developmental Neurobiology, MRC-National Institute for Medical Research, London, United Kingdom
| | - Noriaki Sasai
- Developmental Neurobiology, MRC-National Institute for Medical Research, London, United Kingdom
| |
Collapse
|
212
|
Carney RSE, Mangin JM, Hayes L, Mansfield K, Sousa VH, Fishell G, Machold RP, Ahn S, Gallo V, Corbin JG. Sonic hedgehog expressing and responding cells generate neuronal diversity in the medial amygdala. Neural Dev 2010; 5:14. [PMID: 20507551 PMCID: PMC2892491 DOI: 10.1186/1749-8104-5-14] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2010] [Accepted: 05/27/2010] [Indexed: 11/23/2022] Open
Abstract
Background The mammalian amygdala is composed of two primary functional subdivisions, classified according to whether the major output projection of each nucleus is excitatory or inhibitory. The posterior dorsal and ventral subdivisions of the medial amygdala, which primarily contain inhibitory output neurons, modulate specific aspects of innate socio-sexual and aggressive behaviors. However, the development of the neuronal diversity of this complex and important structure remains to be fully elucidated. Results Using a combination of genetic fate-mapping and loss-of-function analyses, we examined the contribution and function of Sonic hedgehog (Shh)-expressing and Shh-responsive (Nkx2-1+ and Gli1+) neurons in the medial amygdala. Specifically, we found that Shh- and Nkx2-1-lineage cells contribute differentially to the dorsal and ventral subdivisions of the postnatal medial amygdala. These Shh- and Nkx2-1-lineage neurons express overlapping and non-overlapping inhibitory neuronal markers, such as Calbindin, FoxP2, nNOS and Somatostatin, revealing diverse fate contributions in discrete medial amygdala nuclear subdivisions. Electrophysiological analysis of the Shh-derived neurons additionally reveals an important functional diversity within this lineage in the medial amygdala. Moreover, inducible Gli1CreER(T2) temporal fate mapping shows that early-generated progenitors that respond to Shh signaling also contribute to medial amygdala neuronal diversity. Lastly, analysis of Nkx2-1 mutant mice demonstrates a genetic requirement for Nkx2-1 in inhibitory neuronal specification in the medial amygdala distinct from the requirement for Nkx2-1 in cerebral cortical development. Conclusions Taken together, these data reveal a differential contribution of Shh-expressing and Shh-responding cells to medial amygdala neuronal diversity as well as the function of Nkx2-1 in the development of this important limbic system structure.
Collapse
Affiliation(s)
- Rosalind S E Carney
- Center for Neuroscience Research, Children's Research Institute, Children's National Medical Center, Washington, DC 20010, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
213
|
Peacock ZS, Cox D, Schmidt BL. Involvement of PTCH1 mutations in the calcifying epithelial odontogenic tumor. Oral Oncol 2010; 46:387-92. [DOI: 10.1016/j.oraloncology.2010.02.023] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2009] [Revised: 02/20/2010] [Accepted: 02/22/2010] [Indexed: 11/16/2022]
|
214
|
Bijlsma MF, Spek CA. The Hedgehog morphogen in myocardial ischemia-reperfusion injury. Exp Biol Med (Maywood) 2010; 235:447-54. [PMID: 20407076 DOI: 10.1258/ebm.2009.009303] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The developmental Hedgehog (Hh) protein family is known to be pivotal in many embryonic patterning events and the number of processes in which Hh plays an essential role is expanding persistently. Recently, it has become clear that the Hh pathway is not only active in the developing embryo but also in the adult organism. For example, Hh has been suggested to salvage ischemia-induced tissue damage although endogenous Hh might be deleterious during the early phase of myocardial ischemia-reperfusion. The current review provides an overview of the history of Hh biology and discusses some novel insights on Hh cell biology. Hh function in pathophysiology as well as recent findings concerning Hh signaling in ischemia models, especially in light of cardiovascular disease, is discussed in more detail and future perspectives are proposed.
Collapse
Affiliation(s)
- Maarten F Bijlsma
- Department of Molecular and Cell Biology, University of California, Berkeley, CA, USA
| | | |
Collapse
|
215
|
Ulloa F, Martí E. Wnt won the war: antagonistic role of Wnt over Shh controls dorso-ventral patterning of the vertebrate neural tube. Dev Dyn 2010; 239:69-76. [PMID: 19681160 DOI: 10.1002/dvdy.22058] [Citation(s) in RCA: 66] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
The spinal cord has been used as a model to dissect the mechanisms that govern the patterning of tissues during animal development, since the principles that rule the dorso-ventral patterning of the neural tube are applicable to other systems. Signals that determine the dorso-ventral axis of the spinal cord include Sonic hedgehog (Shh), acting as a bona fide morphogenetic signal to determine ventral progenitor identities, and members of the Bmp and the Wnt families, acting in the dorsal neural tube. Although Wnts have been initially recognized as important in proliferation of neural progenitor cells, their role in the dorso-ventral patterning has been controversial. In this review, we discuss recent reports that show an important contribution of the Wnt canonical pathway in dorso-ventral pattern formation. These data allow building a model by which the ventralizing activity of Shh is antagonized by Wnt activity through the expression of Gli3, a potent inhibitor of the Shh pathway. Therefore, antagonistic interactions between canonical Wnt, promoting dorsal identities, and Shh pathways, inducing ventral ones, would define the dorso-ventral patterning of the developing central nervous system.
Collapse
Affiliation(s)
- Fausto Ulloa
- Institute for Research in Biomedicine, Parc Cientific de Barcelona; Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), Department of Cell Biology, University of Barcelona, Barcelona, Spain
| | | |
Collapse
|
216
|
Saqui-Salces M, Merchant JL. Hedgehog signaling and gastrointestinal cancer. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2010; 1803:786-95. [PMID: 20307590 DOI: 10.1016/j.bbamcr.2010.03.008] [Citation(s) in RCA: 68] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/14/2009] [Revised: 03/12/2010] [Accepted: 03/15/2010] [Indexed: 12/23/2022]
Abstract
Hedgehog (Hh) signaling is critical for embryonic development and in differentiation, proliferation, and maintenance of multiple adult tissues. De-regulation of the Hh pathway is associated with birth defects and cancer. In the gastrointestinal tract, Hh ligands Sonic (Shh) and Indian (Ihh), as well as the receptor Patched (Ptch1), and transcription factors of Glioblastoma family (Gli) are all expressed during development. In the adult, Shh expression is restricted to the stomach and colon, while Ihh expression occurs throughout the luminal gastrointestinal tract, its expression being highest in the proximal duodenum. Several studies have demonstrated a requirement for Hh signaling during gastrointestinal tract development. However to date, the specific role of the Hh pathway in the adult stomach and intestine is not completely understood. The current review will place into context the implications of recent published data related to the biochemistry and cell biology of Hh signaling on the luminal gastrointestinal tract during development, normal physiology and subsequently carcinogenesis.
Collapse
Affiliation(s)
- Milena Saqui-Salces
- Department of Internal Medicine, University of Michigan, Ann Arbor, MI 48109, USA
| | | |
Collapse
|
217
|
Singh RR, Kim JE, Davuluri Y, Drakos E, Cho-Vega JH, Amin HM, Vega F. Hedgehog signaling pathway is activated in diffuse large B-cell lymphoma and contributes to tumor cell survival and proliferation. Leukemia 2010; 24:1025-36. [PMID: 20200556 DOI: 10.1038/leu.2010.35] [Citation(s) in RCA: 66] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Hedgehog (HH) signaling is important in the pathogenesis of several malignancies. Recently, we described that HH signaling proteins are commonly expressed in diffuse large B-cell lymphoma (DLBCL); however, the functional role of HH pathway in DLBCL has not been explored. Here, we assessed the possibility that HH pathway activation contributes to the survival of DLBCL. We found that HH signaling inhibition induces predominantly cell-cycle arrest in DLBCL cells of germinal center (GC) B-cell type, and apoptosis in DLBCL cells of activated B-cell (ABC) type. Apoptosis after HH signaling inhibition in DLBCL cells of ABC type was associated with downregulation of BCL2; however HH inhibition was not associated with BCL2 downregulation in DLBCL of GC type. Functional inhibition of BCL2 significantly increased apoptosis induced by HH inhibition in DLBCL cells of both types. We also showed that DLBCL cells synthesize, secrete and respond to endogenous HH ligands, providing support for the existence of an autocrine HH signaling loop. Our findings provide novel evidence that dysregulation of HH pathway is involved in the biology of DLBCL and have significant therapeutic implications as they identify HH signaling as a potential therapeutic target in DLBCL, in particular for those lymphomas expressing the HH receptor smoothened.
