201
|
Dong XJ, Zhang H, Pan RL, Xiang LX, Shao JZ. Identification of cytokines involved in hepatic differentiation of mBM-MSCs under liver-injury conditions. World J Gastroenterol 2010; 16:3267-78. [PMID: 20614482 PMCID: PMC2900718 DOI: 10.3748/wjg.v16.i26.3267] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
AIM: To identify the key cytokines involved in hepatic differentiation of mouse bone marrow mesenchymal stem cells (mBM-MSCs) under liver-injury conditions.
METHODS: Abdominal injection of CCl4 was adopted to duplicate a mouse acute liver injury model. Global gene expression analysis was performed to evaluate the potential genes involved in hepatic commitment under liver-injury conditions. The cytokines involved in hepatic differentiation of mBM-MSCs was functionally examined by depletion experiment using specific antibodies, followed by rescue experiment and direct inducing assay. The hepatic differentiation was characterized by the expression of hepatic lineage genes and proteins, as well as functional features.
RESULTS: Cytokines potentially participating in hepatic fate commitment under liver-injury conditions were initially measured by microarray. Among the up-regulated genes determined, 18 cytokines known to closely relate to liver growth, repair and development, were selected for further identification. The fibroblast growth factor-4 (FGF-4), hepatocyte growth factor (HGF) and oncostatin M (OSM) were finally found to be involved in hepatic differentiation of mBM-MSCs under liver-injury conditions. Hepatic differentiation could be dramatically decreased after removing FGF-4, HGF and OSM from the liver-injury conditioned medium, and could be rescued by supplementing these cytokines. The FGF-4, HGF and OSM play different roles in the hepatic differentiation of mBM-MSCs, in which FGF-4 and HGF are essential for the initiation of hepatic differentiation, while OSM is critical for the maturation of hepatocytes.
CONCLUSION: FGF-4, HGF and OSM are the key cytokines involved in the liver-injury conditioned medium for the hepatic differentiation of mBM-MSCs.
Collapse
|
202
|
Habisch HJ, Liebau S, Lenk T, Ludolph AC, Brenner R, Storch A. Neuroectodermally converted human mesenchymal stromal cells provide cytoprotective effects on neural stem cells and inhibit their glial differentiation. Cytotherapy 2010; 12:491-504. [DOI: 10.3109/14653241003649502] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
|
203
|
Chen Y, Xiang LX, Shao JZ, Pan RL, Wang YX, Dong XJ, Zhang GR. Recruitment of endogenous bone marrow mesenchymal stem cells towards injured liver. J Cell Mol Med 2010; 14:1494-508. [PMID: 19780871 PMCID: PMC3829016 DOI: 10.1111/j.1582-4934.2009.00912.x] [Citation(s) in RCA: 109] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2009] [Accepted: 08/11/2009] [Indexed: 01/16/2023] Open
Abstract
Recent studies suggest that mesenchymal stem cells (MSCs) possess a greater differentiation potential than once thought and that they have the capacity to regenerate damaged tissues/organs. However, the evidence is insufficient, and the mechanism governing the recruitment and homing of MSCs to these injured sites is not well understood. We first examined the MSCs circulating in peripheral blood and then performed chemotaxis, wound healing and tubule-formation assays to investigate the migration capability of mouse bone marrow MSCs (mBM-MSCs) in response to liver-injury signals. In addition, BM-MSCs from donor enhanced green fluorescent protein transgenic male mice were transplanted into liver-injured co-isogenic female recipients, either by intra-bone marrow injection or through the caudal vein, to allow in vivo tracking analysis of the cell fate after transplantation. Donor-derived cells were analysed by in vivo imaging analysis, PCR, flow cytometry and frozen sections. Microarray and real-time PCR were used for chemokine/cytokine and receptor analyses. We successfully isolated circulating MSCs in peripheral blood of liver-injured mice and provided direct evidence that mBM-MSCs could be mobilized into the circulation and recruited into the liver after stimulation of liver injury. CCR9, CXCR4 and c-MET were essential for directing cellular migration towards the injured liver. The recruited mBM-MSCs may play different roles, including hepatic fate specification and down-regulation of the activity of hepatic stellate cells which inhibits over-accumulation of collagen and development of liver fibrosis. Our results provide new insights into liver repair involving endogenous BM-MSCs and add new information for consideration when developing clinical protocols involving the MSCs.
Collapse
Affiliation(s)
- Ye Chen
- College of Life Sciences, Zhejiang University, Key Laboratory for Cell and Gene Engineering of Zhejiang ProvinceHangzhou, P. R. China
| | - Li-Xin Xiang
- College of Life Sciences, Zhejiang University, Key Laboratory for Cell and Gene Engineering of Zhejiang ProvinceHangzhou, P. R. China
| | - Jian-Zhong Shao
- College of Life Sciences, Zhejiang University, Key Laboratory for Cell and Gene Engineering of Zhejiang ProvinceHangzhou, P. R. China
| | - Ruo-Lang Pan
- College of Life Sciences, Zhejiang University, Key Laboratory for Cell and Gene Engineering of Zhejiang ProvinceHangzhou, P. R. China
| | - Yu-Xi Wang
- College of Life Sciences, Zhejiang University, Key Laboratory for Cell and Gene Engineering of Zhejiang ProvinceHangzhou, P. R. China
| | - Xue-Jun Dong
- The Molecular Medicine Center of Shaoxing People’s Hospital, The First Affiliate Hospital of Shaoxing UniversityShaoxing, P. R. China
| | - Guo-Rong Zhang
- The Molecular Medicine Center of Shaoxing People’s Hospital, The First Affiliate Hospital of Shaoxing UniversityShaoxing, P. R. China
| |
Collapse
|
204
|
Anisimov SV. Cell-based therapeutic approaches for Parkinson's disease: progress and perspectives. Rev Neurosci 2010; 20:347-81. [PMID: 20397620 DOI: 10.1515/revneuro.2009.20.5-6.347] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
Motor dysfunctions in Parkinson's disease are believed to be primarily due to the degeneration of dopaminergic neurons located in the substantia nigra pars compacta. Because a single-type cell population is depleted, Parkinson's disease is considered a primary target for cell replacement-based therapeutic strategies. Extensive studies have confirmed transplantation of donor neurons could be beneficial, yet identifying an alternative cell source is clearly essential. Human embryonic stem cells (hESCs) have been proposed as a renewable source of dopaminergic neurons for transplantation in Parkinson's disease; other potential sources could include neural stem cells (hNSCs) and adult mesenchymal stem cells (hMSCs). However, numerous difficulties avert practical application of stem cell-based therapeutic approaches for the treatment of Parkinson's disease. Among the latter, ethical, safety (including xeno- and tumor formation-associated risks) and technical issues stand out. This review aims to provide a balanced and updated outlook on various issues associated with stem cells in regard to their potential in the treatment of Parkinson's disease. Essential features of the individual stem cell subtypes, principles of available differentiation protocols, transplantation, and safety issues are discussed extensively.
Collapse
Affiliation(s)
- Sergey V Anisimov
- Department of Intracellular Signalling and Transport, Institute of Cytology, Russian Academy of Sciences and Research, Saint-Petersburg, Russia.