Collapse
Affiliation(s)
- R R Singh
- Department of Hematopathology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | | | | | | | | | | | | |
Collapse
|
218
|
Manuel M, Martynoga B, Yu T, West JD, Mason JO, Price DJ. The transcription factor Foxg1 regulates the competence of telencephalic cells to adopt subpallial fates in mice. Development 2010; 137:487-97. [PMID: 20081193 PMCID: PMC2858907 DOI: 10.1242/dev.039800] [Citation(s) in RCA: 69] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/26/2099] [Indexed: 12/17/2022]
Abstract
Foxg1 is required for development of the ventral telencephalon in the embryonic mammalian forebrain. Although one existing hypothesis suggests that failed ventral telencephalic development in the absence of Foxg1 is due to reduced production of the morphogens sonic hedgehog (Shh) and fibroblast growth factor 8 (Fgf8), the possibility that telencephalic cells lacking Foxg1 are intrinsically incompetent to generate the ventral telencephalon has remained untested. We examined the ability of Foxg1(-/-) telencephalic cells to respond to Shh and Fgf8 by examining the expression of genes whose activation requires Shh or Fgf8 in vivo and by testing their responses to Shh and Fgf8 in culture. We found that many elements of the Shh and Fgf8 signalling pathways continue to function in the absence of Foxg1 but, nevertheless, we were unable to elicit normal responses of key ventral telencephalic marker genes in Foxg1(-/-) telencephalic tissue following a range of in vivo and in vitro manipulations. We explored the development of Foxg1(-/-) cells in Foxg1(-/-) Foxg1(+/+) chimeric embryos that contained ventral telencephalon created by normally patterned wild-type cells. We found that Foxg1(-/-) cells contributed to the chimeric ventral telencephalon, but that they retained abnormal specification, expressing dorsal rather than ventral telencephalic markers. These findings indicate that, in addition to regulating the production of ventralising signals, Foxg1 acts cell-autonomously in the telencephalon to ensure that cells develop the competence to adopt ventral identities.
Collapse
Affiliation(s)
- Martine Manuel
- Genes and Development Group, University of Edinburgh, Hugh Robson Building, George Square, Edinburgh EH8 9XD, UK.
| | | | | | | | | | | |
Collapse
|
219
|
Oue T, Yoneda A, Uehara S, Yamanaka H, Fukuzawa M. Increased expression of the hedgehog signaling pathway in pediatric solid malignancies. J Pediatr Surg 2010; 45:387-92. [PMID: 20152358 DOI: 10.1016/j.jpedsurg.2009.10.081] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/23/2009] [Accepted: 10/27/2009] [Indexed: 10/19/2022]
Abstract
PURPOSE The activation of the hedgehog (Hh) signaling is involved in the progression of various cancers. However, the correlation between the Hh signaling and tumorigenesis of pediatric malignancies has not been well documented. The present study was undertaken to examine the expression of the Hh signaling pathway in various pediatric tumors to elucidate the role of Hh signaling in pediatric malignancies. METHODS Surgical specimens were obtained from 68 patients with pediatric malignancies (neuroblastoma, 25; rhabdomyosarcoma, 18; hepatic tumor, 12; and renal tumor, 13). The expression of sonic hedgehog (Shh), its receptor Patched (Ptch), and downstream transcription factor Gli1 was evaluated using immunohistochemical staining. RESULTS In neuroblastoma, 96%, 100%, and 68%; in rhabdomyosarcoma, 78%, 100%, and 78%; in Wilms' tumor, 71%, 100%, and 43%; and in hepatoblastoma, 100%, 100%, and 73% of the specimens stained positive for Shh, Ptch, and Gli1, respectively. Differentiated neuroblastoma cells showed more intense Gli1 expression than in immature neuroblastoma cells. In rhabdomyosarcoma, the expression of Gli1 was higher in alveolar type than in embryonal type. CONCLUSIONS These findings suggest that the Shh-Ptch1-Gli1 signaling pathways are frequently activated in most pediatric malignant tumors. The Hh signaling pathway may therefore play an important role in the differentiation and malignant potential of pediatric malignancies.
Collapse
Affiliation(s)
- Takaharu Oue
- Division of Pediatric Surgery, Department of Surgery, Osaka University Graduate school of Medicine, Osaka 565-0871, Japan.
| | | | | | | | | |
Collapse
|
220
|
Brugmann SA, Allen NC, James AW, Mekonnen Z, Madan E, Helms JA. A primary cilia-dependent etiology for midline facial disorders. Hum Mol Genet 2010; 19:1577-92. [PMID: 20106874 DOI: 10.1093/hmg/ddq030] [Citation(s) in RCA: 117] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023] Open
Abstract
Human faces exhibit enormous variation. When pathological conditions are superimposed on normal variation, a nearly unbroken series of facial morphologies is produced. When viewed in full, this spectrum ranges from cyclopia and hypotelorism to hypertelorism and facial duplications. Decreased Hedgehog pathway activity causes holoprosencephaly and hypotelorism. Here, we show that excessive Hedgehog activity, caused by truncating the primary cilia on cranial neural crest cells, causes hypertelorism and frontonasal dysplasia (FND). Elimination of the intraflagellar transport protein Kif3a leads to excessive Hedgehog responsiveness in facial mesenchyme, which is accompanied by broader expression domains of Gli1, Ptc and Shh, and reduced expression domains of Gli3. Furthermore, broader domains of Gli1 expression correspond to areas of enhanced neural crest cell proliferation in the facial prominences of Kif3a conditional knockouts. Avian Talpid embryos that lack primary cilia exhibit similar molecular changes and similar facial phenotypes. Collectively, these data support our hypothesis that a severe narrowing of the facial midline and excessive expansion of the facial midline are both attributable to disruptions in Hedgehog pathway activity. These data also raise the possibility that genes encoding ciliary proteins are candidates for human conditions of hypertelorism and FNDs.
Collapse
Affiliation(s)
- Samantha A Brugmann
- Department of Surgery, Division of Plastic and Reconstructive Surgery, Stanford University, Stanford, CA 94305, USA
| | | | | | | | | | | |
Collapse
|
221
|
Stecca B, Ruiz i Altaba A. Context-dependent regulation of the GLI code in cancer by HEDGEHOG and non-HEDGEHOG signals. J Mol Cell Biol 2010; 2:84-95. [PMID: 20083481 DOI: 10.1093/jmcb/mjp052] [Citation(s) in RCA: 204] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
A surprisingly large and unrelated number of human tumors depend on sustained HEDGEHOG-GLI (HH-GLI) signaling for growth. This includes cancers of the skin, brain, colon, lungs, prostate, blood and pancreas among others. The basis of such commonality is not obvious. HH-GLI signaling has also been shown to be active in and required for cancer stem cell survival and expansion in different cancer types, and its activity is essential not only for tumor growth but also for recurrence and metastatic growth, two key medical problems. Here we review recent data on the role of HH-GLI signaling in cancer focusing on the role of the GLI code, the regulated combinatorial and cooperative function of repressive and activating forms of all Gli transcription factors, as a signaling nexus that integrates not only HH signals but also those of multiple tumor suppressors and oncogenes. Recent data support the view that the context-dependent regulation of the GLI code by oncogenes and tumor suppressors constitutes a basis for the widespread involvement of GLI1 in human cancers, representing a perversion of its normal role in the control of stem cell lineages during normal development and homeostasis.
Collapse
Affiliation(s)
- Barbara Stecca
- Department of Genetic Medicine and Development, University of Geneva Medical School, Geneva CH-1211, Switzerland
| | | |
Collapse
|
222
|
Sutter R, Shakhova O, Bhagat H, Behesti H, Sutter C, Penkar S, Santuccione A, Bernays R, Heppner FL, Schüller U, Grotzer M, Moch H, Schraml P, Marino S. Cerebellar stem cells act as medulloblastoma-initiating cells in a mouse model and a neural stem cell signature characterizes a subset of human medulloblastomas. Oncogene 2010; 29:1845-56. [PMID: 20062081 DOI: 10.1038/onc.2009.472] [Citation(s) in RCA: 64] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Cells with stem cell properties have been isolated from various areas of the postnatal mammalian brain, most recently from the postnatal mouse cerebellum. We show here that inactivation of the tumor suppressor genes Rb and p53 in these endogenous neural stem cells induced deregulated proliferation and resistance to apoptosis in vitro. Moreover, injection of these cells into mice formed medulloblastomas. Medulloblastomas are the most common malignant brain tumors of childhood, and despite recent advances in treatment they are associated with high morbidity and mortality. They are highly heterogeneous tumors characterized by a diverse genetic make-up and expression profile as well as variable prognosis. Here, we describe a novel ontogenetic pathway of medulloblastoma that significantly contributes to understanding their heterogeneity. Experimental medulloblastomas originating from neural stem cells preferentially expressed stem cell markers Nestin, Sox2 and Sox9, which were not expressed in medulloblastomas originating from granule-cell-restricted progenitors. Furthermore, the expression of these markers identified a subset of human medulloblastomas associated with a poorer clinical outcome.
Collapse
Affiliation(s)
- R Sutter
- Neuroscience Centre, Blizard Institute of Cell and Molecular Science, Barts and the London School of Medicine and Dentistry, Queen Mary University of London, London E1 2AT, UK
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
223
|
Merchant JL, Saqui-Salces M, El-Zaatari M. Hedgehog signaling in gastric physiology and cancer. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2010; 96:133-56. [PMID: 21075343 DOI: 10.1016/b978-0-12-381280-3.00006-3] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
The Hedgehog family of ligands was originally identified in mutagenesis screens of Drosophila embryos. Hedgehog signaling in multiple tissues is important during embryonic development. A common theme regarding Hedgehog expression in adult tissues is that tissue injury reactivates the developmental pattern of expression. In most instances, this appears to be important to initiate tissue repair. In the gastrointestinal (GI) tract, where epithelial cells are constantly replenished from progenitor populations, Hedgehog signaling also appears to be essential for regeneration. By contrast, reactivated Hedgehog signaling in adult tissues does not automatically predispose the tissue to transformation, but instead requires sustained tissue injury in the form of chronic inflammation. In this chapter, we review what is known about Hedgehog ligands and signaling during development of relevant organs, and discuss how the patterns of Hedgehog regulation are recapitulated in the GI tract during embryogenesis, adult homeostasis, and neoplastic transformation.
Collapse
Affiliation(s)
- Juanita L Merchant
- Department of Internal Medicine, University of Michigan, Ann Arbor, Michigan, USA
| | | | | |
Collapse
|
224
|
Enteric neural crest differentiation in ganglioneuromas implicates Hedgehog signaling in peripheral neuroblastic tumor pathogenesis. PLoS One 2009; 4:e7491. [PMID: 19834598 PMCID: PMC2759000 DOI: 10.1371/journal.pone.0007491] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2009] [Accepted: 08/18/2009] [Indexed: 01/11/2023] Open
Abstract
Peripheral neuroblastic tumors (PNTs) share a common origin in the sympathetic nervous system, but manifest variable differentiation and growth potential. Malignant neuroblastoma (NB) and benign ganglioneuroma (GN) stand at opposite ends of the clinical spectrum. We hypothesize that a common PNT progenitor is driven to variable differentiation by specific developmental signaling pathways. To elucidate developmental pathways that direct PNTs along the differentiation spectrum, we compared the expression of genes related to neural crest development in GN and NB. In GNs, we found relatively low expression of sympathetic markers including adrenergic biosynthesis enzymes, indicating divergence from sympathetic fate. In contrast, GNs expressed relatively high levels of enteric neuropeptides and key constituents of the Hedgehog (HH) signaling pathway, including Dhh, Gli1 and Gli3. Predicted HH targets were also differentially expressed in GN, consistent with transcriptional response to HH signaling. These findings indicate that HH signaling is specifically active in GN. Together with the known role of HH activity in enteric neural development, these findings further suggested a role for HH activity in directing PNTs away from the sympathetic lineage toward a benign GN phenotype resembling enteric ganglia. We tested the potential for HH signaling to advance differentiation in PNTs by transducing NB cell lines with Gli1 and determining phenotypic and transcriptional response. Gli1 inhibited proliferation of NB cells, and induced a pattern of gene expression that resembled the differential pattern of gene expression of GN, compared to NB (p<0.00001). Moreover, the transcriptional response of SY5Y cells to Gli1 transduction closely resembled the transcriptional response to the differentiation agent retinoic acid (p<0.00001). Notably, Gli1 did not induce N-MYC expression in neuroblastoma cells, but strongly induced RET, a known mediator of RA effect. The decrease in NB cell proliferation induced by Gli1, and the similarity in the patterns of gene expression induced by Gli1 and by RA, corroborated by closely matched gene sets in GN tumors, all support a model in which HH signaling suppresses PNT growth by promoting differentiation along alternative neural crest pathways.
Collapse
|
225
|
Sonic hedgehog signaling proteins and ATP-binding cassette G2 are aberrantly expressed in diffuse large B-cell lymphoma. Mod Pathol 2009; 22:1312-20. [PMID: 19593328 DOI: 10.1038/modpathol.2009.98] [Citation(s) in RCA: 73] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Dysregulation of the sonic hedgehog (SHH) signaling pathway has been shown in several cancer types, but has not been explored in diffuse large B-cell lymphoma. We assessed 67 cases of diffuse large B-cell lymphoma for expression of SHH (ligand), GLI1, GLI2 and GLI3 (transcriptional effectors of SHH signaling), and the ATP-binding cassette (ABC)G2 (a downstream target of SHH signaling), using immunohistochemistry. For comparison, we assessed the expression levels of these proteins in 28 cases of follicular lymphoma, 5 chronic lymphocytic leukemia/small lymphocytic lymphoma, and 5 reactive lymph nodes. In diffuse large B-cell lymphoma, SHH was expressed in 61 of 67 (91%) cases, GLI1 in 62 of 67 (93%), GLI2 in 41 of 56 (73%), and GLI3 in 22 of 56 (39%). Expression of ABCG2 was detected in 52 of 55 (95%) cases and was high in 15 (27%) cases. SHH expression positively correlated with expression levels of ABCG2 (P=0.05). Patients with diffuse large B-cell lymphoma with high ABCG2 expression showed significantly shorter overall survival (P=0.031) and failure-free survival (P=0.029) compared with patients with tumors with low or no expression of ABCG2. Diffuse large B-cell lymphomas expressed SHH, and GLI1, GLI2, and GLI3 more frequently and more intensely than cases of follicular lymphoma or chronic lymphocytic leukemia/small lymphocytic lymphoma. In conclusion, our data show that SHH signaling proteins and ABCG2 are aberrantly expressed in diffuse large B-cell lymphoma and that ABCG2 expression has prognostic implications. These findings also provide evidence that dysregulation of the SHH pathway may be involved in the pathogenesis of diffuse large B-cell lymphoma.
Collapse
|
226
|
Chen MH, Wilson CW, Li YJ, Law KKL, Lu CS, Gacayan R, Zhang X, Hui CC, Chuang PT. Cilium-independent regulation of Gli protein function by Sufu in Hedgehog signaling is evolutionarily conserved. Genes Dev 2009; 23:1910-28. [PMID: 19684112 DOI: 10.1101/gad.1794109] [Citation(s) in RCA: 287] [Impact Index Per Article: 17.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
A central question in Hedgehog (Hh) signaling is how evolutionarily conserved components of the pathway might use the primary cilium in mammals but not fly. We focus on Suppressor of fused (Sufu), a major Hh regulator in mammals, and reveal that Sufu controls protein levels of full-length Gli transcription factors, thus affecting the production of Gli activators and repressors essential for graded Hh responses. Surprisingly, despite ciliary localization of most Hh pathway components, regulation of Gli protein levels by Sufu is cilium-independent. We propose that Sufu-dependent processes in Hh signaling are evolutionarily conserved. Consistent with this, Sufu regulates Gli protein levels by antagonizing the activity of Spop, a conserved Gli-degrading factor. Furthermore, addition of zebrafish or fly Sufu restores Gli protein function in Sufu-deficient mammalian cells. In contrast, fly Smo is unable to translocate to the primary cilium and activate the mammalian Hh pathway. We also uncover a novel positive role of Sufu in regulating Hh signaling, resulting from its control of both Gli activator and repressor function. Taken together, these studies delineate important aspects of cilium-dependent and cilium-independent Hh signal transduction and provide significant mechanistic insight into Hh signaling in diverse species.
Collapse
Affiliation(s)
- Miao-Hsueh Chen
- Cardiovascular Research Institute, University of California at San Francisco, San Francisco, California 94158, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
227
|
Plaisant M, Fontaine C, Cousin W, Rochet N, Dani C, Peraldi P. Activation of hedgehog signaling inhibits osteoblast differentiation of human mesenchymal stem cells. Stem Cells 2009; 27:703-13. [PMID: 19096040 DOI: 10.1634/stemcells.2008-0888] [Citation(s) in RCA: 80] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Mesenchymal stem cells within the bone are responsible for the generation of osteoblasts, chondrocytes, and adipocytes. In rodents, Indian hedgehog has been shown to play a role in osteoblast differentiation. However, evidence for a direct function of hedgehog (Hh) in human osteoblastic differentiation is missing. Using different models of human mesenchymal stem cells we show that Hh signaling decreases during osteoblast differentiation. This is associated with a decrease in Smoothened expression, a key partner that triggers Hh signaling, and in the number of cells displaying a primary cilium, an organelle necessary for Hh signaling. Remarkably, treatment of human mesenchymal stem cells with sonic hedgehog or two molecules able to activate Hh signaling inhibits osteoblast differentiation. This inhibition is visualized through a decrease in mineralization and in the expression of osteoblastic genes. In particular, activation of Hh signaling induces a decrease in Runx2 expression, a key transcriptional factor controlling the early stage of osteoblast differentiation. Consistently, the activation of Hh signaling during the first days of differentiation is sufficient to inhibit osteoblast differentiation, whereas differentiated osteoblasts are not affected by Hh signaling. In summary, we show here, using various inducers of Hh signaling and mesenchymal stem cells of two different origins, that Hh signaling inhibits human osteoblast differentiation, in sharp contrast to what has been described in rodent cells. This species difference should be taken into account for screening for pro-osteogenic molecules.