| |
Collapse
|
205
|
Habisch HJ, Schmid B, von Arnim CA, Ludolph AC, Brenner R, Storch A. Efficient Processing of Alzheimer's Disease Amyloid-Beta Peptides by Neuroectodermally Converted Mesenchymal Stem Cells. Stem Cells Dev 2010; 19:629-33. [DOI: 10.1089/scd.2009.0045] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Affiliation(s)
| | - Benjamin Schmid
- Department of Neurodegenerative Diseases, Hertie-Institute for Clinical Brain Research, University of Tübingen, Tübingen, Germany
| | | | | | - Rolf Brenner
- Division for Biochemistry of Joint and Connective Tissue Diseases, Department of Orthopedics, University of Ulm, Ulm, Germany
| | - Alexander Storch
- Department of Neurology and Center for Regenerative Therapies Dresden, Dresden University of Technology, Dresden, Germany
| |
Collapse
|
206
|
Luo YC, Zhang HT, Cheng HY, Yang ZJ, Dai YW, Xu RX. Differentiation of cryopreserved human umbilical cord blood-derived stromal cells into cells with an oligodendrocyte phenotype. In Vitro Cell Dev Biol Anim 2010; 46:585-9. [DOI: 10.1007/s11626-010-9314-2] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2009] [Accepted: 03/17/2010] [Indexed: 01/22/2023]
|
207
|
Lanfer B, Hermann A, Kirsch M, Freudenberg U, Reuner U, Werner C, Storch A. Directed Growth of Adult Human White Matter Stem Cell–Derived Neurons on Aligned Fibrillar Collagen. Tissue Eng Part A 2010; 16:1103-13. [DOI: 10.1089/ten.tea.2009.0282] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Affiliation(s)
- Babette Lanfer
- Leibniz Institute of Polymer Research Dresden, Max Bergmann Center of Biomaterials, Dresden, Germany
- Center for Regenerative Therapies Dresden, Dresden University of Technology, Dresden, Germany
| | - Andreas Hermann
- Center for Regenerative Therapies Dresden, Dresden University of Technology, Dresden, Germany
- Department of Neurology, Dresden University of Technology, Dresden, Germany
| | - Matthias Kirsch
- Department of Neurosurgery, Dresden University of Technology, Dresden, Germany
| | - Uwe Freudenberg
- Leibniz Institute of Polymer Research Dresden, Max Bergmann Center of Biomaterials, Dresden, Germany
- Center for Regenerative Therapies Dresden, Dresden University of Technology, Dresden, Germany
| | - Ulrike Reuner
- Department of Neurology, Dresden University of Technology, Dresden, Germany
| | - Carsten Werner
- Leibniz Institute of Polymer Research Dresden, Max Bergmann Center of Biomaterials, Dresden, Germany
- Center for Regenerative Therapies Dresden, Dresden University of Technology, Dresden, Germany
| | - Alexander Storch
- Center for Regenerative Therapies Dresden, Dresden University of Technology, Dresden, Germany
- Department of Neurology, Dresden University of Technology, Dresden, Germany
| |
Collapse
|
208
|
Chung KF, Sicard F, Vukicevic V, Hermann A, Storch A, Huttner WB, Bornstein SR, Ehrhart-Bornstein M. Isolation of neural crest derived chromaffin progenitors from adult adrenal medulla. Stem Cells 2010; 27:2602-13. [PMID: 19609938 DOI: 10.1002/stem.180] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Chromaffin cells of the adrenal medulla are neural crest-derived cells of the sympathoadrenal lineage. Unlike the closely-related sympathetic neurons, a subpopulation of proliferation-competent cells exists even in the adult. Here, we describe the isolation, expansion, and in vitro characterization of proliferation-competent progenitor cells from the bovine adrenal medulla. Similar to neurospheres, these cells, when prevented from adherence to the culture dish, grew in spheres, which we named chromospheres. These chromospheres were devoid of mRNA specific for smooth muscle cells (MYH11) or endothelial cells (PECAM1). During sphere formation, markers for differentiated chromaffin cells, such as phenylethanolamine-N-methyl transferase, were downregulated while neural progenitor markers nestin, vimentin, musashi 1, and nerve growth factor receptor, as well as markers of neural crest progenitor cells such as Sox1 and Sox9, were upregulated. Clonal analysis and bromo-2'-deoxyuridine-incorporation analysis demonstrated the self-renewing capacity of chromosphere cells. Differentiation protocols using NGF and BMP4 or dexamethasone induced neuronal or endocrine differentiation, respectively. Electrophysiological analyses of neural cells derived from chromospheres revealed functional properties of mature nerve cells, such as tetrodotoxin-sensitive sodium channels and action potentials. Our study provides evidence that proliferation and differentiation competent chromaffin progenitor cells can be isolated from adult adrenal medulla and that these cells might harbor the potential for the treatment of neurodegenerative diseases, such as Parkinson's disease.
Collapse
Affiliation(s)
- Kuei-Fang Chung
- Carl Gustav Carus University Medical School, Medical Clinic III, Dresden University of Technology, Dresden, Germany
| | | | | | | | | | | | | | | |
Collapse
|
209
|
Unstimulated diagnostic marrow tap – a minimally invasive and reliable source for mesenchymal stem cells. Cell Biol Int 2010; 34:275-81. [DOI: 10.1042/cbi20090142] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
|
210
|
Meyer AK, Maisel M, Hermann A, Stirl K, Storch A. Restorative approaches in Parkinson's Disease: Which cell type wins the race? J Neurol Sci 2010; 289:93-103. [DOI: 10.1016/j.jns.2009.08.024] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
211
|
Sabolek M, Baumann B, Heinrich M, Meyer AK, Herborg A, Liebau S, Maisel M, Hermann A, Ventz K, Schwarz J, Wirth T, Storch A. Initiation of dopaminergic differentiation of Nurr1(-) mesencephalic precursor cells depends on activation of multiple mitogen-activated protein kinase pathways. Stem Cells 2010; 27:2009-21. [PMID: 19544469 DOI: 10.1002/stem.122] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
Interleukin-1 (IL-1) plays a pivotal role in terminal dopaminergic differentiation of midbrain-derived neural precursor cells already committed to the mesencephalic dopaminergic phenotype (named mdNPCs for mesencephalic dopaminergic neural precursor cells). Here we characterized the molecular events in long-term expanded rat nuclear receptor related-1(-) (Nurr1(-)) mdNPCs in response to IL-1beta during their terminal dopaminergic specification. We showed that IL-1beta induced a rapid induction of mRNA of dopaminergic key fate-determining transcription factors, such as Nurr1 and Pitx3, and a subsequent increase of tyrosine hydroxylase protein as an early marker for dopaminergic neurons in vitro. These effects of IL-1beta were specific for mdNPCs and were not observed in striatal neural precursor cells (NPCs). Surprisingly, IL-1beta did not activate the NF-kappaB pathway or the transcription factor activating protein 1 (AP-1), but inhibition of nuclear translocation of NF-kappaB by SN50 facilitated IL-1beta-induced Nurr1 expression and dopaminergic differentiation of mdNPCs. Incubation of mdNPCs with IL-1beta led to a rapid phosphorylation of ERK1/2 and p38 mitogen-activated protein (MAP) kinases within 1 to 3 hours, whereas Jun kinase was not phosphorylated in response to IL-1beta. Consistently, inhibition of the ERK1/2 pathway or p38 MAP kinase blocked Nurr1 upregulation and further dopaminergic specification of mdNPCs, but not differentiation into MAP2ab(+) neurons. IL-1 receptor antagonist did not block early dopaminergic differentiation events, suggesting that the effects of IL-1beta are not mediated through activation of IL-1 receptor type I. Our results indicate that induction of terminal dopaminergic specification of Nurr1(-) mdNPCs by IL-1beta depends on activation of the ERK1/2 and p38 MAP kinase pathway.
Collapse
|
212
|
Deschaseaux F, Pontikoglou C, Sensébé L. Bone regeneration: the stem/progenitor cells point of view. J Cell Mol Med 2010; 14:103-15. [PMID: 19840188 PMCID: PMC3837599 DOI: 10.1111/j.1582-4934.2009.00878.x] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2009] [Accepted: 08/04/2009] [Indexed: 02/06/2023] Open
Abstract
After bone injuries, several molecular mechanisms establish bone repair from stem/progenitor cells. Inflammation factors attract regenerative cells which expand and differentiate in order to build up a bone highly similar to that before injury. Bone marrow (BM) mesenchymal stem cells (MSCs) as skeletal stem cells and endothelial progenitors (EPCs) are at the origin of such reparation mechanisms. However, discrepancies exist about their identities. Although cultured MSCs are extensively described, their in vivo native forms are poorly known. In addition, recent experiments show that several types of EPC exist. We therefore review up-to-date data on the characterization of such stem/progenitor cells and propose a new point of view of their function in bone regeneration.
Collapse
Affiliation(s)
- Frédéric Deschaseaux
- Etablissement Français du Sang Centre-Atlantique, Groupe de Recherche sur les Cellules Souches Mésenchymateuses (GECSoM), Tours, France.