Collapse
Affiliation(s)
- Magali Plaisant
- Institute of Signaling, Biology, Development and Cancer, Université de Nice Sophia-Antipolis, CNRS UMR, France
| | | | | | | | | | | |
Collapse
|
228
|
Andreae LC, Lumsden A, Gilthorpe JD. Chick Lrrn2, a novel downstream effector of Hoxb1 and Shh, functions in the selective targeting of rhombomere 4 motor neurons. Neural Dev 2009; 4:27. [PMID: 19602272 PMCID: PMC2716342 DOI: 10.1186/1749-8104-4-27] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2008] [Accepted: 07/14/2009] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Capricious is a Drosophila adhesion molecule that regulates specific targeting of a subset of motor neurons to their muscle target. We set out to identify whether one of its vertebrate homologues, Lrrn2, might play an analogous role in the chick. RESULTS We have shown that Lrrn2 is expressed from early development in the prospective rhombomere 4 (r4) of the chick hindbrain. Subsequently, its expression in the hindbrain becomes restricted to a specific group of motor neurons, the branchiomotor neurons of r4, and their pre-muscle target, the second branchial arch (BA2), along with other sites outside the hindbrain. Misexpression of the signalling molecule Sonic hedgehog (Shh) via in ovo electroporation results in upregulation of Lrrn2 exclusively in r4, while the combined expression of Hoxb1 and Shh is sufficient to induce ectopic Lrrn2 in r1/2. Misexpression of Lrrn2 in r2/3 results in axonal rerouting from the r2 exit point to the r4 exit point and BA2, suggesting a direct role in motor axon guidance. CONCLUSION Lrrn2 acts downstream of Hoxb1 and plays a role in the selective targeting of r4 motor neurons to BA2.
Collapse
Affiliation(s)
- Laura C Andreae
- MRC Centre for Developmental Neurobiology, King's College London, New Hunt's House, Guy's Campus, London, SE1 1UL, UK
| | - Andrew Lumsden
- MRC Centre for Developmental Neurobiology, King's College London, New Hunt's House, Guy's Campus, London, SE1 1UL, UK
| | - Jonathan D Gilthorpe
- MRC Centre for Developmental Neurobiology, King's College London, New Hunt's House, Guy's Campus, London, SE1 1UL, UK
- Umeå Centre for Molecular Medicine, Umeå University, 901 87 Umeå, Sweden
| |
Collapse
|
229
|
Lunt SC, Haynes T, Perkins BD. Zebrafish ift57, ift88, and ift172 intraflagellar transport mutants disrupt cilia but do not affect hedgehog signaling. Dev Dyn 2009; 238:1744-59. [PMID: 19517571 PMCID: PMC2771627 DOI: 10.1002/dvdy.21999] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Cilia formation requires intraflagellar transport (IFT) proteins. Recent studies indicate that mammalian Hedgehog (Hh) signaling requires cilia. It is unclear, however, if the requirement for cilia and IFT proteins in Hh signaling represents a general rule for all vertebrates. Here we examine zebrafish ift57, ift88, and ift172 mutants and morphants for defects in Hh signaling. Although ift57 and ift88 mutants and morphants contained residual maternal protein, the cilia were disrupted. In contrast to previous genetic studies in mouse, mutations in zebrafish IFT genes did not affect the expression of Hh target genes in the neural tube and forebrain and had no quantitative effect on Hh target gene expression. Zebrafish IFT mutants also exhibited no dramatic changes in the craniofacial skeleton, somite formation, or motor neuron patterning. Thus, our data indicate the requirement for cilia in the Hh signal transduction pathway may not represent a universal mechanism in vertebrates.
Collapse
Affiliation(s)
- Shannon C Lunt
- Department of Biology, Texas A&M University, College Station, Texas 77843, USA
| | | | | |
Collapse
|
230
|
A GLI1-p53 inhibitory loop controls neural stem cell and tumour cell numbers. EMBO J 2009; 28:663-76. [PMID: 19214186 PMCID: PMC2647769 DOI: 10.1038/emboj.2009.16] [Citation(s) in RCA: 198] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2008] [Accepted: 01/09/2009] [Indexed: 01/05/2023] Open
Abstract
How cell numbers are determined is not understood. Hedgehog-Gli activity is involved in precursor cell proliferation and stem cell self-renewal, and its deregulation sustains the growth of many human tumours. However, it is not known whether GLI1, the final mediator of Hh signals, controls stem cell numbers, and how its activity is restricted to curtail tumourigenesis. Here we have altered the levels of GLI1 and p53, the major tumour suppressor, in multiple systems. We show that GLI1 expression in Nestin+ neural progenitors increases precursor and clonogenic stem cell numbers in vivo and in vitro. In contrast, p53 inhibits GLI1-driven neural stem cell self-renewal, tumour growth and proliferation. Mechanistically, p53 inhibits the activity, nuclear localisation and levels of GLI1 and in turn, GLI1 represses p53, establishing an inhibitory loop. We also find that p53 regulates the phosphorylation of a novel N' truncated putative activator isoform of GLI1 in human cells. The balance of GLI1 and p53 functions, thus, determines cell numbers, and prevalence of p53 restricts GLI1-driven stem cell expansion and tumourigenesis.
Collapse
|
231
|
Mosimann C, Hausmann G, Basler K. The role of Parafibromin/Hyrax as a nuclear Gli/Ci-interacting protein in Hedgehog target gene control. Mech Dev 2009; 126:394-405. [PMID: 19368795 DOI: 10.1016/j.mod.2009.02.002] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2008] [Revised: 01/12/2009] [Accepted: 02/02/2009] [Indexed: 12/21/2022]
Abstract
The Hedgehog (Hh) pathway, an evolutionarily conserved key regulator of embryonic patterning and tissue homeostasis, controls its target genes by managing the processing and activities of the Gli/Ci transcription factors. Little is known about the nuclear co-factors the Gli/Ci proteins recruit, and how they mechanistically control Hh target genes. Here, we provide evidence for the involvement of Parafibromin/Hyx as a positive component in Hh signaling. We found that hyx RNAi impaired Hh pathway activity in Drosophila cell culture. Consistent with an evolutionarily conserved function in Hh signaling, RNAi-mediated knockdown of Parafibromin in mammalian cell culture experiments diminished the transcriptional activity of Gli1 and Gli2. In vivo, in Drosophila, genetic impairment of hyx decreased the expression of the high-threshold Hh target gene knot/collier. Conversely, hyx overexpression ameliorated the inhibitory activity of Ptc and Ci(75) misexpression during Drosophila wing development. We subsequently found that Parafibromin can form a complex with all three Glis, and provide evidence that Parafibromin/Hyx directly binds Region 1, the Su(fu) interaction domain, in the N-terminus of all Glis and Ci. Taken together, our results suggest a target gene-selective involvement of the PAF1 complex in Hh signaling via the Parafibromin/Hyx-mediated recruitment to Gli/Ci.
Collapse
Affiliation(s)
- Christian Mosimann
- National Research Center Frontiers in Genetics, Institut für Molekularbiologie, Universität Zürich, Zürich, Switzerland
| | | | | |
Collapse
|
232
|
Yu T, Fotaki V, Mason JO, Price DJ. Analysis of early ventral telencephalic defects in mice lacking functional Gli3 protein. J Comp Neurol 2009; 512:613-27. [PMID: 19048639 DOI: 10.1002/cne.21918] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
The transcription factor Gli3 is expressed throughout developing telencephalon. Previous studies have focused on Gli3's role in dorsal telencephalon, which is greatly reduced in size in Gli3(Xt/Xt) mutants. We examined the effects of loss of Gli3 on early development of ventral telencephalon. Ventral telencephalon was defined in both wildtypes and Gli3(Xt/Xt) mutants on the basis of its expression of Olig2, Nkx2.1, Mash1, and Foxg1 and its lack of expression of Pax6. We found that at embryonic day (E)10.5 the volume of the ventral telencephalon is about 50% greater in Gli3(Xt/Xt) mutants than in wildtypes. By E12.5, however, the volume of the ventral telencephalon is about 20% lower in Gli3(Xt/Xt) mutants than in wildtypes. We observed a significant increase in the number of both apoptotic cells and newly differentiated neurons in the E10.5 Gli3(Xt/Xt) ventral telencephalon, suggesting that increased cell death and withdrawal of cells from the cell cycle might account for the failure of the Gli3(Xt/Xt) ventral telencephalon to grow normally by E12.5. We found no changes in the lengths of the cell cycles of proliferating ventral telencephalic cells at E10.5. We used marker analysis and optical projection tomography to assess the Gli3(Xt/Xt) forebrain in three dimensions and found that the Gli3(Xt/Xt) diencephalon is shifted relatively rostrally. We conclude that in the absence of Gli3 an abnormally large portion of the newly formed telencephalon is specified to a ventral fate but this then suffers impaired growth, due to defects of cell differentiation and death, contributing to severe distortion of the forebrain.
Collapse
Affiliation(s)
- Tian Yu
- Centres for Integrative Physiology and Neuroscience Research, University of Edinburgh, Edinburgh, United Kingdom
| | | | | | | |
Collapse
|
233
|
Expression of Gli1 correlates with the transition of breast cancer cells to estrogen-independent growth. Breast Cancer Res Treat 2009; 119:39-51. [PMID: 19191023 DOI: 10.1007/s10549-009-0323-3] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2008] [Accepted: 01/16/2009] [Indexed: 12/11/2022]
Abstract
The failure of breast cancer treatment is largely due to the development of estrogen independence. Current data illustrate that Hedgehog (Hh) signaling may play an important role in breast cancer development. Here, we show that the expression of the Hh effector protein, Gli1 was significantly higher in estrogen-independent breast cancer cells than in estrogen-dependent cells. Our data showed for the first time that stable expression of Gli1 in ER positive breast cancer cell lines MCF-7 and T47D can induce estrogen-independent proliferation and promote G1/S phase transition, which associated with cyclin-Rb axi. Gli1 can also attenuate the response of proliferation to estrogenic stimulation, which was correlated with down-regulation of expression of ERalpha and PR, as well as down-regulation of transactivation of ERalpha. Our results suggest that up-regulation of Gli1 in breast cancer cells may be one of the mechanisms responsible for developing estrogen independence and this process may be regulated through down-regulation of expression and transactivation of ERalpha.
Collapse
|
234
|
Hegde GV, Peterson KJ, Emanuel K, Mittal AK, Joshi AD, Dickinson JD, Kollessery GJ, Bociek RG, Bierman P, Vose JM, Weisenburger DD, Joshi SS. Hedgehog-induced survival of B-cell chronic lymphocytic leukemia cells in a stromal cell microenvironment: a potential new therapeutic target. Mol Cancer Res 2009; 6:1928-36. [PMID: 19074837 DOI: 10.1158/1541-7786.mcr-08-0142] [Citation(s) in RCA: 93] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
B-cell chronic lymphocytic leukemia (B-CLL) is characterized by an accumulation of neoplastic B cells due to their resistance to apoptosis and increased survival. Among various factors, the tumor microenvironment is known to play a role in the regulation of cell proliferation and survival of many cancers. However, it remains unclear how the tumor microenvironment contributes to the increased survival of B-CLL cells. Therefore, we studied the influence of bone marrow stromal cell-induced hedgehog (Hh) signaling on the survival of B-CLL cells. Our results show that a Hh signaling inhibitor, cyclopamine, inhibits bone marrow stromal cell-induced survival of B-CLL cells, suggesting a role for Hh signaling in the survival of B-CLL cells. Furthermore, gene expression profiling of primary B-CLL cells (n = 48) indicates that the expression of Hh signaling molecules, such as GLI1, GLI2, SUFU, and BCL2, is significantly increased and correlates with disease progression of B-CLL patients with clinical outcome. In addition, SUFU and GLI1 transcripts, as determined by real-time PCR, are significantly overexpressed and correlate with adverse indicators of clinical outcome in B-CLL patients, such as cytogenetics or CD38 expression. Furthermore, selective down-regulation of GLI1 by antisense oligodeoxynucleotides (GLI1-ASO) results in decreased BCL2 expression and cell survival, suggesting that GLI1 may regulate BCL2 and, thereby, modulate cell survival in B-CLL. In addition, there was significantly increased apoptosis of B-CLL cells when cultured in the presence of GLI1-ASO and fludarabine. Together, these results reveal that Hh signaling is important in the pathogenesis of B-CLL and, hence, may be a potential therapeutic target.
Collapse
Affiliation(s)
- Ganapati V Hegde
- Department of Genetics, Cell Biology and Anatomy, University of Nebraska Medical Center, Omaha, NE 68198-6395, USA
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
235
|
Pan Y, Wang C, Wang B. Phosphorylation of Gli2 by protein kinase A is required for Gli2 processing and degradation and the Sonic Hedgehog-regulated mouse development. Dev Biol 2009; 326:177-89. [PMID: 19056373 PMCID: PMC2650378 DOI: 10.1016/j.ydbio.2008.11.009] [Citation(s) in RCA: 123] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2008] [Revised: 11/05/2008] [Accepted: 11/05/2008] [Indexed: 10/21/2022]
Abstract
In mice, Gli2 and Gli3 are the transcription factors that mediate the initial Hedgehog (Hh) signaling. In the absence of Hh signaling, the majority of the full-length Gli3 protein undergoes proteolytic processing into a repressor, while only a small fraction of the full-length Gli2 protein is processed. Gli3 processing is dependent on phosphorylation of the first four of the six protein kinase A (PKA) sites at its C-terminus. However, whether the same phosphorylation of Gli2 by PKA is required for Gli2 processing and, if so, whether such phosphorylation regulates additional Gli2 function are unknown. To address these questions, we mutated these PKA sites in the mouse Gli2 locus to create the Gli2(P1-4) allele. Gli2(P1-4) homozygous embryos die in utero and exhibit exencephaly, defects in neural tube closure, enlarged craniofacial structures, and an extra anterior digit. Analysis of spinal cord patterning shows that domains of motoneurons and V2, V1, and V0 interneurons are expanded to different degrees in both Gli2(P1-4) single and Gli2(P1-4);Shh double mutants. Furthermore, Gli2(P1-4) expression prevents massive cell death and promotes cell proliferation in Shh mutant. Analysis of Gli2(P1-4) protein in vivo reveals that the mutant protein is not processed and is twice as stable as wild type Gli2 protein. We also show that the Gli2 repressor can effectively antagonize Gli2P1-4 activity. Together, these results indicate that phosphorylation of Gli2 by PKA induces Gli2 processing and destabilization in vivo and plays an important role in the Hh-regulated mouse embryonic patterning.
Collapse
Affiliation(s)
- Yong Pan
- Department of Genetic Mediciney, Weill Medical College of Cornell University, 1300 York Avenue, W404, New York, NY 10065
| | - Chengbing Wang
- Department of Genetic Mediciney, Weill Medical College of Cornell University, 1300 York Avenue, W404, New York, NY 10065
| | - Baolin Wang
- Department of Genetic Mediciney, Weill Medical College of Cornell University, 1300 York Avenue, W404, New York, NY 10065
- Department of Cell and Developmental Biology, Weill Medical College of Cornell University, 1300 York Avenue, W404, New York, NY 10065
| |
Collapse
|
236
|
Ivaniutsin U, Chen Y, Mason JO, Price DJ, Pratt T. Adenomatous polyposis coli is required for early events in the normal growth and differentiation of the developing cerebral cortex. Neural Dev 2009; 4:3. [PMID: 19149881 PMCID: PMC2649069 DOI: 10.1186/1749-8104-4-3] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2008] [Accepted: 01/16/2009] [Indexed: 12/21/2022] Open
Abstract
BACKGROUND Adenomatous polyposis coli (Apc) is a large multifunctional protein known to be important for Wnt/beta-catenin signalling, cytoskeletal dynamics, and cell polarity. In the developing cerebral cortex, Apc is expressed in proliferating cells and its expression increases as cells migrate to the cortical plate. We examined the consequences of loss of Apc function for the early development of the cerebral cortex. RESULTS We used Emx1(Cre) to inactivate Apc specifically in proliferating cerebral cortical cells and their descendents starting from embryonic day 9.5. We observed reduction in the size of the mutant cerebral cortex, disruption to its organisation, and changes in the molecular identity of its cells. Loss of Apc leads to a decrease in the size of the proliferative pool, disrupted interkinetic nuclear migration, and increased apoptosis. beta-Catenin, pericentrin, and N-cadherin proteins no longer adopt their normal high concentration at the apical surface of the cerebral cortical ventricular zone, indicating that cell polarity is disrupted. Consistent with enhanced Wnt/beta-catenin signalling resulting from loss of Apc we found increased levels of TCF/LEF-dependent transcription and expression of endogenous Wnt/beta-catenin target genes (Axin2 (conductin), Lef1, and c-myc) in the mutant cerebral cortex. In the Apc mutant cerebral cortex the expression of transcription factors Foxg1, Pax6, Tbr1, and Tbr2 is drastically reduced compared to normal and many cells ectopically express Pax3, Wnt1, and Wt1 (but not Wnt2b, Wnt8b, Ptc, Gli1, Mash1, Olig2, or Islet1). This indicates that loss of Apc function causes cerebral cortical cells to lose their normal identity and redirect to fates normally found in more posterior-dorsal regions of the central nervous system. CONCLUSION Apc is required for multiple aspects of early cerebral cortical development, including the regulation of cell number, interkinetic nuclear migration, cell polarity, and cell type specification.