| | | | | |
Collapse
|
213
|
Studenovská H, Vodička P, Proks V, Hlučilová J, Motlík J, Rypáček F. Synthetic poly(amino acid) hydrogels with incorporated cell-adhesion peptides for tissue engineering. J Tissue Eng Regen Med 2010; 4:454-63. [DOI: 10.1002/term.256] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
214
|
Xu Q, Jiang X, Ke Y, Zhang S, Xu R, Zeng Y. Gene therapy in hemiparkinsonian rhesus monkeys: long-term survival and behavioral recovery by transplantation of autologous human tyrosine hydroxylase-expressing neural stem cells. Cytotherapy 2010; 12:226-37. [DOI: 10.3109/14653240903490371] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
215
|
Hermann A, List C, Habisch HJ, Vukicevic V, Ehrhart-Bornstein M, Brenner R, Bernstein P, Fickert S, Storch A. Age-dependent neuroectodermal differentiation capacity of human mesenchymal stromal cells: limitations for autologous cell replacement strategies. Cytotherapy 2010; 12:17-30. [DOI: 10.3109/14653240903313941] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
|
216
|
Skeletal muscle-derived stem cells exhibit cardiocyte competences. JOURNAL OF HUAZHONG UNIVERSITY OF SCIENCE AND TECHNOLOGY. MEDICAL SCIENCES = HUA ZHONG KE JI DA XUE XUE BAO. YI XUE YING DE WEN BAN = HUAZHONG KEJI DAXUE XUEBAO. YIXUE YINGDEWEN BAN 2009; 29:741-4. [PMID: 20037819 DOI: 10.1007/s11596-009-0614-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/06/2008] [Indexed: 10/19/2022]
Abstract
Adult stem cells from skeletal muscle cells were induced to differentiate into cardiocytes to see if stem cells from another different but histologically-comparable tissues can differentiate to the target cells. Skeletal muscles-derived stem cells (MDSCs) were isolated from adult skeleton muscle tissues by differential adhesion, and immunocytochemically identified by using Sca-1. In order to induce the proliferation but not differentiation of MDSCs, the cells were cultured in Dulbecco's modified Eagle's medium/F12 (DMEM/F12) supplemented with 1:50 B27, 20 ng/mL basic fibroblast growth factor (bFGF), 20 ng/mL epidermal growth factor (EGF) in a suspension for 6 days. Then these stem cells were treated with 5 mumol/L 5-azacytidine for 24 h in an adherence culture. The characteristics of induced cells were examined by immunocytochemistry, quantitative real time RT-PCR and morphological observation of cell phenotype. Our results showed that the appearance of some cells gradually changed from spindle-shape into polygonal or short-column-shape. Some of these post-treated cells could contract spontaneously and rhythmically. The expression of GATA-4 and cTnT was increased 1 and 2 week(s) after the treatment. And about 16.6% of post-treated cells were cTnT-positive. Therefore, we are led to conclude that skeletal muscle-derived stem cells could differentiate into cardiocyte-like cells, which exhibited some characteristics of cardiocytes.
Collapse
|
217
|
Li N, Sarojini H, An J, Wang E. Prosaposin in the secretome of marrow stroma-derived neural progenitor cells protects neural cells from apoptotic death. J Neurochem 2009; 112:1527-38. [PMID: 20050969 DOI: 10.1111/j.1471-4159.2009.06565.x] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Functionally, adult stem cells not only participate in replication and differentiation to various cell lineages, but also may be involved in rescuing cells from apoptosis. Identifying functional factors secreted by stem cells, as well as their target cells, may advance our understanding of stem cells' multifaceted physiologic functions. Here, we report that mouse bone marrow stromal cell-derived neuroprogenitor cells (mMSC-NPC) provide a protective function by secreting a key factor, prosaposin (PSAP), capable of rescuing mature neurons from apoptotic death. This factor is identified as the lead protein in the secretome of mMSC-NPC cultures by tandem mass spectroscopic profiling, and further validated by western blotting and immunocytochemistry. The secretome of MSC-NPC reduces toxin-induced cell death in cultures of rat pheochromocytoma neuronal cells, human ReNcell CX neurons, and rat cortical primary neurons; removal of PSAP by immunodepletion annuls this protective effect. This neuronal protection against toxin treatment was validated further by the recombinant PSAP peptide. Interestingly, the secretome of neuronal culture does not possess such a self-protective action. We suggest that upon injury, a subgroup of MSCs differentiates into neural/neuronal progenitor cells, and remains in this intermediate stem cell-like stage, defending injured neighboring mature neurons from apoptosis by secreting PSAP.
Collapse
Affiliation(s)
- Na Li
- Department of Biochemistry and Molecular Biology, University of Louisville School of Medicine, Gheens Center on Aging, Louisville, Kentucky 40202, USA
| | | | | | | |
Collapse
|
218
|
Kundu AK, Khatiwala CB, Putnam AJ. Extracellular matrix remodeling, integrin expression, and downstream signaling pathways influence the osteogenic differentiation of mesenchymal stem cells on poly(lactide-co-glycolide) substrates. Tissue Eng Part A 2009; 15:273-83. [PMID: 18767971 DOI: 10.1089/ten.tea.2008.0055] [Citation(s) in RCA: 83] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
The possibility of using multipotent adult bone marrow-derived mesenchymal stem cells (MSCs) for tissue-engineering applications hinges on the ability to predictably control their differentiation. Previously, we showed the osteogenic potential of adult bone marrow-derived MSCs cultured on thin films of poly(lactide-co-glycolide) (PLGA) depends in part on the identity of extracellular matrix (ECM) ligands initially deposited onto the material from serum in the culture medium. Here we have addressed the hypothesis that remodeling of the PLGA surface via the de novo synthesis of ECM proteins by the MSCs may also play an important role in governing their osteogenic differentiation. Supporting this hypothesis, increasing amounts of fibronectin and type-I collagen were synthesized and deposited onto thin-film PLGA substrates, whereas vitronectin levels diminished over a 28-day time course. Integrin expression profiles changed accordingly, with higher levels of alpha2beta1 and alpha5beta1 than alphavbeta3 at three different time points. The mitogen-activated protein kinase (MAPK) and phosphatidyl inositol-3-kinase (PI3K) pathways were also activated in MSCs cultured on these substrates, and their inhibition significantly inhibited osteogenic differentiation as assessed according to alkaline phosphatase activity and mineral deposition. These data indicate that initial ECM deposition, subsequent matrix remodeling, and corresponding integrin expression profiles influence osteogenesis in MSCs cultured on PLGA in part by engaging MAPK and PI3K signaling pathways. Understanding the mechanisms by which stem cells respond to different polymers will be critical in their eventual therapeutic use.
Collapse
Affiliation(s)
- Anup K Kundu
- Department of Chemical Engineering and Materials Science, University of California at Irvine, Irvine, California 92697, USA
| | | | | |
Collapse
|
219
|
Comparison of the efficiencies of three neural induction protocols in human adipose stromal cells. Neurochem Res 2009; 35:572-9. [PMID: 19960248 DOI: 10.1007/s11064-009-0101-y] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/14/2009] [Indexed: 01/01/2023]
Abstract
The aim of this study was to compare the neural differentiation potential and the expression of neurotrophic factors (NTFs) in differentiated adipose-derived stem cells (ADSCs) using three established induction protocols, serum free (Protocol 1), chemical reagents (Protocol 2), and spontaneous (Protocol 3) protocols. Protocol 1 produced the highest percentage of mature neural-like cells (MAP2ab(+)). Protocol 2 showed the highest percentage of immature neural-like cells (beta-tubulin III(+)), but the neural-like state was transient and reversible. Protocol 3 caused ADSCs to differentiate spontaneously into immature neural-like cells, but not into mature neural cell types. The neural-like cells produced by Protocol 1 lived the longest in culture with little cell death, but Protocol 2 and 3 led to the significant cell death. Therefore, Protocol 1 is the most efficient among these protocols. Additionally, soon after differentiation, the mRNA levels of nerve growth factor (NGF) and brain-derived neurotrophic factor (BDNF) in dADSCs were sharply decreased by Protocol 1 and 2 (acute induction protocol), but not by Protocol 3 (chronic induction protocol). The results indicate that NTFs played an important role in neural differentiation via acute responses to NGF and BDNF, but not chronically during the transdifferentiation process.
Collapse
|
220
|
Zhang HT, Luo J, Sui LS, Ma X, Yan ZJ, Lin JH, Wang YS, Chen YZ, Jiang XD, Xu RX. Effects of differentiated versus undifferentiated adipose tissue-derived stromal cell grafts on functional recovery after spinal cord contusion. Cell Mol Neurobiol 2009; 29:1283-92. [PMID: 19533335 PMCID: PMC11505793 DOI: 10.1007/s10571-009-9424-0] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2008] [Accepted: 06/03/2009] [Indexed: 02/06/2023]
Abstract
Controversies exist concerning the need for mesenchymal stromal cells (MSCs) to be transdifferentiated prior to their transplantation. In the present study, we compared the results of grafting into the rat contused spinal cord undifferentiated, adipose tissue-derived stromal cells (uADSCs) versus ADSCs induced by two different protocols to form differentiated nervous tissue. Using Basso, Beattie, and Bresnahan scores and grid tests, we found that three cell-treated groups, including uADSCs-treated, dADSCs induced by Protocol 1 (dADSC-P1)-treated, and dADSCs induced by Protocol 2 (dADSC-P2)-treated groups, significantly improved locomotor functional recovery in SCI rats, compared with the saline-treated group. Furthermore, functional recovery was better in the uADSC-treated and dADSC-P2-treated groups than in the dADSC-P1-treated group at week 12 postinjury (P < 0.05 for dADSC-P1 group vs. uADSCs or dADSC-P2 groups). Although both protocols could induce high percentages of cells expressing neural markers in vitro, few BrdU-labeled cells survived at the injury sites in the three cell-treated groups, and only a small percentage of BrdU-positive cells expressed neural markers. On the other hand, the number of NF200-positive axons in the uADSC-treated and dADSC-P2-treated groups was significantly larger than those in the dADSC-P1-treated and saline-treated control groups. Our results indicate that ADSCs are able to differentiate into neural-like cells in vitro and in vivo. However, neural differentiated ADSCs did not result in better functional recovery than undifferentiated ones, following SCI. In vitro neural transdifferentiation of ADSCs might therefore not be a necessary pretransplantation step. Furthermore, cellular replacement or integration might not contribute to the functional recovery of the injured spinal cord.