Collapse
Affiliation(s)
- Uladzislau Ivaniutsin
- Genes and Development Group, Centre for Integrative Physiology, School of Biomedical Sciences, The University of Edinburgh, Hugh Robson Building, George Square, Edinburgh, UK
| | - Yijing Chen
- Genes and Development Group, Centre for Integrative Physiology, School of Biomedical Sciences, The University of Edinburgh, Hugh Robson Building, George Square, Edinburgh, UK
| | - John O Mason
- Genes and Development Group, Centre for Integrative Physiology, School of Biomedical Sciences, The University of Edinburgh, Hugh Robson Building, George Square, Edinburgh, UK
| | - David J Price
- Genes and Development Group, Centre for Integrative Physiology, School of Biomedical Sciences, The University of Edinburgh, Hugh Robson Building, George Square, Edinburgh, UK
| | - Thomas Pratt
- Genes and Development Group, Centre for Integrative Physiology, School of Biomedical Sciences, The University of Edinburgh, Hugh Robson Building, George Square, Edinburgh, UK
| |
Collapse
|
237
|
Hu D, Marcucio RS. Unique organization of the frontonasal ectodermal zone in birds and mammals. Dev Biol 2009; 325:200-10. [PMID: 19013147 PMCID: PMC2662765 DOI: 10.1016/j.ydbio.2008.10.026] [Citation(s) in RCA: 83] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2008] [Revised: 10/10/2008] [Accepted: 10/13/2008] [Indexed: 10/21/2022]
Abstract
The faces of birds and mammals exhibit remarkable morphologic diversity, but how variation arises is not well-understood. We have previously demonstrated that a region of facial ectoderm, which we named the frontonasal ectodermal zone (FEZ), regulates proximo-distal extension and dorso-ventral polarity of the upper jaw in birds. In this work, we examined the equivalent ectoderm in murine embryos and determined that the FEZ is conserved in mice. However, our results revealed that fundamental differences in the organization and constituents of the FEZ in mice and chicks may underlie the distinct growth characteristics that distinguish mammalian and avian embryos during the earliest stages of development. Finally, current models suggest that neural crest cells regulate size and shape of the upper jaw, and that signaling by Bone morphogenetic proteins (Bmps) within avian neural crest helps direct this process. Here we show that Bmp expression patterns in neural crest cells are regulated in part by signals from the FEZ. The results of our work reconcile how a conserved signaling center that patterns growth of developing face may generate morphologic diversity among different animals. Subtle changes in the organization of gene expression patterns in the FEZ could underlie morphologic variation observed among and within species, and at extremes, variation could produce disease phenotypes.
Collapse
Affiliation(s)
- Diane Hu
- Department of Orthopaedic Surgery, University of California at San Francisco, San Francisco, CA, USA
| | | |
Collapse
|
238
|
Yoon JW, Gilbertson R, Iannaccone S, Iannaccone P, Walterhouse D. Defining a role for Sonic hedgehog pathway activation in desmoplastic medulloblastoma by identifying GLI1 target genes. Int J Cancer 2009; 124:109-19. [PMID: 18924150 PMCID: PMC3889649 DOI: 10.1002/ijc.23929] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
A subgroup of medulloblastomas shows constitutive activation of the Sonic hedgehog pathway with expression of GLI1. We identified the subset of GLI1 transforming target genes specifically expressed in medulloblastomas by comparing GLI1 targets in RK3E cells transformed by GLI1 with the gene expression profile of Sonic hedgehog signature medulloblastomas. We identified 1,823 genes whose expression was altered more than 2-fold in 2 independent RK3E + GLI1 cell lines. We identified 25 whose expression was altered similarly in medulloblastomas expressing GLI1. We identified potential GLI binding elements in the regulatory regions of 10 of these genes, confirmed that GLI1 binds the regulatory regions and activates transcription of select genes, and showed that GLI1 directly represses transcription of Krox-20. We identified upregulation of CXCR4, a chemokine receptor that plays roles in the proliferation and migration of granule cell neuron precursors during development, supporting the concept that reinitiation of developmental programs may contribute to medulloblastoma tumorigenesis. In addition, the targets suggest a pathway through which GLI1 may ultimately affect medulloblastoma cell proliferation, survival and genomic stability by converging on p53, SGK1, MGMT and NTRK2. We identify a p53 mutation in RK3E + GLI1 cells, suggesting that p53 mutations may sometimes shift the balance toward dysregulated tumor cell survival.
Collapse
Affiliation(s)
- Joon Won Yoon
- Northwestern University Feinberg School of Medicine and the Developmental Biology Program of the Children’s Memorial Research Center, Chicago, IL
| | - Richard Gilbertson
- St. Jude Children’s Research Hospital, Department of Developmental Neurobiology, Memphis, TN
| | - Stephen Iannaccone
- Northwestern University Feinberg School of Medicine and the Developmental Biology Program of the Children’s Memorial Research Center, Chicago, IL
| | - Philip Iannaccone
- Northwestern University Feinberg School of Medicine and the Developmental Biology Program of the Children’s Memorial Research Center, Chicago, IL
| | - David Walterhouse
- Northwestern University Feinberg School of Medicine and the Developmental Biology Program of the Children’s Memorial Research Center, Chicago, IL
| |
Collapse
|
239
|
Jaks V, Barker N, Kasper M, van Es JH, Snippert HJ, Clevers H, Toftgård R. Lgr5 marks cycling, yet long-lived, hair follicle stem cells. Nat Genet 2008; 40:1291-9. [DOI: 10.1038/ng.239] [Citation(s) in RCA: 751] [Impact Index Per Article: 44.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2008] [Accepted: 07/28/2008] [Indexed: 12/13/2022]
|
240
|
Warr N, Powles-Glover N, Chappell A, Robson J, Norris D, Arkell RM. Zic2-associated holoprosencephaly is caused by a transient defect in the organizer region during gastrulation. Hum Mol Genet 2008; 17:2986-96. [PMID: 18617531 DOI: 10.1093/hmg/ddn197] [Citation(s) in RCA: 78] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
The putative transcription factor ZIC2 is associated with a defect of forebrain development, known as Holoprosencephaly (HPE), in humans and mouse, yet the mechanism by which aberrant ZIC2 function causes classical HPE is unexplained. The zinc finger domain of all mammalian Zic genes is highly homologous with that of the Gli genes, which are transcriptional mediators of Shh signalling. Mutations in Shh and many other Hh pathway members cause HPE and it has been proposed that Zic2 acts within the Shh pathway to cause HPE. We have investigated the embryological cause of Zic2-associated HPE and the relationship between Zic2 and the Shh pathway using mouse genetics. We show that Zic2 does not interact with Shh to produce HPE. Moreover, molecular defects that are able to account for the HPE phenotype are present in Zic2 mutants before the onset of Shh signalling. Mutation of Zic2 causes HPE via a transient defect in the function of the organizer region at mid-gastrulation which causes an arrest in the development of the prechordal plate (PCP), a structure required for forebrain midline morphogenesis. The analysis provides genetic evidence that Zic2 functions during organizer formation and that the PCP develops via a multi-step process.
Collapse
Affiliation(s)
- Nicholas Warr
- Early Development, Mammalian Genetics Unit, MRC Harwell, Oxfordshire OX11 0RD, UK
| | | | | | | | | | | |
Collapse
|
241
|
Evangelista M, Lim TY, Lee J, Parker L, Ashique A, Peterson AS, Ye W, Davis DP, de Sauvage FJ. Kinome siRNA Screen Identifies Regulators of Ciliogenesis and Hedgehog Signal Transduction. Sci Signal 2008; 1:ra7. [DOI: 10.1126/scisignal.1162925] [Citation(s) in RCA: 74] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
|
242
|
Dierks C, Beigi R, Guo GR, Zirlik K, Stegert MR, Manley P, Trussell C, Schmitt-Graeff A, Landwerlin K, Veelken H, Warmuth M. Expansion of Bcr-Abl-positive leukemic stem cells is dependent on Hedgehog pathway activation. Cancer Cell 2008; 14:238-49. [PMID: 18772113 DOI: 10.1016/j.ccr.2008.08.003] [Citation(s) in RCA: 388] [Impact Index Per Article: 22.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/25/2007] [Revised: 01/16/2008] [Accepted: 08/08/2008] [Indexed: 12/25/2022]
Abstract
Resistance of Bcr-Abl-positive leukemic stem cells (LSCs) to imatinib treatment in patients with chronic myeloid leukemia (CML) can cause relapse of disease and might be the origin for emerging drug-resistant clones. In this study, we identified Smo as a drug target in Bcr-Abl-positive LSCs. We show that Hedgehog signaling is activated in LSCs through upregulation of Smo. While Smo(-/-) does not impact long-term reconstitution of regular hematopoiesis, the development of retransplantable Bcr-Abl-positive leukemias was abolished in the absence of Smo expression. Pharmacological Smo inhibition reduced LSCs in vivo and enhanced time to relapse after end of treatment. Our results indicate that Smo inhibition might be an effective treatment strategy to reduce the LSC pool in CML.
Collapse
MESH Headings
- Animals
- Apoptosis/drug effects
- Bone Marrow Cells/drug effects
- Bone Marrow Cells/metabolism
- Bone Marrow Cells/pathology
- Bone Marrow Transplantation
- Cell Proliferation
- Drug Therapy, Combination
- Fetal Stem Cells/cytology
- Fetal Stem Cells/metabolism
- Fetal Stem Cells/transplantation
- Fusion Proteins, bcr-abl/genetics
- Fusion Proteins, bcr-abl/metabolism
- Gene Expression/drug effects
- Hedgehog Proteins/physiology
- Hematopoiesis/drug effects
- Hematopoiesis/physiology
- Humans
- Kruppel-Like Transcription Factors/genetics
- Kruppel-Like Transcription Factors/metabolism
- Leukemia, Myelogenous, Chronic, BCR-ABL Positive/drug therapy
- Leukemia, Myelogenous, Chronic, BCR-ABL Positive/metabolism
- Leukemia, Myelogenous, Chronic, BCR-ABL Positive/pathology
- Mice
- Mice, Inbred C57BL
- Mice, Knockout
- Mice, Transgenic
- Neoplastic Stem Cells/drug effects
- Neoplastic Stem Cells/metabolism
- Neoplastic Stem Cells/pathology
- Patched Receptors
- Pyrimidines/pharmacology
- Pyrimidines/therapeutic use
- Receptors, Cell Surface/genetics
- Receptors, Cell Surface/metabolism
- Receptors, G-Protein-Coupled/genetics
- Receptors, G-Protein-Coupled/metabolism
- Signal Transduction/drug effects
- Signal Transduction/physiology
- Smoothened Receptor
- Survival Analysis
- Veratrum Alkaloids/pharmacology
- Veratrum Alkaloids/therapeutic use
- Zinc Finger Protein GLI1
Collapse
Affiliation(s)
- Christine Dierks
- Department of Hematology/Oncology, University of Freiburg, Hugstetter Strasse 55, 79106 Freiburg, Germany.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
243
|
Abstract
Mice lacking histone deacetylase 9 (HDAC9) and its truncated variant, HDRP, exhibit post-axial polydactyly that manifests as an extra big toe on the right hind foot. Polydactyly in HDAC9/ HDRP knockout mice occurs with incomplete penetrance and affects both genders similarly. Because polydactyly can result from overactivity of sonic hedgehog (Shh) signaling, we investigated whether HDRP acted as a negative regulator of the Shh pathway. We find that Gli1, a transcription factor and downstream mediator of Shh signaling, is expressed at substantially higher levels in the feet of perinatal HDAC9/ HDRP-/- mice as compared with wild-type littermates. To more directly examine whether HDRP negatively-regulates Shh signaling we utilized cell lines that express components of the Shh pathway and that respond to the Shh agonist purmorphamine. We find that purmorphamine-mediated stimulation of Gli1 in the NIH 3T3 and HT22 cell lines is inhibited by the expression of HDRP. In HT22 cells, purmorphamine treatment leads to an increase in the rate of cell proliferation, which is also inhibited by HDRP. This inhibitory effect of HDRP on purmorphamine-mediated cell proliferation was also observed in primary cultures of glial cells. Although the mechanism by which it inhibits Gli1 induction and cell proliferation by purmorphamine is not clear, HDRP localizes to the nucleus suggesting it acts just upstream of Gli3 activation in the signaling cascade activated by Shh. Taken together our results suggest that HDRP acts as a negative regulator of the Shh pathway and that the absence of HDRP results in hyper-activation of this pathway resulting in polydactyly.
Collapse
Affiliation(s)
- Brad E Morrison
- Dept. of Molecular and Cell Biology, University of Texas at Dallas, 2601 N. Floyd Road, Richardson, TX 75080, USA
| | | |
Collapse
|
244
|
Geng X, Speirs C, Lagutin O, Inbal A, Liu W, Solnica-Krezel L, Jeong Y, Epstein D, Oliver G. Haploinsufficiency of Six3 fails to activate Sonic hedgehog expression in the ventral forebrain and causes holoprosencephaly. Dev Cell 2008; 15:236-47. [PMID: 18694563 PMCID: PMC2597207 DOI: 10.1016/j.devcel.2008.07.003] [Citation(s) in RCA: 137] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2008] [Revised: 06/13/2008] [Accepted: 07/12/2008] [Indexed: 12/31/2022]
Abstract
Holoprosencephaly (HPE), the most common forebrain malformation, is characterized by an incomplete separation of the cerebral hemispheres. Mutations in the homeobox gene SIX3 account for 1.3% of all cases of human HPE. Using zebrafish-based assays, we have now determined that HPE-associated Six3 mutant proteins function as hypomorphs. Haploinsufficiency of Six3 caused by deletion of one allele of Six3 or by replacement of wild-type Six3 with HPE-associated Six3 mutant alleles was sufficient to recapitulate in mouse models most of the phenotypic features of human HPE. We demonstrate that Shh is a direct target of Six3 in the rostral diencephalon ventral midline (RDVM). Reduced amounts of functional Six3 protein fail to activate Shh expression in the mutant RDVM and ultimately lead to HPE. These results identify Six3 as a direct regulator of Shh expression and reveal a crossregulatory loop between Shh and Six3 in the ventral forebrain.
Collapse
Affiliation(s)
- Xin Geng
- Department of Genetics and Tumor Cell Biology, St. Jude Children’s Research Hospital, Memphis, Tennessee 38105-2794, USA
| | - Christina Speirs
- Department of Biological Sciences, Vanderbilt University, Nashville, Tennessee 37235-1634, USA
| | - Oleg Lagutin
- Department of Genetics and Tumor Cell Biology, St. Jude Children’s Research Hospital, Memphis, Tennessee 38105-2794, USA
| | - Adi Inbal
- Department of Biological Sciences, Vanderbilt University, Nashville, Tennessee 37235-1634, USA
| | - Wei Liu
- Department of Genetics and Tumor Cell Biology, St. Jude Children’s Research Hospital, Memphis, Tennessee 38105-2794, USA
| | - Lilianna Solnica-Krezel
- Department of Biological Sciences, Vanderbilt University, Nashville, Tennessee 37235-1634, USA
| | - Yongsu Jeong
- Department of Genetics, University of Pennsylvania, School of Medicine, Clinical Research Bldg., Philadelphia, PA 19104, USA
| | - Douglas Epstein
- Department of Genetics, University of Pennsylvania, School of Medicine, Clinical Research Bldg., Philadelphia, PA 19104, USA
| | - Guillermo Oliver
- Department of Genetics and Tumor Cell Biology, St. Jude Children’s Research Hospital, Memphis, Tennessee 38105-2794, USA
| |
Collapse
|
245
|
Nagai S, Nakamura M, Yanai K, Wada J, Akiyoshi T, Nakashima H, Ohuchida K, Sato N, Tanaka M, Katano M. Gli1 contributes to the invasiveness of pancreatic cancer through matrix metalloproteinase-9 activation. Cancer Sci 2008; 99:1377-84. [PMID: 18410405 PMCID: PMC11159230 DOI: 10.1111/j.1349-7006.2008.00822.x] [Citation(s) in RCA: 61] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2007] [Revised: 03/07/2008] [Accepted: 03/08/2008] [Indexed: 11/29/2022] Open
Abstract
The hedgehog (Hh) signaling pathway has been reported to be associated with the growth of pancreatic cancer, but its role in the invasive phenotype is poorly understood. Therefore, we investigated the role of the Hh pathway in pancreatic cancer cell invasiveness using a Matrigel invasion assay. Blockade of the Hh pathway by cyclopamine inhibited pancreatic cancer cell invasion in association with a decreased expression of matrix metalloproteinase (MMP)-9. By contrast, activation of the Hh pathway by the addition of exogenous Sonic hedgehog increased cell invasion and MMP-9 expression. Stable transfection of pancreatic cancer cells with Gli1 increased their invasiveness, which was associated with activation of MMP-9. We also showed that inhibition of MMP-9 by small interfering RNA blocked the increased invasiveness of Gli1-transfected cells. Furthermore, inhibition of Gli1 by small interfering RNA suppressed the invasiveness and MMP-9 expression of pancreatic cancer cells. Taken together, these findings suggest that members of the Hh pathway, especially Gli1, play an important role in the invasiveness of pancreatic cancer cells through the regulation of MMP-9 expression.
Collapse
Affiliation(s)
- Shuntaro Nagai
- Department of Cancer Therapy and Research, Graduate School of Medical Sciences, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka 812-8582, Japan
| | | | | | | | | | | | | | | | | | | |
Collapse
|
246
|
Tada M, Kanai F, Tanaka Y, Tateishi K, Ohta M, Asaoka Y, Seto M, Muroyama R, Fukai K, Imazeki F, Kawabe T, Yokosuka O, Omata M. Down-regulation of hedgehog-interacting protein through genetic and epigenetic alterations in human hepatocellular carcinoma. Clin Cancer Res 2008; 14:3768-3776. [PMID: 18559595 DOI: 10.1158/1078-0432.ccr-07-1181] [Citation(s) in RCA: 76] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
PURPOSE Hedgehog (Hh) signaling is activated in several cancers. However, the mechanisms of Hh signaling activation in hepatocellular carcinoma (HCC) have not been fully elucidated. We analyzed the involvement of Hh-interacting protein (HHIP) gene, a negative regulator of Hh signaling, in HCC. EXPERIMENTAL DESIGN Glioma-associated oncogene homologue (Gli) reporter assay, 3-(4,5-dimethylthiazol-2-yl)-5-(3-carboxymethoxyphenyl)-2-(4-sulfophenyl)-2H-tetrazolium assay, and quantitative real-time reverse transcription-PCR for the target genes of the Hh signals were performed in HHIP stably expressing hepatoma cells. Quantitative real-time PCR for HHIP was performed in hepatoma cells and 36 HCC tissues. The methylation status of hepatoma cells and HCC tissues was also analyzed by sodium bisulfite sequencing, demethylation assay, and quantitative real-time methylation-specific PCR. Loss of heterozygosity (LOH) analysis was also performed in HCC tissues. RESULTS HHIP overexpression induced significant reductions of Gli reporter activity, cell viability, and transcription of the target genes of the Hh signals. HHIP was hypermethylated and transcriptionally down-regulated in a subset of hepatoma cells. Treatment with a demethylating agent led to the HHIP DNA demethylation and restoration of HHIP transcription. HHIP transcription was also down-regulated in the majority of HCC tissues, and more than half of HCC tissues exhibited HHIP hypermethylation. The HHIP transcription level in HHIP-methylated HCC tissues was significantly lower than in HHIP-unmethylated HCC tissues. More than 30% of HCC tissues showed LOH at the HHIP locus. CONCLUSIONS The down-regulation of HHIP transcription is due to DNA hypermethylation and/or LOH, and Hh signal activation through the inactivation of HHIP may be implicated in the pathogenesis of human HCC.