Collapse
Affiliation(s)
- Hong-Tian Zhang
- Department of Neurosurgery, Zhujiang Hospital, Southern Medical University, 510282 Guangzhou, China
- Institute of Neurosurgery, Key Laboratory on Brain Function Repair and Regeneration of Guangdong, Southern Medical University, 510282 Guangzhou, China
| | - Jie Luo
- Department of Neurosurgery, Zhujiang Hospital, Southern Medical University, 510282 Guangzhou, China
- Institute of Neurosurgery, Key Laboratory on Brain Function Repair and Regeneration of Guangdong, Southern Medical University, 510282 Guangzhou, China
| | - Li-Sen Sui
- Department of Neurosurgery, Guangdong Hospital of Traditional Chinese Medicine, 510120 Guangzhou, China
| | - Xu Ma
- Department of Neurosurgery, Zhujiang Hospital, Southern Medical University, 510282 Guangzhou, China
- Institute of Neurosurgery, Key Laboratory on Brain Function Repair and Regeneration of Guangdong, Southern Medical University, 510282 Guangzhou, China
| | - Zhong-Jie Yan
- Department of Neurosurgery, Zhujiang Hospital, Southern Medical University, 510282 Guangzhou, China
- Institute of Neurosurgery, Key Laboratory on Brain Function Repair and Regeneration of Guangdong, Southern Medical University, 510282 Guangzhou, China
| | - Jian-Hao Lin
- Department of Neurosurgery, Zhujiang Hospital, Southern Medical University, 510282 Guangzhou, China
- Institute of Neurosurgery, Key Laboratory on Brain Function Repair and Regeneration of Guangdong, Southern Medical University, 510282 Guangzhou, China
| | - Yu-Sheng Wang
- Department of Neurosurgery, Zhujiang Hospital, Southern Medical University, 510282 Guangzhou, China
- Institute of Neurosurgery, Key Laboratory on Brain Function Repair and Regeneration of Guangdong, Southern Medical University, 510282 Guangzhou, China
| | - Yi-Zhao Chen
- Department of Neurosurgery, Zhujiang Hospital, Southern Medical University, 510282 Guangzhou, China
- Institute of Neurosurgery, Key Laboratory on Brain Function Repair and Regeneration of Guangdong, Southern Medical University, 510282 Guangzhou, China
| | - Xiao-Dan Jiang
- Department of Neurosurgery, Zhujiang Hospital, Southern Medical University, 510282 Guangzhou, China
- Institute of Neurosurgery, Key Laboratory on Brain Function Repair and Regeneration of Guangdong, Southern Medical University, 510282 Guangzhou, China
| | - Ru-Xiang Xu
- Department of Neurosurgery, Zhujiang Hospital, Southern Medical University, 510282 Guangzhou, China
- Institute of Neurosurgery, Key Laboratory on Brain Function Repair and Regeneration of Guangdong, Southern Medical University, 510282 Guangzhou, China
- Department of Neurosurgery, The Military General Hospital of Beijing PLA, 100700 Beijing, China
| |
Collapse
|
221
|
Buddensiek J, Dressel A, Kowalski M, Storch A, Sabolek M. Adult cerebrospinal fluid inhibits neurogenesis but facilitates gliogenesis from fetal rat neural stem cells. J Neurosci Res 2009; 87:3054-66. [PMID: 19530161 DOI: 10.1002/jnr.22150] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Neural stem cells (NSCs) are a promising source for cell replacement therapies for neurological diseases. Administration of NSCs into the cerebrospinal fluid (CSF) offers a nontraumatic transplantation method into the brain. However, cell survival and intraparenchymal migration of the transplants are limited. Furthermore, CSF was recently reported to be an important milieu for controlling stem cell processes in the brain. We studied the effects of adult human leptomeningeal CSF on the behavior of fetal rat NSCs. CSF increased survival of NSCs compared with standard culture media during stem cell maintenance and differentiation. The presence of CSF enhanced NSC differentiation, leading to a faster loss of self-renewal capacity and faster and stronger neurite outgrowth. Some of these effects (mainly cell survival, neurite brancing) were blocked by addition of the bone morphogenic protein (BMP) inhibitor noggin. After differentiation in CSF, significantly fewer MAP2ab(+) neurons were found, but there were more GFAP(+) astroglia compared with standard media. By RT-PCR analysis, we determined a decrease of mRNA of the NSC marker gene Nestin but an increase of Gfap mRNA during differentiation up to 72 hr in CSF compared with standard media. Our data demonstrate that adult human leptomeningeal CSF enhances cell survival of fetal rat NSCs during proliferation and differentiation. Furthermore, CSF provides a stimulus for gliogenesis but inhibits neurogenesis from fetal NSCs. Our data suggest that CSF contains factors such as BMPs regulating NSC behavior, and we hypothesize that fast differentiation of NSCs in CSF leads to a rapid loss of migration capacity of intrathecally transplanted NSCs.
Collapse
Affiliation(s)
- Judith Buddensiek
- Department of Neurology, EMA University of Greifswald, Greifswald, Germany
| | | | | | | | | |
Collapse
|
222
|
Transplantation of human marrow stromal cells and mono-nuclear bone marrow cells into the injured spinal cord: a comparative study. Spine (Phila Pa 1976) 2009; 34:2605-12. [PMID: 19881401 DOI: 10.1097/brs.0b013e3181bdca87] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
STUDY DESIGN Two groups of 6 rats received dorsolateral funiculotomies followed by direct injection of bone marrow stromal cells (MSC) or mono-nuclear fraction of bone marrow (mnBM). Animals were killed at 4 or 21 days. OBJECTIVE Cellular transplantation is a promising treatment strategy for spinal cord injury (SCI); however, most cells need to be cultured before transplantation introducing burdensome steps for clinical application. Cells immediately available for transplantation, like mnBM, would be preferable. SUMMARY OF BACKGROUND DATA Previous studies have shown that MSC transplants promote protection and repair after SCI. MSC are attractive for transplantation because of easy isolation and availability of autologous sources. MSC are derived from whole bone marrow, purified and expanded in culture for a period of at least 2 weeks. Alternatively, mnBM could be used for transplantation. mnBM derived from bone marrow from through simple centrifugation can be reimplantated within hours; however, the presence of immune cells may be problematic. METHODS Cultured MSC or mnBM from human donors were acutely transplanted into SCI. After sacrifice, spinal cord sections were histologically analyzed for presence of graft-derived immune cells, host immune response, tissue sparing, glial scar formation, and grafting efficacy. RESULTS mnBM did not give rise to mature immune cells after transplantation into SCI, or evoke an increased host immune response or tissue loss compared to MSC-transplanted animals. In contrast, host macrophage/microglia response was increased early after MSC transplantation, perhaps due to exposure of cells to serum-containing media. The glial scar was less prominent after mnBM transplantation at day 4. At 21 days, differences had subsided and MSC and mnBM macrophage responses and effects on glial scarring were comparable. MSC and mnBM engraftment efficiencies were also similar. CONCLUSION The use of mnBM is a viable alternative to MSC for transplantation into SCI and may dramatically ease clinical translation.
Collapse
|
223
|
Ohnishi S, Ito H, Suzuki Y, Adachi Y, Wate R, Zhang J, Nakano S, Kusaka H, Ikehara S. Intra-bone marrow-bone marrow transplantation slows disease progression and prolongs survival in G93A mutant SOD1 transgenic mice, an animal model mouse for amyotrophic lateral sclerosis. Brain Res 2009; 1296:216-224. [PMID: 19686706 DOI: 10.1016/j.brainres.2009.08.012] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2009] [Revised: 08/04/2009] [Accepted: 08/05/2009] [Indexed: 12/13/2022]
Abstract
It has been reported that bone marrow transplantation (BMT) has clinical effects on not only hematopoietic diseases and autoimmune diseases but also solid malignant tumors and metabolic diseases. We have found that intra-bone marrow-bone marrow transplantation (IBM-BMT) is superior to conventional intravenous BMT, since IBM-BMT enables rapid recovery of donor hematopoiesis and reduces the extent of graft-versus-host disease (GVHD). In this experiment, we examined the effects of IBM-BMT on symptomatic G93A mutant SOD1 transgenic mice (mSOD1 Tg mice), a model mouse line for amyotrophic lateral sclerosis (ALS). Symptomatic mSOD1 Tg mice (12 weeks old) were irradiated with 6Gyx2 at a 4-hour interval, one day before IBM-BMT. The mice were transplanted with bone marrow cells (BMCs) from 12-wk-old eGFP-transgenic C57BL/6 mice (eGFP Tg mice) or BMCs from 12-wk-old mSOD1 Tg mice. The ALS model mice transplanted with BMCs from eGFP Tg mice showed longer survival and slower disease progression than those transplanted with BMCs from mSOD1 Tg mice or untreated mSOD1 Tg mice. There was a significantly high number of eGFP(+) cells in the anterior horn of the spinal cord of the mSOD1 Tg mice transplanted with BMCs of eGFP Tg mice, some of which expressed Iba-1, a marker of microglia, although they did not differentiate into neural cells. These results suggest that the replacement with normal hematopoietic cells improved the neural cell environment, thereby slowing the progression of the disease.