Collapse
Affiliation(s)
- Motohisa Tada
- Department of Gastroenterology, Graduate School of Medicine, University of Tokyo, Tokyo, Japan
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
247
|
McFarland KA, Topczewska JM, Weidinger G, Dorsky RI, Appel B. Hh and Wnt signaling regulate formation of olig2+ neurons in the zebrafish cerebellum. Dev Biol 2008; 318:162-71. [PMID: 18423594 PMCID: PMC2474464 DOI: 10.1016/j.ydbio.2008.03.016] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2007] [Revised: 03/12/2008] [Accepted: 03/12/2008] [Indexed: 10/22/2022]
Abstract
The cerebellum, which forms from anterior hindbrain, coordinates motor movements and balance. Sensory input from the periphery is relayed and modulated by cerebellar interneurons, which are organized in layers. The mechanisms that specify the different neurons of the cerebellum and direct its layered organization remain poorly understood. Drawing from investigations of spinal cord, we hypothesized that the embryonic cerebellum is patterned on the dorsoventral axis by opposing morphogens. We tested this using zebrafish. Here we show that expression of olig2, which encodes a bHLH transcription factor, marks a distinct subset of neurons with similarities to eurydendroid neurons, the principal efferent neurons of the teleost cerebellum. In combination with other markers, olig2 reveals a dorsoventral organization of cerebellar neurons in embryos. Disruption of Hedgehog signaling, which patterns the ventral neural tube, produced a two-fold increase in the number of olig2(+) neurons. By contrast, olig2(+) neurons did not develop in embryos deficient for Wnt signaling, which patterns dorsal neural tube, nor did they develop in embryos deficient for both Hedgehog and Wnt signaling. Our data indicate that Hedgehog and Wnt work in opposition across the dorsoventral axis of the cerebellum to regulate formation of olig2(+) neurons. Specifically, we propose that Hedgehog limits the range of Wnt signaling, which is necessary for olig2(+) neuron development.
Collapse
Affiliation(s)
- Karen A. McFarland
- Department of Biological Sciences, Vanderbilt University, Nashville, TN 37235, USA
| | - Jolanta M. Topczewska
- Department of Pediatrics, Northwestern University Feinberg School of Medicine CMRC, Chicago IL 60614
| | - Gilbert Weidinger
- Biotechnological Center, Technical University of Dresden, 01377 Dresden, Germany
| | - Richard I. Dorsky
- Department of Neurobiology and Anatomy, University of Utah, Salt Lake City, UT 84132-3401
| | - Bruce Appel
- Department of Biological Sciences, Vanderbilt University, Nashville, TN 37235, USA
| |
Collapse
|
248
|
Upstream stimulatory factors, USF1 and USF2 are differentially expressed during Xenopus embryonic development. Gene Expr Patterns 2008; 8:376-381. [PMID: 18585979 DOI: 10.1016/j.gep.2008.05.003] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2007] [Revised: 05/16/2008] [Accepted: 05/20/2008] [Indexed: 01/22/2023]
Abstract
Upstream stimulatory factors (USF) 1 and 2 are members of the basic helix-loop-helix leucine zipper transcription factor family. They are considered to play critical roles in cell-cycle regulation and chromatin remodeling. Their gene expression patterns are considered ubiquitous but have not been fully investigated in terms of embryogenesis. We examined the expression of the genes encoding USF1 and USF2 in Xenopus laevis during embryonic development. Expression of both genes was first detected as maternal transcripts and was observed continuously throughout development. However, in situ hybridization analysis revealed that the two genes were expressed differentially. In the late blastula, both genes were expressed in the blastocoel roof and marginal zone. At the gastrula stage, USF2 was strongly expressed in the sensorial layer of the ectoderm and in the mesoderm, whereas USF1 expression was hardly detectable. From the neurula stage onward, expression of both genes was markedly enhanced in the neural tissues, neural crest, eye and otic vesicle. However, spatial expression of the genes within the neural tube differed in that the strongest USF1 signals were observed in the lateral region of the basal plate and the strongest USF2 ones in the dorsal region of the neural tube. Expression of the two genes occurred in different mesoderm derivatives at the tailbud stage (USF1, somite; USF2, pronephros and lateral plate mesoderm of the tail region). USF1 was expressed in the notochord of the early neurula, but was lost at the stage.
Collapse
|
249
|
Apoptosis and pathogenesis of melanoma and nonmelanoma skin cancer. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2008; 624:283-95. [PMID: 18348464 DOI: 10.1007/978-0-387-77574-6_22] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Skin cancers, i.e., basal cell carcinoma (BCC), squamous cell carcinoma (SCC) and melanoma, belong to the most frequent tumors. Their formation is based on constitutional and/or inherited factors usually combined with environmental factors, mainly UV-irradiation through long term sun exposure. UV-light can randomly induce DNA damage in keratinocytes, but it can also mutate genes essential for control and surveillance in the skin epidermis. Various repair and safety mechanisms exist to maintain the integrity of the skin epidermis. For example, UV-light damaged DNA is repaired and if this is not possible, the DNA damaged cells are eliminated by apoptosis (sunburn cells). This occurs under the control of the p53 suppressor gene. Fas-ligand (FasL), a member of the tumor necrosis superfamily, which is preferentially expressed in the basal layer of the skin epidermis, is a key surveillance molecule involved in the elimination of sunburn cells, but also in the prevention of cell transformation. However, UV light exposure downregulates FasL expression in keratinocytes and melanocytes leading to the loss of its sensor function. This increases the risk that transformed cells are not eliminated anymore. Moreover, important control and surveillance genes can also be directly affected by UV-light. Mutation in the p53 gene is the starting point for the formation of SCC and some forms of BCC. Other BCCs originate through UV light mediated mutations of genes of the hedgehog signaling pathway which are essential for the maintainance of cell growth and differentiation. The transcription factor Gli2 plays a key role within this pathway, indeed, Gli2 is responsible for the marked apoptosis resistance of the BCCs. The formation of malignant melanoma is very complex. Melanocytes form nevi and from the nevi melanoma can develop through mutations in various genes. Once the keratinocytes or melanocytes have been transformed they re-express FasL which may allow the expanding tumor to evade the attack of immune effector cells. FasL which is involved in immune evasion or genes which govern the apoptosis resistance, e.g., Gli2 could therefore be prime targets to prevent tumor formation and growth. Attempts to silence these genes by RNA interference using gene specific short interfering RNAs (siRNAs) or short hairpin RNAs (shRNAs) have been functionally successful not only in tissue cultures and tumor tissues, but also in a mouse model. Thus, siRNAs and/or shRNAs may become a novel and promising approach to treat skin cancers at an early stage.
Collapse
|
250
|
Matera I, Watkins-Chow DE, Loftus SK, Hou L, Incao A, Silver DL, Rivas C, Elliott EC, Baxter LL, Pavan WJ. A sensitized mutagenesis screen identifies Gli3 as a modifier of Sox10 neurocristopathy. Hum Mol Genet 2008; 17:2118-31. [PMID: 18397875 DOI: 10.1093/hmg/ddn110] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
Haploinsufficiency for the transcription factor SOX10 is associated with the pigmentary deficiencies of Waardenburg syndrome (WS) and is modeled in Sox10 haploinsufficient mice (Sox10(LacZ/+)). As genetic background affects WS severity in both humans and mice, we established an N-ethyl-N-nitrosourea (ENU) mutagenesis screen to identify modifiers that increase the phenotypic severity of Sox10(LacZ/+) mice. Analysis of 230 pedigrees identified three modifiers, named modifier of Sox10 neurocristopathies (Mos1, Mos2 and Mos3). Linkage analysis confirmed their locations on mouse chromosomes 13, 4 and 3, respectively, within regions distinct from previously identified WS loci. Positional candidate analysis of Mos1 identified a truncation mutation in a hedgehog(HH)-signaling mediator, GLI-Kruppel family member 3 (Gli3). Complementation tests using a second allele of Gli3 (Gli3(Xt-J)) confirmed that a null mutation of Gli3 causes the increased hypopigmentation in Sox10(LacZ/+);Gli3(Mos1/)(+) double heterozygotes. Early melanoblast markers (Mitf, Sox10, Dct, and Si) are reduced in Gli3(Mos1/)(Mos1) embryos, indicating that loss of GLI3 signaling disrupts melanoblast specification. In contrast, mice expressing only the GLI3 repressor have normal melanoblast specification, indicating that the full-length GLI3 activator is not required for specification of neural crest to the melanocyte lineage. This study demonstrates the feasibility of sensitized screens to identify disease modifier loci and implicates GLI3 and other HH signaling components as modifiers of human neurocristopathies.
Collapse
Affiliation(s)
- Ivana Matera
- Genetic Disease Research Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|