Collapse
Affiliation(s)
- Shizuo Ohnishi
- Department of Neurology, Kansai Medical University, Moriguchi City, Osaka, Japan
| | | | | | | | | | | | | | | | | |
Collapse
|
224
|
Prabhakaran MP, Venugopal JR, Ramakrishna S. Mesenchymal stem cell differentiation to neuronal cells on electrospun nanofibrous substrates for nerve tissue engineering. Biomaterials 2009; 30:4996-5003. [DOI: 10.1016/j.biomaterials.2009.05.057] [Citation(s) in RCA: 213] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2009] [Accepted: 05/21/2009] [Indexed: 12/21/2022]
|
225
|
Cizkova D, Cizek M, Nagyova M, Slovinska L, Novotna I, Jergova S, Radonak J, Hlucilova J, Vanicky I. Enrichment of rat oligodendrocyte progenitor cells by magnetic cell sorting. J Neurosci Methods 2009; 184:88-94. [DOI: 10.1016/j.jneumeth.2009.07.030] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2008] [Revised: 06/08/2009] [Accepted: 07/28/2009] [Indexed: 01/17/2023]
|
226
|
Nakaji-Hirabayashi T, Kato K, Iwata H. Hyaluronic acid hydrogel loaded with genetically-engineered brain-derived neurotrophic factor as a neural cell carrier. Biomaterials 2009; 30:4581-9. [DOI: 10.1016/j.biomaterials.2009.05.009] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2009] [Accepted: 05/10/2009] [Indexed: 10/20/2022]
|
227
|
Shakhbazov AV, Goncharova NV, Kosmacheva SM, Kartel’ NA, Potapnev MP. Plasticity of Human Mesenchymal Stem Cell Phenotype and Expression Profile under Neurogenic Conditions. Bull Exp Biol Med 2009; 147:513-6. [DOI: 10.1007/s10517-009-0547-6] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
228
|
Hayase M, Kitada M, Wakao S, Itokazu Y, Nozaki K, Hashimoto N, Takagi Y, Dezawa M. Committed neural progenitor cells derived from genetically modified bone marrow stromal cells ameliorate deficits in a rat model of stroke. J Cereb Blood Flow Metab 2009; 29:1409-20. [PMID: 19436312 DOI: 10.1038/jcbfm.2009.62] [Citation(s) in RCA: 68] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Bone marrow stromal cells (MSCs) are an excellent source of cells for treating a variety of central nervous system diseases. In this study, we report the efficient induction of committed neural progenitor cells from rat and human MSCs (NS-MSCs) by introduction of cells with the intracellular domain of Notch-1 followed by growth in the free-floating culture system. NS-MSCs successfully formed spheres, in which cells highly expressed the neural precursor cell markers. The commitment of spheres to neural lineage cells was confirmed by their successful differentiation into neuronal cells when exposed to a differentiation medium. To determine the therapeutic potential of NS-MSCs, cells were transplanted into the cortex and striatum in a rat model of focal cerebral ischemia. The survival, distribution, and integration of NS-MSCs in the host brain were very high, and at day 100, grafted NS-MSCs were positive for dopaminergic, glutamatergic, and gamma-amino butyric acid(GABA)ergic neuronal markers. They extended long neurites for nearly 6.3 mm and many of these expressed synaptophysin. Significant behavioral recovery was also observed in limb-placing and water-maze tests. These suggest a high potential for this MSC approach in the replenishment of neural cells for stroke and for a wide range of neurodegenerative conditions that require various types of neural cells.
Collapse
Affiliation(s)
- Makoto Hayase
- Department of Neurosurgery, Kyoto University Graduate School of Medicine, 54 Kawahara-cho, Shogoin, Sakyo-ku, Kyoto 606-8507 , Japan
| | | | | | | | | | | | | | | |
Collapse
|
229
|
Habisch HJ, Fiedler J, Ludolph AC, Storch A, Brenner RE. Altered migration and adhesion potential of pro-neurally converted human bone marrow stromal cells. Cytotherapy 2009; 10:824-33. [PMID: 19016370 DOI: 10.1080/14653240802474331] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
BACKGROUND Bone marrow (BM)-derived mesenchymal stromal cells (MSC) are promising candidate cells for the development of neuroregenerative therapies. We have previously introduced the pro-neural conversion of human MSC to neural stem cell-like cells (m-NSC) by culturing them in suspension culture under serum-free conditions. METHODS In the present study, we used a modified Boyden chamber assay to study the influence of various chemoattractants and extracellular matrix components on MSC and m-NSC migration in vitro. The underlying mechanisms were investigated further by applying real-time reverse transcriptase (RT)-polymerase chain reaction (PCR) and flow cytometry. RESULTS The basal migration of m-NSC was significantly reduced compared with MSC (six versus 27 out of 10,000 cells migrated within 6 h). We evaluated the effects of bone morphogenic protein 2 (BMP2), insulin-like growth factor 1 (IGF1), platelet-derived growth factor bb (PDGFbb), vascular endothelial growth factor (VEGFa), and stromal cell-derived factor 1 (SDF1) on the migration potential of both cell types and PDGFbb proved to be the most potent stimulant of migration (235 versus 198 m-NSC or MSC migrated). Adhesion of m-NSC to the filter membrane was delayed and not affected by IGF1 or PDGFbb: 90% of MSC, but only 20% of m-NSC, adhered within 1 h, with 90% of m-NSC adhering within 3 h. However, real-time RT-PCR and flow cytometry revealed an up-regulation of the PDGF receptor B following conversion. Coating the membranes with collagen type I or hyaluronan also significantly influenced cell migration. DISCUSSION We could identify major chemoattractive factors for m-NSC and gained partial insight into the complex processes involved in migration of neurally converted cells.
Collapse
Affiliation(s)
- H-J Habisch
- Department of Neurology, University of Ulm, Ulm, Germany
| | | | | | | | | |
Collapse
|
230
|
Li QM, Fu YM, Shan ZY, Shen JL, Zhang XM, Lei L, Jin LH. MSCs guide neurite directional extension and promote oligodendrogenesis in NSCs. Biochem Biophys Res Commun 2009; 384:372-7. [DOI: 10.1016/j.bbrc.2009.04.147] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2009] [Accepted: 04/28/2009] [Indexed: 01/01/2023]
|
231
|
Völlner F, Ernst W, Driemel O, Morsczeck C. A two-step strategy for neuronal differentiation in vitro of human dental follicle cells. Differentiation 2009; 77:433-441. [PMID: 19394129 DOI: 10.1016/j.diff.2009.03.002] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2008] [Revised: 03/10/2009] [Accepted: 03/12/2009] [Indexed: 12/21/2022]
Abstract
Human dental follicle cells (DFCs) derived from wisdom teeth are precursor cells for cementoblasts. In this study, we recognized that naïve DFCs express constitutively the early neural cell marker beta-III-tubulin. Interestingly, DFCs formed beta-III-tubulin-positive neurosphere-like cell clusters (NLCCs) on low-attachment cell culture dishes in serum-replacement medium (SRM). For a detailed examination of the neural differentiation potential, DFCs were cultivated in different compositions of SRM containing supplements such as N2, B27, G5 and the neural stem cell supplement. Moreover, these cell culture media were combined with different cell culture substrates such as gelatin, laminin, poly-L-ornithine or poly-L-lysine. After cultivation in SRM, DFCs differentiated into cells with small cell bodies and long cellular extrusions. The expression of nestin, beta-III-tubulin, neuron-specific enolase (NSE) and neurofilament was up-regulated in SRM supplemented with G5, a cell culture supplement for glial cells, and the neural stem cell supplement. DFCs formed NLCCs and demonstrated an increased gene expression of neural cell markers beta-III-tubulin, NSE, nestin and for small neuron markers such as neuropeptides galanin (GAL) and tachykinin (TAC1) after cultivation on poly-L-lysine. For a further neural differentiation NLCC-derived cells were sub-cultivated on laminin and poly-L-ornithine cell culture substrate. After 2 weeks of differentiation, DFCs exposed neural-like cell morphology with small neurite-like cell extrusions. These cells differentially express neurofilament and NSE, but only low levels of beta-III-tubulin and nestin. In conclusion, we demonstrated the differentiation of human DFCs into neuron-like cells after a two-step strategy for neuronal differentiation.
Collapse
Affiliation(s)
- Florian Völlner
- Institute of Human Genetics, Franz-Josef Strauss Allee 11, University of Regensburg, 93053 Regensburg, Germany
| | | | | | | |
Collapse
|
232
|
Zhang L, Zhang HT, Hong SQ, Ma X, Jiang XD, Xu RX. Cografted Wharton's jelly cells-derived neurospheres and BDNF promote functional recovery after rat spinal cord transection. Neurochem Res 2009; 34:2030-9. [PMID: 19462232 DOI: 10.1007/s11064-009-9992-x] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2009] [Accepted: 05/06/2009] [Indexed: 12/22/2022]
Abstract
An animal model of transected spinal cord injury (SCI) was used to test the hypothesis that cografted human umbilical mesenchymal stem cells-derived neurospheres (HUMSC-NSs) and BDNF can promote morphologic and functional recoveries of injured spinal cord. In vitro, HUMSC-NSs terminally differentiated into higher percentages of cells expressing neuronal markers: beta-tubulin III and MAP2ab by the supplement with BDNF. Following grafted into injured spinal cord, very few grafted cells survived in the HUMSC-NSs + BDNF-treated (<3%) and HUMSC-NSs-treated (<1%) groups. The survived cells were differentiated into various cells, which were confirmed by double staining of BrdU and neural or glia markers. In comparison, more grafted cells in the HUMSC-NSs + BDNF group transformed into mature neural-like cells, while more grafted cells in the HUMSC-NSs group transformed into oligodendrocyte-like cells. HUMSC-NSs + BDNF-treated group had more greatly improved BBB scores, compared with HUMSC-NSs-treated and medium-treated groups. Additionally, axonal regeneration showed significant improvement in rats receiving HUMSC-NSs + BDNF, compared with HUMSC-NSs-treated and medium-treated groups, as demonstrated by the NF-200-positive staining and Fluorogold (FG) retrograde tracing study. Lastly, a significant reduction in the percentage cavitation was seen in the two cell-treated groups compared with medium control group. These results means BDNF could promote the neural differentiation of HUMSC-NSs in vitro and in vivo. However, cellular replacement is unlikely to explain the improvement in functional outcome. The functional recovery might more rely on the axonal regeneration and neuroprotective action that active by the grafted cells. Cografted HUMSCs and BDNF is a potential therapy for SCI.
Collapse
Affiliation(s)
- Liang Zhang
- Department of Neurosurgery, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | | | | | | | | | | |
Collapse
|
233
|
Abstract
Stroke is a leading cause of death and disability in adults. Recovery after stroke is usually limited as there is no definite therapy to restore lost brain function. Cell therapy is an emerging paradigm in stroke therapy for patients with fixed neurologic deficits. Cell therapy for stroke may be greatly different from cell therapy for other disease conditions; the complexity of central nervous system structures and functions may limit its effectiveness. Recently, there have been several clinical trials of cell therapy for patients with ischemic stroke. In this review, the current status and limitations of cell therapy for stroke will be discussed. In addition, recent efforts and perspectives to improve therapeutic efficacy and safety of cell therapy will be summarized.
Collapse
Affiliation(s)
- Oh Young Bang
- Department of Neurology, Brain and Nerve Center, Samsung Medical Center, Seoul, Korea
| |
Collapse
|
234
|
Barnabé GF, Schwindt TT, Calcagnotto ME, Motta FL, Martinez G, de Oliveira AC, Keim LMN, D'Almeida V, Mendez-Otero R, Mello LE. Chemically-induced RAT mesenchymal stem cells adopt molecular properties of neuronal-like cells but do not have basic neuronal functional properties. PLoS One 2009; 4:e5222. [PMID: 19370156 PMCID: PMC2667250 DOI: 10.1371/journal.pone.0005222] [Citation(s) in RCA: 67] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2008] [Accepted: 03/12/2009] [Indexed: 02/07/2023] Open
Abstract
Induction of adult rat bone marrow mesenchymal stem cells (MSC) by means of chemical compounds (beta-mercaptoethanol, dimethyl sulfoxide and butylated hydroxyanizole) has been proposed to lead to neuronal transdifferentiation, and this protocol has been broadly used by several laboratories worldwide. Only a few hours of MSC chemical induction using this protocol is sufficient for the acquisition of neuronal-like morphology and neuronal protein expression. However, given that cell death is abundant, we hypothesize that, rather than true neuronal differentiation, this particular protocol leads to cellular toxic effects. We confirm that the induced cells with neuronal-like morphology positively stained for NF-200, S100, beta-tubulin III, NSE and MAP-2 proteins. However, the morphological and molecular changes after chemical induction are also associated with an increase in the apoptosis of over 50% of the plated cells after 24 h. Moreover, increased intracellular cysteine after treatment indicates an impairment of redox circuitry during chemical induction, and in vitro electrophysiological recordings (patch-clamp) of the chemically induced MSC did not indicate neuronal properties as these cells do not exhibit Na(+) or K(+) currents and do not fire action potentials. Our findings suggest that a disruption of redox circuitry plays an important role in this specific chemical induction protocol, which might result in cytoskeletal alterations and loss of functional ion-gated channels followed by cell death. Despite the neuronal-like morphology and neural protein expression, induced rat bone marrow MSC do not have basic functional neuronal properties, although it is still plausible that other methods of induction and/or sources of MSC can achieve a successful neuronal differentiation in vitro.
Collapse
Affiliation(s)
- Gabriela F. Barnabé
- Departamento de Fisiologia, Universidade Federal de São Paulo (UNIFESP), São Paulo, São Paulo, Brazil
| | - Telma T. Schwindt
- Departamento de Fisiologia, Universidade Federal de São Paulo (UNIFESP), São Paulo, São Paulo, Brazil
| | - Maria E. Calcagnotto
- Departamento de Fisiologia, Universidade Federal de São Paulo (UNIFESP), São Paulo, São Paulo, Brazil
| | - Fabiana L. Motta
- Departamento de Fisiologia, Universidade Federal de São Paulo (UNIFESP), São Paulo, São Paulo, Brazil
| | - Gilberto Martinez
- Departamento de Biofísica, Universidade Federal de São Paulo (UNIFESP), São Paulo, São Paulo, Brazil
| | - Allan C. de Oliveira
- Departamento de Pediatria, Universidade Federal de São Paulo (UNIFESP), São Paulo, São Paulo, Brazil
| | - Leda M. N. Keim
- Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro (UFRJ), Rio de Janeiro, Rio de Janeiro, Brazil
| | - Vânia D'Almeida
- Departamento de Pediatria, Universidade Federal de São Paulo (UNIFESP), São Paulo, São Paulo, Brazil
- Departamento de Biociências, Universidade Federal de São Paulo (UNIFESP), Santos, São Paulo, Brazil
| | - Rosália Mendez-Otero
- Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro (UFRJ), Rio de Janeiro, Rio de Janeiro, Brazil
| | - Luiz E. Mello
- Departamento de Fisiologia, Universidade Federal de São Paulo (UNIFESP), São Paulo, São Paulo, Brazil
- * E-mail:
| |
Collapse
|
235
|
Structural and functional improvement of injured brain after severe acute carbon monoxide poisoning by stem cell–based therapy in rats*. Crit Care Med 2009; 37:1416-22. [DOI: 10.1097/ccm.0b013e31819d6821] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
|
236
|
Montzka K, Lassonczyk N, Tschöke B, Neuss S, Führmann T, Franzen R, Smeets R, Brook GA, Wöltje M. Neural differentiation potential of human bone marrow-derived mesenchymal stromal cells: misleading marker gene expression. BMC Neurosci 2009; 10:16. [PMID: 19257891 PMCID: PMC2655300 DOI: 10.1186/1471-2202-10-16] [Citation(s) in RCA: 113] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2008] [Accepted: 03/03/2009] [Indexed: 01/01/2023] Open
Abstract
BACKGROUND In contrast to pluripotent embryonic stem cells, adult stem cells have been considered to be multipotent, being somewhat more restricted in their differentiation capacity and only giving rise to cell types related to their tissue of origin. Several studies, however, have reported that bone marrow-derived mesenchymal stromal cells (MSCs) are capable of transdifferentiating to neural cell types, effectively crossing normal lineage restriction boundaries. Such reports have been based on the detection of neural-related proteins by the differentiated MSCs. In order to assess the potential of human adult MSCs to undergo true differentiation to a neural lineage and to determine the degree of homogeneity between donor samples, we have used RT-PCR and immunocytochemistry to investigate the basal expression of a range of neural related mRNAs and proteins in populations of non-differentiated MSCs obtained from 4 donors. RESULTS The expression analysis revealed that several of the commonly used marker genes from other studies like nestin, Enolase2 and microtubule associated protein 1b (MAP1b) are already expressed by undifferentiated human MSCs. Furthermore, mRNA for some of the neural-related transcription factors, e.g. Engrailed-1 and Nurr1 were also strongly expressed. However, several other neural-related mRNAs (e.g. DRD2, enolase2, NFL and MBP) could be identified, but not in all donor samples. Similarly, synaptic vesicle-related mRNA, STX1A could only be detected in 2 of the 4 undifferentiated donor hMSC samples. More significantly, each donor sample revealed a unique expression pattern, demonstrating a significant variation of marker expression. CONCLUSION The present study highlights the existence of an inter-donor variability of expression of neural-related markers in human MSC samples that has not previously been described. This donor-related heterogeneity might influence the reproducibility of transdifferentiation protocols as well as contributing to the ongoing controversy about differentiation capacities of MSCs. Therefore, further studies need to consider the differences between donor samples prior to any treatment as well as the possibility of harvesting donor cells that may be inappropriate for transplantation strategies.
Collapse
Affiliation(s)
- Katrin Montzka
- Department of Neurology, RWTH Aachen University, Aachen, Germany.
| | | | | | | | | | | | | | | | | |
Collapse
|
237
|
Streckfuss-Bömeke K, Vlasov A, Hülsmann S, Yin D, Nayernia K, Engel W, Hasenfuss G, Guan K. Generation of functional neurons and glia from multipotent adult mouse germ-line stem cells. Stem Cell Res 2009; 2:139-54. [DOI: 10.1016/j.scr.2008.09.001] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/17/2008] [Revised: 09/10/2008] [Accepted: 09/14/2008] [Indexed: 11/24/2022] Open
|
238
|
Fu L, Zhu L, Huang Y, Lee TD, Forman SJ, Shih CC. Derivation of neural stem cells from mesenchymal stemcells: evidence for a bipotential stem cell population. Stem Cells Dev 2009; 17:1109-21. [PMID: 18426339 DOI: 10.1089/scd.2008.0068] [Citation(s) in RCA: 102] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Neural stem cell (NSC) transplantation has been proposed as a future therapy for neurodegenerative disorders. However, NSC transplantation will be hampered by the limited number of brain donors and the toxicity of immunosuppressive regimens that might be needed with allogeneic transplantation. These limitations may be avoided if NSCs can be generated from clinically accessible sources, such as bone marrow (BM) and peripheral blood samples, that are suitable for autologous transplantation. We report here that NSCs can be generated from human BM-derived mesenchymal stem cells (MSCs). When cultured in NSC culture conditions, 8% of MSCs were able to generate neurospheres. These MSC-derived neurospheres expressed characteristic NSC antigens, such as nestin and musashi-1, and were capable of self-renewal and multilineage differentiation into neurons, astrocytes, and oligodendrocytes. Furthermore, when these MSC-derived neurospheres were cocultured with primary astrocytes, they differentiate into neurons that possess both dendritic and axonal processes, form synapses, and are able to fire tetrodotoxin-sensitive action potentials. When these MSC-derived NSCs were switched back to MSC culture conditions, a small fraction of NSCs (averaging 4-5%) adhered to the culture flasks, proliferated, and displayed the morphology of MSCs. Those adherent cells expressed the characteristic MSC antigens and regained the ability to differentiate into multiple mesodermal lineages. Data presented in this study suggest that MSCs contain a small fraction (averaging 4-5%) of a bipotential stem cell population that is able to generate either MSCs or NSCs depending on the culture conditions.
Collapse
Affiliation(s)
- Lijuan Fu
- Division of Hematology/Hematopoietic Cell Transplantation, City of Hope National Medical Center, Duarte, California 91010-3000, USA
| | | | | | | | | | | |
Collapse
|
239
|
Oct4-Induced Pluripotency in Adult Neural Stem Cells. Cell 2009; 136:411-9. [DOI: 10.1016/j.cell.2009.01.023] [Citation(s) in RCA: 690] [Impact Index Per Article: 43.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2008] [Revised: 12/24/2008] [Accepted: 01/20/2009] [Indexed: 01/02/2023]
|
240
|
Joo KM, Park IH, Shin JY, Jin J, Kang BG, Kim MH, Lee SJ, Jo MY, Kim SU, Nam DH. Human neural stem cells can target and deliver therapeutic genes to breast cancer brain metastases. Mol Ther 2009; 17:570-5. [PMID: 19127251 DOI: 10.1038/mt.2008.290] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
The tumor-tropic properties of neural stem cells (NSCs) led to the development of a novel strategy for delivering therapeutic genes to tumors in the brain. To apply this strategy to the treatment of brain metastases, we made a human NSC line expressing cytosine deaminase (F3.CD), which converts 5-fluorocytosine (5-FC) into 5-fluorouracil, an anticancer agent. In vitro, the F3.CD cells significantly inhibited the growth of tumor cell lines in the presence of the prodrug 5-FC. In vivo, MDA-MB-435 human breast cancer cells were implanted into the brain of immune-deficient mouse stereotactically, and F3.CD cells were injected into the contralateral hemisphere followed by systemic 5-FC administration. The F3.CD cells migrated selectively into the brain metastases located in the opposite hemisphere and resulted in significantly reduced volumes. The F3.CD and 5-FC treatment also decreased both tumor volume and number of tumor mass significantly, when immune-deficient mouse had MDA-MB-435 cells injected into the internal carotid artery and F3.CD cells were transplanted into the contralateral brain hemisphere stereotactically. Taken together, brain transplantation of human NSCs, encoding the suicide enzyme CD, combined with systemic administration of the prodrug 5-FC, is an effective treatment regimen for brain metastases of tumors.
Collapse
Affiliation(s)
- Kyeung Min Joo
- Department of Neurosurgery, Sungkyunkwan University School of Medicine, Seoul, Korea
| | | | | | | | | | | | | | | | | | | |
Collapse
|
241
|
Abstract
Mesenchymal stem cells (MSCs) have the potential to play a role in autologous repair of central nervous system injury or disease, circumventing both the complications associated with immune rejection of allogenic cells, and many of the ethical concerns associated with embryonic stem cell use. Human bone marrow-derived MSCs can be extracted relatively simply from the marrow of adult patients and maintained and expanded in culture. More importantly, it has been previously demonstrated that MSCs have the capacity to differentiate into neurons and glia in vitro when grown under appropriate conditions. Multipotent MSCs have also been successfully used in transplantation studies in animal models of disease as diverse as demyelination, stroke, trauma and Parkinson's disease. MSCs therefore provide an attractive and practical source of stem cells for reparative therapy in patients, and in this paper we describe methods for the reproducible culture and neural differentiation of human MSCs generated from patient marrow.
Collapse
Affiliation(s)
- David Gordon
- University of Bristol Institute of Clinical Neurosciences, Frenchay Hospital, Bristol, UK
| | | |
Collapse
|
242
|
Neural differentiation of adipose-derived stem cells by indirect co-culture with Schwann cells. ARCH BIOL SCI 2009. [DOI: 10.2298/abs0904703l] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
To investigate whether adipose-derived stem cells (ADSCs) could be subject to neural differentiation induced only by Schwann cell (SC) factors, we co-cultured ADSCs and SCs in transwell culture dishes. Immunoassaying, Western blot analysis, and RT-PCR were performed (1, 3, 7, 14 d) and the co-cultured ADSCs showed gene and protein expression of S-100, Nestin, and GFAP. Further, qRT-PCR disclosed relative quantitative differences in the above three gene expressions. We think ADSCs can undergo induced neural differentiation by being co-cultured with SCs, and such differentia?tions begin 1 day after co-culture, become apparent after 7 days, and thereafter remain stable till the 14th day.
Collapse
|
243
|
Croft AP, Przyborski SA. Mesenchymal stem cells expressing neural antigens instruct a neurogenic cell fate on neural stem cells. Exp Neurol 2008; 216:329-41. [PMID: 19159625 DOI: 10.1016/j.expneurol.2008.12.010] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2008] [Revised: 12/08/2008] [Accepted: 12/09/2008] [Indexed: 01/01/2023]
Abstract
The neurogenic response to injury in the postnatal brain is limited and insufficient for restoration of function. Recent evidence suggests that transplantation of mesenchymal stem cells (MSCs) into the injured brain is associated with improved functional recovery, mediated in part through amplification in the endogenous neurogenic response to injury. In the current study we investigate the interactions between bone marrow-derived MSCs and embryonic neural stem cells (NSCs) plus their differentiated progeny using an in vitro co-culture system. Two populations of MSCs were used, MSCs induced to express neural antigens (nestin+, Tuj-1+, GFAP+) and neural antigen negative MSCs. Following co-culture of induced MSCs with differentiating NSC/progenitor cells a significant increase in Tuj-1+ neurons was detected compared to co-cultures of non-induced MSCs in which an increase in astrocyte (GFAP+) differentiation was observed. The effect was mediated by soluble interactions between the two cell populations and was independent of any effect on cell death and proliferation. Induced and non-induced MSCs also promoted the survival of Tuj-1+ cell progeny in long-term cultures and both promoted axonal growth, an effect also seen in differentiating neuroblastoma cells. Therefore, MSCs provide instructive signals that are able to direct the differentiation of NSCs and promote axonal development in neuronal progeny. The data indicates that the nature of MSC derived signals is dependent not only on their microenvironment but on the developmental status of the MSCs. Pre-manipulation of MSCs prior to transplantation in vivo may be an effective means of enhancing the endogenous neurogenic response to injury.
Collapse
Affiliation(s)
- Adam P Croft
- School of Biological and Biomedical Sciences, Durham University, South Road, Durham DH1 3LE, UK
| | | |
Collapse
|
244
|
Anghileri E, Marconi S, Pignatelli A, Cifelli P, Galié M, Sbarbati A, Krampera M, Belluzzi O, Bonetti B. Neuronal differentiation potential of human adipose-derived mesenchymal stem cells. Stem Cells Dev 2008; 17:909-16. [PMID: 18564036 DOI: 10.1089/scd.2007.0197] [Citation(s) in RCA: 171] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Adult mesenchymal stem cells derived from adipose tissue (A-MSC) have the capacity to differentiate in vitro into mesenchymal as well as endodermal and ectodermal cell lineages. We investigated the neuronal differentiation potential of human A-MSC with a protocol which included sphere formation and sequential culture in brain-derived neurotrophic factor (BDNF) and retinoic acid (RA). After 30 days, about 57% A-MSC showed morphological, immunocytochemical and electrophysiological evidence of initial neuronal differentiation. In fact, A-MSC displayed elongated shape with protrusion of two or three cellular processes, selectively expressed nestin and neuronal molecules (including GABA receptor and tyroxine hydroxilase) in the absence of glial phenotypic markers. Differentiated cells showed negative membrane potential (-60 mV), delayed rectifier potassium currents and TTX-sensitive sodium currents. Such changes were stable for at least 7 days after removal of differentiation medium. In view of these results and the easy availability of adipose tissue, A-MSC may be a ready source of adult MSC with neuronal differentiation potential, an useful tool to treat neurodegenerative diseases.
Collapse
Affiliation(s)
- Elena Anghileri
- Department of Neurological Sciences and Vision, University of Verona, Verona, Italy
| | | | | | | | | | | | | | | | | |
Collapse
|
245
|
Nadri S, Soleimani M, Mobarra Z, Amini S. Expression of dopamine-associated genes on conjunctiva stromal-derived human mesenchymal stem cells. Biochem Biophys Res Commun 2008; 377:423-428. [DOI: 10.1016/j.bbrc.2008.09.148] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2008] [Accepted: 09/30/2008] [Indexed: 11/26/2022]
|
246
|
Molchanova EA, Payushina OV, Starostin VI. Effects of growth factors on multipotent bone marrow mesenchymal stromal cells. BIOL BULL+ 2008. [DOI: 10.1134/s1062359008060010] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
|
247
|
Shibata T, Naruse K, Kamiya H, Kozakae M, Kondo M, Yasuda Y, Nakamura N, Ota K, Tosaki T, Matsuki T, Nakashima E, Hamada Y, Oiso Y, Nakamura J. Transplantation of bone marrow-derived mesenchymal stem cells improves diabetic polyneuropathy in rats. Diabetes 2008; 57:3099-107. [PMID: 18728233 PMCID: PMC2570407 DOI: 10.2337/db08-0031] [Citation(s) in RCA: 150] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
OBJECTIVE Mesenchymal stem cells (MSCs) have been reported to secrete various cytokines that exhibit angiogenic and neurosupportive effects. This study was conducted to investigate the effects of MSC transplantation on diabetic polyneuropathy (DPN) in rats. RESEARCH DESIGN AND METHODS MSCs were isolated from bone marrow of adult rats and transplanted into hind limb skeletal muscles of rats with an 8-week duration of streptozotocin (STZ)-induced diabetes or age-matched normal rats by unilateral intramuscular injection. Four weeks after transplantation, vascular endothelial growth factor (VEGF) and basic fibroblast growth factor (bFGF) productions in transplanted sites, current perception threshold, nerve conduction velocity (NCV), sciatic nerve blood flow (SNBF), capillary number-to-muscle fiber ratio in soleus muscles, and sural nerve morphometry were evaluated. RESULTS VEGF and bFGF mRNA expression were significantly increased in MSC-injected thigh muscles of STZ-induced diabetic rats. Furthermore, colocalization of MSCs with VEGF and bFGF in the transplanted sites was confirmed. STZ-induced diabetic rats showed hypoalgesia, delayed NCV, decreased SNBF, and decreased capillary number-to-muscle fiber ratio in soleus muscles, which were all ameliorated by MSC transplantation. Sural nerve morphometry showed decreased axonal circularity in STZ-induced diabetic rats, which was normalized by MSC transplantation. CONCLUSIONS These results suggest that MSC transplantation could have therapeutic effects on DPN through paracrine actions of growth factors secreted by MSCs.
Collapse
Affiliation(s)
- Taiga Shibata
- Department of Endocrinology and Diabetes, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
248
|
Trapp T, Kögler G, El-Khattouti A, Sorg RV, Besselmann M, Föcking M, Bührle CP, Trompeter I, Fischer JC, Wernet P. Hepatocyte Growth Factor/c-MET Axis-mediated Tropism of Cord Blood-derived Unrestricted Somatic Stem Cells for Neuronal Injury. J Biol Chem 2008; 283:32244-53. [DOI: 10.1074/jbc.m800862200] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
|
249
|
Low CB, Liou YC, Tang BL. Neural differentiation and potential use of stem cells from the human umbilical cord for central nervous system transplantation therapy. J Neurosci Res 2008; 86:1670-9. [PMID: 18241062 DOI: 10.1002/jnr.21624] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The human umbilical cord is a rich source of autologous stem and progenitor cells. Interestingly, subpopulations of these, particularly mesenchymal-like cells from both cord blood and the cord stroma, exhibited a potential to be differentiated into neuron-like cells in culture. Umbilical cord blood stem cells have demonstrated efficacy in reducing lesion sizes and enhancing behavioral recovery in animal models of ischemic and traumatic central nervous system (CNS) injury. Recent findings also suggest that neurons derived from cord stroma mesenchymal cells could alleviate movement disorders in hemiparkinsonian animal models. We review here the neurogenic potential of umbilical cord stem cells and discuss possibilities of their exploitation as an alternative to human embryonic stem cells or neural stem cells for transplantation therapy of traumatic CNS injury and neurodegenerative diseases.
Collapse
Affiliation(s)
- Choon Bing Low
- Department of Biochemistry, Yong Loo Lin School of Medicine, Singapore, Republic of Singapore
| | | | | |
Collapse
|
250
|
Sauerzweig S, Baldauf K, Braun H, Reymann KG. Time-dependent segmentation of BrdU-signal leads to late detection problems in studies using BrdU as cell label or proliferation marker. J Neurosci Methods 2008; 177:149-59. [PMID: 19007815 DOI: 10.1016/j.jneumeth.2008.10.009] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2008] [Revised: 09/22/2008] [Accepted: 10/06/2008] [Indexed: 01/05/2023]
Abstract
Bromodeoxyuridine incorporates into DNA during mitosis. A long-term stability of the incorporated BrdU is important for the recovery of BrdU-labeled cells. For testing the stability of BrdU incorporation into DNA we pulse-labeled mesenchymal stem cells with BrdU and observed these cells in vitro over 4 weeks. During this time the BrdU-signal was permanently decreasing. Starting with cells containing evenly stained BrdU-nuclei, so-called filled cells, already 3 days after BrdU removal we detected cells containing so-called segmented and punctated BrdU-signals. The number of those labeled cells continuously increased over time. Interestingly, the loss of BrdU in the nucleus was accompanied by an increasing labeling of the cytosol. Further, we injected BrdU intraperitoneally into rats after ischemia and detected BrdU-positive cells in the hippocampus 3 and 23 days after the last BrdU injection. While after 3 days most of the BrdU-positive cells in the hippocampus displayed a filled BrdU-signal, 23 days after BrdU removal an increased number of segmented and punctated BrdU-positive nuclei was detected. The gradual degradation of the BrdU-signal was not caused by cell death. The consequence of this BrdU degradation would be an underestimation of cell proliferation and an overestimation of cell death of newly generated cells.
Collapse
Affiliation(s)
- Steven Sauerzweig
- Leibniz Institute for Neurobiology (IfN), Brenneckestr. 6, 39118 Magdeburg, Germany.
| | | | | | | |
Collapse
|